Merge branch 'component' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[deliverable/linux.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
34
35 #include <cluster/masklog.h>
36
37 #include "ocfs2.h"
38
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 #include "file.h"
54 #include "namei.h"
55
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
58
59 DEFINE_SPINLOCK(trans_inc_lock);
60
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
62
63 static int ocfs2_force_read_journal(struct inode *inode);
64 static int ocfs2_recover_node(struct ocfs2_super *osb,
65 int node_num, int slot_num);
66 static int __ocfs2_recovery_thread(void *arg);
67 static int ocfs2_commit_cache(struct ocfs2_super *osb);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
70 int dirty, int replayed);
71 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72 int slot_num);
73 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
74 int slot,
75 enum ocfs2_orphan_reco_type orphan_reco_type);
76 static int ocfs2_commit_thread(void *arg);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78 int slot_num,
79 struct ocfs2_dinode *la_dinode,
80 struct ocfs2_dinode *tl_dinode,
81 struct ocfs2_quota_recovery *qrec,
82 enum ocfs2_orphan_reco_type orphan_reco_type);
83
84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
85 {
86 return __ocfs2_wait_on_mount(osb, 0);
87 }
88
89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
90 {
91 return __ocfs2_wait_on_mount(osb, 1);
92 }
93
94 /*
95 * This replay_map is to track online/offline slots, so we could recover
96 * offline slots during recovery and mount
97 */
98
99 enum ocfs2_replay_state {
100 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
101 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
102 REPLAY_DONE /* Replay was already queued */
103 };
104
105 struct ocfs2_replay_map {
106 unsigned int rm_slots;
107 enum ocfs2_replay_state rm_state;
108 unsigned char rm_replay_slots[0];
109 };
110
111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
112 {
113 if (!osb->replay_map)
114 return;
115
116 /* If we've already queued the replay, we don't have any more to do */
117 if (osb->replay_map->rm_state == REPLAY_DONE)
118 return;
119
120 osb->replay_map->rm_state = state;
121 }
122
123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
124 {
125 struct ocfs2_replay_map *replay_map;
126 int i, node_num;
127
128 /* If replay map is already set, we don't do it again */
129 if (osb->replay_map)
130 return 0;
131
132 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133 (osb->max_slots * sizeof(char)), GFP_KERNEL);
134
135 if (!replay_map) {
136 mlog_errno(-ENOMEM);
137 return -ENOMEM;
138 }
139
140 spin_lock(&osb->osb_lock);
141
142 replay_map->rm_slots = osb->max_slots;
143 replay_map->rm_state = REPLAY_UNNEEDED;
144
145 /* set rm_replay_slots for offline slot(s) */
146 for (i = 0; i < replay_map->rm_slots; i++) {
147 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148 replay_map->rm_replay_slots[i] = 1;
149 }
150
151 osb->replay_map = replay_map;
152 spin_unlock(&osb->osb_lock);
153 return 0;
154 }
155
156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157 enum ocfs2_orphan_reco_type orphan_reco_type)
158 {
159 struct ocfs2_replay_map *replay_map = osb->replay_map;
160 int i;
161
162 if (!replay_map)
163 return;
164
165 if (replay_map->rm_state != REPLAY_NEEDED)
166 return;
167
168 for (i = 0; i < replay_map->rm_slots; i++)
169 if (replay_map->rm_replay_slots[i])
170 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
171 NULL, NULL,
172 orphan_reco_type);
173 replay_map->rm_state = REPLAY_DONE;
174 }
175
176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
177 {
178 struct ocfs2_replay_map *replay_map = osb->replay_map;
179
180 if (!osb->replay_map)
181 return;
182
183 kfree(replay_map);
184 osb->replay_map = NULL;
185 }
186
187 int ocfs2_recovery_init(struct ocfs2_super *osb)
188 {
189 struct ocfs2_recovery_map *rm;
190
191 mutex_init(&osb->recovery_lock);
192 osb->disable_recovery = 0;
193 osb->recovery_thread_task = NULL;
194 init_waitqueue_head(&osb->recovery_event);
195
196 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197 osb->max_slots * sizeof(unsigned int),
198 GFP_KERNEL);
199 if (!rm) {
200 mlog_errno(-ENOMEM);
201 return -ENOMEM;
202 }
203
204 rm->rm_entries = (unsigned int *)((char *)rm +
205 sizeof(struct ocfs2_recovery_map));
206 osb->recovery_map = rm;
207
208 return 0;
209 }
210
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212 * memory barriers to make sure that we'll see the null task before
213 * being woken up */
214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
215 {
216 mb();
217 return osb->recovery_thread_task != NULL;
218 }
219
220 void ocfs2_recovery_exit(struct ocfs2_super *osb)
221 {
222 struct ocfs2_recovery_map *rm;
223
224 /* disable any new recovery threads and wait for any currently
225 * running ones to exit. Do this before setting the vol_state. */
226 mutex_lock(&osb->recovery_lock);
227 osb->disable_recovery = 1;
228 mutex_unlock(&osb->recovery_lock);
229 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
230
231 /* At this point, we know that no more recovery threads can be
232 * launched, so wait for any recovery completion work to
233 * complete. */
234 flush_workqueue(ocfs2_wq);
235
236 /*
237 * Now that recovery is shut down, and the osb is about to be
238 * freed, the osb_lock is not taken here.
239 */
240 rm = osb->recovery_map;
241 /* XXX: Should we bug if there are dirty entries? */
242
243 kfree(rm);
244 }
245
246 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
247 unsigned int node_num)
248 {
249 int i;
250 struct ocfs2_recovery_map *rm = osb->recovery_map;
251
252 assert_spin_locked(&osb->osb_lock);
253
254 for (i = 0; i < rm->rm_used; i++) {
255 if (rm->rm_entries[i] == node_num)
256 return 1;
257 }
258
259 return 0;
260 }
261
262 /* Behaves like test-and-set. Returns the previous value */
263 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
264 unsigned int node_num)
265 {
266 struct ocfs2_recovery_map *rm = osb->recovery_map;
267
268 spin_lock(&osb->osb_lock);
269 if (__ocfs2_recovery_map_test(osb, node_num)) {
270 spin_unlock(&osb->osb_lock);
271 return 1;
272 }
273
274 /* XXX: Can this be exploited? Not from o2dlm... */
275 BUG_ON(rm->rm_used >= osb->max_slots);
276
277 rm->rm_entries[rm->rm_used] = node_num;
278 rm->rm_used++;
279 spin_unlock(&osb->osb_lock);
280
281 return 0;
282 }
283
284 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
285 unsigned int node_num)
286 {
287 int i;
288 struct ocfs2_recovery_map *rm = osb->recovery_map;
289
290 spin_lock(&osb->osb_lock);
291
292 for (i = 0; i < rm->rm_used; i++) {
293 if (rm->rm_entries[i] == node_num)
294 break;
295 }
296
297 if (i < rm->rm_used) {
298 /* XXX: be careful with the pointer math */
299 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
300 (rm->rm_used - i - 1) * sizeof(unsigned int));
301 rm->rm_used--;
302 }
303
304 spin_unlock(&osb->osb_lock);
305 }
306
307 static int ocfs2_commit_cache(struct ocfs2_super *osb)
308 {
309 int status = 0;
310 unsigned int flushed;
311 struct ocfs2_journal *journal = NULL;
312
313 journal = osb->journal;
314
315 /* Flush all pending commits and checkpoint the journal. */
316 down_write(&journal->j_trans_barrier);
317
318 flushed = atomic_read(&journal->j_num_trans);
319 trace_ocfs2_commit_cache_begin(flushed);
320 if (flushed == 0) {
321 up_write(&journal->j_trans_barrier);
322 goto finally;
323 }
324
325 jbd2_journal_lock_updates(journal->j_journal);
326 status = jbd2_journal_flush(journal->j_journal);
327 jbd2_journal_unlock_updates(journal->j_journal);
328 if (status < 0) {
329 up_write(&journal->j_trans_barrier);
330 mlog_errno(status);
331 goto finally;
332 }
333
334 ocfs2_inc_trans_id(journal);
335
336 flushed = atomic_read(&journal->j_num_trans);
337 atomic_set(&journal->j_num_trans, 0);
338 up_write(&journal->j_trans_barrier);
339
340 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
341
342 ocfs2_wake_downconvert_thread(osb);
343 wake_up(&journal->j_checkpointed);
344 finally:
345 return status;
346 }
347
348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
349 {
350 journal_t *journal = osb->journal->j_journal;
351 handle_t *handle;
352
353 BUG_ON(!osb || !osb->journal->j_journal);
354
355 if (ocfs2_is_hard_readonly(osb))
356 return ERR_PTR(-EROFS);
357
358 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359 BUG_ON(max_buffs <= 0);
360
361 /* Nested transaction? Just return the handle... */
362 if (journal_current_handle())
363 return jbd2_journal_start(journal, max_buffs);
364
365 sb_start_intwrite(osb->sb);
366
367 down_read(&osb->journal->j_trans_barrier);
368
369 handle = jbd2_journal_start(journal, max_buffs);
370 if (IS_ERR(handle)) {
371 up_read(&osb->journal->j_trans_barrier);
372 sb_end_intwrite(osb->sb);
373
374 mlog_errno(PTR_ERR(handle));
375
376 if (is_journal_aborted(journal)) {
377 ocfs2_abort(osb->sb, "Detected aborted journal\n");
378 handle = ERR_PTR(-EROFS);
379 }
380 } else {
381 if (!ocfs2_mount_local(osb))
382 atomic_inc(&(osb->journal->j_num_trans));
383 }
384
385 return handle;
386 }
387
388 int ocfs2_commit_trans(struct ocfs2_super *osb,
389 handle_t *handle)
390 {
391 int ret, nested;
392 struct ocfs2_journal *journal = osb->journal;
393
394 BUG_ON(!handle);
395
396 nested = handle->h_ref > 1;
397 ret = jbd2_journal_stop(handle);
398 if (ret < 0)
399 mlog_errno(ret);
400
401 if (!nested) {
402 up_read(&journal->j_trans_barrier);
403 sb_end_intwrite(osb->sb);
404 }
405
406 return ret;
407 }
408
409 /*
410 * 'nblocks' is what you want to add to the current transaction.
411 *
412 * This might call jbd2_journal_restart() which will commit dirty buffers
413 * and then restart the transaction. Before calling
414 * ocfs2_extend_trans(), any changed blocks should have been
415 * dirtied. After calling it, all blocks which need to be changed must
416 * go through another set of journal_access/journal_dirty calls.
417 *
418 * WARNING: This will not release any semaphores or disk locks taken
419 * during the transaction, so make sure they were taken *before*
420 * start_trans or we'll have ordering deadlocks.
421 *
422 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
423 * good because transaction ids haven't yet been recorded on the
424 * cluster locks associated with this handle.
425 */
426 int ocfs2_extend_trans(handle_t *handle, int nblocks)
427 {
428 int status, old_nblocks;
429
430 BUG_ON(!handle);
431 BUG_ON(nblocks < 0);
432
433 if (!nblocks)
434 return 0;
435
436 old_nblocks = handle->h_buffer_credits;
437
438 trace_ocfs2_extend_trans(old_nblocks, nblocks);
439
440 #ifdef CONFIG_OCFS2_DEBUG_FS
441 status = 1;
442 #else
443 status = jbd2_journal_extend(handle, nblocks);
444 if (status < 0) {
445 mlog_errno(status);
446 goto bail;
447 }
448 #endif
449
450 if (status > 0) {
451 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
452 status = jbd2_journal_restart(handle,
453 old_nblocks + nblocks);
454 if (status < 0) {
455 mlog_errno(status);
456 goto bail;
457 }
458 }
459
460 status = 0;
461 bail:
462 return status;
463 }
464
465 /*
466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467 * If that fails, restart the transaction & regain write access for the
468 * buffer head which is used for metadata modifications.
469 * Taken from Ext4: extend_or_restart_transaction()
470 */
471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
472 {
473 int status, old_nblks;
474
475 BUG_ON(!handle);
476
477 old_nblks = handle->h_buffer_credits;
478 trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
479
480 if (old_nblks < thresh)
481 return 0;
482
483 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
484 if (status < 0) {
485 mlog_errno(status);
486 goto bail;
487 }
488
489 if (status > 0) {
490 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491 if (status < 0)
492 mlog_errno(status);
493 }
494
495 bail:
496 return status;
497 }
498
499
500 struct ocfs2_triggers {
501 struct jbd2_buffer_trigger_type ot_triggers;
502 int ot_offset;
503 };
504
505 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
506 {
507 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
508 }
509
510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
511 struct buffer_head *bh,
512 void *data, size_t size)
513 {
514 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
515
516 /*
517 * We aren't guaranteed to have the superblock here, so we
518 * must unconditionally compute the ecc data.
519 * __ocfs2_journal_access() will only set the triggers if
520 * metaecc is enabled.
521 */
522 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
523 }
524
525 /*
526 * Quota blocks have their own trigger because the struct ocfs2_block_check
527 * offset depends on the blocksize.
528 */
529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
530 struct buffer_head *bh,
531 void *data, size_t size)
532 {
533 struct ocfs2_disk_dqtrailer *dqt =
534 ocfs2_block_dqtrailer(size, data);
535
536 /*
537 * We aren't guaranteed to have the superblock here, so we
538 * must unconditionally compute the ecc data.
539 * __ocfs2_journal_access() will only set the triggers if
540 * metaecc is enabled.
541 */
542 ocfs2_block_check_compute(data, size, &dqt->dq_check);
543 }
544
545 /*
546 * Directory blocks also have their own trigger because the
547 * struct ocfs2_block_check offset depends on the blocksize.
548 */
549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
550 struct buffer_head *bh,
551 void *data, size_t size)
552 {
553 struct ocfs2_dir_block_trailer *trailer =
554 ocfs2_dir_trailer_from_size(size, data);
555
556 /*
557 * We aren't guaranteed to have the superblock here, so we
558 * must unconditionally compute the ecc data.
559 * __ocfs2_journal_access() will only set the triggers if
560 * metaecc is enabled.
561 */
562 ocfs2_block_check_compute(data, size, &trailer->db_check);
563 }
564
565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
566 struct buffer_head *bh)
567 {
568 mlog(ML_ERROR,
569 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
570 "bh->b_blocknr = %llu\n",
571 (unsigned long)bh,
572 (unsigned long long)bh->b_blocknr);
573
574 ocfs2_error(bh->b_bdev->bd_super,
575 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
576 }
577
578 static struct ocfs2_triggers di_triggers = {
579 .ot_triggers = {
580 .t_frozen = ocfs2_frozen_trigger,
581 .t_abort = ocfs2_abort_trigger,
582 },
583 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
584 };
585
586 static struct ocfs2_triggers eb_triggers = {
587 .ot_triggers = {
588 .t_frozen = ocfs2_frozen_trigger,
589 .t_abort = ocfs2_abort_trigger,
590 },
591 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
592 };
593
594 static struct ocfs2_triggers rb_triggers = {
595 .ot_triggers = {
596 .t_frozen = ocfs2_frozen_trigger,
597 .t_abort = ocfs2_abort_trigger,
598 },
599 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
600 };
601
602 static struct ocfs2_triggers gd_triggers = {
603 .ot_triggers = {
604 .t_frozen = ocfs2_frozen_trigger,
605 .t_abort = ocfs2_abort_trigger,
606 },
607 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
608 };
609
610 static struct ocfs2_triggers db_triggers = {
611 .ot_triggers = {
612 .t_frozen = ocfs2_db_frozen_trigger,
613 .t_abort = ocfs2_abort_trigger,
614 },
615 };
616
617 static struct ocfs2_triggers xb_triggers = {
618 .ot_triggers = {
619 .t_frozen = ocfs2_frozen_trigger,
620 .t_abort = ocfs2_abort_trigger,
621 },
622 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
623 };
624
625 static struct ocfs2_triggers dq_triggers = {
626 .ot_triggers = {
627 .t_frozen = ocfs2_dq_frozen_trigger,
628 .t_abort = ocfs2_abort_trigger,
629 },
630 };
631
632 static struct ocfs2_triggers dr_triggers = {
633 .ot_triggers = {
634 .t_frozen = ocfs2_frozen_trigger,
635 .t_abort = ocfs2_abort_trigger,
636 },
637 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
638 };
639
640 static struct ocfs2_triggers dl_triggers = {
641 .ot_triggers = {
642 .t_frozen = ocfs2_frozen_trigger,
643 .t_abort = ocfs2_abort_trigger,
644 },
645 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
646 };
647
648 static int __ocfs2_journal_access(handle_t *handle,
649 struct ocfs2_caching_info *ci,
650 struct buffer_head *bh,
651 struct ocfs2_triggers *triggers,
652 int type)
653 {
654 int status;
655 struct ocfs2_super *osb =
656 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
657
658 BUG_ON(!ci || !ci->ci_ops);
659 BUG_ON(!handle);
660 BUG_ON(!bh);
661
662 trace_ocfs2_journal_access(
663 (unsigned long long)ocfs2_metadata_cache_owner(ci),
664 (unsigned long long)bh->b_blocknr, type, bh->b_size);
665
666 /* we can safely remove this assertion after testing. */
667 if (!buffer_uptodate(bh)) {
668 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
669 mlog(ML_ERROR, "b_blocknr=%llu\n",
670 (unsigned long long)bh->b_blocknr);
671
672 lock_buffer(bh);
673 /*
674 * A previous attempt to write this buffer head failed.
675 * Nothing we can do but to retry the write and hope for
676 * the best.
677 */
678 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
679 clear_buffer_write_io_error(bh);
680 set_buffer_uptodate(bh);
681 }
682
683 if (!buffer_uptodate(bh)) {
684 unlock_buffer(bh);
685 return -EIO;
686 }
687 unlock_buffer(bh);
688 }
689
690 /* Set the current transaction information on the ci so
691 * that the locking code knows whether it can drop it's locks
692 * on this ci or not. We're protected from the commit
693 * thread updating the current transaction id until
694 * ocfs2_commit_trans() because ocfs2_start_trans() took
695 * j_trans_barrier for us. */
696 ocfs2_set_ci_lock_trans(osb->journal, ci);
697
698 ocfs2_metadata_cache_io_lock(ci);
699 switch (type) {
700 case OCFS2_JOURNAL_ACCESS_CREATE:
701 case OCFS2_JOURNAL_ACCESS_WRITE:
702 status = jbd2_journal_get_write_access(handle, bh);
703 break;
704
705 case OCFS2_JOURNAL_ACCESS_UNDO:
706 status = jbd2_journal_get_undo_access(handle, bh);
707 break;
708
709 default:
710 status = -EINVAL;
711 mlog(ML_ERROR, "Unknown access type!\n");
712 }
713 if (!status && ocfs2_meta_ecc(osb) && triggers)
714 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
715 ocfs2_metadata_cache_io_unlock(ci);
716
717 if (status < 0)
718 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
719 status, type);
720
721 return status;
722 }
723
724 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
725 struct buffer_head *bh, int type)
726 {
727 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
728 }
729
730 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
731 struct buffer_head *bh, int type)
732 {
733 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
734 }
735
736 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
737 struct buffer_head *bh, int type)
738 {
739 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
740 type);
741 }
742
743 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
744 struct buffer_head *bh, int type)
745 {
746 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
747 }
748
749 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
750 struct buffer_head *bh, int type)
751 {
752 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
753 }
754
755 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
756 struct buffer_head *bh, int type)
757 {
758 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
759 }
760
761 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
762 struct buffer_head *bh, int type)
763 {
764 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
765 }
766
767 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
768 struct buffer_head *bh, int type)
769 {
770 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
771 }
772
773 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
774 struct buffer_head *bh, int type)
775 {
776 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
777 }
778
779 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
780 struct buffer_head *bh, int type)
781 {
782 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
783 }
784
785 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
786 {
787 int status;
788
789 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
790
791 status = jbd2_journal_dirty_metadata(handle, bh);
792 if (status) {
793 mlog_errno(status);
794 if (!is_handle_aborted(handle)) {
795 journal_t *journal = handle->h_transaction->t_journal;
796 struct super_block *sb = bh->b_bdev->bd_super;
797
798 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
799 "Aborting transaction and journal.\n");
800 handle->h_err = status;
801 jbd2_journal_abort_handle(handle);
802 jbd2_journal_abort(journal, status);
803 ocfs2_abort(sb, "Journal already aborted.\n");
804 }
805 }
806 }
807
808 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
809
810 void ocfs2_set_journal_params(struct ocfs2_super *osb)
811 {
812 journal_t *journal = osb->journal->j_journal;
813 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
814
815 if (osb->osb_commit_interval)
816 commit_interval = osb->osb_commit_interval;
817
818 write_lock(&journal->j_state_lock);
819 journal->j_commit_interval = commit_interval;
820 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
821 journal->j_flags |= JBD2_BARRIER;
822 else
823 journal->j_flags &= ~JBD2_BARRIER;
824 write_unlock(&journal->j_state_lock);
825 }
826
827 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
828 {
829 int status = -1;
830 struct inode *inode = NULL; /* the journal inode */
831 journal_t *j_journal = NULL;
832 struct ocfs2_dinode *di = NULL;
833 struct buffer_head *bh = NULL;
834 struct ocfs2_super *osb;
835 int inode_lock = 0;
836
837 BUG_ON(!journal);
838
839 osb = journal->j_osb;
840
841 /* already have the inode for our journal */
842 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
843 osb->slot_num);
844 if (inode == NULL) {
845 status = -EACCES;
846 mlog_errno(status);
847 goto done;
848 }
849 if (is_bad_inode(inode)) {
850 mlog(ML_ERROR, "access error (bad inode)\n");
851 iput(inode);
852 inode = NULL;
853 status = -EACCES;
854 goto done;
855 }
856
857 SET_INODE_JOURNAL(inode);
858 OCFS2_I(inode)->ip_open_count++;
859
860 /* Skip recovery waits here - journal inode metadata never
861 * changes in a live cluster so it can be considered an
862 * exception to the rule. */
863 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
864 if (status < 0) {
865 if (status != -ERESTARTSYS)
866 mlog(ML_ERROR, "Could not get lock on journal!\n");
867 goto done;
868 }
869
870 inode_lock = 1;
871 di = (struct ocfs2_dinode *)bh->b_data;
872
873 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
874 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
875 i_size_read(inode));
876 status = -EINVAL;
877 goto done;
878 }
879
880 trace_ocfs2_journal_init(i_size_read(inode),
881 (unsigned long long)inode->i_blocks,
882 OCFS2_I(inode)->ip_clusters);
883
884 /* call the kernels journal init function now */
885 j_journal = jbd2_journal_init_inode(inode);
886 if (j_journal == NULL) {
887 mlog(ML_ERROR, "Linux journal layer error\n");
888 status = -EINVAL;
889 goto done;
890 }
891
892 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
893
894 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
895 OCFS2_JOURNAL_DIRTY_FL);
896
897 journal->j_journal = j_journal;
898 journal->j_inode = inode;
899 journal->j_bh = bh;
900
901 ocfs2_set_journal_params(osb);
902
903 journal->j_state = OCFS2_JOURNAL_LOADED;
904
905 status = 0;
906 done:
907 if (status < 0) {
908 if (inode_lock)
909 ocfs2_inode_unlock(inode, 1);
910 brelse(bh);
911 if (inode) {
912 OCFS2_I(inode)->ip_open_count--;
913 iput(inode);
914 }
915 }
916
917 return status;
918 }
919
920 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
921 {
922 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
923 }
924
925 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
926 {
927 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
928 }
929
930 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
931 int dirty, int replayed)
932 {
933 int status;
934 unsigned int flags;
935 struct ocfs2_journal *journal = osb->journal;
936 struct buffer_head *bh = journal->j_bh;
937 struct ocfs2_dinode *fe;
938
939 fe = (struct ocfs2_dinode *)bh->b_data;
940
941 /* The journal bh on the osb always comes from ocfs2_journal_init()
942 * and was validated there inside ocfs2_inode_lock_full(). It's a
943 * code bug if we mess it up. */
944 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
945
946 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
947 if (dirty)
948 flags |= OCFS2_JOURNAL_DIRTY_FL;
949 else
950 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
951 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
952
953 if (replayed)
954 ocfs2_bump_recovery_generation(fe);
955
956 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
957 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
958 if (status < 0)
959 mlog_errno(status);
960
961 return status;
962 }
963
964 /*
965 * If the journal has been kmalloc'd it needs to be freed after this
966 * call.
967 */
968 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
969 {
970 struct ocfs2_journal *journal = NULL;
971 int status = 0;
972 struct inode *inode = NULL;
973 int num_running_trans = 0;
974
975 BUG_ON(!osb);
976
977 journal = osb->journal;
978 if (!journal)
979 goto done;
980
981 inode = journal->j_inode;
982
983 if (journal->j_state != OCFS2_JOURNAL_LOADED)
984 goto done;
985
986 /* need to inc inode use count - jbd2_journal_destroy will iput. */
987 if (!igrab(inode))
988 BUG();
989
990 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
991 trace_ocfs2_journal_shutdown(num_running_trans);
992
993 /* Do a commit_cache here. It will flush our journal, *and*
994 * release any locks that are still held.
995 * set the SHUTDOWN flag and release the trans lock.
996 * the commit thread will take the trans lock for us below. */
997 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
998
999 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1000 * drop the trans_lock (which we want to hold until we
1001 * completely destroy the journal. */
1002 if (osb->commit_task) {
1003 /* Wait for the commit thread */
1004 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1005 kthread_stop(osb->commit_task);
1006 osb->commit_task = NULL;
1007 }
1008
1009 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1010
1011 if (ocfs2_mount_local(osb)) {
1012 jbd2_journal_lock_updates(journal->j_journal);
1013 status = jbd2_journal_flush(journal->j_journal);
1014 jbd2_journal_unlock_updates(journal->j_journal);
1015 if (status < 0)
1016 mlog_errno(status);
1017 }
1018
1019 if (status == 0) {
1020 /*
1021 * Do not toggle if flush was unsuccessful otherwise
1022 * will leave dirty metadata in a "clean" journal
1023 */
1024 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1025 if (status < 0)
1026 mlog_errno(status);
1027 }
1028
1029 /* Shutdown the kernel journal system */
1030 jbd2_journal_destroy(journal->j_journal);
1031 journal->j_journal = NULL;
1032
1033 OCFS2_I(inode)->ip_open_count--;
1034
1035 /* unlock our journal */
1036 ocfs2_inode_unlock(inode, 1);
1037
1038 brelse(journal->j_bh);
1039 journal->j_bh = NULL;
1040
1041 journal->j_state = OCFS2_JOURNAL_FREE;
1042
1043 // up_write(&journal->j_trans_barrier);
1044 done:
1045 iput(inode);
1046 }
1047
1048 static void ocfs2_clear_journal_error(struct super_block *sb,
1049 journal_t *journal,
1050 int slot)
1051 {
1052 int olderr;
1053
1054 olderr = jbd2_journal_errno(journal);
1055 if (olderr) {
1056 mlog(ML_ERROR, "File system error %d recorded in "
1057 "journal %u.\n", olderr, slot);
1058 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1059 sb->s_id);
1060
1061 jbd2_journal_ack_err(journal);
1062 jbd2_journal_clear_err(journal);
1063 }
1064 }
1065
1066 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1067 {
1068 int status = 0;
1069 struct ocfs2_super *osb;
1070
1071 BUG_ON(!journal);
1072
1073 osb = journal->j_osb;
1074
1075 status = jbd2_journal_load(journal->j_journal);
1076 if (status < 0) {
1077 mlog(ML_ERROR, "Failed to load journal!\n");
1078 goto done;
1079 }
1080
1081 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1082
1083 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1084 if (status < 0) {
1085 mlog_errno(status);
1086 goto done;
1087 }
1088
1089 /* Launch the commit thread */
1090 if (!local) {
1091 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1092 "ocfs2cmt-%s", osb->uuid_str);
1093 if (IS_ERR(osb->commit_task)) {
1094 status = PTR_ERR(osb->commit_task);
1095 osb->commit_task = NULL;
1096 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1097 "error=%d", status);
1098 goto done;
1099 }
1100 } else
1101 osb->commit_task = NULL;
1102
1103 done:
1104 return status;
1105 }
1106
1107
1108 /* 'full' flag tells us whether we clear out all blocks or if we just
1109 * mark the journal clean */
1110 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1111 {
1112 int status;
1113
1114 BUG_ON(!journal);
1115
1116 status = jbd2_journal_wipe(journal->j_journal, full);
1117 if (status < 0) {
1118 mlog_errno(status);
1119 goto bail;
1120 }
1121
1122 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1123 if (status < 0)
1124 mlog_errno(status);
1125
1126 bail:
1127 return status;
1128 }
1129
1130 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1131 {
1132 int empty;
1133 struct ocfs2_recovery_map *rm = osb->recovery_map;
1134
1135 spin_lock(&osb->osb_lock);
1136 empty = (rm->rm_used == 0);
1137 spin_unlock(&osb->osb_lock);
1138
1139 return empty;
1140 }
1141
1142 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1143 {
1144 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1145 }
1146
1147 /*
1148 * JBD Might read a cached version of another nodes journal file. We
1149 * don't want this as this file changes often and we get no
1150 * notification on those changes. The only way to be sure that we've
1151 * got the most up to date version of those blocks then is to force
1152 * read them off disk. Just searching through the buffer cache won't
1153 * work as there may be pages backing this file which are still marked
1154 * up to date. We know things can't change on this file underneath us
1155 * as we have the lock by now :)
1156 */
1157 static int ocfs2_force_read_journal(struct inode *inode)
1158 {
1159 int status = 0;
1160 int i;
1161 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1162 #define CONCURRENT_JOURNAL_FILL 32ULL
1163 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1164
1165 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1166
1167 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1168 v_blkno = 0;
1169 while (v_blkno < num_blocks) {
1170 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1171 &p_blkno, &p_blocks, NULL);
1172 if (status < 0) {
1173 mlog_errno(status);
1174 goto bail;
1175 }
1176
1177 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1178 p_blocks = CONCURRENT_JOURNAL_FILL;
1179
1180 /* We are reading journal data which should not
1181 * be put in the uptodate cache */
1182 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1183 p_blkno, p_blocks, bhs);
1184 if (status < 0) {
1185 mlog_errno(status);
1186 goto bail;
1187 }
1188
1189 for(i = 0; i < p_blocks; i++) {
1190 brelse(bhs[i]);
1191 bhs[i] = NULL;
1192 }
1193
1194 v_blkno += p_blocks;
1195 }
1196
1197 bail:
1198 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1199 brelse(bhs[i]);
1200 return status;
1201 }
1202
1203 struct ocfs2_la_recovery_item {
1204 struct list_head lri_list;
1205 int lri_slot;
1206 struct ocfs2_dinode *lri_la_dinode;
1207 struct ocfs2_dinode *lri_tl_dinode;
1208 struct ocfs2_quota_recovery *lri_qrec;
1209 enum ocfs2_orphan_reco_type lri_orphan_reco_type;
1210 };
1211
1212 /* Does the second half of the recovery process. By this point, the
1213 * node is marked clean and can actually be considered recovered,
1214 * hence it's no longer in the recovery map, but there's still some
1215 * cleanup we can do which shouldn't happen within the recovery thread
1216 * as locking in that context becomes very difficult if we are to take
1217 * recovering nodes into account.
1218 *
1219 * NOTE: This function can and will sleep on recovery of other nodes
1220 * during cluster locking, just like any other ocfs2 process.
1221 */
1222 void ocfs2_complete_recovery(struct work_struct *work)
1223 {
1224 int ret = 0;
1225 struct ocfs2_journal *journal =
1226 container_of(work, struct ocfs2_journal, j_recovery_work);
1227 struct ocfs2_super *osb = journal->j_osb;
1228 struct ocfs2_dinode *la_dinode, *tl_dinode;
1229 struct ocfs2_la_recovery_item *item, *n;
1230 struct ocfs2_quota_recovery *qrec;
1231 enum ocfs2_orphan_reco_type orphan_reco_type;
1232 LIST_HEAD(tmp_la_list);
1233
1234 trace_ocfs2_complete_recovery(
1235 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1236
1237 spin_lock(&journal->j_lock);
1238 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1239 spin_unlock(&journal->j_lock);
1240
1241 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1242 list_del_init(&item->lri_list);
1243
1244 ocfs2_wait_on_quotas(osb);
1245
1246 la_dinode = item->lri_la_dinode;
1247 tl_dinode = item->lri_tl_dinode;
1248 qrec = item->lri_qrec;
1249 orphan_reco_type = item->lri_orphan_reco_type;
1250
1251 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1252 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1253 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1254 qrec);
1255
1256 if (la_dinode) {
1257 ret = ocfs2_complete_local_alloc_recovery(osb,
1258 la_dinode);
1259 if (ret < 0)
1260 mlog_errno(ret);
1261
1262 kfree(la_dinode);
1263 }
1264
1265 if (tl_dinode) {
1266 ret = ocfs2_complete_truncate_log_recovery(osb,
1267 tl_dinode);
1268 if (ret < 0)
1269 mlog_errno(ret);
1270
1271 kfree(tl_dinode);
1272 }
1273
1274 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1275 orphan_reco_type);
1276 if (ret < 0)
1277 mlog_errno(ret);
1278
1279 if (qrec) {
1280 ret = ocfs2_finish_quota_recovery(osb, qrec,
1281 item->lri_slot);
1282 if (ret < 0)
1283 mlog_errno(ret);
1284 /* Recovery info is already freed now */
1285 }
1286
1287 kfree(item);
1288 }
1289
1290 trace_ocfs2_complete_recovery_end(ret);
1291 }
1292
1293 /* NOTE: This function always eats your references to la_dinode and
1294 * tl_dinode, either manually on error, or by passing them to
1295 * ocfs2_complete_recovery */
1296 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1297 int slot_num,
1298 struct ocfs2_dinode *la_dinode,
1299 struct ocfs2_dinode *tl_dinode,
1300 struct ocfs2_quota_recovery *qrec,
1301 enum ocfs2_orphan_reco_type orphan_reco_type)
1302 {
1303 struct ocfs2_la_recovery_item *item;
1304
1305 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1306 if (!item) {
1307 /* Though we wish to avoid it, we are in fact safe in
1308 * skipping local alloc cleanup as fsck.ocfs2 is more
1309 * than capable of reclaiming unused space. */
1310 kfree(la_dinode);
1311 kfree(tl_dinode);
1312
1313 if (qrec)
1314 ocfs2_free_quota_recovery(qrec);
1315
1316 mlog_errno(-ENOMEM);
1317 return;
1318 }
1319
1320 INIT_LIST_HEAD(&item->lri_list);
1321 item->lri_la_dinode = la_dinode;
1322 item->lri_slot = slot_num;
1323 item->lri_tl_dinode = tl_dinode;
1324 item->lri_qrec = qrec;
1325 item->lri_orphan_reco_type = orphan_reco_type;
1326
1327 spin_lock(&journal->j_lock);
1328 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1329 queue_work(ocfs2_wq, &journal->j_recovery_work);
1330 spin_unlock(&journal->j_lock);
1331 }
1332
1333 /* Called by the mount code to queue recovery the last part of
1334 * recovery for it's own and offline slot(s). */
1335 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1336 {
1337 struct ocfs2_journal *journal = osb->journal;
1338
1339 if (ocfs2_is_hard_readonly(osb))
1340 return;
1341
1342 /* No need to queue up our truncate_log as regular cleanup will catch
1343 * that */
1344 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1345 osb->local_alloc_copy, NULL, NULL,
1346 ORPHAN_NEED_TRUNCATE);
1347 ocfs2_schedule_truncate_log_flush(osb, 0);
1348
1349 osb->local_alloc_copy = NULL;
1350 osb->dirty = 0;
1351
1352 /* queue to recover orphan slots for all offline slots */
1353 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1354 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1355 ocfs2_free_replay_slots(osb);
1356 }
1357
1358 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1359 {
1360 if (osb->quota_rec) {
1361 ocfs2_queue_recovery_completion(osb->journal,
1362 osb->slot_num,
1363 NULL,
1364 NULL,
1365 osb->quota_rec,
1366 ORPHAN_NEED_TRUNCATE);
1367 osb->quota_rec = NULL;
1368 }
1369 }
1370
1371 static int __ocfs2_recovery_thread(void *arg)
1372 {
1373 int status, node_num, slot_num;
1374 struct ocfs2_super *osb = arg;
1375 struct ocfs2_recovery_map *rm = osb->recovery_map;
1376 int *rm_quota = NULL;
1377 int rm_quota_used = 0, i;
1378 struct ocfs2_quota_recovery *qrec;
1379
1380 status = ocfs2_wait_on_mount(osb);
1381 if (status < 0) {
1382 goto bail;
1383 }
1384
1385 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1386 if (!rm_quota) {
1387 status = -ENOMEM;
1388 goto bail;
1389 }
1390 restart:
1391 status = ocfs2_super_lock(osb, 1);
1392 if (status < 0) {
1393 mlog_errno(status);
1394 goto bail;
1395 }
1396
1397 status = ocfs2_compute_replay_slots(osb);
1398 if (status < 0)
1399 mlog_errno(status);
1400
1401 /* queue recovery for our own slot */
1402 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1403 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1404
1405 spin_lock(&osb->osb_lock);
1406 while (rm->rm_used) {
1407 /* It's always safe to remove entry zero, as we won't
1408 * clear it until ocfs2_recover_node() has succeeded. */
1409 node_num = rm->rm_entries[0];
1410 spin_unlock(&osb->osb_lock);
1411 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1412 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1413 if (slot_num == -ENOENT) {
1414 status = 0;
1415 goto skip_recovery;
1416 }
1417
1418 /* It is a bit subtle with quota recovery. We cannot do it
1419 * immediately because we have to obtain cluster locks from
1420 * quota files and we also don't want to just skip it because
1421 * then quota usage would be out of sync until some node takes
1422 * the slot. So we remember which nodes need quota recovery
1423 * and when everything else is done, we recover quotas. */
1424 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1425 if (i == rm_quota_used)
1426 rm_quota[rm_quota_used++] = slot_num;
1427
1428 status = ocfs2_recover_node(osb, node_num, slot_num);
1429 skip_recovery:
1430 if (!status) {
1431 ocfs2_recovery_map_clear(osb, node_num);
1432 } else {
1433 mlog(ML_ERROR,
1434 "Error %d recovering node %d on device (%u,%u)!\n",
1435 status, node_num,
1436 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1437 mlog(ML_ERROR, "Volume requires unmount.\n");
1438 }
1439
1440 spin_lock(&osb->osb_lock);
1441 }
1442 spin_unlock(&osb->osb_lock);
1443 trace_ocfs2_recovery_thread_end(status);
1444
1445 /* Refresh all journal recovery generations from disk */
1446 status = ocfs2_check_journals_nolocks(osb);
1447 status = (status == -EROFS) ? 0 : status;
1448 if (status < 0)
1449 mlog_errno(status);
1450
1451 /* Now it is right time to recover quotas... We have to do this under
1452 * superblock lock so that no one can start using the slot (and crash)
1453 * before we recover it */
1454 for (i = 0; i < rm_quota_used; i++) {
1455 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1456 if (IS_ERR(qrec)) {
1457 status = PTR_ERR(qrec);
1458 mlog_errno(status);
1459 continue;
1460 }
1461 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1462 NULL, NULL, qrec,
1463 ORPHAN_NEED_TRUNCATE);
1464 }
1465
1466 ocfs2_super_unlock(osb, 1);
1467
1468 /* queue recovery for offline slots */
1469 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1470
1471 bail:
1472 mutex_lock(&osb->recovery_lock);
1473 if (!status && !ocfs2_recovery_completed(osb)) {
1474 mutex_unlock(&osb->recovery_lock);
1475 goto restart;
1476 }
1477
1478 ocfs2_free_replay_slots(osb);
1479 osb->recovery_thread_task = NULL;
1480 mb(); /* sync with ocfs2_recovery_thread_running */
1481 wake_up(&osb->recovery_event);
1482
1483 mutex_unlock(&osb->recovery_lock);
1484
1485 kfree(rm_quota);
1486
1487 /* no one is callint kthread_stop() for us so the kthread() api
1488 * requires that we call do_exit(). And it isn't exported, but
1489 * complete_and_exit() seems to be a minimal wrapper around it. */
1490 complete_and_exit(NULL, status);
1491 }
1492
1493 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1494 {
1495 mutex_lock(&osb->recovery_lock);
1496
1497 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1498 osb->disable_recovery, osb->recovery_thread_task,
1499 osb->disable_recovery ?
1500 -1 : ocfs2_recovery_map_set(osb, node_num));
1501
1502 if (osb->disable_recovery)
1503 goto out;
1504
1505 if (osb->recovery_thread_task)
1506 goto out;
1507
1508 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1509 "ocfs2rec-%s", osb->uuid_str);
1510 if (IS_ERR(osb->recovery_thread_task)) {
1511 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1512 osb->recovery_thread_task = NULL;
1513 }
1514
1515 out:
1516 mutex_unlock(&osb->recovery_lock);
1517 wake_up(&osb->recovery_event);
1518 }
1519
1520 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1521 int slot_num,
1522 struct buffer_head **bh,
1523 struct inode **ret_inode)
1524 {
1525 int status = -EACCES;
1526 struct inode *inode = NULL;
1527
1528 BUG_ON(slot_num >= osb->max_slots);
1529
1530 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1531 slot_num);
1532 if (!inode || is_bad_inode(inode)) {
1533 mlog_errno(status);
1534 goto bail;
1535 }
1536 SET_INODE_JOURNAL(inode);
1537
1538 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1539 if (status < 0) {
1540 mlog_errno(status);
1541 goto bail;
1542 }
1543
1544 status = 0;
1545
1546 bail:
1547 if (inode) {
1548 if (status || !ret_inode)
1549 iput(inode);
1550 else
1551 *ret_inode = inode;
1552 }
1553 return status;
1554 }
1555
1556 /* Does the actual journal replay and marks the journal inode as
1557 * clean. Will only replay if the journal inode is marked dirty. */
1558 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1559 int node_num,
1560 int slot_num)
1561 {
1562 int status;
1563 int got_lock = 0;
1564 unsigned int flags;
1565 struct inode *inode = NULL;
1566 struct ocfs2_dinode *fe;
1567 journal_t *journal = NULL;
1568 struct buffer_head *bh = NULL;
1569 u32 slot_reco_gen;
1570
1571 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1572 if (status) {
1573 mlog_errno(status);
1574 goto done;
1575 }
1576
1577 fe = (struct ocfs2_dinode *)bh->b_data;
1578 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1579 brelse(bh);
1580 bh = NULL;
1581
1582 /*
1583 * As the fs recovery is asynchronous, there is a small chance that
1584 * another node mounted (and recovered) the slot before the recovery
1585 * thread could get the lock. To handle that, we dirty read the journal
1586 * inode for that slot to get the recovery generation. If it is
1587 * different than what we expected, the slot has been recovered.
1588 * If not, it needs recovery.
1589 */
1590 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1591 trace_ocfs2_replay_journal_recovered(slot_num,
1592 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1593 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1594 status = -EBUSY;
1595 goto done;
1596 }
1597
1598 /* Continue with recovery as the journal has not yet been recovered */
1599
1600 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1601 if (status < 0) {
1602 trace_ocfs2_replay_journal_lock_err(status);
1603 if (status != -ERESTARTSYS)
1604 mlog(ML_ERROR, "Could not lock journal!\n");
1605 goto done;
1606 }
1607 got_lock = 1;
1608
1609 fe = (struct ocfs2_dinode *) bh->b_data;
1610
1611 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1612 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1613
1614 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1615 trace_ocfs2_replay_journal_skip(node_num);
1616 /* Refresh recovery generation for the slot */
1617 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1618 goto done;
1619 }
1620
1621 /* we need to run complete recovery for offline orphan slots */
1622 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1623
1624 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1625 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1626 MINOR(osb->sb->s_dev));
1627
1628 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1629
1630 status = ocfs2_force_read_journal(inode);
1631 if (status < 0) {
1632 mlog_errno(status);
1633 goto done;
1634 }
1635
1636 journal = jbd2_journal_init_inode(inode);
1637 if (journal == NULL) {
1638 mlog(ML_ERROR, "Linux journal layer error\n");
1639 status = -EIO;
1640 goto done;
1641 }
1642
1643 status = jbd2_journal_load(journal);
1644 if (status < 0) {
1645 mlog_errno(status);
1646 if (!igrab(inode))
1647 BUG();
1648 jbd2_journal_destroy(journal);
1649 goto done;
1650 }
1651
1652 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1653
1654 /* wipe the journal */
1655 jbd2_journal_lock_updates(journal);
1656 status = jbd2_journal_flush(journal);
1657 jbd2_journal_unlock_updates(journal);
1658 if (status < 0)
1659 mlog_errno(status);
1660
1661 /* This will mark the node clean */
1662 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1663 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1664 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1665
1666 /* Increment recovery generation to indicate successful recovery */
1667 ocfs2_bump_recovery_generation(fe);
1668 osb->slot_recovery_generations[slot_num] =
1669 ocfs2_get_recovery_generation(fe);
1670
1671 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1672 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1673 if (status < 0)
1674 mlog_errno(status);
1675
1676 if (!igrab(inode))
1677 BUG();
1678
1679 jbd2_journal_destroy(journal);
1680
1681 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1682 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1683 MINOR(osb->sb->s_dev));
1684 done:
1685 /* drop the lock on this nodes journal */
1686 if (got_lock)
1687 ocfs2_inode_unlock(inode, 1);
1688
1689 iput(inode);
1690 brelse(bh);
1691
1692 return status;
1693 }
1694
1695 /*
1696 * Do the most important parts of node recovery:
1697 * - Replay it's journal
1698 * - Stamp a clean local allocator file
1699 * - Stamp a clean truncate log
1700 * - Mark the node clean
1701 *
1702 * If this function completes without error, a node in OCFS2 can be
1703 * said to have been safely recovered. As a result, failure during the
1704 * second part of a nodes recovery process (local alloc recovery) is
1705 * far less concerning.
1706 */
1707 static int ocfs2_recover_node(struct ocfs2_super *osb,
1708 int node_num, int slot_num)
1709 {
1710 int status = 0;
1711 struct ocfs2_dinode *la_copy = NULL;
1712 struct ocfs2_dinode *tl_copy = NULL;
1713
1714 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1715
1716 /* Should not ever be called to recover ourselves -- in that
1717 * case we should've called ocfs2_journal_load instead. */
1718 BUG_ON(osb->node_num == node_num);
1719
1720 status = ocfs2_replay_journal(osb, node_num, slot_num);
1721 if (status < 0) {
1722 if (status == -EBUSY) {
1723 trace_ocfs2_recover_node_skip(slot_num, node_num);
1724 status = 0;
1725 goto done;
1726 }
1727 mlog_errno(status);
1728 goto done;
1729 }
1730
1731 /* Stamp a clean local alloc file AFTER recovering the journal... */
1732 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1733 if (status < 0) {
1734 mlog_errno(status);
1735 goto done;
1736 }
1737
1738 /* An error from begin_truncate_log_recovery is not
1739 * serious enough to warrant halting the rest of
1740 * recovery. */
1741 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1742 if (status < 0)
1743 mlog_errno(status);
1744
1745 /* Likewise, this would be a strange but ultimately not so
1746 * harmful place to get an error... */
1747 status = ocfs2_clear_slot(osb, slot_num);
1748 if (status < 0)
1749 mlog_errno(status);
1750
1751 /* This will kfree the memory pointed to by la_copy and tl_copy */
1752 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1753 tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1754
1755 status = 0;
1756 done:
1757
1758 return status;
1759 }
1760
1761 /* Test node liveness by trylocking his journal. If we get the lock,
1762 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1763 * still alive (we couldn't get the lock) and < 0 on error. */
1764 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1765 int slot_num)
1766 {
1767 int status, flags;
1768 struct inode *inode = NULL;
1769
1770 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1771 slot_num);
1772 if (inode == NULL) {
1773 mlog(ML_ERROR, "access error\n");
1774 status = -EACCES;
1775 goto bail;
1776 }
1777 if (is_bad_inode(inode)) {
1778 mlog(ML_ERROR, "access error (bad inode)\n");
1779 iput(inode);
1780 inode = NULL;
1781 status = -EACCES;
1782 goto bail;
1783 }
1784 SET_INODE_JOURNAL(inode);
1785
1786 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1787 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1788 if (status < 0) {
1789 if (status != -EAGAIN)
1790 mlog_errno(status);
1791 goto bail;
1792 }
1793
1794 ocfs2_inode_unlock(inode, 1);
1795 bail:
1796 iput(inode);
1797
1798 return status;
1799 }
1800
1801 /* Call this underneath ocfs2_super_lock. It also assumes that the
1802 * slot info struct has been updated from disk. */
1803 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1804 {
1805 unsigned int node_num;
1806 int status, i;
1807 u32 gen;
1808 struct buffer_head *bh = NULL;
1809 struct ocfs2_dinode *di;
1810
1811 /* This is called with the super block cluster lock, so we
1812 * know that the slot map can't change underneath us. */
1813
1814 for (i = 0; i < osb->max_slots; i++) {
1815 /* Read journal inode to get the recovery generation */
1816 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1817 if (status) {
1818 mlog_errno(status);
1819 goto bail;
1820 }
1821 di = (struct ocfs2_dinode *)bh->b_data;
1822 gen = ocfs2_get_recovery_generation(di);
1823 brelse(bh);
1824 bh = NULL;
1825
1826 spin_lock(&osb->osb_lock);
1827 osb->slot_recovery_generations[i] = gen;
1828
1829 trace_ocfs2_mark_dead_nodes(i,
1830 osb->slot_recovery_generations[i]);
1831
1832 if (i == osb->slot_num) {
1833 spin_unlock(&osb->osb_lock);
1834 continue;
1835 }
1836
1837 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1838 if (status == -ENOENT) {
1839 spin_unlock(&osb->osb_lock);
1840 continue;
1841 }
1842
1843 if (__ocfs2_recovery_map_test(osb, node_num)) {
1844 spin_unlock(&osb->osb_lock);
1845 continue;
1846 }
1847 spin_unlock(&osb->osb_lock);
1848
1849 /* Ok, we have a slot occupied by another node which
1850 * is not in the recovery map. We trylock his journal
1851 * file here to test if he's alive. */
1852 status = ocfs2_trylock_journal(osb, i);
1853 if (!status) {
1854 /* Since we're called from mount, we know that
1855 * the recovery thread can't race us on
1856 * setting / checking the recovery bits. */
1857 ocfs2_recovery_thread(osb, node_num);
1858 } else if ((status < 0) && (status != -EAGAIN)) {
1859 mlog_errno(status);
1860 goto bail;
1861 }
1862 }
1863
1864 status = 0;
1865 bail:
1866 return status;
1867 }
1868
1869 /*
1870 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1871 * randomness to the timeout to minimize multple nodes firing the timer at the
1872 * same time.
1873 */
1874 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1875 {
1876 unsigned long time;
1877
1878 get_random_bytes(&time, sizeof(time));
1879 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1880 return msecs_to_jiffies(time);
1881 }
1882
1883 /*
1884 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1885 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1886 * is done to catch any orphans that are left over in orphan directories.
1887 *
1888 * It scans all slots, even ones that are in use. It does so to handle the
1889 * case described below:
1890 *
1891 * Node 1 has an inode it was using. The dentry went away due to memory
1892 * pressure. Node 1 closes the inode, but it's on the free list. The node
1893 * has the open lock.
1894 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1895 * but node 1 has no dentry and doesn't get the message. It trylocks the
1896 * open lock, sees that another node has a PR, and does nothing.
1897 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1898 * open lock, sees the PR still, and does nothing.
1899 * Basically, we have to trigger an orphan iput on node 1. The only way
1900 * for this to happen is if node 1 runs node 2's orphan dir.
1901 *
1902 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1903 * seconds. It gets an EX lock on os_lockres and checks sequence number
1904 * stored in LVB. If the sequence number has changed, it means some other
1905 * node has done the scan. This node skips the scan and tracks the
1906 * sequence number. If the sequence number didn't change, it means a scan
1907 * hasn't happened. The node queues a scan and increments the
1908 * sequence number in the LVB.
1909 */
1910 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1911 {
1912 struct ocfs2_orphan_scan *os;
1913 int status, i;
1914 u32 seqno = 0;
1915
1916 os = &osb->osb_orphan_scan;
1917
1918 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1919 goto out;
1920
1921 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1922 atomic_read(&os->os_state));
1923
1924 status = ocfs2_orphan_scan_lock(osb, &seqno);
1925 if (status < 0) {
1926 if (status != -EAGAIN)
1927 mlog_errno(status);
1928 goto out;
1929 }
1930
1931 /* Do no queue the tasks if the volume is being umounted */
1932 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1933 goto unlock;
1934
1935 if (os->os_seqno != seqno) {
1936 os->os_seqno = seqno;
1937 goto unlock;
1938 }
1939
1940 for (i = 0; i < osb->max_slots; i++)
1941 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1942 NULL, ORPHAN_NO_NEED_TRUNCATE);
1943 /*
1944 * We queued a recovery on orphan slots, increment the sequence
1945 * number and update LVB so other node will skip the scan for a while
1946 */
1947 seqno++;
1948 os->os_count++;
1949 os->os_scantime = CURRENT_TIME;
1950 unlock:
1951 ocfs2_orphan_scan_unlock(osb, seqno);
1952 out:
1953 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1954 atomic_read(&os->os_state));
1955 return;
1956 }
1957
1958 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1959 static void ocfs2_orphan_scan_work(struct work_struct *work)
1960 {
1961 struct ocfs2_orphan_scan *os;
1962 struct ocfs2_super *osb;
1963
1964 os = container_of(work, struct ocfs2_orphan_scan,
1965 os_orphan_scan_work.work);
1966 osb = os->os_osb;
1967
1968 mutex_lock(&os->os_lock);
1969 ocfs2_queue_orphan_scan(osb);
1970 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1971 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1972 ocfs2_orphan_scan_timeout());
1973 mutex_unlock(&os->os_lock);
1974 }
1975
1976 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1977 {
1978 struct ocfs2_orphan_scan *os;
1979
1980 os = &osb->osb_orphan_scan;
1981 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1982 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1983 mutex_lock(&os->os_lock);
1984 cancel_delayed_work(&os->os_orphan_scan_work);
1985 mutex_unlock(&os->os_lock);
1986 }
1987 }
1988
1989 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1990 {
1991 struct ocfs2_orphan_scan *os;
1992
1993 os = &osb->osb_orphan_scan;
1994 os->os_osb = osb;
1995 os->os_count = 0;
1996 os->os_seqno = 0;
1997 mutex_init(&os->os_lock);
1998 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1999 }
2000
2001 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2002 {
2003 struct ocfs2_orphan_scan *os;
2004
2005 os = &osb->osb_orphan_scan;
2006 os->os_scantime = CURRENT_TIME;
2007 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2008 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2009 else {
2010 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2011 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
2012 ocfs2_orphan_scan_timeout());
2013 }
2014 }
2015
2016 struct ocfs2_orphan_filldir_priv {
2017 struct dir_context ctx;
2018 struct inode *head;
2019 struct ocfs2_super *osb;
2020 enum ocfs2_orphan_reco_type orphan_reco_type;
2021 };
2022
2023 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2024 int name_len, loff_t pos, u64 ino,
2025 unsigned type)
2026 {
2027 struct ocfs2_orphan_filldir_priv *p =
2028 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2029 struct inode *iter;
2030
2031 if (name_len == 1 && !strncmp(".", name, 1))
2032 return 0;
2033 if (name_len == 2 && !strncmp("..", name, 2))
2034 return 0;
2035
2036 /* do not include dio entry in case of orphan scan */
2037 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2038 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2039 OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2040 return 0;
2041
2042 /* Skip bad inodes so that recovery can continue */
2043 iter = ocfs2_iget(p->osb, ino,
2044 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2045 if (IS_ERR(iter))
2046 return 0;
2047
2048 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2049 OCFS2_DIO_ORPHAN_PREFIX_LEN))
2050 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2051
2052 /* Skip inodes which are already added to recover list, since dio may
2053 * happen concurrently with unlink/rename */
2054 if (OCFS2_I(iter)->ip_next_orphan) {
2055 iput(iter);
2056 return 0;
2057 }
2058
2059 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2060 /* No locking is required for the next_orphan queue as there
2061 * is only ever a single process doing orphan recovery. */
2062 OCFS2_I(iter)->ip_next_orphan = p->head;
2063 p->head = iter;
2064
2065 return 0;
2066 }
2067
2068 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2069 int slot,
2070 struct inode **head,
2071 enum ocfs2_orphan_reco_type orphan_reco_type)
2072 {
2073 int status;
2074 struct inode *orphan_dir_inode = NULL;
2075 struct ocfs2_orphan_filldir_priv priv = {
2076 .ctx.actor = ocfs2_orphan_filldir,
2077 .osb = osb,
2078 .head = *head,
2079 .orphan_reco_type = orphan_reco_type
2080 };
2081
2082 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2083 ORPHAN_DIR_SYSTEM_INODE,
2084 slot);
2085 if (!orphan_dir_inode) {
2086 status = -ENOENT;
2087 mlog_errno(status);
2088 return status;
2089 }
2090
2091 inode_lock(orphan_dir_inode);
2092 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2093 if (status < 0) {
2094 mlog_errno(status);
2095 goto out;
2096 }
2097
2098 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2099 if (status) {
2100 mlog_errno(status);
2101 goto out_cluster;
2102 }
2103
2104 *head = priv.head;
2105
2106 out_cluster:
2107 ocfs2_inode_unlock(orphan_dir_inode, 0);
2108 out:
2109 inode_unlock(orphan_dir_inode);
2110 iput(orphan_dir_inode);
2111 return status;
2112 }
2113
2114 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2115 int slot)
2116 {
2117 int ret;
2118
2119 spin_lock(&osb->osb_lock);
2120 ret = !osb->osb_orphan_wipes[slot];
2121 spin_unlock(&osb->osb_lock);
2122 return ret;
2123 }
2124
2125 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2126 int slot)
2127 {
2128 spin_lock(&osb->osb_lock);
2129 /* Mark ourselves such that new processes in delete_inode()
2130 * know to quit early. */
2131 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2132 while (osb->osb_orphan_wipes[slot]) {
2133 /* If any processes are already in the middle of an
2134 * orphan wipe on this dir, then we need to wait for
2135 * them. */
2136 spin_unlock(&osb->osb_lock);
2137 wait_event_interruptible(osb->osb_wipe_event,
2138 ocfs2_orphan_recovery_can_continue(osb, slot));
2139 spin_lock(&osb->osb_lock);
2140 }
2141 spin_unlock(&osb->osb_lock);
2142 }
2143
2144 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2145 int slot)
2146 {
2147 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2148 }
2149
2150 /*
2151 * Orphan recovery. Each mounted node has it's own orphan dir which we
2152 * must run during recovery. Our strategy here is to build a list of
2153 * the inodes in the orphan dir and iget/iput them. The VFS does
2154 * (most) of the rest of the work.
2155 *
2156 * Orphan recovery can happen at any time, not just mount so we have a
2157 * couple of extra considerations.
2158 *
2159 * - We grab as many inodes as we can under the orphan dir lock -
2160 * doing iget() outside the orphan dir risks getting a reference on
2161 * an invalid inode.
2162 * - We must be sure not to deadlock with other processes on the
2163 * system wanting to run delete_inode(). This can happen when they go
2164 * to lock the orphan dir and the orphan recovery process attempts to
2165 * iget() inside the orphan dir lock. This can be avoided by
2166 * advertising our state to ocfs2_delete_inode().
2167 */
2168 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2169 int slot,
2170 enum ocfs2_orphan_reco_type orphan_reco_type)
2171 {
2172 int ret = 0;
2173 struct inode *inode = NULL;
2174 struct inode *iter;
2175 struct ocfs2_inode_info *oi;
2176 struct buffer_head *di_bh = NULL;
2177 struct ocfs2_dinode *di = NULL;
2178
2179 trace_ocfs2_recover_orphans(slot);
2180
2181 ocfs2_mark_recovering_orphan_dir(osb, slot);
2182 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2183 ocfs2_clear_recovering_orphan_dir(osb, slot);
2184
2185 /* Error here should be noted, but we want to continue with as
2186 * many queued inodes as we've got. */
2187 if (ret)
2188 mlog_errno(ret);
2189
2190 while (inode) {
2191 oi = OCFS2_I(inode);
2192 trace_ocfs2_recover_orphans_iput(
2193 (unsigned long long)oi->ip_blkno);
2194
2195 iter = oi->ip_next_orphan;
2196 oi->ip_next_orphan = NULL;
2197
2198 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2199 inode_lock(inode);
2200 ret = ocfs2_rw_lock(inode, 1);
2201 if (ret < 0) {
2202 mlog_errno(ret);
2203 goto unlock_mutex;
2204 }
2205 /*
2206 * We need to take and drop the inode lock to
2207 * force read inode from disk.
2208 */
2209 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2210 if (ret) {
2211 mlog_errno(ret);
2212 goto unlock_rw;
2213 }
2214
2215 di = (struct ocfs2_dinode *)di_bh->b_data;
2216
2217 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2218 ret = ocfs2_truncate_file(inode, di_bh,
2219 i_size_read(inode));
2220 if (ret < 0) {
2221 if (ret != -ENOSPC)
2222 mlog_errno(ret);
2223 goto unlock_inode;
2224 }
2225
2226 ret = ocfs2_del_inode_from_orphan(osb, inode,
2227 di_bh, 0, 0);
2228 if (ret)
2229 mlog_errno(ret);
2230 }
2231 unlock_inode:
2232 ocfs2_inode_unlock(inode, 1);
2233 brelse(di_bh);
2234 di_bh = NULL;
2235 unlock_rw:
2236 ocfs2_rw_unlock(inode, 1);
2237 unlock_mutex:
2238 inode_unlock(inode);
2239
2240 /* clear dio flag in ocfs2_inode_info */
2241 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2242 } else {
2243 spin_lock(&oi->ip_lock);
2244 /* Set the proper information to get us going into
2245 * ocfs2_delete_inode. */
2246 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2247 spin_unlock(&oi->ip_lock);
2248 }
2249
2250 iput(inode);
2251 inode = iter;
2252 }
2253
2254 return ret;
2255 }
2256
2257 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2258 {
2259 /* This check is good because ocfs2 will wait on our recovery
2260 * thread before changing it to something other than MOUNTED
2261 * or DISABLED. */
2262 wait_event(osb->osb_mount_event,
2263 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2264 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2265 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2266
2267 /* If there's an error on mount, then we may never get to the
2268 * MOUNTED flag, but this is set right before
2269 * dismount_volume() so we can trust it. */
2270 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2271 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2272 mlog(0, "mount error, exiting!\n");
2273 return -EBUSY;
2274 }
2275
2276 return 0;
2277 }
2278
2279 static int ocfs2_commit_thread(void *arg)
2280 {
2281 int status;
2282 struct ocfs2_super *osb = arg;
2283 struct ocfs2_journal *journal = osb->journal;
2284
2285 /* we can trust j_num_trans here because _should_stop() is only set in
2286 * shutdown and nobody other than ourselves should be able to start
2287 * transactions. committing on shutdown might take a few iterations
2288 * as final transactions put deleted inodes on the list */
2289 while (!(kthread_should_stop() &&
2290 atomic_read(&journal->j_num_trans) == 0)) {
2291
2292 wait_event_interruptible(osb->checkpoint_event,
2293 atomic_read(&journal->j_num_trans)
2294 || kthread_should_stop());
2295
2296 status = ocfs2_commit_cache(osb);
2297 if (status < 0) {
2298 static unsigned long abort_warn_time;
2299
2300 /* Warn about this once per minute */
2301 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2302 mlog(ML_ERROR, "status = %d, journal is "
2303 "already aborted.\n", status);
2304 /*
2305 * After ocfs2_commit_cache() fails, j_num_trans has a
2306 * non-zero value. Sleep here to avoid a busy-wait
2307 * loop.
2308 */
2309 msleep_interruptible(1000);
2310 }
2311
2312 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2313 mlog(ML_KTHREAD,
2314 "commit_thread: %u transactions pending on "
2315 "shutdown\n",
2316 atomic_read(&journal->j_num_trans));
2317 }
2318 }
2319
2320 return 0;
2321 }
2322
2323 /* Reads all the journal inodes without taking any cluster locks. Used
2324 * for hard readonly access to determine whether any journal requires
2325 * recovery. Also used to refresh the recovery generation numbers after
2326 * a journal has been recovered by another node.
2327 */
2328 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2329 {
2330 int ret = 0;
2331 unsigned int slot;
2332 struct buffer_head *di_bh = NULL;
2333 struct ocfs2_dinode *di;
2334 int journal_dirty = 0;
2335
2336 for(slot = 0; slot < osb->max_slots; slot++) {
2337 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2338 if (ret) {
2339 mlog_errno(ret);
2340 goto out;
2341 }
2342
2343 di = (struct ocfs2_dinode *) di_bh->b_data;
2344
2345 osb->slot_recovery_generations[slot] =
2346 ocfs2_get_recovery_generation(di);
2347
2348 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2349 OCFS2_JOURNAL_DIRTY_FL)
2350 journal_dirty = 1;
2351
2352 brelse(di_bh);
2353 di_bh = NULL;
2354 }
2355
2356 out:
2357 if (journal_dirty)
2358 ret = -EROFS;
2359 return ret;
2360 }
This page took 0.079735 seconds and 5 git commands to generate.