Merge tag 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck...
[deliverable/linux.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/user_namespace.h>
85 #include <linux/fs_struct.h>
86 #include <linux/slab.h>
87 #include <linux/flex_array.h>
88 #ifdef CONFIG_HARDWALL
89 #include <asm/hardwall.h>
90 #endif
91 #include <trace/events/oom.h>
92 #include "internal.h"
93
94 /* NOTE:
95 * Implementing inode permission operations in /proc is almost
96 * certainly an error. Permission checks need to happen during
97 * each system call not at open time. The reason is that most of
98 * what we wish to check for permissions in /proc varies at runtime.
99 *
100 * The classic example of a problem is opening file descriptors
101 * in /proc for a task before it execs a suid executable.
102 */
103
104 struct pid_entry {
105 char *name;
106 int len;
107 umode_t mode;
108 const struct inode_operations *iop;
109 const struct file_operations *fop;
110 union proc_op op;
111 };
112
113 #define NOD(NAME, MODE, IOP, FOP, OP) { \
114 .name = (NAME), \
115 .len = sizeof(NAME) - 1, \
116 .mode = MODE, \
117 .iop = IOP, \
118 .fop = FOP, \
119 .op = OP, \
120 }
121
122 #define DIR(NAME, MODE, iops, fops) \
123 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
124 #define LNK(NAME, get_link) \
125 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
126 &proc_pid_link_inode_operations, NULL, \
127 { .proc_get_link = get_link } )
128 #define REG(NAME, MODE, fops) \
129 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
130 #define INF(NAME, MODE, read) \
131 NOD(NAME, (S_IFREG|(MODE)), \
132 NULL, &proc_info_file_operations, \
133 { .proc_read = read } )
134 #define ONE(NAME, MODE, show) \
135 NOD(NAME, (S_IFREG|(MODE)), \
136 NULL, &proc_single_file_operations, \
137 { .proc_show = show } )
138
139 static int proc_fd_permission(struct inode *inode, int mask);
140
141 /*
142 * Count the number of hardlinks for the pid_entry table, excluding the .
143 * and .. links.
144 */
145 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
146 unsigned int n)
147 {
148 unsigned int i;
149 unsigned int count;
150
151 count = 0;
152 for (i = 0; i < n; ++i) {
153 if (S_ISDIR(entries[i].mode))
154 ++count;
155 }
156
157 return count;
158 }
159
160 static int get_task_root(struct task_struct *task, struct path *root)
161 {
162 int result = -ENOENT;
163
164 task_lock(task);
165 if (task->fs) {
166 get_fs_root(task->fs, root);
167 result = 0;
168 }
169 task_unlock(task);
170 return result;
171 }
172
173 static int proc_cwd_link(struct dentry *dentry, struct path *path)
174 {
175 struct task_struct *task = get_proc_task(dentry->d_inode);
176 int result = -ENOENT;
177
178 if (task) {
179 task_lock(task);
180 if (task->fs) {
181 get_fs_pwd(task->fs, path);
182 result = 0;
183 }
184 task_unlock(task);
185 put_task_struct(task);
186 }
187 return result;
188 }
189
190 static int proc_root_link(struct dentry *dentry, struct path *path)
191 {
192 struct task_struct *task = get_proc_task(dentry->d_inode);
193 int result = -ENOENT;
194
195 if (task) {
196 result = get_task_root(task, path);
197 put_task_struct(task);
198 }
199 return result;
200 }
201
202 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
203 {
204 int res = 0;
205 unsigned int len;
206 struct mm_struct *mm = get_task_mm(task);
207 if (!mm)
208 goto out;
209 if (!mm->arg_end)
210 goto out_mm; /* Shh! No looking before we're done */
211
212 len = mm->arg_end - mm->arg_start;
213
214 if (len > PAGE_SIZE)
215 len = PAGE_SIZE;
216
217 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
218
219 // If the nul at the end of args has been overwritten, then
220 // assume application is using setproctitle(3).
221 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
222 len = strnlen(buffer, res);
223 if (len < res) {
224 res = len;
225 } else {
226 len = mm->env_end - mm->env_start;
227 if (len > PAGE_SIZE - res)
228 len = PAGE_SIZE - res;
229 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
230 res = strnlen(buffer, res);
231 }
232 }
233 out_mm:
234 mmput(mm);
235 out:
236 return res;
237 }
238
239 static int proc_pid_auxv(struct task_struct *task, char *buffer)
240 {
241 struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
242 int res = PTR_ERR(mm);
243 if (mm && !IS_ERR(mm)) {
244 unsigned int nwords = 0;
245 do {
246 nwords += 2;
247 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
248 res = nwords * sizeof(mm->saved_auxv[0]);
249 if (res > PAGE_SIZE)
250 res = PAGE_SIZE;
251 memcpy(buffer, mm->saved_auxv, res);
252 mmput(mm);
253 }
254 return res;
255 }
256
257
258 #ifdef CONFIG_KALLSYMS
259 /*
260 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
261 * Returns the resolved symbol. If that fails, simply return the address.
262 */
263 static int proc_pid_wchan(struct task_struct *task, char *buffer)
264 {
265 unsigned long wchan;
266 char symname[KSYM_NAME_LEN];
267
268 wchan = get_wchan(task);
269
270 if (lookup_symbol_name(wchan, symname) < 0)
271 if (!ptrace_may_access(task, PTRACE_MODE_READ))
272 return 0;
273 else
274 return sprintf(buffer, "%lu", wchan);
275 else
276 return sprintf(buffer, "%s", symname);
277 }
278 #endif /* CONFIG_KALLSYMS */
279
280 static int lock_trace(struct task_struct *task)
281 {
282 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
283 if (err)
284 return err;
285 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
286 mutex_unlock(&task->signal->cred_guard_mutex);
287 return -EPERM;
288 }
289 return 0;
290 }
291
292 static void unlock_trace(struct task_struct *task)
293 {
294 mutex_unlock(&task->signal->cred_guard_mutex);
295 }
296
297 #ifdef CONFIG_STACKTRACE
298
299 #define MAX_STACK_TRACE_DEPTH 64
300
301 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
302 struct pid *pid, struct task_struct *task)
303 {
304 struct stack_trace trace;
305 unsigned long *entries;
306 int err;
307 int i;
308
309 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
310 if (!entries)
311 return -ENOMEM;
312
313 trace.nr_entries = 0;
314 trace.max_entries = MAX_STACK_TRACE_DEPTH;
315 trace.entries = entries;
316 trace.skip = 0;
317
318 err = lock_trace(task);
319 if (!err) {
320 save_stack_trace_tsk(task, &trace);
321
322 for (i = 0; i < trace.nr_entries; i++) {
323 seq_printf(m, "[<%pK>] %pS\n",
324 (void *)entries[i], (void *)entries[i]);
325 }
326 unlock_trace(task);
327 }
328 kfree(entries);
329
330 return err;
331 }
332 #endif
333
334 #ifdef CONFIG_SCHEDSTATS
335 /*
336 * Provides /proc/PID/schedstat
337 */
338 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
339 {
340 return sprintf(buffer, "%llu %llu %lu\n",
341 (unsigned long long)task->se.sum_exec_runtime,
342 (unsigned long long)task->sched_info.run_delay,
343 task->sched_info.pcount);
344 }
345 #endif
346
347 #ifdef CONFIG_LATENCYTOP
348 static int lstats_show_proc(struct seq_file *m, void *v)
349 {
350 int i;
351 struct inode *inode = m->private;
352 struct task_struct *task = get_proc_task(inode);
353
354 if (!task)
355 return -ESRCH;
356 seq_puts(m, "Latency Top version : v0.1\n");
357 for (i = 0; i < 32; i++) {
358 struct latency_record *lr = &task->latency_record[i];
359 if (lr->backtrace[0]) {
360 int q;
361 seq_printf(m, "%i %li %li",
362 lr->count, lr->time, lr->max);
363 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
364 unsigned long bt = lr->backtrace[q];
365 if (!bt)
366 break;
367 if (bt == ULONG_MAX)
368 break;
369 seq_printf(m, " %ps", (void *)bt);
370 }
371 seq_putc(m, '\n');
372 }
373
374 }
375 put_task_struct(task);
376 return 0;
377 }
378
379 static int lstats_open(struct inode *inode, struct file *file)
380 {
381 return single_open(file, lstats_show_proc, inode);
382 }
383
384 static ssize_t lstats_write(struct file *file, const char __user *buf,
385 size_t count, loff_t *offs)
386 {
387 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
388
389 if (!task)
390 return -ESRCH;
391 clear_all_latency_tracing(task);
392 put_task_struct(task);
393
394 return count;
395 }
396
397 static const struct file_operations proc_lstats_operations = {
398 .open = lstats_open,
399 .read = seq_read,
400 .write = lstats_write,
401 .llseek = seq_lseek,
402 .release = single_release,
403 };
404
405 #endif
406
407 static int proc_oom_score(struct task_struct *task, char *buffer)
408 {
409 unsigned long totalpages = totalram_pages + total_swap_pages;
410 unsigned long points = 0;
411
412 read_lock(&tasklist_lock);
413 if (pid_alive(task))
414 points = oom_badness(task, NULL, NULL, totalpages) *
415 1000 / totalpages;
416 read_unlock(&tasklist_lock);
417 return sprintf(buffer, "%lu\n", points);
418 }
419
420 struct limit_names {
421 char *name;
422 char *unit;
423 };
424
425 static const struct limit_names lnames[RLIM_NLIMITS] = {
426 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
427 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
428 [RLIMIT_DATA] = {"Max data size", "bytes"},
429 [RLIMIT_STACK] = {"Max stack size", "bytes"},
430 [RLIMIT_CORE] = {"Max core file size", "bytes"},
431 [RLIMIT_RSS] = {"Max resident set", "bytes"},
432 [RLIMIT_NPROC] = {"Max processes", "processes"},
433 [RLIMIT_NOFILE] = {"Max open files", "files"},
434 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
435 [RLIMIT_AS] = {"Max address space", "bytes"},
436 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
437 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
438 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
439 [RLIMIT_NICE] = {"Max nice priority", NULL},
440 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
441 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
442 };
443
444 /* Display limits for a process */
445 static int proc_pid_limits(struct task_struct *task, char *buffer)
446 {
447 unsigned int i;
448 int count = 0;
449 unsigned long flags;
450 char *bufptr = buffer;
451
452 struct rlimit rlim[RLIM_NLIMITS];
453
454 if (!lock_task_sighand(task, &flags))
455 return 0;
456 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
457 unlock_task_sighand(task, &flags);
458
459 /*
460 * print the file header
461 */
462 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
463 "Limit", "Soft Limit", "Hard Limit", "Units");
464
465 for (i = 0; i < RLIM_NLIMITS; i++) {
466 if (rlim[i].rlim_cur == RLIM_INFINITY)
467 count += sprintf(&bufptr[count], "%-25s %-20s ",
468 lnames[i].name, "unlimited");
469 else
470 count += sprintf(&bufptr[count], "%-25s %-20lu ",
471 lnames[i].name, rlim[i].rlim_cur);
472
473 if (rlim[i].rlim_max == RLIM_INFINITY)
474 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
475 else
476 count += sprintf(&bufptr[count], "%-20lu ",
477 rlim[i].rlim_max);
478
479 if (lnames[i].unit)
480 count += sprintf(&bufptr[count], "%-10s\n",
481 lnames[i].unit);
482 else
483 count += sprintf(&bufptr[count], "\n");
484 }
485
486 return count;
487 }
488
489 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
490 static int proc_pid_syscall(struct task_struct *task, char *buffer)
491 {
492 long nr;
493 unsigned long args[6], sp, pc;
494 int res = lock_trace(task);
495 if (res)
496 return res;
497
498 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
499 res = sprintf(buffer, "running\n");
500 else if (nr < 0)
501 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
502 else
503 res = sprintf(buffer,
504 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
505 nr,
506 args[0], args[1], args[2], args[3], args[4], args[5],
507 sp, pc);
508 unlock_trace(task);
509 return res;
510 }
511 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
512
513 /************************************************************************/
514 /* Here the fs part begins */
515 /************************************************************************/
516
517 /* permission checks */
518 static int proc_fd_access_allowed(struct inode *inode)
519 {
520 struct task_struct *task;
521 int allowed = 0;
522 /* Allow access to a task's file descriptors if it is us or we
523 * may use ptrace attach to the process and find out that
524 * information.
525 */
526 task = get_proc_task(inode);
527 if (task) {
528 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
529 put_task_struct(task);
530 }
531 return allowed;
532 }
533
534 int proc_setattr(struct dentry *dentry, struct iattr *attr)
535 {
536 int error;
537 struct inode *inode = dentry->d_inode;
538
539 if (attr->ia_valid & ATTR_MODE)
540 return -EPERM;
541
542 error = inode_change_ok(inode, attr);
543 if (error)
544 return error;
545
546 if ((attr->ia_valid & ATTR_SIZE) &&
547 attr->ia_size != i_size_read(inode)) {
548 error = vmtruncate(inode, attr->ia_size);
549 if (error)
550 return error;
551 }
552
553 setattr_copy(inode, attr);
554 mark_inode_dirty(inode);
555 return 0;
556 }
557
558 /*
559 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
560 * or euid/egid (for hide_pid_min=2)?
561 */
562 static bool has_pid_permissions(struct pid_namespace *pid,
563 struct task_struct *task,
564 int hide_pid_min)
565 {
566 if (pid->hide_pid < hide_pid_min)
567 return true;
568 if (in_group_p(pid->pid_gid))
569 return true;
570 return ptrace_may_access(task, PTRACE_MODE_READ);
571 }
572
573
574 static int proc_pid_permission(struct inode *inode, int mask)
575 {
576 struct pid_namespace *pid = inode->i_sb->s_fs_info;
577 struct task_struct *task;
578 bool has_perms;
579
580 task = get_proc_task(inode);
581 if (!task)
582 return -ESRCH;
583 has_perms = has_pid_permissions(pid, task, 1);
584 put_task_struct(task);
585
586 if (!has_perms) {
587 if (pid->hide_pid == 2) {
588 /*
589 * Let's make getdents(), stat(), and open()
590 * consistent with each other. If a process
591 * may not stat() a file, it shouldn't be seen
592 * in procfs at all.
593 */
594 return -ENOENT;
595 }
596
597 return -EPERM;
598 }
599 return generic_permission(inode, mask);
600 }
601
602
603
604 static const struct inode_operations proc_def_inode_operations = {
605 .setattr = proc_setattr,
606 };
607
608 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
609
610 static ssize_t proc_info_read(struct file * file, char __user * buf,
611 size_t count, loff_t *ppos)
612 {
613 struct inode * inode = file->f_path.dentry->d_inode;
614 unsigned long page;
615 ssize_t length;
616 struct task_struct *task = get_proc_task(inode);
617
618 length = -ESRCH;
619 if (!task)
620 goto out_no_task;
621
622 if (count > PROC_BLOCK_SIZE)
623 count = PROC_BLOCK_SIZE;
624
625 length = -ENOMEM;
626 if (!(page = __get_free_page(GFP_TEMPORARY)))
627 goto out;
628
629 length = PROC_I(inode)->op.proc_read(task, (char*)page);
630
631 if (length >= 0)
632 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
633 free_page(page);
634 out:
635 put_task_struct(task);
636 out_no_task:
637 return length;
638 }
639
640 static const struct file_operations proc_info_file_operations = {
641 .read = proc_info_read,
642 .llseek = generic_file_llseek,
643 };
644
645 static int proc_single_show(struct seq_file *m, void *v)
646 {
647 struct inode *inode = m->private;
648 struct pid_namespace *ns;
649 struct pid *pid;
650 struct task_struct *task;
651 int ret;
652
653 ns = inode->i_sb->s_fs_info;
654 pid = proc_pid(inode);
655 task = get_pid_task(pid, PIDTYPE_PID);
656 if (!task)
657 return -ESRCH;
658
659 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
660
661 put_task_struct(task);
662 return ret;
663 }
664
665 static int proc_single_open(struct inode *inode, struct file *filp)
666 {
667 return single_open(filp, proc_single_show, inode);
668 }
669
670 static const struct file_operations proc_single_file_operations = {
671 .open = proc_single_open,
672 .read = seq_read,
673 .llseek = seq_lseek,
674 .release = single_release,
675 };
676
677 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
678 {
679 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
680 struct mm_struct *mm;
681
682 if (!task)
683 return -ESRCH;
684
685 mm = mm_access(task, mode);
686 put_task_struct(task);
687
688 if (IS_ERR(mm))
689 return PTR_ERR(mm);
690
691 if (mm) {
692 /* ensure this mm_struct can't be freed */
693 atomic_inc(&mm->mm_count);
694 /* but do not pin its memory */
695 mmput(mm);
696 }
697
698 /* OK to pass negative loff_t, we can catch out-of-range */
699 file->f_mode |= FMODE_UNSIGNED_OFFSET;
700 file->private_data = mm;
701
702 return 0;
703 }
704
705 static int mem_open(struct inode *inode, struct file *file)
706 {
707 return __mem_open(inode, file, PTRACE_MODE_ATTACH);
708 }
709
710 static ssize_t mem_rw(struct file *file, char __user *buf,
711 size_t count, loff_t *ppos, int write)
712 {
713 struct mm_struct *mm = file->private_data;
714 unsigned long addr = *ppos;
715 ssize_t copied;
716 char *page;
717
718 if (!mm)
719 return 0;
720
721 page = (char *)__get_free_page(GFP_TEMPORARY);
722 if (!page)
723 return -ENOMEM;
724
725 copied = 0;
726 if (!atomic_inc_not_zero(&mm->mm_users))
727 goto free;
728
729 while (count > 0) {
730 int this_len = min_t(int, count, PAGE_SIZE);
731
732 if (write && copy_from_user(page, buf, this_len)) {
733 copied = -EFAULT;
734 break;
735 }
736
737 this_len = access_remote_vm(mm, addr, page, this_len, write);
738 if (!this_len) {
739 if (!copied)
740 copied = -EIO;
741 break;
742 }
743
744 if (!write && copy_to_user(buf, page, this_len)) {
745 copied = -EFAULT;
746 break;
747 }
748
749 buf += this_len;
750 addr += this_len;
751 copied += this_len;
752 count -= this_len;
753 }
754 *ppos = addr;
755
756 mmput(mm);
757 free:
758 free_page((unsigned long) page);
759 return copied;
760 }
761
762 static ssize_t mem_read(struct file *file, char __user *buf,
763 size_t count, loff_t *ppos)
764 {
765 return mem_rw(file, buf, count, ppos, 0);
766 }
767
768 static ssize_t mem_write(struct file *file, const char __user *buf,
769 size_t count, loff_t *ppos)
770 {
771 return mem_rw(file, (char __user*)buf, count, ppos, 1);
772 }
773
774 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
775 {
776 switch (orig) {
777 case 0:
778 file->f_pos = offset;
779 break;
780 case 1:
781 file->f_pos += offset;
782 break;
783 default:
784 return -EINVAL;
785 }
786 force_successful_syscall_return();
787 return file->f_pos;
788 }
789
790 static int mem_release(struct inode *inode, struct file *file)
791 {
792 struct mm_struct *mm = file->private_data;
793 if (mm)
794 mmdrop(mm);
795 return 0;
796 }
797
798 static const struct file_operations proc_mem_operations = {
799 .llseek = mem_lseek,
800 .read = mem_read,
801 .write = mem_write,
802 .open = mem_open,
803 .release = mem_release,
804 };
805
806 static int environ_open(struct inode *inode, struct file *file)
807 {
808 return __mem_open(inode, file, PTRACE_MODE_READ);
809 }
810
811 static ssize_t environ_read(struct file *file, char __user *buf,
812 size_t count, loff_t *ppos)
813 {
814 char *page;
815 unsigned long src = *ppos;
816 int ret = 0;
817 struct mm_struct *mm = file->private_data;
818
819 if (!mm)
820 return 0;
821
822 page = (char *)__get_free_page(GFP_TEMPORARY);
823 if (!page)
824 return -ENOMEM;
825
826 ret = 0;
827 if (!atomic_inc_not_zero(&mm->mm_users))
828 goto free;
829 while (count > 0) {
830 int this_len, retval, max_len;
831
832 this_len = mm->env_end - (mm->env_start + src);
833
834 if (this_len <= 0)
835 break;
836
837 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
838 this_len = (this_len > max_len) ? max_len : this_len;
839
840 retval = access_remote_vm(mm, (mm->env_start + src),
841 page, this_len, 0);
842
843 if (retval <= 0) {
844 ret = retval;
845 break;
846 }
847
848 if (copy_to_user(buf, page, retval)) {
849 ret = -EFAULT;
850 break;
851 }
852
853 ret += retval;
854 src += retval;
855 buf += retval;
856 count -= retval;
857 }
858 *ppos = src;
859 mmput(mm);
860
861 free:
862 free_page((unsigned long) page);
863 return ret;
864 }
865
866 static const struct file_operations proc_environ_operations = {
867 .open = environ_open,
868 .read = environ_read,
869 .llseek = generic_file_llseek,
870 .release = mem_release,
871 };
872
873 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
874 size_t count, loff_t *ppos)
875 {
876 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
877 char buffer[PROC_NUMBUF];
878 size_t len;
879 int oom_adjust = OOM_DISABLE;
880 unsigned long flags;
881
882 if (!task)
883 return -ESRCH;
884
885 if (lock_task_sighand(task, &flags)) {
886 oom_adjust = task->signal->oom_adj;
887 unlock_task_sighand(task, &flags);
888 }
889
890 put_task_struct(task);
891
892 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
893
894 return simple_read_from_buffer(buf, count, ppos, buffer, len);
895 }
896
897 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
898 size_t count, loff_t *ppos)
899 {
900 struct task_struct *task;
901 char buffer[PROC_NUMBUF];
902 int oom_adjust;
903 unsigned long flags;
904 int err;
905
906 memset(buffer, 0, sizeof(buffer));
907 if (count > sizeof(buffer) - 1)
908 count = sizeof(buffer) - 1;
909 if (copy_from_user(buffer, buf, count)) {
910 err = -EFAULT;
911 goto out;
912 }
913
914 err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
915 if (err)
916 goto out;
917 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
918 oom_adjust != OOM_DISABLE) {
919 err = -EINVAL;
920 goto out;
921 }
922
923 task = get_proc_task(file->f_path.dentry->d_inode);
924 if (!task) {
925 err = -ESRCH;
926 goto out;
927 }
928
929 task_lock(task);
930 if (!task->mm) {
931 err = -EINVAL;
932 goto err_task_lock;
933 }
934
935 if (!lock_task_sighand(task, &flags)) {
936 err = -ESRCH;
937 goto err_task_lock;
938 }
939
940 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
941 err = -EACCES;
942 goto err_sighand;
943 }
944
945 /*
946 * Warn that /proc/pid/oom_adj is deprecated, see
947 * Documentation/feature-removal-schedule.txt.
948 */
949 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
950 current->comm, task_pid_nr(current), task_pid_nr(task),
951 task_pid_nr(task));
952 task->signal->oom_adj = oom_adjust;
953 /*
954 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
955 * value is always attainable.
956 */
957 if (task->signal->oom_adj == OOM_ADJUST_MAX)
958 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
959 else
960 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
961 -OOM_DISABLE;
962 trace_oom_score_adj_update(task);
963 err_sighand:
964 unlock_task_sighand(task, &flags);
965 err_task_lock:
966 task_unlock(task);
967 put_task_struct(task);
968 out:
969 return err < 0 ? err : count;
970 }
971
972 static const struct file_operations proc_oom_adjust_operations = {
973 .read = oom_adjust_read,
974 .write = oom_adjust_write,
975 .llseek = generic_file_llseek,
976 };
977
978 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
979 size_t count, loff_t *ppos)
980 {
981 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
982 char buffer[PROC_NUMBUF];
983 int oom_score_adj = OOM_SCORE_ADJ_MIN;
984 unsigned long flags;
985 size_t len;
986
987 if (!task)
988 return -ESRCH;
989 if (lock_task_sighand(task, &flags)) {
990 oom_score_adj = task->signal->oom_score_adj;
991 unlock_task_sighand(task, &flags);
992 }
993 put_task_struct(task);
994 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
995 return simple_read_from_buffer(buf, count, ppos, buffer, len);
996 }
997
998 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
999 size_t count, loff_t *ppos)
1000 {
1001 struct task_struct *task;
1002 char buffer[PROC_NUMBUF];
1003 unsigned long flags;
1004 int oom_score_adj;
1005 int err;
1006
1007 memset(buffer, 0, sizeof(buffer));
1008 if (count > sizeof(buffer) - 1)
1009 count = sizeof(buffer) - 1;
1010 if (copy_from_user(buffer, buf, count)) {
1011 err = -EFAULT;
1012 goto out;
1013 }
1014
1015 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1016 if (err)
1017 goto out;
1018 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1019 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1020 err = -EINVAL;
1021 goto out;
1022 }
1023
1024 task = get_proc_task(file->f_path.dentry->d_inode);
1025 if (!task) {
1026 err = -ESRCH;
1027 goto out;
1028 }
1029
1030 task_lock(task);
1031 if (!task->mm) {
1032 err = -EINVAL;
1033 goto err_task_lock;
1034 }
1035
1036 if (!lock_task_sighand(task, &flags)) {
1037 err = -ESRCH;
1038 goto err_task_lock;
1039 }
1040
1041 if (oom_score_adj < task->signal->oom_score_adj_min &&
1042 !capable(CAP_SYS_RESOURCE)) {
1043 err = -EACCES;
1044 goto err_sighand;
1045 }
1046
1047 task->signal->oom_score_adj = oom_score_adj;
1048 if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1049 task->signal->oom_score_adj_min = oom_score_adj;
1050 trace_oom_score_adj_update(task);
1051 /*
1052 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1053 * always attainable.
1054 */
1055 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1056 task->signal->oom_adj = OOM_DISABLE;
1057 else
1058 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1059 OOM_SCORE_ADJ_MAX;
1060 err_sighand:
1061 unlock_task_sighand(task, &flags);
1062 err_task_lock:
1063 task_unlock(task);
1064 put_task_struct(task);
1065 out:
1066 return err < 0 ? err : count;
1067 }
1068
1069 static const struct file_operations proc_oom_score_adj_operations = {
1070 .read = oom_score_adj_read,
1071 .write = oom_score_adj_write,
1072 .llseek = default_llseek,
1073 };
1074
1075 #ifdef CONFIG_AUDITSYSCALL
1076 #define TMPBUFLEN 21
1077 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1078 size_t count, loff_t *ppos)
1079 {
1080 struct inode * inode = file->f_path.dentry->d_inode;
1081 struct task_struct *task = get_proc_task(inode);
1082 ssize_t length;
1083 char tmpbuf[TMPBUFLEN];
1084
1085 if (!task)
1086 return -ESRCH;
1087 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1088 audit_get_loginuid(task));
1089 put_task_struct(task);
1090 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1091 }
1092
1093 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1094 size_t count, loff_t *ppos)
1095 {
1096 struct inode * inode = file->f_path.dentry->d_inode;
1097 char *page, *tmp;
1098 ssize_t length;
1099 uid_t loginuid;
1100
1101 rcu_read_lock();
1102 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1103 rcu_read_unlock();
1104 return -EPERM;
1105 }
1106 rcu_read_unlock();
1107
1108 if (count >= PAGE_SIZE)
1109 count = PAGE_SIZE - 1;
1110
1111 if (*ppos != 0) {
1112 /* No partial writes. */
1113 return -EINVAL;
1114 }
1115 page = (char*)__get_free_page(GFP_TEMPORARY);
1116 if (!page)
1117 return -ENOMEM;
1118 length = -EFAULT;
1119 if (copy_from_user(page, buf, count))
1120 goto out_free_page;
1121
1122 page[count] = '\0';
1123 loginuid = simple_strtoul(page, &tmp, 10);
1124 if (tmp == page) {
1125 length = -EINVAL;
1126 goto out_free_page;
1127
1128 }
1129 length = audit_set_loginuid(loginuid);
1130 if (likely(length == 0))
1131 length = count;
1132
1133 out_free_page:
1134 free_page((unsigned long) page);
1135 return length;
1136 }
1137
1138 static const struct file_operations proc_loginuid_operations = {
1139 .read = proc_loginuid_read,
1140 .write = proc_loginuid_write,
1141 .llseek = generic_file_llseek,
1142 };
1143
1144 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1145 size_t count, loff_t *ppos)
1146 {
1147 struct inode * inode = file->f_path.dentry->d_inode;
1148 struct task_struct *task = get_proc_task(inode);
1149 ssize_t length;
1150 char tmpbuf[TMPBUFLEN];
1151
1152 if (!task)
1153 return -ESRCH;
1154 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1155 audit_get_sessionid(task));
1156 put_task_struct(task);
1157 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1158 }
1159
1160 static const struct file_operations proc_sessionid_operations = {
1161 .read = proc_sessionid_read,
1162 .llseek = generic_file_llseek,
1163 };
1164 #endif
1165
1166 #ifdef CONFIG_FAULT_INJECTION
1167 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1168 size_t count, loff_t *ppos)
1169 {
1170 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1171 char buffer[PROC_NUMBUF];
1172 size_t len;
1173 int make_it_fail;
1174
1175 if (!task)
1176 return -ESRCH;
1177 make_it_fail = task->make_it_fail;
1178 put_task_struct(task);
1179
1180 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1181
1182 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1183 }
1184
1185 static ssize_t proc_fault_inject_write(struct file * file,
1186 const char __user * buf, size_t count, loff_t *ppos)
1187 {
1188 struct task_struct *task;
1189 char buffer[PROC_NUMBUF], *end;
1190 int make_it_fail;
1191
1192 if (!capable(CAP_SYS_RESOURCE))
1193 return -EPERM;
1194 memset(buffer, 0, sizeof(buffer));
1195 if (count > sizeof(buffer) - 1)
1196 count = sizeof(buffer) - 1;
1197 if (copy_from_user(buffer, buf, count))
1198 return -EFAULT;
1199 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1200 if (*end)
1201 return -EINVAL;
1202 task = get_proc_task(file->f_dentry->d_inode);
1203 if (!task)
1204 return -ESRCH;
1205 task->make_it_fail = make_it_fail;
1206 put_task_struct(task);
1207
1208 return count;
1209 }
1210
1211 static const struct file_operations proc_fault_inject_operations = {
1212 .read = proc_fault_inject_read,
1213 .write = proc_fault_inject_write,
1214 .llseek = generic_file_llseek,
1215 };
1216 #endif
1217
1218
1219 #ifdef CONFIG_SCHED_DEBUG
1220 /*
1221 * Print out various scheduling related per-task fields:
1222 */
1223 static int sched_show(struct seq_file *m, void *v)
1224 {
1225 struct inode *inode = m->private;
1226 struct task_struct *p;
1227
1228 p = get_proc_task(inode);
1229 if (!p)
1230 return -ESRCH;
1231 proc_sched_show_task(p, m);
1232
1233 put_task_struct(p);
1234
1235 return 0;
1236 }
1237
1238 static ssize_t
1239 sched_write(struct file *file, const char __user *buf,
1240 size_t count, loff_t *offset)
1241 {
1242 struct inode *inode = file->f_path.dentry->d_inode;
1243 struct task_struct *p;
1244
1245 p = get_proc_task(inode);
1246 if (!p)
1247 return -ESRCH;
1248 proc_sched_set_task(p);
1249
1250 put_task_struct(p);
1251
1252 return count;
1253 }
1254
1255 static int sched_open(struct inode *inode, struct file *filp)
1256 {
1257 return single_open(filp, sched_show, inode);
1258 }
1259
1260 static const struct file_operations proc_pid_sched_operations = {
1261 .open = sched_open,
1262 .read = seq_read,
1263 .write = sched_write,
1264 .llseek = seq_lseek,
1265 .release = single_release,
1266 };
1267
1268 #endif
1269
1270 #ifdef CONFIG_SCHED_AUTOGROUP
1271 /*
1272 * Print out autogroup related information:
1273 */
1274 static int sched_autogroup_show(struct seq_file *m, void *v)
1275 {
1276 struct inode *inode = m->private;
1277 struct task_struct *p;
1278
1279 p = get_proc_task(inode);
1280 if (!p)
1281 return -ESRCH;
1282 proc_sched_autogroup_show_task(p, m);
1283
1284 put_task_struct(p);
1285
1286 return 0;
1287 }
1288
1289 static ssize_t
1290 sched_autogroup_write(struct file *file, const char __user *buf,
1291 size_t count, loff_t *offset)
1292 {
1293 struct inode *inode = file->f_path.dentry->d_inode;
1294 struct task_struct *p;
1295 char buffer[PROC_NUMBUF];
1296 int nice;
1297 int err;
1298
1299 memset(buffer, 0, sizeof(buffer));
1300 if (count > sizeof(buffer) - 1)
1301 count = sizeof(buffer) - 1;
1302 if (copy_from_user(buffer, buf, count))
1303 return -EFAULT;
1304
1305 err = kstrtoint(strstrip(buffer), 0, &nice);
1306 if (err < 0)
1307 return err;
1308
1309 p = get_proc_task(inode);
1310 if (!p)
1311 return -ESRCH;
1312
1313 err = proc_sched_autogroup_set_nice(p, nice);
1314 if (err)
1315 count = err;
1316
1317 put_task_struct(p);
1318
1319 return count;
1320 }
1321
1322 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1323 {
1324 int ret;
1325
1326 ret = single_open(filp, sched_autogroup_show, NULL);
1327 if (!ret) {
1328 struct seq_file *m = filp->private_data;
1329
1330 m->private = inode;
1331 }
1332 return ret;
1333 }
1334
1335 static const struct file_operations proc_pid_sched_autogroup_operations = {
1336 .open = sched_autogroup_open,
1337 .read = seq_read,
1338 .write = sched_autogroup_write,
1339 .llseek = seq_lseek,
1340 .release = single_release,
1341 };
1342
1343 #endif /* CONFIG_SCHED_AUTOGROUP */
1344
1345 static ssize_t comm_write(struct file *file, const char __user *buf,
1346 size_t count, loff_t *offset)
1347 {
1348 struct inode *inode = file->f_path.dentry->d_inode;
1349 struct task_struct *p;
1350 char buffer[TASK_COMM_LEN];
1351
1352 memset(buffer, 0, sizeof(buffer));
1353 if (count > sizeof(buffer) - 1)
1354 count = sizeof(buffer) - 1;
1355 if (copy_from_user(buffer, buf, count))
1356 return -EFAULT;
1357
1358 p = get_proc_task(inode);
1359 if (!p)
1360 return -ESRCH;
1361
1362 if (same_thread_group(current, p))
1363 set_task_comm(p, buffer);
1364 else
1365 count = -EINVAL;
1366
1367 put_task_struct(p);
1368
1369 return count;
1370 }
1371
1372 static int comm_show(struct seq_file *m, void *v)
1373 {
1374 struct inode *inode = m->private;
1375 struct task_struct *p;
1376
1377 p = get_proc_task(inode);
1378 if (!p)
1379 return -ESRCH;
1380
1381 task_lock(p);
1382 seq_printf(m, "%s\n", p->comm);
1383 task_unlock(p);
1384
1385 put_task_struct(p);
1386
1387 return 0;
1388 }
1389
1390 static int comm_open(struct inode *inode, struct file *filp)
1391 {
1392 return single_open(filp, comm_show, inode);
1393 }
1394
1395 static const struct file_operations proc_pid_set_comm_operations = {
1396 .open = comm_open,
1397 .read = seq_read,
1398 .write = comm_write,
1399 .llseek = seq_lseek,
1400 .release = single_release,
1401 };
1402
1403 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1404 {
1405 struct task_struct *task;
1406 struct mm_struct *mm;
1407 struct file *exe_file;
1408
1409 task = get_proc_task(dentry->d_inode);
1410 if (!task)
1411 return -ENOENT;
1412 mm = get_task_mm(task);
1413 put_task_struct(task);
1414 if (!mm)
1415 return -ENOENT;
1416 exe_file = get_mm_exe_file(mm);
1417 mmput(mm);
1418 if (exe_file) {
1419 *exe_path = exe_file->f_path;
1420 path_get(&exe_file->f_path);
1421 fput(exe_file);
1422 return 0;
1423 } else
1424 return -ENOENT;
1425 }
1426
1427 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1428 {
1429 struct inode *inode = dentry->d_inode;
1430 struct path path;
1431 int error = -EACCES;
1432
1433 /* Are we allowed to snoop on the tasks file descriptors? */
1434 if (!proc_fd_access_allowed(inode))
1435 goto out;
1436
1437 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1438 if (error)
1439 goto out;
1440
1441 nd_jump_link(nd, &path);
1442 return NULL;
1443 out:
1444 return ERR_PTR(error);
1445 }
1446
1447 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1448 {
1449 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1450 char *pathname;
1451 int len;
1452
1453 if (!tmp)
1454 return -ENOMEM;
1455
1456 pathname = d_path(path, tmp, PAGE_SIZE);
1457 len = PTR_ERR(pathname);
1458 if (IS_ERR(pathname))
1459 goto out;
1460 len = tmp + PAGE_SIZE - 1 - pathname;
1461
1462 if (len > buflen)
1463 len = buflen;
1464 if (copy_to_user(buffer, pathname, len))
1465 len = -EFAULT;
1466 out:
1467 free_page((unsigned long)tmp);
1468 return len;
1469 }
1470
1471 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1472 {
1473 int error = -EACCES;
1474 struct inode *inode = dentry->d_inode;
1475 struct path path;
1476
1477 /* Are we allowed to snoop on the tasks file descriptors? */
1478 if (!proc_fd_access_allowed(inode))
1479 goto out;
1480
1481 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1482 if (error)
1483 goto out;
1484
1485 error = do_proc_readlink(&path, buffer, buflen);
1486 path_put(&path);
1487 out:
1488 return error;
1489 }
1490
1491 static const struct inode_operations proc_pid_link_inode_operations = {
1492 .readlink = proc_pid_readlink,
1493 .follow_link = proc_pid_follow_link,
1494 .setattr = proc_setattr,
1495 };
1496
1497
1498 /* building an inode */
1499
1500 static int task_dumpable(struct task_struct *task)
1501 {
1502 int dumpable = 0;
1503 struct mm_struct *mm;
1504
1505 task_lock(task);
1506 mm = task->mm;
1507 if (mm)
1508 dumpable = get_dumpable(mm);
1509 task_unlock(task);
1510 if(dumpable == 1)
1511 return 1;
1512 return 0;
1513 }
1514
1515 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1516 {
1517 struct inode * inode;
1518 struct proc_inode *ei;
1519 const struct cred *cred;
1520
1521 /* We need a new inode */
1522
1523 inode = new_inode(sb);
1524 if (!inode)
1525 goto out;
1526
1527 /* Common stuff */
1528 ei = PROC_I(inode);
1529 inode->i_ino = get_next_ino();
1530 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1531 inode->i_op = &proc_def_inode_operations;
1532
1533 /*
1534 * grab the reference to task.
1535 */
1536 ei->pid = get_task_pid(task, PIDTYPE_PID);
1537 if (!ei->pid)
1538 goto out_unlock;
1539
1540 if (task_dumpable(task)) {
1541 rcu_read_lock();
1542 cred = __task_cred(task);
1543 inode->i_uid = cred->euid;
1544 inode->i_gid = cred->egid;
1545 rcu_read_unlock();
1546 }
1547 security_task_to_inode(task, inode);
1548
1549 out:
1550 return inode;
1551
1552 out_unlock:
1553 iput(inode);
1554 return NULL;
1555 }
1556
1557 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1558 {
1559 struct inode *inode = dentry->d_inode;
1560 struct task_struct *task;
1561 const struct cred *cred;
1562 struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1563
1564 generic_fillattr(inode, stat);
1565
1566 rcu_read_lock();
1567 stat->uid = GLOBAL_ROOT_UID;
1568 stat->gid = GLOBAL_ROOT_GID;
1569 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1570 if (task) {
1571 if (!has_pid_permissions(pid, task, 2)) {
1572 rcu_read_unlock();
1573 /*
1574 * This doesn't prevent learning whether PID exists,
1575 * it only makes getattr() consistent with readdir().
1576 */
1577 return -ENOENT;
1578 }
1579 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1580 task_dumpable(task)) {
1581 cred = __task_cred(task);
1582 stat->uid = cred->euid;
1583 stat->gid = cred->egid;
1584 }
1585 }
1586 rcu_read_unlock();
1587 return 0;
1588 }
1589
1590 /* dentry stuff */
1591
1592 /*
1593 * Exceptional case: normally we are not allowed to unhash a busy
1594 * directory. In this case, however, we can do it - no aliasing problems
1595 * due to the way we treat inodes.
1596 *
1597 * Rewrite the inode's ownerships here because the owning task may have
1598 * performed a setuid(), etc.
1599 *
1600 * Before the /proc/pid/status file was created the only way to read
1601 * the effective uid of a /process was to stat /proc/pid. Reading
1602 * /proc/pid/status is slow enough that procps and other packages
1603 * kept stating /proc/pid. To keep the rules in /proc simple I have
1604 * made this apply to all per process world readable and executable
1605 * directories.
1606 */
1607 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1608 {
1609 struct inode *inode;
1610 struct task_struct *task;
1611 const struct cred *cred;
1612
1613 if (flags & LOOKUP_RCU)
1614 return -ECHILD;
1615
1616 inode = dentry->d_inode;
1617 task = get_proc_task(inode);
1618
1619 if (task) {
1620 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1621 task_dumpable(task)) {
1622 rcu_read_lock();
1623 cred = __task_cred(task);
1624 inode->i_uid = cred->euid;
1625 inode->i_gid = cred->egid;
1626 rcu_read_unlock();
1627 } else {
1628 inode->i_uid = GLOBAL_ROOT_UID;
1629 inode->i_gid = GLOBAL_ROOT_GID;
1630 }
1631 inode->i_mode &= ~(S_ISUID | S_ISGID);
1632 security_task_to_inode(task, inode);
1633 put_task_struct(task);
1634 return 1;
1635 }
1636 d_drop(dentry);
1637 return 0;
1638 }
1639
1640 static int pid_delete_dentry(const struct dentry * dentry)
1641 {
1642 /* Is the task we represent dead?
1643 * If so, then don't put the dentry on the lru list,
1644 * kill it immediately.
1645 */
1646 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1647 }
1648
1649 const struct dentry_operations pid_dentry_operations =
1650 {
1651 .d_revalidate = pid_revalidate,
1652 .d_delete = pid_delete_dentry,
1653 };
1654
1655 /* Lookups */
1656
1657 /*
1658 * Fill a directory entry.
1659 *
1660 * If possible create the dcache entry and derive our inode number and
1661 * file type from dcache entry.
1662 *
1663 * Since all of the proc inode numbers are dynamically generated, the inode
1664 * numbers do not exist until the inode is cache. This means creating the
1665 * the dcache entry in readdir is necessary to keep the inode numbers
1666 * reported by readdir in sync with the inode numbers reported
1667 * by stat.
1668 */
1669 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1670 const char *name, int len,
1671 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1672 {
1673 struct dentry *child, *dir = filp->f_path.dentry;
1674 struct inode *inode;
1675 struct qstr qname;
1676 ino_t ino = 0;
1677 unsigned type = DT_UNKNOWN;
1678
1679 qname.name = name;
1680 qname.len = len;
1681 qname.hash = full_name_hash(name, len);
1682
1683 child = d_lookup(dir, &qname);
1684 if (!child) {
1685 struct dentry *new;
1686 new = d_alloc(dir, &qname);
1687 if (new) {
1688 child = instantiate(dir->d_inode, new, task, ptr);
1689 if (child)
1690 dput(new);
1691 else
1692 child = new;
1693 }
1694 }
1695 if (!child || IS_ERR(child) || !child->d_inode)
1696 goto end_instantiate;
1697 inode = child->d_inode;
1698 if (inode) {
1699 ino = inode->i_ino;
1700 type = inode->i_mode >> 12;
1701 }
1702 dput(child);
1703 end_instantiate:
1704 if (!ino)
1705 ino = find_inode_number(dir, &qname);
1706 if (!ino)
1707 ino = 1;
1708 return filldir(dirent, name, len, filp->f_pos, ino, type);
1709 }
1710
1711 static unsigned name_to_int(struct dentry *dentry)
1712 {
1713 const char *name = dentry->d_name.name;
1714 int len = dentry->d_name.len;
1715 unsigned n = 0;
1716
1717 if (len > 1 && *name == '0')
1718 goto out;
1719 while (len-- > 0) {
1720 unsigned c = *name++ - '0';
1721 if (c > 9)
1722 goto out;
1723 if (n >= (~0U-9)/10)
1724 goto out;
1725 n *= 10;
1726 n += c;
1727 }
1728 return n;
1729 out:
1730 return ~0U;
1731 }
1732
1733 #define PROC_FDINFO_MAX 64
1734
1735 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1736 {
1737 struct task_struct *task = get_proc_task(inode);
1738 struct files_struct *files = NULL;
1739 struct file *file;
1740 int fd = proc_fd(inode);
1741
1742 if (task) {
1743 files = get_files_struct(task);
1744 put_task_struct(task);
1745 }
1746 if (files) {
1747 /*
1748 * We are not taking a ref to the file structure, so we must
1749 * hold ->file_lock.
1750 */
1751 spin_lock(&files->file_lock);
1752 file = fcheck_files(files, fd);
1753 if (file) {
1754 unsigned int f_flags;
1755 struct fdtable *fdt;
1756
1757 fdt = files_fdtable(files);
1758 f_flags = file->f_flags & ~O_CLOEXEC;
1759 if (close_on_exec(fd, fdt))
1760 f_flags |= O_CLOEXEC;
1761
1762 if (path) {
1763 *path = file->f_path;
1764 path_get(&file->f_path);
1765 }
1766 if (info)
1767 snprintf(info, PROC_FDINFO_MAX,
1768 "pos:\t%lli\n"
1769 "flags:\t0%o\n",
1770 (long long) file->f_pos,
1771 f_flags);
1772 spin_unlock(&files->file_lock);
1773 put_files_struct(files);
1774 return 0;
1775 }
1776 spin_unlock(&files->file_lock);
1777 put_files_struct(files);
1778 }
1779 return -ENOENT;
1780 }
1781
1782 static int proc_fd_link(struct dentry *dentry, struct path *path)
1783 {
1784 return proc_fd_info(dentry->d_inode, path, NULL);
1785 }
1786
1787 static int tid_fd_revalidate(struct dentry *dentry, unsigned int flags)
1788 {
1789 struct inode *inode;
1790 struct task_struct *task;
1791 int fd;
1792 struct files_struct *files;
1793 const struct cred *cred;
1794
1795 if (flags & LOOKUP_RCU)
1796 return -ECHILD;
1797
1798 inode = dentry->d_inode;
1799 task = get_proc_task(inode);
1800 fd = proc_fd(inode);
1801
1802 if (task) {
1803 files = get_files_struct(task);
1804 if (files) {
1805 struct file *file;
1806 rcu_read_lock();
1807 file = fcheck_files(files, fd);
1808 if (file) {
1809 unsigned f_mode = file->f_mode;
1810
1811 rcu_read_unlock();
1812 put_files_struct(files);
1813
1814 if (task_dumpable(task)) {
1815 rcu_read_lock();
1816 cred = __task_cred(task);
1817 inode->i_uid = cred->euid;
1818 inode->i_gid = cred->egid;
1819 rcu_read_unlock();
1820 } else {
1821 inode->i_uid = GLOBAL_ROOT_UID;
1822 inode->i_gid = GLOBAL_ROOT_GID;
1823 }
1824
1825 if (S_ISLNK(inode->i_mode)) {
1826 unsigned i_mode = S_IFLNK;
1827 if (f_mode & FMODE_READ)
1828 i_mode |= S_IRUSR | S_IXUSR;
1829 if (f_mode & FMODE_WRITE)
1830 i_mode |= S_IWUSR | S_IXUSR;
1831 inode->i_mode = i_mode;
1832 }
1833
1834 security_task_to_inode(task, inode);
1835 put_task_struct(task);
1836 return 1;
1837 }
1838 rcu_read_unlock();
1839 put_files_struct(files);
1840 }
1841 put_task_struct(task);
1842 }
1843 d_drop(dentry);
1844 return 0;
1845 }
1846
1847 static const struct dentry_operations tid_fd_dentry_operations =
1848 {
1849 .d_revalidate = tid_fd_revalidate,
1850 .d_delete = pid_delete_dentry,
1851 };
1852
1853 static struct dentry *proc_fd_instantiate(struct inode *dir,
1854 struct dentry *dentry, struct task_struct *task, const void *ptr)
1855 {
1856 unsigned fd = (unsigned long)ptr;
1857 struct inode *inode;
1858 struct proc_inode *ei;
1859 struct dentry *error = ERR_PTR(-ENOENT);
1860
1861 inode = proc_pid_make_inode(dir->i_sb, task);
1862 if (!inode)
1863 goto out;
1864 ei = PROC_I(inode);
1865 ei->fd = fd;
1866
1867 inode->i_mode = S_IFLNK;
1868 inode->i_op = &proc_pid_link_inode_operations;
1869 inode->i_size = 64;
1870 ei->op.proc_get_link = proc_fd_link;
1871 d_set_d_op(dentry, &tid_fd_dentry_operations);
1872 d_add(dentry, inode);
1873 /* Close the race of the process dying before we return the dentry */
1874 if (tid_fd_revalidate(dentry, 0))
1875 error = NULL;
1876
1877 out:
1878 return error;
1879 }
1880
1881 static struct dentry *proc_lookupfd_common(struct inode *dir,
1882 struct dentry *dentry,
1883 instantiate_t instantiate)
1884 {
1885 struct task_struct *task = get_proc_task(dir);
1886 unsigned fd = name_to_int(dentry);
1887 struct dentry *result = ERR_PTR(-ENOENT);
1888
1889 if (!task)
1890 goto out_no_task;
1891 if (fd == ~0U)
1892 goto out;
1893
1894 result = instantiate(dir, dentry, task, (void *)(unsigned long)fd);
1895 out:
1896 put_task_struct(task);
1897 out_no_task:
1898 return result;
1899 }
1900
1901 static int proc_readfd_common(struct file * filp, void * dirent,
1902 filldir_t filldir, instantiate_t instantiate)
1903 {
1904 struct dentry *dentry = filp->f_path.dentry;
1905 struct inode *inode = dentry->d_inode;
1906 struct task_struct *p = get_proc_task(inode);
1907 unsigned int fd, ino;
1908 int retval;
1909 struct files_struct * files;
1910
1911 retval = -ENOENT;
1912 if (!p)
1913 goto out_no_task;
1914 retval = 0;
1915
1916 fd = filp->f_pos;
1917 switch (fd) {
1918 case 0:
1919 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1920 goto out;
1921 filp->f_pos++;
1922 case 1:
1923 ino = parent_ino(dentry);
1924 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1925 goto out;
1926 filp->f_pos++;
1927 default:
1928 files = get_files_struct(p);
1929 if (!files)
1930 goto out;
1931 rcu_read_lock();
1932 for (fd = filp->f_pos-2;
1933 fd < files_fdtable(files)->max_fds;
1934 fd++, filp->f_pos++) {
1935 char name[PROC_NUMBUF];
1936 int len;
1937 int rv;
1938
1939 if (!fcheck_files(files, fd))
1940 continue;
1941 rcu_read_unlock();
1942
1943 len = snprintf(name, sizeof(name), "%d", fd);
1944 rv = proc_fill_cache(filp, dirent, filldir,
1945 name, len, instantiate, p,
1946 (void *)(unsigned long)fd);
1947 if (rv < 0)
1948 goto out_fd_loop;
1949 rcu_read_lock();
1950 }
1951 rcu_read_unlock();
1952 out_fd_loop:
1953 put_files_struct(files);
1954 }
1955 out:
1956 put_task_struct(p);
1957 out_no_task:
1958 return retval;
1959 }
1960
1961 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1962 unsigned int flags)
1963 {
1964 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1965 }
1966
1967 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1968 {
1969 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1970 }
1971
1972 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1973 size_t len, loff_t *ppos)
1974 {
1975 char tmp[PROC_FDINFO_MAX];
1976 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1977 if (!err)
1978 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1979 return err;
1980 }
1981
1982 static const struct file_operations proc_fdinfo_file_operations = {
1983 .open = nonseekable_open,
1984 .read = proc_fdinfo_read,
1985 .llseek = no_llseek,
1986 };
1987
1988 static const struct file_operations proc_fd_operations = {
1989 .read = generic_read_dir,
1990 .readdir = proc_readfd,
1991 .llseek = default_llseek,
1992 };
1993
1994 #ifdef CONFIG_CHECKPOINT_RESTORE
1995
1996 /*
1997 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1998 * which represent vma start and end addresses.
1999 */
2000 static int dname_to_vma_addr(struct dentry *dentry,
2001 unsigned long *start, unsigned long *end)
2002 {
2003 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
2004 return -EINVAL;
2005
2006 return 0;
2007 }
2008
2009 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2010 {
2011 unsigned long vm_start, vm_end;
2012 bool exact_vma_exists = false;
2013 struct mm_struct *mm = NULL;
2014 struct task_struct *task;
2015 const struct cred *cred;
2016 struct inode *inode;
2017 int status = 0;
2018
2019 if (flags & LOOKUP_RCU)
2020 return -ECHILD;
2021
2022 if (!capable(CAP_SYS_ADMIN)) {
2023 status = -EACCES;
2024 goto out_notask;
2025 }
2026
2027 inode = dentry->d_inode;
2028 task = get_proc_task(inode);
2029 if (!task)
2030 goto out_notask;
2031
2032 mm = mm_access(task, PTRACE_MODE_READ);
2033 if (IS_ERR_OR_NULL(mm))
2034 goto out;
2035
2036 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2037 down_read(&mm->mmap_sem);
2038 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
2039 up_read(&mm->mmap_sem);
2040 }
2041
2042 mmput(mm);
2043
2044 if (exact_vma_exists) {
2045 if (task_dumpable(task)) {
2046 rcu_read_lock();
2047 cred = __task_cred(task);
2048 inode->i_uid = cred->euid;
2049 inode->i_gid = cred->egid;
2050 rcu_read_unlock();
2051 } else {
2052 inode->i_uid = GLOBAL_ROOT_UID;
2053 inode->i_gid = GLOBAL_ROOT_GID;
2054 }
2055 security_task_to_inode(task, inode);
2056 status = 1;
2057 }
2058
2059 out:
2060 put_task_struct(task);
2061
2062 out_notask:
2063 if (status <= 0)
2064 d_drop(dentry);
2065
2066 return status;
2067 }
2068
2069 static const struct dentry_operations tid_map_files_dentry_operations = {
2070 .d_revalidate = map_files_d_revalidate,
2071 .d_delete = pid_delete_dentry,
2072 };
2073
2074 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
2075 {
2076 unsigned long vm_start, vm_end;
2077 struct vm_area_struct *vma;
2078 struct task_struct *task;
2079 struct mm_struct *mm;
2080 int rc;
2081
2082 rc = -ENOENT;
2083 task = get_proc_task(dentry->d_inode);
2084 if (!task)
2085 goto out;
2086
2087 mm = get_task_mm(task);
2088 put_task_struct(task);
2089 if (!mm)
2090 goto out;
2091
2092 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2093 if (rc)
2094 goto out_mmput;
2095
2096 down_read(&mm->mmap_sem);
2097 vma = find_exact_vma(mm, vm_start, vm_end);
2098 if (vma && vma->vm_file) {
2099 *path = vma->vm_file->f_path;
2100 path_get(path);
2101 rc = 0;
2102 }
2103 up_read(&mm->mmap_sem);
2104
2105 out_mmput:
2106 mmput(mm);
2107 out:
2108 return rc;
2109 }
2110
2111 struct map_files_info {
2112 struct file *file;
2113 unsigned long len;
2114 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
2115 };
2116
2117 static struct dentry *
2118 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2119 struct task_struct *task, const void *ptr)
2120 {
2121 const struct file *file = ptr;
2122 struct proc_inode *ei;
2123 struct inode *inode;
2124
2125 if (!file)
2126 return ERR_PTR(-ENOENT);
2127
2128 inode = proc_pid_make_inode(dir->i_sb, task);
2129 if (!inode)
2130 return ERR_PTR(-ENOENT);
2131
2132 ei = PROC_I(inode);
2133 ei->op.proc_get_link = proc_map_files_get_link;
2134
2135 inode->i_op = &proc_pid_link_inode_operations;
2136 inode->i_size = 64;
2137 inode->i_mode = S_IFLNK;
2138
2139 if (file->f_mode & FMODE_READ)
2140 inode->i_mode |= S_IRUSR;
2141 if (file->f_mode & FMODE_WRITE)
2142 inode->i_mode |= S_IWUSR;
2143
2144 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2145 d_add(dentry, inode);
2146
2147 return NULL;
2148 }
2149
2150 static struct dentry *proc_map_files_lookup(struct inode *dir,
2151 struct dentry *dentry, unsigned int flags)
2152 {
2153 unsigned long vm_start, vm_end;
2154 struct vm_area_struct *vma;
2155 struct task_struct *task;
2156 struct dentry *result;
2157 struct mm_struct *mm;
2158
2159 result = ERR_PTR(-EACCES);
2160 if (!capable(CAP_SYS_ADMIN))
2161 goto out;
2162
2163 result = ERR_PTR(-ENOENT);
2164 task = get_proc_task(dir);
2165 if (!task)
2166 goto out;
2167
2168 result = ERR_PTR(-EACCES);
2169 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2170 goto out_put_task;
2171
2172 result = ERR_PTR(-ENOENT);
2173 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2174 goto out_put_task;
2175
2176 mm = get_task_mm(task);
2177 if (!mm)
2178 goto out_put_task;
2179
2180 down_read(&mm->mmap_sem);
2181 vma = find_exact_vma(mm, vm_start, vm_end);
2182 if (!vma)
2183 goto out_no_vma;
2184
2185 result = proc_map_files_instantiate(dir, dentry, task, vma->vm_file);
2186
2187 out_no_vma:
2188 up_read(&mm->mmap_sem);
2189 mmput(mm);
2190 out_put_task:
2191 put_task_struct(task);
2192 out:
2193 return result;
2194 }
2195
2196 static const struct inode_operations proc_map_files_inode_operations = {
2197 .lookup = proc_map_files_lookup,
2198 .permission = proc_fd_permission,
2199 .setattr = proc_setattr,
2200 };
2201
2202 static int
2203 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
2204 {
2205 struct dentry *dentry = filp->f_path.dentry;
2206 struct inode *inode = dentry->d_inode;
2207 struct vm_area_struct *vma;
2208 struct task_struct *task;
2209 struct mm_struct *mm;
2210 ino_t ino;
2211 int ret;
2212
2213 ret = -EACCES;
2214 if (!capable(CAP_SYS_ADMIN))
2215 goto out;
2216
2217 ret = -ENOENT;
2218 task = get_proc_task(inode);
2219 if (!task)
2220 goto out;
2221
2222 ret = -EACCES;
2223 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2224 goto out_put_task;
2225
2226 ret = 0;
2227 switch (filp->f_pos) {
2228 case 0:
2229 ino = inode->i_ino;
2230 if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
2231 goto out_put_task;
2232 filp->f_pos++;
2233 case 1:
2234 ino = parent_ino(dentry);
2235 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2236 goto out_put_task;
2237 filp->f_pos++;
2238 default:
2239 {
2240 unsigned long nr_files, pos, i;
2241 struct flex_array *fa = NULL;
2242 struct map_files_info info;
2243 struct map_files_info *p;
2244
2245 mm = get_task_mm(task);
2246 if (!mm)
2247 goto out_put_task;
2248 down_read(&mm->mmap_sem);
2249
2250 nr_files = 0;
2251
2252 /*
2253 * We need two passes here:
2254 *
2255 * 1) Collect vmas of mapped files with mmap_sem taken
2256 * 2) Release mmap_sem and instantiate entries
2257 *
2258 * otherwise we get lockdep complained, since filldir()
2259 * routine might require mmap_sem taken in might_fault().
2260 */
2261
2262 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2263 if (vma->vm_file && ++pos > filp->f_pos)
2264 nr_files++;
2265 }
2266
2267 if (nr_files) {
2268 fa = flex_array_alloc(sizeof(info), nr_files,
2269 GFP_KERNEL);
2270 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2271 GFP_KERNEL)) {
2272 ret = -ENOMEM;
2273 if (fa)
2274 flex_array_free(fa);
2275 up_read(&mm->mmap_sem);
2276 mmput(mm);
2277 goto out_put_task;
2278 }
2279 for (i = 0, vma = mm->mmap, pos = 2; vma;
2280 vma = vma->vm_next) {
2281 if (!vma->vm_file)
2282 continue;
2283 if (++pos <= filp->f_pos)
2284 continue;
2285
2286 get_file(vma->vm_file);
2287 info.file = vma->vm_file;
2288 info.len = snprintf(info.name,
2289 sizeof(info.name), "%lx-%lx",
2290 vma->vm_start, vma->vm_end);
2291 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2292 BUG();
2293 }
2294 }
2295 up_read(&mm->mmap_sem);
2296
2297 for (i = 0; i < nr_files; i++) {
2298 p = flex_array_get(fa, i);
2299 ret = proc_fill_cache(filp, dirent, filldir,
2300 p->name, p->len,
2301 proc_map_files_instantiate,
2302 task, p->file);
2303 if (ret)
2304 break;
2305 filp->f_pos++;
2306 fput(p->file);
2307 }
2308 for (; i < nr_files; i++) {
2309 /*
2310 * In case of error don't forget
2311 * to put rest of file refs.
2312 */
2313 p = flex_array_get(fa, i);
2314 fput(p->file);
2315 }
2316 if (fa)
2317 flex_array_free(fa);
2318 mmput(mm);
2319 }
2320 }
2321
2322 out_put_task:
2323 put_task_struct(task);
2324 out:
2325 return ret;
2326 }
2327
2328 static const struct file_operations proc_map_files_operations = {
2329 .read = generic_read_dir,
2330 .readdir = proc_map_files_readdir,
2331 .llseek = default_llseek,
2332 };
2333
2334 #endif /* CONFIG_CHECKPOINT_RESTORE */
2335
2336 /*
2337 * /proc/pid/fd needs a special permission handler so that a process can still
2338 * access /proc/self/fd after it has executed a setuid().
2339 */
2340 static int proc_fd_permission(struct inode *inode, int mask)
2341 {
2342 int rv = generic_permission(inode, mask);
2343 if (rv == 0)
2344 return 0;
2345 if (task_pid(current) == proc_pid(inode))
2346 rv = 0;
2347 return rv;
2348 }
2349
2350 /*
2351 * proc directories can do almost nothing..
2352 */
2353 static const struct inode_operations proc_fd_inode_operations = {
2354 .lookup = proc_lookupfd,
2355 .permission = proc_fd_permission,
2356 .setattr = proc_setattr,
2357 };
2358
2359 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2360 struct dentry *dentry, struct task_struct *task, const void *ptr)
2361 {
2362 unsigned fd = (unsigned long)ptr;
2363 struct inode *inode;
2364 struct proc_inode *ei;
2365 struct dentry *error = ERR_PTR(-ENOENT);
2366
2367 inode = proc_pid_make_inode(dir->i_sb, task);
2368 if (!inode)
2369 goto out;
2370 ei = PROC_I(inode);
2371 ei->fd = fd;
2372 inode->i_mode = S_IFREG | S_IRUSR;
2373 inode->i_fop = &proc_fdinfo_file_operations;
2374 d_set_d_op(dentry, &tid_fd_dentry_operations);
2375 d_add(dentry, inode);
2376 /* Close the race of the process dying before we return the dentry */
2377 if (tid_fd_revalidate(dentry, 0))
2378 error = NULL;
2379
2380 out:
2381 return error;
2382 }
2383
2384 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2385 struct dentry *dentry,
2386 unsigned int flags)
2387 {
2388 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2389 }
2390
2391 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2392 {
2393 return proc_readfd_common(filp, dirent, filldir,
2394 proc_fdinfo_instantiate);
2395 }
2396
2397 static const struct file_operations proc_fdinfo_operations = {
2398 .read = generic_read_dir,
2399 .readdir = proc_readfdinfo,
2400 .llseek = default_llseek,
2401 };
2402
2403 /*
2404 * proc directories can do almost nothing..
2405 */
2406 static const struct inode_operations proc_fdinfo_inode_operations = {
2407 .lookup = proc_lookupfdinfo,
2408 .setattr = proc_setattr,
2409 };
2410
2411
2412 static struct dentry *proc_pident_instantiate(struct inode *dir,
2413 struct dentry *dentry, struct task_struct *task, const void *ptr)
2414 {
2415 const struct pid_entry *p = ptr;
2416 struct inode *inode;
2417 struct proc_inode *ei;
2418 struct dentry *error = ERR_PTR(-ENOENT);
2419
2420 inode = proc_pid_make_inode(dir->i_sb, task);
2421 if (!inode)
2422 goto out;
2423
2424 ei = PROC_I(inode);
2425 inode->i_mode = p->mode;
2426 if (S_ISDIR(inode->i_mode))
2427 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2428 if (p->iop)
2429 inode->i_op = p->iop;
2430 if (p->fop)
2431 inode->i_fop = p->fop;
2432 ei->op = p->op;
2433 d_set_d_op(dentry, &pid_dentry_operations);
2434 d_add(dentry, inode);
2435 /* Close the race of the process dying before we return the dentry */
2436 if (pid_revalidate(dentry, 0))
2437 error = NULL;
2438 out:
2439 return error;
2440 }
2441
2442 static struct dentry *proc_pident_lookup(struct inode *dir,
2443 struct dentry *dentry,
2444 const struct pid_entry *ents,
2445 unsigned int nents)
2446 {
2447 struct dentry *error;
2448 struct task_struct *task = get_proc_task(dir);
2449 const struct pid_entry *p, *last;
2450
2451 error = ERR_PTR(-ENOENT);
2452
2453 if (!task)
2454 goto out_no_task;
2455
2456 /*
2457 * Yes, it does not scale. And it should not. Don't add
2458 * new entries into /proc/<tgid>/ without very good reasons.
2459 */
2460 last = &ents[nents - 1];
2461 for (p = ents; p <= last; p++) {
2462 if (p->len != dentry->d_name.len)
2463 continue;
2464 if (!memcmp(dentry->d_name.name, p->name, p->len))
2465 break;
2466 }
2467 if (p > last)
2468 goto out;
2469
2470 error = proc_pident_instantiate(dir, dentry, task, p);
2471 out:
2472 put_task_struct(task);
2473 out_no_task:
2474 return error;
2475 }
2476
2477 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2478 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2479 {
2480 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2481 proc_pident_instantiate, task, p);
2482 }
2483
2484 static int proc_pident_readdir(struct file *filp,
2485 void *dirent, filldir_t filldir,
2486 const struct pid_entry *ents, unsigned int nents)
2487 {
2488 int i;
2489 struct dentry *dentry = filp->f_path.dentry;
2490 struct inode *inode = dentry->d_inode;
2491 struct task_struct *task = get_proc_task(inode);
2492 const struct pid_entry *p, *last;
2493 ino_t ino;
2494 int ret;
2495
2496 ret = -ENOENT;
2497 if (!task)
2498 goto out_no_task;
2499
2500 ret = 0;
2501 i = filp->f_pos;
2502 switch (i) {
2503 case 0:
2504 ino = inode->i_ino;
2505 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2506 goto out;
2507 i++;
2508 filp->f_pos++;
2509 /* fall through */
2510 case 1:
2511 ino = parent_ino(dentry);
2512 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2513 goto out;
2514 i++;
2515 filp->f_pos++;
2516 /* fall through */
2517 default:
2518 i -= 2;
2519 if (i >= nents) {
2520 ret = 1;
2521 goto out;
2522 }
2523 p = ents + i;
2524 last = &ents[nents - 1];
2525 while (p <= last) {
2526 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2527 goto out;
2528 filp->f_pos++;
2529 p++;
2530 }
2531 }
2532
2533 ret = 1;
2534 out:
2535 put_task_struct(task);
2536 out_no_task:
2537 return ret;
2538 }
2539
2540 #ifdef CONFIG_SECURITY
2541 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2542 size_t count, loff_t *ppos)
2543 {
2544 struct inode * inode = file->f_path.dentry->d_inode;
2545 char *p = NULL;
2546 ssize_t length;
2547 struct task_struct *task = get_proc_task(inode);
2548
2549 if (!task)
2550 return -ESRCH;
2551
2552 length = security_getprocattr(task,
2553 (char*)file->f_path.dentry->d_name.name,
2554 &p);
2555 put_task_struct(task);
2556 if (length > 0)
2557 length = simple_read_from_buffer(buf, count, ppos, p, length);
2558 kfree(p);
2559 return length;
2560 }
2561
2562 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2563 size_t count, loff_t *ppos)
2564 {
2565 struct inode * inode = file->f_path.dentry->d_inode;
2566 char *page;
2567 ssize_t length;
2568 struct task_struct *task = get_proc_task(inode);
2569
2570 length = -ESRCH;
2571 if (!task)
2572 goto out_no_task;
2573 if (count > PAGE_SIZE)
2574 count = PAGE_SIZE;
2575
2576 /* No partial writes. */
2577 length = -EINVAL;
2578 if (*ppos != 0)
2579 goto out;
2580
2581 length = -ENOMEM;
2582 page = (char*)__get_free_page(GFP_TEMPORARY);
2583 if (!page)
2584 goto out;
2585
2586 length = -EFAULT;
2587 if (copy_from_user(page, buf, count))
2588 goto out_free;
2589
2590 /* Guard against adverse ptrace interaction */
2591 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2592 if (length < 0)
2593 goto out_free;
2594
2595 length = security_setprocattr(task,
2596 (char*)file->f_path.dentry->d_name.name,
2597 (void*)page, count);
2598 mutex_unlock(&task->signal->cred_guard_mutex);
2599 out_free:
2600 free_page((unsigned long) page);
2601 out:
2602 put_task_struct(task);
2603 out_no_task:
2604 return length;
2605 }
2606
2607 static const struct file_operations proc_pid_attr_operations = {
2608 .read = proc_pid_attr_read,
2609 .write = proc_pid_attr_write,
2610 .llseek = generic_file_llseek,
2611 };
2612
2613 static const struct pid_entry attr_dir_stuff[] = {
2614 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2615 REG("prev", S_IRUGO, proc_pid_attr_operations),
2616 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2617 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2618 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2619 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2620 };
2621
2622 static int proc_attr_dir_readdir(struct file * filp,
2623 void * dirent, filldir_t filldir)
2624 {
2625 return proc_pident_readdir(filp,dirent,filldir,
2626 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2627 }
2628
2629 static const struct file_operations proc_attr_dir_operations = {
2630 .read = generic_read_dir,
2631 .readdir = proc_attr_dir_readdir,
2632 .llseek = default_llseek,
2633 };
2634
2635 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2636 struct dentry *dentry, unsigned int flags)
2637 {
2638 return proc_pident_lookup(dir, dentry,
2639 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2640 }
2641
2642 static const struct inode_operations proc_attr_dir_inode_operations = {
2643 .lookup = proc_attr_dir_lookup,
2644 .getattr = pid_getattr,
2645 .setattr = proc_setattr,
2646 };
2647
2648 #endif
2649
2650 #ifdef CONFIG_ELF_CORE
2651 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2652 size_t count, loff_t *ppos)
2653 {
2654 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2655 struct mm_struct *mm;
2656 char buffer[PROC_NUMBUF];
2657 size_t len;
2658 int ret;
2659
2660 if (!task)
2661 return -ESRCH;
2662
2663 ret = 0;
2664 mm = get_task_mm(task);
2665 if (mm) {
2666 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2667 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2668 MMF_DUMP_FILTER_SHIFT));
2669 mmput(mm);
2670 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2671 }
2672
2673 put_task_struct(task);
2674
2675 return ret;
2676 }
2677
2678 static ssize_t proc_coredump_filter_write(struct file *file,
2679 const char __user *buf,
2680 size_t count,
2681 loff_t *ppos)
2682 {
2683 struct task_struct *task;
2684 struct mm_struct *mm;
2685 char buffer[PROC_NUMBUF], *end;
2686 unsigned int val;
2687 int ret;
2688 int i;
2689 unsigned long mask;
2690
2691 ret = -EFAULT;
2692 memset(buffer, 0, sizeof(buffer));
2693 if (count > sizeof(buffer) - 1)
2694 count = sizeof(buffer) - 1;
2695 if (copy_from_user(buffer, buf, count))
2696 goto out_no_task;
2697
2698 ret = -EINVAL;
2699 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2700 if (*end == '\n')
2701 end++;
2702 if (end - buffer == 0)
2703 goto out_no_task;
2704
2705 ret = -ESRCH;
2706 task = get_proc_task(file->f_dentry->d_inode);
2707 if (!task)
2708 goto out_no_task;
2709
2710 ret = end - buffer;
2711 mm = get_task_mm(task);
2712 if (!mm)
2713 goto out_no_mm;
2714
2715 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2716 if (val & mask)
2717 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2718 else
2719 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2720 }
2721
2722 mmput(mm);
2723 out_no_mm:
2724 put_task_struct(task);
2725 out_no_task:
2726 return ret;
2727 }
2728
2729 static const struct file_operations proc_coredump_filter_operations = {
2730 .read = proc_coredump_filter_read,
2731 .write = proc_coredump_filter_write,
2732 .llseek = generic_file_llseek,
2733 };
2734 #endif
2735
2736 /*
2737 * /proc/self:
2738 */
2739 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2740 int buflen)
2741 {
2742 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2743 pid_t tgid = task_tgid_nr_ns(current, ns);
2744 char tmp[PROC_NUMBUF];
2745 if (!tgid)
2746 return -ENOENT;
2747 sprintf(tmp, "%d", tgid);
2748 return vfs_readlink(dentry,buffer,buflen,tmp);
2749 }
2750
2751 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2752 {
2753 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2754 pid_t tgid = task_tgid_nr_ns(current, ns);
2755 char *name = ERR_PTR(-ENOENT);
2756 if (tgid) {
2757 name = __getname();
2758 if (!name)
2759 name = ERR_PTR(-ENOMEM);
2760 else
2761 sprintf(name, "%d", tgid);
2762 }
2763 nd_set_link(nd, name);
2764 return NULL;
2765 }
2766
2767 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2768 void *cookie)
2769 {
2770 char *s = nd_get_link(nd);
2771 if (!IS_ERR(s))
2772 __putname(s);
2773 }
2774
2775 static const struct inode_operations proc_self_inode_operations = {
2776 .readlink = proc_self_readlink,
2777 .follow_link = proc_self_follow_link,
2778 .put_link = proc_self_put_link,
2779 };
2780
2781 /*
2782 * proc base
2783 *
2784 * These are the directory entries in the root directory of /proc
2785 * that properly belong to the /proc filesystem, as they describe
2786 * describe something that is process related.
2787 */
2788 static const struct pid_entry proc_base_stuff[] = {
2789 NOD("self", S_IFLNK|S_IRWXUGO,
2790 &proc_self_inode_operations, NULL, {}),
2791 };
2792
2793 static struct dentry *proc_base_instantiate(struct inode *dir,
2794 struct dentry *dentry, struct task_struct *task, const void *ptr)
2795 {
2796 const struct pid_entry *p = ptr;
2797 struct inode *inode;
2798 struct proc_inode *ei;
2799 struct dentry *error;
2800
2801 /* Allocate the inode */
2802 error = ERR_PTR(-ENOMEM);
2803 inode = new_inode(dir->i_sb);
2804 if (!inode)
2805 goto out;
2806
2807 /* Initialize the inode */
2808 ei = PROC_I(inode);
2809 inode->i_ino = get_next_ino();
2810 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2811
2812 /*
2813 * grab the reference to the task.
2814 */
2815 ei->pid = get_task_pid(task, PIDTYPE_PID);
2816 if (!ei->pid)
2817 goto out_iput;
2818
2819 inode->i_mode = p->mode;
2820 if (S_ISDIR(inode->i_mode))
2821 set_nlink(inode, 2);
2822 if (S_ISLNK(inode->i_mode))
2823 inode->i_size = 64;
2824 if (p->iop)
2825 inode->i_op = p->iop;
2826 if (p->fop)
2827 inode->i_fop = p->fop;
2828 ei->op = p->op;
2829 d_add(dentry, inode);
2830 error = NULL;
2831 out:
2832 return error;
2833 out_iput:
2834 iput(inode);
2835 goto out;
2836 }
2837
2838 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2839 {
2840 struct dentry *error;
2841 struct task_struct *task = get_proc_task(dir);
2842 const struct pid_entry *p, *last;
2843
2844 error = ERR_PTR(-ENOENT);
2845
2846 if (!task)
2847 goto out_no_task;
2848
2849 /* Lookup the directory entry */
2850 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2851 for (p = proc_base_stuff; p <= last; p++) {
2852 if (p->len != dentry->d_name.len)
2853 continue;
2854 if (!memcmp(dentry->d_name.name, p->name, p->len))
2855 break;
2856 }
2857 if (p > last)
2858 goto out;
2859
2860 error = proc_base_instantiate(dir, dentry, task, p);
2861
2862 out:
2863 put_task_struct(task);
2864 out_no_task:
2865 return error;
2866 }
2867
2868 static int proc_base_fill_cache(struct file *filp, void *dirent,
2869 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2870 {
2871 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2872 proc_base_instantiate, task, p);
2873 }
2874
2875 #ifdef CONFIG_TASK_IO_ACCOUNTING
2876 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2877 {
2878 struct task_io_accounting acct = task->ioac;
2879 unsigned long flags;
2880 int result;
2881
2882 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2883 if (result)
2884 return result;
2885
2886 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2887 result = -EACCES;
2888 goto out_unlock;
2889 }
2890
2891 if (whole && lock_task_sighand(task, &flags)) {
2892 struct task_struct *t = task;
2893
2894 task_io_accounting_add(&acct, &task->signal->ioac);
2895 while_each_thread(task, t)
2896 task_io_accounting_add(&acct, &t->ioac);
2897
2898 unlock_task_sighand(task, &flags);
2899 }
2900 result = sprintf(buffer,
2901 "rchar: %llu\n"
2902 "wchar: %llu\n"
2903 "syscr: %llu\n"
2904 "syscw: %llu\n"
2905 "read_bytes: %llu\n"
2906 "write_bytes: %llu\n"
2907 "cancelled_write_bytes: %llu\n",
2908 (unsigned long long)acct.rchar,
2909 (unsigned long long)acct.wchar,
2910 (unsigned long long)acct.syscr,
2911 (unsigned long long)acct.syscw,
2912 (unsigned long long)acct.read_bytes,
2913 (unsigned long long)acct.write_bytes,
2914 (unsigned long long)acct.cancelled_write_bytes);
2915 out_unlock:
2916 mutex_unlock(&task->signal->cred_guard_mutex);
2917 return result;
2918 }
2919
2920 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2921 {
2922 return do_io_accounting(task, buffer, 0);
2923 }
2924
2925 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2926 {
2927 return do_io_accounting(task, buffer, 1);
2928 }
2929 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2930
2931 #ifdef CONFIG_USER_NS
2932 static int proc_id_map_open(struct inode *inode, struct file *file,
2933 struct seq_operations *seq_ops)
2934 {
2935 struct user_namespace *ns = NULL;
2936 struct task_struct *task;
2937 struct seq_file *seq;
2938 int ret = -EINVAL;
2939
2940 task = get_proc_task(inode);
2941 if (task) {
2942 rcu_read_lock();
2943 ns = get_user_ns(task_cred_xxx(task, user_ns));
2944 rcu_read_unlock();
2945 put_task_struct(task);
2946 }
2947 if (!ns)
2948 goto err;
2949
2950 ret = seq_open(file, seq_ops);
2951 if (ret)
2952 goto err_put_ns;
2953
2954 seq = file->private_data;
2955 seq->private = ns;
2956
2957 return 0;
2958 err_put_ns:
2959 put_user_ns(ns);
2960 err:
2961 return ret;
2962 }
2963
2964 static int proc_id_map_release(struct inode *inode, struct file *file)
2965 {
2966 struct seq_file *seq = file->private_data;
2967 struct user_namespace *ns = seq->private;
2968 put_user_ns(ns);
2969 return seq_release(inode, file);
2970 }
2971
2972 static int proc_uid_map_open(struct inode *inode, struct file *file)
2973 {
2974 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2975 }
2976
2977 static int proc_gid_map_open(struct inode *inode, struct file *file)
2978 {
2979 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2980 }
2981
2982 static const struct file_operations proc_uid_map_operations = {
2983 .open = proc_uid_map_open,
2984 .write = proc_uid_map_write,
2985 .read = seq_read,
2986 .llseek = seq_lseek,
2987 .release = proc_id_map_release,
2988 };
2989
2990 static const struct file_operations proc_gid_map_operations = {
2991 .open = proc_gid_map_open,
2992 .write = proc_gid_map_write,
2993 .read = seq_read,
2994 .llseek = seq_lseek,
2995 .release = proc_id_map_release,
2996 };
2997 #endif /* CONFIG_USER_NS */
2998
2999 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3000 struct pid *pid, struct task_struct *task)
3001 {
3002 int err = lock_trace(task);
3003 if (!err) {
3004 seq_printf(m, "%08x\n", task->personality);
3005 unlock_trace(task);
3006 }
3007 return err;
3008 }
3009
3010 /*
3011 * Thread groups
3012 */
3013 static const struct file_operations proc_task_operations;
3014 static const struct inode_operations proc_task_inode_operations;
3015
3016 static const struct pid_entry tgid_base_stuff[] = {
3017 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3018 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3019 #ifdef CONFIG_CHECKPOINT_RESTORE
3020 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3021 #endif
3022 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3023 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3024 #ifdef CONFIG_NET
3025 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3026 #endif
3027 REG("environ", S_IRUSR, proc_environ_operations),
3028 INF("auxv", S_IRUSR, proc_pid_auxv),
3029 ONE("status", S_IRUGO, proc_pid_status),
3030 ONE("personality", S_IRUGO, proc_pid_personality),
3031 INF("limits", S_IRUGO, proc_pid_limits),
3032 #ifdef CONFIG_SCHED_DEBUG
3033 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3034 #endif
3035 #ifdef CONFIG_SCHED_AUTOGROUP
3036 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3037 #endif
3038 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3039 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3040 INF("syscall", S_IRUGO, proc_pid_syscall),
3041 #endif
3042 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3043 ONE("stat", S_IRUGO, proc_tgid_stat),
3044 ONE("statm", S_IRUGO, proc_pid_statm),
3045 REG("maps", S_IRUGO, proc_pid_maps_operations),
3046 #ifdef CONFIG_NUMA
3047 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3048 #endif
3049 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3050 LNK("cwd", proc_cwd_link),
3051 LNK("root", proc_root_link),
3052 LNK("exe", proc_exe_link),
3053 REG("mounts", S_IRUGO, proc_mounts_operations),
3054 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3055 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3056 #ifdef CONFIG_PROC_PAGE_MONITOR
3057 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3058 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3059 REG("pagemap", S_IRUGO, proc_pagemap_operations),
3060 #endif
3061 #ifdef CONFIG_SECURITY
3062 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3063 #endif
3064 #ifdef CONFIG_KALLSYMS
3065 INF("wchan", S_IRUGO, proc_pid_wchan),
3066 #endif
3067 #ifdef CONFIG_STACKTRACE
3068 ONE("stack", S_IRUGO, proc_pid_stack),
3069 #endif
3070 #ifdef CONFIG_SCHEDSTATS
3071 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3072 #endif
3073 #ifdef CONFIG_LATENCYTOP
3074 REG("latency", S_IRUGO, proc_lstats_operations),
3075 #endif
3076 #ifdef CONFIG_PROC_PID_CPUSET
3077 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3078 #endif
3079 #ifdef CONFIG_CGROUPS
3080 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3081 #endif
3082 INF("oom_score", S_IRUGO, proc_oom_score),
3083 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3084 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3085 #ifdef CONFIG_AUDITSYSCALL
3086 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3087 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3088 #endif
3089 #ifdef CONFIG_FAULT_INJECTION
3090 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3091 #endif
3092 #ifdef CONFIG_ELF_CORE
3093 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3094 #endif
3095 #ifdef CONFIG_TASK_IO_ACCOUNTING
3096 INF("io", S_IRUSR, proc_tgid_io_accounting),
3097 #endif
3098 #ifdef CONFIG_HARDWALL
3099 INF("hardwall", S_IRUGO, proc_pid_hardwall),
3100 #endif
3101 #ifdef CONFIG_USER_NS
3102 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3103 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3104 #endif
3105 };
3106
3107 static int proc_tgid_base_readdir(struct file * filp,
3108 void * dirent, filldir_t filldir)
3109 {
3110 return proc_pident_readdir(filp,dirent,filldir,
3111 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
3112 }
3113
3114 static const struct file_operations proc_tgid_base_operations = {
3115 .read = generic_read_dir,
3116 .readdir = proc_tgid_base_readdir,
3117 .llseek = default_llseek,
3118 };
3119
3120 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3121 {
3122 return proc_pident_lookup(dir, dentry,
3123 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3124 }
3125
3126 static const struct inode_operations proc_tgid_base_inode_operations = {
3127 .lookup = proc_tgid_base_lookup,
3128 .getattr = pid_getattr,
3129 .setattr = proc_setattr,
3130 .permission = proc_pid_permission,
3131 };
3132
3133 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3134 {
3135 struct dentry *dentry, *leader, *dir;
3136 char buf[PROC_NUMBUF];
3137 struct qstr name;
3138
3139 name.name = buf;
3140 name.len = snprintf(buf, sizeof(buf), "%d", pid);
3141 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3142 if (dentry) {
3143 shrink_dcache_parent(dentry);
3144 d_drop(dentry);
3145 dput(dentry);
3146 }
3147
3148 name.name = buf;
3149 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
3150 leader = d_hash_and_lookup(mnt->mnt_root, &name);
3151 if (!leader)
3152 goto out;
3153
3154 name.name = "task";
3155 name.len = strlen(name.name);
3156 dir = d_hash_and_lookup(leader, &name);
3157 if (!dir)
3158 goto out_put_leader;
3159
3160 name.name = buf;
3161 name.len = snprintf(buf, sizeof(buf), "%d", pid);
3162 dentry = d_hash_and_lookup(dir, &name);
3163 if (dentry) {
3164 shrink_dcache_parent(dentry);
3165 d_drop(dentry);
3166 dput(dentry);
3167 }
3168
3169 dput(dir);
3170 out_put_leader:
3171 dput(leader);
3172 out:
3173 return;
3174 }
3175
3176 /**
3177 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3178 * @task: task that should be flushed.
3179 *
3180 * When flushing dentries from proc, one needs to flush them from global
3181 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3182 * in. This call is supposed to do all of this job.
3183 *
3184 * Looks in the dcache for
3185 * /proc/@pid
3186 * /proc/@tgid/task/@pid
3187 * if either directory is present flushes it and all of it'ts children
3188 * from the dcache.
3189 *
3190 * It is safe and reasonable to cache /proc entries for a task until
3191 * that task exits. After that they just clog up the dcache with
3192 * useless entries, possibly causing useful dcache entries to be
3193 * flushed instead. This routine is proved to flush those useless
3194 * dcache entries at process exit time.
3195 *
3196 * NOTE: This routine is just an optimization so it does not guarantee
3197 * that no dcache entries will exist at process exit time it
3198 * just makes it very unlikely that any will persist.
3199 */
3200
3201 void proc_flush_task(struct task_struct *task)
3202 {
3203 int i;
3204 struct pid *pid, *tgid;
3205 struct upid *upid;
3206
3207 pid = task_pid(task);
3208 tgid = task_tgid(task);
3209
3210 for (i = 0; i <= pid->level; i++) {
3211 upid = &pid->numbers[i];
3212 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3213 tgid->numbers[i].nr);
3214 }
3215
3216 upid = &pid->numbers[pid->level];
3217 if (upid->nr == 1)
3218 pid_ns_release_proc(upid->ns);
3219 }
3220
3221 static struct dentry *proc_pid_instantiate(struct inode *dir,
3222 struct dentry * dentry,
3223 struct task_struct *task, const void *ptr)
3224 {
3225 struct dentry *error = ERR_PTR(-ENOENT);
3226 struct inode *inode;
3227
3228 inode = proc_pid_make_inode(dir->i_sb, task);
3229 if (!inode)
3230 goto out;
3231
3232 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3233 inode->i_op = &proc_tgid_base_inode_operations;
3234 inode->i_fop = &proc_tgid_base_operations;
3235 inode->i_flags|=S_IMMUTABLE;
3236
3237 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3238 ARRAY_SIZE(tgid_base_stuff)));
3239
3240 d_set_d_op(dentry, &pid_dentry_operations);
3241
3242 d_add(dentry, inode);
3243 /* Close the race of the process dying before we return the dentry */
3244 if (pid_revalidate(dentry, 0))
3245 error = NULL;
3246 out:
3247 return error;
3248 }
3249
3250 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3251 {
3252 struct dentry *result;
3253 struct task_struct *task;
3254 unsigned tgid;
3255 struct pid_namespace *ns;
3256
3257 result = proc_base_lookup(dir, dentry);
3258 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3259 goto out;
3260
3261 tgid = name_to_int(dentry);
3262 if (tgid == ~0U)
3263 goto out;
3264
3265 ns = dentry->d_sb->s_fs_info;
3266 rcu_read_lock();
3267 task = find_task_by_pid_ns(tgid, ns);
3268 if (task)
3269 get_task_struct(task);
3270 rcu_read_unlock();
3271 if (!task)
3272 goto out;
3273
3274 result = proc_pid_instantiate(dir, dentry, task, NULL);
3275 put_task_struct(task);
3276 out:
3277 return result;
3278 }
3279
3280 /*
3281 * Find the first task with tgid >= tgid
3282 *
3283 */
3284 struct tgid_iter {
3285 unsigned int tgid;
3286 struct task_struct *task;
3287 };
3288 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3289 {
3290 struct pid *pid;
3291
3292 if (iter.task)
3293 put_task_struct(iter.task);
3294 rcu_read_lock();
3295 retry:
3296 iter.task = NULL;
3297 pid = find_ge_pid(iter.tgid, ns);
3298 if (pid) {
3299 iter.tgid = pid_nr_ns(pid, ns);
3300 iter.task = pid_task(pid, PIDTYPE_PID);
3301 /* What we to know is if the pid we have find is the
3302 * pid of a thread_group_leader. Testing for task
3303 * being a thread_group_leader is the obvious thing
3304 * todo but there is a window when it fails, due to
3305 * the pid transfer logic in de_thread.
3306 *
3307 * So we perform the straight forward test of seeing
3308 * if the pid we have found is the pid of a thread
3309 * group leader, and don't worry if the task we have
3310 * found doesn't happen to be a thread group leader.
3311 * As we don't care in the case of readdir.
3312 */
3313 if (!iter.task || !has_group_leader_pid(iter.task)) {
3314 iter.tgid += 1;
3315 goto retry;
3316 }
3317 get_task_struct(iter.task);
3318 }
3319 rcu_read_unlock();
3320 return iter;
3321 }
3322
3323 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3324
3325 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3326 struct tgid_iter iter)
3327 {
3328 char name[PROC_NUMBUF];
3329 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3330 return proc_fill_cache(filp, dirent, filldir, name, len,
3331 proc_pid_instantiate, iter.task, NULL);
3332 }
3333
3334 static int fake_filldir(void *buf, const char *name, int namelen,
3335 loff_t offset, u64 ino, unsigned d_type)
3336 {
3337 return 0;
3338 }
3339
3340 /* for the /proc/ directory itself, after non-process stuff has been done */
3341 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3342 {
3343 unsigned int nr;
3344 struct task_struct *reaper;
3345 struct tgid_iter iter;
3346 struct pid_namespace *ns;
3347 filldir_t __filldir;
3348
3349 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3350 goto out_no_task;
3351 nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3352
3353 reaper = get_proc_task(filp->f_path.dentry->d_inode);
3354 if (!reaper)
3355 goto out_no_task;
3356
3357 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3358 const struct pid_entry *p = &proc_base_stuff[nr];
3359 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3360 goto out;
3361 }
3362
3363 ns = filp->f_dentry->d_sb->s_fs_info;
3364 iter.task = NULL;
3365 iter.tgid = filp->f_pos - TGID_OFFSET;
3366 for (iter = next_tgid(ns, iter);
3367 iter.task;
3368 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3369 if (has_pid_permissions(ns, iter.task, 2))
3370 __filldir = filldir;
3371 else
3372 __filldir = fake_filldir;
3373
3374 filp->f_pos = iter.tgid + TGID_OFFSET;
3375 if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
3376 put_task_struct(iter.task);
3377 goto out;
3378 }
3379 }
3380 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3381 out:
3382 put_task_struct(reaper);
3383 out_no_task:
3384 return 0;
3385 }
3386
3387 /*
3388 * Tasks
3389 */
3390 static const struct pid_entry tid_base_stuff[] = {
3391 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3392 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3393 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3394 REG("environ", S_IRUSR, proc_environ_operations),
3395 INF("auxv", S_IRUSR, proc_pid_auxv),
3396 ONE("status", S_IRUGO, proc_pid_status),
3397 ONE("personality", S_IRUGO, proc_pid_personality),
3398 INF("limits", S_IRUGO, proc_pid_limits),
3399 #ifdef CONFIG_SCHED_DEBUG
3400 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3401 #endif
3402 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3403 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3404 INF("syscall", S_IRUGO, proc_pid_syscall),
3405 #endif
3406 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3407 ONE("stat", S_IRUGO, proc_tid_stat),
3408 ONE("statm", S_IRUGO, proc_pid_statm),
3409 REG("maps", S_IRUGO, proc_tid_maps_operations),
3410 #ifdef CONFIG_CHECKPOINT_RESTORE
3411 REG("children", S_IRUGO, proc_tid_children_operations),
3412 #endif
3413 #ifdef CONFIG_NUMA
3414 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3415 #endif
3416 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3417 LNK("cwd", proc_cwd_link),
3418 LNK("root", proc_root_link),
3419 LNK("exe", proc_exe_link),
3420 REG("mounts", S_IRUGO, proc_mounts_operations),
3421 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3422 #ifdef CONFIG_PROC_PAGE_MONITOR
3423 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3424 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
3425 REG("pagemap", S_IRUGO, proc_pagemap_operations),
3426 #endif
3427 #ifdef CONFIG_SECURITY
3428 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3429 #endif
3430 #ifdef CONFIG_KALLSYMS
3431 INF("wchan", S_IRUGO, proc_pid_wchan),
3432 #endif
3433 #ifdef CONFIG_STACKTRACE
3434 ONE("stack", S_IRUGO, proc_pid_stack),
3435 #endif
3436 #ifdef CONFIG_SCHEDSTATS
3437 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3438 #endif
3439 #ifdef CONFIG_LATENCYTOP
3440 REG("latency", S_IRUGO, proc_lstats_operations),
3441 #endif
3442 #ifdef CONFIG_PROC_PID_CPUSET
3443 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3444 #endif
3445 #ifdef CONFIG_CGROUPS
3446 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3447 #endif
3448 INF("oom_score", S_IRUGO, proc_oom_score),
3449 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3450 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3451 #ifdef CONFIG_AUDITSYSCALL
3452 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3453 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3454 #endif
3455 #ifdef CONFIG_FAULT_INJECTION
3456 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3457 #endif
3458 #ifdef CONFIG_TASK_IO_ACCOUNTING
3459 INF("io", S_IRUSR, proc_tid_io_accounting),
3460 #endif
3461 #ifdef CONFIG_HARDWALL
3462 INF("hardwall", S_IRUGO, proc_pid_hardwall),
3463 #endif
3464 #ifdef CONFIG_USER_NS
3465 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3466 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3467 #endif
3468 };
3469
3470 static int proc_tid_base_readdir(struct file * filp,
3471 void * dirent, filldir_t filldir)
3472 {
3473 return proc_pident_readdir(filp,dirent,filldir,
3474 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3475 }
3476
3477 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3478 {
3479 return proc_pident_lookup(dir, dentry,
3480 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3481 }
3482
3483 static const struct file_operations proc_tid_base_operations = {
3484 .read = generic_read_dir,
3485 .readdir = proc_tid_base_readdir,
3486 .llseek = default_llseek,
3487 };
3488
3489 static const struct inode_operations proc_tid_base_inode_operations = {
3490 .lookup = proc_tid_base_lookup,
3491 .getattr = pid_getattr,
3492 .setattr = proc_setattr,
3493 };
3494
3495 static struct dentry *proc_task_instantiate(struct inode *dir,
3496 struct dentry *dentry, struct task_struct *task, const void *ptr)
3497 {
3498 struct dentry *error = ERR_PTR(-ENOENT);
3499 struct inode *inode;
3500 inode = proc_pid_make_inode(dir->i_sb, task);
3501
3502 if (!inode)
3503 goto out;
3504 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3505 inode->i_op = &proc_tid_base_inode_operations;
3506 inode->i_fop = &proc_tid_base_operations;
3507 inode->i_flags|=S_IMMUTABLE;
3508
3509 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3510 ARRAY_SIZE(tid_base_stuff)));
3511
3512 d_set_d_op(dentry, &pid_dentry_operations);
3513
3514 d_add(dentry, inode);
3515 /* Close the race of the process dying before we return the dentry */
3516 if (pid_revalidate(dentry, 0))
3517 error = NULL;
3518 out:
3519 return error;
3520 }
3521
3522 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3523 {
3524 struct dentry *result = ERR_PTR(-ENOENT);
3525 struct task_struct *task;
3526 struct task_struct *leader = get_proc_task(dir);
3527 unsigned tid;
3528 struct pid_namespace *ns;
3529
3530 if (!leader)
3531 goto out_no_task;
3532
3533 tid = name_to_int(dentry);
3534 if (tid == ~0U)
3535 goto out;
3536
3537 ns = dentry->d_sb->s_fs_info;
3538 rcu_read_lock();
3539 task = find_task_by_pid_ns(tid, ns);
3540 if (task)
3541 get_task_struct(task);
3542 rcu_read_unlock();
3543 if (!task)
3544 goto out;
3545 if (!same_thread_group(leader, task))
3546 goto out_drop_task;
3547
3548 result = proc_task_instantiate(dir, dentry, task, NULL);
3549 out_drop_task:
3550 put_task_struct(task);
3551 out:
3552 put_task_struct(leader);
3553 out_no_task:
3554 return result;
3555 }
3556
3557 /*
3558 * Find the first tid of a thread group to return to user space.
3559 *
3560 * Usually this is just the thread group leader, but if the users
3561 * buffer was too small or there was a seek into the middle of the
3562 * directory we have more work todo.
3563 *
3564 * In the case of a short read we start with find_task_by_pid.
3565 *
3566 * In the case of a seek we start with the leader and walk nr
3567 * threads past it.
3568 */
3569 static struct task_struct *first_tid(struct task_struct *leader,
3570 int tid, int nr, struct pid_namespace *ns)
3571 {
3572 struct task_struct *pos;
3573
3574 rcu_read_lock();
3575 /* Attempt to start with the pid of a thread */
3576 if (tid && (nr > 0)) {
3577 pos = find_task_by_pid_ns(tid, ns);
3578 if (pos && (pos->group_leader == leader))
3579 goto found;
3580 }
3581
3582 /* If nr exceeds the number of threads there is nothing todo */
3583 pos = NULL;
3584 if (nr && nr >= get_nr_threads(leader))
3585 goto out;
3586
3587 /* If we haven't found our starting place yet start
3588 * with the leader and walk nr threads forward.
3589 */
3590 for (pos = leader; nr > 0; --nr) {
3591 pos = next_thread(pos);
3592 if (pos == leader) {
3593 pos = NULL;
3594 goto out;
3595 }
3596 }
3597 found:
3598 get_task_struct(pos);
3599 out:
3600 rcu_read_unlock();
3601 return pos;
3602 }
3603
3604 /*
3605 * Find the next thread in the thread list.
3606 * Return NULL if there is an error or no next thread.
3607 *
3608 * The reference to the input task_struct is released.
3609 */
3610 static struct task_struct *next_tid(struct task_struct *start)
3611 {
3612 struct task_struct *pos = NULL;
3613 rcu_read_lock();
3614 if (pid_alive(start)) {
3615 pos = next_thread(start);
3616 if (thread_group_leader(pos))
3617 pos = NULL;
3618 else
3619 get_task_struct(pos);
3620 }
3621 rcu_read_unlock();
3622 put_task_struct(start);
3623 return pos;
3624 }
3625
3626 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3627 struct task_struct *task, int tid)
3628 {
3629 char name[PROC_NUMBUF];
3630 int len = snprintf(name, sizeof(name), "%d", tid);
3631 return proc_fill_cache(filp, dirent, filldir, name, len,
3632 proc_task_instantiate, task, NULL);
3633 }
3634
3635 /* for the /proc/TGID/task/ directories */
3636 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3637 {
3638 struct dentry *dentry = filp->f_path.dentry;
3639 struct inode *inode = dentry->d_inode;
3640 struct task_struct *leader = NULL;
3641 struct task_struct *task;
3642 int retval = -ENOENT;
3643 ino_t ino;
3644 int tid;
3645 struct pid_namespace *ns;
3646
3647 task = get_proc_task(inode);
3648 if (!task)
3649 goto out_no_task;
3650 rcu_read_lock();
3651 if (pid_alive(task)) {
3652 leader = task->group_leader;
3653 get_task_struct(leader);
3654 }
3655 rcu_read_unlock();
3656 put_task_struct(task);
3657 if (!leader)
3658 goto out_no_task;
3659 retval = 0;
3660
3661 switch ((unsigned long)filp->f_pos) {
3662 case 0:
3663 ino = inode->i_ino;
3664 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3665 goto out;
3666 filp->f_pos++;
3667 /* fall through */
3668 case 1:
3669 ino = parent_ino(dentry);
3670 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3671 goto out;
3672 filp->f_pos++;
3673 /* fall through */
3674 }
3675
3676 /* f_version caches the tgid value that the last readdir call couldn't
3677 * return. lseek aka telldir automagically resets f_version to 0.
3678 */
3679 ns = filp->f_dentry->d_sb->s_fs_info;
3680 tid = (int)filp->f_version;
3681 filp->f_version = 0;
3682 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3683 task;
3684 task = next_tid(task), filp->f_pos++) {
3685 tid = task_pid_nr_ns(task, ns);
3686 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3687 /* returning this tgid failed, save it as the first
3688 * pid for the next readir call */
3689 filp->f_version = (u64)tid;
3690 put_task_struct(task);
3691 break;
3692 }
3693 }
3694 out:
3695 put_task_struct(leader);
3696 out_no_task:
3697 return retval;
3698 }
3699
3700 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3701 {
3702 struct inode *inode = dentry->d_inode;
3703 struct task_struct *p = get_proc_task(inode);
3704 generic_fillattr(inode, stat);
3705
3706 if (p) {
3707 stat->nlink += get_nr_threads(p);
3708 put_task_struct(p);
3709 }
3710
3711 return 0;
3712 }
3713
3714 static const struct inode_operations proc_task_inode_operations = {
3715 .lookup = proc_task_lookup,
3716 .getattr = proc_task_getattr,
3717 .setattr = proc_setattr,
3718 .permission = proc_pid_permission,
3719 };
3720
3721 static const struct file_operations proc_task_operations = {
3722 .read = generic_read_dir,
3723 .readdir = proc_task_readdir,
3724 .llseek = default_llseek,
3725 };
This page took 0.116171 seconds and 5 git commands to generate.