39ee093b5e966ca01db1b0d7707c9b960de42f54
[deliverable/linux.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/user_namespace.h>
85 #include <linux/fs_struct.h>
86 #include <linux/slab.h>
87 #include <linux/flex_array.h>
88 #ifdef CONFIG_HARDWALL
89 #include <asm/hardwall.h>
90 #endif
91 #include <trace/events/oom.h>
92 #include "internal.h"
93
94 /* NOTE:
95 * Implementing inode permission operations in /proc is almost
96 * certainly an error. Permission checks need to happen during
97 * each system call not at open time. The reason is that most of
98 * what we wish to check for permissions in /proc varies at runtime.
99 *
100 * The classic example of a problem is opening file descriptors
101 * in /proc for a task before it execs a suid executable.
102 */
103
104 struct pid_entry {
105 char *name;
106 int len;
107 umode_t mode;
108 const struct inode_operations *iop;
109 const struct file_operations *fop;
110 union proc_op op;
111 };
112
113 #define NOD(NAME, MODE, IOP, FOP, OP) { \
114 .name = (NAME), \
115 .len = sizeof(NAME) - 1, \
116 .mode = MODE, \
117 .iop = IOP, \
118 .fop = FOP, \
119 .op = OP, \
120 }
121
122 #define DIR(NAME, MODE, iops, fops) \
123 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
124 #define LNK(NAME, get_link) \
125 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
126 &proc_pid_link_inode_operations, NULL, \
127 { .proc_get_link = get_link } )
128 #define REG(NAME, MODE, fops) \
129 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
130 #define INF(NAME, MODE, read) \
131 NOD(NAME, (S_IFREG|(MODE)), \
132 NULL, &proc_info_file_operations, \
133 { .proc_read = read } )
134 #define ONE(NAME, MODE, show) \
135 NOD(NAME, (S_IFREG|(MODE)), \
136 NULL, &proc_single_file_operations, \
137 { .proc_show = show } )
138
139 static int proc_fd_permission(struct inode *inode, int mask);
140
141 /*
142 * Count the number of hardlinks for the pid_entry table, excluding the .
143 * and .. links.
144 */
145 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
146 unsigned int n)
147 {
148 unsigned int i;
149 unsigned int count;
150
151 count = 0;
152 for (i = 0; i < n; ++i) {
153 if (S_ISDIR(entries[i].mode))
154 ++count;
155 }
156
157 return count;
158 }
159
160 static int get_task_root(struct task_struct *task, struct path *root)
161 {
162 int result = -ENOENT;
163
164 task_lock(task);
165 if (task->fs) {
166 get_fs_root(task->fs, root);
167 result = 0;
168 }
169 task_unlock(task);
170 return result;
171 }
172
173 static int proc_cwd_link(struct dentry *dentry, struct path *path)
174 {
175 struct task_struct *task = get_proc_task(dentry->d_inode);
176 int result = -ENOENT;
177
178 if (task) {
179 task_lock(task);
180 if (task->fs) {
181 get_fs_pwd(task->fs, path);
182 result = 0;
183 }
184 task_unlock(task);
185 put_task_struct(task);
186 }
187 return result;
188 }
189
190 static int proc_root_link(struct dentry *dentry, struct path *path)
191 {
192 struct task_struct *task = get_proc_task(dentry->d_inode);
193 int result = -ENOENT;
194
195 if (task) {
196 result = get_task_root(task, path);
197 put_task_struct(task);
198 }
199 return result;
200 }
201
202 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
203 {
204 int res = 0;
205 unsigned int len;
206 struct mm_struct *mm = get_task_mm(task);
207 if (!mm)
208 goto out;
209 if (!mm->arg_end)
210 goto out_mm; /* Shh! No looking before we're done */
211
212 len = mm->arg_end - mm->arg_start;
213
214 if (len > PAGE_SIZE)
215 len = PAGE_SIZE;
216
217 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
218
219 // If the nul at the end of args has been overwritten, then
220 // assume application is using setproctitle(3).
221 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
222 len = strnlen(buffer, res);
223 if (len < res) {
224 res = len;
225 } else {
226 len = mm->env_end - mm->env_start;
227 if (len > PAGE_SIZE - res)
228 len = PAGE_SIZE - res;
229 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
230 res = strnlen(buffer, res);
231 }
232 }
233 out_mm:
234 mmput(mm);
235 out:
236 return res;
237 }
238
239 static int proc_pid_auxv(struct task_struct *task, char *buffer)
240 {
241 struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
242 int res = PTR_ERR(mm);
243 if (mm && !IS_ERR(mm)) {
244 unsigned int nwords = 0;
245 do {
246 nwords += 2;
247 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
248 res = nwords * sizeof(mm->saved_auxv[0]);
249 if (res > PAGE_SIZE)
250 res = PAGE_SIZE;
251 memcpy(buffer, mm->saved_auxv, res);
252 mmput(mm);
253 }
254 return res;
255 }
256
257
258 #ifdef CONFIG_KALLSYMS
259 /*
260 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
261 * Returns the resolved symbol. If that fails, simply return the address.
262 */
263 static int proc_pid_wchan(struct task_struct *task, char *buffer)
264 {
265 unsigned long wchan;
266 char symname[KSYM_NAME_LEN];
267
268 wchan = get_wchan(task);
269
270 if (lookup_symbol_name(wchan, symname) < 0)
271 if (!ptrace_may_access(task, PTRACE_MODE_READ))
272 return 0;
273 else
274 return sprintf(buffer, "%lu", wchan);
275 else
276 return sprintf(buffer, "%s", symname);
277 }
278 #endif /* CONFIG_KALLSYMS */
279
280 static int lock_trace(struct task_struct *task)
281 {
282 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
283 if (err)
284 return err;
285 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
286 mutex_unlock(&task->signal->cred_guard_mutex);
287 return -EPERM;
288 }
289 return 0;
290 }
291
292 static void unlock_trace(struct task_struct *task)
293 {
294 mutex_unlock(&task->signal->cred_guard_mutex);
295 }
296
297 #ifdef CONFIG_STACKTRACE
298
299 #define MAX_STACK_TRACE_DEPTH 64
300
301 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
302 struct pid *pid, struct task_struct *task)
303 {
304 struct stack_trace trace;
305 unsigned long *entries;
306 int err;
307 int i;
308
309 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
310 if (!entries)
311 return -ENOMEM;
312
313 trace.nr_entries = 0;
314 trace.max_entries = MAX_STACK_TRACE_DEPTH;
315 trace.entries = entries;
316 trace.skip = 0;
317
318 err = lock_trace(task);
319 if (!err) {
320 save_stack_trace_tsk(task, &trace);
321
322 for (i = 0; i < trace.nr_entries; i++) {
323 seq_printf(m, "[<%pK>] %pS\n",
324 (void *)entries[i], (void *)entries[i]);
325 }
326 unlock_trace(task);
327 }
328 kfree(entries);
329
330 return err;
331 }
332 #endif
333
334 #ifdef CONFIG_SCHEDSTATS
335 /*
336 * Provides /proc/PID/schedstat
337 */
338 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
339 {
340 return sprintf(buffer, "%llu %llu %lu\n",
341 (unsigned long long)task->se.sum_exec_runtime,
342 (unsigned long long)task->sched_info.run_delay,
343 task->sched_info.pcount);
344 }
345 #endif
346
347 #ifdef CONFIG_LATENCYTOP
348 static int lstats_show_proc(struct seq_file *m, void *v)
349 {
350 int i;
351 struct inode *inode = m->private;
352 struct task_struct *task = get_proc_task(inode);
353
354 if (!task)
355 return -ESRCH;
356 seq_puts(m, "Latency Top version : v0.1\n");
357 for (i = 0; i < 32; i++) {
358 struct latency_record *lr = &task->latency_record[i];
359 if (lr->backtrace[0]) {
360 int q;
361 seq_printf(m, "%i %li %li",
362 lr->count, lr->time, lr->max);
363 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
364 unsigned long bt = lr->backtrace[q];
365 if (!bt)
366 break;
367 if (bt == ULONG_MAX)
368 break;
369 seq_printf(m, " %ps", (void *)bt);
370 }
371 seq_putc(m, '\n');
372 }
373
374 }
375 put_task_struct(task);
376 return 0;
377 }
378
379 static int lstats_open(struct inode *inode, struct file *file)
380 {
381 return single_open(file, lstats_show_proc, inode);
382 }
383
384 static ssize_t lstats_write(struct file *file, const char __user *buf,
385 size_t count, loff_t *offs)
386 {
387 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
388
389 if (!task)
390 return -ESRCH;
391 clear_all_latency_tracing(task);
392 put_task_struct(task);
393
394 return count;
395 }
396
397 static const struct file_operations proc_lstats_operations = {
398 .open = lstats_open,
399 .read = seq_read,
400 .write = lstats_write,
401 .llseek = seq_lseek,
402 .release = single_release,
403 };
404
405 #endif
406
407 static int proc_oom_score(struct task_struct *task, char *buffer)
408 {
409 unsigned long totalpages = totalram_pages + total_swap_pages;
410 unsigned long points = 0;
411
412 read_lock(&tasklist_lock);
413 if (pid_alive(task))
414 points = oom_badness(task, NULL, NULL, totalpages) *
415 1000 / totalpages;
416 read_unlock(&tasklist_lock);
417 return sprintf(buffer, "%lu\n", points);
418 }
419
420 struct limit_names {
421 char *name;
422 char *unit;
423 };
424
425 static const struct limit_names lnames[RLIM_NLIMITS] = {
426 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
427 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
428 [RLIMIT_DATA] = {"Max data size", "bytes"},
429 [RLIMIT_STACK] = {"Max stack size", "bytes"},
430 [RLIMIT_CORE] = {"Max core file size", "bytes"},
431 [RLIMIT_RSS] = {"Max resident set", "bytes"},
432 [RLIMIT_NPROC] = {"Max processes", "processes"},
433 [RLIMIT_NOFILE] = {"Max open files", "files"},
434 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
435 [RLIMIT_AS] = {"Max address space", "bytes"},
436 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
437 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
438 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
439 [RLIMIT_NICE] = {"Max nice priority", NULL},
440 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
441 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
442 };
443
444 /* Display limits for a process */
445 static int proc_pid_limits(struct task_struct *task, char *buffer)
446 {
447 unsigned int i;
448 int count = 0;
449 unsigned long flags;
450 char *bufptr = buffer;
451
452 struct rlimit rlim[RLIM_NLIMITS];
453
454 if (!lock_task_sighand(task, &flags))
455 return 0;
456 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
457 unlock_task_sighand(task, &flags);
458
459 /*
460 * print the file header
461 */
462 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
463 "Limit", "Soft Limit", "Hard Limit", "Units");
464
465 for (i = 0; i < RLIM_NLIMITS; i++) {
466 if (rlim[i].rlim_cur == RLIM_INFINITY)
467 count += sprintf(&bufptr[count], "%-25s %-20s ",
468 lnames[i].name, "unlimited");
469 else
470 count += sprintf(&bufptr[count], "%-25s %-20lu ",
471 lnames[i].name, rlim[i].rlim_cur);
472
473 if (rlim[i].rlim_max == RLIM_INFINITY)
474 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
475 else
476 count += sprintf(&bufptr[count], "%-20lu ",
477 rlim[i].rlim_max);
478
479 if (lnames[i].unit)
480 count += sprintf(&bufptr[count], "%-10s\n",
481 lnames[i].unit);
482 else
483 count += sprintf(&bufptr[count], "\n");
484 }
485
486 return count;
487 }
488
489 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
490 static int proc_pid_syscall(struct task_struct *task, char *buffer)
491 {
492 long nr;
493 unsigned long args[6], sp, pc;
494 int res = lock_trace(task);
495 if (res)
496 return res;
497
498 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
499 res = sprintf(buffer, "running\n");
500 else if (nr < 0)
501 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
502 else
503 res = sprintf(buffer,
504 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
505 nr,
506 args[0], args[1], args[2], args[3], args[4], args[5],
507 sp, pc);
508 unlock_trace(task);
509 return res;
510 }
511 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
512
513 /************************************************************************/
514 /* Here the fs part begins */
515 /************************************************************************/
516
517 /* permission checks */
518 static int proc_fd_access_allowed(struct inode *inode)
519 {
520 struct task_struct *task;
521 int allowed = 0;
522 /* Allow access to a task's file descriptors if it is us or we
523 * may use ptrace attach to the process and find out that
524 * information.
525 */
526 task = get_proc_task(inode);
527 if (task) {
528 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
529 put_task_struct(task);
530 }
531 return allowed;
532 }
533
534 int proc_setattr(struct dentry *dentry, struct iattr *attr)
535 {
536 int error;
537 struct inode *inode = dentry->d_inode;
538
539 if (attr->ia_valid & ATTR_MODE)
540 return -EPERM;
541
542 error = inode_change_ok(inode, attr);
543 if (error)
544 return error;
545
546 if ((attr->ia_valid & ATTR_SIZE) &&
547 attr->ia_size != i_size_read(inode)) {
548 error = vmtruncate(inode, attr->ia_size);
549 if (error)
550 return error;
551 }
552
553 setattr_copy(inode, attr);
554 mark_inode_dirty(inode);
555 return 0;
556 }
557
558 /*
559 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
560 * or euid/egid (for hide_pid_min=2)?
561 */
562 static bool has_pid_permissions(struct pid_namespace *pid,
563 struct task_struct *task,
564 int hide_pid_min)
565 {
566 if (pid->hide_pid < hide_pid_min)
567 return true;
568 if (in_group_p(pid->pid_gid))
569 return true;
570 return ptrace_may_access(task, PTRACE_MODE_READ);
571 }
572
573
574 static int proc_pid_permission(struct inode *inode, int mask)
575 {
576 struct pid_namespace *pid = inode->i_sb->s_fs_info;
577 struct task_struct *task;
578 bool has_perms;
579
580 task = get_proc_task(inode);
581 if (!task)
582 return -ESRCH;
583 has_perms = has_pid_permissions(pid, task, 1);
584 put_task_struct(task);
585
586 if (!has_perms) {
587 if (pid->hide_pid == 2) {
588 /*
589 * Let's make getdents(), stat(), and open()
590 * consistent with each other. If a process
591 * may not stat() a file, it shouldn't be seen
592 * in procfs at all.
593 */
594 return -ENOENT;
595 }
596
597 return -EPERM;
598 }
599 return generic_permission(inode, mask);
600 }
601
602
603
604 static const struct inode_operations proc_def_inode_operations = {
605 .setattr = proc_setattr,
606 };
607
608 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
609
610 static ssize_t proc_info_read(struct file * file, char __user * buf,
611 size_t count, loff_t *ppos)
612 {
613 struct inode * inode = file->f_path.dentry->d_inode;
614 unsigned long page;
615 ssize_t length;
616 struct task_struct *task = get_proc_task(inode);
617
618 length = -ESRCH;
619 if (!task)
620 goto out_no_task;
621
622 if (count > PROC_BLOCK_SIZE)
623 count = PROC_BLOCK_SIZE;
624
625 length = -ENOMEM;
626 if (!(page = __get_free_page(GFP_TEMPORARY)))
627 goto out;
628
629 length = PROC_I(inode)->op.proc_read(task, (char*)page);
630
631 if (length >= 0)
632 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
633 free_page(page);
634 out:
635 put_task_struct(task);
636 out_no_task:
637 return length;
638 }
639
640 static const struct file_operations proc_info_file_operations = {
641 .read = proc_info_read,
642 .llseek = generic_file_llseek,
643 };
644
645 static int proc_single_show(struct seq_file *m, void *v)
646 {
647 struct inode *inode = m->private;
648 struct pid_namespace *ns;
649 struct pid *pid;
650 struct task_struct *task;
651 int ret;
652
653 ns = inode->i_sb->s_fs_info;
654 pid = proc_pid(inode);
655 task = get_pid_task(pid, PIDTYPE_PID);
656 if (!task)
657 return -ESRCH;
658
659 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
660
661 put_task_struct(task);
662 return ret;
663 }
664
665 static int proc_single_open(struct inode *inode, struct file *filp)
666 {
667 return single_open(filp, proc_single_show, inode);
668 }
669
670 static const struct file_operations proc_single_file_operations = {
671 .open = proc_single_open,
672 .read = seq_read,
673 .llseek = seq_lseek,
674 .release = single_release,
675 };
676
677 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
678 {
679 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
680 struct mm_struct *mm;
681
682 if (!task)
683 return -ESRCH;
684
685 mm = mm_access(task, mode);
686 put_task_struct(task);
687
688 if (IS_ERR(mm))
689 return PTR_ERR(mm);
690
691 if (mm) {
692 /* ensure this mm_struct can't be freed */
693 atomic_inc(&mm->mm_count);
694 /* but do not pin its memory */
695 mmput(mm);
696 }
697
698 /* OK to pass negative loff_t, we can catch out-of-range */
699 file->f_mode |= FMODE_UNSIGNED_OFFSET;
700 file->private_data = mm;
701
702 return 0;
703 }
704
705 static int mem_open(struct inode *inode, struct file *file)
706 {
707 return __mem_open(inode, file, PTRACE_MODE_ATTACH);
708 }
709
710 static ssize_t mem_rw(struct file *file, char __user *buf,
711 size_t count, loff_t *ppos, int write)
712 {
713 struct mm_struct *mm = file->private_data;
714 unsigned long addr = *ppos;
715 ssize_t copied;
716 char *page;
717
718 if (!mm)
719 return 0;
720
721 page = (char *)__get_free_page(GFP_TEMPORARY);
722 if (!page)
723 return -ENOMEM;
724
725 copied = 0;
726 if (!atomic_inc_not_zero(&mm->mm_users))
727 goto free;
728
729 while (count > 0) {
730 int this_len = min_t(int, count, PAGE_SIZE);
731
732 if (write && copy_from_user(page, buf, this_len)) {
733 copied = -EFAULT;
734 break;
735 }
736
737 this_len = access_remote_vm(mm, addr, page, this_len, write);
738 if (!this_len) {
739 if (!copied)
740 copied = -EIO;
741 break;
742 }
743
744 if (!write && copy_to_user(buf, page, this_len)) {
745 copied = -EFAULT;
746 break;
747 }
748
749 buf += this_len;
750 addr += this_len;
751 copied += this_len;
752 count -= this_len;
753 }
754 *ppos = addr;
755
756 mmput(mm);
757 free:
758 free_page((unsigned long) page);
759 return copied;
760 }
761
762 static ssize_t mem_read(struct file *file, char __user *buf,
763 size_t count, loff_t *ppos)
764 {
765 return mem_rw(file, buf, count, ppos, 0);
766 }
767
768 static ssize_t mem_write(struct file *file, const char __user *buf,
769 size_t count, loff_t *ppos)
770 {
771 return mem_rw(file, (char __user*)buf, count, ppos, 1);
772 }
773
774 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
775 {
776 switch (orig) {
777 case 0:
778 file->f_pos = offset;
779 break;
780 case 1:
781 file->f_pos += offset;
782 break;
783 default:
784 return -EINVAL;
785 }
786 force_successful_syscall_return();
787 return file->f_pos;
788 }
789
790 static int mem_release(struct inode *inode, struct file *file)
791 {
792 struct mm_struct *mm = file->private_data;
793 if (mm)
794 mmdrop(mm);
795 return 0;
796 }
797
798 static const struct file_operations proc_mem_operations = {
799 .llseek = mem_lseek,
800 .read = mem_read,
801 .write = mem_write,
802 .open = mem_open,
803 .release = mem_release,
804 };
805
806 static int environ_open(struct inode *inode, struct file *file)
807 {
808 return __mem_open(inode, file, PTRACE_MODE_READ);
809 }
810
811 static ssize_t environ_read(struct file *file, char __user *buf,
812 size_t count, loff_t *ppos)
813 {
814 char *page;
815 unsigned long src = *ppos;
816 int ret = 0;
817 struct mm_struct *mm = file->private_data;
818
819 if (!mm)
820 return 0;
821
822 page = (char *)__get_free_page(GFP_TEMPORARY);
823 if (!page)
824 return -ENOMEM;
825
826 ret = 0;
827 if (!atomic_inc_not_zero(&mm->mm_users))
828 goto free;
829 while (count > 0) {
830 size_t this_len, max_len;
831 int retval;
832
833 if (src >= (mm->env_end - mm->env_start))
834 break;
835
836 this_len = mm->env_end - (mm->env_start + src);
837
838 max_len = min_t(size_t, PAGE_SIZE, count);
839 this_len = min(max_len, this_len);
840
841 retval = access_remote_vm(mm, (mm->env_start + src),
842 page, this_len, 0);
843
844 if (retval <= 0) {
845 ret = retval;
846 break;
847 }
848
849 if (copy_to_user(buf, page, retval)) {
850 ret = -EFAULT;
851 break;
852 }
853
854 ret += retval;
855 src += retval;
856 buf += retval;
857 count -= retval;
858 }
859 *ppos = src;
860 mmput(mm);
861
862 free:
863 free_page((unsigned long) page);
864 return ret;
865 }
866
867 static const struct file_operations proc_environ_operations = {
868 .open = environ_open,
869 .read = environ_read,
870 .llseek = generic_file_llseek,
871 .release = mem_release,
872 };
873
874 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
875 size_t count, loff_t *ppos)
876 {
877 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
878 char buffer[PROC_NUMBUF];
879 size_t len;
880 int oom_adjust = OOM_DISABLE;
881 unsigned long flags;
882
883 if (!task)
884 return -ESRCH;
885
886 if (lock_task_sighand(task, &flags)) {
887 oom_adjust = task->signal->oom_adj;
888 unlock_task_sighand(task, &flags);
889 }
890
891 put_task_struct(task);
892
893 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
894
895 return simple_read_from_buffer(buf, count, ppos, buffer, len);
896 }
897
898 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
899 size_t count, loff_t *ppos)
900 {
901 struct task_struct *task;
902 char buffer[PROC_NUMBUF];
903 int oom_adjust;
904 unsigned long flags;
905 int err;
906
907 memset(buffer, 0, sizeof(buffer));
908 if (count > sizeof(buffer) - 1)
909 count = sizeof(buffer) - 1;
910 if (copy_from_user(buffer, buf, count)) {
911 err = -EFAULT;
912 goto out;
913 }
914
915 err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
916 if (err)
917 goto out;
918 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
919 oom_adjust != OOM_DISABLE) {
920 err = -EINVAL;
921 goto out;
922 }
923
924 task = get_proc_task(file->f_path.dentry->d_inode);
925 if (!task) {
926 err = -ESRCH;
927 goto out;
928 }
929
930 task_lock(task);
931 if (!task->mm) {
932 err = -EINVAL;
933 goto err_task_lock;
934 }
935
936 if (!lock_task_sighand(task, &flags)) {
937 err = -ESRCH;
938 goto err_task_lock;
939 }
940
941 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
942 err = -EACCES;
943 goto err_sighand;
944 }
945
946 /*
947 * Warn that /proc/pid/oom_adj is deprecated, see
948 * Documentation/feature-removal-schedule.txt.
949 */
950 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
951 current->comm, task_pid_nr(current), task_pid_nr(task),
952 task_pid_nr(task));
953 task->signal->oom_adj = oom_adjust;
954 /*
955 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
956 * value is always attainable.
957 */
958 if (task->signal->oom_adj == OOM_ADJUST_MAX)
959 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
960 else
961 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
962 -OOM_DISABLE;
963 trace_oom_score_adj_update(task);
964 err_sighand:
965 unlock_task_sighand(task, &flags);
966 err_task_lock:
967 task_unlock(task);
968 put_task_struct(task);
969 out:
970 return err < 0 ? err : count;
971 }
972
973 static const struct file_operations proc_oom_adjust_operations = {
974 .read = oom_adjust_read,
975 .write = oom_adjust_write,
976 .llseek = generic_file_llseek,
977 };
978
979 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
980 size_t count, loff_t *ppos)
981 {
982 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
983 char buffer[PROC_NUMBUF];
984 int oom_score_adj = OOM_SCORE_ADJ_MIN;
985 unsigned long flags;
986 size_t len;
987
988 if (!task)
989 return -ESRCH;
990 if (lock_task_sighand(task, &flags)) {
991 oom_score_adj = task->signal->oom_score_adj;
992 unlock_task_sighand(task, &flags);
993 }
994 put_task_struct(task);
995 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
996 return simple_read_from_buffer(buf, count, ppos, buffer, len);
997 }
998
999 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1000 size_t count, loff_t *ppos)
1001 {
1002 struct task_struct *task;
1003 char buffer[PROC_NUMBUF];
1004 unsigned long flags;
1005 int oom_score_adj;
1006 int err;
1007
1008 memset(buffer, 0, sizeof(buffer));
1009 if (count > sizeof(buffer) - 1)
1010 count = sizeof(buffer) - 1;
1011 if (copy_from_user(buffer, buf, count)) {
1012 err = -EFAULT;
1013 goto out;
1014 }
1015
1016 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1017 if (err)
1018 goto out;
1019 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1020 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1021 err = -EINVAL;
1022 goto out;
1023 }
1024
1025 task = get_proc_task(file->f_path.dentry->d_inode);
1026 if (!task) {
1027 err = -ESRCH;
1028 goto out;
1029 }
1030
1031 task_lock(task);
1032 if (!task->mm) {
1033 err = -EINVAL;
1034 goto err_task_lock;
1035 }
1036
1037 if (!lock_task_sighand(task, &flags)) {
1038 err = -ESRCH;
1039 goto err_task_lock;
1040 }
1041
1042 if (oom_score_adj < task->signal->oom_score_adj_min &&
1043 !capable(CAP_SYS_RESOURCE)) {
1044 err = -EACCES;
1045 goto err_sighand;
1046 }
1047
1048 task->signal->oom_score_adj = oom_score_adj;
1049 if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1050 task->signal->oom_score_adj_min = oom_score_adj;
1051 trace_oom_score_adj_update(task);
1052 /*
1053 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1054 * always attainable.
1055 */
1056 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1057 task->signal->oom_adj = OOM_DISABLE;
1058 else
1059 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1060 OOM_SCORE_ADJ_MAX;
1061 err_sighand:
1062 unlock_task_sighand(task, &flags);
1063 err_task_lock:
1064 task_unlock(task);
1065 put_task_struct(task);
1066 out:
1067 return err < 0 ? err : count;
1068 }
1069
1070 static const struct file_operations proc_oom_score_adj_operations = {
1071 .read = oom_score_adj_read,
1072 .write = oom_score_adj_write,
1073 .llseek = default_llseek,
1074 };
1075
1076 #ifdef CONFIG_AUDITSYSCALL
1077 #define TMPBUFLEN 21
1078 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1079 size_t count, loff_t *ppos)
1080 {
1081 struct inode * inode = file->f_path.dentry->d_inode;
1082 struct task_struct *task = get_proc_task(inode);
1083 ssize_t length;
1084 char tmpbuf[TMPBUFLEN];
1085
1086 if (!task)
1087 return -ESRCH;
1088 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1089 audit_get_loginuid(task));
1090 put_task_struct(task);
1091 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1092 }
1093
1094 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1095 size_t count, loff_t *ppos)
1096 {
1097 struct inode * inode = file->f_path.dentry->d_inode;
1098 char *page, *tmp;
1099 ssize_t length;
1100 uid_t loginuid;
1101
1102 rcu_read_lock();
1103 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1104 rcu_read_unlock();
1105 return -EPERM;
1106 }
1107 rcu_read_unlock();
1108
1109 if (count >= PAGE_SIZE)
1110 count = PAGE_SIZE - 1;
1111
1112 if (*ppos != 0) {
1113 /* No partial writes. */
1114 return -EINVAL;
1115 }
1116 page = (char*)__get_free_page(GFP_TEMPORARY);
1117 if (!page)
1118 return -ENOMEM;
1119 length = -EFAULT;
1120 if (copy_from_user(page, buf, count))
1121 goto out_free_page;
1122
1123 page[count] = '\0';
1124 loginuid = simple_strtoul(page, &tmp, 10);
1125 if (tmp == page) {
1126 length = -EINVAL;
1127 goto out_free_page;
1128
1129 }
1130 length = audit_set_loginuid(loginuid);
1131 if (likely(length == 0))
1132 length = count;
1133
1134 out_free_page:
1135 free_page((unsigned long) page);
1136 return length;
1137 }
1138
1139 static const struct file_operations proc_loginuid_operations = {
1140 .read = proc_loginuid_read,
1141 .write = proc_loginuid_write,
1142 .llseek = generic_file_llseek,
1143 };
1144
1145 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1146 size_t count, loff_t *ppos)
1147 {
1148 struct inode * inode = file->f_path.dentry->d_inode;
1149 struct task_struct *task = get_proc_task(inode);
1150 ssize_t length;
1151 char tmpbuf[TMPBUFLEN];
1152
1153 if (!task)
1154 return -ESRCH;
1155 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1156 audit_get_sessionid(task));
1157 put_task_struct(task);
1158 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1159 }
1160
1161 static const struct file_operations proc_sessionid_operations = {
1162 .read = proc_sessionid_read,
1163 .llseek = generic_file_llseek,
1164 };
1165 #endif
1166
1167 #ifdef CONFIG_FAULT_INJECTION
1168 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1169 size_t count, loff_t *ppos)
1170 {
1171 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1172 char buffer[PROC_NUMBUF];
1173 size_t len;
1174 int make_it_fail;
1175
1176 if (!task)
1177 return -ESRCH;
1178 make_it_fail = task->make_it_fail;
1179 put_task_struct(task);
1180
1181 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1182
1183 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1184 }
1185
1186 static ssize_t proc_fault_inject_write(struct file * file,
1187 const char __user * buf, size_t count, loff_t *ppos)
1188 {
1189 struct task_struct *task;
1190 char buffer[PROC_NUMBUF], *end;
1191 int make_it_fail;
1192
1193 if (!capable(CAP_SYS_RESOURCE))
1194 return -EPERM;
1195 memset(buffer, 0, sizeof(buffer));
1196 if (count > sizeof(buffer) - 1)
1197 count = sizeof(buffer) - 1;
1198 if (copy_from_user(buffer, buf, count))
1199 return -EFAULT;
1200 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1201 if (*end)
1202 return -EINVAL;
1203 task = get_proc_task(file->f_dentry->d_inode);
1204 if (!task)
1205 return -ESRCH;
1206 task->make_it_fail = make_it_fail;
1207 put_task_struct(task);
1208
1209 return count;
1210 }
1211
1212 static const struct file_operations proc_fault_inject_operations = {
1213 .read = proc_fault_inject_read,
1214 .write = proc_fault_inject_write,
1215 .llseek = generic_file_llseek,
1216 };
1217 #endif
1218
1219
1220 #ifdef CONFIG_SCHED_DEBUG
1221 /*
1222 * Print out various scheduling related per-task fields:
1223 */
1224 static int sched_show(struct seq_file *m, void *v)
1225 {
1226 struct inode *inode = m->private;
1227 struct task_struct *p;
1228
1229 p = get_proc_task(inode);
1230 if (!p)
1231 return -ESRCH;
1232 proc_sched_show_task(p, m);
1233
1234 put_task_struct(p);
1235
1236 return 0;
1237 }
1238
1239 static ssize_t
1240 sched_write(struct file *file, const char __user *buf,
1241 size_t count, loff_t *offset)
1242 {
1243 struct inode *inode = file->f_path.dentry->d_inode;
1244 struct task_struct *p;
1245
1246 p = get_proc_task(inode);
1247 if (!p)
1248 return -ESRCH;
1249 proc_sched_set_task(p);
1250
1251 put_task_struct(p);
1252
1253 return count;
1254 }
1255
1256 static int sched_open(struct inode *inode, struct file *filp)
1257 {
1258 return single_open(filp, sched_show, inode);
1259 }
1260
1261 static const struct file_operations proc_pid_sched_operations = {
1262 .open = sched_open,
1263 .read = seq_read,
1264 .write = sched_write,
1265 .llseek = seq_lseek,
1266 .release = single_release,
1267 };
1268
1269 #endif
1270
1271 #ifdef CONFIG_SCHED_AUTOGROUP
1272 /*
1273 * Print out autogroup related information:
1274 */
1275 static int sched_autogroup_show(struct seq_file *m, void *v)
1276 {
1277 struct inode *inode = m->private;
1278 struct task_struct *p;
1279
1280 p = get_proc_task(inode);
1281 if (!p)
1282 return -ESRCH;
1283 proc_sched_autogroup_show_task(p, m);
1284
1285 put_task_struct(p);
1286
1287 return 0;
1288 }
1289
1290 static ssize_t
1291 sched_autogroup_write(struct file *file, const char __user *buf,
1292 size_t count, loff_t *offset)
1293 {
1294 struct inode *inode = file->f_path.dentry->d_inode;
1295 struct task_struct *p;
1296 char buffer[PROC_NUMBUF];
1297 int nice;
1298 int err;
1299
1300 memset(buffer, 0, sizeof(buffer));
1301 if (count > sizeof(buffer) - 1)
1302 count = sizeof(buffer) - 1;
1303 if (copy_from_user(buffer, buf, count))
1304 return -EFAULT;
1305
1306 err = kstrtoint(strstrip(buffer), 0, &nice);
1307 if (err < 0)
1308 return err;
1309
1310 p = get_proc_task(inode);
1311 if (!p)
1312 return -ESRCH;
1313
1314 err = proc_sched_autogroup_set_nice(p, nice);
1315 if (err)
1316 count = err;
1317
1318 put_task_struct(p);
1319
1320 return count;
1321 }
1322
1323 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1324 {
1325 int ret;
1326
1327 ret = single_open(filp, sched_autogroup_show, NULL);
1328 if (!ret) {
1329 struct seq_file *m = filp->private_data;
1330
1331 m->private = inode;
1332 }
1333 return ret;
1334 }
1335
1336 static const struct file_operations proc_pid_sched_autogroup_operations = {
1337 .open = sched_autogroup_open,
1338 .read = seq_read,
1339 .write = sched_autogroup_write,
1340 .llseek = seq_lseek,
1341 .release = single_release,
1342 };
1343
1344 #endif /* CONFIG_SCHED_AUTOGROUP */
1345
1346 static ssize_t comm_write(struct file *file, const char __user *buf,
1347 size_t count, loff_t *offset)
1348 {
1349 struct inode *inode = file->f_path.dentry->d_inode;
1350 struct task_struct *p;
1351 char buffer[TASK_COMM_LEN];
1352
1353 memset(buffer, 0, sizeof(buffer));
1354 if (count > sizeof(buffer) - 1)
1355 count = sizeof(buffer) - 1;
1356 if (copy_from_user(buffer, buf, count))
1357 return -EFAULT;
1358
1359 p = get_proc_task(inode);
1360 if (!p)
1361 return -ESRCH;
1362
1363 if (same_thread_group(current, p))
1364 set_task_comm(p, buffer);
1365 else
1366 count = -EINVAL;
1367
1368 put_task_struct(p);
1369
1370 return count;
1371 }
1372
1373 static int comm_show(struct seq_file *m, void *v)
1374 {
1375 struct inode *inode = m->private;
1376 struct task_struct *p;
1377
1378 p = get_proc_task(inode);
1379 if (!p)
1380 return -ESRCH;
1381
1382 task_lock(p);
1383 seq_printf(m, "%s\n", p->comm);
1384 task_unlock(p);
1385
1386 put_task_struct(p);
1387
1388 return 0;
1389 }
1390
1391 static int comm_open(struct inode *inode, struct file *filp)
1392 {
1393 return single_open(filp, comm_show, inode);
1394 }
1395
1396 static const struct file_operations proc_pid_set_comm_operations = {
1397 .open = comm_open,
1398 .read = seq_read,
1399 .write = comm_write,
1400 .llseek = seq_lseek,
1401 .release = single_release,
1402 };
1403
1404 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1405 {
1406 struct task_struct *task;
1407 struct mm_struct *mm;
1408 struct file *exe_file;
1409
1410 task = get_proc_task(dentry->d_inode);
1411 if (!task)
1412 return -ENOENT;
1413 mm = get_task_mm(task);
1414 put_task_struct(task);
1415 if (!mm)
1416 return -ENOENT;
1417 exe_file = get_mm_exe_file(mm);
1418 mmput(mm);
1419 if (exe_file) {
1420 *exe_path = exe_file->f_path;
1421 path_get(&exe_file->f_path);
1422 fput(exe_file);
1423 return 0;
1424 } else
1425 return -ENOENT;
1426 }
1427
1428 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1429 {
1430 struct inode *inode = dentry->d_inode;
1431 struct path path;
1432 int error = -EACCES;
1433
1434 /* Are we allowed to snoop on the tasks file descriptors? */
1435 if (!proc_fd_access_allowed(inode))
1436 goto out;
1437
1438 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1439 if (error)
1440 goto out;
1441
1442 nd_jump_link(nd, &path);
1443 return NULL;
1444 out:
1445 return ERR_PTR(error);
1446 }
1447
1448 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1449 {
1450 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1451 char *pathname;
1452 int len;
1453
1454 if (!tmp)
1455 return -ENOMEM;
1456
1457 pathname = d_path(path, tmp, PAGE_SIZE);
1458 len = PTR_ERR(pathname);
1459 if (IS_ERR(pathname))
1460 goto out;
1461 len = tmp + PAGE_SIZE - 1 - pathname;
1462
1463 if (len > buflen)
1464 len = buflen;
1465 if (copy_to_user(buffer, pathname, len))
1466 len = -EFAULT;
1467 out:
1468 free_page((unsigned long)tmp);
1469 return len;
1470 }
1471
1472 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1473 {
1474 int error = -EACCES;
1475 struct inode *inode = dentry->d_inode;
1476 struct path path;
1477
1478 /* Are we allowed to snoop on the tasks file descriptors? */
1479 if (!proc_fd_access_allowed(inode))
1480 goto out;
1481
1482 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1483 if (error)
1484 goto out;
1485
1486 error = do_proc_readlink(&path, buffer, buflen);
1487 path_put(&path);
1488 out:
1489 return error;
1490 }
1491
1492 static const struct inode_operations proc_pid_link_inode_operations = {
1493 .readlink = proc_pid_readlink,
1494 .follow_link = proc_pid_follow_link,
1495 .setattr = proc_setattr,
1496 };
1497
1498
1499 /* building an inode */
1500
1501 static int task_dumpable(struct task_struct *task)
1502 {
1503 int dumpable = 0;
1504 struct mm_struct *mm;
1505
1506 task_lock(task);
1507 mm = task->mm;
1508 if (mm)
1509 dumpable = get_dumpable(mm);
1510 task_unlock(task);
1511 if(dumpable == 1)
1512 return 1;
1513 return 0;
1514 }
1515
1516 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1517 {
1518 struct inode * inode;
1519 struct proc_inode *ei;
1520 const struct cred *cred;
1521
1522 /* We need a new inode */
1523
1524 inode = new_inode(sb);
1525 if (!inode)
1526 goto out;
1527
1528 /* Common stuff */
1529 ei = PROC_I(inode);
1530 inode->i_ino = get_next_ino();
1531 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1532 inode->i_op = &proc_def_inode_operations;
1533
1534 /*
1535 * grab the reference to task.
1536 */
1537 ei->pid = get_task_pid(task, PIDTYPE_PID);
1538 if (!ei->pid)
1539 goto out_unlock;
1540
1541 if (task_dumpable(task)) {
1542 rcu_read_lock();
1543 cred = __task_cred(task);
1544 inode->i_uid = cred->euid;
1545 inode->i_gid = cred->egid;
1546 rcu_read_unlock();
1547 }
1548 security_task_to_inode(task, inode);
1549
1550 out:
1551 return inode;
1552
1553 out_unlock:
1554 iput(inode);
1555 return NULL;
1556 }
1557
1558 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1559 {
1560 struct inode *inode = dentry->d_inode;
1561 struct task_struct *task;
1562 const struct cred *cred;
1563 struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1564
1565 generic_fillattr(inode, stat);
1566
1567 rcu_read_lock();
1568 stat->uid = GLOBAL_ROOT_UID;
1569 stat->gid = GLOBAL_ROOT_GID;
1570 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1571 if (task) {
1572 if (!has_pid_permissions(pid, task, 2)) {
1573 rcu_read_unlock();
1574 /*
1575 * This doesn't prevent learning whether PID exists,
1576 * it only makes getattr() consistent with readdir().
1577 */
1578 return -ENOENT;
1579 }
1580 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1581 task_dumpable(task)) {
1582 cred = __task_cred(task);
1583 stat->uid = cred->euid;
1584 stat->gid = cred->egid;
1585 }
1586 }
1587 rcu_read_unlock();
1588 return 0;
1589 }
1590
1591 /* dentry stuff */
1592
1593 /*
1594 * Exceptional case: normally we are not allowed to unhash a busy
1595 * directory. In this case, however, we can do it - no aliasing problems
1596 * due to the way we treat inodes.
1597 *
1598 * Rewrite the inode's ownerships here because the owning task may have
1599 * performed a setuid(), etc.
1600 *
1601 * Before the /proc/pid/status file was created the only way to read
1602 * the effective uid of a /process was to stat /proc/pid. Reading
1603 * /proc/pid/status is slow enough that procps and other packages
1604 * kept stating /proc/pid. To keep the rules in /proc simple I have
1605 * made this apply to all per process world readable and executable
1606 * directories.
1607 */
1608 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1609 {
1610 struct inode *inode;
1611 struct task_struct *task;
1612 const struct cred *cred;
1613
1614 if (flags & LOOKUP_RCU)
1615 return -ECHILD;
1616
1617 inode = dentry->d_inode;
1618 task = get_proc_task(inode);
1619
1620 if (task) {
1621 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1622 task_dumpable(task)) {
1623 rcu_read_lock();
1624 cred = __task_cred(task);
1625 inode->i_uid = cred->euid;
1626 inode->i_gid = cred->egid;
1627 rcu_read_unlock();
1628 } else {
1629 inode->i_uid = GLOBAL_ROOT_UID;
1630 inode->i_gid = GLOBAL_ROOT_GID;
1631 }
1632 inode->i_mode &= ~(S_ISUID | S_ISGID);
1633 security_task_to_inode(task, inode);
1634 put_task_struct(task);
1635 return 1;
1636 }
1637 d_drop(dentry);
1638 return 0;
1639 }
1640
1641 static int pid_delete_dentry(const struct dentry * dentry)
1642 {
1643 /* Is the task we represent dead?
1644 * If so, then don't put the dentry on the lru list,
1645 * kill it immediately.
1646 */
1647 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1648 }
1649
1650 const struct dentry_operations pid_dentry_operations =
1651 {
1652 .d_revalidate = pid_revalidate,
1653 .d_delete = pid_delete_dentry,
1654 };
1655
1656 /* Lookups */
1657
1658 /*
1659 * Fill a directory entry.
1660 *
1661 * If possible create the dcache entry and derive our inode number and
1662 * file type from dcache entry.
1663 *
1664 * Since all of the proc inode numbers are dynamically generated, the inode
1665 * numbers do not exist until the inode is cache. This means creating the
1666 * the dcache entry in readdir is necessary to keep the inode numbers
1667 * reported by readdir in sync with the inode numbers reported
1668 * by stat.
1669 */
1670 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1671 const char *name, int len,
1672 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1673 {
1674 struct dentry *child, *dir = filp->f_path.dentry;
1675 struct inode *inode;
1676 struct qstr qname;
1677 ino_t ino = 0;
1678 unsigned type = DT_UNKNOWN;
1679
1680 qname.name = name;
1681 qname.len = len;
1682 qname.hash = full_name_hash(name, len);
1683
1684 child = d_lookup(dir, &qname);
1685 if (!child) {
1686 struct dentry *new;
1687 new = d_alloc(dir, &qname);
1688 if (new) {
1689 child = instantiate(dir->d_inode, new, task, ptr);
1690 if (child)
1691 dput(new);
1692 else
1693 child = new;
1694 }
1695 }
1696 if (!child || IS_ERR(child) || !child->d_inode)
1697 goto end_instantiate;
1698 inode = child->d_inode;
1699 if (inode) {
1700 ino = inode->i_ino;
1701 type = inode->i_mode >> 12;
1702 }
1703 dput(child);
1704 end_instantiate:
1705 if (!ino)
1706 ino = find_inode_number(dir, &qname);
1707 if (!ino)
1708 ino = 1;
1709 return filldir(dirent, name, len, filp->f_pos, ino, type);
1710 }
1711
1712 static unsigned name_to_int(struct dentry *dentry)
1713 {
1714 const char *name = dentry->d_name.name;
1715 int len = dentry->d_name.len;
1716 unsigned n = 0;
1717
1718 if (len > 1 && *name == '0')
1719 goto out;
1720 while (len-- > 0) {
1721 unsigned c = *name++ - '0';
1722 if (c > 9)
1723 goto out;
1724 if (n >= (~0U-9)/10)
1725 goto out;
1726 n *= 10;
1727 n += c;
1728 }
1729 return n;
1730 out:
1731 return ~0U;
1732 }
1733
1734 #define PROC_FDINFO_MAX 64
1735
1736 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1737 {
1738 struct task_struct *task = get_proc_task(inode);
1739 struct files_struct *files = NULL;
1740 struct file *file;
1741 int fd = proc_fd(inode);
1742
1743 if (task) {
1744 files = get_files_struct(task);
1745 put_task_struct(task);
1746 }
1747 if (files) {
1748 /*
1749 * We are not taking a ref to the file structure, so we must
1750 * hold ->file_lock.
1751 */
1752 spin_lock(&files->file_lock);
1753 file = fcheck_files(files, fd);
1754 if (file) {
1755 unsigned int f_flags;
1756 struct fdtable *fdt;
1757
1758 fdt = files_fdtable(files);
1759 f_flags = file->f_flags & ~O_CLOEXEC;
1760 if (close_on_exec(fd, fdt))
1761 f_flags |= O_CLOEXEC;
1762
1763 if (path) {
1764 *path = file->f_path;
1765 path_get(&file->f_path);
1766 }
1767 if (info)
1768 snprintf(info, PROC_FDINFO_MAX,
1769 "pos:\t%lli\n"
1770 "flags:\t0%o\n",
1771 (long long) file->f_pos,
1772 f_flags);
1773 spin_unlock(&files->file_lock);
1774 put_files_struct(files);
1775 return 0;
1776 }
1777 spin_unlock(&files->file_lock);
1778 put_files_struct(files);
1779 }
1780 return -ENOENT;
1781 }
1782
1783 static int proc_fd_link(struct dentry *dentry, struct path *path)
1784 {
1785 return proc_fd_info(dentry->d_inode, path, NULL);
1786 }
1787
1788 static int tid_fd_revalidate(struct dentry *dentry, unsigned int flags)
1789 {
1790 struct inode *inode;
1791 struct task_struct *task;
1792 int fd;
1793 struct files_struct *files;
1794 const struct cred *cred;
1795
1796 if (flags & LOOKUP_RCU)
1797 return -ECHILD;
1798
1799 inode = dentry->d_inode;
1800 task = get_proc_task(inode);
1801 fd = proc_fd(inode);
1802
1803 if (task) {
1804 files = get_files_struct(task);
1805 if (files) {
1806 struct file *file;
1807 rcu_read_lock();
1808 file = fcheck_files(files, fd);
1809 if (file) {
1810 unsigned f_mode = file->f_mode;
1811
1812 rcu_read_unlock();
1813 put_files_struct(files);
1814
1815 if (task_dumpable(task)) {
1816 rcu_read_lock();
1817 cred = __task_cred(task);
1818 inode->i_uid = cred->euid;
1819 inode->i_gid = cred->egid;
1820 rcu_read_unlock();
1821 } else {
1822 inode->i_uid = GLOBAL_ROOT_UID;
1823 inode->i_gid = GLOBAL_ROOT_GID;
1824 }
1825
1826 if (S_ISLNK(inode->i_mode)) {
1827 unsigned i_mode = S_IFLNK;
1828 if (f_mode & FMODE_READ)
1829 i_mode |= S_IRUSR | S_IXUSR;
1830 if (f_mode & FMODE_WRITE)
1831 i_mode |= S_IWUSR | S_IXUSR;
1832 inode->i_mode = i_mode;
1833 }
1834
1835 security_task_to_inode(task, inode);
1836 put_task_struct(task);
1837 return 1;
1838 }
1839 rcu_read_unlock();
1840 put_files_struct(files);
1841 }
1842 put_task_struct(task);
1843 }
1844 d_drop(dentry);
1845 return 0;
1846 }
1847
1848 static const struct dentry_operations tid_fd_dentry_operations =
1849 {
1850 .d_revalidate = tid_fd_revalidate,
1851 .d_delete = pid_delete_dentry,
1852 };
1853
1854 static struct dentry *proc_fd_instantiate(struct inode *dir,
1855 struct dentry *dentry, struct task_struct *task, const void *ptr)
1856 {
1857 unsigned fd = (unsigned long)ptr;
1858 struct inode *inode;
1859 struct proc_inode *ei;
1860 struct dentry *error = ERR_PTR(-ENOENT);
1861
1862 inode = proc_pid_make_inode(dir->i_sb, task);
1863 if (!inode)
1864 goto out;
1865 ei = PROC_I(inode);
1866 ei->fd = fd;
1867
1868 inode->i_mode = S_IFLNK;
1869 inode->i_op = &proc_pid_link_inode_operations;
1870 inode->i_size = 64;
1871 ei->op.proc_get_link = proc_fd_link;
1872 d_set_d_op(dentry, &tid_fd_dentry_operations);
1873 d_add(dentry, inode);
1874 /* Close the race of the process dying before we return the dentry */
1875 if (tid_fd_revalidate(dentry, 0))
1876 error = NULL;
1877
1878 out:
1879 return error;
1880 }
1881
1882 static struct dentry *proc_lookupfd_common(struct inode *dir,
1883 struct dentry *dentry,
1884 instantiate_t instantiate)
1885 {
1886 struct task_struct *task = get_proc_task(dir);
1887 unsigned fd = name_to_int(dentry);
1888 struct dentry *result = ERR_PTR(-ENOENT);
1889
1890 if (!task)
1891 goto out_no_task;
1892 if (fd == ~0U)
1893 goto out;
1894
1895 result = instantiate(dir, dentry, task, (void *)(unsigned long)fd);
1896 out:
1897 put_task_struct(task);
1898 out_no_task:
1899 return result;
1900 }
1901
1902 static int proc_readfd_common(struct file * filp, void * dirent,
1903 filldir_t filldir, instantiate_t instantiate)
1904 {
1905 struct dentry *dentry = filp->f_path.dentry;
1906 struct inode *inode = dentry->d_inode;
1907 struct task_struct *p = get_proc_task(inode);
1908 unsigned int fd, ino;
1909 int retval;
1910 struct files_struct * files;
1911
1912 retval = -ENOENT;
1913 if (!p)
1914 goto out_no_task;
1915 retval = 0;
1916
1917 fd = filp->f_pos;
1918 switch (fd) {
1919 case 0:
1920 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1921 goto out;
1922 filp->f_pos++;
1923 case 1:
1924 ino = parent_ino(dentry);
1925 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1926 goto out;
1927 filp->f_pos++;
1928 default:
1929 files = get_files_struct(p);
1930 if (!files)
1931 goto out;
1932 rcu_read_lock();
1933 for (fd = filp->f_pos-2;
1934 fd < files_fdtable(files)->max_fds;
1935 fd++, filp->f_pos++) {
1936 char name[PROC_NUMBUF];
1937 int len;
1938 int rv;
1939
1940 if (!fcheck_files(files, fd))
1941 continue;
1942 rcu_read_unlock();
1943
1944 len = snprintf(name, sizeof(name), "%d", fd);
1945 rv = proc_fill_cache(filp, dirent, filldir,
1946 name, len, instantiate, p,
1947 (void *)(unsigned long)fd);
1948 if (rv < 0)
1949 goto out_fd_loop;
1950 rcu_read_lock();
1951 }
1952 rcu_read_unlock();
1953 out_fd_loop:
1954 put_files_struct(files);
1955 }
1956 out:
1957 put_task_struct(p);
1958 out_no_task:
1959 return retval;
1960 }
1961
1962 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1963 unsigned int flags)
1964 {
1965 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1966 }
1967
1968 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1969 {
1970 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1971 }
1972
1973 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1974 size_t len, loff_t *ppos)
1975 {
1976 char tmp[PROC_FDINFO_MAX];
1977 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1978 if (!err)
1979 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1980 return err;
1981 }
1982
1983 static const struct file_operations proc_fdinfo_file_operations = {
1984 .open = nonseekable_open,
1985 .read = proc_fdinfo_read,
1986 .llseek = no_llseek,
1987 };
1988
1989 static const struct file_operations proc_fd_operations = {
1990 .read = generic_read_dir,
1991 .readdir = proc_readfd,
1992 .llseek = default_llseek,
1993 };
1994
1995 #ifdef CONFIG_CHECKPOINT_RESTORE
1996
1997 /*
1998 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1999 * which represent vma start and end addresses.
2000 */
2001 static int dname_to_vma_addr(struct dentry *dentry,
2002 unsigned long *start, unsigned long *end)
2003 {
2004 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
2005 return -EINVAL;
2006
2007 return 0;
2008 }
2009
2010 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2011 {
2012 unsigned long vm_start, vm_end;
2013 bool exact_vma_exists = false;
2014 struct mm_struct *mm = NULL;
2015 struct task_struct *task;
2016 const struct cred *cred;
2017 struct inode *inode;
2018 int status = 0;
2019
2020 if (flags & LOOKUP_RCU)
2021 return -ECHILD;
2022
2023 if (!capable(CAP_SYS_ADMIN)) {
2024 status = -EACCES;
2025 goto out_notask;
2026 }
2027
2028 inode = dentry->d_inode;
2029 task = get_proc_task(inode);
2030 if (!task)
2031 goto out_notask;
2032
2033 mm = mm_access(task, PTRACE_MODE_READ);
2034 if (IS_ERR_OR_NULL(mm))
2035 goto out;
2036
2037 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2038 down_read(&mm->mmap_sem);
2039 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
2040 up_read(&mm->mmap_sem);
2041 }
2042
2043 mmput(mm);
2044
2045 if (exact_vma_exists) {
2046 if (task_dumpable(task)) {
2047 rcu_read_lock();
2048 cred = __task_cred(task);
2049 inode->i_uid = cred->euid;
2050 inode->i_gid = cred->egid;
2051 rcu_read_unlock();
2052 } else {
2053 inode->i_uid = GLOBAL_ROOT_UID;
2054 inode->i_gid = GLOBAL_ROOT_GID;
2055 }
2056 security_task_to_inode(task, inode);
2057 status = 1;
2058 }
2059
2060 out:
2061 put_task_struct(task);
2062
2063 out_notask:
2064 if (status <= 0)
2065 d_drop(dentry);
2066
2067 return status;
2068 }
2069
2070 static const struct dentry_operations tid_map_files_dentry_operations = {
2071 .d_revalidate = map_files_d_revalidate,
2072 .d_delete = pid_delete_dentry,
2073 };
2074
2075 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
2076 {
2077 unsigned long vm_start, vm_end;
2078 struct vm_area_struct *vma;
2079 struct task_struct *task;
2080 struct mm_struct *mm;
2081 int rc;
2082
2083 rc = -ENOENT;
2084 task = get_proc_task(dentry->d_inode);
2085 if (!task)
2086 goto out;
2087
2088 mm = get_task_mm(task);
2089 put_task_struct(task);
2090 if (!mm)
2091 goto out;
2092
2093 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2094 if (rc)
2095 goto out_mmput;
2096
2097 down_read(&mm->mmap_sem);
2098 vma = find_exact_vma(mm, vm_start, vm_end);
2099 if (vma && vma->vm_file) {
2100 *path = vma->vm_file->f_path;
2101 path_get(path);
2102 rc = 0;
2103 }
2104 up_read(&mm->mmap_sem);
2105
2106 out_mmput:
2107 mmput(mm);
2108 out:
2109 return rc;
2110 }
2111
2112 struct map_files_info {
2113 struct file *file;
2114 unsigned long len;
2115 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
2116 };
2117
2118 static struct dentry *
2119 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2120 struct task_struct *task, const void *ptr)
2121 {
2122 const struct file *file = ptr;
2123 struct proc_inode *ei;
2124 struct inode *inode;
2125
2126 if (!file)
2127 return ERR_PTR(-ENOENT);
2128
2129 inode = proc_pid_make_inode(dir->i_sb, task);
2130 if (!inode)
2131 return ERR_PTR(-ENOENT);
2132
2133 ei = PROC_I(inode);
2134 ei->op.proc_get_link = proc_map_files_get_link;
2135
2136 inode->i_op = &proc_pid_link_inode_operations;
2137 inode->i_size = 64;
2138 inode->i_mode = S_IFLNK;
2139
2140 if (file->f_mode & FMODE_READ)
2141 inode->i_mode |= S_IRUSR;
2142 if (file->f_mode & FMODE_WRITE)
2143 inode->i_mode |= S_IWUSR;
2144
2145 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2146 d_add(dentry, inode);
2147
2148 return NULL;
2149 }
2150
2151 static struct dentry *proc_map_files_lookup(struct inode *dir,
2152 struct dentry *dentry, unsigned int flags)
2153 {
2154 unsigned long vm_start, vm_end;
2155 struct vm_area_struct *vma;
2156 struct task_struct *task;
2157 struct dentry *result;
2158 struct mm_struct *mm;
2159
2160 result = ERR_PTR(-EACCES);
2161 if (!capable(CAP_SYS_ADMIN))
2162 goto out;
2163
2164 result = ERR_PTR(-ENOENT);
2165 task = get_proc_task(dir);
2166 if (!task)
2167 goto out;
2168
2169 result = ERR_PTR(-EACCES);
2170 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2171 goto out_put_task;
2172
2173 result = ERR_PTR(-ENOENT);
2174 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2175 goto out_put_task;
2176
2177 mm = get_task_mm(task);
2178 if (!mm)
2179 goto out_put_task;
2180
2181 down_read(&mm->mmap_sem);
2182 vma = find_exact_vma(mm, vm_start, vm_end);
2183 if (!vma)
2184 goto out_no_vma;
2185
2186 result = proc_map_files_instantiate(dir, dentry, task, vma->vm_file);
2187
2188 out_no_vma:
2189 up_read(&mm->mmap_sem);
2190 mmput(mm);
2191 out_put_task:
2192 put_task_struct(task);
2193 out:
2194 return result;
2195 }
2196
2197 static const struct inode_operations proc_map_files_inode_operations = {
2198 .lookup = proc_map_files_lookup,
2199 .permission = proc_fd_permission,
2200 .setattr = proc_setattr,
2201 };
2202
2203 static int
2204 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
2205 {
2206 struct dentry *dentry = filp->f_path.dentry;
2207 struct inode *inode = dentry->d_inode;
2208 struct vm_area_struct *vma;
2209 struct task_struct *task;
2210 struct mm_struct *mm;
2211 ino_t ino;
2212 int ret;
2213
2214 ret = -EACCES;
2215 if (!capable(CAP_SYS_ADMIN))
2216 goto out;
2217
2218 ret = -ENOENT;
2219 task = get_proc_task(inode);
2220 if (!task)
2221 goto out;
2222
2223 ret = -EACCES;
2224 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2225 goto out_put_task;
2226
2227 ret = 0;
2228 switch (filp->f_pos) {
2229 case 0:
2230 ino = inode->i_ino;
2231 if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
2232 goto out_put_task;
2233 filp->f_pos++;
2234 case 1:
2235 ino = parent_ino(dentry);
2236 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2237 goto out_put_task;
2238 filp->f_pos++;
2239 default:
2240 {
2241 unsigned long nr_files, pos, i;
2242 struct flex_array *fa = NULL;
2243 struct map_files_info info;
2244 struct map_files_info *p;
2245
2246 mm = get_task_mm(task);
2247 if (!mm)
2248 goto out_put_task;
2249 down_read(&mm->mmap_sem);
2250
2251 nr_files = 0;
2252
2253 /*
2254 * We need two passes here:
2255 *
2256 * 1) Collect vmas of mapped files with mmap_sem taken
2257 * 2) Release mmap_sem and instantiate entries
2258 *
2259 * otherwise we get lockdep complained, since filldir()
2260 * routine might require mmap_sem taken in might_fault().
2261 */
2262
2263 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2264 if (vma->vm_file && ++pos > filp->f_pos)
2265 nr_files++;
2266 }
2267
2268 if (nr_files) {
2269 fa = flex_array_alloc(sizeof(info), nr_files,
2270 GFP_KERNEL);
2271 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2272 GFP_KERNEL)) {
2273 ret = -ENOMEM;
2274 if (fa)
2275 flex_array_free(fa);
2276 up_read(&mm->mmap_sem);
2277 mmput(mm);
2278 goto out_put_task;
2279 }
2280 for (i = 0, vma = mm->mmap, pos = 2; vma;
2281 vma = vma->vm_next) {
2282 if (!vma->vm_file)
2283 continue;
2284 if (++pos <= filp->f_pos)
2285 continue;
2286
2287 get_file(vma->vm_file);
2288 info.file = vma->vm_file;
2289 info.len = snprintf(info.name,
2290 sizeof(info.name), "%lx-%lx",
2291 vma->vm_start, vma->vm_end);
2292 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2293 BUG();
2294 }
2295 }
2296 up_read(&mm->mmap_sem);
2297
2298 for (i = 0; i < nr_files; i++) {
2299 p = flex_array_get(fa, i);
2300 ret = proc_fill_cache(filp, dirent, filldir,
2301 p->name, p->len,
2302 proc_map_files_instantiate,
2303 task, p->file);
2304 if (ret)
2305 break;
2306 filp->f_pos++;
2307 fput(p->file);
2308 }
2309 for (; i < nr_files; i++) {
2310 /*
2311 * In case of error don't forget
2312 * to put rest of file refs.
2313 */
2314 p = flex_array_get(fa, i);
2315 fput(p->file);
2316 }
2317 if (fa)
2318 flex_array_free(fa);
2319 mmput(mm);
2320 }
2321 }
2322
2323 out_put_task:
2324 put_task_struct(task);
2325 out:
2326 return ret;
2327 }
2328
2329 static const struct file_operations proc_map_files_operations = {
2330 .read = generic_read_dir,
2331 .readdir = proc_map_files_readdir,
2332 .llseek = default_llseek,
2333 };
2334
2335 #endif /* CONFIG_CHECKPOINT_RESTORE */
2336
2337 /*
2338 * /proc/pid/fd needs a special permission handler so that a process can still
2339 * access /proc/self/fd after it has executed a setuid().
2340 */
2341 static int proc_fd_permission(struct inode *inode, int mask)
2342 {
2343 int rv = generic_permission(inode, mask);
2344 if (rv == 0)
2345 return 0;
2346 if (task_pid(current) == proc_pid(inode))
2347 rv = 0;
2348 return rv;
2349 }
2350
2351 /*
2352 * proc directories can do almost nothing..
2353 */
2354 static const struct inode_operations proc_fd_inode_operations = {
2355 .lookup = proc_lookupfd,
2356 .permission = proc_fd_permission,
2357 .setattr = proc_setattr,
2358 };
2359
2360 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2361 struct dentry *dentry, struct task_struct *task, const void *ptr)
2362 {
2363 unsigned fd = (unsigned long)ptr;
2364 struct inode *inode;
2365 struct proc_inode *ei;
2366 struct dentry *error = ERR_PTR(-ENOENT);
2367
2368 inode = proc_pid_make_inode(dir->i_sb, task);
2369 if (!inode)
2370 goto out;
2371 ei = PROC_I(inode);
2372 ei->fd = fd;
2373 inode->i_mode = S_IFREG | S_IRUSR;
2374 inode->i_fop = &proc_fdinfo_file_operations;
2375 d_set_d_op(dentry, &tid_fd_dentry_operations);
2376 d_add(dentry, inode);
2377 /* Close the race of the process dying before we return the dentry */
2378 if (tid_fd_revalidate(dentry, 0))
2379 error = NULL;
2380
2381 out:
2382 return error;
2383 }
2384
2385 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2386 struct dentry *dentry,
2387 unsigned int flags)
2388 {
2389 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2390 }
2391
2392 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2393 {
2394 return proc_readfd_common(filp, dirent, filldir,
2395 proc_fdinfo_instantiate);
2396 }
2397
2398 static const struct file_operations proc_fdinfo_operations = {
2399 .read = generic_read_dir,
2400 .readdir = proc_readfdinfo,
2401 .llseek = default_llseek,
2402 };
2403
2404 /*
2405 * proc directories can do almost nothing..
2406 */
2407 static const struct inode_operations proc_fdinfo_inode_operations = {
2408 .lookup = proc_lookupfdinfo,
2409 .setattr = proc_setattr,
2410 };
2411
2412
2413 static struct dentry *proc_pident_instantiate(struct inode *dir,
2414 struct dentry *dentry, struct task_struct *task, const void *ptr)
2415 {
2416 const struct pid_entry *p = ptr;
2417 struct inode *inode;
2418 struct proc_inode *ei;
2419 struct dentry *error = ERR_PTR(-ENOENT);
2420
2421 inode = proc_pid_make_inode(dir->i_sb, task);
2422 if (!inode)
2423 goto out;
2424
2425 ei = PROC_I(inode);
2426 inode->i_mode = p->mode;
2427 if (S_ISDIR(inode->i_mode))
2428 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2429 if (p->iop)
2430 inode->i_op = p->iop;
2431 if (p->fop)
2432 inode->i_fop = p->fop;
2433 ei->op = p->op;
2434 d_set_d_op(dentry, &pid_dentry_operations);
2435 d_add(dentry, inode);
2436 /* Close the race of the process dying before we return the dentry */
2437 if (pid_revalidate(dentry, 0))
2438 error = NULL;
2439 out:
2440 return error;
2441 }
2442
2443 static struct dentry *proc_pident_lookup(struct inode *dir,
2444 struct dentry *dentry,
2445 const struct pid_entry *ents,
2446 unsigned int nents)
2447 {
2448 struct dentry *error;
2449 struct task_struct *task = get_proc_task(dir);
2450 const struct pid_entry *p, *last;
2451
2452 error = ERR_PTR(-ENOENT);
2453
2454 if (!task)
2455 goto out_no_task;
2456
2457 /*
2458 * Yes, it does not scale. And it should not. Don't add
2459 * new entries into /proc/<tgid>/ without very good reasons.
2460 */
2461 last = &ents[nents - 1];
2462 for (p = ents; p <= last; p++) {
2463 if (p->len != dentry->d_name.len)
2464 continue;
2465 if (!memcmp(dentry->d_name.name, p->name, p->len))
2466 break;
2467 }
2468 if (p > last)
2469 goto out;
2470
2471 error = proc_pident_instantiate(dir, dentry, task, p);
2472 out:
2473 put_task_struct(task);
2474 out_no_task:
2475 return error;
2476 }
2477
2478 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2479 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2480 {
2481 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2482 proc_pident_instantiate, task, p);
2483 }
2484
2485 static int proc_pident_readdir(struct file *filp,
2486 void *dirent, filldir_t filldir,
2487 const struct pid_entry *ents, unsigned int nents)
2488 {
2489 int i;
2490 struct dentry *dentry = filp->f_path.dentry;
2491 struct inode *inode = dentry->d_inode;
2492 struct task_struct *task = get_proc_task(inode);
2493 const struct pid_entry *p, *last;
2494 ino_t ino;
2495 int ret;
2496
2497 ret = -ENOENT;
2498 if (!task)
2499 goto out_no_task;
2500
2501 ret = 0;
2502 i = filp->f_pos;
2503 switch (i) {
2504 case 0:
2505 ino = inode->i_ino;
2506 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2507 goto out;
2508 i++;
2509 filp->f_pos++;
2510 /* fall through */
2511 case 1:
2512 ino = parent_ino(dentry);
2513 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2514 goto out;
2515 i++;
2516 filp->f_pos++;
2517 /* fall through */
2518 default:
2519 i -= 2;
2520 if (i >= nents) {
2521 ret = 1;
2522 goto out;
2523 }
2524 p = ents + i;
2525 last = &ents[nents - 1];
2526 while (p <= last) {
2527 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2528 goto out;
2529 filp->f_pos++;
2530 p++;
2531 }
2532 }
2533
2534 ret = 1;
2535 out:
2536 put_task_struct(task);
2537 out_no_task:
2538 return ret;
2539 }
2540
2541 #ifdef CONFIG_SECURITY
2542 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2543 size_t count, loff_t *ppos)
2544 {
2545 struct inode * inode = file->f_path.dentry->d_inode;
2546 char *p = NULL;
2547 ssize_t length;
2548 struct task_struct *task = get_proc_task(inode);
2549
2550 if (!task)
2551 return -ESRCH;
2552
2553 length = security_getprocattr(task,
2554 (char*)file->f_path.dentry->d_name.name,
2555 &p);
2556 put_task_struct(task);
2557 if (length > 0)
2558 length = simple_read_from_buffer(buf, count, ppos, p, length);
2559 kfree(p);
2560 return length;
2561 }
2562
2563 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2564 size_t count, loff_t *ppos)
2565 {
2566 struct inode * inode = file->f_path.dentry->d_inode;
2567 char *page;
2568 ssize_t length;
2569 struct task_struct *task = get_proc_task(inode);
2570
2571 length = -ESRCH;
2572 if (!task)
2573 goto out_no_task;
2574 if (count > PAGE_SIZE)
2575 count = PAGE_SIZE;
2576
2577 /* No partial writes. */
2578 length = -EINVAL;
2579 if (*ppos != 0)
2580 goto out;
2581
2582 length = -ENOMEM;
2583 page = (char*)__get_free_page(GFP_TEMPORARY);
2584 if (!page)
2585 goto out;
2586
2587 length = -EFAULT;
2588 if (copy_from_user(page, buf, count))
2589 goto out_free;
2590
2591 /* Guard against adverse ptrace interaction */
2592 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2593 if (length < 0)
2594 goto out_free;
2595
2596 length = security_setprocattr(task,
2597 (char*)file->f_path.dentry->d_name.name,
2598 (void*)page, count);
2599 mutex_unlock(&task->signal->cred_guard_mutex);
2600 out_free:
2601 free_page((unsigned long) page);
2602 out:
2603 put_task_struct(task);
2604 out_no_task:
2605 return length;
2606 }
2607
2608 static const struct file_operations proc_pid_attr_operations = {
2609 .read = proc_pid_attr_read,
2610 .write = proc_pid_attr_write,
2611 .llseek = generic_file_llseek,
2612 };
2613
2614 static const struct pid_entry attr_dir_stuff[] = {
2615 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2616 REG("prev", S_IRUGO, proc_pid_attr_operations),
2617 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2618 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2619 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2620 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2621 };
2622
2623 static int proc_attr_dir_readdir(struct file * filp,
2624 void * dirent, filldir_t filldir)
2625 {
2626 return proc_pident_readdir(filp,dirent,filldir,
2627 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2628 }
2629
2630 static const struct file_operations proc_attr_dir_operations = {
2631 .read = generic_read_dir,
2632 .readdir = proc_attr_dir_readdir,
2633 .llseek = default_llseek,
2634 };
2635
2636 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2637 struct dentry *dentry, unsigned int flags)
2638 {
2639 return proc_pident_lookup(dir, dentry,
2640 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2641 }
2642
2643 static const struct inode_operations proc_attr_dir_inode_operations = {
2644 .lookup = proc_attr_dir_lookup,
2645 .getattr = pid_getattr,
2646 .setattr = proc_setattr,
2647 };
2648
2649 #endif
2650
2651 #ifdef CONFIG_ELF_CORE
2652 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2653 size_t count, loff_t *ppos)
2654 {
2655 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2656 struct mm_struct *mm;
2657 char buffer[PROC_NUMBUF];
2658 size_t len;
2659 int ret;
2660
2661 if (!task)
2662 return -ESRCH;
2663
2664 ret = 0;
2665 mm = get_task_mm(task);
2666 if (mm) {
2667 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2668 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2669 MMF_DUMP_FILTER_SHIFT));
2670 mmput(mm);
2671 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2672 }
2673
2674 put_task_struct(task);
2675
2676 return ret;
2677 }
2678
2679 static ssize_t proc_coredump_filter_write(struct file *file,
2680 const char __user *buf,
2681 size_t count,
2682 loff_t *ppos)
2683 {
2684 struct task_struct *task;
2685 struct mm_struct *mm;
2686 char buffer[PROC_NUMBUF], *end;
2687 unsigned int val;
2688 int ret;
2689 int i;
2690 unsigned long mask;
2691
2692 ret = -EFAULT;
2693 memset(buffer, 0, sizeof(buffer));
2694 if (count > sizeof(buffer) - 1)
2695 count = sizeof(buffer) - 1;
2696 if (copy_from_user(buffer, buf, count))
2697 goto out_no_task;
2698
2699 ret = -EINVAL;
2700 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2701 if (*end == '\n')
2702 end++;
2703 if (end - buffer == 0)
2704 goto out_no_task;
2705
2706 ret = -ESRCH;
2707 task = get_proc_task(file->f_dentry->d_inode);
2708 if (!task)
2709 goto out_no_task;
2710
2711 ret = end - buffer;
2712 mm = get_task_mm(task);
2713 if (!mm)
2714 goto out_no_mm;
2715
2716 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2717 if (val & mask)
2718 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2719 else
2720 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2721 }
2722
2723 mmput(mm);
2724 out_no_mm:
2725 put_task_struct(task);
2726 out_no_task:
2727 return ret;
2728 }
2729
2730 static const struct file_operations proc_coredump_filter_operations = {
2731 .read = proc_coredump_filter_read,
2732 .write = proc_coredump_filter_write,
2733 .llseek = generic_file_llseek,
2734 };
2735 #endif
2736
2737 /*
2738 * /proc/self:
2739 */
2740 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2741 int buflen)
2742 {
2743 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2744 pid_t tgid = task_tgid_nr_ns(current, ns);
2745 char tmp[PROC_NUMBUF];
2746 if (!tgid)
2747 return -ENOENT;
2748 sprintf(tmp, "%d", tgid);
2749 return vfs_readlink(dentry,buffer,buflen,tmp);
2750 }
2751
2752 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2753 {
2754 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2755 pid_t tgid = task_tgid_nr_ns(current, ns);
2756 char *name = ERR_PTR(-ENOENT);
2757 if (tgid) {
2758 name = __getname();
2759 if (!name)
2760 name = ERR_PTR(-ENOMEM);
2761 else
2762 sprintf(name, "%d", tgid);
2763 }
2764 nd_set_link(nd, name);
2765 return NULL;
2766 }
2767
2768 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2769 void *cookie)
2770 {
2771 char *s = nd_get_link(nd);
2772 if (!IS_ERR(s))
2773 __putname(s);
2774 }
2775
2776 static const struct inode_operations proc_self_inode_operations = {
2777 .readlink = proc_self_readlink,
2778 .follow_link = proc_self_follow_link,
2779 .put_link = proc_self_put_link,
2780 };
2781
2782 /*
2783 * proc base
2784 *
2785 * These are the directory entries in the root directory of /proc
2786 * that properly belong to the /proc filesystem, as they describe
2787 * describe something that is process related.
2788 */
2789 static const struct pid_entry proc_base_stuff[] = {
2790 NOD("self", S_IFLNK|S_IRWXUGO,
2791 &proc_self_inode_operations, NULL, {}),
2792 };
2793
2794 static struct dentry *proc_base_instantiate(struct inode *dir,
2795 struct dentry *dentry, struct task_struct *task, const void *ptr)
2796 {
2797 const struct pid_entry *p = ptr;
2798 struct inode *inode;
2799 struct proc_inode *ei;
2800 struct dentry *error;
2801
2802 /* Allocate the inode */
2803 error = ERR_PTR(-ENOMEM);
2804 inode = new_inode(dir->i_sb);
2805 if (!inode)
2806 goto out;
2807
2808 /* Initialize the inode */
2809 ei = PROC_I(inode);
2810 inode->i_ino = get_next_ino();
2811 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2812
2813 /*
2814 * grab the reference to the task.
2815 */
2816 ei->pid = get_task_pid(task, PIDTYPE_PID);
2817 if (!ei->pid)
2818 goto out_iput;
2819
2820 inode->i_mode = p->mode;
2821 if (S_ISDIR(inode->i_mode))
2822 set_nlink(inode, 2);
2823 if (S_ISLNK(inode->i_mode))
2824 inode->i_size = 64;
2825 if (p->iop)
2826 inode->i_op = p->iop;
2827 if (p->fop)
2828 inode->i_fop = p->fop;
2829 ei->op = p->op;
2830 d_add(dentry, inode);
2831 error = NULL;
2832 out:
2833 return error;
2834 out_iput:
2835 iput(inode);
2836 goto out;
2837 }
2838
2839 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2840 {
2841 struct dentry *error;
2842 struct task_struct *task = get_proc_task(dir);
2843 const struct pid_entry *p, *last;
2844
2845 error = ERR_PTR(-ENOENT);
2846
2847 if (!task)
2848 goto out_no_task;
2849
2850 /* Lookup the directory entry */
2851 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2852 for (p = proc_base_stuff; p <= last; p++) {
2853 if (p->len != dentry->d_name.len)
2854 continue;
2855 if (!memcmp(dentry->d_name.name, p->name, p->len))
2856 break;
2857 }
2858 if (p > last)
2859 goto out;
2860
2861 error = proc_base_instantiate(dir, dentry, task, p);
2862
2863 out:
2864 put_task_struct(task);
2865 out_no_task:
2866 return error;
2867 }
2868
2869 static int proc_base_fill_cache(struct file *filp, void *dirent,
2870 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2871 {
2872 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2873 proc_base_instantiate, task, p);
2874 }
2875
2876 #ifdef CONFIG_TASK_IO_ACCOUNTING
2877 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2878 {
2879 struct task_io_accounting acct = task->ioac;
2880 unsigned long flags;
2881 int result;
2882
2883 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2884 if (result)
2885 return result;
2886
2887 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2888 result = -EACCES;
2889 goto out_unlock;
2890 }
2891
2892 if (whole && lock_task_sighand(task, &flags)) {
2893 struct task_struct *t = task;
2894
2895 task_io_accounting_add(&acct, &task->signal->ioac);
2896 while_each_thread(task, t)
2897 task_io_accounting_add(&acct, &t->ioac);
2898
2899 unlock_task_sighand(task, &flags);
2900 }
2901 result = sprintf(buffer,
2902 "rchar: %llu\n"
2903 "wchar: %llu\n"
2904 "syscr: %llu\n"
2905 "syscw: %llu\n"
2906 "read_bytes: %llu\n"
2907 "write_bytes: %llu\n"
2908 "cancelled_write_bytes: %llu\n",
2909 (unsigned long long)acct.rchar,
2910 (unsigned long long)acct.wchar,
2911 (unsigned long long)acct.syscr,
2912 (unsigned long long)acct.syscw,
2913 (unsigned long long)acct.read_bytes,
2914 (unsigned long long)acct.write_bytes,
2915 (unsigned long long)acct.cancelled_write_bytes);
2916 out_unlock:
2917 mutex_unlock(&task->signal->cred_guard_mutex);
2918 return result;
2919 }
2920
2921 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2922 {
2923 return do_io_accounting(task, buffer, 0);
2924 }
2925
2926 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2927 {
2928 return do_io_accounting(task, buffer, 1);
2929 }
2930 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2931
2932 #ifdef CONFIG_USER_NS
2933 static int proc_id_map_open(struct inode *inode, struct file *file,
2934 struct seq_operations *seq_ops)
2935 {
2936 struct user_namespace *ns = NULL;
2937 struct task_struct *task;
2938 struct seq_file *seq;
2939 int ret = -EINVAL;
2940
2941 task = get_proc_task(inode);
2942 if (task) {
2943 rcu_read_lock();
2944 ns = get_user_ns(task_cred_xxx(task, user_ns));
2945 rcu_read_unlock();
2946 put_task_struct(task);
2947 }
2948 if (!ns)
2949 goto err;
2950
2951 ret = seq_open(file, seq_ops);
2952 if (ret)
2953 goto err_put_ns;
2954
2955 seq = file->private_data;
2956 seq->private = ns;
2957
2958 return 0;
2959 err_put_ns:
2960 put_user_ns(ns);
2961 err:
2962 return ret;
2963 }
2964
2965 static int proc_id_map_release(struct inode *inode, struct file *file)
2966 {
2967 struct seq_file *seq = file->private_data;
2968 struct user_namespace *ns = seq->private;
2969 put_user_ns(ns);
2970 return seq_release(inode, file);
2971 }
2972
2973 static int proc_uid_map_open(struct inode *inode, struct file *file)
2974 {
2975 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2976 }
2977
2978 static int proc_gid_map_open(struct inode *inode, struct file *file)
2979 {
2980 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2981 }
2982
2983 static const struct file_operations proc_uid_map_operations = {
2984 .open = proc_uid_map_open,
2985 .write = proc_uid_map_write,
2986 .read = seq_read,
2987 .llseek = seq_lseek,
2988 .release = proc_id_map_release,
2989 };
2990
2991 static const struct file_operations proc_gid_map_operations = {
2992 .open = proc_gid_map_open,
2993 .write = proc_gid_map_write,
2994 .read = seq_read,
2995 .llseek = seq_lseek,
2996 .release = proc_id_map_release,
2997 };
2998 #endif /* CONFIG_USER_NS */
2999
3000 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3001 struct pid *pid, struct task_struct *task)
3002 {
3003 int err = lock_trace(task);
3004 if (!err) {
3005 seq_printf(m, "%08x\n", task->personality);
3006 unlock_trace(task);
3007 }
3008 return err;
3009 }
3010
3011 /*
3012 * Thread groups
3013 */
3014 static const struct file_operations proc_task_operations;
3015 static const struct inode_operations proc_task_inode_operations;
3016
3017 static const struct pid_entry tgid_base_stuff[] = {
3018 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3019 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3020 #ifdef CONFIG_CHECKPOINT_RESTORE
3021 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3022 #endif
3023 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3024 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3025 #ifdef CONFIG_NET
3026 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3027 #endif
3028 REG("environ", S_IRUSR, proc_environ_operations),
3029 INF("auxv", S_IRUSR, proc_pid_auxv),
3030 ONE("status", S_IRUGO, proc_pid_status),
3031 ONE("personality", S_IRUGO, proc_pid_personality),
3032 INF("limits", S_IRUGO, proc_pid_limits),
3033 #ifdef CONFIG_SCHED_DEBUG
3034 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3035 #endif
3036 #ifdef CONFIG_SCHED_AUTOGROUP
3037 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3038 #endif
3039 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3040 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3041 INF("syscall", S_IRUGO, proc_pid_syscall),
3042 #endif
3043 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3044 ONE("stat", S_IRUGO, proc_tgid_stat),
3045 ONE("statm", S_IRUGO, proc_pid_statm),
3046 REG("maps", S_IRUGO, proc_pid_maps_operations),
3047 #ifdef CONFIG_NUMA
3048 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3049 #endif
3050 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3051 LNK("cwd", proc_cwd_link),
3052 LNK("root", proc_root_link),
3053 LNK("exe", proc_exe_link),
3054 REG("mounts", S_IRUGO, proc_mounts_operations),
3055 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3056 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3057 #ifdef CONFIG_PROC_PAGE_MONITOR
3058 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3059 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3060 REG("pagemap", S_IRUGO, proc_pagemap_operations),
3061 #endif
3062 #ifdef CONFIG_SECURITY
3063 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3064 #endif
3065 #ifdef CONFIG_KALLSYMS
3066 INF("wchan", S_IRUGO, proc_pid_wchan),
3067 #endif
3068 #ifdef CONFIG_STACKTRACE
3069 ONE("stack", S_IRUGO, proc_pid_stack),
3070 #endif
3071 #ifdef CONFIG_SCHEDSTATS
3072 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3073 #endif
3074 #ifdef CONFIG_LATENCYTOP
3075 REG("latency", S_IRUGO, proc_lstats_operations),
3076 #endif
3077 #ifdef CONFIG_PROC_PID_CPUSET
3078 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3079 #endif
3080 #ifdef CONFIG_CGROUPS
3081 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3082 #endif
3083 INF("oom_score", S_IRUGO, proc_oom_score),
3084 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3085 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3086 #ifdef CONFIG_AUDITSYSCALL
3087 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3088 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3089 #endif
3090 #ifdef CONFIG_FAULT_INJECTION
3091 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3092 #endif
3093 #ifdef CONFIG_ELF_CORE
3094 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3095 #endif
3096 #ifdef CONFIG_TASK_IO_ACCOUNTING
3097 INF("io", S_IRUSR, proc_tgid_io_accounting),
3098 #endif
3099 #ifdef CONFIG_HARDWALL
3100 INF("hardwall", S_IRUGO, proc_pid_hardwall),
3101 #endif
3102 #ifdef CONFIG_USER_NS
3103 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3104 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3105 #endif
3106 };
3107
3108 static int proc_tgid_base_readdir(struct file * filp,
3109 void * dirent, filldir_t filldir)
3110 {
3111 return proc_pident_readdir(filp,dirent,filldir,
3112 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
3113 }
3114
3115 static const struct file_operations proc_tgid_base_operations = {
3116 .read = generic_read_dir,
3117 .readdir = proc_tgid_base_readdir,
3118 .llseek = default_llseek,
3119 };
3120
3121 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3122 {
3123 return proc_pident_lookup(dir, dentry,
3124 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3125 }
3126
3127 static const struct inode_operations proc_tgid_base_inode_operations = {
3128 .lookup = proc_tgid_base_lookup,
3129 .getattr = pid_getattr,
3130 .setattr = proc_setattr,
3131 .permission = proc_pid_permission,
3132 };
3133
3134 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3135 {
3136 struct dentry *dentry, *leader, *dir;
3137 char buf[PROC_NUMBUF];
3138 struct qstr name;
3139
3140 name.name = buf;
3141 name.len = snprintf(buf, sizeof(buf), "%d", pid);
3142 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3143 if (dentry) {
3144 shrink_dcache_parent(dentry);
3145 d_drop(dentry);
3146 dput(dentry);
3147 }
3148
3149 name.name = buf;
3150 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
3151 leader = d_hash_and_lookup(mnt->mnt_root, &name);
3152 if (!leader)
3153 goto out;
3154
3155 name.name = "task";
3156 name.len = strlen(name.name);
3157 dir = d_hash_and_lookup(leader, &name);
3158 if (!dir)
3159 goto out_put_leader;
3160
3161 name.name = buf;
3162 name.len = snprintf(buf, sizeof(buf), "%d", pid);
3163 dentry = d_hash_and_lookup(dir, &name);
3164 if (dentry) {
3165 shrink_dcache_parent(dentry);
3166 d_drop(dentry);
3167 dput(dentry);
3168 }
3169
3170 dput(dir);
3171 out_put_leader:
3172 dput(leader);
3173 out:
3174 return;
3175 }
3176
3177 /**
3178 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3179 * @task: task that should be flushed.
3180 *
3181 * When flushing dentries from proc, one needs to flush them from global
3182 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3183 * in. This call is supposed to do all of this job.
3184 *
3185 * Looks in the dcache for
3186 * /proc/@pid
3187 * /proc/@tgid/task/@pid
3188 * if either directory is present flushes it and all of it'ts children
3189 * from the dcache.
3190 *
3191 * It is safe and reasonable to cache /proc entries for a task until
3192 * that task exits. After that they just clog up the dcache with
3193 * useless entries, possibly causing useful dcache entries to be
3194 * flushed instead. This routine is proved to flush those useless
3195 * dcache entries at process exit time.
3196 *
3197 * NOTE: This routine is just an optimization so it does not guarantee
3198 * that no dcache entries will exist at process exit time it
3199 * just makes it very unlikely that any will persist.
3200 */
3201
3202 void proc_flush_task(struct task_struct *task)
3203 {
3204 int i;
3205 struct pid *pid, *tgid;
3206 struct upid *upid;
3207
3208 pid = task_pid(task);
3209 tgid = task_tgid(task);
3210
3211 for (i = 0; i <= pid->level; i++) {
3212 upid = &pid->numbers[i];
3213 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3214 tgid->numbers[i].nr);
3215 }
3216
3217 upid = &pid->numbers[pid->level];
3218 if (upid->nr == 1)
3219 pid_ns_release_proc(upid->ns);
3220 }
3221
3222 static struct dentry *proc_pid_instantiate(struct inode *dir,
3223 struct dentry * dentry,
3224 struct task_struct *task, const void *ptr)
3225 {
3226 struct dentry *error = ERR_PTR(-ENOENT);
3227 struct inode *inode;
3228
3229 inode = proc_pid_make_inode(dir->i_sb, task);
3230 if (!inode)
3231 goto out;
3232
3233 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3234 inode->i_op = &proc_tgid_base_inode_operations;
3235 inode->i_fop = &proc_tgid_base_operations;
3236 inode->i_flags|=S_IMMUTABLE;
3237
3238 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3239 ARRAY_SIZE(tgid_base_stuff)));
3240
3241 d_set_d_op(dentry, &pid_dentry_operations);
3242
3243 d_add(dentry, inode);
3244 /* Close the race of the process dying before we return the dentry */
3245 if (pid_revalidate(dentry, 0))
3246 error = NULL;
3247 out:
3248 return error;
3249 }
3250
3251 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3252 {
3253 struct dentry *result;
3254 struct task_struct *task;
3255 unsigned tgid;
3256 struct pid_namespace *ns;
3257
3258 result = proc_base_lookup(dir, dentry);
3259 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3260 goto out;
3261
3262 tgid = name_to_int(dentry);
3263 if (tgid == ~0U)
3264 goto out;
3265
3266 ns = dentry->d_sb->s_fs_info;
3267 rcu_read_lock();
3268 task = find_task_by_pid_ns(tgid, ns);
3269 if (task)
3270 get_task_struct(task);
3271 rcu_read_unlock();
3272 if (!task)
3273 goto out;
3274
3275 result = proc_pid_instantiate(dir, dentry, task, NULL);
3276 put_task_struct(task);
3277 out:
3278 return result;
3279 }
3280
3281 /*
3282 * Find the first task with tgid >= tgid
3283 *
3284 */
3285 struct tgid_iter {
3286 unsigned int tgid;
3287 struct task_struct *task;
3288 };
3289 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3290 {
3291 struct pid *pid;
3292
3293 if (iter.task)
3294 put_task_struct(iter.task);
3295 rcu_read_lock();
3296 retry:
3297 iter.task = NULL;
3298 pid = find_ge_pid(iter.tgid, ns);
3299 if (pid) {
3300 iter.tgid = pid_nr_ns(pid, ns);
3301 iter.task = pid_task(pid, PIDTYPE_PID);
3302 /* What we to know is if the pid we have find is the
3303 * pid of a thread_group_leader. Testing for task
3304 * being a thread_group_leader is the obvious thing
3305 * todo but there is a window when it fails, due to
3306 * the pid transfer logic in de_thread.
3307 *
3308 * So we perform the straight forward test of seeing
3309 * if the pid we have found is the pid of a thread
3310 * group leader, and don't worry if the task we have
3311 * found doesn't happen to be a thread group leader.
3312 * As we don't care in the case of readdir.
3313 */
3314 if (!iter.task || !has_group_leader_pid(iter.task)) {
3315 iter.tgid += 1;
3316 goto retry;
3317 }
3318 get_task_struct(iter.task);
3319 }
3320 rcu_read_unlock();
3321 return iter;
3322 }
3323
3324 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3325
3326 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3327 struct tgid_iter iter)
3328 {
3329 char name[PROC_NUMBUF];
3330 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3331 return proc_fill_cache(filp, dirent, filldir, name, len,
3332 proc_pid_instantiate, iter.task, NULL);
3333 }
3334
3335 static int fake_filldir(void *buf, const char *name, int namelen,
3336 loff_t offset, u64 ino, unsigned d_type)
3337 {
3338 return 0;
3339 }
3340
3341 /* for the /proc/ directory itself, after non-process stuff has been done */
3342 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3343 {
3344 unsigned int nr;
3345 struct task_struct *reaper;
3346 struct tgid_iter iter;
3347 struct pid_namespace *ns;
3348 filldir_t __filldir;
3349
3350 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3351 goto out_no_task;
3352 nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3353
3354 reaper = get_proc_task(filp->f_path.dentry->d_inode);
3355 if (!reaper)
3356 goto out_no_task;
3357
3358 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3359 const struct pid_entry *p = &proc_base_stuff[nr];
3360 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3361 goto out;
3362 }
3363
3364 ns = filp->f_dentry->d_sb->s_fs_info;
3365 iter.task = NULL;
3366 iter.tgid = filp->f_pos - TGID_OFFSET;
3367 for (iter = next_tgid(ns, iter);
3368 iter.task;
3369 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3370 if (has_pid_permissions(ns, iter.task, 2))
3371 __filldir = filldir;
3372 else
3373 __filldir = fake_filldir;
3374
3375 filp->f_pos = iter.tgid + TGID_OFFSET;
3376 if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
3377 put_task_struct(iter.task);
3378 goto out;
3379 }
3380 }
3381 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3382 out:
3383 put_task_struct(reaper);
3384 out_no_task:
3385 return 0;
3386 }
3387
3388 /*
3389 * Tasks
3390 */
3391 static const struct pid_entry tid_base_stuff[] = {
3392 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3393 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3394 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3395 REG("environ", S_IRUSR, proc_environ_operations),
3396 INF("auxv", S_IRUSR, proc_pid_auxv),
3397 ONE("status", S_IRUGO, proc_pid_status),
3398 ONE("personality", S_IRUGO, proc_pid_personality),
3399 INF("limits", S_IRUGO, proc_pid_limits),
3400 #ifdef CONFIG_SCHED_DEBUG
3401 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3402 #endif
3403 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3404 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3405 INF("syscall", S_IRUGO, proc_pid_syscall),
3406 #endif
3407 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3408 ONE("stat", S_IRUGO, proc_tid_stat),
3409 ONE("statm", S_IRUGO, proc_pid_statm),
3410 REG("maps", S_IRUGO, proc_tid_maps_operations),
3411 #ifdef CONFIG_CHECKPOINT_RESTORE
3412 REG("children", S_IRUGO, proc_tid_children_operations),
3413 #endif
3414 #ifdef CONFIG_NUMA
3415 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3416 #endif
3417 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3418 LNK("cwd", proc_cwd_link),
3419 LNK("root", proc_root_link),
3420 LNK("exe", proc_exe_link),
3421 REG("mounts", S_IRUGO, proc_mounts_operations),
3422 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3423 #ifdef CONFIG_PROC_PAGE_MONITOR
3424 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3425 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
3426 REG("pagemap", S_IRUGO, proc_pagemap_operations),
3427 #endif
3428 #ifdef CONFIG_SECURITY
3429 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3430 #endif
3431 #ifdef CONFIG_KALLSYMS
3432 INF("wchan", S_IRUGO, proc_pid_wchan),
3433 #endif
3434 #ifdef CONFIG_STACKTRACE
3435 ONE("stack", S_IRUGO, proc_pid_stack),
3436 #endif
3437 #ifdef CONFIG_SCHEDSTATS
3438 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3439 #endif
3440 #ifdef CONFIG_LATENCYTOP
3441 REG("latency", S_IRUGO, proc_lstats_operations),
3442 #endif
3443 #ifdef CONFIG_PROC_PID_CPUSET
3444 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3445 #endif
3446 #ifdef CONFIG_CGROUPS
3447 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3448 #endif
3449 INF("oom_score", S_IRUGO, proc_oom_score),
3450 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3451 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3452 #ifdef CONFIG_AUDITSYSCALL
3453 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3454 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3455 #endif
3456 #ifdef CONFIG_FAULT_INJECTION
3457 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3458 #endif
3459 #ifdef CONFIG_TASK_IO_ACCOUNTING
3460 INF("io", S_IRUSR, proc_tid_io_accounting),
3461 #endif
3462 #ifdef CONFIG_HARDWALL
3463 INF("hardwall", S_IRUGO, proc_pid_hardwall),
3464 #endif
3465 #ifdef CONFIG_USER_NS
3466 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3467 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3468 #endif
3469 };
3470
3471 static int proc_tid_base_readdir(struct file * filp,
3472 void * dirent, filldir_t filldir)
3473 {
3474 return proc_pident_readdir(filp,dirent,filldir,
3475 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3476 }
3477
3478 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3479 {
3480 return proc_pident_lookup(dir, dentry,
3481 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3482 }
3483
3484 static const struct file_operations proc_tid_base_operations = {
3485 .read = generic_read_dir,
3486 .readdir = proc_tid_base_readdir,
3487 .llseek = default_llseek,
3488 };
3489
3490 static const struct inode_operations proc_tid_base_inode_operations = {
3491 .lookup = proc_tid_base_lookup,
3492 .getattr = pid_getattr,
3493 .setattr = proc_setattr,
3494 };
3495
3496 static struct dentry *proc_task_instantiate(struct inode *dir,
3497 struct dentry *dentry, struct task_struct *task, const void *ptr)
3498 {
3499 struct dentry *error = ERR_PTR(-ENOENT);
3500 struct inode *inode;
3501 inode = proc_pid_make_inode(dir->i_sb, task);
3502
3503 if (!inode)
3504 goto out;
3505 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3506 inode->i_op = &proc_tid_base_inode_operations;
3507 inode->i_fop = &proc_tid_base_operations;
3508 inode->i_flags|=S_IMMUTABLE;
3509
3510 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3511 ARRAY_SIZE(tid_base_stuff)));
3512
3513 d_set_d_op(dentry, &pid_dentry_operations);
3514
3515 d_add(dentry, inode);
3516 /* Close the race of the process dying before we return the dentry */
3517 if (pid_revalidate(dentry, 0))
3518 error = NULL;
3519 out:
3520 return error;
3521 }
3522
3523 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3524 {
3525 struct dentry *result = ERR_PTR(-ENOENT);
3526 struct task_struct *task;
3527 struct task_struct *leader = get_proc_task(dir);
3528 unsigned tid;
3529 struct pid_namespace *ns;
3530
3531 if (!leader)
3532 goto out_no_task;
3533
3534 tid = name_to_int(dentry);
3535 if (tid == ~0U)
3536 goto out;
3537
3538 ns = dentry->d_sb->s_fs_info;
3539 rcu_read_lock();
3540 task = find_task_by_pid_ns(tid, ns);
3541 if (task)
3542 get_task_struct(task);
3543 rcu_read_unlock();
3544 if (!task)
3545 goto out;
3546 if (!same_thread_group(leader, task))
3547 goto out_drop_task;
3548
3549 result = proc_task_instantiate(dir, dentry, task, NULL);
3550 out_drop_task:
3551 put_task_struct(task);
3552 out:
3553 put_task_struct(leader);
3554 out_no_task:
3555 return result;
3556 }
3557
3558 /*
3559 * Find the first tid of a thread group to return to user space.
3560 *
3561 * Usually this is just the thread group leader, but if the users
3562 * buffer was too small or there was a seek into the middle of the
3563 * directory we have more work todo.
3564 *
3565 * In the case of a short read we start with find_task_by_pid.
3566 *
3567 * In the case of a seek we start with the leader and walk nr
3568 * threads past it.
3569 */
3570 static struct task_struct *first_tid(struct task_struct *leader,
3571 int tid, int nr, struct pid_namespace *ns)
3572 {
3573 struct task_struct *pos;
3574
3575 rcu_read_lock();
3576 /* Attempt to start with the pid of a thread */
3577 if (tid && (nr > 0)) {
3578 pos = find_task_by_pid_ns(tid, ns);
3579 if (pos && (pos->group_leader == leader))
3580 goto found;
3581 }
3582
3583 /* If nr exceeds the number of threads there is nothing todo */
3584 pos = NULL;
3585 if (nr && nr >= get_nr_threads(leader))
3586 goto out;
3587
3588 /* If we haven't found our starting place yet start
3589 * with the leader and walk nr threads forward.
3590 */
3591 for (pos = leader; nr > 0; --nr) {
3592 pos = next_thread(pos);
3593 if (pos == leader) {
3594 pos = NULL;
3595 goto out;
3596 }
3597 }
3598 found:
3599 get_task_struct(pos);
3600 out:
3601 rcu_read_unlock();
3602 return pos;
3603 }
3604
3605 /*
3606 * Find the next thread in the thread list.
3607 * Return NULL if there is an error or no next thread.
3608 *
3609 * The reference to the input task_struct is released.
3610 */
3611 static struct task_struct *next_tid(struct task_struct *start)
3612 {
3613 struct task_struct *pos = NULL;
3614 rcu_read_lock();
3615 if (pid_alive(start)) {
3616 pos = next_thread(start);
3617 if (thread_group_leader(pos))
3618 pos = NULL;
3619 else
3620 get_task_struct(pos);
3621 }
3622 rcu_read_unlock();
3623 put_task_struct(start);
3624 return pos;
3625 }
3626
3627 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3628 struct task_struct *task, int tid)
3629 {
3630 char name[PROC_NUMBUF];
3631 int len = snprintf(name, sizeof(name), "%d", tid);
3632 return proc_fill_cache(filp, dirent, filldir, name, len,
3633 proc_task_instantiate, task, NULL);
3634 }
3635
3636 /* for the /proc/TGID/task/ directories */
3637 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3638 {
3639 struct dentry *dentry = filp->f_path.dentry;
3640 struct inode *inode = dentry->d_inode;
3641 struct task_struct *leader = NULL;
3642 struct task_struct *task;
3643 int retval = -ENOENT;
3644 ino_t ino;
3645 int tid;
3646 struct pid_namespace *ns;
3647
3648 task = get_proc_task(inode);
3649 if (!task)
3650 goto out_no_task;
3651 rcu_read_lock();
3652 if (pid_alive(task)) {
3653 leader = task->group_leader;
3654 get_task_struct(leader);
3655 }
3656 rcu_read_unlock();
3657 put_task_struct(task);
3658 if (!leader)
3659 goto out_no_task;
3660 retval = 0;
3661
3662 switch ((unsigned long)filp->f_pos) {
3663 case 0:
3664 ino = inode->i_ino;
3665 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3666 goto out;
3667 filp->f_pos++;
3668 /* fall through */
3669 case 1:
3670 ino = parent_ino(dentry);
3671 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3672 goto out;
3673 filp->f_pos++;
3674 /* fall through */
3675 }
3676
3677 /* f_version caches the tgid value that the last readdir call couldn't
3678 * return. lseek aka telldir automagically resets f_version to 0.
3679 */
3680 ns = filp->f_dentry->d_sb->s_fs_info;
3681 tid = (int)filp->f_version;
3682 filp->f_version = 0;
3683 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3684 task;
3685 task = next_tid(task), filp->f_pos++) {
3686 tid = task_pid_nr_ns(task, ns);
3687 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3688 /* returning this tgid failed, save it as the first
3689 * pid for the next readir call */
3690 filp->f_version = (u64)tid;
3691 put_task_struct(task);
3692 break;
3693 }
3694 }
3695 out:
3696 put_task_struct(leader);
3697 out_no_task:
3698 return retval;
3699 }
3700
3701 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3702 {
3703 struct inode *inode = dentry->d_inode;
3704 struct task_struct *p = get_proc_task(inode);
3705 generic_fillattr(inode, stat);
3706
3707 if (p) {
3708 stat->nlink += get_nr_threads(p);
3709 put_task_struct(p);
3710 }
3711
3712 return 0;
3713 }
3714
3715 static const struct inode_operations proc_task_inode_operations = {
3716 .lookup = proc_task_lookup,
3717 .getattr = proc_task_getattr,
3718 .setattr = proc_setattr,
3719 .permission = proc_pid_permission,
3720 };
3721
3722 static const struct file_operations proc_task_operations = {
3723 .read = generic_read_dir,
3724 .readdir = proc_task_readdir,
3725 .llseek = default_llseek,
3726 };
This page took 0.101156 seconds and 4 git commands to generate.