procfs: mark thread stack correctly in proc/<pid>/maps
[deliverable/linux.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #include <linux/flex_array.h>
87 #ifdef CONFIG_HARDWALL
88 #include <asm/hardwall.h>
89 #endif
90 #include <trace/events/oom.h>
91 #include "internal.h"
92
93 /* NOTE:
94 * Implementing inode permission operations in /proc is almost
95 * certainly an error. Permission checks need to happen during
96 * each system call not at open time. The reason is that most of
97 * what we wish to check for permissions in /proc varies at runtime.
98 *
99 * The classic example of a problem is opening file descriptors
100 * in /proc for a task before it execs a suid executable.
101 */
102
103 struct pid_entry {
104 char *name;
105 int len;
106 umode_t mode;
107 const struct inode_operations *iop;
108 const struct file_operations *fop;
109 union proc_op op;
110 };
111
112 #define NOD(NAME, MODE, IOP, FOP, OP) { \
113 .name = (NAME), \
114 .len = sizeof(NAME) - 1, \
115 .mode = MODE, \
116 .iop = IOP, \
117 .fop = FOP, \
118 .op = OP, \
119 }
120
121 #define DIR(NAME, MODE, iops, fops) \
122 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
123 #define LNK(NAME, get_link) \
124 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
125 &proc_pid_link_inode_operations, NULL, \
126 { .proc_get_link = get_link } )
127 #define REG(NAME, MODE, fops) \
128 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
129 #define INF(NAME, MODE, read) \
130 NOD(NAME, (S_IFREG|(MODE)), \
131 NULL, &proc_info_file_operations, \
132 { .proc_read = read } )
133 #define ONE(NAME, MODE, show) \
134 NOD(NAME, (S_IFREG|(MODE)), \
135 NULL, &proc_single_file_operations, \
136 { .proc_show = show } )
137
138 static int proc_fd_permission(struct inode *inode, int mask);
139
140 /*
141 * Count the number of hardlinks for the pid_entry table, excluding the .
142 * and .. links.
143 */
144 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
145 unsigned int n)
146 {
147 unsigned int i;
148 unsigned int count;
149
150 count = 0;
151 for (i = 0; i < n; ++i) {
152 if (S_ISDIR(entries[i].mode))
153 ++count;
154 }
155
156 return count;
157 }
158
159 static int get_task_root(struct task_struct *task, struct path *root)
160 {
161 int result = -ENOENT;
162
163 task_lock(task);
164 if (task->fs) {
165 get_fs_root(task->fs, root);
166 result = 0;
167 }
168 task_unlock(task);
169 return result;
170 }
171
172 static int proc_cwd_link(struct dentry *dentry, struct path *path)
173 {
174 struct task_struct *task = get_proc_task(dentry->d_inode);
175 int result = -ENOENT;
176
177 if (task) {
178 task_lock(task);
179 if (task->fs) {
180 get_fs_pwd(task->fs, path);
181 result = 0;
182 }
183 task_unlock(task);
184 put_task_struct(task);
185 }
186 return result;
187 }
188
189 static int proc_root_link(struct dentry *dentry, struct path *path)
190 {
191 struct task_struct *task = get_proc_task(dentry->d_inode);
192 int result = -ENOENT;
193
194 if (task) {
195 result = get_task_root(task, path);
196 put_task_struct(task);
197 }
198 return result;
199 }
200
201 struct mm_struct *mm_for_maps(struct task_struct *task)
202 {
203 return mm_access(task, PTRACE_MODE_READ);
204 }
205
206 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
207 {
208 int res = 0;
209 unsigned int len;
210 struct mm_struct *mm = get_task_mm(task);
211 if (!mm)
212 goto out;
213 if (!mm->arg_end)
214 goto out_mm; /* Shh! No looking before we're done */
215
216 len = mm->arg_end - mm->arg_start;
217
218 if (len > PAGE_SIZE)
219 len = PAGE_SIZE;
220
221 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
222
223 // If the nul at the end of args has been overwritten, then
224 // assume application is using setproctitle(3).
225 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
226 len = strnlen(buffer, res);
227 if (len < res) {
228 res = len;
229 } else {
230 len = mm->env_end - mm->env_start;
231 if (len > PAGE_SIZE - res)
232 len = PAGE_SIZE - res;
233 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
234 res = strnlen(buffer, res);
235 }
236 }
237 out_mm:
238 mmput(mm);
239 out:
240 return res;
241 }
242
243 static int proc_pid_auxv(struct task_struct *task, char *buffer)
244 {
245 struct mm_struct *mm = mm_for_maps(task);
246 int res = PTR_ERR(mm);
247 if (mm && !IS_ERR(mm)) {
248 unsigned int nwords = 0;
249 do {
250 nwords += 2;
251 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
252 res = nwords * sizeof(mm->saved_auxv[0]);
253 if (res > PAGE_SIZE)
254 res = PAGE_SIZE;
255 memcpy(buffer, mm->saved_auxv, res);
256 mmput(mm);
257 }
258 return res;
259 }
260
261
262 #ifdef CONFIG_KALLSYMS
263 /*
264 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
265 * Returns the resolved symbol. If that fails, simply return the address.
266 */
267 static int proc_pid_wchan(struct task_struct *task, char *buffer)
268 {
269 unsigned long wchan;
270 char symname[KSYM_NAME_LEN];
271
272 wchan = get_wchan(task);
273
274 if (lookup_symbol_name(wchan, symname) < 0)
275 if (!ptrace_may_access(task, PTRACE_MODE_READ))
276 return 0;
277 else
278 return sprintf(buffer, "%lu", wchan);
279 else
280 return sprintf(buffer, "%s", symname);
281 }
282 #endif /* CONFIG_KALLSYMS */
283
284 static int lock_trace(struct task_struct *task)
285 {
286 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
287 if (err)
288 return err;
289 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
290 mutex_unlock(&task->signal->cred_guard_mutex);
291 return -EPERM;
292 }
293 return 0;
294 }
295
296 static void unlock_trace(struct task_struct *task)
297 {
298 mutex_unlock(&task->signal->cred_guard_mutex);
299 }
300
301 #ifdef CONFIG_STACKTRACE
302
303 #define MAX_STACK_TRACE_DEPTH 64
304
305 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
306 struct pid *pid, struct task_struct *task)
307 {
308 struct stack_trace trace;
309 unsigned long *entries;
310 int err;
311 int i;
312
313 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
314 if (!entries)
315 return -ENOMEM;
316
317 trace.nr_entries = 0;
318 trace.max_entries = MAX_STACK_TRACE_DEPTH;
319 trace.entries = entries;
320 trace.skip = 0;
321
322 err = lock_trace(task);
323 if (!err) {
324 save_stack_trace_tsk(task, &trace);
325
326 for (i = 0; i < trace.nr_entries; i++) {
327 seq_printf(m, "[<%pK>] %pS\n",
328 (void *)entries[i], (void *)entries[i]);
329 }
330 unlock_trace(task);
331 }
332 kfree(entries);
333
334 return err;
335 }
336 #endif
337
338 #ifdef CONFIG_SCHEDSTATS
339 /*
340 * Provides /proc/PID/schedstat
341 */
342 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
343 {
344 return sprintf(buffer, "%llu %llu %lu\n",
345 (unsigned long long)task->se.sum_exec_runtime,
346 (unsigned long long)task->sched_info.run_delay,
347 task->sched_info.pcount);
348 }
349 #endif
350
351 #ifdef CONFIG_LATENCYTOP
352 static int lstats_show_proc(struct seq_file *m, void *v)
353 {
354 int i;
355 struct inode *inode = m->private;
356 struct task_struct *task = get_proc_task(inode);
357
358 if (!task)
359 return -ESRCH;
360 seq_puts(m, "Latency Top version : v0.1\n");
361 for (i = 0; i < 32; i++) {
362 struct latency_record *lr = &task->latency_record[i];
363 if (lr->backtrace[0]) {
364 int q;
365 seq_printf(m, "%i %li %li",
366 lr->count, lr->time, lr->max);
367 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
368 unsigned long bt = lr->backtrace[q];
369 if (!bt)
370 break;
371 if (bt == ULONG_MAX)
372 break;
373 seq_printf(m, " %ps", (void *)bt);
374 }
375 seq_putc(m, '\n');
376 }
377
378 }
379 put_task_struct(task);
380 return 0;
381 }
382
383 static int lstats_open(struct inode *inode, struct file *file)
384 {
385 return single_open(file, lstats_show_proc, inode);
386 }
387
388 static ssize_t lstats_write(struct file *file, const char __user *buf,
389 size_t count, loff_t *offs)
390 {
391 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
392
393 if (!task)
394 return -ESRCH;
395 clear_all_latency_tracing(task);
396 put_task_struct(task);
397
398 return count;
399 }
400
401 static const struct file_operations proc_lstats_operations = {
402 .open = lstats_open,
403 .read = seq_read,
404 .write = lstats_write,
405 .llseek = seq_lseek,
406 .release = single_release,
407 };
408
409 #endif
410
411 static int proc_oom_score(struct task_struct *task, char *buffer)
412 {
413 unsigned long points = 0;
414
415 read_lock(&tasklist_lock);
416 if (pid_alive(task))
417 points = oom_badness(task, NULL, NULL,
418 totalram_pages + total_swap_pages);
419 read_unlock(&tasklist_lock);
420 return sprintf(buffer, "%lu\n", points);
421 }
422
423 struct limit_names {
424 char *name;
425 char *unit;
426 };
427
428 static const struct limit_names lnames[RLIM_NLIMITS] = {
429 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
430 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
431 [RLIMIT_DATA] = {"Max data size", "bytes"},
432 [RLIMIT_STACK] = {"Max stack size", "bytes"},
433 [RLIMIT_CORE] = {"Max core file size", "bytes"},
434 [RLIMIT_RSS] = {"Max resident set", "bytes"},
435 [RLIMIT_NPROC] = {"Max processes", "processes"},
436 [RLIMIT_NOFILE] = {"Max open files", "files"},
437 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
438 [RLIMIT_AS] = {"Max address space", "bytes"},
439 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
440 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
441 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
442 [RLIMIT_NICE] = {"Max nice priority", NULL},
443 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
444 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
445 };
446
447 /* Display limits for a process */
448 static int proc_pid_limits(struct task_struct *task, char *buffer)
449 {
450 unsigned int i;
451 int count = 0;
452 unsigned long flags;
453 char *bufptr = buffer;
454
455 struct rlimit rlim[RLIM_NLIMITS];
456
457 if (!lock_task_sighand(task, &flags))
458 return 0;
459 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
460 unlock_task_sighand(task, &flags);
461
462 /*
463 * print the file header
464 */
465 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
466 "Limit", "Soft Limit", "Hard Limit", "Units");
467
468 for (i = 0; i < RLIM_NLIMITS; i++) {
469 if (rlim[i].rlim_cur == RLIM_INFINITY)
470 count += sprintf(&bufptr[count], "%-25s %-20s ",
471 lnames[i].name, "unlimited");
472 else
473 count += sprintf(&bufptr[count], "%-25s %-20lu ",
474 lnames[i].name, rlim[i].rlim_cur);
475
476 if (rlim[i].rlim_max == RLIM_INFINITY)
477 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
478 else
479 count += sprintf(&bufptr[count], "%-20lu ",
480 rlim[i].rlim_max);
481
482 if (lnames[i].unit)
483 count += sprintf(&bufptr[count], "%-10s\n",
484 lnames[i].unit);
485 else
486 count += sprintf(&bufptr[count], "\n");
487 }
488
489 return count;
490 }
491
492 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
493 static int proc_pid_syscall(struct task_struct *task, char *buffer)
494 {
495 long nr;
496 unsigned long args[6], sp, pc;
497 int res = lock_trace(task);
498 if (res)
499 return res;
500
501 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
502 res = sprintf(buffer, "running\n");
503 else if (nr < 0)
504 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
505 else
506 res = sprintf(buffer,
507 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
508 nr,
509 args[0], args[1], args[2], args[3], args[4], args[5],
510 sp, pc);
511 unlock_trace(task);
512 return res;
513 }
514 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
515
516 /************************************************************************/
517 /* Here the fs part begins */
518 /************************************************************************/
519
520 /* permission checks */
521 static int proc_fd_access_allowed(struct inode *inode)
522 {
523 struct task_struct *task;
524 int allowed = 0;
525 /* Allow access to a task's file descriptors if it is us or we
526 * may use ptrace attach to the process and find out that
527 * information.
528 */
529 task = get_proc_task(inode);
530 if (task) {
531 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
532 put_task_struct(task);
533 }
534 return allowed;
535 }
536
537 int proc_setattr(struct dentry *dentry, struct iattr *attr)
538 {
539 int error;
540 struct inode *inode = dentry->d_inode;
541
542 if (attr->ia_valid & ATTR_MODE)
543 return -EPERM;
544
545 error = inode_change_ok(inode, attr);
546 if (error)
547 return error;
548
549 if ((attr->ia_valid & ATTR_SIZE) &&
550 attr->ia_size != i_size_read(inode)) {
551 error = vmtruncate(inode, attr->ia_size);
552 if (error)
553 return error;
554 }
555
556 setattr_copy(inode, attr);
557 mark_inode_dirty(inode);
558 return 0;
559 }
560
561 /*
562 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
563 * or euid/egid (for hide_pid_min=2)?
564 */
565 static bool has_pid_permissions(struct pid_namespace *pid,
566 struct task_struct *task,
567 int hide_pid_min)
568 {
569 if (pid->hide_pid < hide_pid_min)
570 return true;
571 if (in_group_p(pid->pid_gid))
572 return true;
573 return ptrace_may_access(task, PTRACE_MODE_READ);
574 }
575
576
577 static int proc_pid_permission(struct inode *inode, int mask)
578 {
579 struct pid_namespace *pid = inode->i_sb->s_fs_info;
580 struct task_struct *task;
581 bool has_perms;
582
583 task = get_proc_task(inode);
584 if (!task)
585 return -ESRCH;
586 has_perms = has_pid_permissions(pid, task, 1);
587 put_task_struct(task);
588
589 if (!has_perms) {
590 if (pid->hide_pid == 2) {
591 /*
592 * Let's make getdents(), stat(), and open()
593 * consistent with each other. If a process
594 * may not stat() a file, it shouldn't be seen
595 * in procfs at all.
596 */
597 return -ENOENT;
598 }
599
600 return -EPERM;
601 }
602 return generic_permission(inode, mask);
603 }
604
605
606
607 static const struct inode_operations proc_def_inode_operations = {
608 .setattr = proc_setattr,
609 };
610
611 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
612
613 static ssize_t proc_info_read(struct file * file, char __user * buf,
614 size_t count, loff_t *ppos)
615 {
616 struct inode * inode = file->f_path.dentry->d_inode;
617 unsigned long page;
618 ssize_t length;
619 struct task_struct *task = get_proc_task(inode);
620
621 length = -ESRCH;
622 if (!task)
623 goto out_no_task;
624
625 if (count > PROC_BLOCK_SIZE)
626 count = PROC_BLOCK_SIZE;
627
628 length = -ENOMEM;
629 if (!(page = __get_free_page(GFP_TEMPORARY)))
630 goto out;
631
632 length = PROC_I(inode)->op.proc_read(task, (char*)page);
633
634 if (length >= 0)
635 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
636 free_page(page);
637 out:
638 put_task_struct(task);
639 out_no_task:
640 return length;
641 }
642
643 static const struct file_operations proc_info_file_operations = {
644 .read = proc_info_read,
645 .llseek = generic_file_llseek,
646 };
647
648 static int proc_single_show(struct seq_file *m, void *v)
649 {
650 struct inode *inode = m->private;
651 struct pid_namespace *ns;
652 struct pid *pid;
653 struct task_struct *task;
654 int ret;
655
656 ns = inode->i_sb->s_fs_info;
657 pid = proc_pid(inode);
658 task = get_pid_task(pid, PIDTYPE_PID);
659 if (!task)
660 return -ESRCH;
661
662 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
663
664 put_task_struct(task);
665 return ret;
666 }
667
668 static int proc_single_open(struct inode *inode, struct file *filp)
669 {
670 return single_open(filp, proc_single_show, inode);
671 }
672
673 static const struct file_operations proc_single_file_operations = {
674 .open = proc_single_open,
675 .read = seq_read,
676 .llseek = seq_lseek,
677 .release = single_release,
678 };
679
680 static int mem_open(struct inode* inode, struct file* file)
681 {
682 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
683 struct mm_struct *mm;
684
685 if (!task)
686 return -ESRCH;
687
688 mm = mm_access(task, PTRACE_MODE_ATTACH);
689 put_task_struct(task);
690
691 if (IS_ERR(mm))
692 return PTR_ERR(mm);
693
694 if (mm) {
695 /* ensure this mm_struct can't be freed */
696 atomic_inc(&mm->mm_count);
697 /* but do not pin its memory */
698 mmput(mm);
699 }
700
701 /* OK to pass negative loff_t, we can catch out-of-range */
702 file->f_mode |= FMODE_UNSIGNED_OFFSET;
703 file->private_data = mm;
704
705 return 0;
706 }
707
708 static ssize_t mem_rw(struct file *file, char __user *buf,
709 size_t count, loff_t *ppos, int write)
710 {
711 struct mm_struct *mm = file->private_data;
712 unsigned long addr = *ppos;
713 ssize_t copied;
714 char *page;
715
716 if (!mm)
717 return 0;
718
719 page = (char *)__get_free_page(GFP_TEMPORARY);
720 if (!page)
721 return -ENOMEM;
722
723 copied = 0;
724 if (!atomic_inc_not_zero(&mm->mm_users))
725 goto free;
726
727 while (count > 0) {
728 int this_len = min_t(int, count, PAGE_SIZE);
729
730 if (write && copy_from_user(page, buf, this_len)) {
731 copied = -EFAULT;
732 break;
733 }
734
735 this_len = access_remote_vm(mm, addr, page, this_len, write);
736 if (!this_len) {
737 if (!copied)
738 copied = -EIO;
739 break;
740 }
741
742 if (!write && copy_to_user(buf, page, this_len)) {
743 copied = -EFAULT;
744 break;
745 }
746
747 buf += this_len;
748 addr += this_len;
749 copied += this_len;
750 count -= this_len;
751 }
752 *ppos = addr;
753
754 mmput(mm);
755 free:
756 free_page((unsigned long) page);
757 return copied;
758 }
759
760 static ssize_t mem_read(struct file *file, char __user *buf,
761 size_t count, loff_t *ppos)
762 {
763 return mem_rw(file, buf, count, ppos, 0);
764 }
765
766 static ssize_t mem_write(struct file *file, const char __user *buf,
767 size_t count, loff_t *ppos)
768 {
769 return mem_rw(file, (char __user*)buf, count, ppos, 1);
770 }
771
772 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
773 {
774 switch (orig) {
775 case 0:
776 file->f_pos = offset;
777 break;
778 case 1:
779 file->f_pos += offset;
780 break;
781 default:
782 return -EINVAL;
783 }
784 force_successful_syscall_return();
785 return file->f_pos;
786 }
787
788 static int mem_release(struct inode *inode, struct file *file)
789 {
790 struct mm_struct *mm = file->private_data;
791 if (mm)
792 mmdrop(mm);
793 return 0;
794 }
795
796 static const struct file_operations proc_mem_operations = {
797 .llseek = mem_lseek,
798 .read = mem_read,
799 .write = mem_write,
800 .open = mem_open,
801 .release = mem_release,
802 };
803
804 static ssize_t environ_read(struct file *file, char __user *buf,
805 size_t count, loff_t *ppos)
806 {
807 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
808 char *page;
809 unsigned long src = *ppos;
810 int ret = -ESRCH;
811 struct mm_struct *mm;
812
813 if (!task)
814 goto out_no_task;
815
816 ret = -ENOMEM;
817 page = (char *)__get_free_page(GFP_TEMPORARY);
818 if (!page)
819 goto out;
820
821
822 mm = mm_for_maps(task);
823 ret = PTR_ERR(mm);
824 if (!mm || IS_ERR(mm))
825 goto out_free;
826
827 ret = 0;
828 while (count > 0) {
829 int this_len, retval, max_len;
830
831 this_len = mm->env_end - (mm->env_start + src);
832
833 if (this_len <= 0)
834 break;
835
836 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
837 this_len = (this_len > max_len) ? max_len : this_len;
838
839 retval = access_process_vm(task, (mm->env_start + src),
840 page, this_len, 0);
841
842 if (retval <= 0) {
843 ret = retval;
844 break;
845 }
846
847 if (copy_to_user(buf, page, retval)) {
848 ret = -EFAULT;
849 break;
850 }
851
852 ret += retval;
853 src += retval;
854 buf += retval;
855 count -= retval;
856 }
857 *ppos = src;
858
859 mmput(mm);
860 out_free:
861 free_page((unsigned long) page);
862 out:
863 put_task_struct(task);
864 out_no_task:
865 return ret;
866 }
867
868 static const struct file_operations proc_environ_operations = {
869 .read = environ_read,
870 .llseek = generic_file_llseek,
871 };
872
873 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
874 size_t count, loff_t *ppos)
875 {
876 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
877 char buffer[PROC_NUMBUF];
878 size_t len;
879 int oom_adjust = OOM_DISABLE;
880 unsigned long flags;
881
882 if (!task)
883 return -ESRCH;
884
885 if (lock_task_sighand(task, &flags)) {
886 oom_adjust = task->signal->oom_adj;
887 unlock_task_sighand(task, &flags);
888 }
889
890 put_task_struct(task);
891
892 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
893
894 return simple_read_from_buffer(buf, count, ppos, buffer, len);
895 }
896
897 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
898 size_t count, loff_t *ppos)
899 {
900 struct task_struct *task;
901 char buffer[PROC_NUMBUF];
902 int oom_adjust;
903 unsigned long flags;
904 int err;
905
906 memset(buffer, 0, sizeof(buffer));
907 if (count > sizeof(buffer) - 1)
908 count = sizeof(buffer) - 1;
909 if (copy_from_user(buffer, buf, count)) {
910 err = -EFAULT;
911 goto out;
912 }
913
914 err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
915 if (err)
916 goto out;
917 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
918 oom_adjust != OOM_DISABLE) {
919 err = -EINVAL;
920 goto out;
921 }
922
923 task = get_proc_task(file->f_path.dentry->d_inode);
924 if (!task) {
925 err = -ESRCH;
926 goto out;
927 }
928
929 task_lock(task);
930 if (!task->mm) {
931 err = -EINVAL;
932 goto err_task_lock;
933 }
934
935 if (!lock_task_sighand(task, &flags)) {
936 err = -ESRCH;
937 goto err_task_lock;
938 }
939
940 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
941 err = -EACCES;
942 goto err_sighand;
943 }
944
945 /*
946 * Warn that /proc/pid/oom_adj is deprecated, see
947 * Documentation/feature-removal-schedule.txt.
948 */
949 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
950 current->comm, task_pid_nr(current), task_pid_nr(task),
951 task_pid_nr(task));
952 task->signal->oom_adj = oom_adjust;
953 /*
954 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
955 * value is always attainable.
956 */
957 if (task->signal->oom_adj == OOM_ADJUST_MAX)
958 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
959 else
960 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
961 -OOM_DISABLE;
962 trace_oom_score_adj_update(task);
963 err_sighand:
964 unlock_task_sighand(task, &flags);
965 err_task_lock:
966 task_unlock(task);
967 put_task_struct(task);
968 out:
969 return err < 0 ? err : count;
970 }
971
972 static const struct file_operations proc_oom_adjust_operations = {
973 .read = oom_adjust_read,
974 .write = oom_adjust_write,
975 .llseek = generic_file_llseek,
976 };
977
978 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
979 size_t count, loff_t *ppos)
980 {
981 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
982 char buffer[PROC_NUMBUF];
983 int oom_score_adj = OOM_SCORE_ADJ_MIN;
984 unsigned long flags;
985 size_t len;
986
987 if (!task)
988 return -ESRCH;
989 if (lock_task_sighand(task, &flags)) {
990 oom_score_adj = task->signal->oom_score_adj;
991 unlock_task_sighand(task, &flags);
992 }
993 put_task_struct(task);
994 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
995 return simple_read_from_buffer(buf, count, ppos, buffer, len);
996 }
997
998 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
999 size_t count, loff_t *ppos)
1000 {
1001 struct task_struct *task;
1002 char buffer[PROC_NUMBUF];
1003 unsigned long flags;
1004 int oom_score_adj;
1005 int err;
1006
1007 memset(buffer, 0, sizeof(buffer));
1008 if (count > sizeof(buffer) - 1)
1009 count = sizeof(buffer) - 1;
1010 if (copy_from_user(buffer, buf, count)) {
1011 err = -EFAULT;
1012 goto out;
1013 }
1014
1015 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1016 if (err)
1017 goto out;
1018 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1019 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1020 err = -EINVAL;
1021 goto out;
1022 }
1023
1024 task = get_proc_task(file->f_path.dentry->d_inode);
1025 if (!task) {
1026 err = -ESRCH;
1027 goto out;
1028 }
1029
1030 task_lock(task);
1031 if (!task->mm) {
1032 err = -EINVAL;
1033 goto err_task_lock;
1034 }
1035
1036 if (!lock_task_sighand(task, &flags)) {
1037 err = -ESRCH;
1038 goto err_task_lock;
1039 }
1040
1041 if (oom_score_adj < task->signal->oom_score_adj_min &&
1042 !capable(CAP_SYS_RESOURCE)) {
1043 err = -EACCES;
1044 goto err_sighand;
1045 }
1046
1047 task->signal->oom_score_adj = oom_score_adj;
1048 if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1049 task->signal->oom_score_adj_min = oom_score_adj;
1050 trace_oom_score_adj_update(task);
1051 /*
1052 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1053 * always attainable.
1054 */
1055 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1056 task->signal->oom_adj = OOM_DISABLE;
1057 else
1058 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1059 OOM_SCORE_ADJ_MAX;
1060 err_sighand:
1061 unlock_task_sighand(task, &flags);
1062 err_task_lock:
1063 task_unlock(task);
1064 put_task_struct(task);
1065 out:
1066 return err < 0 ? err : count;
1067 }
1068
1069 static const struct file_operations proc_oom_score_adj_operations = {
1070 .read = oom_score_adj_read,
1071 .write = oom_score_adj_write,
1072 .llseek = default_llseek,
1073 };
1074
1075 #ifdef CONFIG_AUDITSYSCALL
1076 #define TMPBUFLEN 21
1077 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1078 size_t count, loff_t *ppos)
1079 {
1080 struct inode * inode = file->f_path.dentry->d_inode;
1081 struct task_struct *task = get_proc_task(inode);
1082 ssize_t length;
1083 char tmpbuf[TMPBUFLEN];
1084
1085 if (!task)
1086 return -ESRCH;
1087 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1088 audit_get_loginuid(task));
1089 put_task_struct(task);
1090 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1091 }
1092
1093 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1094 size_t count, loff_t *ppos)
1095 {
1096 struct inode * inode = file->f_path.dentry->d_inode;
1097 char *page, *tmp;
1098 ssize_t length;
1099 uid_t loginuid;
1100
1101 rcu_read_lock();
1102 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1103 rcu_read_unlock();
1104 return -EPERM;
1105 }
1106 rcu_read_unlock();
1107
1108 if (count >= PAGE_SIZE)
1109 count = PAGE_SIZE - 1;
1110
1111 if (*ppos != 0) {
1112 /* No partial writes. */
1113 return -EINVAL;
1114 }
1115 page = (char*)__get_free_page(GFP_TEMPORARY);
1116 if (!page)
1117 return -ENOMEM;
1118 length = -EFAULT;
1119 if (copy_from_user(page, buf, count))
1120 goto out_free_page;
1121
1122 page[count] = '\0';
1123 loginuid = simple_strtoul(page, &tmp, 10);
1124 if (tmp == page) {
1125 length = -EINVAL;
1126 goto out_free_page;
1127
1128 }
1129 length = audit_set_loginuid(loginuid);
1130 if (likely(length == 0))
1131 length = count;
1132
1133 out_free_page:
1134 free_page((unsigned long) page);
1135 return length;
1136 }
1137
1138 static const struct file_operations proc_loginuid_operations = {
1139 .read = proc_loginuid_read,
1140 .write = proc_loginuid_write,
1141 .llseek = generic_file_llseek,
1142 };
1143
1144 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1145 size_t count, loff_t *ppos)
1146 {
1147 struct inode * inode = file->f_path.dentry->d_inode;
1148 struct task_struct *task = get_proc_task(inode);
1149 ssize_t length;
1150 char tmpbuf[TMPBUFLEN];
1151
1152 if (!task)
1153 return -ESRCH;
1154 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1155 audit_get_sessionid(task));
1156 put_task_struct(task);
1157 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1158 }
1159
1160 static const struct file_operations proc_sessionid_operations = {
1161 .read = proc_sessionid_read,
1162 .llseek = generic_file_llseek,
1163 };
1164 #endif
1165
1166 #ifdef CONFIG_FAULT_INJECTION
1167 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1168 size_t count, loff_t *ppos)
1169 {
1170 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1171 char buffer[PROC_NUMBUF];
1172 size_t len;
1173 int make_it_fail;
1174
1175 if (!task)
1176 return -ESRCH;
1177 make_it_fail = task->make_it_fail;
1178 put_task_struct(task);
1179
1180 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1181
1182 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1183 }
1184
1185 static ssize_t proc_fault_inject_write(struct file * file,
1186 const char __user * buf, size_t count, loff_t *ppos)
1187 {
1188 struct task_struct *task;
1189 char buffer[PROC_NUMBUF], *end;
1190 int make_it_fail;
1191
1192 if (!capable(CAP_SYS_RESOURCE))
1193 return -EPERM;
1194 memset(buffer, 0, sizeof(buffer));
1195 if (count > sizeof(buffer) - 1)
1196 count = sizeof(buffer) - 1;
1197 if (copy_from_user(buffer, buf, count))
1198 return -EFAULT;
1199 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1200 if (*end)
1201 return -EINVAL;
1202 task = get_proc_task(file->f_dentry->d_inode);
1203 if (!task)
1204 return -ESRCH;
1205 task->make_it_fail = make_it_fail;
1206 put_task_struct(task);
1207
1208 return count;
1209 }
1210
1211 static const struct file_operations proc_fault_inject_operations = {
1212 .read = proc_fault_inject_read,
1213 .write = proc_fault_inject_write,
1214 .llseek = generic_file_llseek,
1215 };
1216 #endif
1217
1218
1219 #ifdef CONFIG_SCHED_DEBUG
1220 /*
1221 * Print out various scheduling related per-task fields:
1222 */
1223 static int sched_show(struct seq_file *m, void *v)
1224 {
1225 struct inode *inode = m->private;
1226 struct task_struct *p;
1227
1228 p = get_proc_task(inode);
1229 if (!p)
1230 return -ESRCH;
1231 proc_sched_show_task(p, m);
1232
1233 put_task_struct(p);
1234
1235 return 0;
1236 }
1237
1238 static ssize_t
1239 sched_write(struct file *file, const char __user *buf,
1240 size_t count, loff_t *offset)
1241 {
1242 struct inode *inode = file->f_path.dentry->d_inode;
1243 struct task_struct *p;
1244
1245 p = get_proc_task(inode);
1246 if (!p)
1247 return -ESRCH;
1248 proc_sched_set_task(p);
1249
1250 put_task_struct(p);
1251
1252 return count;
1253 }
1254
1255 static int sched_open(struct inode *inode, struct file *filp)
1256 {
1257 return single_open(filp, sched_show, inode);
1258 }
1259
1260 static const struct file_operations proc_pid_sched_operations = {
1261 .open = sched_open,
1262 .read = seq_read,
1263 .write = sched_write,
1264 .llseek = seq_lseek,
1265 .release = single_release,
1266 };
1267
1268 #endif
1269
1270 #ifdef CONFIG_SCHED_AUTOGROUP
1271 /*
1272 * Print out autogroup related information:
1273 */
1274 static int sched_autogroup_show(struct seq_file *m, void *v)
1275 {
1276 struct inode *inode = m->private;
1277 struct task_struct *p;
1278
1279 p = get_proc_task(inode);
1280 if (!p)
1281 return -ESRCH;
1282 proc_sched_autogroup_show_task(p, m);
1283
1284 put_task_struct(p);
1285
1286 return 0;
1287 }
1288
1289 static ssize_t
1290 sched_autogroup_write(struct file *file, const char __user *buf,
1291 size_t count, loff_t *offset)
1292 {
1293 struct inode *inode = file->f_path.dentry->d_inode;
1294 struct task_struct *p;
1295 char buffer[PROC_NUMBUF];
1296 int nice;
1297 int err;
1298
1299 memset(buffer, 0, sizeof(buffer));
1300 if (count > sizeof(buffer) - 1)
1301 count = sizeof(buffer) - 1;
1302 if (copy_from_user(buffer, buf, count))
1303 return -EFAULT;
1304
1305 err = kstrtoint(strstrip(buffer), 0, &nice);
1306 if (err < 0)
1307 return err;
1308
1309 p = get_proc_task(inode);
1310 if (!p)
1311 return -ESRCH;
1312
1313 err = proc_sched_autogroup_set_nice(p, nice);
1314 if (err)
1315 count = err;
1316
1317 put_task_struct(p);
1318
1319 return count;
1320 }
1321
1322 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1323 {
1324 int ret;
1325
1326 ret = single_open(filp, sched_autogroup_show, NULL);
1327 if (!ret) {
1328 struct seq_file *m = filp->private_data;
1329
1330 m->private = inode;
1331 }
1332 return ret;
1333 }
1334
1335 static const struct file_operations proc_pid_sched_autogroup_operations = {
1336 .open = sched_autogroup_open,
1337 .read = seq_read,
1338 .write = sched_autogroup_write,
1339 .llseek = seq_lseek,
1340 .release = single_release,
1341 };
1342
1343 #endif /* CONFIG_SCHED_AUTOGROUP */
1344
1345 static ssize_t comm_write(struct file *file, const char __user *buf,
1346 size_t count, loff_t *offset)
1347 {
1348 struct inode *inode = file->f_path.dentry->d_inode;
1349 struct task_struct *p;
1350 char buffer[TASK_COMM_LEN];
1351
1352 memset(buffer, 0, sizeof(buffer));
1353 if (count > sizeof(buffer) - 1)
1354 count = sizeof(buffer) - 1;
1355 if (copy_from_user(buffer, buf, count))
1356 return -EFAULT;
1357
1358 p = get_proc_task(inode);
1359 if (!p)
1360 return -ESRCH;
1361
1362 if (same_thread_group(current, p))
1363 set_task_comm(p, buffer);
1364 else
1365 count = -EINVAL;
1366
1367 put_task_struct(p);
1368
1369 return count;
1370 }
1371
1372 static int comm_show(struct seq_file *m, void *v)
1373 {
1374 struct inode *inode = m->private;
1375 struct task_struct *p;
1376
1377 p = get_proc_task(inode);
1378 if (!p)
1379 return -ESRCH;
1380
1381 task_lock(p);
1382 seq_printf(m, "%s\n", p->comm);
1383 task_unlock(p);
1384
1385 put_task_struct(p);
1386
1387 return 0;
1388 }
1389
1390 static int comm_open(struct inode *inode, struct file *filp)
1391 {
1392 return single_open(filp, comm_show, inode);
1393 }
1394
1395 static const struct file_operations proc_pid_set_comm_operations = {
1396 .open = comm_open,
1397 .read = seq_read,
1398 .write = comm_write,
1399 .llseek = seq_lseek,
1400 .release = single_release,
1401 };
1402
1403 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1404 {
1405 struct task_struct *task;
1406 struct mm_struct *mm;
1407 struct file *exe_file;
1408
1409 task = get_proc_task(dentry->d_inode);
1410 if (!task)
1411 return -ENOENT;
1412 mm = get_task_mm(task);
1413 put_task_struct(task);
1414 if (!mm)
1415 return -ENOENT;
1416 exe_file = get_mm_exe_file(mm);
1417 mmput(mm);
1418 if (exe_file) {
1419 *exe_path = exe_file->f_path;
1420 path_get(&exe_file->f_path);
1421 fput(exe_file);
1422 return 0;
1423 } else
1424 return -ENOENT;
1425 }
1426
1427 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1428 {
1429 struct inode *inode = dentry->d_inode;
1430 int error = -EACCES;
1431
1432 /* We don't need a base pointer in the /proc filesystem */
1433 path_put(&nd->path);
1434
1435 /* Are we allowed to snoop on the tasks file descriptors? */
1436 if (!proc_fd_access_allowed(inode))
1437 goto out;
1438
1439 error = PROC_I(inode)->op.proc_get_link(dentry, &nd->path);
1440 out:
1441 return ERR_PTR(error);
1442 }
1443
1444 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1445 {
1446 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1447 char *pathname;
1448 int len;
1449
1450 if (!tmp)
1451 return -ENOMEM;
1452
1453 pathname = d_path(path, tmp, PAGE_SIZE);
1454 len = PTR_ERR(pathname);
1455 if (IS_ERR(pathname))
1456 goto out;
1457 len = tmp + PAGE_SIZE - 1 - pathname;
1458
1459 if (len > buflen)
1460 len = buflen;
1461 if (copy_to_user(buffer, pathname, len))
1462 len = -EFAULT;
1463 out:
1464 free_page((unsigned long)tmp);
1465 return len;
1466 }
1467
1468 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1469 {
1470 int error = -EACCES;
1471 struct inode *inode = dentry->d_inode;
1472 struct path path;
1473
1474 /* Are we allowed to snoop on the tasks file descriptors? */
1475 if (!proc_fd_access_allowed(inode))
1476 goto out;
1477
1478 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1479 if (error)
1480 goto out;
1481
1482 error = do_proc_readlink(&path, buffer, buflen);
1483 path_put(&path);
1484 out:
1485 return error;
1486 }
1487
1488 static const struct inode_operations proc_pid_link_inode_operations = {
1489 .readlink = proc_pid_readlink,
1490 .follow_link = proc_pid_follow_link,
1491 .setattr = proc_setattr,
1492 };
1493
1494
1495 /* building an inode */
1496
1497 static int task_dumpable(struct task_struct *task)
1498 {
1499 int dumpable = 0;
1500 struct mm_struct *mm;
1501
1502 task_lock(task);
1503 mm = task->mm;
1504 if (mm)
1505 dumpable = get_dumpable(mm);
1506 task_unlock(task);
1507 if(dumpable == 1)
1508 return 1;
1509 return 0;
1510 }
1511
1512 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1513 {
1514 struct inode * inode;
1515 struct proc_inode *ei;
1516 const struct cred *cred;
1517
1518 /* We need a new inode */
1519
1520 inode = new_inode(sb);
1521 if (!inode)
1522 goto out;
1523
1524 /* Common stuff */
1525 ei = PROC_I(inode);
1526 inode->i_ino = get_next_ino();
1527 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1528 inode->i_op = &proc_def_inode_operations;
1529
1530 /*
1531 * grab the reference to task.
1532 */
1533 ei->pid = get_task_pid(task, PIDTYPE_PID);
1534 if (!ei->pid)
1535 goto out_unlock;
1536
1537 if (task_dumpable(task)) {
1538 rcu_read_lock();
1539 cred = __task_cred(task);
1540 inode->i_uid = cred->euid;
1541 inode->i_gid = cred->egid;
1542 rcu_read_unlock();
1543 }
1544 security_task_to_inode(task, inode);
1545
1546 out:
1547 return inode;
1548
1549 out_unlock:
1550 iput(inode);
1551 return NULL;
1552 }
1553
1554 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1555 {
1556 struct inode *inode = dentry->d_inode;
1557 struct task_struct *task;
1558 const struct cred *cred;
1559 struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1560
1561 generic_fillattr(inode, stat);
1562
1563 rcu_read_lock();
1564 stat->uid = 0;
1565 stat->gid = 0;
1566 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1567 if (task) {
1568 if (!has_pid_permissions(pid, task, 2)) {
1569 rcu_read_unlock();
1570 /*
1571 * This doesn't prevent learning whether PID exists,
1572 * it only makes getattr() consistent with readdir().
1573 */
1574 return -ENOENT;
1575 }
1576 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1577 task_dumpable(task)) {
1578 cred = __task_cred(task);
1579 stat->uid = cred->euid;
1580 stat->gid = cred->egid;
1581 }
1582 }
1583 rcu_read_unlock();
1584 return 0;
1585 }
1586
1587 /* dentry stuff */
1588
1589 /*
1590 * Exceptional case: normally we are not allowed to unhash a busy
1591 * directory. In this case, however, we can do it - no aliasing problems
1592 * due to the way we treat inodes.
1593 *
1594 * Rewrite the inode's ownerships here because the owning task may have
1595 * performed a setuid(), etc.
1596 *
1597 * Before the /proc/pid/status file was created the only way to read
1598 * the effective uid of a /process was to stat /proc/pid. Reading
1599 * /proc/pid/status is slow enough that procps and other packages
1600 * kept stating /proc/pid. To keep the rules in /proc simple I have
1601 * made this apply to all per process world readable and executable
1602 * directories.
1603 */
1604 int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1605 {
1606 struct inode *inode;
1607 struct task_struct *task;
1608 const struct cred *cred;
1609
1610 if (nd && nd->flags & LOOKUP_RCU)
1611 return -ECHILD;
1612
1613 inode = dentry->d_inode;
1614 task = get_proc_task(inode);
1615
1616 if (task) {
1617 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1618 task_dumpable(task)) {
1619 rcu_read_lock();
1620 cred = __task_cred(task);
1621 inode->i_uid = cred->euid;
1622 inode->i_gid = cred->egid;
1623 rcu_read_unlock();
1624 } else {
1625 inode->i_uid = 0;
1626 inode->i_gid = 0;
1627 }
1628 inode->i_mode &= ~(S_ISUID | S_ISGID);
1629 security_task_to_inode(task, inode);
1630 put_task_struct(task);
1631 return 1;
1632 }
1633 d_drop(dentry);
1634 return 0;
1635 }
1636
1637 static int pid_delete_dentry(const struct dentry * dentry)
1638 {
1639 /* Is the task we represent dead?
1640 * If so, then don't put the dentry on the lru list,
1641 * kill it immediately.
1642 */
1643 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1644 }
1645
1646 const struct dentry_operations pid_dentry_operations =
1647 {
1648 .d_revalidate = pid_revalidate,
1649 .d_delete = pid_delete_dentry,
1650 };
1651
1652 /* Lookups */
1653
1654 /*
1655 * Fill a directory entry.
1656 *
1657 * If possible create the dcache entry and derive our inode number and
1658 * file type from dcache entry.
1659 *
1660 * Since all of the proc inode numbers are dynamically generated, the inode
1661 * numbers do not exist until the inode is cache. This means creating the
1662 * the dcache entry in readdir is necessary to keep the inode numbers
1663 * reported by readdir in sync with the inode numbers reported
1664 * by stat.
1665 */
1666 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1667 const char *name, int len,
1668 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1669 {
1670 struct dentry *child, *dir = filp->f_path.dentry;
1671 struct inode *inode;
1672 struct qstr qname;
1673 ino_t ino = 0;
1674 unsigned type = DT_UNKNOWN;
1675
1676 qname.name = name;
1677 qname.len = len;
1678 qname.hash = full_name_hash(name, len);
1679
1680 child = d_lookup(dir, &qname);
1681 if (!child) {
1682 struct dentry *new;
1683 new = d_alloc(dir, &qname);
1684 if (new) {
1685 child = instantiate(dir->d_inode, new, task, ptr);
1686 if (child)
1687 dput(new);
1688 else
1689 child = new;
1690 }
1691 }
1692 if (!child || IS_ERR(child) || !child->d_inode)
1693 goto end_instantiate;
1694 inode = child->d_inode;
1695 if (inode) {
1696 ino = inode->i_ino;
1697 type = inode->i_mode >> 12;
1698 }
1699 dput(child);
1700 end_instantiate:
1701 if (!ino)
1702 ino = find_inode_number(dir, &qname);
1703 if (!ino)
1704 ino = 1;
1705 return filldir(dirent, name, len, filp->f_pos, ino, type);
1706 }
1707
1708 static unsigned name_to_int(struct dentry *dentry)
1709 {
1710 const char *name = dentry->d_name.name;
1711 int len = dentry->d_name.len;
1712 unsigned n = 0;
1713
1714 if (len > 1 && *name == '0')
1715 goto out;
1716 while (len-- > 0) {
1717 unsigned c = *name++ - '0';
1718 if (c > 9)
1719 goto out;
1720 if (n >= (~0U-9)/10)
1721 goto out;
1722 n *= 10;
1723 n += c;
1724 }
1725 return n;
1726 out:
1727 return ~0U;
1728 }
1729
1730 #define PROC_FDINFO_MAX 64
1731
1732 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1733 {
1734 struct task_struct *task = get_proc_task(inode);
1735 struct files_struct *files = NULL;
1736 struct file *file;
1737 int fd = proc_fd(inode);
1738
1739 if (task) {
1740 files = get_files_struct(task);
1741 put_task_struct(task);
1742 }
1743 if (files) {
1744 /*
1745 * We are not taking a ref to the file structure, so we must
1746 * hold ->file_lock.
1747 */
1748 spin_lock(&files->file_lock);
1749 file = fcheck_files(files, fd);
1750 if (file) {
1751 unsigned int f_flags;
1752 struct fdtable *fdt;
1753
1754 fdt = files_fdtable(files);
1755 f_flags = file->f_flags & ~O_CLOEXEC;
1756 if (FD_ISSET(fd, fdt->close_on_exec))
1757 f_flags |= O_CLOEXEC;
1758
1759 if (path) {
1760 *path = file->f_path;
1761 path_get(&file->f_path);
1762 }
1763 if (info)
1764 snprintf(info, PROC_FDINFO_MAX,
1765 "pos:\t%lli\n"
1766 "flags:\t0%o\n",
1767 (long long) file->f_pos,
1768 f_flags);
1769 spin_unlock(&files->file_lock);
1770 put_files_struct(files);
1771 return 0;
1772 }
1773 spin_unlock(&files->file_lock);
1774 put_files_struct(files);
1775 }
1776 return -ENOENT;
1777 }
1778
1779 static int proc_fd_link(struct dentry *dentry, struct path *path)
1780 {
1781 return proc_fd_info(dentry->d_inode, path, NULL);
1782 }
1783
1784 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1785 {
1786 struct inode *inode;
1787 struct task_struct *task;
1788 int fd;
1789 struct files_struct *files;
1790 const struct cred *cred;
1791
1792 if (nd && nd->flags & LOOKUP_RCU)
1793 return -ECHILD;
1794
1795 inode = dentry->d_inode;
1796 task = get_proc_task(inode);
1797 fd = proc_fd(inode);
1798
1799 if (task) {
1800 files = get_files_struct(task);
1801 if (files) {
1802 rcu_read_lock();
1803 if (fcheck_files(files, fd)) {
1804 rcu_read_unlock();
1805 put_files_struct(files);
1806 if (task_dumpable(task)) {
1807 rcu_read_lock();
1808 cred = __task_cred(task);
1809 inode->i_uid = cred->euid;
1810 inode->i_gid = cred->egid;
1811 rcu_read_unlock();
1812 } else {
1813 inode->i_uid = 0;
1814 inode->i_gid = 0;
1815 }
1816 inode->i_mode &= ~(S_ISUID | S_ISGID);
1817 security_task_to_inode(task, inode);
1818 put_task_struct(task);
1819 return 1;
1820 }
1821 rcu_read_unlock();
1822 put_files_struct(files);
1823 }
1824 put_task_struct(task);
1825 }
1826 d_drop(dentry);
1827 return 0;
1828 }
1829
1830 static const struct dentry_operations tid_fd_dentry_operations =
1831 {
1832 .d_revalidate = tid_fd_revalidate,
1833 .d_delete = pid_delete_dentry,
1834 };
1835
1836 static struct dentry *proc_fd_instantiate(struct inode *dir,
1837 struct dentry *dentry, struct task_struct *task, const void *ptr)
1838 {
1839 unsigned fd = *(const unsigned *)ptr;
1840 struct file *file;
1841 struct files_struct *files;
1842 struct inode *inode;
1843 struct proc_inode *ei;
1844 struct dentry *error = ERR_PTR(-ENOENT);
1845
1846 inode = proc_pid_make_inode(dir->i_sb, task);
1847 if (!inode)
1848 goto out;
1849 ei = PROC_I(inode);
1850 ei->fd = fd;
1851 files = get_files_struct(task);
1852 if (!files)
1853 goto out_iput;
1854 inode->i_mode = S_IFLNK;
1855
1856 /*
1857 * We are not taking a ref to the file structure, so we must
1858 * hold ->file_lock.
1859 */
1860 spin_lock(&files->file_lock);
1861 file = fcheck_files(files, fd);
1862 if (!file)
1863 goto out_unlock;
1864 if (file->f_mode & FMODE_READ)
1865 inode->i_mode |= S_IRUSR | S_IXUSR;
1866 if (file->f_mode & FMODE_WRITE)
1867 inode->i_mode |= S_IWUSR | S_IXUSR;
1868 spin_unlock(&files->file_lock);
1869 put_files_struct(files);
1870
1871 inode->i_op = &proc_pid_link_inode_operations;
1872 inode->i_size = 64;
1873 ei->op.proc_get_link = proc_fd_link;
1874 d_set_d_op(dentry, &tid_fd_dentry_operations);
1875 d_add(dentry, inode);
1876 /* Close the race of the process dying before we return the dentry */
1877 if (tid_fd_revalidate(dentry, NULL))
1878 error = NULL;
1879
1880 out:
1881 return error;
1882 out_unlock:
1883 spin_unlock(&files->file_lock);
1884 put_files_struct(files);
1885 out_iput:
1886 iput(inode);
1887 goto out;
1888 }
1889
1890 static struct dentry *proc_lookupfd_common(struct inode *dir,
1891 struct dentry *dentry,
1892 instantiate_t instantiate)
1893 {
1894 struct task_struct *task = get_proc_task(dir);
1895 unsigned fd = name_to_int(dentry);
1896 struct dentry *result = ERR_PTR(-ENOENT);
1897
1898 if (!task)
1899 goto out_no_task;
1900 if (fd == ~0U)
1901 goto out;
1902
1903 result = instantiate(dir, dentry, task, &fd);
1904 out:
1905 put_task_struct(task);
1906 out_no_task:
1907 return result;
1908 }
1909
1910 static int proc_readfd_common(struct file * filp, void * dirent,
1911 filldir_t filldir, instantiate_t instantiate)
1912 {
1913 struct dentry *dentry = filp->f_path.dentry;
1914 struct inode *inode = dentry->d_inode;
1915 struct task_struct *p = get_proc_task(inode);
1916 unsigned int fd, ino;
1917 int retval;
1918 struct files_struct * files;
1919
1920 retval = -ENOENT;
1921 if (!p)
1922 goto out_no_task;
1923 retval = 0;
1924
1925 fd = filp->f_pos;
1926 switch (fd) {
1927 case 0:
1928 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1929 goto out;
1930 filp->f_pos++;
1931 case 1:
1932 ino = parent_ino(dentry);
1933 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1934 goto out;
1935 filp->f_pos++;
1936 default:
1937 files = get_files_struct(p);
1938 if (!files)
1939 goto out;
1940 rcu_read_lock();
1941 for (fd = filp->f_pos-2;
1942 fd < files_fdtable(files)->max_fds;
1943 fd++, filp->f_pos++) {
1944 char name[PROC_NUMBUF];
1945 int len;
1946
1947 if (!fcheck_files(files, fd))
1948 continue;
1949 rcu_read_unlock();
1950
1951 len = snprintf(name, sizeof(name), "%d", fd);
1952 if (proc_fill_cache(filp, dirent, filldir,
1953 name, len, instantiate,
1954 p, &fd) < 0) {
1955 rcu_read_lock();
1956 break;
1957 }
1958 rcu_read_lock();
1959 }
1960 rcu_read_unlock();
1961 put_files_struct(files);
1962 }
1963 out:
1964 put_task_struct(p);
1965 out_no_task:
1966 return retval;
1967 }
1968
1969 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1970 struct nameidata *nd)
1971 {
1972 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1973 }
1974
1975 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1976 {
1977 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1978 }
1979
1980 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1981 size_t len, loff_t *ppos)
1982 {
1983 char tmp[PROC_FDINFO_MAX];
1984 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1985 if (!err)
1986 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1987 return err;
1988 }
1989
1990 static const struct file_operations proc_fdinfo_file_operations = {
1991 .open = nonseekable_open,
1992 .read = proc_fdinfo_read,
1993 .llseek = no_llseek,
1994 };
1995
1996 static const struct file_operations proc_fd_operations = {
1997 .read = generic_read_dir,
1998 .readdir = proc_readfd,
1999 .llseek = default_llseek,
2000 };
2001
2002 #ifdef CONFIG_CHECKPOINT_RESTORE
2003
2004 /*
2005 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2006 * which represent vma start and end addresses.
2007 */
2008 static int dname_to_vma_addr(struct dentry *dentry,
2009 unsigned long *start, unsigned long *end)
2010 {
2011 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
2012 return -EINVAL;
2013
2014 return 0;
2015 }
2016
2017 static int map_files_d_revalidate(struct dentry *dentry, struct nameidata *nd)
2018 {
2019 unsigned long vm_start, vm_end;
2020 bool exact_vma_exists = false;
2021 struct mm_struct *mm = NULL;
2022 struct task_struct *task;
2023 const struct cred *cred;
2024 struct inode *inode;
2025 int status = 0;
2026
2027 if (nd && nd->flags & LOOKUP_RCU)
2028 return -ECHILD;
2029
2030 if (!capable(CAP_SYS_ADMIN)) {
2031 status = -EACCES;
2032 goto out_notask;
2033 }
2034
2035 inode = dentry->d_inode;
2036 task = get_proc_task(inode);
2037 if (!task)
2038 goto out_notask;
2039
2040 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2041 goto out;
2042
2043 mm = get_task_mm(task);
2044 if (!mm)
2045 goto out;
2046
2047 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2048 down_read(&mm->mmap_sem);
2049 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
2050 up_read(&mm->mmap_sem);
2051 }
2052
2053 mmput(mm);
2054
2055 if (exact_vma_exists) {
2056 if (task_dumpable(task)) {
2057 rcu_read_lock();
2058 cred = __task_cred(task);
2059 inode->i_uid = cred->euid;
2060 inode->i_gid = cred->egid;
2061 rcu_read_unlock();
2062 } else {
2063 inode->i_uid = 0;
2064 inode->i_gid = 0;
2065 }
2066 security_task_to_inode(task, inode);
2067 status = 1;
2068 }
2069
2070 out:
2071 put_task_struct(task);
2072
2073 out_notask:
2074 if (status <= 0)
2075 d_drop(dentry);
2076
2077 return status;
2078 }
2079
2080 static const struct dentry_operations tid_map_files_dentry_operations = {
2081 .d_revalidate = map_files_d_revalidate,
2082 .d_delete = pid_delete_dentry,
2083 };
2084
2085 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
2086 {
2087 unsigned long vm_start, vm_end;
2088 struct vm_area_struct *vma;
2089 struct task_struct *task;
2090 struct mm_struct *mm;
2091 int rc;
2092
2093 rc = -ENOENT;
2094 task = get_proc_task(dentry->d_inode);
2095 if (!task)
2096 goto out;
2097
2098 mm = get_task_mm(task);
2099 put_task_struct(task);
2100 if (!mm)
2101 goto out;
2102
2103 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2104 if (rc)
2105 goto out_mmput;
2106
2107 down_read(&mm->mmap_sem);
2108 vma = find_exact_vma(mm, vm_start, vm_end);
2109 if (vma && vma->vm_file) {
2110 *path = vma->vm_file->f_path;
2111 path_get(path);
2112 rc = 0;
2113 }
2114 up_read(&mm->mmap_sem);
2115
2116 out_mmput:
2117 mmput(mm);
2118 out:
2119 return rc;
2120 }
2121
2122 struct map_files_info {
2123 struct file *file;
2124 unsigned long len;
2125 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
2126 };
2127
2128 static struct dentry *
2129 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2130 struct task_struct *task, const void *ptr)
2131 {
2132 const struct file *file = ptr;
2133 struct proc_inode *ei;
2134 struct inode *inode;
2135
2136 if (!file)
2137 return ERR_PTR(-ENOENT);
2138
2139 inode = proc_pid_make_inode(dir->i_sb, task);
2140 if (!inode)
2141 return ERR_PTR(-ENOENT);
2142
2143 ei = PROC_I(inode);
2144 ei->op.proc_get_link = proc_map_files_get_link;
2145
2146 inode->i_op = &proc_pid_link_inode_operations;
2147 inode->i_size = 64;
2148 inode->i_mode = S_IFLNK;
2149
2150 if (file->f_mode & FMODE_READ)
2151 inode->i_mode |= S_IRUSR;
2152 if (file->f_mode & FMODE_WRITE)
2153 inode->i_mode |= S_IWUSR;
2154
2155 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2156 d_add(dentry, inode);
2157
2158 return NULL;
2159 }
2160
2161 static struct dentry *proc_map_files_lookup(struct inode *dir,
2162 struct dentry *dentry, struct nameidata *nd)
2163 {
2164 unsigned long vm_start, vm_end;
2165 struct vm_area_struct *vma;
2166 struct task_struct *task;
2167 struct dentry *result;
2168 struct mm_struct *mm;
2169
2170 result = ERR_PTR(-EACCES);
2171 if (!capable(CAP_SYS_ADMIN))
2172 goto out;
2173
2174 result = ERR_PTR(-ENOENT);
2175 task = get_proc_task(dir);
2176 if (!task)
2177 goto out;
2178
2179 result = ERR_PTR(-EACCES);
2180 if (lock_trace(task))
2181 goto out_put_task;
2182
2183 result = ERR_PTR(-ENOENT);
2184 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2185 goto out_unlock;
2186
2187 mm = get_task_mm(task);
2188 if (!mm)
2189 goto out_unlock;
2190
2191 down_read(&mm->mmap_sem);
2192 vma = find_exact_vma(mm, vm_start, vm_end);
2193 if (!vma)
2194 goto out_no_vma;
2195
2196 result = proc_map_files_instantiate(dir, dentry, task, vma->vm_file);
2197
2198 out_no_vma:
2199 up_read(&mm->mmap_sem);
2200 mmput(mm);
2201 out_unlock:
2202 unlock_trace(task);
2203 out_put_task:
2204 put_task_struct(task);
2205 out:
2206 return result;
2207 }
2208
2209 static const struct inode_operations proc_map_files_inode_operations = {
2210 .lookup = proc_map_files_lookup,
2211 .permission = proc_fd_permission,
2212 .setattr = proc_setattr,
2213 };
2214
2215 static int
2216 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
2217 {
2218 struct dentry *dentry = filp->f_path.dentry;
2219 struct inode *inode = dentry->d_inode;
2220 struct vm_area_struct *vma;
2221 struct task_struct *task;
2222 struct mm_struct *mm;
2223 ino_t ino;
2224 int ret;
2225
2226 ret = -EACCES;
2227 if (!capable(CAP_SYS_ADMIN))
2228 goto out;
2229
2230 ret = -ENOENT;
2231 task = get_proc_task(inode);
2232 if (!task)
2233 goto out;
2234
2235 ret = -EACCES;
2236 if (lock_trace(task))
2237 goto out_put_task;
2238
2239 ret = 0;
2240 switch (filp->f_pos) {
2241 case 0:
2242 ino = inode->i_ino;
2243 if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
2244 goto out_unlock;
2245 filp->f_pos++;
2246 case 1:
2247 ino = parent_ino(dentry);
2248 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2249 goto out_unlock;
2250 filp->f_pos++;
2251 default:
2252 {
2253 unsigned long nr_files, pos, i;
2254 struct flex_array *fa = NULL;
2255 struct map_files_info info;
2256 struct map_files_info *p;
2257
2258 mm = get_task_mm(task);
2259 if (!mm)
2260 goto out_unlock;
2261 down_read(&mm->mmap_sem);
2262
2263 nr_files = 0;
2264
2265 /*
2266 * We need two passes here:
2267 *
2268 * 1) Collect vmas of mapped files with mmap_sem taken
2269 * 2) Release mmap_sem and instantiate entries
2270 *
2271 * otherwise we get lockdep complained, since filldir()
2272 * routine might require mmap_sem taken in might_fault().
2273 */
2274
2275 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2276 if (vma->vm_file && ++pos > filp->f_pos)
2277 nr_files++;
2278 }
2279
2280 if (nr_files) {
2281 fa = flex_array_alloc(sizeof(info), nr_files,
2282 GFP_KERNEL);
2283 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2284 GFP_KERNEL)) {
2285 ret = -ENOMEM;
2286 if (fa)
2287 flex_array_free(fa);
2288 up_read(&mm->mmap_sem);
2289 mmput(mm);
2290 goto out_unlock;
2291 }
2292 for (i = 0, vma = mm->mmap, pos = 2; vma;
2293 vma = vma->vm_next) {
2294 if (!vma->vm_file)
2295 continue;
2296 if (++pos <= filp->f_pos)
2297 continue;
2298
2299 get_file(vma->vm_file);
2300 info.file = vma->vm_file;
2301 info.len = snprintf(info.name,
2302 sizeof(info.name), "%lx-%lx",
2303 vma->vm_start, vma->vm_end);
2304 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2305 BUG();
2306 }
2307 }
2308 up_read(&mm->mmap_sem);
2309
2310 for (i = 0; i < nr_files; i++) {
2311 p = flex_array_get(fa, i);
2312 ret = proc_fill_cache(filp, dirent, filldir,
2313 p->name, p->len,
2314 proc_map_files_instantiate,
2315 task, p->file);
2316 if (ret)
2317 break;
2318 filp->f_pos++;
2319 fput(p->file);
2320 }
2321 for (; i < nr_files; i++) {
2322 /*
2323 * In case of error don't forget
2324 * to put rest of file refs.
2325 */
2326 p = flex_array_get(fa, i);
2327 fput(p->file);
2328 }
2329 if (fa)
2330 flex_array_free(fa);
2331 mmput(mm);
2332 }
2333 }
2334
2335 out_unlock:
2336 unlock_trace(task);
2337 out_put_task:
2338 put_task_struct(task);
2339 out:
2340 return ret;
2341 }
2342
2343 static const struct file_operations proc_map_files_operations = {
2344 .read = generic_read_dir,
2345 .readdir = proc_map_files_readdir,
2346 .llseek = default_llseek,
2347 };
2348
2349 #endif /* CONFIG_CHECKPOINT_RESTORE */
2350
2351 /*
2352 * /proc/pid/fd needs a special permission handler so that a process can still
2353 * access /proc/self/fd after it has executed a setuid().
2354 */
2355 static int proc_fd_permission(struct inode *inode, int mask)
2356 {
2357 int rv = generic_permission(inode, mask);
2358 if (rv == 0)
2359 return 0;
2360 if (task_pid(current) == proc_pid(inode))
2361 rv = 0;
2362 return rv;
2363 }
2364
2365 /*
2366 * proc directories can do almost nothing..
2367 */
2368 static const struct inode_operations proc_fd_inode_operations = {
2369 .lookup = proc_lookupfd,
2370 .permission = proc_fd_permission,
2371 .setattr = proc_setattr,
2372 };
2373
2374 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2375 struct dentry *dentry, struct task_struct *task, const void *ptr)
2376 {
2377 unsigned fd = *(unsigned *)ptr;
2378 struct inode *inode;
2379 struct proc_inode *ei;
2380 struct dentry *error = ERR_PTR(-ENOENT);
2381
2382 inode = proc_pid_make_inode(dir->i_sb, task);
2383 if (!inode)
2384 goto out;
2385 ei = PROC_I(inode);
2386 ei->fd = fd;
2387 inode->i_mode = S_IFREG | S_IRUSR;
2388 inode->i_fop = &proc_fdinfo_file_operations;
2389 d_set_d_op(dentry, &tid_fd_dentry_operations);
2390 d_add(dentry, inode);
2391 /* Close the race of the process dying before we return the dentry */
2392 if (tid_fd_revalidate(dentry, NULL))
2393 error = NULL;
2394
2395 out:
2396 return error;
2397 }
2398
2399 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2400 struct dentry *dentry,
2401 struct nameidata *nd)
2402 {
2403 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2404 }
2405
2406 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2407 {
2408 return proc_readfd_common(filp, dirent, filldir,
2409 proc_fdinfo_instantiate);
2410 }
2411
2412 static const struct file_operations proc_fdinfo_operations = {
2413 .read = generic_read_dir,
2414 .readdir = proc_readfdinfo,
2415 .llseek = default_llseek,
2416 };
2417
2418 /*
2419 * proc directories can do almost nothing..
2420 */
2421 static const struct inode_operations proc_fdinfo_inode_operations = {
2422 .lookup = proc_lookupfdinfo,
2423 .setattr = proc_setattr,
2424 };
2425
2426
2427 static struct dentry *proc_pident_instantiate(struct inode *dir,
2428 struct dentry *dentry, struct task_struct *task, const void *ptr)
2429 {
2430 const struct pid_entry *p = ptr;
2431 struct inode *inode;
2432 struct proc_inode *ei;
2433 struct dentry *error = ERR_PTR(-ENOENT);
2434
2435 inode = proc_pid_make_inode(dir->i_sb, task);
2436 if (!inode)
2437 goto out;
2438
2439 ei = PROC_I(inode);
2440 inode->i_mode = p->mode;
2441 if (S_ISDIR(inode->i_mode))
2442 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2443 if (p->iop)
2444 inode->i_op = p->iop;
2445 if (p->fop)
2446 inode->i_fop = p->fop;
2447 ei->op = p->op;
2448 d_set_d_op(dentry, &pid_dentry_operations);
2449 d_add(dentry, inode);
2450 /* Close the race of the process dying before we return the dentry */
2451 if (pid_revalidate(dentry, NULL))
2452 error = NULL;
2453 out:
2454 return error;
2455 }
2456
2457 static struct dentry *proc_pident_lookup(struct inode *dir,
2458 struct dentry *dentry,
2459 const struct pid_entry *ents,
2460 unsigned int nents)
2461 {
2462 struct dentry *error;
2463 struct task_struct *task = get_proc_task(dir);
2464 const struct pid_entry *p, *last;
2465
2466 error = ERR_PTR(-ENOENT);
2467
2468 if (!task)
2469 goto out_no_task;
2470
2471 /*
2472 * Yes, it does not scale. And it should not. Don't add
2473 * new entries into /proc/<tgid>/ without very good reasons.
2474 */
2475 last = &ents[nents - 1];
2476 for (p = ents; p <= last; p++) {
2477 if (p->len != dentry->d_name.len)
2478 continue;
2479 if (!memcmp(dentry->d_name.name, p->name, p->len))
2480 break;
2481 }
2482 if (p > last)
2483 goto out;
2484
2485 error = proc_pident_instantiate(dir, dentry, task, p);
2486 out:
2487 put_task_struct(task);
2488 out_no_task:
2489 return error;
2490 }
2491
2492 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2493 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2494 {
2495 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2496 proc_pident_instantiate, task, p);
2497 }
2498
2499 static int proc_pident_readdir(struct file *filp,
2500 void *dirent, filldir_t filldir,
2501 const struct pid_entry *ents, unsigned int nents)
2502 {
2503 int i;
2504 struct dentry *dentry = filp->f_path.dentry;
2505 struct inode *inode = dentry->d_inode;
2506 struct task_struct *task = get_proc_task(inode);
2507 const struct pid_entry *p, *last;
2508 ino_t ino;
2509 int ret;
2510
2511 ret = -ENOENT;
2512 if (!task)
2513 goto out_no_task;
2514
2515 ret = 0;
2516 i = filp->f_pos;
2517 switch (i) {
2518 case 0:
2519 ino = inode->i_ino;
2520 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2521 goto out;
2522 i++;
2523 filp->f_pos++;
2524 /* fall through */
2525 case 1:
2526 ino = parent_ino(dentry);
2527 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2528 goto out;
2529 i++;
2530 filp->f_pos++;
2531 /* fall through */
2532 default:
2533 i -= 2;
2534 if (i >= nents) {
2535 ret = 1;
2536 goto out;
2537 }
2538 p = ents + i;
2539 last = &ents[nents - 1];
2540 while (p <= last) {
2541 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2542 goto out;
2543 filp->f_pos++;
2544 p++;
2545 }
2546 }
2547
2548 ret = 1;
2549 out:
2550 put_task_struct(task);
2551 out_no_task:
2552 return ret;
2553 }
2554
2555 #ifdef CONFIG_SECURITY
2556 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2557 size_t count, loff_t *ppos)
2558 {
2559 struct inode * inode = file->f_path.dentry->d_inode;
2560 char *p = NULL;
2561 ssize_t length;
2562 struct task_struct *task = get_proc_task(inode);
2563
2564 if (!task)
2565 return -ESRCH;
2566
2567 length = security_getprocattr(task,
2568 (char*)file->f_path.dentry->d_name.name,
2569 &p);
2570 put_task_struct(task);
2571 if (length > 0)
2572 length = simple_read_from_buffer(buf, count, ppos, p, length);
2573 kfree(p);
2574 return length;
2575 }
2576
2577 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2578 size_t count, loff_t *ppos)
2579 {
2580 struct inode * inode = file->f_path.dentry->d_inode;
2581 char *page;
2582 ssize_t length;
2583 struct task_struct *task = get_proc_task(inode);
2584
2585 length = -ESRCH;
2586 if (!task)
2587 goto out_no_task;
2588 if (count > PAGE_SIZE)
2589 count = PAGE_SIZE;
2590
2591 /* No partial writes. */
2592 length = -EINVAL;
2593 if (*ppos != 0)
2594 goto out;
2595
2596 length = -ENOMEM;
2597 page = (char*)__get_free_page(GFP_TEMPORARY);
2598 if (!page)
2599 goto out;
2600
2601 length = -EFAULT;
2602 if (copy_from_user(page, buf, count))
2603 goto out_free;
2604
2605 /* Guard against adverse ptrace interaction */
2606 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2607 if (length < 0)
2608 goto out_free;
2609
2610 length = security_setprocattr(task,
2611 (char*)file->f_path.dentry->d_name.name,
2612 (void*)page, count);
2613 mutex_unlock(&task->signal->cred_guard_mutex);
2614 out_free:
2615 free_page((unsigned long) page);
2616 out:
2617 put_task_struct(task);
2618 out_no_task:
2619 return length;
2620 }
2621
2622 static const struct file_operations proc_pid_attr_operations = {
2623 .read = proc_pid_attr_read,
2624 .write = proc_pid_attr_write,
2625 .llseek = generic_file_llseek,
2626 };
2627
2628 static const struct pid_entry attr_dir_stuff[] = {
2629 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2630 REG("prev", S_IRUGO, proc_pid_attr_operations),
2631 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2632 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2633 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2634 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2635 };
2636
2637 static int proc_attr_dir_readdir(struct file * filp,
2638 void * dirent, filldir_t filldir)
2639 {
2640 return proc_pident_readdir(filp,dirent,filldir,
2641 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2642 }
2643
2644 static const struct file_operations proc_attr_dir_operations = {
2645 .read = generic_read_dir,
2646 .readdir = proc_attr_dir_readdir,
2647 .llseek = default_llseek,
2648 };
2649
2650 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2651 struct dentry *dentry, struct nameidata *nd)
2652 {
2653 return proc_pident_lookup(dir, dentry,
2654 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2655 }
2656
2657 static const struct inode_operations proc_attr_dir_inode_operations = {
2658 .lookup = proc_attr_dir_lookup,
2659 .getattr = pid_getattr,
2660 .setattr = proc_setattr,
2661 };
2662
2663 #endif
2664
2665 #ifdef CONFIG_ELF_CORE
2666 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2667 size_t count, loff_t *ppos)
2668 {
2669 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2670 struct mm_struct *mm;
2671 char buffer[PROC_NUMBUF];
2672 size_t len;
2673 int ret;
2674
2675 if (!task)
2676 return -ESRCH;
2677
2678 ret = 0;
2679 mm = get_task_mm(task);
2680 if (mm) {
2681 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2682 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2683 MMF_DUMP_FILTER_SHIFT));
2684 mmput(mm);
2685 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2686 }
2687
2688 put_task_struct(task);
2689
2690 return ret;
2691 }
2692
2693 static ssize_t proc_coredump_filter_write(struct file *file,
2694 const char __user *buf,
2695 size_t count,
2696 loff_t *ppos)
2697 {
2698 struct task_struct *task;
2699 struct mm_struct *mm;
2700 char buffer[PROC_NUMBUF], *end;
2701 unsigned int val;
2702 int ret;
2703 int i;
2704 unsigned long mask;
2705
2706 ret = -EFAULT;
2707 memset(buffer, 0, sizeof(buffer));
2708 if (count > sizeof(buffer) - 1)
2709 count = sizeof(buffer) - 1;
2710 if (copy_from_user(buffer, buf, count))
2711 goto out_no_task;
2712
2713 ret = -EINVAL;
2714 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2715 if (*end == '\n')
2716 end++;
2717 if (end - buffer == 0)
2718 goto out_no_task;
2719
2720 ret = -ESRCH;
2721 task = get_proc_task(file->f_dentry->d_inode);
2722 if (!task)
2723 goto out_no_task;
2724
2725 ret = end - buffer;
2726 mm = get_task_mm(task);
2727 if (!mm)
2728 goto out_no_mm;
2729
2730 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2731 if (val & mask)
2732 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2733 else
2734 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2735 }
2736
2737 mmput(mm);
2738 out_no_mm:
2739 put_task_struct(task);
2740 out_no_task:
2741 return ret;
2742 }
2743
2744 static const struct file_operations proc_coredump_filter_operations = {
2745 .read = proc_coredump_filter_read,
2746 .write = proc_coredump_filter_write,
2747 .llseek = generic_file_llseek,
2748 };
2749 #endif
2750
2751 /*
2752 * /proc/self:
2753 */
2754 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2755 int buflen)
2756 {
2757 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2758 pid_t tgid = task_tgid_nr_ns(current, ns);
2759 char tmp[PROC_NUMBUF];
2760 if (!tgid)
2761 return -ENOENT;
2762 sprintf(tmp, "%d", tgid);
2763 return vfs_readlink(dentry,buffer,buflen,tmp);
2764 }
2765
2766 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2767 {
2768 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2769 pid_t tgid = task_tgid_nr_ns(current, ns);
2770 char *name = ERR_PTR(-ENOENT);
2771 if (tgid) {
2772 name = __getname();
2773 if (!name)
2774 name = ERR_PTR(-ENOMEM);
2775 else
2776 sprintf(name, "%d", tgid);
2777 }
2778 nd_set_link(nd, name);
2779 return NULL;
2780 }
2781
2782 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2783 void *cookie)
2784 {
2785 char *s = nd_get_link(nd);
2786 if (!IS_ERR(s))
2787 __putname(s);
2788 }
2789
2790 static const struct inode_operations proc_self_inode_operations = {
2791 .readlink = proc_self_readlink,
2792 .follow_link = proc_self_follow_link,
2793 .put_link = proc_self_put_link,
2794 };
2795
2796 /*
2797 * proc base
2798 *
2799 * These are the directory entries in the root directory of /proc
2800 * that properly belong to the /proc filesystem, as they describe
2801 * describe something that is process related.
2802 */
2803 static const struct pid_entry proc_base_stuff[] = {
2804 NOD("self", S_IFLNK|S_IRWXUGO,
2805 &proc_self_inode_operations, NULL, {}),
2806 };
2807
2808 static struct dentry *proc_base_instantiate(struct inode *dir,
2809 struct dentry *dentry, struct task_struct *task, const void *ptr)
2810 {
2811 const struct pid_entry *p = ptr;
2812 struct inode *inode;
2813 struct proc_inode *ei;
2814 struct dentry *error;
2815
2816 /* Allocate the inode */
2817 error = ERR_PTR(-ENOMEM);
2818 inode = new_inode(dir->i_sb);
2819 if (!inode)
2820 goto out;
2821
2822 /* Initialize the inode */
2823 ei = PROC_I(inode);
2824 inode->i_ino = get_next_ino();
2825 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2826
2827 /*
2828 * grab the reference to the task.
2829 */
2830 ei->pid = get_task_pid(task, PIDTYPE_PID);
2831 if (!ei->pid)
2832 goto out_iput;
2833
2834 inode->i_mode = p->mode;
2835 if (S_ISDIR(inode->i_mode))
2836 set_nlink(inode, 2);
2837 if (S_ISLNK(inode->i_mode))
2838 inode->i_size = 64;
2839 if (p->iop)
2840 inode->i_op = p->iop;
2841 if (p->fop)
2842 inode->i_fop = p->fop;
2843 ei->op = p->op;
2844 d_add(dentry, inode);
2845 error = NULL;
2846 out:
2847 return error;
2848 out_iput:
2849 iput(inode);
2850 goto out;
2851 }
2852
2853 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2854 {
2855 struct dentry *error;
2856 struct task_struct *task = get_proc_task(dir);
2857 const struct pid_entry *p, *last;
2858
2859 error = ERR_PTR(-ENOENT);
2860
2861 if (!task)
2862 goto out_no_task;
2863
2864 /* Lookup the directory entry */
2865 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2866 for (p = proc_base_stuff; p <= last; p++) {
2867 if (p->len != dentry->d_name.len)
2868 continue;
2869 if (!memcmp(dentry->d_name.name, p->name, p->len))
2870 break;
2871 }
2872 if (p > last)
2873 goto out;
2874
2875 error = proc_base_instantiate(dir, dentry, task, p);
2876
2877 out:
2878 put_task_struct(task);
2879 out_no_task:
2880 return error;
2881 }
2882
2883 static int proc_base_fill_cache(struct file *filp, void *dirent,
2884 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2885 {
2886 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2887 proc_base_instantiate, task, p);
2888 }
2889
2890 #ifdef CONFIG_TASK_IO_ACCOUNTING
2891 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2892 {
2893 struct task_io_accounting acct = task->ioac;
2894 unsigned long flags;
2895 int result;
2896
2897 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2898 if (result)
2899 return result;
2900
2901 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2902 result = -EACCES;
2903 goto out_unlock;
2904 }
2905
2906 if (whole && lock_task_sighand(task, &flags)) {
2907 struct task_struct *t = task;
2908
2909 task_io_accounting_add(&acct, &task->signal->ioac);
2910 while_each_thread(task, t)
2911 task_io_accounting_add(&acct, &t->ioac);
2912
2913 unlock_task_sighand(task, &flags);
2914 }
2915 result = sprintf(buffer,
2916 "rchar: %llu\n"
2917 "wchar: %llu\n"
2918 "syscr: %llu\n"
2919 "syscw: %llu\n"
2920 "read_bytes: %llu\n"
2921 "write_bytes: %llu\n"
2922 "cancelled_write_bytes: %llu\n",
2923 (unsigned long long)acct.rchar,
2924 (unsigned long long)acct.wchar,
2925 (unsigned long long)acct.syscr,
2926 (unsigned long long)acct.syscw,
2927 (unsigned long long)acct.read_bytes,
2928 (unsigned long long)acct.write_bytes,
2929 (unsigned long long)acct.cancelled_write_bytes);
2930 out_unlock:
2931 mutex_unlock(&task->signal->cred_guard_mutex);
2932 return result;
2933 }
2934
2935 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2936 {
2937 return do_io_accounting(task, buffer, 0);
2938 }
2939
2940 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2941 {
2942 return do_io_accounting(task, buffer, 1);
2943 }
2944 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2945
2946 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2947 struct pid *pid, struct task_struct *task)
2948 {
2949 int err = lock_trace(task);
2950 if (!err) {
2951 seq_printf(m, "%08x\n", task->personality);
2952 unlock_trace(task);
2953 }
2954 return err;
2955 }
2956
2957 /*
2958 * Thread groups
2959 */
2960 static const struct file_operations proc_task_operations;
2961 static const struct inode_operations proc_task_inode_operations;
2962
2963 static const struct pid_entry tgid_base_stuff[] = {
2964 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2965 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2966 #ifdef CONFIG_CHECKPOINT_RESTORE
2967 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2968 #endif
2969 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2970 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2971 #ifdef CONFIG_NET
2972 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2973 #endif
2974 REG("environ", S_IRUSR, proc_environ_operations),
2975 INF("auxv", S_IRUSR, proc_pid_auxv),
2976 ONE("status", S_IRUGO, proc_pid_status),
2977 ONE("personality", S_IRUGO, proc_pid_personality),
2978 INF("limits", S_IRUGO, proc_pid_limits),
2979 #ifdef CONFIG_SCHED_DEBUG
2980 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2981 #endif
2982 #ifdef CONFIG_SCHED_AUTOGROUP
2983 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2984 #endif
2985 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2986 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2987 INF("syscall", S_IRUGO, proc_pid_syscall),
2988 #endif
2989 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2990 ONE("stat", S_IRUGO, proc_tgid_stat),
2991 ONE("statm", S_IRUGO, proc_pid_statm),
2992 REG("maps", S_IRUGO, proc_pid_maps_operations),
2993 #ifdef CONFIG_NUMA
2994 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2995 #endif
2996 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2997 LNK("cwd", proc_cwd_link),
2998 LNK("root", proc_root_link),
2999 LNK("exe", proc_exe_link),
3000 REG("mounts", S_IRUGO, proc_mounts_operations),
3001 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3002 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3003 #ifdef CONFIG_PROC_PAGE_MONITOR
3004 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3005 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3006 REG("pagemap", S_IRUGO, proc_pagemap_operations),
3007 #endif
3008 #ifdef CONFIG_SECURITY
3009 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3010 #endif
3011 #ifdef CONFIG_KALLSYMS
3012 INF("wchan", S_IRUGO, proc_pid_wchan),
3013 #endif
3014 #ifdef CONFIG_STACKTRACE
3015 ONE("stack", S_IRUGO, proc_pid_stack),
3016 #endif
3017 #ifdef CONFIG_SCHEDSTATS
3018 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3019 #endif
3020 #ifdef CONFIG_LATENCYTOP
3021 REG("latency", S_IRUGO, proc_lstats_operations),
3022 #endif
3023 #ifdef CONFIG_PROC_PID_CPUSET
3024 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3025 #endif
3026 #ifdef CONFIG_CGROUPS
3027 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3028 #endif
3029 INF("oom_score", S_IRUGO, proc_oom_score),
3030 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3031 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3032 #ifdef CONFIG_AUDITSYSCALL
3033 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3034 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3035 #endif
3036 #ifdef CONFIG_FAULT_INJECTION
3037 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3038 #endif
3039 #ifdef CONFIG_ELF_CORE
3040 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3041 #endif
3042 #ifdef CONFIG_TASK_IO_ACCOUNTING
3043 INF("io", S_IRUSR, proc_tgid_io_accounting),
3044 #endif
3045 #ifdef CONFIG_HARDWALL
3046 INF("hardwall", S_IRUGO, proc_pid_hardwall),
3047 #endif
3048 };
3049
3050 static int proc_tgid_base_readdir(struct file * filp,
3051 void * dirent, filldir_t filldir)
3052 {
3053 return proc_pident_readdir(filp,dirent,filldir,
3054 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
3055 }
3056
3057 static const struct file_operations proc_tgid_base_operations = {
3058 .read = generic_read_dir,
3059 .readdir = proc_tgid_base_readdir,
3060 .llseek = default_llseek,
3061 };
3062
3063 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3064 return proc_pident_lookup(dir, dentry,
3065 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3066 }
3067
3068 static const struct inode_operations proc_tgid_base_inode_operations = {
3069 .lookup = proc_tgid_base_lookup,
3070 .getattr = pid_getattr,
3071 .setattr = proc_setattr,
3072 .permission = proc_pid_permission,
3073 };
3074
3075 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3076 {
3077 struct dentry *dentry, *leader, *dir;
3078 char buf[PROC_NUMBUF];
3079 struct qstr name;
3080
3081 name.name = buf;
3082 name.len = snprintf(buf, sizeof(buf), "%d", pid);
3083 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3084 if (dentry) {
3085 shrink_dcache_parent(dentry);
3086 d_drop(dentry);
3087 dput(dentry);
3088 }
3089
3090 name.name = buf;
3091 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
3092 leader = d_hash_and_lookup(mnt->mnt_root, &name);
3093 if (!leader)
3094 goto out;
3095
3096 name.name = "task";
3097 name.len = strlen(name.name);
3098 dir = d_hash_and_lookup(leader, &name);
3099 if (!dir)
3100 goto out_put_leader;
3101
3102 name.name = buf;
3103 name.len = snprintf(buf, sizeof(buf), "%d", pid);
3104 dentry = d_hash_and_lookup(dir, &name);
3105 if (dentry) {
3106 shrink_dcache_parent(dentry);
3107 d_drop(dentry);
3108 dput(dentry);
3109 }
3110
3111 dput(dir);
3112 out_put_leader:
3113 dput(leader);
3114 out:
3115 return;
3116 }
3117
3118 /**
3119 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3120 * @task: task that should be flushed.
3121 *
3122 * When flushing dentries from proc, one needs to flush them from global
3123 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3124 * in. This call is supposed to do all of this job.
3125 *
3126 * Looks in the dcache for
3127 * /proc/@pid
3128 * /proc/@tgid/task/@pid
3129 * if either directory is present flushes it and all of it'ts children
3130 * from the dcache.
3131 *
3132 * It is safe and reasonable to cache /proc entries for a task until
3133 * that task exits. After that they just clog up the dcache with
3134 * useless entries, possibly causing useful dcache entries to be
3135 * flushed instead. This routine is proved to flush those useless
3136 * dcache entries at process exit time.
3137 *
3138 * NOTE: This routine is just an optimization so it does not guarantee
3139 * that no dcache entries will exist at process exit time it
3140 * just makes it very unlikely that any will persist.
3141 */
3142
3143 void proc_flush_task(struct task_struct *task)
3144 {
3145 int i;
3146 struct pid *pid, *tgid;
3147 struct upid *upid;
3148
3149 pid = task_pid(task);
3150 tgid = task_tgid(task);
3151
3152 for (i = 0; i <= pid->level; i++) {
3153 upid = &pid->numbers[i];
3154 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3155 tgid->numbers[i].nr);
3156 }
3157
3158 upid = &pid->numbers[pid->level];
3159 if (upid->nr == 1)
3160 pid_ns_release_proc(upid->ns);
3161 }
3162
3163 static struct dentry *proc_pid_instantiate(struct inode *dir,
3164 struct dentry * dentry,
3165 struct task_struct *task, const void *ptr)
3166 {
3167 struct dentry *error = ERR_PTR(-ENOENT);
3168 struct inode *inode;
3169
3170 inode = proc_pid_make_inode(dir->i_sb, task);
3171 if (!inode)
3172 goto out;
3173
3174 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3175 inode->i_op = &proc_tgid_base_inode_operations;
3176 inode->i_fop = &proc_tgid_base_operations;
3177 inode->i_flags|=S_IMMUTABLE;
3178
3179 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3180 ARRAY_SIZE(tgid_base_stuff)));
3181
3182 d_set_d_op(dentry, &pid_dentry_operations);
3183
3184 d_add(dentry, inode);
3185 /* Close the race of the process dying before we return the dentry */
3186 if (pid_revalidate(dentry, NULL))
3187 error = NULL;
3188 out:
3189 return error;
3190 }
3191
3192 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3193 {
3194 struct dentry *result;
3195 struct task_struct *task;
3196 unsigned tgid;
3197 struct pid_namespace *ns;
3198
3199 result = proc_base_lookup(dir, dentry);
3200 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3201 goto out;
3202
3203 tgid = name_to_int(dentry);
3204 if (tgid == ~0U)
3205 goto out;
3206
3207 ns = dentry->d_sb->s_fs_info;
3208 rcu_read_lock();
3209 task = find_task_by_pid_ns(tgid, ns);
3210 if (task)
3211 get_task_struct(task);
3212 rcu_read_unlock();
3213 if (!task)
3214 goto out;
3215
3216 result = proc_pid_instantiate(dir, dentry, task, NULL);
3217 put_task_struct(task);
3218 out:
3219 return result;
3220 }
3221
3222 /*
3223 * Find the first task with tgid >= tgid
3224 *
3225 */
3226 struct tgid_iter {
3227 unsigned int tgid;
3228 struct task_struct *task;
3229 };
3230 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3231 {
3232 struct pid *pid;
3233
3234 if (iter.task)
3235 put_task_struct(iter.task);
3236 rcu_read_lock();
3237 retry:
3238 iter.task = NULL;
3239 pid = find_ge_pid(iter.tgid, ns);
3240 if (pid) {
3241 iter.tgid = pid_nr_ns(pid, ns);
3242 iter.task = pid_task(pid, PIDTYPE_PID);
3243 /* What we to know is if the pid we have find is the
3244 * pid of a thread_group_leader. Testing for task
3245 * being a thread_group_leader is the obvious thing
3246 * todo but there is a window when it fails, due to
3247 * the pid transfer logic in de_thread.
3248 *
3249 * So we perform the straight forward test of seeing
3250 * if the pid we have found is the pid of a thread
3251 * group leader, and don't worry if the task we have
3252 * found doesn't happen to be a thread group leader.
3253 * As we don't care in the case of readdir.
3254 */
3255 if (!iter.task || !has_group_leader_pid(iter.task)) {
3256 iter.tgid += 1;
3257 goto retry;
3258 }
3259 get_task_struct(iter.task);
3260 }
3261 rcu_read_unlock();
3262 return iter;
3263 }
3264
3265 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3266
3267 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3268 struct tgid_iter iter)
3269 {
3270 char name[PROC_NUMBUF];
3271 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3272 return proc_fill_cache(filp, dirent, filldir, name, len,
3273 proc_pid_instantiate, iter.task, NULL);
3274 }
3275
3276 static int fake_filldir(void *buf, const char *name, int namelen,
3277 loff_t offset, u64 ino, unsigned d_type)
3278 {
3279 return 0;
3280 }
3281
3282 /* for the /proc/ directory itself, after non-process stuff has been done */
3283 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3284 {
3285 unsigned int nr;
3286 struct task_struct *reaper;
3287 struct tgid_iter iter;
3288 struct pid_namespace *ns;
3289 filldir_t __filldir;
3290
3291 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3292 goto out_no_task;
3293 nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3294
3295 reaper = get_proc_task(filp->f_path.dentry->d_inode);
3296 if (!reaper)
3297 goto out_no_task;
3298
3299 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3300 const struct pid_entry *p = &proc_base_stuff[nr];
3301 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3302 goto out;
3303 }
3304
3305 ns = filp->f_dentry->d_sb->s_fs_info;
3306 iter.task = NULL;
3307 iter.tgid = filp->f_pos - TGID_OFFSET;
3308 for (iter = next_tgid(ns, iter);
3309 iter.task;
3310 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3311 if (has_pid_permissions(ns, iter.task, 2))
3312 __filldir = filldir;
3313 else
3314 __filldir = fake_filldir;
3315
3316 filp->f_pos = iter.tgid + TGID_OFFSET;
3317 if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
3318 put_task_struct(iter.task);
3319 goto out;
3320 }
3321 }
3322 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3323 out:
3324 put_task_struct(reaper);
3325 out_no_task:
3326 return 0;
3327 }
3328
3329 /*
3330 * Tasks
3331 */
3332 static const struct pid_entry tid_base_stuff[] = {
3333 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3334 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3335 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3336 REG("environ", S_IRUSR, proc_environ_operations),
3337 INF("auxv", S_IRUSR, proc_pid_auxv),
3338 ONE("status", S_IRUGO, proc_pid_status),
3339 ONE("personality", S_IRUGO, proc_pid_personality),
3340 INF("limits", S_IRUGO, proc_pid_limits),
3341 #ifdef CONFIG_SCHED_DEBUG
3342 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3343 #endif
3344 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3345 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3346 INF("syscall", S_IRUGO, proc_pid_syscall),
3347 #endif
3348 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3349 ONE("stat", S_IRUGO, proc_tid_stat),
3350 ONE("statm", S_IRUGO, proc_pid_statm),
3351 REG("maps", S_IRUGO, proc_tid_maps_operations),
3352 #ifdef CONFIG_NUMA
3353 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3354 #endif
3355 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3356 LNK("cwd", proc_cwd_link),
3357 LNK("root", proc_root_link),
3358 LNK("exe", proc_exe_link),
3359 REG("mounts", S_IRUGO, proc_mounts_operations),
3360 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3361 #ifdef CONFIG_PROC_PAGE_MONITOR
3362 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3363 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
3364 REG("pagemap", S_IRUGO, proc_pagemap_operations),
3365 #endif
3366 #ifdef CONFIG_SECURITY
3367 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3368 #endif
3369 #ifdef CONFIG_KALLSYMS
3370 INF("wchan", S_IRUGO, proc_pid_wchan),
3371 #endif
3372 #ifdef CONFIG_STACKTRACE
3373 ONE("stack", S_IRUGO, proc_pid_stack),
3374 #endif
3375 #ifdef CONFIG_SCHEDSTATS
3376 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3377 #endif
3378 #ifdef CONFIG_LATENCYTOP
3379 REG("latency", S_IRUGO, proc_lstats_operations),
3380 #endif
3381 #ifdef CONFIG_PROC_PID_CPUSET
3382 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3383 #endif
3384 #ifdef CONFIG_CGROUPS
3385 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3386 #endif
3387 INF("oom_score", S_IRUGO, proc_oom_score),
3388 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3389 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3390 #ifdef CONFIG_AUDITSYSCALL
3391 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3392 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3393 #endif
3394 #ifdef CONFIG_FAULT_INJECTION
3395 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3396 #endif
3397 #ifdef CONFIG_TASK_IO_ACCOUNTING
3398 INF("io", S_IRUSR, proc_tid_io_accounting),
3399 #endif
3400 #ifdef CONFIG_HARDWALL
3401 INF("hardwall", S_IRUGO, proc_pid_hardwall),
3402 #endif
3403 };
3404
3405 static int proc_tid_base_readdir(struct file * filp,
3406 void * dirent, filldir_t filldir)
3407 {
3408 return proc_pident_readdir(filp,dirent,filldir,
3409 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3410 }
3411
3412 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3413 return proc_pident_lookup(dir, dentry,
3414 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3415 }
3416
3417 static const struct file_operations proc_tid_base_operations = {
3418 .read = generic_read_dir,
3419 .readdir = proc_tid_base_readdir,
3420 .llseek = default_llseek,
3421 };
3422
3423 static const struct inode_operations proc_tid_base_inode_operations = {
3424 .lookup = proc_tid_base_lookup,
3425 .getattr = pid_getattr,
3426 .setattr = proc_setattr,
3427 };
3428
3429 static struct dentry *proc_task_instantiate(struct inode *dir,
3430 struct dentry *dentry, struct task_struct *task, const void *ptr)
3431 {
3432 struct dentry *error = ERR_PTR(-ENOENT);
3433 struct inode *inode;
3434 inode = proc_pid_make_inode(dir->i_sb, task);
3435
3436 if (!inode)
3437 goto out;
3438 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3439 inode->i_op = &proc_tid_base_inode_operations;
3440 inode->i_fop = &proc_tid_base_operations;
3441 inode->i_flags|=S_IMMUTABLE;
3442
3443 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3444 ARRAY_SIZE(tid_base_stuff)));
3445
3446 d_set_d_op(dentry, &pid_dentry_operations);
3447
3448 d_add(dentry, inode);
3449 /* Close the race of the process dying before we return the dentry */
3450 if (pid_revalidate(dentry, NULL))
3451 error = NULL;
3452 out:
3453 return error;
3454 }
3455
3456 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3457 {
3458 struct dentry *result = ERR_PTR(-ENOENT);
3459 struct task_struct *task;
3460 struct task_struct *leader = get_proc_task(dir);
3461 unsigned tid;
3462 struct pid_namespace *ns;
3463
3464 if (!leader)
3465 goto out_no_task;
3466
3467 tid = name_to_int(dentry);
3468 if (tid == ~0U)
3469 goto out;
3470
3471 ns = dentry->d_sb->s_fs_info;
3472 rcu_read_lock();
3473 task = find_task_by_pid_ns(tid, ns);
3474 if (task)
3475 get_task_struct(task);
3476 rcu_read_unlock();
3477 if (!task)
3478 goto out;
3479 if (!same_thread_group(leader, task))
3480 goto out_drop_task;
3481
3482 result = proc_task_instantiate(dir, dentry, task, NULL);
3483 out_drop_task:
3484 put_task_struct(task);
3485 out:
3486 put_task_struct(leader);
3487 out_no_task:
3488 return result;
3489 }
3490
3491 /*
3492 * Find the first tid of a thread group to return to user space.
3493 *
3494 * Usually this is just the thread group leader, but if the users
3495 * buffer was too small or there was a seek into the middle of the
3496 * directory we have more work todo.
3497 *
3498 * In the case of a short read we start with find_task_by_pid.
3499 *
3500 * In the case of a seek we start with the leader and walk nr
3501 * threads past it.
3502 */
3503 static struct task_struct *first_tid(struct task_struct *leader,
3504 int tid, int nr, struct pid_namespace *ns)
3505 {
3506 struct task_struct *pos;
3507
3508 rcu_read_lock();
3509 /* Attempt to start with the pid of a thread */
3510 if (tid && (nr > 0)) {
3511 pos = find_task_by_pid_ns(tid, ns);
3512 if (pos && (pos->group_leader == leader))
3513 goto found;
3514 }
3515
3516 /* If nr exceeds the number of threads there is nothing todo */
3517 pos = NULL;
3518 if (nr && nr >= get_nr_threads(leader))
3519 goto out;
3520
3521 /* If we haven't found our starting place yet start
3522 * with the leader and walk nr threads forward.
3523 */
3524 for (pos = leader; nr > 0; --nr) {
3525 pos = next_thread(pos);
3526 if (pos == leader) {
3527 pos = NULL;
3528 goto out;
3529 }
3530 }
3531 found:
3532 get_task_struct(pos);
3533 out:
3534 rcu_read_unlock();
3535 return pos;
3536 }
3537
3538 /*
3539 * Find the next thread in the thread list.
3540 * Return NULL if there is an error or no next thread.
3541 *
3542 * The reference to the input task_struct is released.
3543 */
3544 static struct task_struct *next_tid(struct task_struct *start)
3545 {
3546 struct task_struct *pos = NULL;
3547 rcu_read_lock();
3548 if (pid_alive(start)) {
3549 pos = next_thread(start);
3550 if (thread_group_leader(pos))
3551 pos = NULL;
3552 else
3553 get_task_struct(pos);
3554 }
3555 rcu_read_unlock();
3556 put_task_struct(start);
3557 return pos;
3558 }
3559
3560 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3561 struct task_struct *task, int tid)
3562 {
3563 char name[PROC_NUMBUF];
3564 int len = snprintf(name, sizeof(name), "%d", tid);
3565 return proc_fill_cache(filp, dirent, filldir, name, len,
3566 proc_task_instantiate, task, NULL);
3567 }
3568
3569 /* for the /proc/TGID/task/ directories */
3570 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3571 {
3572 struct dentry *dentry = filp->f_path.dentry;
3573 struct inode *inode = dentry->d_inode;
3574 struct task_struct *leader = NULL;
3575 struct task_struct *task;
3576 int retval = -ENOENT;
3577 ino_t ino;
3578 int tid;
3579 struct pid_namespace *ns;
3580
3581 task = get_proc_task(inode);
3582 if (!task)
3583 goto out_no_task;
3584 rcu_read_lock();
3585 if (pid_alive(task)) {
3586 leader = task->group_leader;
3587 get_task_struct(leader);
3588 }
3589 rcu_read_unlock();
3590 put_task_struct(task);
3591 if (!leader)
3592 goto out_no_task;
3593 retval = 0;
3594
3595 switch ((unsigned long)filp->f_pos) {
3596 case 0:
3597 ino = inode->i_ino;
3598 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3599 goto out;
3600 filp->f_pos++;
3601 /* fall through */
3602 case 1:
3603 ino = parent_ino(dentry);
3604 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3605 goto out;
3606 filp->f_pos++;
3607 /* fall through */
3608 }
3609
3610 /* f_version caches the tgid value that the last readdir call couldn't
3611 * return. lseek aka telldir automagically resets f_version to 0.
3612 */
3613 ns = filp->f_dentry->d_sb->s_fs_info;
3614 tid = (int)filp->f_version;
3615 filp->f_version = 0;
3616 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3617 task;
3618 task = next_tid(task), filp->f_pos++) {
3619 tid = task_pid_nr_ns(task, ns);
3620 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3621 /* returning this tgid failed, save it as the first
3622 * pid for the next readir call */
3623 filp->f_version = (u64)tid;
3624 put_task_struct(task);
3625 break;
3626 }
3627 }
3628 out:
3629 put_task_struct(leader);
3630 out_no_task:
3631 return retval;
3632 }
3633
3634 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3635 {
3636 struct inode *inode = dentry->d_inode;
3637 struct task_struct *p = get_proc_task(inode);
3638 generic_fillattr(inode, stat);
3639
3640 if (p) {
3641 stat->nlink += get_nr_threads(p);
3642 put_task_struct(p);
3643 }
3644
3645 return 0;
3646 }
3647
3648 static const struct inode_operations proc_task_inode_operations = {
3649 .lookup = proc_task_lookup,
3650 .getattr = proc_task_getattr,
3651 .setattr = proc_setattr,
3652 .permission = proc_pid_permission,
3653 };
3654
3655 static const struct file_operations proc_task_operations = {
3656 .read = generic_read_dir,
3657 .readdir = proc_task_readdir,
3658 .llseek = default_llseek,
3659 };
This page took 0.100351 seconds and 5 git commands to generate.