Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[deliverable/linux.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/stacktrace.h>
69 #include <linux/resource.h>
70 #include <linux/module.h>
71 #include <linux/mount.h>
72 #include <linux/security.h>
73 #include <linux/ptrace.h>
74 #include <linux/tracehook.h>
75 #include <linux/cgroup.h>
76 #include <linux/cpuset.h>
77 #include <linux/audit.h>
78 #include <linux/poll.h>
79 #include <linux/nsproxy.h>
80 #include <linux/oom.h>
81 #include <linux/elf.h>
82 #include <linux/pid_namespace.h>
83 #include <linux/fs_struct.h>
84 #include "internal.h"
85
86 /* NOTE:
87 * Implementing inode permission operations in /proc is almost
88 * certainly an error. Permission checks need to happen during
89 * each system call not at open time. The reason is that most of
90 * what we wish to check for permissions in /proc varies at runtime.
91 *
92 * The classic example of a problem is opening file descriptors
93 * in /proc for a task before it execs a suid executable.
94 */
95
96 struct pid_entry {
97 char *name;
98 int len;
99 mode_t mode;
100 const struct inode_operations *iop;
101 const struct file_operations *fop;
102 union proc_op op;
103 };
104
105 #define NOD(NAME, MODE, IOP, FOP, OP) { \
106 .name = (NAME), \
107 .len = sizeof(NAME) - 1, \
108 .mode = MODE, \
109 .iop = IOP, \
110 .fop = FOP, \
111 .op = OP, \
112 }
113
114 #define DIR(NAME, MODE, iops, fops) \
115 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
116 #define LNK(NAME, get_link) \
117 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
118 &proc_pid_link_inode_operations, NULL, \
119 { .proc_get_link = get_link } )
120 #define REG(NAME, MODE, fops) \
121 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
122 #define INF(NAME, MODE, read) \
123 NOD(NAME, (S_IFREG|(MODE)), \
124 NULL, &proc_info_file_operations, \
125 { .proc_read = read } )
126 #define ONE(NAME, MODE, show) \
127 NOD(NAME, (S_IFREG|(MODE)), \
128 NULL, &proc_single_file_operations, \
129 { .proc_show = show } )
130
131 /*
132 * Count the number of hardlinks for the pid_entry table, excluding the .
133 * and .. links.
134 */
135 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
136 unsigned int n)
137 {
138 unsigned int i;
139 unsigned int count;
140
141 count = 0;
142 for (i = 0; i < n; ++i) {
143 if (S_ISDIR(entries[i].mode))
144 ++count;
145 }
146
147 return count;
148 }
149
150 static int get_fs_path(struct task_struct *task, struct path *path, bool root)
151 {
152 struct fs_struct *fs;
153 int result = -ENOENT;
154
155 task_lock(task);
156 fs = task->fs;
157 if (fs) {
158 read_lock(&fs->lock);
159 *path = root ? fs->root : fs->pwd;
160 path_get(path);
161 read_unlock(&fs->lock);
162 result = 0;
163 }
164 task_unlock(task);
165 return result;
166 }
167
168 static int get_nr_threads(struct task_struct *tsk)
169 {
170 unsigned long flags;
171 int count = 0;
172
173 if (lock_task_sighand(tsk, &flags)) {
174 count = atomic_read(&tsk->signal->count);
175 unlock_task_sighand(tsk, &flags);
176 }
177 return count;
178 }
179
180 static int proc_cwd_link(struct inode *inode, struct path *path)
181 {
182 struct task_struct *task = get_proc_task(inode);
183 int result = -ENOENT;
184
185 if (task) {
186 result = get_fs_path(task, path, 0);
187 put_task_struct(task);
188 }
189 return result;
190 }
191
192 static int proc_root_link(struct inode *inode, struct path *path)
193 {
194 struct task_struct *task = get_proc_task(inode);
195 int result = -ENOENT;
196
197 if (task) {
198 result = get_fs_path(task, path, 1);
199 put_task_struct(task);
200 }
201 return result;
202 }
203
204 /*
205 * Return zero if current may access user memory in @task, -error if not.
206 */
207 static int check_mem_permission(struct task_struct *task)
208 {
209 /*
210 * A task can always look at itself, in case it chooses
211 * to use system calls instead of load instructions.
212 */
213 if (task == current)
214 return 0;
215
216 /*
217 * If current is actively ptrace'ing, and would also be
218 * permitted to freshly attach with ptrace now, permit it.
219 */
220 if (task_is_stopped_or_traced(task)) {
221 int match;
222 rcu_read_lock();
223 match = (tracehook_tracer_task(task) == current);
224 rcu_read_unlock();
225 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
226 return 0;
227 }
228
229 /*
230 * Noone else is allowed.
231 */
232 return -EPERM;
233 }
234
235 struct mm_struct *mm_for_maps(struct task_struct *task)
236 {
237 struct mm_struct *mm = get_task_mm(task);
238 if (!mm)
239 return NULL;
240 down_read(&mm->mmap_sem);
241 task_lock(task);
242 if (task->mm != mm)
243 goto out;
244 if (task->mm != current->mm &&
245 __ptrace_may_access(task, PTRACE_MODE_READ) < 0)
246 goto out;
247 task_unlock(task);
248 return mm;
249 out:
250 task_unlock(task);
251 up_read(&mm->mmap_sem);
252 mmput(mm);
253 return NULL;
254 }
255
256 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
257 {
258 int res = 0;
259 unsigned int len;
260 struct mm_struct *mm = get_task_mm(task);
261 if (!mm)
262 goto out;
263 if (!mm->arg_end)
264 goto out_mm; /* Shh! No looking before we're done */
265
266 len = mm->arg_end - mm->arg_start;
267
268 if (len > PAGE_SIZE)
269 len = PAGE_SIZE;
270
271 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
272
273 // If the nul at the end of args has been overwritten, then
274 // assume application is using setproctitle(3).
275 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
276 len = strnlen(buffer, res);
277 if (len < res) {
278 res = len;
279 } else {
280 len = mm->env_end - mm->env_start;
281 if (len > PAGE_SIZE - res)
282 len = PAGE_SIZE - res;
283 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
284 res = strnlen(buffer, res);
285 }
286 }
287 out_mm:
288 mmput(mm);
289 out:
290 return res;
291 }
292
293 static int proc_pid_auxv(struct task_struct *task, char *buffer)
294 {
295 int res = 0;
296 struct mm_struct *mm = get_task_mm(task);
297 if (mm) {
298 unsigned int nwords = 0;
299 do {
300 nwords += 2;
301 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
302 res = nwords * sizeof(mm->saved_auxv[0]);
303 if (res > PAGE_SIZE)
304 res = PAGE_SIZE;
305 memcpy(buffer, mm->saved_auxv, res);
306 mmput(mm);
307 }
308 return res;
309 }
310
311
312 #ifdef CONFIG_KALLSYMS
313 /*
314 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
315 * Returns the resolved symbol. If that fails, simply return the address.
316 */
317 static int proc_pid_wchan(struct task_struct *task, char *buffer)
318 {
319 unsigned long wchan;
320 char symname[KSYM_NAME_LEN];
321
322 wchan = get_wchan(task);
323
324 if (lookup_symbol_name(wchan, symname) < 0)
325 if (!ptrace_may_access(task, PTRACE_MODE_READ))
326 return 0;
327 else
328 return sprintf(buffer, "%lu", wchan);
329 else
330 return sprintf(buffer, "%s", symname);
331 }
332 #endif /* CONFIG_KALLSYMS */
333
334 #ifdef CONFIG_STACKTRACE
335
336 #define MAX_STACK_TRACE_DEPTH 64
337
338 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
339 struct pid *pid, struct task_struct *task)
340 {
341 struct stack_trace trace;
342 unsigned long *entries;
343 int i;
344
345 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
346 if (!entries)
347 return -ENOMEM;
348
349 trace.nr_entries = 0;
350 trace.max_entries = MAX_STACK_TRACE_DEPTH;
351 trace.entries = entries;
352 trace.skip = 0;
353 save_stack_trace_tsk(task, &trace);
354
355 for (i = 0; i < trace.nr_entries; i++) {
356 seq_printf(m, "[<%p>] %pS\n",
357 (void *)entries[i], (void *)entries[i]);
358 }
359 kfree(entries);
360
361 return 0;
362 }
363 #endif
364
365 #ifdef CONFIG_SCHEDSTATS
366 /*
367 * Provides /proc/PID/schedstat
368 */
369 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
370 {
371 return sprintf(buffer, "%llu %llu %lu\n",
372 (unsigned long long)task->se.sum_exec_runtime,
373 (unsigned long long)task->sched_info.run_delay,
374 task->sched_info.pcount);
375 }
376 #endif
377
378 #ifdef CONFIG_LATENCYTOP
379 static int lstats_show_proc(struct seq_file *m, void *v)
380 {
381 int i;
382 struct inode *inode = m->private;
383 struct task_struct *task = get_proc_task(inode);
384
385 if (!task)
386 return -ESRCH;
387 seq_puts(m, "Latency Top version : v0.1\n");
388 for (i = 0; i < 32; i++) {
389 if (task->latency_record[i].backtrace[0]) {
390 int q;
391 seq_printf(m, "%i %li %li ",
392 task->latency_record[i].count,
393 task->latency_record[i].time,
394 task->latency_record[i].max);
395 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
396 char sym[KSYM_SYMBOL_LEN];
397 char *c;
398 if (!task->latency_record[i].backtrace[q])
399 break;
400 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
401 break;
402 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
403 c = strchr(sym, '+');
404 if (c)
405 *c = 0;
406 seq_printf(m, "%s ", sym);
407 }
408 seq_printf(m, "\n");
409 }
410
411 }
412 put_task_struct(task);
413 return 0;
414 }
415
416 static int lstats_open(struct inode *inode, struct file *file)
417 {
418 return single_open(file, lstats_show_proc, inode);
419 }
420
421 static ssize_t lstats_write(struct file *file, const char __user *buf,
422 size_t count, loff_t *offs)
423 {
424 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
425
426 if (!task)
427 return -ESRCH;
428 clear_all_latency_tracing(task);
429 put_task_struct(task);
430
431 return count;
432 }
433
434 static const struct file_operations proc_lstats_operations = {
435 .open = lstats_open,
436 .read = seq_read,
437 .write = lstats_write,
438 .llseek = seq_lseek,
439 .release = single_release,
440 };
441
442 #endif
443
444 /* The badness from the OOM killer */
445 unsigned long badness(struct task_struct *p, unsigned long uptime);
446 static int proc_oom_score(struct task_struct *task, char *buffer)
447 {
448 unsigned long points;
449 struct timespec uptime;
450
451 do_posix_clock_monotonic_gettime(&uptime);
452 read_lock(&tasklist_lock);
453 points = badness(task, uptime.tv_sec);
454 read_unlock(&tasklist_lock);
455 return sprintf(buffer, "%lu\n", points);
456 }
457
458 struct limit_names {
459 char *name;
460 char *unit;
461 };
462
463 static const struct limit_names lnames[RLIM_NLIMITS] = {
464 [RLIMIT_CPU] = {"Max cpu time", "ms"},
465 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
466 [RLIMIT_DATA] = {"Max data size", "bytes"},
467 [RLIMIT_STACK] = {"Max stack size", "bytes"},
468 [RLIMIT_CORE] = {"Max core file size", "bytes"},
469 [RLIMIT_RSS] = {"Max resident set", "bytes"},
470 [RLIMIT_NPROC] = {"Max processes", "processes"},
471 [RLIMIT_NOFILE] = {"Max open files", "files"},
472 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
473 [RLIMIT_AS] = {"Max address space", "bytes"},
474 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
475 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
476 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
477 [RLIMIT_NICE] = {"Max nice priority", NULL},
478 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
479 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
480 };
481
482 /* Display limits for a process */
483 static int proc_pid_limits(struct task_struct *task, char *buffer)
484 {
485 unsigned int i;
486 int count = 0;
487 unsigned long flags;
488 char *bufptr = buffer;
489
490 struct rlimit rlim[RLIM_NLIMITS];
491
492 if (!lock_task_sighand(task, &flags))
493 return 0;
494 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
495 unlock_task_sighand(task, &flags);
496
497 /*
498 * print the file header
499 */
500 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
501 "Limit", "Soft Limit", "Hard Limit", "Units");
502
503 for (i = 0; i < RLIM_NLIMITS; i++) {
504 if (rlim[i].rlim_cur == RLIM_INFINITY)
505 count += sprintf(&bufptr[count], "%-25s %-20s ",
506 lnames[i].name, "unlimited");
507 else
508 count += sprintf(&bufptr[count], "%-25s %-20lu ",
509 lnames[i].name, rlim[i].rlim_cur);
510
511 if (rlim[i].rlim_max == RLIM_INFINITY)
512 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
513 else
514 count += sprintf(&bufptr[count], "%-20lu ",
515 rlim[i].rlim_max);
516
517 if (lnames[i].unit)
518 count += sprintf(&bufptr[count], "%-10s\n",
519 lnames[i].unit);
520 else
521 count += sprintf(&bufptr[count], "\n");
522 }
523
524 return count;
525 }
526
527 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
528 static int proc_pid_syscall(struct task_struct *task, char *buffer)
529 {
530 long nr;
531 unsigned long args[6], sp, pc;
532
533 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
534 return sprintf(buffer, "running\n");
535
536 if (nr < 0)
537 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
538
539 return sprintf(buffer,
540 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
541 nr,
542 args[0], args[1], args[2], args[3], args[4], args[5],
543 sp, pc);
544 }
545 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
546
547 /************************************************************************/
548 /* Here the fs part begins */
549 /************************************************************************/
550
551 /* permission checks */
552 static int proc_fd_access_allowed(struct inode *inode)
553 {
554 struct task_struct *task;
555 int allowed = 0;
556 /* Allow access to a task's file descriptors if it is us or we
557 * may use ptrace attach to the process and find out that
558 * information.
559 */
560 task = get_proc_task(inode);
561 if (task) {
562 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
563 put_task_struct(task);
564 }
565 return allowed;
566 }
567
568 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
569 {
570 int error;
571 struct inode *inode = dentry->d_inode;
572
573 if (attr->ia_valid & ATTR_MODE)
574 return -EPERM;
575
576 error = inode_change_ok(inode, attr);
577 if (!error)
578 error = inode_setattr(inode, attr);
579 return error;
580 }
581
582 static const struct inode_operations proc_def_inode_operations = {
583 .setattr = proc_setattr,
584 };
585
586 static int mounts_open_common(struct inode *inode, struct file *file,
587 const struct seq_operations *op)
588 {
589 struct task_struct *task = get_proc_task(inode);
590 struct nsproxy *nsp;
591 struct mnt_namespace *ns = NULL;
592 struct path root;
593 struct proc_mounts *p;
594 int ret = -EINVAL;
595
596 if (task) {
597 rcu_read_lock();
598 nsp = task_nsproxy(task);
599 if (nsp) {
600 ns = nsp->mnt_ns;
601 if (ns)
602 get_mnt_ns(ns);
603 }
604 rcu_read_unlock();
605 if (ns && get_fs_path(task, &root, 1) == 0)
606 ret = 0;
607 put_task_struct(task);
608 }
609
610 if (!ns)
611 goto err;
612 if (ret)
613 goto err_put_ns;
614
615 ret = -ENOMEM;
616 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
617 if (!p)
618 goto err_put_path;
619
620 file->private_data = &p->m;
621 ret = seq_open(file, op);
622 if (ret)
623 goto err_free;
624
625 p->m.private = p;
626 p->ns = ns;
627 p->root = root;
628 p->event = ns->event;
629
630 return 0;
631
632 err_free:
633 kfree(p);
634 err_put_path:
635 path_put(&root);
636 err_put_ns:
637 put_mnt_ns(ns);
638 err:
639 return ret;
640 }
641
642 static int mounts_release(struct inode *inode, struct file *file)
643 {
644 struct proc_mounts *p = file->private_data;
645 path_put(&p->root);
646 put_mnt_ns(p->ns);
647 return seq_release(inode, file);
648 }
649
650 static unsigned mounts_poll(struct file *file, poll_table *wait)
651 {
652 struct proc_mounts *p = file->private_data;
653 struct mnt_namespace *ns = p->ns;
654 unsigned res = POLLIN | POLLRDNORM;
655
656 poll_wait(file, &ns->poll, wait);
657
658 spin_lock(&vfsmount_lock);
659 if (p->event != ns->event) {
660 p->event = ns->event;
661 res |= POLLERR | POLLPRI;
662 }
663 spin_unlock(&vfsmount_lock);
664
665 return res;
666 }
667
668 static int mounts_open(struct inode *inode, struct file *file)
669 {
670 return mounts_open_common(inode, file, &mounts_op);
671 }
672
673 static const struct file_operations proc_mounts_operations = {
674 .open = mounts_open,
675 .read = seq_read,
676 .llseek = seq_lseek,
677 .release = mounts_release,
678 .poll = mounts_poll,
679 };
680
681 static int mountinfo_open(struct inode *inode, struct file *file)
682 {
683 return mounts_open_common(inode, file, &mountinfo_op);
684 }
685
686 static const struct file_operations proc_mountinfo_operations = {
687 .open = mountinfo_open,
688 .read = seq_read,
689 .llseek = seq_lseek,
690 .release = mounts_release,
691 .poll = mounts_poll,
692 };
693
694 static int mountstats_open(struct inode *inode, struct file *file)
695 {
696 return mounts_open_common(inode, file, &mountstats_op);
697 }
698
699 static const struct file_operations proc_mountstats_operations = {
700 .open = mountstats_open,
701 .read = seq_read,
702 .llseek = seq_lseek,
703 .release = mounts_release,
704 };
705
706 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
707
708 static ssize_t proc_info_read(struct file * file, char __user * buf,
709 size_t count, loff_t *ppos)
710 {
711 struct inode * inode = file->f_path.dentry->d_inode;
712 unsigned long page;
713 ssize_t length;
714 struct task_struct *task = get_proc_task(inode);
715
716 length = -ESRCH;
717 if (!task)
718 goto out_no_task;
719
720 if (count > PROC_BLOCK_SIZE)
721 count = PROC_BLOCK_SIZE;
722
723 length = -ENOMEM;
724 if (!(page = __get_free_page(GFP_TEMPORARY)))
725 goto out;
726
727 length = PROC_I(inode)->op.proc_read(task, (char*)page);
728
729 if (length >= 0)
730 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
731 free_page(page);
732 out:
733 put_task_struct(task);
734 out_no_task:
735 return length;
736 }
737
738 static const struct file_operations proc_info_file_operations = {
739 .read = proc_info_read,
740 };
741
742 static int proc_single_show(struct seq_file *m, void *v)
743 {
744 struct inode *inode = m->private;
745 struct pid_namespace *ns;
746 struct pid *pid;
747 struct task_struct *task;
748 int ret;
749
750 ns = inode->i_sb->s_fs_info;
751 pid = proc_pid(inode);
752 task = get_pid_task(pid, PIDTYPE_PID);
753 if (!task)
754 return -ESRCH;
755
756 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
757
758 put_task_struct(task);
759 return ret;
760 }
761
762 static int proc_single_open(struct inode *inode, struct file *filp)
763 {
764 int ret;
765 ret = single_open(filp, proc_single_show, NULL);
766 if (!ret) {
767 struct seq_file *m = filp->private_data;
768
769 m->private = inode;
770 }
771 return ret;
772 }
773
774 static const struct file_operations proc_single_file_operations = {
775 .open = proc_single_open,
776 .read = seq_read,
777 .llseek = seq_lseek,
778 .release = single_release,
779 };
780
781 static int mem_open(struct inode* inode, struct file* file)
782 {
783 file->private_data = (void*)((long)current->self_exec_id);
784 return 0;
785 }
786
787 static ssize_t mem_read(struct file * file, char __user * buf,
788 size_t count, loff_t *ppos)
789 {
790 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
791 char *page;
792 unsigned long src = *ppos;
793 int ret = -ESRCH;
794 struct mm_struct *mm;
795
796 if (!task)
797 goto out_no_task;
798
799 if (check_mem_permission(task))
800 goto out;
801
802 ret = -ENOMEM;
803 page = (char *)__get_free_page(GFP_TEMPORARY);
804 if (!page)
805 goto out;
806
807 ret = 0;
808
809 mm = get_task_mm(task);
810 if (!mm)
811 goto out_free;
812
813 ret = -EIO;
814
815 if (file->private_data != (void*)((long)current->self_exec_id))
816 goto out_put;
817
818 ret = 0;
819
820 while (count > 0) {
821 int this_len, retval;
822
823 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
824 retval = access_process_vm(task, src, page, this_len, 0);
825 if (!retval || check_mem_permission(task)) {
826 if (!ret)
827 ret = -EIO;
828 break;
829 }
830
831 if (copy_to_user(buf, page, retval)) {
832 ret = -EFAULT;
833 break;
834 }
835
836 ret += retval;
837 src += retval;
838 buf += retval;
839 count -= retval;
840 }
841 *ppos = src;
842
843 out_put:
844 mmput(mm);
845 out_free:
846 free_page((unsigned long) page);
847 out:
848 put_task_struct(task);
849 out_no_task:
850 return ret;
851 }
852
853 #define mem_write NULL
854
855 #ifndef mem_write
856 /* This is a security hazard */
857 static ssize_t mem_write(struct file * file, const char __user *buf,
858 size_t count, loff_t *ppos)
859 {
860 int copied;
861 char *page;
862 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
863 unsigned long dst = *ppos;
864
865 copied = -ESRCH;
866 if (!task)
867 goto out_no_task;
868
869 if (check_mem_permission(task))
870 goto out;
871
872 copied = -ENOMEM;
873 page = (char *)__get_free_page(GFP_TEMPORARY);
874 if (!page)
875 goto out;
876
877 copied = 0;
878 while (count > 0) {
879 int this_len, retval;
880
881 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
882 if (copy_from_user(page, buf, this_len)) {
883 copied = -EFAULT;
884 break;
885 }
886 retval = access_process_vm(task, dst, page, this_len, 1);
887 if (!retval) {
888 if (!copied)
889 copied = -EIO;
890 break;
891 }
892 copied += retval;
893 buf += retval;
894 dst += retval;
895 count -= retval;
896 }
897 *ppos = dst;
898 free_page((unsigned long) page);
899 out:
900 put_task_struct(task);
901 out_no_task:
902 return copied;
903 }
904 #endif
905
906 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
907 {
908 switch (orig) {
909 case 0:
910 file->f_pos = offset;
911 break;
912 case 1:
913 file->f_pos += offset;
914 break;
915 default:
916 return -EINVAL;
917 }
918 force_successful_syscall_return();
919 return file->f_pos;
920 }
921
922 static const struct file_operations proc_mem_operations = {
923 .llseek = mem_lseek,
924 .read = mem_read,
925 .write = mem_write,
926 .open = mem_open,
927 };
928
929 static ssize_t environ_read(struct file *file, char __user *buf,
930 size_t count, loff_t *ppos)
931 {
932 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
933 char *page;
934 unsigned long src = *ppos;
935 int ret = -ESRCH;
936 struct mm_struct *mm;
937
938 if (!task)
939 goto out_no_task;
940
941 if (!ptrace_may_access(task, PTRACE_MODE_READ))
942 goto out;
943
944 ret = -ENOMEM;
945 page = (char *)__get_free_page(GFP_TEMPORARY);
946 if (!page)
947 goto out;
948
949 ret = 0;
950
951 mm = get_task_mm(task);
952 if (!mm)
953 goto out_free;
954
955 while (count > 0) {
956 int this_len, retval, max_len;
957
958 this_len = mm->env_end - (mm->env_start + src);
959
960 if (this_len <= 0)
961 break;
962
963 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
964 this_len = (this_len > max_len) ? max_len : this_len;
965
966 retval = access_process_vm(task, (mm->env_start + src),
967 page, this_len, 0);
968
969 if (retval <= 0) {
970 ret = retval;
971 break;
972 }
973
974 if (copy_to_user(buf, page, retval)) {
975 ret = -EFAULT;
976 break;
977 }
978
979 ret += retval;
980 src += retval;
981 buf += retval;
982 count -= retval;
983 }
984 *ppos = src;
985
986 mmput(mm);
987 out_free:
988 free_page((unsigned long) page);
989 out:
990 put_task_struct(task);
991 out_no_task:
992 return ret;
993 }
994
995 static const struct file_operations proc_environ_operations = {
996 .read = environ_read,
997 };
998
999 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
1000 size_t count, loff_t *ppos)
1001 {
1002 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1003 char buffer[PROC_NUMBUF];
1004 size_t len;
1005 int oom_adjust;
1006
1007 if (!task)
1008 return -ESRCH;
1009 task_lock(task);
1010 if (task->mm)
1011 oom_adjust = task->mm->oom_adj;
1012 else
1013 oom_adjust = OOM_DISABLE;
1014 task_unlock(task);
1015 put_task_struct(task);
1016
1017 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1018
1019 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1020 }
1021
1022 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1023 size_t count, loff_t *ppos)
1024 {
1025 struct task_struct *task;
1026 char buffer[PROC_NUMBUF], *end;
1027 int oom_adjust;
1028
1029 memset(buffer, 0, sizeof(buffer));
1030 if (count > sizeof(buffer) - 1)
1031 count = sizeof(buffer) - 1;
1032 if (copy_from_user(buffer, buf, count))
1033 return -EFAULT;
1034 oom_adjust = simple_strtol(buffer, &end, 0);
1035 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1036 oom_adjust != OOM_DISABLE)
1037 return -EINVAL;
1038 if (*end == '\n')
1039 end++;
1040 task = get_proc_task(file->f_path.dentry->d_inode);
1041 if (!task)
1042 return -ESRCH;
1043 task_lock(task);
1044 if (!task->mm) {
1045 task_unlock(task);
1046 put_task_struct(task);
1047 return -EINVAL;
1048 }
1049 if (oom_adjust < task->mm->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1050 task_unlock(task);
1051 put_task_struct(task);
1052 return -EACCES;
1053 }
1054 task->mm->oom_adj = oom_adjust;
1055 task_unlock(task);
1056 put_task_struct(task);
1057 if (end - buffer == 0)
1058 return -EIO;
1059 return end - buffer;
1060 }
1061
1062 static const struct file_operations proc_oom_adjust_operations = {
1063 .read = oom_adjust_read,
1064 .write = oom_adjust_write,
1065 };
1066
1067 #ifdef CONFIG_AUDITSYSCALL
1068 #define TMPBUFLEN 21
1069 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1070 size_t count, loff_t *ppos)
1071 {
1072 struct inode * inode = file->f_path.dentry->d_inode;
1073 struct task_struct *task = get_proc_task(inode);
1074 ssize_t length;
1075 char tmpbuf[TMPBUFLEN];
1076
1077 if (!task)
1078 return -ESRCH;
1079 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1080 audit_get_loginuid(task));
1081 put_task_struct(task);
1082 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1083 }
1084
1085 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1086 size_t count, loff_t *ppos)
1087 {
1088 struct inode * inode = file->f_path.dentry->d_inode;
1089 char *page, *tmp;
1090 ssize_t length;
1091 uid_t loginuid;
1092
1093 if (!capable(CAP_AUDIT_CONTROL))
1094 return -EPERM;
1095
1096 if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1097 return -EPERM;
1098
1099 if (count >= PAGE_SIZE)
1100 count = PAGE_SIZE - 1;
1101
1102 if (*ppos != 0) {
1103 /* No partial writes. */
1104 return -EINVAL;
1105 }
1106 page = (char*)__get_free_page(GFP_TEMPORARY);
1107 if (!page)
1108 return -ENOMEM;
1109 length = -EFAULT;
1110 if (copy_from_user(page, buf, count))
1111 goto out_free_page;
1112
1113 page[count] = '\0';
1114 loginuid = simple_strtoul(page, &tmp, 10);
1115 if (tmp == page) {
1116 length = -EINVAL;
1117 goto out_free_page;
1118
1119 }
1120 length = audit_set_loginuid(current, loginuid);
1121 if (likely(length == 0))
1122 length = count;
1123
1124 out_free_page:
1125 free_page((unsigned long) page);
1126 return length;
1127 }
1128
1129 static const struct file_operations proc_loginuid_operations = {
1130 .read = proc_loginuid_read,
1131 .write = proc_loginuid_write,
1132 };
1133
1134 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1135 size_t count, loff_t *ppos)
1136 {
1137 struct inode * inode = file->f_path.dentry->d_inode;
1138 struct task_struct *task = get_proc_task(inode);
1139 ssize_t length;
1140 char tmpbuf[TMPBUFLEN];
1141
1142 if (!task)
1143 return -ESRCH;
1144 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1145 audit_get_sessionid(task));
1146 put_task_struct(task);
1147 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1148 }
1149
1150 static const struct file_operations proc_sessionid_operations = {
1151 .read = proc_sessionid_read,
1152 };
1153 #endif
1154
1155 #ifdef CONFIG_FAULT_INJECTION
1156 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1157 size_t count, loff_t *ppos)
1158 {
1159 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1160 char buffer[PROC_NUMBUF];
1161 size_t len;
1162 int make_it_fail;
1163
1164 if (!task)
1165 return -ESRCH;
1166 make_it_fail = task->make_it_fail;
1167 put_task_struct(task);
1168
1169 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1170
1171 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1172 }
1173
1174 static ssize_t proc_fault_inject_write(struct file * file,
1175 const char __user * buf, size_t count, loff_t *ppos)
1176 {
1177 struct task_struct *task;
1178 char buffer[PROC_NUMBUF], *end;
1179 int make_it_fail;
1180
1181 if (!capable(CAP_SYS_RESOURCE))
1182 return -EPERM;
1183 memset(buffer, 0, sizeof(buffer));
1184 if (count > sizeof(buffer) - 1)
1185 count = sizeof(buffer) - 1;
1186 if (copy_from_user(buffer, buf, count))
1187 return -EFAULT;
1188 make_it_fail = simple_strtol(buffer, &end, 0);
1189 if (*end == '\n')
1190 end++;
1191 task = get_proc_task(file->f_dentry->d_inode);
1192 if (!task)
1193 return -ESRCH;
1194 task->make_it_fail = make_it_fail;
1195 put_task_struct(task);
1196 if (end - buffer == 0)
1197 return -EIO;
1198 return end - buffer;
1199 }
1200
1201 static const struct file_operations proc_fault_inject_operations = {
1202 .read = proc_fault_inject_read,
1203 .write = proc_fault_inject_write,
1204 };
1205 #endif
1206
1207
1208 #ifdef CONFIG_SCHED_DEBUG
1209 /*
1210 * Print out various scheduling related per-task fields:
1211 */
1212 static int sched_show(struct seq_file *m, void *v)
1213 {
1214 struct inode *inode = m->private;
1215 struct task_struct *p;
1216
1217 p = get_proc_task(inode);
1218 if (!p)
1219 return -ESRCH;
1220 proc_sched_show_task(p, m);
1221
1222 put_task_struct(p);
1223
1224 return 0;
1225 }
1226
1227 static ssize_t
1228 sched_write(struct file *file, const char __user *buf,
1229 size_t count, loff_t *offset)
1230 {
1231 struct inode *inode = file->f_path.dentry->d_inode;
1232 struct task_struct *p;
1233
1234 p = get_proc_task(inode);
1235 if (!p)
1236 return -ESRCH;
1237 proc_sched_set_task(p);
1238
1239 put_task_struct(p);
1240
1241 return count;
1242 }
1243
1244 static int sched_open(struct inode *inode, struct file *filp)
1245 {
1246 int ret;
1247
1248 ret = single_open(filp, sched_show, NULL);
1249 if (!ret) {
1250 struct seq_file *m = filp->private_data;
1251
1252 m->private = inode;
1253 }
1254 return ret;
1255 }
1256
1257 static const struct file_operations proc_pid_sched_operations = {
1258 .open = sched_open,
1259 .read = seq_read,
1260 .write = sched_write,
1261 .llseek = seq_lseek,
1262 .release = single_release,
1263 };
1264
1265 #endif
1266
1267 /*
1268 * We added or removed a vma mapping the executable. The vmas are only mapped
1269 * during exec and are not mapped with the mmap system call.
1270 * Callers must hold down_write() on the mm's mmap_sem for these
1271 */
1272 void added_exe_file_vma(struct mm_struct *mm)
1273 {
1274 mm->num_exe_file_vmas++;
1275 }
1276
1277 void removed_exe_file_vma(struct mm_struct *mm)
1278 {
1279 mm->num_exe_file_vmas--;
1280 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1281 fput(mm->exe_file);
1282 mm->exe_file = NULL;
1283 }
1284
1285 }
1286
1287 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1288 {
1289 if (new_exe_file)
1290 get_file(new_exe_file);
1291 if (mm->exe_file)
1292 fput(mm->exe_file);
1293 mm->exe_file = new_exe_file;
1294 mm->num_exe_file_vmas = 0;
1295 }
1296
1297 struct file *get_mm_exe_file(struct mm_struct *mm)
1298 {
1299 struct file *exe_file;
1300
1301 /* We need mmap_sem to protect against races with removal of
1302 * VM_EXECUTABLE vmas */
1303 down_read(&mm->mmap_sem);
1304 exe_file = mm->exe_file;
1305 if (exe_file)
1306 get_file(exe_file);
1307 up_read(&mm->mmap_sem);
1308 return exe_file;
1309 }
1310
1311 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1312 {
1313 /* It's safe to write the exe_file pointer without exe_file_lock because
1314 * this is called during fork when the task is not yet in /proc */
1315 newmm->exe_file = get_mm_exe_file(oldmm);
1316 }
1317
1318 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1319 {
1320 struct task_struct *task;
1321 struct mm_struct *mm;
1322 struct file *exe_file;
1323
1324 task = get_proc_task(inode);
1325 if (!task)
1326 return -ENOENT;
1327 mm = get_task_mm(task);
1328 put_task_struct(task);
1329 if (!mm)
1330 return -ENOENT;
1331 exe_file = get_mm_exe_file(mm);
1332 mmput(mm);
1333 if (exe_file) {
1334 *exe_path = exe_file->f_path;
1335 path_get(&exe_file->f_path);
1336 fput(exe_file);
1337 return 0;
1338 } else
1339 return -ENOENT;
1340 }
1341
1342 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1343 {
1344 struct inode *inode = dentry->d_inode;
1345 int error = -EACCES;
1346
1347 /* We don't need a base pointer in the /proc filesystem */
1348 path_put(&nd->path);
1349
1350 /* Are we allowed to snoop on the tasks file descriptors? */
1351 if (!proc_fd_access_allowed(inode))
1352 goto out;
1353
1354 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1355 nd->last_type = LAST_BIND;
1356 out:
1357 return ERR_PTR(error);
1358 }
1359
1360 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1361 {
1362 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1363 char *pathname;
1364 int len;
1365
1366 if (!tmp)
1367 return -ENOMEM;
1368
1369 pathname = d_path(path, tmp, PAGE_SIZE);
1370 len = PTR_ERR(pathname);
1371 if (IS_ERR(pathname))
1372 goto out;
1373 len = tmp + PAGE_SIZE - 1 - pathname;
1374
1375 if (len > buflen)
1376 len = buflen;
1377 if (copy_to_user(buffer, pathname, len))
1378 len = -EFAULT;
1379 out:
1380 free_page((unsigned long)tmp);
1381 return len;
1382 }
1383
1384 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1385 {
1386 int error = -EACCES;
1387 struct inode *inode = dentry->d_inode;
1388 struct path path;
1389
1390 /* Are we allowed to snoop on the tasks file descriptors? */
1391 if (!proc_fd_access_allowed(inode))
1392 goto out;
1393
1394 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1395 if (error)
1396 goto out;
1397
1398 error = do_proc_readlink(&path, buffer, buflen);
1399 path_put(&path);
1400 out:
1401 return error;
1402 }
1403
1404 static const struct inode_operations proc_pid_link_inode_operations = {
1405 .readlink = proc_pid_readlink,
1406 .follow_link = proc_pid_follow_link,
1407 .setattr = proc_setattr,
1408 };
1409
1410
1411 /* building an inode */
1412
1413 static int task_dumpable(struct task_struct *task)
1414 {
1415 int dumpable = 0;
1416 struct mm_struct *mm;
1417
1418 task_lock(task);
1419 mm = task->mm;
1420 if (mm)
1421 dumpable = get_dumpable(mm);
1422 task_unlock(task);
1423 if(dumpable == 1)
1424 return 1;
1425 return 0;
1426 }
1427
1428
1429 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1430 {
1431 struct inode * inode;
1432 struct proc_inode *ei;
1433 const struct cred *cred;
1434
1435 /* We need a new inode */
1436
1437 inode = new_inode(sb);
1438 if (!inode)
1439 goto out;
1440
1441 /* Common stuff */
1442 ei = PROC_I(inode);
1443 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1444 inode->i_op = &proc_def_inode_operations;
1445
1446 /*
1447 * grab the reference to task.
1448 */
1449 ei->pid = get_task_pid(task, PIDTYPE_PID);
1450 if (!ei->pid)
1451 goto out_unlock;
1452
1453 if (task_dumpable(task)) {
1454 rcu_read_lock();
1455 cred = __task_cred(task);
1456 inode->i_uid = cred->euid;
1457 inode->i_gid = cred->egid;
1458 rcu_read_unlock();
1459 }
1460 security_task_to_inode(task, inode);
1461
1462 out:
1463 return inode;
1464
1465 out_unlock:
1466 iput(inode);
1467 return NULL;
1468 }
1469
1470 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1471 {
1472 struct inode *inode = dentry->d_inode;
1473 struct task_struct *task;
1474 const struct cred *cred;
1475
1476 generic_fillattr(inode, stat);
1477
1478 rcu_read_lock();
1479 stat->uid = 0;
1480 stat->gid = 0;
1481 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1482 if (task) {
1483 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1484 task_dumpable(task)) {
1485 cred = __task_cred(task);
1486 stat->uid = cred->euid;
1487 stat->gid = cred->egid;
1488 }
1489 }
1490 rcu_read_unlock();
1491 return 0;
1492 }
1493
1494 /* dentry stuff */
1495
1496 /*
1497 * Exceptional case: normally we are not allowed to unhash a busy
1498 * directory. In this case, however, we can do it - no aliasing problems
1499 * due to the way we treat inodes.
1500 *
1501 * Rewrite the inode's ownerships here because the owning task may have
1502 * performed a setuid(), etc.
1503 *
1504 * Before the /proc/pid/status file was created the only way to read
1505 * the effective uid of a /process was to stat /proc/pid. Reading
1506 * /proc/pid/status is slow enough that procps and other packages
1507 * kept stating /proc/pid. To keep the rules in /proc simple I have
1508 * made this apply to all per process world readable and executable
1509 * directories.
1510 */
1511 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1512 {
1513 struct inode *inode = dentry->d_inode;
1514 struct task_struct *task = get_proc_task(inode);
1515 const struct cred *cred;
1516
1517 if (task) {
1518 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1519 task_dumpable(task)) {
1520 rcu_read_lock();
1521 cred = __task_cred(task);
1522 inode->i_uid = cred->euid;
1523 inode->i_gid = cred->egid;
1524 rcu_read_unlock();
1525 } else {
1526 inode->i_uid = 0;
1527 inode->i_gid = 0;
1528 }
1529 inode->i_mode &= ~(S_ISUID | S_ISGID);
1530 security_task_to_inode(task, inode);
1531 put_task_struct(task);
1532 return 1;
1533 }
1534 d_drop(dentry);
1535 return 0;
1536 }
1537
1538 static int pid_delete_dentry(struct dentry * dentry)
1539 {
1540 /* Is the task we represent dead?
1541 * If so, then don't put the dentry on the lru list,
1542 * kill it immediately.
1543 */
1544 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1545 }
1546
1547 static const struct dentry_operations pid_dentry_operations =
1548 {
1549 .d_revalidate = pid_revalidate,
1550 .d_delete = pid_delete_dentry,
1551 };
1552
1553 /* Lookups */
1554
1555 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1556 struct task_struct *, const void *);
1557
1558 /*
1559 * Fill a directory entry.
1560 *
1561 * If possible create the dcache entry and derive our inode number and
1562 * file type from dcache entry.
1563 *
1564 * Since all of the proc inode numbers are dynamically generated, the inode
1565 * numbers do not exist until the inode is cache. This means creating the
1566 * the dcache entry in readdir is necessary to keep the inode numbers
1567 * reported by readdir in sync with the inode numbers reported
1568 * by stat.
1569 */
1570 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1571 char *name, int len,
1572 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1573 {
1574 struct dentry *child, *dir = filp->f_path.dentry;
1575 struct inode *inode;
1576 struct qstr qname;
1577 ino_t ino = 0;
1578 unsigned type = DT_UNKNOWN;
1579
1580 qname.name = name;
1581 qname.len = len;
1582 qname.hash = full_name_hash(name, len);
1583
1584 child = d_lookup(dir, &qname);
1585 if (!child) {
1586 struct dentry *new;
1587 new = d_alloc(dir, &qname);
1588 if (new) {
1589 child = instantiate(dir->d_inode, new, task, ptr);
1590 if (child)
1591 dput(new);
1592 else
1593 child = new;
1594 }
1595 }
1596 if (!child || IS_ERR(child) || !child->d_inode)
1597 goto end_instantiate;
1598 inode = child->d_inode;
1599 if (inode) {
1600 ino = inode->i_ino;
1601 type = inode->i_mode >> 12;
1602 }
1603 dput(child);
1604 end_instantiate:
1605 if (!ino)
1606 ino = find_inode_number(dir, &qname);
1607 if (!ino)
1608 ino = 1;
1609 return filldir(dirent, name, len, filp->f_pos, ino, type);
1610 }
1611
1612 static unsigned name_to_int(struct dentry *dentry)
1613 {
1614 const char *name = dentry->d_name.name;
1615 int len = dentry->d_name.len;
1616 unsigned n = 0;
1617
1618 if (len > 1 && *name == '0')
1619 goto out;
1620 while (len-- > 0) {
1621 unsigned c = *name++ - '0';
1622 if (c > 9)
1623 goto out;
1624 if (n >= (~0U-9)/10)
1625 goto out;
1626 n *= 10;
1627 n += c;
1628 }
1629 return n;
1630 out:
1631 return ~0U;
1632 }
1633
1634 #define PROC_FDINFO_MAX 64
1635
1636 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1637 {
1638 struct task_struct *task = get_proc_task(inode);
1639 struct files_struct *files = NULL;
1640 struct file *file;
1641 int fd = proc_fd(inode);
1642
1643 if (task) {
1644 files = get_files_struct(task);
1645 put_task_struct(task);
1646 }
1647 if (files) {
1648 /*
1649 * We are not taking a ref to the file structure, so we must
1650 * hold ->file_lock.
1651 */
1652 spin_lock(&files->file_lock);
1653 file = fcheck_files(files, fd);
1654 if (file) {
1655 if (path) {
1656 *path = file->f_path;
1657 path_get(&file->f_path);
1658 }
1659 if (info)
1660 snprintf(info, PROC_FDINFO_MAX,
1661 "pos:\t%lli\n"
1662 "flags:\t0%o\n",
1663 (long long) file->f_pos,
1664 file->f_flags);
1665 spin_unlock(&files->file_lock);
1666 put_files_struct(files);
1667 return 0;
1668 }
1669 spin_unlock(&files->file_lock);
1670 put_files_struct(files);
1671 }
1672 return -ENOENT;
1673 }
1674
1675 static int proc_fd_link(struct inode *inode, struct path *path)
1676 {
1677 return proc_fd_info(inode, path, NULL);
1678 }
1679
1680 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1681 {
1682 struct inode *inode = dentry->d_inode;
1683 struct task_struct *task = get_proc_task(inode);
1684 int fd = proc_fd(inode);
1685 struct files_struct *files;
1686 const struct cred *cred;
1687
1688 if (task) {
1689 files = get_files_struct(task);
1690 if (files) {
1691 rcu_read_lock();
1692 if (fcheck_files(files, fd)) {
1693 rcu_read_unlock();
1694 put_files_struct(files);
1695 if (task_dumpable(task)) {
1696 rcu_read_lock();
1697 cred = __task_cred(task);
1698 inode->i_uid = cred->euid;
1699 inode->i_gid = cred->egid;
1700 rcu_read_unlock();
1701 } else {
1702 inode->i_uid = 0;
1703 inode->i_gid = 0;
1704 }
1705 inode->i_mode &= ~(S_ISUID | S_ISGID);
1706 security_task_to_inode(task, inode);
1707 put_task_struct(task);
1708 return 1;
1709 }
1710 rcu_read_unlock();
1711 put_files_struct(files);
1712 }
1713 put_task_struct(task);
1714 }
1715 d_drop(dentry);
1716 return 0;
1717 }
1718
1719 static const struct dentry_operations tid_fd_dentry_operations =
1720 {
1721 .d_revalidate = tid_fd_revalidate,
1722 .d_delete = pid_delete_dentry,
1723 };
1724
1725 static struct dentry *proc_fd_instantiate(struct inode *dir,
1726 struct dentry *dentry, struct task_struct *task, const void *ptr)
1727 {
1728 unsigned fd = *(const unsigned *)ptr;
1729 struct file *file;
1730 struct files_struct *files;
1731 struct inode *inode;
1732 struct proc_inode *ei;
1733 struct dentry *error = ERR_PTR(-ENOENT);
1734
1735 inode = proc_pid_make_inode(dir->i_sb, task);
1736 if (!inode)
1737 goto out;
1738 ei = PROC_I(inode);
1739 ei->fd = fd;
1740 files = get_files_struct(task);
1741 if (!files)
1742 goto out_iput;
1743 inode->i_mode = S_IFLNK;
1744
1745 /*
1746 * We are not taking a ref to the file structure, so we must
1747 * hold ->file_lock.
1748 */
1749 spin_lock(&files->file_lock);
1750 file = fcheck_files(files, fd);
1751 if (!file)
1752 goto out_unlock;
1753 if (file->f_mode & FMODE_READ)
1754 inode->i_mode |= S_IRUSR | S_IXUSR;
1755 if (file->f_mode & FMODE_WRITE)
1756 inode->i_mode |= S_IWUSR | S_IXUSR;
1757 spin_unlock(&files->file_lock);
1758 put_files_struct(files);
1759
1760 inode->i_op = &proc_pid_link_inode_operations;
1761 inode->i_size = 64;
1762 ei->op.proc_get_link = proc_fd_link;
1763 dentry->d_op = &tid_fd_dentry_operations;
1764 d_add(dentry, inode);
1765 /* Close the race of the process dying before we return the dentry */
1766 if (tid_fd_revalidate(dentry, NULL))
1767 error = NULL;
1768
1769 out:
1770 return error;
1771 out_unlock:
1772 spin_unlock(&files->file_lock);
1773 put_files_struct(files);
1774 out_iput:
1775 iput(inode);
1776 goto out;
1777 }
1778
1779 static struct dentry *proc_lookupfd_common(struct inode *dir,
1780 struct dentry *dentry,
1781 instantiate_t instantiate)
1782 {
1783 struct task_struct *task = get_proc_task(dir);
1784 unsigned fd = name_to_int(dentry);
1785 struct dentry *result = ERR_PTR(-ENOENT);
1786
1787 if (!task)
1788 goto out_no_task;
1789 if (fd == ~0U)
1790 goto out;
1791
1792 result = instantiate(dir, dentry, task, &fd);
1793 out:
1794 put_task_struct(task);
1795 out_no_task:
1796 return result;
1797 }
1798
1799 static int proc_readfd_common(struct file * filp, void * dirent,
1800 filldir_t filldir, instantiate_t instantiate)
1801 {
1802 struct dentry *dentry = filp->f_path.dentry;
1803 struct inode *inode = dentry->d_inode;
1804 struct task_struct *p = get_proc_task(inode);
1805 unsigned int fd, ino;
1806 int retval;
1807 struct files_struct * files;
1808
1809 retval = -ENOENT;
1810 if (!p)
1811 goto out_no_task;
1812 retval = 0;
1813
1814 fd = filp->f_pos;
1815 switch (fd) {
1816 case 0:
1817 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1818 goto out;
1819 filp->f_pos++;
1820 case 1:
1821 ino = parent_ino(dentry);
1822 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1823 goto out;
1824 filp->f_pos++;
1825 default:
1826 files = get_files_struct(p);
1827 if (!files)
1828 goto out;
1829 rcu_read_lock();
1830 for (fd = filp->f_pos-2;
1831 fd < files_fdtable(files)->max_fds;
1832 fd++, filp->f_pos++) {
1833 char name[PROC_NUMBUF];
1834 int len;
1835
1836 if (!fcheck_files(files, fd))
1837 continue;
1838 rcu_read_unlock();
1839
1840 len = snprintf(name, sizeof(name), "%d", fd);
1841 if (proc_fill_cache(filp, dirent, filldir,
1842 name, len, instantiate,
1843 p, &fd) < 0) {
1844 rcu_read_lock();
1845 break;
1846 }
1847 rcu_read_lock();
1848 }
1849 rcu_read_unlock();
1850 put_files_struct(files);
1851 }
1852 out:
1853 put_task_struct(p);
1854 out_no_task:
1855 return retval;
1856 }
1857
1858 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1859 struct nameidata *nd)
1860 {
1861 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1862 }
1863
1864 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1865 {
1866 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1867 }
1868
1869 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1870 size_t len, loff_t *ppos)
1871 {
1872 char tmp[PROC_FDINFO_MAX];
1873 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1874 if (!err)
1875 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1876 return err;
1877 }
1878
1879 static const struct file_operations proc_fdinfo_file_operations = {
1880 .open = nonseekable_open,
1881 .read = proc_fdinfo_read,
1882 };
1883
1884 static const struct file_operations proc_fd_operations = {
1885 .read = generic_read_dir,
1886 .readdir = proc_readfd,
1887 };
1888
1889 /*
1890 * /proc/pid/fd needs a special permission handler so that a process can still
1891 * access /proc/self/fd after it has executed a setuid().
1892 */
1893 static int proc_fd_permission(struct inode *inode, int mask)
1894 {
1895 int rv;
1896
1897 rv = generic_permission(inode, mask, NULL);
1898 if (rv == 0)
1899 return 0;
1900 if (task_pid(current) == proc_pid(inode))
1901 rv = 0;
1902 return rv;
1903 }
1904
1905 /*
1906 * proc directories can do almost nothing..
1907 */
1908 static const struct inode_operations proc_fd_inode_operations = {
1909 .lookup = proc_lookupfd,
1910 .permission = proc_fd_permission,
1911 .setattr = proc_setattr,
1912 };
1913
1914 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1915 struct dentry *dentry, struct task_struct *task, const void *ptr)
1916 {
1917 unsigned fd = *(unsigned *)ptr;
1918 struct inode *inode;
1919 struct proc_inode *ei;
1920 struct dentry *error = ERR_PTR(-ENOENT);
1921
1922 inode = proc_pid_make_inode(dir->i_sb, task);
1923 if (!inode)
1924 goto out;
1925 ei = PROC_I(inode);
1926 ei->fd = fd;
1927 inode->i_mode = S_IFREG | S_IRUSR;
1928 inode->i_fop = &proc_fdinfo_file_operations;
1929 dentry->d_op = &tid_fd_dentry_operations;
1930 d_add(dentry, inode);
1931 /* Close the race of the process dying before we return the dentry */
1932 if (tid_fd_revalidate(dentry, NULL))
1933 error = NULL;
1934
1935 out:
1936 return error;
1937 }
1938
1939 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1940 struct dentry *dentry,
1941 struct nameidata *nd)
1942 {
1943 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1944 }
1945
1946 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1947 {
1948 return proc_readfd_common(filp, dirent, filldir,
1949 proc_fdinfo_instantiate);
1950 }
1951
1952 static const struct file_operations proc_fdinfo_operations = {
1953 .read = generic_read_dir,
1954 .readdir = proc_readfdinfo,
1955 };
1956
1957 /*
1958 * proc directories can do almost nothing..
1959 */
1960 static const struct inode_operations proc_fdinfo_inode_operations = {
1961 .lookup = proc_lookupfdinfo,
1962 .setattr = proc_setattr,
1963 };
1964
1965
1966 static struct dentry *proc_pident_instantiate(struct inode *dir,
1967 struct dentry *dentry, struct task_struct *task, const void *ptr)
1968 {
1969 const struct pid_entry *p = ptr;
1970 struct inode *inode;
1971 struct proc_inode *ei;
1972 struct dentry *error = ERR_PTR(-ENOENT);
1973
1974 inode = proc_pid_make_inode(dir->i_sb, task);
1975 if (!inode)
1976 goto out;
1977
1978 ei = PROC_I(inode);
1979 inode->i_mode = p->mode;
1980 if (S_ISDIR(inode->i_mode))
1981 inode->i_nlink = 2; /* Use getattr to fix if necessary */
1982 if (p->iop)
1983 inode->i_op = p->iop;
1984 if (p->fop)
1985 inode->i_fop = p->fop;
1986 ei->op = p->op;
1987 dentry->d_op = &pid_dentry_operations;
1988 d_add(dentry, inode);
1989 /* Close the race of the process dying before we return the dentry */
1990 if (pid_revalidate(dentry, NULL))
1991 error = NULL;
1992 out:
1993 return error;
1994 }
1995
1996 static struct dentry *proc_pident_lookup(struct inode *dir,
1997 struct dentry *dentry,
1998 const struct pid_entry *ents,
1999 unsigned int nents)
2000 {
2001 struct dentry *error;
2002 struct task_struct *task = get_proc_task(dir);
2003 const struct pid_entry *p, *last;
2004
2005 error = ERR_PTR(-ENOENT);
2006
2007 if (!task)
2008 goto out_no_task;
2009
2010 /*
2011 * Yes, it does not scale. And it should not. Don't add
2012 * new entries into /proc/<tgid>/ without very good reasons.
2013 */
2014 last = &ents[nents - 1];
2015 for (p = ents; p <= last; p++) {
2016 if (p->len != dentry->d_name.len)
2017 continue;
2018 if (!memcmp(dentry->d_name.name, p->name, p->len))
2019 break;
2020 }
2021 if (p > last)
2022 goto out;
2023
2024 error = proc_pident_instantiate(dir, dentry, task, p);
2025 out:
2026 put_task_struct(task);
2027 out_no_task:
2028 return error;
2029 }
2030
2031 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2032 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2033 {
2034 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2035 proc_pident_instantiate, task, p);
2036 }
2037
2038 static int proc_pident_readdir(struct file *filp,
2039 void *dirent, filldir_t filldir,
2040 const struct pid_entry *ents, unsigned int nents)
2041 {
2042 int i;
2043 struct dentry *dentry = filp->f_path.dentry;
2044 struct inode *inode = dentry->d_inode;
2045 struct task_struct *task = get_proc_task(inode);
2046 const struct pid_entry *p, *last;
2047 ino_t ino;
2048 int ret;
2049
2050 ret = -ENOENT;
2051 if (!task)
2052 goto out_no_task;
2053
2054 ret = 0;
2055 i = filp->f_pos;
2056 switch (i) {
2057 case 0:
2058 ino = inode->i_ino;
2059 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2060 goto out;
2061 i++;
2062 filp->f_pos++;
2063 /* fall through */
2064 case 1:
2065 ino = parent_ino(dentry);
2066 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2067 goto out;
2068 i++;
2069 filp->f_pos++;
2070 /* fall through */
2071 default:
2072 i -= 2;
2073 if (i >= nents) {
2074 ret = 1;
2075 goto out;
2076 }
2077 p = ents + i;
2078 last = &ents[nents - 1];
2079 while (p <= last) {
2080 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2081 goto out;
2082 filp->f_pos++;
2083 p++;
2084 }
2085 }
2086
2087 ret = 1;
2088 out:
2089 put_task_struct(task);
2090 out_no_task:
2091 return ret;
2092 }
2093
2094 #ifdef CONFIG_SECURITY
2095 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2096 size_t count, loff_t *ppos)
2097 {
2098 struct inode * inode = file->f_path.dentry->d_inode;
2099 char *p = NULL;
2100 ssize_t length;
2101 struct task_struct *task = get_proc_task(inode);
2102
2103 if (!task)
2104 return -ESRCH;
2105
2106 length = security_getprocattr(task,
2107 (char*)file->f_path.dentry->d_name.name,
2108 &p);
2109 put_task_struct(task);
2110 if (length > 0)
2111 length = simple_read_from_buffer(buf, count, ppos, p, length);
2112 kfree(p);
2113 return length;
2114 }
2115
2116 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2117 size_t count, loff_t *ppos)
2118 {
2119 struct inode * inode = file->f_path.dentry->d_inode;
2120 char *page;
2121 ssize_t length;
2122 struct task_struct *task = get_proc_task(inode);
2123
2124 length = -ESRCH;
2125 if (!task)
2126 goto out_no_task;
2127 if (count > PAGE_SIZE)
2128 count = PAGE_SIZE;
2129
2130 /* No partial writes. */
2131 length = -EINVAL;
2132 if (*ppos != 0)
2133 goto out;
2134
2135 length = -ENOMEM;
2136 page = (char*)__get_free_page(GFP_TEMPORARY);
2137 if (!page)
2138 goto out;
2139
2140 length = -EFAULT;
2141 if (copy_from_user(page, buf, count))
2142 goto out_free;
2143
2144 /* Guard against adverse ptrace interaction */
2145 length = mutex_lock_interruptible(&task->cred_guard_mutex);
2146 if (length < 0)
2147 goto out_free;
2148
2149 length = security_setprocattr(task,
2150 (char*)file->f_path.dentry->d_name.name,
2151 (void*)page, count);
2152 mutex_unlock(&task->cred_guard_mutex);
2153 out_free:
2154 free_page((unsigned long) page);
2155 out:
2156 put_task_struct(task);
2157 out_no_task:
2158 return length;
2159 }
2160
2161 static const struct file_operations proc_pid_attr_operations = {
2162 .read = proc_pid_attr_read,
2163 .write = proc_pid_attr_write,
2164 };
2165
2166 static const struct pid_entry attr_dir_stuff[] = {
2167 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2168 REG("prev", S_IRUGO, proc_pid_attr_operations),
2169 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2170 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2171 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2172 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2173 };
2174
2175 static int proc_attr_dir_readdir(struct file * filp,
2176 void * dirent, filldir_t filldir)
2177 {
2178 return proc_pident_readdir(filp,dirent,filldir,
2179 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2180 }
2181
2182 static const struct file_operations proc_attr_dir_operations = {
2183 .read = generic_read_dir,
2184 .readdir = proc_attr_dir_readdir,
2185 };
2186
2187 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2188 struct dentry *dentry, struct nameidata *nd)
2189 {
2190 return proc_pident_lookup(dir, dentry,
2191 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2192 }
2193
2194 static const struct inode_operations proc_attr_dir_inode_operations = {
2195 .lookup = proc_attr_dir_lookup,
2196 .getattr = pid_getattr,
2197 .setattr = proc_setattr,
2198 };
2199
2200 #endif
2201
2202 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2203 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2204 size_t count, loff_t *ppos)
2205 {
2206 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2207 struct mm_struct *mm;
2208 char buffer[PROC_NUMBUF];
2209 size_t len;
2210 int ret;
2211
2212 if (!task)
2213 return -ESRCH;
2214
2215 ret = 0;
2216 mm = get_task_mm(task);
2217 if (mm) {
2218 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2219 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2220 MMF_DUMP_FILTER_SHIFT));
2221 mmput(mm);
2222 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2223 }
2224
2225 put_task_struct(task);
2226
2227 return ret;
2228 }
2229
2230 static ssize_t proc_coredump_filter_write(struct file *file,
2231 const char __user *buf,
2232 size_t count,
2233 loff_t *ppos)
2234 {
2235 struct task_struct *task;
2236 struct mm_struct *mm;
2237 char buffer[PROC_NUMBUF], *end;
2238 unsigned int val;
2239 int ret;
2240 int i;
2241 unsigned long mask;
2242
2243 ret = -EFAULT;
2244 memset(buffer, 0, sizeof(buffer));
2245 if (count > sizeof(buffer) - 1)
2246 count = sizeof(buffer) - 1;
2247 if (copy_from_user(buffer, buf, count))
2248 goto out_no_task;
2249
2250 ret = -EINVAL;
2251 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2252 if (*end == '\n')
2253 end++;
2254 if (end - buffer == 0)
2255 goto out_no_task;
2256
2257 ret = -ESRCH;
2258 task = get_proc_task(file->f_dentry->d_inode);
2259 if (!task)
2260 goto out_no_task;
2261
2262 ret = end - buffer;
2263 mm = get_task_mm(task);
2264 if (!mm)
2265 goto out_no_mm;
2266
2267 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2268 if (val & mask)
2269 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2270 else
2271 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2272 }
2273
2274 mmput(mm);
2275 out_no_mm:
2276 put_task_struct(task);
2277 out_no_task:
2278 return ret;
2279 }
2280
2281 static const struct file_operations proc_coredump_filter_operations = {
2282 .read = proc_coredump_filter_read,
2283 .write = proc_coredump_filter_write,
2284 };
2285 #endif
2286
2287 /*
2288 * /proc/self:
2289 */
2290 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2291 int buflen)
2292 {
2293 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2294 pid_t tgid = task_tgid_nr_ns(current, ns);
2295 char tmp[PROC_NUMBUF];
2296 if (!tgid)
2297 return -ENOENT;
2298 sprintf(tmp, "%d", tgid);
2299 return vfs_readlink(dentry,buffer,buflen,tmp);
2300 }
2301
2302 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2303 {
2304 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2305 pid_t tgid = task_tgid_nr_ns(current, ns);
2306 char tmp[PROC_NUMBUF];
2307 if (!tgid)
2308 return ERR_PTR(-ENOENT);
2309 sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2310 return ERR_PTR(vfs_follow_link(nd,tmp));
2311 }
2312
2313 static const struct inode_operations proc_self_inode_operations = {
2314 .readlink = proc_self_readlink,
2315 .follow_link = proc_self_follow_link,
2316 };
2317
2318 /*
2319 * proc base
2320 *
2321 * These are the directory entries in the root directory of /proc
2322 * that properly belong to the /proc filesystem, as they describe
2323 * describe something that is process related.
2324 */
2325 static const struct pid_entry proc_base_stuff[] = {
2326 NOD("self", S_IFLNK|S_IRWXUGO,
2327 &proc_self_inode_operations, NULL, {}),
2328 };
2329
2330 /*
2331 * Exceptional case: normally we are not allowed to unhash a busy
2332 * directory. In this case, however, we can do it - no aliasing problems
2333 * due to the way we treat inodes.
2334 */
2335 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2336 {
2337 struct inode *inode = dentry->d_inode;
2338 struct task_struct *task = get_proc_task(inode);
2339 if (task) {
2340 put_task_struct(task);
2341 return 1;
2342 }
2343 d_drop(dentry);
2344 return 0;
2345 }
2346
2347 static const struct dentry_operations proc_base_dentry_operations =
2348 {
2349 .d_revalidate = proc_base_revalidate,
2350 .d_delete = pid_delete_dentry,
2351 };
2352
2353 static struct dentry *proc_base_instantiate(struct inode *dir,
2354 struct dentry *dentry, struct task_struct *task, const void *ptr)
2355 {
2356 const struct pid_entry *p = ptr;
2357 struct inode *inode;
2358 struct proc_inode *ei;
2359 struct dentry *error = ERR_PTR(-EINVAL);
2360
2361 /* Allocate the inode */
2362 error = ERR_PTR(-ENOMEM);
2363 inode = new_inode(dir->i_sb);
2364 if (!inode)
2365 goto out;
2366
2367 /* Initialize the inode */
2368 ei = PROC_I(inode);
2369 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2370
2371 /*
2372 * grab the reference to the task.
2373 */
2374 ei->pid = get_task_pid(task, PIDTYPE_PID);
2375 if (!ei->pid)
2376 goto out_iput;
2377
2378 inode->i_mode = p->mode;
2379 if (S_ISDIR(inode->i_mode))
2380 inode->i_nlink = 2;
2381 if (S_ISLNK(inode->i_mode))
2382 inode->i_size = 64;
2383 if (p->iop)
2384 inode->i_op = p->iop;
2385 if (p->fop)
2386 inode->i_fop = p->fop;
2387 ei->op = p->op;
2388 dentry->d_op = &proc_base_dentry_operations;
2389 d_add(dentry, inode);
2390 error = NULL;
2391 out:
2392 return error;
2393 out_iput:
2394 iput(inode);
2395 goto out;
2396 }
2397
2398 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2399 {
2400 struct dentry *error;
2401 struct task_struct *task = get_proc_task(dir);
2402 const struct pid_entry *p, *last;
2403
2404 error = ERR_PTR(-ENOENT);
2405
2406 if (!task)
2407 goto out_no_task;
2408
2409 /* Lookup the directory entry */
2410 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2411 for (p = proc_base_stuff; p <= last; p++) {
2412 if (p->len != dentry->d_name.len)
2413 continue;
2414 if (!memcmp(dentry->d_name.name, p->name, p->len))
2415 break;
2416 }
2417 if (p > last)
2418 goto out;
2419
2420 error = proc_base_instantiate(dir, dentry, task, p);
2421
2422 out:
2423 put_task_struct(task);
2424 out_no_task:
2425 return error;
2426 }
2427
2428 static int proc_base_fill_cache(struct file *filp, void *dirent,
2429 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2430 {
2431 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2432 proc_base_instantiate, task, p);
2433 }
2434
2435 #ifdef CONFIG_TASK_IO_ACCOUNTING
2436 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2437 {
2438 struct task_io_accounting acct = task->ioac;
2439 unsigned long flags;
2440
2441 if (whole && lock_task_sighand(task, &flags)) {
2442 struct task_struct *t = task;
2443
2444 task_io_accounting_add(&acct, &task->signal->ioac);
2445 while_each_thread(task, t)
2446 task_io_accounting_add(&acct, &t->ioac);
2447
2448 unlock_task_sighand(task, &flags);
2449 }
2450 return sprintf(buffer,
2451 "rchar: %llu\n"
2452 "wchar: %llu\n"
2453 "syscr: %llu\n"
2454 "syscw: %llu\n"
2455 "read_bytes: %llu\n"
2456 "write_bytes: %llu\n"
2457 "cancelled_write_bytes: %llu\n",
2458 (unsigned long long)acct.rchar,
2459 (unsigned long long)acct.wchar,
2460 (unsigned long long)acct.syscr,
2461 (unsigned long long)acct.syscw,
2462 (unsigned long long)acct.read_bytes,
2463 (unsigned long long)acct.write_bytes,
2464 (unsigned long long)acct.cancelled_write_bytes);
2465 }
2466
2467 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2468 {
2469 return do_io_accounting(task, buffer, 0);
2470 }
2471
2472 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2473 {
2474 return do_io_accounting(task, buffer, 1);
2475 }
2476 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2477
2478 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2479 struct pid *pid, struct task_struct *task)
2480 {
2481 seq_printf(m, "%08x\n", task->personality);
2482 return 0;
2483 }
2484
2485 /*
2486 * Thread groups
2487 */
2488 static const struct file_operations proc_task_operations;
2489 static const struct inode_operations proc_task_inode_operations;
2490
2491 static const struct pid_entry tgid_base_stuff[] = {
2492 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2493 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2494 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2495 #ifdef CONFIG_NET
2496 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2497 #endif
2498 REG("environ", S_IRUSR, proc_environ_operations),
2499 INF("auxv", S_IRUSR, proc_pid_auxv),
2500 ONE("status", S_IRUGO, proc_pid_status),
2501 ONE("personality", S_IRUSR, proc_pid_personality),
2502 INF("limits", S_IRUSR, proc_pid_limits),
2503 #ifdef CONFIG_SCHED_DEBUG
2504 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2505 #endif
2506 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2507 INF("syscall", S_IRUSR, proc_pid_syscall),
2508 #endif
2509 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2510 ONE("stat", S_IRUGO, proc_tgid_stat),
2511 ONE("statm", S_IRUGO, proc_pid_statm),
2512 REG("maps", S_IRUGO, proc_maps_operations),
2513 #ifdef CONFIG_NUMA
2514 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2515 #endif
2516 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2517 LNK("cwd", proc_cwd_link),
2518 LNK("root", proc_root_link),
2519 LNK("exe", proc_exe_link),
2520 REG("mounts", S_IRUGO, proc_mounts_operations),
2521 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2522 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2523 #ifdef CONFIG_PROC_PAGE_MONITOR
2524 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2525 REG("smaps", S_IRUGO, proc_smaps_operations),
2526 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2527 #endif
2528 #ifdef CONFIG_SECURITY
2529 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2530 #endif
2531 #ifdef CONFIG_KALLSYMS
2532 INF("wchan", S_IRUGO, proc_pid_wchan),
2533 #endif
2534 #ifdef CONFIG_STACKTRACE
2535 ONE("stack", S_IRUSR, proc_pid_stack),
2536 #endif
2537 #ifdef CONFIG_SCHEDSTATS
2538 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2539 #endif
2540 #ifdef CONFIG_LATENCYTOP
2541 REG("latency", S_IRUGO, proc_lstats_operations),
2542 #endif
2543 #ifdef CONFIG_PROC_PID_CPUSET
2544 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2545 #endif
2546 #ifdef CONFIG_CGROUPS
2547 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2548 #endif
2549 INF("oom_score", S_IRUGO, proc_oom_score),
2550 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2551 #ifdef CONFIG_AUDITSYSCALL
2552 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2553 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2554 #endif
2555 #ifdef CONFIG_FAULT_INJECTION
2556 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2557 #endif
2558 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2559 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2560 #endif
2561 #ifdef CONFIG_TASK_IO_ACCOUNTING
2562 INF("io", S_IRUGO, proc_tgid_io_accounting),
2563 #endif
2564 };
2565
2566 static int proc_tgid_base_readdir(struct file * filp,
2567 void * dirent, filldir_t filldir)
2568 {
2569 return proc_pident_readdir(filp,dirent,filldir,
2570 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2571 }
2572
2573 static const struct file_operations proc_tgid_base_operations = {
2574 .read = generic_read_dir,
2575 .readdir = proc_tgid_base_readdir,
2576 };
2577
2578 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2579 return proc_pident_lookup(dir, dentry,
2580 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2581 }
2582
2583 static const struct inode_operations proc_tgid_base_inode_operations = {
2584 .lookup = proc_tgid_base_lookup,
2585 .getattr = pid_getattr,
2586 .setattr = proc_setattr,
2587 };
2588
2589 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2590 {
2591 struct dentry *dentry, *leader, *dir;
2592 char buf[PROC_NUMBUF];
2593 struct qstr name;
2594
2595 name.name = buf;
2596 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2597 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2598 if (dentry) {
2599 if (!(current->flags & PF_EXITING))
2600 shrink_dcache_parent(dentry);
2601 d_drop(dentry);
2602 dput(dentry);
2603 }
2604
2605 if (tgid == 0)
2606 goto out;
2607
2608 name.name = buf;
2609 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2610 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2611 if (!leader)
2612 goto out;
2613
2614 name.name = "task";
2615 name.len = strlen(name.name);
2616 dir = d_hash_and_lookup(leader, &name);
2617 if (!dir)
2618 goto out_put_leader;
2619
2620 name.name = buf;
2621 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2622 dentry = d_hash_and_lookup(dir, &name);
2623 if (dentry) {
2624 shrink_dcache_parent(dentry);
2625 d_drop(dentry);
2626 dput(dentry);
2627 }
2628
2629 dput(dir);
2630 out_put_leader:
2631 dput(leader);
2632 out:
2633 return;
2634 }
2635
2636 /**
2637 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2638 * @task: task that should be flushed.
2639 *
2640 * When flushing dentries from proc, one needs to flush them from global
2641 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2642 * in. This call is supposed to do all of this job.
2643 *
2644 * Looks in the dcache for
2645 * /proc/@pid
2646 * /proc/@tgid/task/@pid
2647 * if either directory is present flushes it and all of it'ts children
2648 * from the dcache.
2649 *
2650 * It is safe and reasonable to cache /proc entries for a task until
2651 * that task exits. After that they just clog up the dcache with
2652 * useless entries, possibly causing useful dcache entries to be
2653 * flushed instead. This routine is proved to flush those useless
2654 * dcache entries at process exit time.
2655 *
2656 * NOTE: This routine is just an optimization so it does not guarantee
2657 * that no dcache entries will exist at process exit time it
2658 * just makes it very unlikely that any will persist.
2659 */
2660
2661 void proc_flush_task(struct task_struct *task)
2662 {
2663 int i;
2664 struct pid *pid, *tgid = NULL;
2665 struct upid *upid;
2666
2667 pid = task_pid(task);
2668 if (thread_group_leader(task))
2669 tgid = task_tgid(task);
2670
2671 for (i = 0; i <= pid->level; i++) {
2672 upid = &pid->numbers[i];
2673 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2674 tgid ? tgid->numbers[i].nr : 0);
2675 }
2676
2677 upid = &pid->numbers[pid->level];
2678 if (upid->nr == 1)
2679 pid_ns_release_proc(upid->ns);
2680 }
2681
2682 static struct dentry *proc_pid_instantiate(struct inode *dir,
2683 struct dentry * dentry,
2684 struct task_struct *task, const void *ptr)
2685 {
2686 struct dentry *error = ERR_PTR(-ENOENT);
2687 struct inode *inode;
2688
2689 inode = proc_pid_make_inode(dir->i_sb, task);
2690 if (!inode)
2691 goto out;
2692
2693 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2694 inode->i_op = &proc_tgid_base_inode_operations;
2695 inode->i_fop = &proc_tgid_base_operations;
2696 inode->i_flags|=S_IMMUTABLE;
2697
2698 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2699 ARRAY_SIZE(tgid_base_stuff));
2700
2701 dentry->d_op = &pid_dentry_operations;
2702
2703 d_add(dentry, inode);
2704 /* Close the race of the process dying before we return the dentry */
2705 if (pid_revalidate(dentry, NULL))
2706 error = NULL;
2707 out:
2708 return error;
2709 }
2710
2711 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2712 {
2713 struct dentry *result = ERR_PTR(-ENOENT);
2714 struct task_struct *task;
2715 unsigned tgid;
2716 struct pid_namespace *ns;
2717
2718 result = proc_base_lookup(dir, dentry);
2719 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2720 goto out;
2721
2722 tgid = name_to_int(dentry);
2723 if (tgid == ~0U)
2724 goto out;
2725
2726 ns = dentry->d_sb->s_fs_info;
2727 rcu_read_lock();
2728 task = find_task_by_pid_ns(tgid, ns);
2729 if (task)
2730 get_task_struct(task);
2731 rcu_read_unlock();
2732 if (!task)
2733 goto out;
2734
2735 result = proc_pid_instantiate(dir, dentry, task, NULL);
2736 put_task_struct(task);
2737 out:
2738 return result;
2739 }
2740
2741 /*
2742 * Find the first task with tgid >= tgid
2743 *
2744 */
2745 struct tgid_iter {
2746 unsigned int tgid;
2747 struct task_struct *task;
2748 };
2749 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2750 {
2751 struct pid *pid;
2752
2753 if (iter.task)
2754 put_task_struct(iter.task);
2755 rcu_read_lock();
2756 retry:
2757 iter.task = NULL;
2758 pid = find_ge_pid(iter.tgid, ns);
2759 if (pid) {
2760 iter.tgid = pid_nr_ns(pid, ns);
2761 iter.task = pid_task(pid, PIDTYPE_PID);
2762 /* What we to know is if the pid we have find is the
2763 * pid of a thread_group_leader. Testing for task
2764 * being a thread_group_leader is the obvious thing
2765 * todo but there is a window when it fails, due to
2766 * the pid transfer logic in de_thread.
2767 *
2768 * So we perform the straight forward test of seeing
2769 * if the pid we have found is the pid of a thread
2770 * group leader, and don't worry if the task we have
2771 * found doesn't happen to be a thread group leader.
2772 * As we don't care in the case of readdir.
2773 */
2774 if (!iter.task || !has_group_leader_pid(iter.task)) {
2775 iter.tgid += 1;
2776 goto retry;
2777 }
2778 get_task_struct(iter.task);
2779 }
2780 rcu_read_unlock();
2781 return iter;
2782 }
2783
2784 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2785
2786 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2787 struct tgid_iter iter)
2788 {
2789 char name[PROC_NUMBUF];
2790 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2791 return proc_fill_cache(filp, dirent, filldir, name, len,
2792 proc_pid_instantiate, iter.task, NULL);
2793 }
2794
2795 /* for the /proc/ directory itself, after non-process stuff has been done */
2796 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2797 {
2798 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2799 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2800 struct tgid_iter iter;
2801 struct pid_namespace *ns;
2802
2803 if (!reaper)
2804 goto out_no_task;
2805
2806 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2807 const struct pid_entry *p = &proc_base_stuff[nr];
2808 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2809 goto out;
2810 }
2811
2812 ns = filp->f_dentry->d_sb->s_fs_info;
2813 iter.task = NULL;
2814 iter.tgid = filp->f_pos - TGID_OFFSET;
2815 for (iter = next_tgid(ns, iter);
2816 iter.task;
2817 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2818 filp->f_pos = iter.tgid + TGID_OFFSET;
2819 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2820 put_task_struct(iter.task);
2821 goto out;
2822 }
2823 }
2824 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2825 out:
2826 put_task_struct(reaper);
2827 out_no_task:
2828 return 0;
2829 }
2830
2831 /*
2832 * Tasks
2833 */
2834 static const struct pid_entry tid_base_stuff[] = {
2835 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2836 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fd_operations),
2837 REG("environ", S_IRUSR, proc_environ_operations),
2838 INF("auxv", S_IRUSR, proc_pid_auxv),
2839 ONE("status", S_IRUGO, proc_pid_status),
2840 ONE("personality", S_IRUSR, proc_pid_personality),
2841 INF("limits", S_IRUSR, proc_pid_limits),
2842 #ifdef CONFIG_SCHED_DEBUG
2843 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2844 #endif
2845 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2846 INF("syscall", S_IRUSR, proc_pid_syscall),
2847 #endif
2848 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2849 ONE("stat", S_IRUGO, proc_tid_stat),
2850 ONE("statm", S_IRUGO, proc_pid_statm),
2851 REG("maps", S_IRUGO, proc_maps_operations),
2852 #ifdef CONFIG_NUMA
2853 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2854 #endif
2855 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2856 LNK("cwd", proc_cwd_link),
2857 LNK("root", proc_root_link),
2858 LNK("exe", proc_exe_link),
2859 REG("mounts", S_IRUGO, proc_mounts_operations),
2860 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2861 #ifdef CONFIG_PROC_PAGE_MONITOR
2862 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2863 REG("smaps", S_IRUGO, proc_smaps_operations),
2864 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2865 #endif
2866 #ifdef CONFIG_SECURITY
2867 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2868 #endif
2869 #ifdef CONFIG_KALLSYMS
2870 INF("wchan", S_IRUGO, proc_pid_wchan),
2871 #endif
2872 #ifdef CONFIG_STACKTRACE
2873 ONE("stack", S_IRUSR, proc_pid_stack),
2874 #endif
2875 #ifdef CONFIG_SCHEDSTATS
2876 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2877 #endif
2878 #ifdef CONFIG_LATENCYTOP
2879 REG("latency", S_IRUGO, proc_lstats_operations),
2880 #endif
2881 #ifdef CONFIG_PROC_PID_CPUSET
2882 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2883 #endif
2884 #ifdef CONFIG_CGROUPS
2885 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2886 #endif
2887 INF("oom_score", S_IRUGO, proc_oom_score),
2888 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2889 #ifdef CONFIG_AUDITSYSCALL
2890 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2891 REG("sessionid", S_IRUSR, proc_sessionid_operations),
2892 #endif
2893 #ifdef CONFIG_FAULT_INJECTION
2894 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2895 #endif
2896 #ifdef CONFIG_TASK_IO_ACCOUNTING
2897 INF("io", S_IRUGO, proc_tid_io_accounting),
2898 #endif
2899 };
2900
2901 static int proc_tid_base_readdir(struct file * filp,
2902 void * dirent, filldir_t filldir)
2903 {
2904 return proc_pident_readdir(filp,dirent,filldir,
2905 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2906 }
2907
2908 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2909 return proc_pident_lookup(dir, dentry,
2910 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2911 }
2912
2913 static const struct file_operations proc_tid_base_operations = {
2914 .read = generic_read_dir,
2915 .readdir = proc_tid_base_readdir,
2916 };
2917
2918 static const struct inode_operations proc_tid_base_inode_operations = {
2919 .lookup = proc_tid_base_lookup,
2920 .getattr = pid_getattr,
2921 .setattr = proc_setattr,
2922 };
2923
2924 static struct dentry *proc_task_instantiate(struct inode *dir,
2925 struct dentry *dentry, struct task_struct *task, const void *ptr)
2926 {
2927 struct dentry *error = ERR_PTR(-ENOENT);
2928 struct inode *inode;
2929 inode = proc_pid_make_inode(dir->i_sb, task);
2930
2931 if (!inode)
2932 goto out;
2933 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2934 inode->i_op = &proc_tid_base_inode_operations;
2935 inode->i_fop = &proc_tid_base_operations;
2936 inode->i_flags|=S_IMMUTABLE;
2937
2938 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
2939 ARRAY_SIZE(tid_base_stuff));
2940
2941 dentry->d_op = &pid_dentry_operations;
2942
2943 d_add(dentry, inode);
2944 /* Close the race of the process dying before we return the dentry */
2945 if (pid_revalidate(dentry, NULL))
2946 error = NULL;
2947 out:
2948 return error;
2949 }
2950
2951 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2952 {
2953 struct dentry *result = ERR_PTR(-ENOENT);
2954 struct task_struct *task;
2955 struct task_struct *leader = get_proc_task(dir);
2956 unsigned tid;
2957 struct pid_namespace *ns;
2958
2959 if (!leader)
2960 goto out_no_task;
2961
2962 tid = name_to_int(dentry);
2963 if (tid == ~0U)
2964 goto out;
2965
2966 ns = dentry->d_sb->s_fs_info;
2967 rcu_read_lock();
2968 task = find_task_by_pid_ns(tid, ns);
2969 if (task)
2970 get_task_struct(task);
2971 rcu_read_unlock();
2972 if (!task)
2973 goto out;
2974 if (!same_thread_group(leader, task))
2975 goto out_drop_task;
2976
2977 result = proc_task_instantiate(dir, dentry, task, NULL);
2978 out_drop_task:
2979 put_task_struct(task);
2980 out:
2981 put_task_struct(leader);
2982 out_no_task:
2983 return result;
2984 }
2985
2986 /*
2987 * Find the first tid of a thread group to return to user space.
2988 *
2989 * Usually this is just the thread group leader, but if the users
2990 * buffer was too small or there was a seek into the middle of the
2991 * directory we have more work todo.
2992 *
2993 * In the case of a short read we start with find_task_by_pid.
2994 *
2995 * In the case of a seek we start with the leader and walk nr
2996 * threads past it.
2997 */
2998 static struct task_struct *first_tid(struct task_struct *leader,
2999 int tid, int nr, struct pid_namespace *ns)
3000 {
3001 struct task_struct *pos;
3002
3003 rcu_read_lock();
3004 /* Attempt to start with the pid of a thread */
3005 if (tid && (nr > 0)) {
3006 pos = find_task_by_pid_ns(tid, ns);
3007 if (pos && (pos->group_leader == leader))
3008 goto found;
3009 }
3010
3011 /* If nr exceeds the number of threads there is nothing todo */
3012 pos = NULL;
3013 if (nr && nr >= get_nr_threads(leader))
3014 goto out;
3015
3016 /* If we haven't found our starting place yet start
3017 * with the leader and walk nr threads forward.
3018 */
3019 for (pos = leader; nr > 0; --nr) {
3020 pos = next_thread(pos);
3021 if (pos == leader) {
3022 pos = NULL;
3023 goto out;
3024 }
3025 }
3026 found:
3027 get_task_struct(pos);
3028 out:
3029 rcu_read_unlock();
3030 return pos;
3031 }
3032
3033 /*
3034 * Find the next thread in the thread list.
3035 * Return NULL if there is an error or no next thread.
3036 *
3037 * The reference to the input task_struct is released.
3038 */
3039 static struct task_struct *next_tid(struct task_struct *start)
3040 {
3041 struct task_struct *pos = NULL;
3042 rcu_read_lock();
3043 if (pid_alive(start)) {
3044 pos = next_thread(start);
3045 if (thread_group_leader(pos))
3046 pos = NULL;
3047 else
3048 get_task_struct(pos);
3049 }
3050 rcu_read_unlock();
3051 put_task_struct(start);
3052 return pos;
3053 }
3054
3055 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3056 struct task_struct *task, int tid)
3057 {
3058 char name[PROC_NUMBUF];
3059 int len = snprintf(name, sizeof(name), "%d", tid);
3060 return proc_fill_cache(filp, dirent, filldir, name, len,
3061 proc_task_instantiate, task, NULL);
3062 }
3063
3064 /* for the /proc/TGID/task/ directories */
3065 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3066 {
3067 struct dentry *dentry = filp->f_path.dentry;
3068 struct inode *inode = dentry->d_inode;
3069 struct task_struct *leader = NULL;
3070 struct task_struct *task;
3071 int retval = -ENOENT;
3072 ino_t ino;
3073 int tid;
3074 struct pid_namespace *ns;
3075
3076 task = get_proc_task(inode);
3077 if (!task)
3078 goto out_no_task;
3079 rcu_read_lock();
3080 if (pid_alive(task)) {
3081 leader = task->group_leader;
3082 get_task_struct(leader);
3083 }
3084 rcu_read_unlock();
3085 put_task_struct(task);
3086 if (!leader)
3087 goto out_no_task;
3088 retval = 0;
3089
3090 switch ((unsigned long)filp->f_pos) {
3091 case 0:
3092 ino = inode->i_ino;
3093 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3094 goto out;
3095 filp->f_pos++;
3096 /* fall through */
3097 case 1:
3098 ino = parent_ino(dentry);
3099 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3100 goto out;
3101 filp->f_pos++;
3102 /* fall through */
3103 }
3104
3105 /* f_version caches the tgid value that the last readdir call couldn't
3106 * return. lseek aka telldir automagically resets f_version to 0.
3107 */
3108 ns = filp->f_dentry->d_sb->s_fs_info;
3109 tid = (int)filp->f_version;
3110 filp->f_version = 0;
3111 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3112 task;
3113 task = next_tid(task), filp->f_pos++) {
3114 tid = task_pid_nr_ns(task, ns);
3115 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3116 /* returning this tgid failed, save it as the first
3117 * pid for the next readir call */
3118 filp->f_version = (u64)tid;
3119 put_task_struct(task);
3120 break;
3121 }
3122 }
3123 out:
3124 put_task_struct(leader);
3125 out_no_task:
3126 return retval;
3127 }
3128
3129 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3130 {
3131 struct inode *inode = dentry->d_inode;
3132 struct task_struct *p = get_proc_task(inode);
3133 generic_fillattr(inode, stat);
3134
3135 if (p) {
3136 stat->nlink += get_nr_threads(p);
3137 put_task_struct(p);
3138 }
3139
3140 return 0;
3141 }
3142
3143 static const struct inode_operations proc_task_inode_operations = {
3144 .lookup = proc_task_lookup,
3145 .getattr = proc_task_getattr,
3146 .setattr = proc_setattr,
3147 };
3148
3149 static const struct file_operations proc_task_operations = {
3150 .read = generic_read_dir,
3151 .readdir = proc_task_readdir,
3152 };
This page took 0.149684 seconds and 5 git commands to generate.