9d962555972791c41d6e8d154ff53c425b300a9d
[deliverable/linux.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/user_namespace.h>
85 #include <linux/fs_struct.h>
86 #include <linux/slab.h>
87 #include <linux/flex_array.h>
88 #ifdef CONFIG_HARDWALL
89 #include <asm/hardwall.h>
90 #endif
91 #include <trace/events/oom.h>
92 #include "internal.h"
93 #include "fd.h"
94
95 /* NOTE:
96 * Implementing inode permission operations in /proc is almost
97 * certainly an error. Permission checks need to happen during
98 * each system call not at open time. The reason is that most of
99 * what we wish to check for permissions in /proc varies at runtime.
100 *
101 * The classic example of a problem is opening file descriptors
102 * in /proc for a task before it execs a suid executable.
103 */
104
105 struct pid_entry {
106 char *name;
107 int len;
108 umode_t mode;
109 const struct inode_operations *iop;
110 const struct file_operations *fop;
111 union proc_op op;
112 };
113
114 #define NOD(NAME, MODE, IOP, FOP, OP) { \
115 .name = (NAME), \
116 .len = sizeof(NAME) - 1, \
117 .mode = MODE, \
118 .iop = IOP, \
119 .fop = FOP, \
120 .op = OP, \
121 }
122
123 #define DIR(NAME, MODE, iops, fops) \
124 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
125 #define LNK(NAME, get_link) \
126 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
127 &proc_pid_link_inode_operations, NULL, \
128 { .proc_get_link = get_link } )
129 #define REG(NAME, MODE, fops) \
130 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
131 #define INF(NAME, MODE, read) \
132 NOD(NAME, (S_IFREG|(MODE)), \
133 NULL, &proc_info_file_operations, \
134 { .proc_read = read } )
135 #define ONE(NAME, MODE, show) \
136 NOD(NAME, (S_IFREG|(MODE)), \
137 NULL, &proc_single_file_operations, \
138 { .proc_show = show } )
139
140 /*
141 * Count the number of hardlinks for the pid_entry table, excluding the .
142 * and .. links.
143 */
144 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
145 unsigned int n)
146 {
147 unsigned int i;
148 unsigned int count;
149
150 count = 0;
151 for (i = 0; i < n; ++i) {
152 if (S_ISDIR(entries[i].mode))
153 ++count;
154 }
155
156 return count;
157 }
158
159 static int get_task_root(struct task_struct *task, struct path *root)
160 {
161 int result = -ENOENT;
162
163 task_lock(task);
164 if (task->fs) {
165 get_fs_root(task->fs, root);
166 result = 0;
167 }
168 task_unlock(task);
169 return result;
170 }
171
172 static int proc_cwd_link(struct dentry *dentry, struct path *path)
173 {
174 struct task_struct *task = get_proc_task(dentry->d_inode);
175 int result = -ENOENT;
176
177 if (task) {
178 task_lock(task);
179 if (task->fs) {
180 get_fs_pwd(task->fs, path);
181 result = 0;
182 }
183 task_unlock(task);
184 put_task_struct(task);
185 }
186 return result;
187 }
188
189 static int proc_root_link(struct dentry *dentry, struct path *path)
190 {
191 struct task_struct *task = get_proc_task(dentry->d_inode);
192 int result = -ENOENT;
193
194 if (task) {
195 result = get_task_root(task, path);
196 put_task_struct(task);
197 }
198 return result;
199 }
200
201 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
202 {
203 int res = 0;
204 unsigned int len;
205 struct mm_struct *mm = get_task_mm(task);
206 if (!mm)
207 goto out;
208 if (!mm->arg_end)
209 goto out_mm; /* Shh! No looking before we're done */
210
211 len = mm->arg_end - mm->arg_start;
212
213 if (len > PAGE_SIZE)
214 len = PAGE_SIZE;
215
216 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
217
218 // If the nul at the end of args has been overwritten, then
219 // assume application is using setproctitle(3).
220 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
221 len = strnlen(buffer, res);
222 if (len < res) {
223 res = len;
224 } else {
225 len = mm->env_end - mm->env_start;
226 if (len > PAGE_SIZE - res)
227 len = PAGE_SIZE - res;
228 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
229 res = strnlen(buffer, res);
230 }
231 }
232 out_mm:
233 mmput(mm);
234 out:
235 return res;
236 }
237
238 static int proc_pid_auxv(struct task_struct *task, char *buffer)
239 {
240 struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
241 int res = PTR_ERR(mm);
242 if (mm && !IS_ERR(mm)) {
243 unsigned int nwords = 0;
244 do {
245 nwords += 2;
246 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
247 res = nwords * sizeof(mm->saved_auxv[0]);
248 if (res > PAGE_SIZE)
249 res = PAGE_SIZE;
250 memcpy(buffer, mm->saved_auxv, res);
251 mmput(mm);
252 }
253 return res;
254 }
255
256
257 #ifdef CONFIG_KALLSYMS
258 /*
259 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
260 * Returns the resolved symbol. If that fails, simply return the address.
261 */
262 static int proc_pid_wchan(struct task_struct *task, char *buffer)
263 {
264 unsigned long wchan;
265 char symname[KSYM_NAME_LEN];
266
267 wchan = get_wchan(task);
268
269 if (lookup_symbol_name(wchan, symname) < 0)
270 if (!ptrace_may_access(task, PTRACE_MODE_READ))
271 return 0;
272 else
273 return sprintf(buffer, "%lu", wchan);
274 else
275 return sprintf(buffer, "%s", symname);
276 }
277 #endif /* CONFIG_KALLSYMS */
278
279 static int lock_trace(struct task_struct *task)
280 {
281 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
282 if (err)
283 return err;
284 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
285 mutex_unlock(&task->signal->cred_guard_mutex);
286 return -EPERM;
287 }
288 return 0;
289 }
290
291 static void unlock_trace(struct task_struct *task)
292 {
293 mutex_unlock(&task->signal->cred_guard_mutex);
294 }
295
296 #ifdef CONFIG_STACKTRACE
297
298 #define MAX_STACK_TRACE_DEPTH 64
299
300 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
301 struct pid *pid, struct task_struct *task)
302 {
303 struct stack_trace trace;
304 unsigned long *entries;
305 int err;
306 int i;
307
308 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
309 if (!entries)
310 return -ENOMEM;
311
312 trace.nr_entries = 0;
313 trace.max_entries = MAX_STACK_TRACE_DEPTH;
314 trace.entries = entries;
315 trace.skip = 0;
316
317 err = lock_trace(task);
318 if (!err) {
319 save_stack_trace_tsk(task, &trace);
320
321 for (i = 0; i < trace.nr_entries; i++) {
322 seq_printf(m, "[<%pK>] %pS\n",
323 (void *)entries[i], (void *)entries[i]);
324 }
325 unlock_trace(task);
326 }
327 kfree(entries);
328
329 return err;
330 }
331 #endif
332
333 #ifdef CONFIG_SCHEDSTATS
334 /*
335 * Provides /proc/PID/schedstat
336 */
337 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
338 {
339 return sprintf(buffer, "%llu %llu %lu\n",
340 (unsigned long long)task->se.sum_exec_runtime,
341 (unsigned long long)task->sched_info.run_delay,
342 task->sched_info.pcount);
343 }
344 #endif
345
346 #ifdef CONFIG_LATENCYTOP
347 static int lstats_show_proc(struct seq_file *m, void *v)
348 {
349 int i;
350 struct inode *inode = m->private;
351 struct task_struct *task = get_proc_task(inode);
352
353 if (!task)
354 return -ESRCH;
355 seq_puts(m, "Latency Top version : v0.1\n");
356 for (i = 0; i < 32; i++) {
357 struct latency_record *lr = &task->latency_record[i];
358 if (lr->backtrace[0]) {
359 int q;
360 seq_printf(m, "%i %li %li",
361 lr->count, lr->time, lr->max);
362 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
363 unsigned long bt = lr->backtrace[q];
364 if (!bt)
365 break;
366 if (bt == ULONG_MAX)
367 break;
368 seq_printf(m, " %ps", (void *)bt);
369 }
370 seq_putc(m, '\n');
371 }
372
373 }
374 put_task_struct(task);
375 return 0;
376 }
377
378 static int lstats_open(struct inode *inode, struct file *file)
379 {
380 return single_open(file, lstats_show_proc, inode);
381 }
382
383 static ssize_t lstats_write(struct file *file, const char __user *buf,
384 size_t count, loff_t *offs)
385 {
386 struct task_struct *task = get_proc_task(file_inode(file));
387
388 if (!task)
389 return -ESRCH;
390 clear_all_latency_tracing(task);
391 put_task_struct(task);
392
393 return count;
394 }
395
396 static const struct file_operations proc_lstats_operations = {
397 .open = lstats_open,
398 .read = seq_read,
399 .write = lstats_write,
400 .llseek = seq_lseek,
401 .release = single_release,
402 };
403
404 #endif
405
406 static int proc_oom_score(struct task_struct *task, char *buffer)
407 {
408 unsigned long totalpages = totalram_pages + total_swap_pages;
409 unsigned long points = 0;
410
411 read_lock(&tasklist_lock);
412 if (pid_alive(task))
413 points = oom_badness(task, NULL, NULL, totalpages) *
414 1000 / totalpages;
415 read_unlock(&tasklist_lock);
416 return sprintf(buffer, "%lu\n", points);
417 }
418
419 struct limit_names {
420 char *name;
421 char *unit;
422 };
423
424 static const struct limit_names lnames[RLIM_NLIMITS] = {
425 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
426 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
427 [RLIMIT_DATA] = {"Max data size", "bytes"},
428 [RLIMIT_STACK] = {"Max stack size", "bytes"},
429 [RLIMIT_CORE] = {"Max core file size", "bytes"},
430 [RLIMIT_RSS] = {"Max resident set", "bytes"},
431 [RLIMIT_NPROC] = {"Max processes", "processes"},
432 [RLIMIT_NOFILE] = {"Max open files", "files"},
433 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
434 [RLIMIT_AS] = {"Max address space", "bytes"},
435 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
436 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
437 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
438 [RLIMIT_NICE] = {"Max nice priority", NULL},
439 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
440 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
441 };
442
443 /* Display limits for a process */
444 static int proc_pid_limits(struct task_struct *task, char *buffer)
445 {
446 unsigned int i;
447 int count = 0;
448 unsigned long flags;
449 char *bufptr = buffer;
450
451 struct rlimit rlim[RLIM_NLIMITS];
452
453 if (!lock_task_sighand(task, &flags))
454 return 0;
455 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
456 unlock_task_sighand(task, &flags);
457
458 /*
459 * print the file header
460 */
461 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
462 "Limit", "Soft Limit", "Hard Limit", "Units");
463
464 for (i = 0; i < RLIM_NLIMITS; i++) {
465 if (rlim[i].rlim_cur == RLIM_INFINITY)
466 count += sprintf(&bufptr[count], "%-25s %-20s ",
467 lnames[i].name, "unlimited");
468 else
469 count += sprintf(&bufptr[count], "%-25s %-20lu ",
470 lnames[i].name, rlim[i].rlim_cur);
471
472 if (rlim[i].rlim_max == RLIM_INFINITY)
473 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
474 else
475 count += sprintf(&bufptr[count], "%-20lu ",
476 rlim[i].rlim_max);
477
478 if (lnames[i].unit)
479 count += sprintf(&bufptr[count], "%-10s\n",
480 lnames[i].unit);
481 else
482 count += sprintf(&bufptr[count], "\n");
483 }
484
485 return count;
486 }
487
488 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
489 static int proc_pid_syscall(struct task_struct *task, char *buffer)
490 {
491 long nr;
492 unsigned long args[6], sp, pc;
493 int res = lock_trace(task);
494 if (res)
495 return res;
496
497 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
498 res = sprintf(buffer, "running\n");
499 else if (nr < 0)
500 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
501 else
502 res = sprintf(buffer,
503 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
504 nr,
505 args[0], args[1], args[2], args[3], args[4], args[5],
506 sp, pc);
507 unlock_trace(task);
508 return res;
509 }
510 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
511
512 /************************************************************************/
513 /* Here the fs part begins */
514 /************************************************************************/
515
516 /* permission checks */
517 static int proc_fd_access_allowed(struct inode *inode)
518 {
519 struct task_struct *task;
520 int allowed = 0;
521 /* Allow access to a task's file descriptors if it is us or we
522 * may use ptrace attach to the process and find out that
523 * information.
524 */
525 task = get_proc_task(inode);
526 if (task) {
527 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
528 put_task_struct(task);
529 }
530 return allowed;
531 }
532
533 int proc_setattr(struct dentry *dentry, struct iattr *attr)
534 {
535 int error;
536 struct inode *inode = dentry->d_inode;
537
538 if (attr->ia_valid & ATTR_MODE)
539 return -EPERM;
540
541 error = inode_change_ok(inode, attr);
542 if (error)
543 return error;
544
545 setattr_copy(inode, attr);
546 mark_inode_dirty(inode);
547 return 0;
548 }
549
550 /*
551 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
552 * or euid/egid (for hide_pid_min=2)?
553 */
554 static bool has_pid_permissions(struct pid_namespace *pid,
555 struct task_struct *task,
556 int hide_pid_min)
557 {
558 if (pid->hide_pid < hide_pid_min)
559 return true;
560 if (in_group_p(pid->pid_gid))
561 return true;
562 return ptrace_may_access(task, PTRACE_MODE_READ);
563 }
564
565
566 static int proc_pid_permission(struct inode *inode, int mask)
567 {
568 struct pid_namespace *pid = inode->i_sb->s_fs_info;
569 struct task_struct *task;
570 bool has_perms;
571
572 task = get_proc_task(inode);
573 if (!task)
574 return -ESRCH;
575 has_perms = has_pid_permissions(pid, task, 1);
576 put_task_struct(task);
577
578 if (!has_perms) {
579 if (pid->hide_pid == 2) {
580 /*
581 * Let's make getdents(), stat(), and open()
582 * consistent with each other. If a process
583 * may not stat() a file, it shouldn't be seen
584 * in procfs at all.
585 */
586 return -ENOENT;
587 }
588
589 return -EPERM;
590 }
591 return generic_permission(inode, mask);
592 }
593
594
595
596 static const struct inode_operations proc_def_inode_operations = {
597 .setattr = proc_setattr,
598 };
599
600 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
601
602 static ssize_t proc_info_read(struct file * file, char __user * buf,
603 size_t count, loff_t *ppos)
604 {
605 struct inode * inode = file_inode(file);
606 unsigned long page;
607 ssize_t length;
608 struct task_struct *task = get_proc_task(inode);
609
610 length = -ESRCH;
611 if (!task)
612 goto out_no_task;
613
614 if (count > PROC_BLOCK_SIZE)
615 count = PROC_BLOCK_SIZE;
616
617 length = -ENOMEM;
618 if (!(page = __get_free_page(GFP_TEMPORARY)))
619 goto out;
620
621 length = PROC_I(inode)->op.proc_read(task, (char*)page);
622
623 if (length >= 0)
624 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
625 free_page(page);
626 out:
627 put_task_struct(task);
628 out_no_task:
629 return length;
630 }
631
632 static const struct file_operations proc_info_file_operations = {
633 .read = proc_info_read,
634 .llseek = generic_file_llseek,
635 };
636
637 static int proc_single_show(struct seq_file *m, void *v)
638 {
639 struct inode *inode = m->private;
640 struct pid_namespace *ns;
641 struct pid *pid;
642 struct task_struct *task;
643 int ret;
644
645 ns = inode->i_sb->s_fs_info;
646 pid = proc_pid(inode);
647 task = get_pid_task(pid, PIDTYPE_PID);
648 if (!task)
649 return -ESRCH;
650
651 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
652
653 put_task_struct(task);
654 return ret;
655 }
656
657 static int proc_single_open(struct inode *inode, struct file *filp)
658 {
659 return single_open(filp, proc_single_show, inode);
660 }
661
662 static const struct file_operations proc_single_file_operations = {
663 .open = proc_single_open,
664 .read = seq_read,
665 .llseek = seq_lseek,
666 .release = single_release,
667 };
668
669 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
670 {
671 struct task_struct *task = get_proc_task(file_inode(file));
672 struct mm_struct *mm;
673
674 if (!task)
675 return -ESRCH;
676
677 mm = mm_access(task, mode);
678 put_task_struct(task);
679
680 if (IS_ERR(mm))
681 return PTR_ERR(mm);
682
683 if (mm) {
684 /* ensure this mm_struct can't be freed */
685 atomic_inc(&mm->mm_count);
686 /* but do not pin its memory */
687 mmput(mm);
688 }
689
690 file->private_data = mm;
691
692 return 0;
693 }
694
695 static int mem_open(struct inode *inode, struct file *file)
696 {
697 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
698
699 /* OK to pass negative loff_t, we can catch out-of-range */
700 file->f_mode |= FMODE_UNSIGNED_OFFSET;
701
702 return ret;
703 }
704
705 static ssize_t mem_rw(struct file *file, char __user *buf,
706 size_t count, loff_t *ppos, int write)
707 {
708 struct mm_struct *mm = file->private_data;
709 unsigned long addr = *ppos;
710 ssize_t copied;
711 char *page;
712
713 if (!mm)
714 return 0;
715
716 page = (char *)__get_free_page(GFP_TEMPORARY);
717 if (!page)
718 return -ENOMEM;
719
720 copied = 0;
721 if (!atomic_inc_not_zero(&mm->mm_users))
722 goto free;
723
724 while (count > 0) {
725 int this_len = min_t(int, count, PAGE_SIZE);
726
727 if (write && copy_from_user(page, buf, this_len)) {
728 copied = -EFAULT;
729 break;
730 }
731
732 this_len = access_remote_vm(mm, addr, page, this_len, write);
733 if (!this_len) {
734 if (!copied)
735 copied = -EIO;
736 break;
737 }
738
739 if (!write && copy_to_user(buf, page, this_len)) {
740 copied = -EFAULT;
741 break;
742 }
743
744 buf += this_len;
745 addr += this_len;
746 copied += this_len;
747 count -= this_len;
748 }
749 *ppos = addr;
750
751 mmput(mm);
752 free:
753 free_page((unsigned long) page);
754 return copied;
755 }
756
757 static ssize_t mem_read(struct file *file, char __user *buf,
758 size_t count, loff_t *ppos)
759 {
760 return mem_rw(file, buf, count, ppos, 0);
761 }
762
763 static ssize_t mem_write(struct file *file, const char __user *buf,
764 size_t count, loff_t *ppos)
765 {
766 return mem_rw(file, (char __user*)buf, count, ppos, 1);
767 }
768
769 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
770 {
771 switch (orig) {
772 case 0:
773 file->f_pos = offset;
774 break;
775 case 1:
776 file->f_pos += offset;
777 break;
778 default:
779 return -EINVAL;
780 }
781 force_successful_syscall_return();
782 return file->f_pos;
783 }
784
785 static int mem_release(struct inode *inode, struct file *file)
786 {
787 struct mm_struct *mm = file->private_data;
788 if (mm)
789 mmdrop(mm);
790 return 0;
791 }
792
793 static const struct file_operations proc_mem_operations = {
794 .llseek = mem_lseek,
795 .read = mem_read,
796 .write = mem_write,
797 .open = mem_open,
798 .release = mem_release,
799 };
800
801 static int environ_open(struct inode *inode, struct file *file)
802 {
803 return __mem_open(inode, file, PTRACE_MODE_READ);
804 }
805
806 static ssize_t environ_read(struct file *file, char __user *buf,
807 size_t count, loff_t *ppos)
808 {
809 char *page;
810 unsigned long src = *ppos;
811 int ret = 0;
812 struct mm_struct *mm = file->private_data;
813
814 if (!mm)
815 return 0;
816
817 page = (char *)__get_free_page(GFP_TEMPORARY);
818 if (!page)
819 return -ENOMEM;
820
821 ret = 0;
822 if (!atomic_inc_not_zero(&mm->mm_users))
823 goto free;
824 while (count > 0) {
825 size_t this_len, max_len;
826 int retval;
827
828 if (src >= (mm->env_end - mm->env_start))
829 break;
830
831 this_len = mm->env_end - (mm->env_start + src);
832
833 max_len = min_t(size_t, PAGE_SIZE, count);
834 this_len = min(max_len, this_len);
835
836 retval = access_remote_vm(mm, (mm->env_start + src),
837 page, this_len, 0);
838
839 if (retval <= 0) {
840 ret = retval;
841 break;
842 }
843
844 if (copy_to_user(buf, page, retval)) {
845 ret = -EFAULT;
846 break;
847 }
848
849 ret += retval;
850 src += retval;
851 buf += retval;
852 count -= retval;
853 }
854 *ppos = src;
855 mmput(mm);
856
857 free:
858 free_page((unsigned long) page);
859 return ret;
860 }
861
862 static const struct file_operations proc_environ_operations = {
863 .open = environ_open,
864 .read = environ_read,
865 .llseek = generic_file_llseek,
866 .release = mem_release,
867 };
868
869 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
870 loff_t *ppos)
871 {
872 struct task_struct *task = get_proc_task(file_inode(file));
873 char buffer[PROC_NUMBUF];
874 int oom_adj = OOM_ADJUST_MIN;
875 size_t len;
876 unsigned long flags;
877
878 if (!task)
879 return -ESRCH;
880 if (lock_task_sighand(task, &flags)) {
881 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
882 oom_adj = OOM_ADJUST_MAX;
883 else
884 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
885 OOM_SCORE_ADJ_MAX;
886 unlock_task_sighand(task, &flags);
887 }
888 put_task_struct(task);
889 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
890 return simple_read_from_buffer(buf, count, ppos, buffer, len);
891 }
892
893 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
894 size_t count, loff_t *ppos)
895 {
896 struct task_struct *task;
897 char buffer[PROC_NUMBUF];
898 int oom_adj;
899 unsigned long flags;
900 int err;
901
902 memset(buffer, 0, sizeof(buffer));
903 if (count > sizeof(buffer) - 1)
904 count = sizeof(buffer) - 1;
905 if (copy_from_user(buffer, buf, count)) {
906 err = -EFAULT;
907 goto out;
908 }
909
910 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
911 if (err)
912 goto out;
913 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
914 oom_adj != OOM_DISABLE) {
915 err = -EINVAL;
916 goto out;
917 }
918
919 task = get_proc_task(file_inode(file));
920 if (!task) {
921 err = -ESRCH;
922 goto out;
923 }
924
925 task_lock(task);
926 if (!task->mm) {
927 err = -EINVAL;
928 goto err_task_lock;
929 }
930
931 if (!lock_task_sighand(task, &flags)) {
932 err = -ESRCH;
933 goto err_task_lock;
934 }
935
936 /*
937 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
938 * value is always attainable.
939 */
940 if (oom_adj == OOM_ADJUST_MAX)
941 oom_adj = OOM_SCORE_ADJ_MAX;
942 else
943 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
944
945 if (oom_adj < task->signal->oom_score_adj &&
946 !capable(CAP_SYS_RESOURCE)) {
947 err = -EACCES;
948 goto err_sighand;
949 }
950
951 /*
952 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
953 * /proc/pid/oom_score_adj instead.
954 */
955 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
956 current->comm, task_pid_nr(current), task_pid_nr(task),
957 task_pid_nr(task));
958
959 task->signal->oom_score_adj = oom_adj;
960 trace_oom_score_adj_update(task);
961 err_sighand:
962 unlock_task_sighand(task, &flags);
963 err_task_lock:
964 task_unlock(task);
965 put_task_struct(task);
966 out:
967 return err < 0 ? err : count;
968 }
969
970 static const struct file_operations proc_oom_adj_operations = {
971 .read = oom_adj_read,
972 .write = oom_adj_write,
973 .llseek = generic_file_llseek,
974 };
975
976 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
977 size_t count, loff_t *ppos)
978 {
979 struct task_struct *task = get_proc_task(file_inode(file));
980 char buffer[PROC_NUMBUF];
981 short oom_score_adj = OOM_SCORE_ADJ_MIN;
982 unsigned long flags;
983 size_t len;
984
985 if (!task)
986 return -ESRCH;
987 if (lock_task_sighand(task, &flags)) {
988 oom_score_adj = task->signal->oom_score_adj;
989 unlock_task_sighand(task, &flags);
990 }
991 put_task_struct(task);
992 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
993 return simple_read_from_buffer(buf, count, ppos, buffer, len);
994 }
995
996 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
997 size_t count, loff_t *ppos)
998 {
999 struct task_struct *task;
1000 char buffer[PROC_NUMBUF];
1001 unsigned long flags;
1002 int oom_score_adj;
1003 int err;
1004
1005 memset(buffer, 0, sizeof(buffer));
1006 if (count > sizeof(buffer) - 1)
1007 count = sizeof(buffer) - 1;
1008 if (copy_from_user(buffer, buf, count)) {
1009 err = -EFAULT;
1010 goto out;
1011 }
1012
1013 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1014 if (err)
1015 goto out;
1016 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1017 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1018 err = -EINVAL;
1019 goto out;
1020 }
1021
1022 task = get_proc_task(file_inode(file));
1023 if (!task) {
1024 err = -ESRCH;
1025 goto out;
1026 }
1027
1028 task_lock(task);
1029 if (!task->mm) {
1030 err = -EINVAL;
1031 goto err_task_lock;
1032 }
1033
1034 if (!lock_task_sighand(task, &flags)) {
1035 err = -ESRCH;
1036 goto err_task_lock;
1037 }
1038
1039 if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1040 !capable(CAP_SYS_RESOURCE)) {
1041 err = -EACCES;
1042 goto err_sighand;
1043 }
1044
1045 task->signal->oom_score_adj = (short)oom_score_adj;
1046 if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1047 task->signal->oom_score_adj_min = (short)oom_score_adj;
1048 trace_oom_score_adj_update(task);
1049
1050 err_sighand:
1051 unlock_task_sighand(task, &flags);
1052 err_task_lock:
1053 task_unlock(task);
1054 put_task_struct(task);
1055 out:
1056 return err < 0 ? err : count;
1057 }
1058
1059 static const struct file_operations proc_oom_score_adj_operations = {
1060 .read = oom_score_adj_read,
1061 .write = oom_score_adj_write,
1062 .llseek = default_llseek,
1063 };
1064
1065 #ifdef CONFIG_AUDITSYSCALL
1066 #define TMPBUFLEN 21
1067 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1068 size_t count, loff_t *ppos)
1069 {
1070 struct inode * inode = file_inode(file);
1071 struct task_struct *task = get_proc_task(inode);
1072 ssize_t length;
1073 char tmpbuf[TMPBUFLEN];
1074
1075 if (!task)
1076 return -ESRCH;
1077 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1078 from_kuid(file->f_cred->user_ns,
1079 audit_get_loginuid(task)));
1080 put_task_struct(task);
1081 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1082 }
1083
1084 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1085 size_t count, loff_t *ppos)
1086 {
1087 struct inode * inode = file_inode(file);
1088 char *page, *tmp;
1089 ssize_t length;
1090 uid_t loginuid;
1091 kuid_t kloginuid;
1092
1093 rcu_read_lock();
1094 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1095 rcu_read_unlock();
1096 return -EPERM;
1097 }
1098 rcu_read_unlock();
1099
1100 if (count >= PAGE_SIZE)
1101 count = PAGE_SIZE - 1;
1102
1103 if (*ppos != 0) {
1104 /* No partial writes. */
1105 return -EINVAL;
1106 }
1107 page = (char*)__get_free_page(GFP_TEMPORARY);
1108 if (!page)
1109 return -ENOMEM;
1110 length = -EFAULT;
1111 if (copy_from_user(page, buf, count))
1112 goto out_free_page;
1113
1114 page[count] = '\0';
1115 loginuid = simple_strtoul(page, &tmp, 10);
1116 if (tmp == page) {
1117 length = -EINVAL;
1118 goto out_free_page;
1119
1120 }
1121 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1122 if (!uid_valid(kloginuid)) {
1123 length = -EINVAL;
1124 goto out_free_page;
1125 }
1126
1127 length = audit_set_loginuid(kloginuid);
1128 if (likely(length == 0))
1129 length = count;
1130
1131 out_free_page:
1132 free_page((unsigned long) page);
1133 return length;
1134 }
1135
1136 static const struct file_operations proc_loginuid_operations = {
1137 .read = proc_loginuid_read,
1138 .write = proc_loginuid_write,
1139 .llseek = generic_file_llseek,
1140 };
1141
1142 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1143 size_t count, loff_t *ppos)
1144 {
1145 struct inode * inode = file_inode(file);
1146 struct task_struct *task = get_proc_task(inode);
1147 ssize_t length;
1148 char tmpbuf[TMPBUFLEN];
1149
1150 if (!task)
1151 return -ESRCH;
1152 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1153 audit_get_sessionid(task));
1154 put_task_struct(task);
1155 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1156 }
1157
1158 static const struct file_operations proc_sessionid_operations = {
1159 .read = proc_sessionid_read,
1160 .llseek = generic_file_llseek,
1161 };
1162 #endif
1163
1164 #ifdef CONFIG_FAULT_INJECTION
1165 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1166 size_t count, loff_t *ppos)
1167 {
1168 struct task_struct *task = get_proc_task(file_inode(file));
1169 char buffer[PROC_NUMBUF];
1170 size_t len;
1171 int make_it_fail;
1172
1173 if (!task)
1174 return -ESRCH;
1175 make_it_fail = task->make_it_fail;
1176 put_task_struct(task);
1177
1178 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1179
1180 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1181 }
1182
1183 static ssize_t proc_fault_inject_write(struct file * file,
1184 const char __user * buf, size_t count, loff_t *ppos)
1185 {
1186 struct task_struct *task;
1187 char buffer[PROC_NUMBUF], *end;
1188 int make_it_fail;
1189
1190 if (!capable(CAP_SYS_RESOURCE))
1191 return -EPERM;
1192 memset(buffer, 0, sizeof(buffer));
1193 if (count > sizeof(buffer) - 1)
1194 count = sizeof(buffer) - 1;
1195 if (copy_from_user(buffer, buf, count))
1196 return -EFAULT;
1197 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1198 if (*end)
1199 return -EINVAL;
1200 task = get_proc_task(file_inode(file));
1201 if (!task)
1202 return -ESRCH;
1203 task->make_it_fail = make_it_fail;
1204 put_task_struct(task);
1205
1206 return count;
1207 }
1208
1209 static const struct file_operations proc_fault_inject_operations = {
1210 .read = proc_fault_inject_read,
1211 .write = proc_fault_inject_write,
1212 .llseek = generic_file_llseek,
1213 };
1214 #endif
1215
1216
1217 #ifdef CONFIG_SCHED_DEBUG
1218 /*
1219 * Print out various scheduling related per-task fields:
1220 */
1221 static int sched_show(struct seq_file *m, void *v)
1222 {
1223 struct inode *inode = m->private;
1224 struct task_struct *p;
1225
1226 p = get_proc_task(inode);
1227 if (!p)
1228 return -ESRCH;
1229 proc_sched_show_task(p, m);
1230
1231 put_task_struct(p);
1232
1233 return 0;
1234 }
1235
1236 static ssize_t
1237 sched_write(struct file *file, const char __user *buf,
1238 size_t count, loff_t *offset)
1239 {
1240 struct inode *inode = file_inode(file);
1241 struct task_struct *p;
1242
1243 p = get_proc_task(inode);
1244 if (!p)
1245 return -ESRCH;
1246 proc_sched_set_task(p);
1247
1248 put_task_struct(p);
1249
1250 return count;
1251 }
1252
1253 static int sched_open(struct inode *inode, struct file *filp)
1254 {
1255 return single_open(filp, sched_show, inode);
1256 }
1257
1258 static const struct file_operations proc_pid_sched_operations = {
1259 .open = sched_open,
1260 .read = seq_read,
1261 .write = sched_write,
1262 .llseek = seq_lseek,
1263 .release = single_release,
1264 };
1265
1266 #endif
1267
1268 #ifdef CONFIG_SCHED_AUTOGROUP
1269 /*
1270 * Print out autogroup related information:
1271 */
1272 static int sched_autogroup_show(struct seq_file *m, void *v)
1273 {
1274 struct inode *inode = m->private;
1275 struct task_struct *p;
1276
1277 p = get_proc_task(inode);
1278 if (!p)
1279 return -ESRCH;
1280 proc_sched_autogroup_show_task(p, m);
1281
1282 put_task_struct(p);
1283
1284 return 0;
1285 }
1286
1287 static ssize_t
1288 sched_autogroup_write(struct file *file, const char __user *buf,
1289 size_t count, loff_t *offset)
1290 {
1291 struct inode *inode = file_inode(file);
1292 struct task_struct *p;
1293 char buffer[PROC_NUMBUF];
1294 int nice;
1295 int err;
1296
1297 memset(buffer, 0, sizeof(buffer));
1298 if (count > sizeof(buffer) - 1)
1299 count = sizeof(buffer) - 1;
1300 if (copy_from_user(buffer, buf, count))
1301 return -EFAULT;
1302
1303 err = kstrtoint(strstrip(buffer), 0, &nice);
1304 if (err < 0)
1305 return err;
1306
1307 p = get_proc_task(inode);
1308 if (!p)
1309 return -ESRCH;
1310
1311 err = proc_sched_autogroup_set_nice(p, nice);
1312 if (err)
1313 count = err;
1314
1315 put_task_struct(p);
1316
1317 return count;
1318 }
1319
1320 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1321 {
1322 int ret;
1323
1324 ret = single_open(filp, sched_autogroup_show, NULL);
1325 if (!ret) {
1326 struct seq_file *m = filp->private_data;
1327
1328 m->private = inode;
1329 }
1330 return ret;
1331 }
1332
1333 static const struct file_operations proc_pid_sched_autogroup_operations = {
1334 .open = sched_autogroup_open,
1335 .read = seq_read,
1336 .write = sched_autogroup_write,
1337 .llseek = seq_lseek,
1338 .release = single_release,
1339 };
1340
1341 #endif /* CONFIG_SCHED_AUTOGROUP */
1342
1343 static ssize_t comm_write(struct file *file, const char __user *buf,
1344 size_t count, loff_t *offset)
1345 {
1346 struct inode *inode = file_inode(file);
1347 struct task_struct *p;
1348 char buffer[TASK_COMM_LEN];
1349
1350 memset(buffer, 0, sizeof(buffer));
1351 if (count > sizeof(buffer) - 1)
1352 count = sizeof(buffer) - 1;
1353 if (copy_from_user(buffer, buf, count))
1354 return -EFAULT;
1355
1356 p = get_proc_task(inode);
1357 if (!p)
1358 return -ESRCH;
1359
1360 if (same_thread_group(current, p))
1361 set_task_comm(p, buffer);
1362 else
1363 count = -EINVAL;
1364
1365 put_task_struct(p);
1366
1367 return count;
1368 }
1369
1370 static int comm_show(struct seq_file *m, void *v)
1371 {
1372 struct inode *inode = m->private;
1373 struct task_struct *p;
1374
1375 p = get_proc_task(inode);
1376 if (!p)
1377 return -ESRCH;
1378
1379 task_lock(p);
1380 seq_printf(m, "%s\n", p->comm);
1381 task_unlock(p);
1382
1383 put_task_struct(p);
1384
1385 return 0;
1386 }
1387
1388 static int comm_open(struct inode *inode, struct file *filp)
1389 {
1390 return single_open(filp, comm_show, inode);
1391 }
1392
1393 static const struct file_operations proc_pid_set_comm_operations = {
1394 .open = comm_open,
1395 .read = seq_read,
1396 .write = comm_write,
1397 .llseek = seq_lseek,
1398 .release = single_release,
1399 };
1400
1401 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1402 {
1403 struct task_struct *task;
1404 struct mm_struct *mm;
1405 struct file *exe_file;
1406
1407 task = get_proc_task(dentry->d_inode);
1408 if (!task)
1409 return -ENOENT;
1410 mm = get_task_mm(task);
1411 put_task_struct(task);
1412 if (!mm)
1413 return -ENOENT;
1414 exe_file = get_mm_exe_file(mm);
1415 mmput(mm);
1416 if (exe_file) {
1417 *exe_path = exe_file->f_path;
1418 path_get(&exe_file->f_path);
1419 fput(exe_file);
1420 return 0;
1421 } else
1422 return -ENOENT;
1423 }
1424
1425 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1426 {
1427 struct inode *inode = dentry->d_inode;
1428 struct path path;
1429 int error = -EACCES;
1430
1431 /* Are we allowed to snoop on the tasks file descriptors? */
1432 if (!proc_fd_access_allowed(inode))
1433 goto out;
1434
1435 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1436 if (error)
1437 goto out;
1438
1439 nd_jump_link(nd, &path);
1440 return NULL;
1441 out:
1442 return ERR_PTR(error);
1443 }
1444
1445 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1446 {
1447 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1448 char *pathname;
1449 int len;
1450
1451 if (!tmp)
1452 return -ENOMEM;
1453
1454 pathname = d_path(path, tmp, PAGE_SIZE);
1455 len = PTR_ERR(pathname);
1456 if (IS_ERR(pathname))
1457 goto out;
1458 len = tmp + PAGE_SIZE - 1 - pathname;
1459
1460 if (len > buflen)
1461 len = buflen;
1462 if (copy_to_user(buffer, pathname, len))
1463 len = -EFAULT;
1464 out:
1465 free_page((unsigned long)tmp);
1466 return len;
1467 }
1468
1469 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1470 {
1471 int error = -EACCES;
1472 struct inode *inode = dentry->d_inode;
1473 struct path path;
1474
1475 /* Are we allowed to snoop on the tasks file descriptors? */
1476 if (!proc_fd_access_allowed(inode))
1477 goto out;
1478
1479 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1480 if (error)
1481 goto out;
1482
1483 error = do_proc_readlink(&path, buffer, buflen);
1484 path_put(&path);
1485 out:
1486 return error;
1487 }
1488
1489 const struct inode_operations proc_pid_link_inode_operations = {
1490 .readlink = proc_pid_readlink,
1491 .follow_link = proc_pid_follow_link,
1492 .setattr = proc_setattr,
1493 };
1494
1495
1496 /* building an inode */
1497
1498 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1499 {
1500 struct inode * inode;
1501 struct proc_inode *ei;
1502 const struct cred *cred;
1503
1504 /* We need a new inode */
1505
1506 inode = new_inode(sb);
1507 if (!inode)
1508 goto out;
1509
1510 /* Common stuff */
1511 ei = PROC_I(inode);
1512 inode->i_ino = get_next_ino();
1513 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1514 inode->i_op = &proc_def_inode_operations;
1515
1516 /*
1517 * grab the reference to task.
1518 */
1519 ei->pid = get_task_pid(task, PIDTYPE_PID);
1520 if (!ei->pid)
1521 goto out_unlock;
1522
1523 if (task_dumpable(task)) {
1524 rcu_read_lock();
1525 cred = __task_cred(task);
1526 inode->i_uid = cred->euid;
1527 inode->i_gid = cred->egid;
1528 rcu_read_unlock();
1529 }
1530 security_task_to_inode(task, inode);
1531
1532 out:
1533 return inode;
1534
1535 out_unlock:
1536 iput(inode);
1537 return NULL;
1538 }
1539
1540 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1541 {
1542 struct inode *inode = dentry->d_inode;
1543 struct task_struct *task;
1544 const struct cred *cred;
1545 struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1546
1547 generic_fillattr(inode, stat);
1548
1549 rcu_read_lock();
1550 stat->uid = GLOBAL_ROOT_UID;
1551 stat->gid = GLOBAL_ROOT_GID;
1552 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1553 if (task) {
1554 if (!has_pid_permissions(pid, task, 2)) {
1555 rcu_read_unlock();
1556 /*
1557 * This doesn't prevent learning whether PID exists,
1558 * it only makes getattr() consistent with readdir().
1559 */
1560 return -ENOENT;
1561 }
1562 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1563 task_dumpable(task)) {
1564 cred = __task_cred(task);
1565 stat->uid = cred->euid;
1566 stat->gid = cred->egid;
1567 }
1568 }
1569 rcu_read_unlock();
1570 return 0;
1571 }
1572
1573 /* dentry stuff */
1574
1575 /*
1576 * Exceptional case: normally we are not allowed to unhash a busy
1577 * directory. In this case, however, we can do it - no aliasing problems
1578 * due to the way we treat inodes.
1579 *
1580 * Rewrite the inode's ownerships here because the owning task may have
1581 * performed a setuid(), etc.
1582 *
1583 * Before the /proc/pid/status file was created the only way to read
1584 * the effective uid of a /process was to stat /proc/pid. Reading
1585 * /proc/pid/status is slow enough that procps and other packages
1586 * kept stating /proc/pid. To keep the rules in /proc simple I have
1587 * made this apply to all per process world readable and executable
1588 * directories.
1589 */
1590 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1591 {
1592 struct inode *inode;
1593 struct task_struct *task;
1594 const struct cred *cred;
1595
1596 if (flags & LOOKUP_RCU)
1597 return -ECHILD;
1598
1599 inode = dentry->d_inode;
1600 task = get_proc_task(inode);
1601
1602 if (task) {
1603 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1604 task_dumpable(task)) {
1605 rcu_read_lock();
1606 cred = __task_cred(task);
1607 inode->i_uid = cred->euid;
1608 inode->i_gid = cred->egid;
1609 rcu_read_unlock();
1610 } else {
1611 inode->i_uid = GLOBAL_ROOT_UID;
1612 inode->i_gid = GLOBAL_ROOT_GID;
1613 }
1614 inode->i_mode &= ~(S_ISUID | S_ISGID);
1615 security_task_to_inode(task, inode);
1616 put_task_struct(task);
1617 return 1;
1618 }
1619 d_drop(dentry);
1620 return 0;
1621 }
1622
1623 const struct dentry_operations pid_dentry_operations =
1624 {
1625 .d_revalidate = pid_revalidate,
1626 .d_delete = pid_delete_dentry,
1627 };
1628
1629 /* Lookups */
1630
1631 /*
1632 * Fill a directory entry.
1633 *
1634 * If possible create the dcache entry and derive our inode number and
1635 * file type from dcache entry.
1636 *
1637 * Since all of the proc inode numbers are dynamically generated, the inode
1638 * numbers do not exist until the inode is cache. This means creating the
1639 * the dcache entry in readdir is necessary to keep the inode numbers
1640 * reported by readdir in sync with the inode numbers reported
1641 * by stat.
1642 */
1643 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1644 const char *name, int len,
1645 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1646 {
1647 struct dentry *child, *dir = filp->f_path.dentry;
1648 struct inode *inode;
1649 struct qstr qname;
1650 ino_t ino = 0;
1651 unsigned type = DT_UNKNOWN;
1652
1653 qname.name = name;
1654 qname.len = len;
1655 qname.hash = full_name_hash(name, len);
1656
1657 child = d_lookup(dir, &qname);
1658 if (!child) {
1659 struct dentry *new;
1660 new = d_alloc(dir, &qname);
1661 if (new) {
1662 child = instantiate(dir->d_inode, new, task, ptr);
1663 if (child)
1664 dput(new);
1665 else
1666 child = new;
1667 }
1668 }
1669 if (!child || IS_ERR(child) || !child->d_inode)
1670 goto end_instantiate;
1671 inode = child->d_inode;
1672 if (inode) {
1673 ino = inode->i_ino;
1674 type = inode->i_mode >> 12;
1675 }
1676 dput(child);
1677 end_instantiate:
1678 if (!ino)
1679 ino = find_inode_number(dir, &qname);
1680 if (!ino)
1681 ino = 1;
1682 return filldir(dirent, name, len, filp->f_pos, ino, type);
1683 }
1684
1685 #ifdef CONFIG_CHECKPOINT_RESTORE
1686
1687 /*
1688 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1689 * which represent vma start and end addresses.
1690 */
1691 static int dname_to_vma_addr(struct dentry *dentry,
1692 unsigned long *start, unsigned long *end)
1693 {
1694 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1695 return -EINVAL;
1696
1697 return 0;
1698 }
1699
1700 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1701 {
1702 unsigned long vm_start, vm_end;
1703 bool exact_vma_exists = false;
1704 struct mm_struct *mm = NULL;
1705 struct task_struct *task;
1706 const struct cred *cred;
1707 struct inode *inode;
1708 int status = 0;
1709
1710 if (flags & LOOKUP_RCU)
1711 return -ECHILD;
1712
1713 if (!capable(CAP_SYS_ADMIN)) {
1714 status = -EACCES;
1715 goto out_notask;
1716 }
1717
1718 inode = dentry->d_inode;
1719 task = get_proc_task(inode);
1720 if (!task)
1721 goto out_notask;
1722
1723 mm = mm_access(task, PTRACE_MODE_READ);
1724 if (IS_ERR_OR_NULL(mm))
1725 goto out;
1726
1727 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1728 down_read(&mm->mmap_sem);
1729 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1730 up_read(&mm->mmap_sem);
1731 }
1732
1733 mmput(mm);
1734
1735 if (exact_vma_exists) {
1736 if (task_dumpable(task)) {
1737 rcu_read_lock();
1738 cred = __task_cred(task);
1739 inode->i_uid = cred->euid;
1740 inode->i_gid = cred->egid;
1741 rcu_read_unlock();
1742 } else {
1743 inode->i_uid = GLOBAL_ROOT_UID;
1744 inode->i_gid = GLOBAL_ROOT_GID;
1745 }
1746 security_task_to_inode(task, inode);
1747 status = 1;
1748 }
1749
1750 out:
1751 put_task_struct(task);
1752
1753 out_notask:
1754 if (status <= 0)
1755 d_drop(dentry);
1756
1757 return status;
1758 }
1759
1760 static const struct dentry_operations tid_map_files_dentry_operations = {
1761 .d_revalidate = map_files_d_revalidate,
1762 .d_delete = pid_delete_dentry,
1763 };
1764
1765 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1766 {
1767 unsigned long vm_start, vm_end;
1768 struct vm_area_struct *vma;
1769 struct task_struct *task;
1770 struct mm_struct *mm;
1771 int rc;
1772
1773 rc = -ENOENT;
1774 task = get_proc_task(dentry->d_inode);
1775 if (!task)
1776 goto out;
1777
1778 mm = get_task_mm(task);
1779 put_task_struct(task);
1780 if (!mm)
1781 goto out;
1782
1783 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1784 if (rc)
1785 goto out_mmput;
1786
1787 down_read(&mm->mmap_sem);
1788 vma = find_exact_vma(mm, vm_start, vm_end);
1789 if (vma && vma->vm_file) {
1790 *path = vma->vm_file->f_path;
1791 path_get(path);
1792 rc = 0;
1793 }
1794 up_read(&mm->mmap_sem);
1795
1796 out_mmput:
1797 mmput(mm);
1798 out:
1799 return rc;
1800 }
1801
1802 struct map_files_info {
1803 fmode_t mode;
1804 unsigned long len;
1805 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1806 };
1807
1808 static struct dentry *
1809 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1810 struct task_struct *task, const void *ptr)
1811 {
1812 fmode_t mode = (fmode_t)(unsigned long)ptr;
1813 struct proc_inode *ei;
1814 struct inode *inode;
1815
1816 inode = proc_pid_make_inode(dir->i_sb, task);
1817 if (!inode)
1818 return ERR_PTR(-ENOENT);
1819
1820 ei = PROC_I(inode);
1821 ei->op.proc_get_link = proc_map_files_get_link;
1822
1823 inode->i_op = &proc_pid_link_inode_operations;
1824 inode->i_size = 64;
1825 inode->i_mode = S_IFLNK;
1826
1827 if (mode & FMODE_READ)
1828 inode->i_mode |= S_IRUSR;
1829 if (mode & FMODE_WRITE)
1830 inode->i_mode |= S_IWUSR;
1831
1832 d_set_d_op(dentry, &tid_map_files_dentry_operations);
1833 d_add(dentry, inode);
1834
1835 return NULL;
1836 }
1837
1838 static struct dentry *proc_map_files_lookup(struct inode *dir,
1839 struct dentry *dentry, unsigned int flags)
1840 {
1841 unsigned long vm_start, vm_end;
1842 struct vm_area_struct *vma;
1843 struct task_struct *task;
1844 struct dentry *result;
1845 struct mm_struct *mm;
1846
1847 result = ERR_PTR(-EACCES);
1848 if (!capable(CAP_SYS_ADMIN))
1849 goto out;
1850
1851 result = ERR_PTR(-ENOENT);
1852 task = get_proc_task(dir);
1853 if (!task)
1854 goto out;
1855
1856 result = ERR_PTR(-EACCES);
1857 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1858 goto out_put_task;
1859
1860 result = ERR_PTR(-ENOENT);
1861 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1862 goto out_put_task;
1863
1864 mm = get_task_mm(task);
1865 if (!mm)
1866 goto out_put_task;
1867
1868 down_read(&mm->mmap_sem);
1869 vma = find_exact_vma(mm, vm_start, vm_end);
1870 if (!vma)
1871 goto out_no_vma;
1872
1873 if (vma->vm_file)
1874 result = proc_map_files_instantiate(dir, dentry, task,
1875 (void *)(unsigned long)vma->vm_file->f_mode);
1876
1877 out_no_vma:
1878 up_read(&mm->mmap_sem);
1879 mmput(mm);
1880 out_put_task:
1881 put_task_struct(task);
1882 out:
1883 return result;
1884 }
1885
1886 static const struct inode_operations proc_map_files_inode_operations = {
1887 .lookup = proc_map_files_lookup,
1888 .permission = proc_fd_permission,
1889 .setattr = proc_setattr,
1890 };
1891
1892 static int
1893 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
1894 {
1895 struct dentry *dentry = filp->f_path.dentry;
1896 struct inode *inode = dentry->d_inode;
1897 struct vm_area_struct *vma;
1898 struct task_struct *task;
1899 struct mm_struct *mm;
1900 ino_t ino;
1901 int ret;
1902
1903 ret = -EACCES;
1904 if (!capable(CAP_SYS_ADMIN))
1905 goto out;
1906
1907 ret = -ENOENT;
1908 task = get_proc_task(inode);
1909 if (!task)
1910 goto out;
1911
1912 ret = -EACCES;
1913 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1914 goto out_put_task;
1915
1916 ret = 0;
1917 switch (filp->f_pos) {
1918 case 0:
1919 ino = inode->i_ino;
1920 if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
1921 goto out_put_task;
1922 filp->f_pos++;
1923 case 1:
1924 ino = parent_ino(dentry);
1925 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1926 goto out_put_task;
1927 filp->f_pos++;
1928 default:
1929 {
1930 unsigned long nr_files, pos, i;
1931 struct flex_array *fa = NULL;
1932 struct map_files_info info;
1933 struct map_files_info *p;
1934
1935 mm = get_task_mm(task);
1936 if (!mm)
1937 goto out_put_task;
1938 down_read(&mm->mmap_sem);
1939
1940 nr_files = 0;
1941
1942 /*
1943 * We need two passes here:
1944 *
1945 * 1) Collect vmas of mapped files with mmap_sem taken
1946 * 2) Release mmap_sem and instantiate entries
1947 *
1948 * otherwise we get lockdep complained, since filldir()
1949 * routine might require mmap_sem taken in might_fault().
1950 */
1951
1952 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1953 if (vma->vm_file && ++pos > filp->f_pos)
1954 nr_files++;
1955 }
1956
1957 if (nr_files) {
1958 fa = flex_array_alloc(sizeof(info), nr_files,
1959 GFP_KERNEL);
1960 if (!fa || flex_array_prealloc(fa, 0, nr_files,
1961 GFP_KERNEL)) {
1962 ret = -ENOMEM;
1963 if (fa)
1964 flex_array_free(fa);
1965 up_read(&mm->mmap_sem);
1966 mmput(mm);
1967 goto out_put_task;
1968 }
1969 for (i = 0, vma = mm->mmap, pos = 2; vma;
1970 vma = vma->vm_next) {
1971 if (!vma->vm_file)
1972 continue;
1973 if (++pos <= filp->f_pos)
1974 continue;
1975
1976 info.mode = vma->vm_file->f_mode;
1977 info.len = snprintf(info.name,
1978 sizeof(info.name), "%lx-%lx",
1979 vma->vm_start, vma->vm_end);
1980 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
1981 BUG();
1982 }
1983 }
1984 up_read(&mm->mmap_sem);
1985
1986 for (i = 0; i < nr_files; i++) {
1987 p = flex_array_get(fa, i);
1988 ret = proc_fill_cache(filp, dirent, filldir,
1989 p->name, p->len,
1990 proc_map_files_instantiate,
1991 task,
1992 (void *)(unsigned long)p->mode);
1993 if (ret)
1994 break;
1995 filp->f_pos++;
1996 }
1997 if (fa)
1998 flex_array_free(fa);
1999 mmput(mm);
2000 }
2001 }
2002
2003 out_put_task:
2004 put_task_struct(task);
2005 out:
2006 return ret;
2007 }
2008
2009 static const struct file_operations proc_map_files_operations = {
2010 .read = generic_read_dir,
2011 .readdir = proc_map_files_readdir,
2012 .llseek = default_llseek,
2013 };
2014
2015 #endif /* CONFIG_CHECKPOINT_RESTORE */
2016
2017 static struct dentry *proc_pident_instantiate(struct inode *dir,
2018 struct dentry *dentry, struct task_struct *task, const void *ptr)
2019 {
2020 const struct pid_entry *p = ptr;
2021 struct inode *inode;
2022 struct proc_inode *ei;
2023 struct dentry *error = ERR_PTR(-ENOENT);
2024
2025 inode = proc_pid_make_inode(dir->i_sb, task);
2026 if (!inode)
2027 goto out;
2028
2029 ei = PROC_I(inode);
2030 inode->i_mode = p->mode;
2031 if (S_ISDIR(inode->i_mode))
2032 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2033 if (p->iop)
2034 inode->i_op = p->iop;
2035 if (p->fop)
2036 inode->i_fop = p->fop;
2037 ei->op = p->op;
2038 d_set_d_op(dentry, &pid_dentry_operations);
2039 d_add(dentry, inode);
2040 /* Close the race of the process dying before we return the dentry */
2041 if (pid_revalidate(dentry, 0))
2042 error = NULL;
2043 out:
2044 return error;
2045 }
2046
2047 static struct dentry *proc_pident_lookup(struct inode *dir,
2048 struct dentry *dentry,
2049 const struct pid_entry *ents,
2050 unsigned int nents)
2051 {
2052 struct dentry *error;
2053 struct task_struct *task = get_proc_task(dir);
2054 const struct pid_entry *p, *last;
2055
2056 error = ERR_PTR(-ENOENT);
2057
2058 if (!task)
2059 goto out_no_task;
2060
2061 /*
2062 * Yes, it does not scale. And it should not. Don't add
2063 * new entries into /proc/<tgid>/ without very good reasons.
2064 */
2065 last = &ents[nents - 1];
2066 for (p = ents; p <= last; p++) {
2067 if (p->len != dentry->d_name.len)
2068 continue;
2069 if (!memcmp(dentry->d_name.name, p->name, p->len))
2070 break;
2071 }
2072 if (p > last)
2073 goto out;
2074
2075 error = proc_pident_instantiate(dir, dentry, task, p);
2076 out:
2077 put_task_struct(task);
2078 out_no_task:
2079 return error;
2080 }
2081
2082 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2083 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2084 {
2085 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2086 proc_pident_instantiate, task, p);
2087 }
2088
2089 static int proc_pident_readdir(struct file *filp,
2090 void *dirent, filldir_t filldir,
2091 const struct pid_entry *ents, unsigned int nents)
2092 {
2093 int i;
2094 struct dentry *dentry = filp->f_path.dentry;
2095 struct inode *inode = dentry->d_inode;
2096 struct task_struct *task = get_proc_task(inode);
2097 const struct pid_entry *p, *last;
2098 ino_t ino;
2099 int ret;
2100
2101 ret = -ENOENT;
2102 if (!task)
2103 goto out_no_task;
2104
2105 ret = 0;
2106 i = filp->f_pos;
2107 switch (i) {
2108 case 0:
2109 ino = inode->i_ino;
2110 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2111 goto out;
2112 i++;
2113 filp->f_pos++;
2114 /* fall through */
2115 case 1:
2116 ino = parent_ino(dentry);
2117 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2118 goto out;
2119 i++;
2120 filp->f_pos++;
2121 /* fall through */
2122 default:
2123 i -= 2;
2124 if (i >= nents) {
2125 ret = 1;
2126 goto out;
2127 }
2128 p = ents + i;
2129 last = &ents[nents - 1];
2130 while (p <= last) {
2131 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2132 goto out;
2133 filp->f_pos++;
2134 p++;
2135 }
2136 }
2137
2138 ret = 1;
2139 out:
2140 put_task_struct(task);
2141 out_no_task:
2142 return ret;
2143 }
2144
2145 #ifdef CONFIG_SECURITY
2146 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2147 size_t count, loff_t *ppos)
2148 {
2149 struct inode * inode = file_inode(file);
2150 char *p = NULL;
2151 ssize_t length;
2152 struct task_struct *task = get_proc_task(inode);
2153
2154 if (!task)
2155 return -ESRCH;
2156
2157 length = security_getprocattr(task,
2158 (char*)file->f_path.dentry->d_name.name,
2159 &p);
2160 put_task_struct(task);
2161 if (length > 0)
2162 length = simple_read_from_buffer(buf, count, ppos, p, length);
2163 kfree(p);
2164 return length;
2165 }
2166
2167 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2168 size_t count, loff_t *ppos)
2169 {
2170 struct inode * inode = file_inode(file);
2171 char *page;
2172 ssize_t length;
2173 struct task_struct *task = get_proc_task(inode);
2174
2175 length = -ESRCH;
2176 if (!task)
2177 goto out_no_task;
2178 if (count > PAGE_SIZE)
2179 count = PAGE_SIZE;
2180
2181 /* No partial writes. */
2182 length = -EINVAL;
2183 if (*ppos != 0)
2184 goto out;
2185
2186 length = -ENOMEM;
2187 page = (char*)__get_free_page(GFP_TEMPORARY);
2188 if (!page)
2189 goto out;
2190
2191 length = -EFAULT;
2192 if (copy_from_user(page, buf, count))
2193 goto out_free;
2194
2195 /* Guard against adverse ptrace interaction */
2196 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2197 if (length < 0)
2198 goto out_free;
2199
2200 length = security_setprocattr(task,
2201 (char*)file->f_path.dentry->d_name.name,
2202 (void*)page, count);
2203 mutex_unlock(&task->signal->cred_guard_mutex);
2204 out_free:
2205 free_page((unsigned long) page);
2206 out:
2207 put_task_struct(task);
2208 out_no_task:
2209 return length;
2210 }
2211
2212 static const struct file_operations proc_pid_attr_operations = {
2213 .read = proc_pid_attr_read,
2214 .write = proc_pid_attr_write,
2215 .llseek = generic_file_llseek,
2216 };
2217
2218 static const struct pid_entry attr_dir_stuff[] = {
2219 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2220 REG("prev", S_IRUGO, proc_pid_attr_operations),
2221 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2222 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2223 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2224 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2225 };
2226
2227 static int proc_attr_dir_readdir(struct file * filp,
2228 void * dirent, filldir_t filldir)
2229 {
2230 return proc_pident_readdir(filp,dirent,filldir,
2231 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2232 }
2233
2234 static const struct file_operations proc_attr_dir_operations = {
2235 .read = generic_read_dir,
2236 .readdir = proc_attr_dir_readdir,
2237 .llseek = default_llseek,
2238 };
2239
2240 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2241 struct dentry *dentry, unsigned int flags)
2242 {
2243 return proc_pident_lookup(dir, dentry,
2244 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2245 }
2246
2247 static const struct inode_operations proc_attr_dir_inode_operations = {
2248 .lookup = proc_attr_dir_lookup,
2249 .getattr = pid_getattr,
2250 .setattr = proc_setattr,
2251 };
2252
2253 #endif
2254
2255 #ifdef CONFIG_ELF_CORE
2256 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2257 size_t count, loff_t *ppos)
2258 {
2259 struct task_struct *task = get_proc_task(file_inode(file));
2260 struct mm_struct *mm;
2261 char buffer[PROC_NUMBUF];
2262 size_t len;
2263 int ret;
2264
2265 if (!task)
2266 return -ESRCH;
2267
2268 ret = 0;
2269 mm = get_task_mm(task);
2270 if (mm) {
2271 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2272 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2273 MMF_DUMP_FILTER_SHIFT));
2274 mmput(mm);
2275 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2276 }
2277
2278 put_task_struct(task);
2279
2280 return ret;
2281 }
2282
2283 static ssize_t proc_coredump_filter_write(struct file *file,
2284 const char __user *buf,
2285 size_t count,
2286 loff_t *ppos)
2287 {
2288 struct task_struct *task;
2289 struct mm_struct *mm;
2290 char buffer[PROC_NUMBUF], *end;
2291 unsigned int val;
2292 int ret;
2293 int i;
2294 unsigned long mask;
2295
2296 ret = -EFAULT;
2297 memset(buffer, 0, sizeof(buffer));
2298 if (count > sizeof(buffer) - 1)
2299 count = sizeof(buffer) - 1;
2300 if (copy_from_user(buffer, buf, count))
2301 goto out_no_task;
2302
2303 ret = -EINVAL;
2304 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2305 if (*end == '\n')
2306 end++;
2307 if (end - buffer == 0)
2308 goto out_no_task;
2309
2310 ret = -ESRCH;
2311 task = get_proc_task(file_inode(file));
2312 if (!task)
2313 goto out_no_task;
2314
2315 ret = end - buffer;
2316 mm = get_task_mm(task);
2317 if (!mm)
2318 goto out_no_mm;
2319
2320 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2321 if (val & mask)
2322 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2323 else
2324 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2325 }
2326
2327 mmput(mm);
2328 out_no_mm:
2329 put_task_struct(task);
2330 out_no_task:
2331 return ret;
2332 }
2333
2334 static const struct file_operations proc_coredump_filter_operations = {
2335 .read = proc_coredump_filter_read,
2336 .write = proc_coredump_filter_write,
2337 .llseek = generic_file_llseek,
2338 };
2339 #endif
2340
2341 #ifdef CONFIG_TASK_IO_ACCOUNTING
2342 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2343 {
2344 struct task_io_accounting acct = task->ioac;
2345 unsigned long flags;
2346 int result;
2347
2348 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2349 if (result)
2350 return result;
2351
2352 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2353 result = -EACCES;
2354 goto out_unlock;
2355 }
2356
2357 if (whole && lock_task_sighand(task, &flags)) {
2358 struct task_struct *t = task;
2359
2360 task_io_accounting_add(&acct, &task->signal->ioac);
2361 while_each_thread(task, t)
2362 task_io_accounting_add(&acct, &t->ioac);
2363
2364 unlock_task_sighand(task, &flags);
2365 }
2366 result = sprintf(buffer,
2367 "rchar: %llu\n"
2368 "wchar: %llu\n"
2369 "syscr: %llu\n"
2370 "syscw: %llu\n"
2371 "read_bytes: %llu\n"
2372 "write_bytes: %llu\n"
2373 "cancelled_write_bytes: %llu\n",
2374 (unsigned long long)acct.rchar,
2375 (unsigned long long)acct.wchar,
2376 (unsigned long long)acct.syscr,
2377 (unsigned long long)acct.syscw,
2378 (unsigned long long)acct.read_bytes,
2379 (unsigned long long)acct.write_bytes,
2380 (unsigned long long)acct.cancelled_write_bytes);
2381 out_unlock:
2382 mutex_unlock(&task->signal->cred_guard_mutex);
2383 return result;
2384 }
2385
2386 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2387 {
2388 return do_io_accounting(task, buffer, 0);
2389 }
2390
2391 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2392 {
2393 return do_io_accounting(task, buffer, 1);
2394 }
2395 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2396
2397 #ifdef CONFIG_USER_NS
2398 static int proc_id_map_open(struct inode *inode, struct file *file,
2399 struct seq_operations *seq_ops)
2400 {
2401 struct user_namespace *ns = NULL;
2402 struct task_struct *task;
2403 struct seq_file *seq;
2404 int ret = -EINVAL;
2405
2406 task = get_proc_task(inode);
2407 if (task) {
2408 rcu_read_lock();
2409 ns = get_user_ns(task_cred_xxx(task, user_ns));
2410 rcu_read_unlock();
2411 put_task_struct(task);
2412 }
2413 if (!ns)
2414 goto err;
2415
2416 ret = seq_open(file, seq_ops);
2417 if (ret)
2418 goto err_put_ns;
2419
2420 seq = file->private_data;
2421 seq->private = ns;
2422
2423 return 0;
2424 err_put_ns:
2425 put_user_ns(ns);
2426 err:
2427 return ret;
2428 }
2429
2430 static int proc_id_map_release(struct inode *inode, struct file *file)
2431 {
2432 struct seq_file *seq = file->private_data;
2433 struct user_namespace *ns = seq->private;
2434 put_user_ns(ns);
2435 return seq_release(inode, file);
2436 }
2437
2438 static int proc_uid_map_open(struct inode *inode, struct file *file)
2439 {
2440 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2441 }
2442
2443 static int proc_gid_map_open(struct inode *inode, struct file *file)
2444 {
2445 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2446 }
2447
2448 static int proc_projid_map_open(struct inode *inode, struct file *file)
2449 {
2450 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2451 }
2452
2453 static const struct file_operations proc_uid_map_operations = {
2454 .open = proc_uid_map_open,
2455 .write = proc_uid_map_write,
2456 .read = seq_read,
2457 .llseek = seq_lseek,
2458 .release = proc_id_map_release,
2459 };
2460
2461 static const struct file_operations proc_gid_map_operations = {
2462 .open = proc_gid_map_open,
2463 .write = proc_gid_map_write,
2464 .read = seq_read,
2465 .llseek = seq_lseek,
2466 .release = proc_id_map_release,
2467 };
2468
2469 static const struct file_operations proc_projid_map_operations = {
2470 .open = proc_projid_map_open,
2471 .write = proc_projid_map_write,
2472 .read = seq_read,
2473 .llseek = seq_lseek,
2474 .release = proc_id_map_release,
2475 };
2476 #endif /* CONFIG_USER_NS */
2477
2478 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2479 struct pid *pid, struct task_struct *task)
2480 {
2481 int err = lock_trace(task);
2482 if (!err) {
2483 seq_printf(m, "%08x\n", task->personality);
2484 unlock_trace(task);
2485 }
2486 return err;
2487 }
2488
2489 /*
2490 * Thread groups
2491 */
2492 static const struct file_operations proc_task_operations;
2493 static const struct inode_operations proc_task_inode_operations;
2494
2495 static const struct pid_entry tgid_base_stuff[] = {
2496 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2497 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2498 #ifdef CONFIG_CHECKPOINT_RESTORE
2499 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2500 #endif
2501 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2502 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2503 #ifdef CONFIG_NET
2504 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2505 #endif
2506 REG("environ", S_IRUSR, proc_environ_operations),
2507 INF("auxv", S_IRUSR, proc_pid_auxv),
2508 ONE("status", S_IRUGO, proc_pid_status),
2509 ONE("personality", S_IRUGO, proc_pid_personality),
2510 INF("limits", S_IRUGO, proc_pid_limits),
2511 #ifdef CONFIG_SCHED_DEBUG
2512 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2513 #endif
2514 #ifdef CONFIG_SCHED_AUTOGROUP
2515 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2516 #endif
2517 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2518 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2519 INF("syscall", S_IRUGO, proc_pid_syscall),
2520 #endif
2521 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2522 ONE("stat", S_IRUGO, proc_tgid_stat),
2523 ONE("statm", S_IRUGO, proc_pid_statm),
2524 REG("maps", S_IRUGO, proc_pid_maps_operations),
2525 #ifdef CONFIG_NUMA
2526 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2527 #endif
2528 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2529 LNK("cwd", proc_cwd_link),
2530 LNK("root", proc_root_link),
2531 LNK("exe", proc_exe_link),
2532 REG("mounts", S_IRUGO, proc_mounts_operations),
2533 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2534 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2535 #ifdef CONFIG_PROC_PAGE_MONITOR
2536 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2537 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2538 REG("pagemap", S_IRUGO, proc_pagemap_operations),
2539 #endif
2540 #ifdef CONFIG_SECURITY
2541 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2542 #endif
2543 #ifdef CONFIG_KALLSYMS
2544 INF("wchan", S_IRUGO, proc_pid_wchan),
2545 #endif
2546 #ifdef CONFIG_STACKTRACE
2547 ONE("stack", S_IRUGO, proc_pid_stack),
2548 #endif
2549 #ifdef CONFIG_SCHEDSTATS
2550 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2551 #endif
2552 #ifdef CONFIG_LATENCYTOP
2553 REG("latency", S_IRUGO, proc_lstats_operations),
2554 #endif
2555 #ifdef CONFIG_PROC_PID_CPUSET
2556 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2557 #endif
2558 #ifdef CONFIG_CGROUPS
2559 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2560 #endif
2561 INF("oom_score", S_IRUGO, proc_oom_score),
2562 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2563 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2564 #ifdef CONFIG_AUDITSYSCALL
2565 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2566 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2567 #endif
2568 #ifdef CONFIG_FAULT_INJECTION
2569 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2570 #endif
2571 #ifdef CONFIG_ELF_CORE
2572 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2573 #endif
2574 #ifdef CONFIG_TASK_IO_ACCOUNTING
2575 INF("io", S_IRUSR, proc_tgid_io_accounting),
2576 #endif
2577 #ifdef CONFIG_HARDWALL
2578 INF("hardwall", S_IRUGO, proc_pid_hardwall),
2579 #endif
2580 #ifdef CONFIG_USER_NS
2581 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2582 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2583 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2584 #endif
2585 };
2586
2587 static int proc_tgid_base_readdir(struct file * filp,
2588 void * dirent, filldir_t filldir)
2589 {
2590 return proc_pident_readdir(filp,dirent,filldir,
2591 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2592 }
2593
2594 static const struct file_operations proc_tgid_base_operations = {
2595 .read = generic_read_dir,
2596 .readdir = proc_tgid_base_readdir,
2597 .llseek = default_llseek,
2598 };
2599
2600 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2601 {
2602 return proc_pident_lookup(dir, dentry,
2603 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2604 }
2605
2606 static const struct inode_operations proc_tgid_base_inode_operations = {
2607 .lookup = proc_tgid_base_lookup,
2608 .getattr = pid_getattr,
2609 .setattr = proc_setattr,
2610 .permission = proc_pid_permission,
2611 };
2612
2613 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2614 {
2615 struct dentry *dentry, *leader, *dir;
2616 char buf[PROC_NUMBUF];
2617 struct qstr name;
2618
2619 name.name = buf;
2620 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2621 /* no ->d_hash() rejects on procfs */
2622 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2623 if (dentry) {
2624 shrink_dcache_parent(dentry);
2625 d_drop(dentry);
2626 dput(dentry);
2627 }
2628
2629 name.name = buf;
2630 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2631 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2632 if (!leader)
2633 goto out;
2634
2635 name.name = "task";
2636 name.len = strlen(name.name);
2637 dir = d_hash_and_lookup(leader, &name);
2638 if (!dir)
2639 goto out_put_leader;
2640
2641 name.name = buf;
2642 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2643 dentry = d_hash_and_lookup(dir, &name);
2644 if (dentry) {
2645 shrink_dcache_parent(dentry);
2646 d_drop(dentry);
2647 dput(dentry);
2648 }
2649
2650 dput(dir);
2651 out_put_leader:
2652 dput(leader);
2653 out:
2654 return;
2655 }
2656
2657 /**
2658 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2659 * @task: task that should be flushed.
2660 *
2661 * When flushing dentries from proc, one needs to flush them from global
2662 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2663 * in. This call is supposed to do all of this job.
2664 *
2665 * Looks in the dcache for
2666 * /proc/@pid
2667 * /proc/@tgid/task/@pid
2668 * if either directory is present flushes it and all of it'ts children
2669 * from the dcache.
2670 *
2671 * It is safe and reasonable to cache /proc entries for a task until
2672 * that task exits. After that they just clog up the dcache with
2673 * useless entries, possibly causing useful dcache entries to be
2674 * flushed instead. This routine is proved to flush those useless
2675 * dcache entries at process exit time.
2676 *
2677 * NOTE: This routine is just an optimization so it does not guarantee
2678 * that no dcache entries will exist at process exit time it
2679 * just makes it very unlikely that any will persist.
2680 */
2681
2682 void proc_flush_task(struct task_struct *task)
2683 {
2684 int i;
2685 struct pid *pid, *tgid;
2686 struct upid *upid;
2687
2688 pid = task_pid(task);
2689 tgid = task_tgid(task);
2690
2691 for (i = 0; i <= pid->level; i++) {
2692 upid = &pid->numbers[i];
2693 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2694 tgid->numbers[i].nr);
2695 }
2696 }
2697
2698 static struct dentry *proc_pid_instantiate(struct inode *dir,
2699 struct dentry * dentry,
2700 struct task_struct *task, const void *ptr)
2701 {
2702 struct dentry *error = ERR_PTR(-ENOENT);
2703 struct inode *inode;
2704
2705 inode = proc_pid_make_inode(dir->i_sb, task);
2706 if (!inode)
2707 goto out;
2708
2709 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2710 inode->i_op = &proc_tgid_base_inode_operations;
2711 inode->i_fop = &proc_tgid_base_operations;
2712 inode->i_flags|=S_IMMUTABLE;
2713
2714 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2715 ARRAY_SIZE(tgid_base_stuff)));
2716
2717 d_set_d_op(dentry, &pid_dentry_operations);
2718
2719 d_add(dentry, inode);
2720 /* Close the race of the process dying before we return the dentry */
2721 if (pid_revalidate(dentry, 0))
2722 error = NULL;
2723 out:
2724 return error;
2725 }
2726
2727 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2728 {
2729 struct dentry *result = NULL;
2730 struct task_struct *task;
2731 unsigned tgid;
2732 struct pid_namespace *ns;
2733
2734 tgid = name_to_int(dentry);
2735 if (tgid == ~0U)
2736 goto out;
2737
2738 ns = dentry->d_sb->s_fs_info;
2739 rcu_read_lock();
2740 task = find_task_by_pid_ns(tgid, ns);
2741 if (task)
2742 get_task_struct(task);
2743 rcu_read_unlock();
2744 if (!task)
2745 goto out;
2746
2747 result = proc_pid_instantiate(dir, dentry, task, NULL);
2748 put_task_struct(task);
2749 out:
2750 return result;
2751 }
2752
2753 /*
2754 * Find the first task with tgid >= tgid
2755 *
2756 */
2757 struct tgid_iter {
2758 unsigned int tgid;
2759 struct task_struct *task;
2760 };
2761 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2762 {
2763 struct pid *pid;
2764
2765 if (iter.task)
2766 put_task_struct(iter.task);
2767 rcu_read_lock();
2768 retry:
2769 iter.task = NULL;
2770 pid = find_ge_pid(iter.tgid, ns);
2771 if (pid) {
2772 iter.tgid = pid_nr_ns(pid, ns);
2773 iter.task = pid_task(pid, PIDTYPE_PID);
2774 /* What we to know is if the pid we have find is the
2775 * pid of a thread_group_leader. Testing for task
2776 * being a thread_group_leader is the obvious thing
2777 * todo but there is a window when it fails, due to
2778 * the pid transfer logic in de_thread.
2779 *
2780 * So we perform the straight forward test of seeing
2781 * if the pid we have found is the pid of a thread
2782 * group leader, and don't worry if the task we have
2783 * found doesn't happen to be a thread group leader.
2784 * As we don't care in the case of readdir.
2785 */
2786 if (!iter.task || !has_group_leader_pid(iter.task)) {
2787 iter.tgid += 1;
2788 goto retry;
2789 }
2790 get_task_struct(iter.task);
2791 }
2792 rcu_read_unlock();
2793 return iter;
2794 }
2795
2796 #define TGID_OFFSET (FIRST_PROCESS_ENTRY)
2797
2798 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2799 struct tgid_iter iter)
2800 {
2801 char name[PROC_NUMBUF];
2802 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2803 return proc_fill_cache(filp, dirent, filldir, name, len,
2804 proc_pid_instantiate, iter.task, NULL);
2805 }
2806
2807 static int fake_filldir(void *buf, const char *name, int namelen,
2808 loff_t offset, u64 ino, unsigned d_type)
2809 {
2810 return 0;
2811 }
2812
2813 /* for the /proc/ directory itself, after non-process stuff has been done */
2814 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2815 {
2816 struct tgid_iter iter;
2817 struct pid_namespace *ns;
2818 filldir_t __filldir;
2819
2820 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
2821 goto out;
2822
2823 ns = filp->f_dentry->d_sb->s_fs_info;
2824 iter.task = NULL;
2825 iter.tgid = filp->f_pos - TGID_OFFSET;
2826 for (iter = next_tgid(ns, iter);
2827 iter.task;
2828 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2829 if (has_pid_permissions(ns, iter.task, 2))
2830 __filldir = filldir;
2831 else
2832 __filldir = fake_filldir;
2833
2834 filp->f_pos = iter.tgid + TGID_OFFSET;
2835 if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
2836 put_task_struct(iter.task);
2837 goto out;
2838 }
2839 }
2840 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2841 out:
2842 return 0;
2843 }
2844
2845 /*
2846 * Tasks
2847 */
2848 static const struct pid_entry tid_base_stuff[] = {
2849 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2850 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2851 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2852 REG("environ", S_IRUSR, proc_environ_operations),
2853 INF("auxv", S_IRUSR, proc_pid_auxv),
2854 ONE("status", S_IRUGO, proc_pid_status),
2855 ONE("personality", S_IRUGO, proc_pid_personality),
2856 INF("limits", S_IRUGO, proc_pid_limits),
2857 #ifdef CONFIG_SCHED_DEBUG
2858 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2859 #endif
2860 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2861 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2862 INF("syscall", S_IRUGO, proc_pid_syscall),
2863 #endif
2864 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2865 ONE("stat", S_IRUGO, proc_tid_stat),
2866 ONE("statm", S_IRUGO, proc_pid_statm),
2867 REG("maps", S_IRUGO, proc_tid_maps_operations),
2868 #ifdef CONFIG_CHECKPOINT_RESTORE
2869 REG("children", S_IRUGO, proc_tid_children_operations),
2870 #endif
2871 #ifdef CONFIG_NUMA
2872 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
2873 #endif
2874 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2875 LNK("cwd", proc_cwd_link),
2876 LNK("root", proc_root_link),
2877 LNK("exe", proc_exe_link),
2878 REG("mounts", S_IRUGO, proc_mounts_operations),
2879 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2880 #ifdef CONFIG_PROC_PAGE_MONITOR
2881 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2882 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
2883 REG("pagemap", S_IRUGO, proc_pagemap_operations),
2884 #endif
2885 #ifdef CONFIG_SECURITY
2886 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2887 #endif
2888 #ifdef CONFIG_KALLSYMS
2889 INF("wchan", S_IRUGO, proc_pid_wchan),
2890 #endif
2891 #ifdef CONFIG_STACKTRACE
2892 ONE("stack", S_IRUGO, proc_pid_stack),
2893 #endif
2894 #ifdef CONFIG_SCHEDSTATS
2895 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2896 #endif
2897 #ifdef CONFIG_LATENCYTOP
2898 REG("latency", S_IRUGO, proc_lstats_operations),
2899 #endif
2900 #ifdef CONFIG_PROC_PID_CPUSET
2901 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2902 #endif
2903 #ifdef CONFIG_CGROUPS
2904 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2905 #endif
2906 INF("oom_score", S_IRUGO, proc_oom_score),
2907 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2908 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2909 #ifdef CONFIG_AUDITSYSCALL
2910 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2911 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2912 #endif
2913 #ifdef CONFIG_FAULT_INJECTION
2914 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2915 #endif
2916 #ifdef CONFIG_TASK_IO_ACCOUNTING
2917 INF("io", S_IRUSR, proc_tid_io_accounting),
2918 #endif
2919 #ifdef CONFIG_HARDWALL
2920 INF("hardwall", S_IRUGO, proc_pid_hardwall),
2921 #endif
2922 #ifdef CONFIG_USER_NS
2923 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2924 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2925 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2926 #endif
2927 };
2928
2929 static int proc_tid_base_readdir(struct file * filp,
2930 void * dirent, filldir_t filldir)
2931 {
2932 return proc_pident_readdir(filp,dirent,filldir,
2933 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2934 }
2935
2936 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2937 {
2938 return proc_pident_lookup(dir, dentry,
2939 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2940 }
2941
2942 static const struct file_operations proc_tid_base_operations = {
2943 .read = generic_read_dir,
2944 .readdir = proc_tid_base_readdir,
2945 .llseek = default_llseek,
2946 };
2947
2948 static const struct inode_operations proc_tid_base_inode_operations = {
2949 .lookup = proc_tid_base_lookup,
2950 .getattr = pid_getattr,
2951 .setattr = proc_setattr,
2952 };
2953
2954 static struct dentry *proc_task_instantiate(struct inode *dir,
2955 struct dentry *dentry, struct task_struct *task, const void *ptr)
2956 {
2957 struct dentry *error = ERR_PTR(-ENOENT);
2958 struct inode *inode;
2959 inode = proc_pid_make_inode(dir->i_sb, task);
2960
2961 if (!inode)
2962 goto out;
2963 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2964 inode->i_op = &proc_tid_base_inode_operations;
2965 inode->i_fop = &proc_tid_base_operations;
2966 inode->i_flags|=S_IMMUTABLE;
2967
2968 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
2969 ARRAY_SIZE(tid_base_stuff)));
2970
2971 d_set_d_op(dentry, &pid_dentry_operations);
2972
2973 d_add(dentry, inode);
2974 /* Close the race of the process dying before we return the dentry */
2975 if (pid_revalidate(dentry, 0))
2976 error = NULL;
2977 out:
2978 return error;
2979 }
2980
2981 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2982 {
2983 struct dentry *result = ERR_PTR(-ENOENT);
2984 struct task_struct *task;
2985 struct task_struct *leader = get_proc_task(dir);
2986 unsigned tid;
2987 struct pid_namespace *ns;
2988
2989 if (!leader)
2990 goto out_no_task;
2991
2992 tid = name_to_int(dentry);
2993 if (tid == ~0U)
2994 goto out;
2995
2996 ns = dentry->d_sb->s_fs_info;
2997 rcu_read_lock();
2998 task = find_task_by_pid_ns(tid, ns);
2999 if (task)
3000 get_task_struct(task);
3001 rcu_read_unlock();
3002 if (!task)
3003 goto out;
3004 if (!same_thread_group(leader, task))
3005 goto out_drop_task;
3006
3007 result = proc_task_instantiate(dir, dentry, task, NULL);
3008 out_drop_task:
3009 put_task_struct(task);
3010 out:
3011 put_task_struct(leader);
3012 out_no_task:
3013 return result;
3014 }
3015
3016 /*
3017 * Find the first tid of a thread group to return to user space.
3018 *
3019 * Usually this is just the thread group leader, but if the users
3020 * buffer was too small or there was a seek into the middle of the
3021 * directory we have more work todo.
3022 *
3023 * In the case of a short read we start with find_task_by_pid.
3024 *
3025 * In the case of a seek we start with the leader and walk nr
3026 * threads past it.
3027 */
3028 static struct task_struct *first_tid(struct task_struct *leader,
3029 int tid, int nr, struct pid_namespace *ns)
3030 {
3031 struct task_struct *pos;
3032
3033 rcu_read_lock();
3034 /* Attempt to start with the pid of a thread */
3035 if (tid && (nr > 0)) {
3036 pos = find_task_by_pid_ns(tid, ns);
3037 if (pos && (pos->group_leader == leader))
3038 goto found;
3039 }
3040
3041 /* If nr exceeds the number of threads there is nothing todo */
3042 pos = NULL;
3043 if (nr && nr >= get_nr_threads(leader))
3044 goto out;
3045
3046 /* If we haven't found our starting place yet start
3047 * with the leader and walk nr threads forward.
3048 */
3049 for (pos = leader; nr > 0; --nr) {
3050 pos = next_thread(pos);
3051 if (pos == leader) {
3052 pos = NULL;
3053 goto out;
3054 }
3055 }
3056 found:
3057 get_task_struct(pos);
3058 out:
3059 rcu_read_unlock();
3060 return pos;
3061 }
3062
3063 /*
3064 * Find the next thread in the thread list.
3065 * Return NULL if there is an error or no next thread.
3066 *
3067 * The reference to the input task_struct is released.
3068 */
3069 static struct task_struct *next_tid(struct task_struct *start)
3070 {
3071 struct task_struct *pos = NULL;
3072 rcu_read_lock();
3073 if (pid_alive(start)) {
3074 pos = next_thread(start);
3075 if (thread_group_leader(pos))
3076 pos = NULL;
3077 else
3078 get_task_struct(pos);
3079 }
3080 rcu_read_unlock();
3081 put_task_struct(start);
3082 return pos;
3083 }
3084
3085 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3086 struct task_struct *task, int tid)
3087 {
3088 char name[PROC_NUMBUF];
3089 int len = snprintf(name, sizeof(name), "%d", tid);
3090 return proc_fill_cache(filp, dirent, filldir, name, len,
3091 proc_task_instantiate, task, NULL);
3092 }
3093
3094 /* for the /proc/TGID/task/ directories */
3095 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3096 {
3097 struct dentry *dentry = filp->f_path.dentry;
3098 struct inode *inode = dentry->d_inode;
3099 struct task_struct *leader = NULL;
3100 struct task_struct *task;
3101 int retval = -ENOENT;
3102 ino_t ino;
3103 int tid;
3104 struct pid_namespace *ns;
3105
3106 task = get_proc_task(inode);
3107 if (!task)
3108 goto out_no_task;
3109 rcu_read_lock();
3110 if (pid_alive(task)) {
3111 leader = task->group_leader;
3112 get_task_struct(leader);
3113 }
3114 rcu_read_unlock();
3115 put_task_struct(task);
3116 if (!leader)
3117 goto out_no_task;
3118 retval = 0;
3119
3120 switch ((unsigned long)filp->f_pos) {
3121 case 0:
3122 ino = inode->i_ino;
3123 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3124 goto out;
3125 filp->f_pos++;
3126 /* fall through */
3127 case 1:
3128 ino = parent_ino(dentry);
3129 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3130 goto out;
3131 filp->f_pos++;
3132 /* fall through */
3133 }
3134
3135 /* f_version caches the tgid value that the last readdir call couldn't
3136 * return. lseek aka telldir automagically resets f_version to 0.
3137 */
3138 ns = filp->f_dentry->d_sb->s_fs_info;
3139 tid = (int)filp->f_version;
3140 filp->f_version = 0;
3141 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3142 task;
3143 task = next_tid(task), filp->f_pos++) {
3144 tid = task_pid_nr_ns(task, ns);
3145 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3146 /* returning this tgid failed, save it as the first
3147 * pid for the next readir call */
3148 filp->f_version = (u64)tid;
3149 put_task_struct(task);
3150 break;
3151 }
3152 }
3153 out:
3154 put_task_struct(leader);
3155 out_no_task:
3156 return retval;
3157 }
3158
3159 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3160 {
3161 struct inode *inode = dentry->d_inode;
3162 struct task_struct *p = get_proc_task(inode);
3163 generic_fillattr(inode, stat);
3164
3165 if (p) {
3166 stat->nlink += get_nr_threads(p);
3167 put_task_struct(p);
3168 }
3169
3170 return 0;
3171 }
3172
3173 static const struct inode_operations proc_task_inode_operations = {
3174 .lookup = proc_task_lookup,
3175 .getattr = proc_task_getattr,
3176 .setattr = proc_setattr,
3177 .permission = proc_pid_permission,
3178 };
3179
3180 static const struct file_operations proc_task_operations = {
3181 .read = generic_read_dir,
3182 .readdir = proc_task_readdir,
3183 .llseek = default_llseek,
3184 };
This page took 0.09458 seconds and 5 git commands to generate.