oom: badness heuristic rewrite
[deliverable/linux.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #include "internal.h"
87
88 /* NOTE:
89 * Implementing inode permission operations in /proc is almost
90 * certainly an error. Permission checks need to happen during
91 * each system call not at open time. The reason is that most of
92 * what we wish to check for permissions in /proc varies at runtime.
93 *
94 * The classic example of a problem is opening file descriptors
95 * in /proc for a task before it execs a suid executable.
96 */
97
98 struct pid_entry {
99 char *name;
100 int len;
101 mode_t mode;
102 const struct inode_operations *iop;
103 const struct file_operations *fop;
104 union proc_op op;
105 };
106
107 #define NOD(NAME, MODE, IOP, FOP, OP) { \
108 .name = (NAME), \
109 .len = sizeof(NAME) - 1, \
110 .mode = MODE, \
111 .iop = IOP, \
112 .fop = FOP, \
113 .op = OP, \
114 }
115
116 #define DIR(NAME, MODE, iops, fops) \
117 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
118 #define LNK(NAME, get_link) \
119 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
120 &proc_pid_link_inode_operations, NULL, \
121 { .proc_get_link = get_link } )
122 #define REG(NAME, MODE, fops) \
123 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
124 #define INF(NAME, MODE, read) \
125 NOD(NAME, (S_IFREG|(MODE)), \
126 NULL, &proc_info_file_operations, \
127 { .proc_read = read } )
128 #define ONE(NAME, MODE, show) \
129 NOD(NAME, (S_IFREG|(MODE)), \
130 NULL, &proc_single_file_operations, \
131 { .proc_show = show } )
132
133 /*
134 * Count the number of hardlinks for the pid_entry table, excluding the .
135 * and .. links.
136 */
137 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
138 unsigned int n)
139 {
140 unsigned int i;
141 unsigned int count;
142
143 count = 0;
144 for (i = 0; i < n; ++i) {
145 if (S_ISDIR(entries[i].mode))
146 ++count;
147 }
148
149 return count;
150 }
151
152 static int get_fs_path(struct task_struct *task, struct path *path, bool root)
153 {
154 struct fs_struct *fs;
155 int result = -ENOENT;
156
157 task_lock(task);
158 fs = task->fs;
159 if (fs) {
160 read_lock(&fs->lock);
161 *path = root ? fs->root : fs->pwd;
162 path_get(path);
163 read_unlock(&fs->lock);
164 result = 0;
165 }
166 task_unlock(task);
167 return result;
168 }
169
170 static int proc_cwd_link(struct inode *inode, struct path *path)
171 {
172 struct task_struct *task = get_proc_task(inode);
173 int result = -ENOENT;
174
175 if (task) {
176 result = get_fs_path(task, path, 0);
177 put_task_struct(task);
178 }
179 return result;
180 }
181
182 static int proc_root_link(struct inode *inode, struct path *path)
183 {
184 struct task_struct *task = get_proc_task(inode);
185 int result = -ENOENT;
186
187 if (task) {
188 result = get_fs_path(task, path, 1);
189 put_task_struct(task);
190 }
191 return result;
192 }
193
194 /*
195 * Return zero if current may access user memory in @task, -error if not.
196 */
197 static int check_mem_permission(struct task_struct *task)
198 {
199 /*
200 * A task can always look at itself, in case it chooses
201 * to use system calls instead of load instructions.
202 */
203 if (task == current)
204 return 0;
205
206 /*
207 * If current is actively ptrace'ing, and would also be
208 * permitted to freshly attach with ptrace now, permit it.
209 */
210 if (task_is_stopped_or_traced(task)) {
211 int match;
212 rcu_read_lock();
213 match = (tracehook_tracer_task(task) == current);
214 rcu_read_unlock();
215 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
216 return 0;
217 }
218
219 /*
220 * Noone else is allowed.
221 */
222 return -EPERM;
223 }
224
225 struct mm_struct *mm_for_maps(struct task_struct *task)
226 {
227 struct mm_struct *mm;
228
229 if (mutex_lock_killable(&task->cred_guard_mutex))
230 return NULL;
231
232 mm = get_task_mm(task);
233 if (mm && mm != current->mm &&
234 !ptrace_may_access(task, PTRACE_MODE_READ)) {
235 mmput(mm);
236 mm = NULL;
237 }
238 mutex_unlock(&task->cred_guard_mutex);
239
240 return mm;
241 }
242
243 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
244 {
245 int res = 0;
246 unsigned int len;
247 struct mm_struct *mm = get_task_mm(task);
248 if (!mm)
249 goto out;
250 if (!mm->arg_end)
251 goto out_mm; /* Shh! No looking before we're done */
252
253 len = mm->arg_end - mm->arg_start;
254
255 if (len > PAGE_SIZE)
256 len = PAGE_SIZE;
257
258 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
259
260 // If the nul at the end of args has been overwritten, then
261 // assume application is using setproctitle(3).
262 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
263 len = strnlen(buffer, res);
264 if (len < res) {
265 res = len;
266 } else {
267 len = mm->env_end - mm->env_start;
268 if (len > PAGE_SIZE - res)
269 len = PAGE_SIZE - res;
270 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
271 res = strnlen(buffer, res);
272 }
273 }
274 out_mm:
275 mmput(mm);
276 out:
277 return res;
278 }
279
280 static int proc_pid_auxv(struct task_struct *task, char *buffer)
281 {
282 int res = 0;
283 struct mm_struct *mm = get_task_mm(task);
284 if (mm) {
285 unsigned int nwords = 0;
286 do {
287 nwords += 2;
288 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
289 res = nwords * sizeof(mm->saved_auxv[0]);
290 if (res > PAGE_SIZE)
291 res = PAGE_SIZE;
292 memcpy(buffer, mm->saved_auxv, res);
293 mmput(mm);
294 }
295 return res;
296 }
297
298
299 #ifdef CONFIG_KALLSYMS
300 /*
301 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
302 * Returns the resolved symbol. If that fails, simply return the address.
303 */
304 static int proc_pid_wchan(struct task_struct *task, char *buffer)
305 {
306 unsigned long wchan;
307 char symname[KSYM_NAME_LEN];
308
309 wchan = get_wchan(task);
310
311 if (lookup_symbol_name(wchan, symname) < 0)
312 if (!ptrace_may_access(task, PTRACE_MODE_READ))
313 return 0;
314 else
315 return sprintf(buffer, "%lu", wchan);
316 else
317 return sprintf(buffer, "%s", symname);
318 }
319 #endif /* CONFIG_KALLSYMS */
320
321 #ifdef CONFIG_STACKTRACE
322
323 #define MAX_STACK_TRACE_DEPTH 64
324
325 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
326 struct pid *pid, struct task_struct *task)
327 {
328 struct stack_trace trace;
329 unsigned long *entries;
330 int i;
331
332 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
333 if (!entries)
334 return -ENOMEM;
335
336 trace.nr_entries = 0;
337 trace.max_entries = MAX_STACK_TRACE_DEPTH;
338 trace.entries = entries;
339 trace.skip = 0;
340 save_stack_trace_tsk(task, &trace);
341
342 for (i = 0; i < trace.nr_entries; i++) {
343 seq_printf(m, "[<%p>] %pS\n",
344 (void *)entries[i], (void *)entries[i]);
345 }
346 kfree(entries);
347
348 return 0;
349 }
350 #endif
351
352 #ifdef CONFIG_SCHEDSTATS
353 /*
354 * Provides /proc/PID/schedstat
355 */
356 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
357 {
358 return sprintf(buffer, "%llu %llu %lu\n",
359 (unsigned long long)task->se.sum_exec_runtime,
360 (unsigned long long)task->sched_info.run_delay,
361 task->sched_info.pcount);
362 }
363 #endif
364
365 #ifdef CONFIG_LATENCYTOP
366 static int lstats_show_proc(struct seq_file *m, void *v)
367 {
368 int i;
369 struct inode *inode = m->private;
370 struct task_struct *task = get_proc_task(inode);
371
372 if (!task)
373 return -ESRCH;
374 seq_puts(m, "Latency Top version : v0.1\n");
375 for (i = 0; i < 32; i++) {
376 if (task->latency_record[i].backtrace[0]) {
377 int q;
378 seq_printf(m, "%i %li %li ",
379 task->latency_record[i].count,
380 task->latency_record[i].time,
381 task->latency_record[i].max);
382 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
383 char sym[KSYM_SYMBOL_LEN];
384 char *c;
385 if (!task->latency_record[i].backtrace[q])
386 break;
387 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
388 break;
389 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
390 c = strchr(sym, '+');
391 if (c)
392 *c = 0;
393 seq_printf(m, "%s ", sym);
394 }
395 seq_printf(m, "\n");
396 }
397
398 }
399 put_task_struct(task);
400 return 0;
401 }
402
403 static int lstats_open(struct inode *inode, struct file *file)
404 {
405 return single_open(file, lstats_show_proc, inode);
406 }
407
408 static ssize_t lstats_write(struct file *file, const char __user *buf,
409 size_t count, loff_t *offs)
410 {
411 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
412
413 if (!task)
414 return -ESRCH;
415 clear_all_latency_tracing(task);
416 put_task_struct(task);
417
418 return count;
419 }
420
421 static const struct file_operations proc_lstats_operations = {
422 .open = lstats_open,
423 .read = seq_read,
424 .write = lstats_write,
425 .llseek = seq_lseek,
426 .release = single_release,
427 };
428
429 #endif
430
431 static int proc_oom_score(struct task_struct *task, char *buffer)
432 {
433 unsigned long points = 0;
434
435 read_lock(&tasklist_lock);
436 if (pid_alive(task))
437 points = oom_badness(task, NULL, NULL,
438 totalram_pages + total_swap_pages);
439 read_unlock(&tasklist_lock);
440 return sprintf(buffer, "%lu\n", points);
441 }
442
443 struct limit_names {
444 char *name;
445 char *unit;
446 };
447
448 static const struct limit_names lnames[RLIM_NLIMITS] = {
449 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
450 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
451 [RLIMIT_DATA] = {"Max data size", "bytes"},
452 [RLIMIT_STACK] = {"Max stack size", "bytes"},
453 [RLIMIT_CORE] = {"Max core file size", "bytes"},
454 [RLIMIT_RSS] = {"Max resident set", "bytes"},
455 [RLIMIT_NPROC] = {"Max processes", "processes"},
456 [RLIMIT_NOFILE] = {"Max open files", "files"},
457 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
458 [RLIMIT_AS] = {"Max address space", "bytes"},
459 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
460 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
461 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
462 [RLIMIT_NICE] = {"Max nice priority", NULL},
463 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
464 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
465 };
466
467 /* Display limits for a process */
468 static int proc_pid_limits(struct task_struct *task, char *buffer)
469 {
470 unsigned int i;
471 int count = 0;
472 unsigned long flags;
473 char *bufptr = buffer;
474
475 struct rlimit rlim[RLIM_NLIMITS];
476
477 if (!lock_task_sighand(task, &flags))
478 return 0;
479 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
480 unlock_task_sighand(task, &flags);
481
482 /*
483 * print the file header
484 */
485 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
486 "Limit", "Soft Limit", "Hard Limit", "Units");
487
488 for (i = 0; i < RLIM_NLIMITS; i++) {
489 if (rlim[i].rlim_cur == RLIM_INFINITY)
490 count += sprintf(&bufptr[count], "%-25s %-20s ",
491 lnames[i].name, "unlimited");
492 else
493 count += sprintf(&bufptr[count], "%-25s %-20lu ",
494 lnames[i].name, rlim[i].rlim_cur);
495
496 if (rlim[i].rlim_max == RLIM_INFINITY)
497 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
498 else
499 count += sprintf(&bufptr[count], "%-20lu ",
500 rlim[i].rlim_max);
501
502 if (lnames[i].unit)
503 count += sprintf(&bufptr[count], "%-10s\n",
504 lnames[i].unit);
505 else
506 count += sprintf(&bufptr[count], "\n");
507 }
508
509 return count;
510 }
511
512 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
513 static int proc_pid_syscall(struct task_struct *task, char *buffer)
514 {
515 long nr;
516 unsigned long args[6], sp, pc;
517
518 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
519 return sprintf(buffer, "running\n");
520
521 if (nr < 0)
522 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
523
524 return sprintf(buffer,
525 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
526 nr,
527 args[0], args[1], args[2], args[3], args[4], args[5],
528 sp, pc);
529 }
530 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
531
532 /************************************************************************/
533 /* Here the fs part begins */
534 /************************************************************************/
535
536 /* permission checks */
537 static int proc_fd_access_allowed(struct inode *inode)
538 {
539 struct task_struct *task;
540 int allowed = 0;
541 /* Allow access to a task's file descriptors if it is us or we
542 * may use ptrace attach to the process and find out that
543 * information.
544 */
545 task = get_proc_task(inode);
546 if (task) {
547 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
548 put_task_struct(task);
549 }
550 return allowed;
551 }
552
553 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
554 {
555 int error;
556 struct inode *inode = dentry->d_inode;
557
558 if (attr->ia_valid & ATTR_MODE)
559 return -EPERM;
560
561 error = inode_change_ok(inode, attr);
562 if (!error)
563 error = inode_setattr(inode, attr);
564 return error;
565 }
566
567 static const struct inode_operations proc_def_inode_operations = {
568 .setattr = proc_setattr,
569 };
570
571 static int mounts_open_common(struct inode *inode, struct file *file,
572 const struct seq_operations *op)
573 {
574 struct task_struct *task = get_proc_task(inode);
575 struct nsproxy *nsp;
576 struct mnt_namespace *ns = NULL;
577 struct path root;
578 struct proc_mounts *p;
579 int ret = -EINVAL;
580
581 if (task) {
582 rcu_read_lock();
583 nsp = task_nsproxy(task);
584 if (nsp) {
585 ns = nsp->mnt_ns;
586 if (ns)
587 get_mnt_ns(ns);
588 }
589 rcu_read_unlock();
590 if (ns && get_fs_path(task, &root, 1) == 0)
591 ret = 0;
592 put_task_struct(task);
593 }
594
595 if (!ns)
596 goto err;
597 if (ret)
598 goto err_put_ns;
599
600 ret = -ENOMEM;
601 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
602 if (!p)
603 goto err_put_path;
604
605 file->private_data = &p->m;
606 ret = seq_open(file, op);
607 if (ret)
608 goto err_free;
609
610 p->m.private = p;
611 p->ns = ns;
612 p->root = root;
613 p->event = ns->event;
614
615 return 0;
616
617 err_free:
618 kfree(p);
619 err_put_path:
620 path_put(&root);
621 err_put_ns:
622 put_mnt_ns(ns);
623 err:
624 return ret;
625 }
626
627 static int mounts_release(struct inode *inode, struct file *file)
628 {
629 struct proc_mounts *p = file->private_data;
630 path_put(&p->root);
631 put_mnt_ns(p->ns);
632 return seq_release(inode, file);
633 }
634
635 static unsigned mounts_poll(struct file *file, poll_table *wait)
636 {
637 struct proc_mounts *p = file->private_data;
638 unsigned res = POLLIN | POLLRDNORM;
639
640 poll_wait(file, &p->ns->poll, wait);
641 if (mnt_had_events(p))
642 res |= POLLERR | POLLPRI;
643
644 return res;
645 }
646
647 static int mounts_open(struct inode *inode, struct file *file)
648 {
649 return mounts_open_common(inode, file, &mounts_op);
650 }
651
652 static const struct file_operations proc_mounts_operations = {
653 .open = mounts_open,
654 .read = seq_read,
655 .llseek = seq_lseek,
656 .release = mounts_release,
657 .poll = mounts_poll,
658 };
659
660 static int mountinfo_open(struct inode *inode, struct file *file)
661 {
662 return mounts_open_common(inode, file, &mountinfo_op);
663 }
664
665 static const struct file_operations proc_mountinfo_operations = {
666 .open = mountinfo_open,
667 .read = seq_read,
668 .llseek = seq_lseek,
669 .release = mounts_release,
670 .poll = mounts_poll,
671 };
672
673 static int mountstats_open(struct inode *inode, struct file *file)
674 {
675 return mounts_open_common(inode, file, &mountstats_op);
676 }
677
678 static const struct file_operations proc_mountstats_operations = {
679 .open = mountstats_open,
680 .read = seq_read,
681 .llseek = seq_lseek,
682 .release = mounts_release,
683 };
684
685 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
686
687 static ssize_t proc_info_read(struct file * file, char __user * buf,
688 size_t count, loff_t *ppos)
689 {
690 struct inode * inode = file->f_path.dentry->d_inode;
691 unsigned long page;
692 ssize_t length;
693 struct task_struct *task = get_proc_task(inode);
694
695 length = -ESRCH;
696 if (!task)
697 goto out_no_task;
698
699 if (count > PROC_BLOCK_SIZE)
700 count = PROC_BLOCK_SIZE;
701
702 length = -ENOMEM;
703 if (!(page = __get_free_page(GFP_TEMPORARY)))
704 goto out;
705
706 length = PROC_I(inode)->op.proc_read(task, (char*)page);
707
708 if (length >= 0)
709 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
710 free_page(page);
711 out:
712 put_task_struct(task);
713 out_no_task:
714 return length;
715 }
716
717 static const struct file_operations proc_info_file_operations = {
718 .read = proc_info_read,
719 .llseek = generic_file_llseek,
720 };
721
722 static int proc_single_show(struct seq_file *m, void *v)
723 {
724 struct inode *inode = m->private;
725 struct pid_namespace *ns;
726 struct pid *pid;
727 struct task_struct *task;
728 int ret;
729
730 ns = inode->i_sb->s_fs_info;
731 pid = proc_pid(inode);
732 task = get_pid_task(pid, PIDTYPE_PID);
733 if (!task)
734 return -ESRCH;
735
736 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
737
738 put_task_struct(task);
739 return ret;
740 }
741
742 static int proc_single_open(struct inode *inode, struct file *filp)
743 {
744 int ret;
745 ret = single_open(filp, proc_single_show, NULL);
746 if (!ret) {
747 struct seq_file *m = filp->private_data;
748
749 m->private = inode;
750 }
751 return ret;
752 }
753
754 static const struct file_operations proc_single_file_operations = {
755 .open = proc_single_open,
756 .read = seq_read,
757 .llseek = seq_lseek,
758 .release = single_release,
759 };
760
761 static int mem_open(struct inode* inode, struct file* file)
762 {
763 file->private_data = (void*)((long)current->self_exec_id);
764 return 0;
765 }
766
767 static ssize_t mem_read(struct file * file, char __user * buf,
768 size_t count, loff_t *ppos)
769 {
770 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
771 char *page;
772 unsigned long src = *ppos;
773 int ret = -ESRCH;
774 struct mm_struct *mm;
775
776 if (!task)
777 goto out_no_task;
778
779 if (check_mem_permission(task))
780 goto out;
781
782 ret = -ENOMEM;
783 page = (char *)__get_free_page(GFP_TEMPORARY);
784 if (!page)
785 goto out;
786
787 ret = 0;
788
789 mm = get_task_mm(task);
790 if (!mm)
791 goto out_free;
792
793 ret = -EIO;
794
795 if (file->private_data != (void*)((long)current->self_exec_id))
796 goto out_put;
797
798 ret = 0;
799
800 while (count > 0) {
801 int this_len, retval;
802
803 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
804 retval = access_process_vm(task, src, page, this_len, 0);
805 if (!retval || check_mem_permission(task)) {
806 if (!ret)
807 ret = -EIO;
808 break;
809 }
810
811 if (copy_to_user(buf, page, retval)) {
812 ret = -EFAULT;
813 break;
814 }
815
816 ret += retval;
817 src += retval;
818 buf += retval;
819 count -= retval;
820 }
821 *ppos = src;
822
823 out_put:
824 mmput(mm);
825 out_free:
826 free_page((unsigned long) page);
827 out:
828 put_task_struct(task);
829 out_no_task:
830 return ret;
831 }
832
833 #define mem_write NULL
834
835 #ifndef mem_write
836 /* This is a security hazard */
837 static ssize_t mem_write(struct file * file, const char __user *buf,
838 size_t count, loff_t *ppos)
839 {
840 int copied;
841 char *page;
842 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
843 unsigned long dst = *ppos;
844
845 copied = -ESRCH;
846 if (!task)
847 goto out_no_task;
848
849 if (check_mem_permission(task))
850 goto out;
851
852 copied = -ENOMEM;
853 page = (char *)__get_free_page(GFP_TEMPORARY);
854 if (!page)
855 goto out;
856
857 copied = 0;
858 while (count > 0) {
859 int this_len, retval;
860
861 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
862 if (copy_from_user(page, buf, this_len)) {
863 copied = -EFAULT;
864 break;
865 }
866 retval = access_process_vm(task, dst, page, this_len, 1);
867 if (!retval) {
868 if (!copied)
869 copied = -EIO;
870 break;
871 }
872 copied += retval;
873 buf += retval;
874 dst += retval;
875 count -= retval;
876 }
877 *ppos = dst;
878 free_page((unsigned long) page);
879 out:
880 put_task_struct(task);
881 out_no_task:
882 return copied;
883 }
884 #endif
885
886 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
887 {
888 switch (orig) {
889 case 0:
890 file->f_pos = offset;
891 break;
892 case 1:
893 file->f_pos += offset;
894 break;
895 default:
896 return -EINVAL;
897 }
898 force_successful_syscall_return();
899 return file->f_pos;
900 }
901
902 static const struct file_operations proc_mem_operations = {
903 .llseek = mem_lseek,
904 .read = mem_read,
905 .write = mem_write,
906 .open = mem_open,
907 };
908
909 static ssize_t environ_read(struct file *file, char __user *buf,
910 size_t count, loff_t *ppos)
911 {
912 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
913 char *page;
914 unsigned long src = *ppos;
915 int ret = -ESRCH;
916 struct mm_struct *mm;
917
918 if (!task)
919 goto out_no_task;
920
921 if (!ptrace_may_access(task, PTRACE_MODE_READ))
922 goto out;
923
924 ret = -ENOMEM;
925 page = (char *)__get_free_page(GFP_TEMPORARY);
926 if (!page)
927 goto out;
928
929 ret = 0;
930
931 mm = get_task_mm(task);
932 if (!mm)
933 goto out_free;
934
935 while (count > 0) {
936 int this_len, retval, max_len;
937
938 this_len = mm->env_end - (mm->env_start + src);
939
940 if (this_len <= 0)
941 break;
942
943 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
944 this_len = (this_len > max_len) ? max_len : this_len;
945
946 retval = access_process_vm(task, (mm->env_start + src),
947 page, this_len, 0);
948
949 if (retval <= 0) {
950 ret = retval;
951 break;
952 }
953
954 if (copy_to_user(buf, page, retval)) {
955 ret = -EFAULT;
956 break;
957 }
958
959 ret += retval;
960 src += retval;
961 buf += retval;
962 count -= retval;
963 }
964 *ppos = src;
965
966 mmput(mm);
967 out_free:
968 free_page((unsigned long) page);
969 out:
970 put_task_struct(task);
971 out_no_task:
972 return ret;
973 }
974
975 static const struct file_operations proc_environ_operations = {
976 .read = environ_read,
977 .llseek = generic_file_llseek,
978 };
979
980 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
981 size_t count, loff_t *ppos)
982 {
983 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
984 char buffer[PROC_NUMBUF];
985 size_t len;
986 int oom_adjust = OOM_DISABLE;
987 unsigned long flags;
988
989 if (!task)
990 return -ESRCH;
991
992 if (lock_task_sighand(task, &flags)) {
993 oom_adjust = task->signal->oom_adj;
994 unlock_task_sighand(task, &flags);
995 }
996
997 put_task_struct(task);
998
999 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1000
1001 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1002 }
1003
1004 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1005 size_t count, loff_t *ppos)
1006 {
1007 struct task_struct *task;
1008 char buffer[PROC_NUMBUF];
1009 long oom_adjust;
1010 unsigned long flags;
1011 int err;
1012
1013 memset(buffer, 0, sizeof(buffer));
1014 if (count > sizeof(buffer) - 1)
1015 count = sizeof(buffer) - 1;
1016 if (copy_from_user(buffer, buf, count))
1017 return -EFAULT;
1018
1019 err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1020 if (err)
1021 return -EINVAL;
1022 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1023 oom_adjust != OOM_DISABLE)
1024 return -EINVAL;
1025
1026 task = get_proc_task(file->f_path.dentry->d_inode);
1027 if (!task)
1028 return -ESRCH;
1029 if (!lock_task_sighand(task, &flags)) {
1030 put_task_struct(task);
1031 return -ESRCH;
1032 }
1033
1034 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1035 unlock_task_sighand(task, &flags);
1036 put_task_struct(task);
1037 return -EACCES;
1038 }
1039
1040 task->signal->oom_adj = oom_adjust;
1041 /*
1042 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1043 * value is always attainable.
1044 */
1045 if (task->signal->oom_adj == OOM_ADJUST_MAX)
1046 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1047 else
1048 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1049 -OOM_DISABLE;
1050 unlock_task_sighand(task, &flags);
1051 put_task_struct(task);
1052
1053 return count;
1054 }
1055
1056 static const struct file_operations proc_oom_adjust_operations = {
1057 .read = oom_adjust_read,
1058 .write = oom_adjust_write,
1059 .llseek = generic_file_llseek,
1060 };
1061
1062 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1063 size_t count, loff_t *ppos)
1064 {
1065 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1066 char buffer[PROC_NUMBUF];
1067 int oom_score_adj = OOM_SCORE_ADJ_MIN;
1068 unsigned long flags;
1069 size_t len;
1070
1071 if (!task)
1072 return -ESRCH;
1073 if (lock_task_sighand(task, &flags)) {
1074 oom_score_adj = task->signal->oom_score_adj;
1075 unlock_task_sighand(task, &flags);
1076 }
1077 put_task_struct(task);
1078 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1079 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1080 }
1081
1082 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1083 size_t count, loff_t *ppos)
1084 {
1085 struct task_struct *task;
1086 char buffer[PROC_NUMBUF];
1087 unsigned long flags;
1088 long oom_score_adj;
1089 int err;
1090
1091 memset(buffer, 0, sizeof(buffer));
1092 if (count > sizeof(buffer) - 1)
1093 count = sizeof(buffer) - 1;
1094 if (copy_from_user(buffer, buf, count))
1095 return -EFAULT;
1096
1097 err = strict_strtol(strstrip(buffer), 0, &oom_score_adj);
1098 if (err)
1099 return -EINVAL;
1100 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1101 oom_score_adj > OOM_SCORE_ADJ_MAX)
1102 return -EINVAL;
1103
1104 task = get_proc_task(file->f_path.dentry->d_inode);
1105 if (!task)
1106 return -ESRCH;
1107 if (!lock_task_sighand(task, &flags)) {
1108 put_task_struct(task);
1109 return -ESRCH;
1110 }
1111 if (oom_score_adj < task->signal->oom_score_adj &&
1112 !capable(CAP_SYS_RESOURCE)) {
1113 unlock_task_sighand(task, &flags);
1114 put_task_struct(task);
1115 return -EACCES;
1116 }
1117
1118 task->signal->oom_score_adj = oom_score_adj;
1119 /*
1120 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1121 * always attainable.
1122 */
1123 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1124 task->signal->oom_adj = OOM_DISABLE;
1125 else
1126 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1127 OOM_SCORE_ADJ_MAX;
1128 unlock_task_sighand(task, &flags);
1129 put_task_struct(task);
1130 return count;
1131 }
1132
1133 static const struct file_operations proc_oom_score_adj_operations = {
1134 .read = oom_score_adj_read,
1135 .write = oom_score_adj_write,
1136 };
1137
1138 #ifdef CONFIG_AUDITSYSCALL
1139 #define TMPBUFLEN 21
1140 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1141 size_t count, loff_t *ppos)
1142 {
1143 struct inode * inode = file->f_path.dentry->d_inode;
1144 struct task_struct *task = get_proc_task(inode);
1145 ssize_t length;
1146 char tmpbuf[TMPBUFLEN];
1147
1148 if (!task)
1149 return -ESRCH;
1150 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1151 audit_get_loginuid(task));
1152 put_task_struct(task);
1153 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1154 }
1155
1156 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1157 size_t count, loff_t *ppos)
1158 {
1159 struct inode * inode = file->f_path.dentry->d_inode;
1160 char *page, *tmp;
1161 ssize_t length;
1162 uid_t loginuid;
1163
1164 if (!capable(CAP_AUDIT_CONTROL))
1165 return -EPERM;
1166
1167 rcu_read_lock();
1168 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1169 rcu_read_unlock();
1170 return -EPERM;
1171 }
1172 rcu_read_unlock();
1173
1174 if (count >= PAGE_SIZE)
1175 count = PAGE_SIZE - 1;
1176
1177 if (*ppos != 0) {
1178 /* No partial writes. */
1179 return -EINVAL;
1180 }
1181 page = (char*)__get_free_page(GFP_TEMPORARY);
1182 if (!page)
1183 return -ENOMEM;
1184 length = -EFAULT;
1185 if (copy_from_user(page, buf, count))
1186 goto out_free_page;
1187
1188 page[count] = '\0';
1189 loginuid = simple_strtoul(page, &tmp, 10);
1190 if (tmp == page) {
1191 length = -EINVAL;
1192 goto out_free_page;
1193
1194 }
1195 length = audit_set_loginuid(current, loginuid);
1196 if (likely(length == 0))
1197 length = count;
1198
1199 out_free_page:
1200 free_page((unsigned long) page);
1201 return length;
1202 }
1203
1204 static const struct file_operations proc_loginuid_operations = {
1205 .read = proc_loginuid_read,
1206 .write = proc_loginuid_write,
1207 .llseek = generic_file_llseek,
1208 };
1209
1210 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1211 size_t count, loff_t *ppos)
1212 {
1213 struct inode * inode = file->f_path.dentry->d_inode;
1214 struct task_struct *task = get_proc_task(inode);
1215 ssize_t length;
1216 char tmpbuf[TMPBUFLEN];
1217
1218 if (!task)
1219 return -ESRCH;
1220 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1221 audit_get_sessionid(task));
1222 put_task_struct(task);
1223 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1224 }
1225
1226 static const struct file_operations proc_sessionid_operations = {
1227 .read = proc_sessionid_read,
1228 .llseek = generic_file_llseek,
1229 };
1230 #endif
1231
1232 #ifdef CONFIG_FAULT_INJECTION
1233 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1234 size_t count, loff_t *ppos)
1235 {
1236 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1237 char buffer[PROC_NUMBUF];
1238 size_t len;
1239 int make_it_fail;
1240
1241 if (!task)
1242 return -ESRCH;
1243 make_it_fail = task->make_it_fail;
1244 put_task_struct(task);
1245
1246 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1247
1248 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1249 }
1250
1251 static ssize_t proc_fault_inject_write(struct file * file,
1252 const char __user * buf, size_t count, loff_t *ppos)
1253 {
1254 struct task_struct *task;
1255 char buffer[PROC_NUMBUF], *end;
1256 int make_it_fail;
1257
1258 if (!capable(CAP_SYS_RESOURCE))
1259 return -EPERM;
1260 memset(buffer, 0, sizeof(buffer));
1261 if (count > sizeof(buffer) - 1)
1262 count = sizeof(buffer) - 1;
1263 if (copy_from_user(buffer, buf, count))
1264 return -EFAULT;
1265 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1266 if (*end)
1267 return -EINVAL;
1268 task = get_proc_task(file->f_dentry->d_inode);
1269 if (!task)
1270 return -ESRCH;
1271 task->make_it_fail = make_it_fail;
1272 put_task_struct(task);
1273
1274 return count;
1275 }
1276
1277 static const struct file_operations proc_fault_inject_operations = {
1278 .read = proc_fault_inject_read,
1279 .write = proc_fault_inject_write,
1280 .llseek = generic_file_llseek,
1281 };
1282 #endif
1283
1284
1285 #ifdef CONFIG_SCHED_DEBUG
1286 /*
1287 * Print out various scheduling related per-task fields:
1288 */
1289 static int sched_show(struct seq_file *m, void *v)
1290 {
1291 struct inode *inode = m->private;
1292 struct task_struct *p;
1293
1294 p = get_proc_task(inode);
1295 if (!p)
1296 return -ESRCH;
1297 proc_sched_show_task(p, m);
1298
1299 put_task_struct(p);
1300
1301 return 0;
1302 }
1303
1304 static ssize_t
1305 sched_write(struct file *file, const char __user *buf,
1306 size_t count, loff_t *offset)
1307 {
1308 struct inode *inode = file->f_path.dentry->d_inode;
1309 struct task_struct *p;
1310
1311 p = get_proc_task(inode);
1312 if (!p)
1313 return -ESRCH;
1314 proc_sched_set_task(p);
1315
1316 put_task_struct(p);
1317
1318 return count;
1319 }
1320
1321 static int sched_open(struct inode *inode, struct file *filp)
1322 {
1323 int ret;
1324
1325 ret = single_open(filp, sched_show, NULL);
1326 if (!ret) {
1327 struct seq_file *m = filp->private_data;
1328
1329 m->private = inode;
1330 }
1331 return ret;
1332 }
1333
1334 static const struct file_operations proc_pid_sched_operations = {
1335 .open = sched_open,
1336 .read = seq_read,
1337 .write = sched_write,
1338 .llseek = seq_lseek,
1339 .release = single_release,
1340 };
1341
1342 #endif
1343
1344 static ssize_t comm_write(struct file *file, const char __user *buf,
1345 size_t count, loff_t *offset)
1346 {
1347 struct inode *inode = file->f_path.dentry->d_inode;
1348 struct task_struct *p;
1349 char buffer[TASK_COMM_LEN];
1350
1351 memset(buffer, 0, sizeof(buffer));
1352 if (count > sizeof(buffer) - 1)
1353 count = sizeof(buffer) - 1;
1354 if (copy_from_user(buffer, buf, count))
1355 return -EFAULT;
1356
1357 p = get_proc_task(inode);
1358 if (!p)
1359 return -ESRCH;
1360
1361 if (same_thread_group(current, p))
1362 set_task_comm(p, buffer);
1363 else
1364 count = -EINVAL;
1365
1366 put_task_struct(p);
1367
1368 return count;
1369 }
1370
1371 static int comm_show(struct seq_file *m, void *v)
1372 {
1373 struct inode *inode = m->private;
1374 struct task_struct *p;
1375
1376 p = get_proc_task(inode);
1377 if (!p)
1378 return -ESRCH;
1379
1380 task_lock(p);
1381 seq_printf(m, "%s\n", p->comm);
1382 task_unlock(p);
1383
1384 put_task_struct(p);
1385
1386 return 0;
1387 }
1388
1389 static int comm_open(struct inode *inode, struct file *filp)
1390 {
1391 int ret;
1392
1393 ret = single_open(filp, comm_show, NULL);
1394 if (!ret) {
1395 struct seq_file *m = filp->private_data;
1396
1397 m->private = inode;
1398 }
1399 return ret;
1400 }
1401
1402 static const struct file_operations proc_pid_set_comm_operations = {
1403 .open = comm_open,
1404 .read = seq_read,
1405 .write = comm_write,
1406 .llseek = seq_lseek,
1407 .release = single_release,
1408 };
1409
1410 /*
1411 * We added or removed a vma mapping the executable. The vmas are only mapped
1412 * during exec and are not mapped with the mmap system call.
1413 * Callers must hold down_write() on the mm's mmap_sem for these
1414 */
1415 void added_exe_file_vma(struct mm_struct *mm)
1416 {
1417 mm->num_exe_file_vmas++;
1418 }
1419
1420 void removed_exe_file_vma(struct mm_struct *mm)
1421 {
1422 mm->num_exe_file_vmas--;
1423 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1424 fput(mm->exe_file);
1425 mm->exe_file = NULL;
1426 }
1427
1428 }
1429
1430 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1431 {
1432 if (new_exe_file)
1433 get_file(new_exe_file);
1434 if (mm->exe_file)
1435 fput(mm->exe_file);
1436 mm->exe_file = new_exe_file;
1437 mm->num_exe_file_vmas = 0;
1438 }
1439
1440 struct file *get_mm_exe_file(struct mm_struct *mm)
1441 {
1442 struct file *exe_file;
1443
1444 /* We need mmap_sem to protect against races with removal of
1445 * VM_EXECUTABLE vmas */
1446 down_read(&mm->mmap_sem);
1447 exe_file = mm->exe_file;
1448 if (exe_file)
1449 get_file(exe_file);
1450 up_read(&mm->mmap_sem);
1451 return exe_file;
1452 }
1453
1454 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1455 {
1456 /* It's safe to write the exe_file pointer without exe_file_lock because
1457 * this is called during fork when the task is not yet in /proc */
1458 newmm->exe_file = get_mm_exe_file(oldmm);
1459 }
1460
1461 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1462 {
1463 struct task_struct *task;
1464 struct mm_struct *mm;
1465 struct file *exe_file;
1466
1467 task = get_proc_task(inode);
1468 if (!task)
1469 return -ENOENT;
1470 mm = get_task_mm(task);
1471 put_task_struct(task);
1472 if (!mm)
1473 return -ENOENT;
1474 exe_file = get_mm_exe_file(mm);
1475 mmput(mm);
1476 if (exe_file) {
1477 *exe_path = exe_file->f_path;
1478 path_get(&exe_file->f_path);
1479 fput(exe_file);
1480 return 0;
1481 } else
1482 return -ENOENT;
1483 }
1484
1485 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1486 {
1487 struct inode *inode = dentry->d_inode;
1488 int error = -EACCES;
1489
1490 /* We don't need a base pointer in the /proc filesystem */
1491 path_put(&nd->path);
1492
1493 /* Are we allowed to snoop on the tasks file descriptors? */
1494 if (!proc_fd_access_allowed(inode))
1495 goto out;
1496
1497 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1498 out:
1499 return ERR_PTR(error);
1500 }
1501
1502 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1503 {
1504 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1505 char *pathname;
1506 int len;
1507
1508 if (!tmp)
1509 return -ENOMEM;
1510
1511 pathname = d_path(path, tmp, PAGE_SIZE);
1512 len = PTR_ERR(pathname);
1513 if (IS_ERR(pathname))
1514 goto out;
1515 len = tmp + PAGE_SIZE - 1 - pathname;
1516
1517 if (len > buflen)
1518 len = buflen;
1519 if (copy_to_user(buffer, pathname, len))
1520 len = -EFAULT;
1521 out:
1522 free_page((unsigned long)tmp);
1523 return len;
1524 }
1525
1526 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1527 {
1528 int error = -EACCES;
1529 struct inode *inode = dentry->d_inode;
1530 struct path path;
1531
1532 /* Are we allowed to snoop on the tasks file descriptors? */
1533 if (!proc_fd_access_allowed(inode))
1534 goto out;
1535
1536 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1537 if (error)
1538 goto out;
1539
1540 error = do_proc_readlink(&path, buffer, buflen);
1541 path_put(&path);
1542 out:
1543 return error;
1544 }
1545
1546 static const struct inode_operations proc_pid_link_inode_operations = {
1547 .readlink = proc_pid_readlink,
1548 .follow_link = proc_pid_follow_link,
1549 .setattr = proc_setattr,
1550 };
1551
1552
1553 /* building an inode */
1554
1555 static int task_dumpable(struct task_struct *task)
1556 {
1557 int dumpable = 0;
1558 struct mm_struct *mm;
1559
1560 task_lock(task);
1561 mm = task->mm;
1562 if (mm)
1563 dumpable = get_dumpable(mm);
1564 task_unlock(task);
1565 if(dumpable == 1)
1566 return 1;
1567 return 0;
1568 }
1569
1570
1571 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1572 {
1573 struct inode * inode;
1574 struct proc_inode *ei;
1575 const struct cred *cred;
1576
1577 /* We need a new inode */
1578
1579 inode = new_inode(sb);
1580 if (!inode)
1581 goto out;
1582
1583 /* Common stuff */
1584 ei = PROC_I(inode);
1585 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1586 inode->i_op = &proc_def_inode_operations;
1587
1588 /*
1589 * grab the reference to task.
1590 */
1591 ei->pid = get_task_pid(task, PIDTYPE_PID);
1592 if (!ei->pid)
1593 goto out_unlock;
1594
1595 if (task_dumpable(task)) {
1596 rcu_read_lock();
1597 cred = __task_cred(task);
1598 inode->i_uid = cred->euid;
1599 inode->i_gid = cred->egid;
1600 rcu_read_unlock();
1601 }
1602 security_task_to_inode(task, inode);
1603
1604 out:
1605 return inode;
1606
1607 out_unlock:
1608 iput(inode);
1609 return NULL;
1610 }
1611
1612 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1613 {
1614 struct inode *inode = dentry->d_inode;
1615 struct task_struct *task;
1616 const struct cred *cred;
1617
1618 generic_fillattr(inode, stat);
1619
1620 rcu_read_lock();
1621 stat->uid = 0;
1622 stat->gid = 0;
1623 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1624 if (task) {
1625 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1626 task_dumpable(task)) {
1627 cred = __task_cred(task);
1628 stat->uid = cred->euid;
1629 stat->gid = cred->egid;
1630 }
1631 }
1632 rcu_read_unlock();
1633 return 0;
1634 }
1635
1636 /* dentry stuff */
1637
1638 /*
1639 * Exceptional case: normally we are not allowed to unhash a busy
1640 * directory. In this case, however, we can do it - no aliasing problems
1641 * due to the way we treat inodes.
1642 *
1643 * Rewrite the inode's ownerships here because the owning task may have
1644 * performed a setuid(), etc.
1645 *
1646 * Before the /proc/pid/status file was created the only way to read
1647 * the effective uid of a /process was to stat /proc/pid. Reading
1648 * /proc/pid/status is slow enough that procps and other packages
1649 * kept stating /proc/pid. To keep the rules in /proc simple I have
1650 * made this apply to all per process world readable and executable
1651 * directories.
1652 */
1653 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1654 {
1655 struct inode *inode = dentry->d_inode;
1656 struct task_struct *task = get_proc_task(inode);
1657 const struct cred *cred;
1658
1659 if (task) {
1660 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1661 task_dumpable(task)) {
1662 rcu_read_lock();
1663 cred = __task_cred(task);
1664 inode->i_uid = cred->euid;
1665 inode->i_gid = cred->egid;
1666 rcu_read_unlock();
1667 } else {
1668 inode->i_uid = 0;
1669 inode->i_gid = 0;
1670 }
1671 inode->i_mode &= ~(S_ISUID | S_ISGID);
1672 security_task_to_inode(task, inode);
1673 put_task_struct(task);
1674 return 1;
1675 }
1676 d_drop(dentry);
1677 return 0;
1678 }
1679
1680 static int pid_delete_dentry(struct dentry * dentry)
1681 {
1682 /* Is the task we represent dead?
1683 * If so, then don't put the dentry on the lru list,
1684 * kill it immediately.
1685 */
1686 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1687 }
1688
1689 static const struct dentry_operations pid_dentry_operations =
1690 {
1691 .d_revalidate = pid_revalidate,
1692 .d_delete = pid_delete_dentry,
1693 };
1694
1695 /* Lookups */
1696
1697 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1698 struct task_struct *, const void *);
1699
1700 /*
1701 * Fill a directory entry.
1702 *
1703 * If possible create the dcache entry and derive our inode number and
1704 * file type from dcache entry.
1705 *
1706 * Since all of the proc inode numbers are dynamically generated, the inode
1707 * numbers do not exist until the inode is cache. This means creating the
1708 * the dcache entry in readdir is necessary to keep the inode numbers
1709 * reported by readdir in sync with the inode numbers reported
1710 * by stat.
1711 */
1712 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1713 char *name, int len,
1714 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1715 {
1716 struct dentry *child, *dir = filp->f_path.dentry;
1717 struct inode *inode;
1718 struct qstr qname;
1719 ino_t ino = 0;
1720 unsigned type = DT_UNKNOWN;
1721
1722 qname.name = name;
1723 qname.len = len;
1724 qname.hash = full_name_hash(name, len);
1725
1726 child = d_lookup(dir, &qname);
1727 if (!child) {
1728 struct dentry *new;
1729 new = d_alloc(dir, &qname);
1730 if (new) {
1731 child = instantiate(dir->d_inode, new, task, ptr);
1732 if (child)
1733 dput(new);
1734 else
1735 child = new;
1736 }
1737 }
1738 if (!child || IS_ERR(child) || !child->d_inode)
1739 goto end_instantiate;
1740 inode = child->d_inode;
1741 if (inode) {
1742 ino = inode->i_ino;
1743 type = inode->i_mode >> 12;
1744 }
1745 dput(child);
1746 end_instantiate:
1747 if (!ino)
1748 ino = find_inode_number(dir, &qname);
1749 if (!ino)
1750 ino = 1;
1751 return filldir(dirent, name, len, filp->f_pos, ino, type);
1752 }
1753
1754 static unsigned name_to_int(struct dentry *dentry)
1755 {
1756 const char *name = dentry->d_name.name;
1757 int len = dentry->d_name.len;
1758 unsigned n = 0;
1759
1760 if (len > 1 && *name == '0')
1761 goto out;
1762 while (len-- > 0) {
1763 unsigned c = *name++ - '0';
1764 if (c > 9)
1765 goto out;
1766 if (n >= (~0U-9)/10)
1767 goto out;
1768 n *= 10;
1769 n += c;
1770 }
1771 return n;
1772 out:
1773 return ~0U;
1774 }
1775
1776 #define PROC_FDINFO_MAX 64
1777
1778 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1779 {
1780 struct task_struct *task = get_proc_task(inode);
1781 struct files_struct *files = NULL;
1782 struct file *file;
1783 int fd = proc_fd(inode);
1784
1785 if (task) {
1786 files = get_files_struct(task);
1787 put_task_struct(task);
1788 }
1789 if (files) {
1790 /*
1791 * We are not taking a ref to the file structure, so we must
1792 * hold ->file_lock.
1793 */
1794 spin_lock(&files->file_lock);
1795 file = fcheck_files(files, fd);
1796 if (file) {
1797 if (path) {
1798 *path = file->f_path;
1799 path_get(&file->f_path);
1800 }
1801 if (info)
1802 snprintf(info, PROC_FDINFO_MAX,
1803 "pos:\t%lli\n"
1804 "flags:\t0%o\n",
1805 (long long) file->f_pos,
1806 file->f_flags);
1807 spin_unlock(&files->file_lock);
1808 put_files_struct(files);
1809 return 0;
1810 }
1811 spin_unlock(&files->file_lock);
1812 put_files_struct(files);
1813 }
1814 return -ENOENT;
1815 }
1816
1817 static int proc_fd_link(struct inode *inode, struct path *path)
1818 {
1819 return proc_fd_info(inode, path, NULL);
1820 }
1821
1822 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1823 {
1824 struct inode *inode = dentry->d_inode;
1825 struct task_struct *task = get_proc_task(inode);
1826 int fd = proc_fd(inode);
1827 struct files_struct *files;
1828 const struct cred *cred;
1829
1830 if (task) {
1831 files = get_files_struct(task);
1832 if (files) {
1833 rcu_read_lock();
1834 if (fcheck_files(files, fd)) {
1835 rcu_read_unlock();
1836 put_files_struct(files);
1837 if (task_dumpable(task)) {
1838 rcu_read_lock();
1839 cred = __task_cred(task);
1840 inode->i_uid = cred->euid;
1841 inode->i_gid = cred->egid;
1842 rcu_read_unlock();
1843 } else {
1844 inode->i_uid = 0;
1845 inode->i_gid = 0;
1846 }
1847 inode->i_mode &= ~(S_ISUID | S_ISGID);
1848 security_task_to_inode(task, inode);
1849 put_task_struct(task);
1850 return 1;
1851 }
1852 rcu_read_unlock();
1853 put_files_struct(files);
1854 }
1855 put_task_struct(task);
1856 }
1857 d_drop(dentry);
1858 return 0;
1859 }
1860
1861 static const struct dentry_operations tid_fd_dentry_operations =
1862 {
1863 .d_revalidate = tid_fd_revalidate,
1864 .d_delete = pid_delete_dentry,
1865 };
1866
1867 static struct dentry *proc_fd_instantiate(struct inode *dir,
1868 struct dentry *dentry, struct task_struct *task, const void *ptr)
1869 {
1870 unsigned fd = *(const unsigned *)ptr;
1871 struct file *file;
1872 struct files_struct *files;
1873 struct inode *inode;
1874 struct proc_inode *ei;
1875 struct dentry *error = ERR_PTR(-ENOENT);
1876
1877 inode = proc_pid_make_inode(dir->i_sb, task);
1878 if (!inode)
1879 goto out;
1880 ei = PROC_I(inode);
1881 ei->fd = fd;
1882 files = get_files_struct(task);
1883 if (!files)
1884 goto out_iput;
1885 inode->i_mode = S_IFLNK;
1886
1887 /*
1888 * We are not taking a ref to the file structure, so we must
1889 * hold ->file_lock.
1890 */
1891 spin_lock(&files->file_lock);
1892 file = fcheck_files(files, fd);
1893 if (!file)
1894 goto out_unlock;
1895 if (file->f_mode & FMODE_READ)
1896 inode->i_mode |= S_IRUSR | S_IXUSR;
1897 if (file->f_mode & FMODE_WRITE)
1898 inode->i_mode |= S_IWUSR | S_IXUSR;
1899 spin_unlock(&files->file_lock);
1900 put_files_struct(files);
1901
1902 inode->i_op = &proc_pid_link_inode_operations;
1903 inode->i_size = 64;
1904 ei->op.proc_get_link = proc_fd_link;
1905 dentry->d_op = &tid_fd_dentry_operations;
1906 d_add(dentry, inode);
1907 /* Close the race of the process dying before we return the dentry */
1908 if (tid_fd_revalidate(dentry, NULL))
1909 error = NULL;
1910
1911 out:
1912 return error;
1913 out_unlock:
1914 spin_unlock(&files->file_lock);
1915 put_files_struct(files);
1916 out_iput:
1917 iput(inode);
1918 goto out;
1919 }
1920
1921 static struct dentry *proc_lookupfd_common(struct inode *dir,
1922 struct dentry *dentry,
1923 instantiate_t instantiate)
1924 {
1925 struct task_struct *task = get_proc_task(dir);
1926 unsigned fd = name_to_int(dentry);
1927 struct dentry *result = ERR_PTR(-ENOENT);
1928
1929 if (!task)
1930 goto out_no_task;
1931 if (fd == ~0U)
1932 goto out;
1933
1934 result = instantiate(dir, dentry, task, &fd);
1935 out:
1936 put_task_struct(task);
1937 out_no_task:
1938 return result;
1939 }
1940
1941 static int proc_readfd_common(struct file * filp, void * dirent,
1942 filldir_t filldir, instantiate_t instantiate)
1943 {
1944 struct dentry *dentry = filp->f_path.dentry;
1945 struct inode *inode = dentry->d_inode;
1946 struct task_struct *p = get_proc_task(inode);
1947 unsigned int fd, ino;
1948 int retval;
1949 struct files_struct * files;
1950
1951 retval = -ENOENT;
1952 if (!p)
1953 goto out_no_task;
1954 retval = 0;
1955
1956 fd = filp->f_pos;
1957 switch (fd) {
1958 case 0:
1959 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1960 goto out;
1961 filp->f_pos++;
1962 case 1:
1963 ino = parent_ino(dentry);
1964 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1965 goto out;
1966 filp->f_pos++;
1967 default:
1968 files = get_files_struct(p);
1969 if (!files)
1970 goto out;
1971 rcu_read_lock();
1972 for (fd = filp->f_pos-2;
1973 fd < files_fdtable(files)->max_fds;
1974 fd++, filp->f_pos++) {
1975 char name[PROC_NUMBUF];
1976 int len;
1977
1978 if (!fcheck_files(files, fd))
1979 continue;
1980 rcu_read_unlock();
1981
1982 len = snprintf(name, sizeof(name), "%d", fd);
1983 if (proc_fill_cache(filp, dirent, filldir,
1984 name, len, instantiate,
1985 p, &fd) < 0) {
1986 rcu_read_lock();
1987 break;
1988 }
1989 rcu_read_lock();
1990 }
1991 rcu_read_unlock();
1992 put_files_struct(files);
1993 }
1994 out:
1995 put_task_struct(p);
1996 out_no_task:
1997 return retval;
1998 }
1999
2000 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2001 struct nameidata *nd)
2002 {
2003 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2004 }
2005
2006 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2007 {
2008 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2009 }
2010
2011 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2012 size_t len, loff_t *ppos)
2013 {
2014 char tmp[PROC_FDINFO_MAX];
2015 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2016 if (!err)
2017 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2018 return err;
2019 }
2020
2021 static const struct file_operations proc_fdinfo_file_operations = {
2022 .open = nonseekable_open,
2023 .read = proc_fdinfo_read,
2024 };
2025
2026 static const struct file_operations proc_fd_operations = {
2027 .read = generic_read_dir,
2028 .readdir = proc_readfd,
2029 };
2030
2031 /*
2032 * /proc/pid/fd needs a special permission handler so that a process can still
2033 * access /proc/self/fd after it has executed a setuid().
2034 */
2035 static int proc_fd_permission(struct inode *inode, int mask)
2036 {
2037 int rv;
2038
2039 rv = generic_permission(inode, mask, NULL);
2040 if (rv == 0)
2041 return 0;
2042 if (task_pid(current) == proc_pid(inode))
2043 rv = 0;
2044 return rv;
2045 }
2046
2047 /*
2048 * proc directories can do almost nothing..
2049 */
2050 static const struct inode_operations proc_fd_inode_operations = {
2051 .lookup = proc_lookupfd,
2052 .permission = proc_fd_permission,
2053 .setattr = proc_setattr,
2054 };
2055
2056 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2057 struct dentry *dentry, struct task_struct *task, const void *ptr)
2058 {
2059 unsigned fd = *(unsigned *)ptr;
2060 struct inode *inode;
2061 struct proc_inode *ei;
2062 struct dentry *error = ERR_PTR(-ENOENT);
2063
2064 inode = proc_pid_make_inode(dir->i_sb, task);
2065 if (!inode)
2066 goto out;
2067 ei = PROC_I(inode);
2068 ei->fd = fd;
2069 inode->i_mode = S_IFREG | S_IRUSR;
2070 inode->i_fop = &proc_fdinfo_file_operations;
2071 dentry->d_op = &tid_fd_dentry_operations;
2072 d_add(dentry, inode);
2073 /* Close the race of the process dying before we return the dentry */
2074 if (tid_fd_revalidate(dentry, NULL))
2075 error = NULL;
2076
2077 out:
2078 return error;
2079 }
2080
2081 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2082 struct dentry *dentry,
2083 struct nameidata *nd)
2084 {
2085 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2086 }
2087
2088 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2089 {
2090 return proc_readfd_common(filp, dirent, filldir,
2091 proc_fdinfo_instantiate);
2092 }
2093
2094 static const struct file_operations proc_fdinfo_operations = {
2095 .read = generic_read_dir,
2096 .readdir = proc_readfdinfo,
2097 };
2098
2099 /*
2100 * proc directories can do almost nothing..
2101 */
2102 static const struct inode_operations proc_fdinfo_inode_operations = {
2103 .lookup = proc_lookupfdinfo,
2104 .setattr = proc_setattr,
2105 };
2106
2107
2108 static struct dentry *proc_pident_instantiate(struct inode *dir,
2109 struct dentry *dentry, struct task_struct *task, const void *ptr)
2110 {
2111 const struct pid_entry *p = ptr;
2112 struct inode *inode;
2113 struct proc_inode *ei;
2114 struct dentry *error = ERR_PTR(-ENOENT);
2115
2116 inode = proc_pid_make_inode(dir->i_sb, task);
2117 if (!inode)
2118 goto out;
2119
2120 ei = PROC_I(inode);
2121 inode->i_mode = p->mode;
2122 if (S_ISDIR(inode->i_mode))
2123 inode->i_nlink = 2; /* Use getattr to fix if necessary */
2124 if (p->iop)
2125 inode->i_op = p->iop;
2126 if (p->fop)
2127 inode->i_fop = p->fop;
2128 ei->op = p->op;
2129 dentry->d_op = &pid_dentry_operations;
2130 d_add(dentry, inode);
2131 /* Close the race of the process dying before we return the dentry */
2132 if (pid_revalidate(dentry, NULL))
2133 error = NULL;
2134 out:
2135 return error;
2136 }
2137
2138 static struct dentry *proc_pident_lookup(struct inode *dir,
2139 struct dentry *dentry,
2140 const struct pid_entry *ents,
2141 unsigned int nents)
2142 {
2143 struct dentry *error;
2144 struct task_struct *task = get_proc_task(dir);
2145 const struct pid_entry *p, *last;
2146
2147 error = ERR_PTR(-ENOENT);
2148
2149 if (!task)
2150 goto out_no_task;
2151
2152 /*
2153 * Yes, it does not scale. And it should not. Don't add
2154 * new entries into /proc/<tgid>/ without very good reasons.
2155 */
2156 last = &ents[nents - 1];
2157 for (p = ents; p <= last; p++) {
2158 if (p->len != dentry->d_name.len)
2159 continue;
2160 if (!memcmp(dentry->d_name.name, p->name, p->len))
2161 break;
2162 }
2163 if (p > last)
2164 goto out;
2165
2166 error = proc_pident_instantiate(dir, dentry, task, p);
2167 out:
2168 put_task_struct(task);
2169 out_no_task:
2170 return error;
2171 }
2172
2173 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2174 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2175 {
2176 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2177 proc_pident_instantiate, task, p);
2178 }
2179
2180 static int proc_pident_readdir(struct file *filp,
2181 void *dirent, filldir_t filldir,
2182 const struct pid_entry *ents, unsigned int nents)
2183 {
2184 int i;
2185 struct dentry *dentry = filp->f_path.dentry;
2186 struct inode *inode = dentry->d_inode;
2187 struct task_struct *task = get_proc_task(inode);
2188 const struct pid_entry *p, *last;
2189 ino_t ino;
2190 int ret;
2191
2192 ret = -ENOENT;
2193 if (!task)
2194 goto out_no_task;
2195
2196 ret = 0;
2197 i = filp->f_pos;
2198 switch (i) {
2199 case 0:
2200 ino = inode->i_ino;
2201 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2202 goto out;
2203 i++;
2204 filp->f_pos++;
2205 /* fall through */
2206 case 1:
2207 ino = parent_ino(dentry);
2208 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2209 goto out;
2210 i++;
2211 filp->f_pos++;
2212 /* fall through */
2213 default:
2214 i -= 2;
2215 if (i >= nents) {
2216 ret = 1;
2217 goto out;
2218 }
2219 p = ents + i;
2220 last = &ents[nents - 1];
2221 while (p <= last) {
2222 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2223 goto out;
2224 filp->f_pos++;
2225 p++;
2226 }
2227 }
2228
2229 ret = 1;
2230 out:
2231 put_task_struct(task);
2232 out_no_task:
2233 return ret;
2234 }
2235
2236 #ifdef CONFIG_SECURITY
2237 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2238 size_t count, loff_t *ppos)
2239 {
2240 struct inode * inode = file->f_path.dentry->d_inode;
2241 char *p = NULL;
2242 ssize_t length;
2243 struct task_struct *task = get_proc_task(inode);
2244
2245 if (!task)
2246 return -ESRCH;
2247
2248 length = security_getprocattr(task,
2249 (char*)file->f_path.dentry->d_name.name,
2250 &p);
2251 put_task_struct(task);
2252 if (length > 0)
2253 length = simple_read_from_buffer(buf, count, ppos, p, length);
2254 kfree(p);
2255 return length;
2256 }
2257
2258 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2259 size_t count, loff_t *ppos)
2260 {
2261 struct inode * inode = file->f_path.dentry->d_inode;
2262 char *page;
2263 ssize_t length;
2264 struct task_struct *task = get_proc_task(inode);
2265
2266 length = -ESRCH;
2267 if (!task)
2268 goto out_no_task;
2269 if (count > PAGE_SIZE)
2270 count = PAGE_SIZE;
2271
2272 /* No partial writes. */
2273 length = -EINVAL;
2274 if (*ppos != 0)
2275 goto out;
2276
2277 length = -ENOMEM;
2278 page = (char*)__get_free_page(GFP_TEMPORARY);
2279 if (!page)
2280 goto out;
2281
2282 length = -EFAULT;
2283 if (copy_from_user(page, buf, count))
2284 goto out_free;
2285
2286 /* Guard against adverse ptrace interaction */
2287 length = mutex_lock_interruptible(&task->cred_guard_mutex);
2288 if (length < 0)
2289 goto out_free;
2290
2291 length = security_setprocattr(task,
2292 (char*)file->f_path.dentry->d_name.name,
2293 (void*)page, count);
2294 mutex_unlock(&task->cred_guard_mutex);
2295 out_free:
2296 free_page((unsigned long) page);
2297 out:
2298 put_task_struct(task);
2299 out_no_task:
2300 return length;
2301 }
2302
2303 static const struct file_operations proc_pid_attr_operations = {
2304 .read = proc_pid_attr_read,
2305 .write = proc_pid_attr_write,
2306 .llseek = generic_file_llseek,
2307 };
2308
2309 static const struct pid_entry attr_dir_stuff[] = {
2310 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2311 REG("prev", S_IRUGO, proc_pid_attr_operations),
2312 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2313 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2314 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2315 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2316 };
2317
2318 static int proc_attr_dir_readdir(struct file * filp,
2319 void * dirent, filldir_t filldir)
2320 {
2321 return proc_pident_readdir(filp,dirent,filldir,
2322 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2323 }
2324
2325 static const struct file_operations proc_attr_dir_operations = {
2326 .read = generic_read_dir,
2327 .readdir = proc_attr_dir_readdir,
2328 };
2329
2330 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2331 struct dentry *dentry, struct nameidata *nd)
2332 {
2333 return proc_pident_lookup(dir, dentry,
2334 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2335 }
2336
2337 static const struct inode_operations proc_attr_dir_inode_operations = {
2338 .lookup = proc_attr_dir_lookup,
2339 .getattr = pid_getattr,
2340 .setattr = proc_setattr,
2341 };
2342
2343 #endif
2344
2345 #ifdef CONFIG_ELF_CORE
2346 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2347 size_t count, loff_t *ppos)
2348 {
2349 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2350 struct mm_struct *mm;
2351 char buffer[PROC_NUMBUF];
2352 size_t len;
2353 int ret;
2354
2355 if (!task)
2356 return -ESRCH;
2357
2358 ret = 0;
2359 mm = get_task_mm(task);
2360 if (mm) {
2361 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2362 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2363 MMF_DUMP_FILTER_SHIFT));
2364 mmput(mm);
2365 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2366 }
2367
2368 put_task_struct(task);
2369
2370 return ret;
2371 }
2372
2373 static ssize_t proc_coredump_filter_write(struct file *file,
2374 const char __user *buf,
2375 size_t count,
2376 loff_t *ppos)
2377 {
2378 struct task_struct *task;
2379 struct mm_struct *mm;
2380 char buffer[PROC_NUMBUF], *end;
2381 unsigned int val;
2382 int ret;
2383 int i;
2384 unsigned long mask;
2385
2386 ret = -EFAULT;
2387 memset(buffer, 0, sizeof(buffer));
2388 if (count > sizeof(buffer) - 1)
2389 count = sizeof(buffer) - 1;
2390 if (copy_from_user(buffer, buf, count))
2391 goto out_no_task;
2392
2393 ret = -EINVAL;
2394 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2395 if (*end == '\n')
2396 end++;
2397 if (end - buffer == 0)
2398 goto out_no_task;
2399
2400 ret = -ESRCH;
2401 task = get_proc_task(file->f_dentry->d_inode);
2402 if (!task)
2403 goto out_no_task;
2404
2405 ret = end - buffer;
2406 mm = get_task_mm(task);
2407 if (!mm)
2408 goto out_no_mm;
2409
2410 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2411 if (val & mask)
2412 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2413 else
2414 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2415 }
2416
2417 mmput(mm);
2418 out_no_mm:
2419 put_task_struct(task);
2420 out_no_task:
2421 return ret;
2422 }
2423
2424 static const struct file_operations proc_coredump_filter_operations = {
2425 .read = proc_coredump_filter_read,
2426 .write = proc_coredump_filter_write,
2427 .llseek = generic_file_llseek,
2428 };
2429 #endif
2430
2431 /*
2432 * /proc/self:
2433 */
2434 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2435 int buflen)
2436 {
2437 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2438 pid_t tgid = task_tgid_nr_ns(current, ns);
2439 char tmp[PROC_NUMBUF];
2440 if (!tgid)
2441 return -ENOENT;
2442 sprintf(tmp, "%d", tgid);
2443 return vfs_readlink(dentry,buffer,buflen,tmp);
2444 }
2445
2446 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2447 {
2448 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2449 pid_t tgid = task_tgid_nr_ns(current, ns);
2450 char *name = ERR_PTR(-ENOENT);
2451 if (tgid) {
2452 name = __getname();
2453 if (!name)
2454 name = ERR_PTR(-ENOMEM);
2455 else
2456 sprintf(name, "%d", tgid);
2457 }
2458 nd_set_link(nd, name);
2459 return NULL;
2460 }
2461
2462 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2463 void *cookie)
2464 {
2465 char *s = nd_get_link(nd);
2466 if (!IS_ERR(s))
2467 __putname(s);
2468 }
2469
2470 static const struct inode_operations proc_self_inode_operations = {
2471 .readlink = proc_self_readlink,
2472 .follow_link = proc_self_follow_link,
2473 .put_link = proc_self_put_link,
2474 };
2475
2476 /*
2477 * proc base
2478 *
2479 * These are the directory entries in the root directory of /proc
2480 * that properly belong to the /proc filesystem, as they describe
2481 * describe something that is process related.
2482 */
2483 static const struct pid_entry proc_base_stuff[] = {
2484 NOD("self", S_IFLNK|S_IRWXUGO,
2485 &proc_self_inode_operations, NULL, {}),
2486 };
2487
2488 /*
2489 * Exceptional case: normally we are not allowed to unhash a busy
2490 * directory. In this case, however, we can do it - no aliasing problems
2491 * due to the way we treat inodes.
2492 */
2493 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2494 {
2495 struct inode *inode = dentry->d_inode;
2496 struct task_struct *task = get_proc_task(inode);
2497 if (task) {
2498 put_task_struct(task);
2499 return 1;
2500 }
2501 d_drop(dentry);
2502 return 0;
2503 }
2504
2505 static const struct dentry_operations proc_base_dentry_operations =
2506 {
2507 .d_revalidate = proc_base_revalidate,
2508 .d_delete = pid_delete_dentry,
2509 };
2510
2511 static struct dentry *proc_base_instantiate(struct inode *dir,
2512 struct dentry *dentry, struct task_struct *task, const void *ptr)
2513 {
2514 const struct pid_entry *p = ptr;
2515 struct inode *inode;
2516 struct proc_inode *ei;
2517 struct dentry *error;
2518
2519 /* Allocate the inode */
2520 error = ERR_PTR(-ENOMEM);
2521 inode = new_inode(dir->i_sb);
2522 if (!inode)
2523 goto out;
2524
2525 /* Initialize the inode */
2526 ei = PROC_I(inode);
2527 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2528
2529 /*
2530 * grab the reference to the task.
2531 */
2532 ei->pid = get_task_pid(task, PIDTYPE_PID);
2533 if (!ei->pid)
2534 goto out_iput;
2535
2536 inode->i_mode = p->mode;
2537 if (S_ISDIR(inode->i_mode))
2538 inode->i_nlink = 2;
2539 if (S_ISLNK(inode->i_mode))
2540 inode->i_size = 64;
2541 if (p->iop)
2542 inode->i_op = p->iop;
2543 if (p->fop)
2544 inode->i_fop = p->fop;
2545 ei->op = p->op;
2546 dentry->d_op = &proc_base_dentry_operations;
2547 d_add(dentry, inode);
2548 error = NULL;
2549 out:
2550 return error;
2551 out_iput:
2552 iput(inode);
2553 goto out;
2554 }
2555
2556 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2557 {
2558 struct dentry *error;
2559 struct task_struct *task = get_proc_task(dir);
2560 const struct pid_entry *p, *last;
2561
2562 error = ERR_PTR(-ENOENT);
2563
2564 if (!task)
2565 goto out_no_task;
2566
2567 /* Lookup the directory entry */
2568 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2569 for (p = proc_base_stuff; p <= last; p++) {
2570 if (p->len != dentry->d_name.len)
2571 continue;
2572 if (!memcmp(dentry->d_name.name, p->name, p->len))
2573 break;
2574 }
2575 if (p > last)
2576 goto out;
2577
2578 error = proc_base_instantiate(dir, dentry, task, p);
2579
2580 out:
2581 put_task_struct(task);
2582 out_no_task:
2583 return error;
2584 }
2585
2586 static int proc_base_fill_cache(struct file *filp, void *dirent,
2587 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2588 {
2589 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2590 proc_base_instantiate, task, p);
2591 }
2592
2593 #ifdef CONFIG_TASK_IO_ACCOUNTING
2594 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2595 {
2596 struct task_io_accounting acct = task->ioac;
2597 unsigned long flags;
2598
2599 if (whole && lock_task_sighand(task, &flags)) {
2600 struct task_struct *t = task;
2601
2602 task_io_accounting_add(&acct, &task->signal->ioac);
2603 while_each_thread(task, t)
2604 task_io_accounting_add(&acct, &t->ioac);
2605
2606 unlock_task_sighand(task, &flags);
2607 }
2608 return sprintf(buffer,
2609 "rchar: %llu\n"
2610 "wchar: %llu\n"
2611 "syscr: %llu\n"
2612 "syscw: %llu\n"
2613 "read_bytes: %llu\n"
2614 "write_bytes: %llu\n"
2615 "cancelled_write_bytes: %llu\n",
2616 (unsigned long long)acct.rchar,
2617 (unsigned long long)acct.wchar,
2618 (unsigned long long)acct.syscr,
2619 (unsigned long long)acct.syscw,
2620 (unsigned long long)acct.read_bytes,
2621 (unsigned long long)acct.write_bytes,
2622 (unsigned long long)acct.cancelled_write_bytes);
2623 }
2624
2625 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2626 {
2627 return do_io_accounting(task, buffer, 0);
2628 }
2629
2630 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2631 {
2632 return do_io_accounting(task, buffer, 1);
2633 }
2634 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2635
2636 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2637 struct pid *pid, struct task_struct *task)
2638 {
2639 seq_printf(m, "%08x\n", task->personality);
2640 return 0;
2641 }
2642
2643 /*
2644 * Thread groups
2645 */
2646 static const struct file_operations proc_task_operations;
2647 static const struct inode_operations proc_task_inode_operations;
2648
2649 static const struct pid_entry tgid_base_stuff[] = {
2650 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2651 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2652 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2653 #ifdef CONFIG_NET
2654 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2655 #endif
2656 REG("environ", S_IRUSR, proc_environ_operations),
2657 INF("auxv", S_IRUSR, proc_pid_auxv),
2658 ONE("status", S_IRUGO, proc_pid_status),
2659 ONE("personality", S_IRUSR, proc_pid_personality),
2660 INF("limits", S_IRUSR, proc_pid_limits),
2661 #ifdef CONFIG_SCHED_DEBUG
2662 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2663 #endif
2664 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2665 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2666 INF("syscall", S_IRUSR, proc_pid_syscall),
2667 #endif
2668 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2669 ONE("stat", S_IRUGO, proc_tgid_stat),
2670 ONE("statm", S_IRUGO, proc_pid_statm),
2671 REG("maps", S_IRUGO, proc_maps_operations),
2672 #ifdef CONFIG_NUMA
2673 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2674 #endif
2675 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2676 LNK("cwd", proc_cwd_link),
2677 LNK("root", proc_root_link),
2678 LNK("exe", proc_exe_link),
2679 REG("mounts", S_IRUGO, proc_mounts_operations),
2680 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2681 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2682 #ifdef CONFIG_PROC_PAGE_MONITOR
2683 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2684 REG("smaps", S_IRUGO, proc_smaps_operations),
2685 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2686 #endif
2687 #ifdef CONFIG_SECURITY
2688 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2689 #endif
2690 #ifdef CONFIG_KALLSYMS
2691 INF("wchan", S_IRUGO, proc_pid_wchan),
2692 #endif
2693 #ifdef CONFIG_STACKTRACE
2694 ONE("stack", S_IRUSR, proc_pid_stack),
2695 #endif
2696 #ifdef CONFIG_SCHEDSTATS
2697 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2698 #endif
2699 #ifdef CONFIG_LATENCYTOP
2700 REG("latency", S_IRUGO, proc_lstats_operations),
2701 #endif
2702 #ifdef CONFIG_PROC_PID_CPUSET
2703 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2704 #endif
2705 #ifdef CONFIG_CGROUPS
2706 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2707 #endif
2708 INF("oom_score", S_IRUGO, proc_oom_score),
2709 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2710 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2711 #ifdef CONFIG_AUDITSYSCALL
2712 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2713 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2714 #endif
2715 #ifdef CONFIG_FAULT_INJECTION
2716 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2717 #endif
2718 #ifdef CONFIG_ELF_CORE
2719 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2720 #endif
2721 #ifdef CONFIG_TASK_IO_ACCOUNTING
2722 INF("io", S_IRUGO, proc_tgid_io_accounting),
2723 #endif
2724 };
2725
2726 static int proc_tgid_base_readdir(struct file * filp,
2727 void * dirent, filldir_t filldir)
2728 {
2729 return proc_pident_readdir(filp,dirent,filldir,
2730 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2731 }
2732
2733 static const struct file_operations proc_tgid_base_operations = {
2734 .read = generic_read_dir,
2735 .readdir = proc_tgid_base_readdir,
2736 };
2737
2738 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2739 return proc_pident_lookup(dir, dentry,
2740 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2741 }
2742
2743 static const struct inode_operations proc_tgid_base_inode_operations = {
2744 .lookup = proc_tgid_base_lookup,
2745 .getattr = pid_getattr,
2746 .setattr = proc_setattr,
2747 };
2748
2749 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2750 {
2751 struct dentry *dentry, *leader, *dir;
2752 char buf[PROC_NUMBUF];
2753 struct qstr name;
2754
2755 name.name = buf;
2756 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2757 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2758 if (dentry) {
2759 shrink_dcache_parent(dentry);
2760 d_drop(dentry);
2761 dput(dentry);
2762 }
2763
2764 name.name = buf;
2765 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2766 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2767 if (!leader)
2768 goto out;
2769
2770 name.name = "task";
2771 name.len = strlen(name.name);
2772 dir = d_hash_and_lookup(leader, &name);
2773 if (!dir)
2774 goto out_put_leader;
2775
2776 name.name = buf;
2777 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2778 dentry = d_hash_and_lookup(dir, &name);
2779 if (dentry) {
2780 shrink_dcache_parent(dentry);
2781 d_drop(dentry);
2782 dput(dentry);
2783 }
2784
2785 dput(dir);
2786 out_put_leader:
2787 dput(leader);
2788 out:
2789 return;
2790 }
2791
2792 /**
2793 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2794 * @task: task that should be flushed.
2795 *
2796 * When flushing dentries from proc, one needs to flush them from global
2797 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2798 * in. This call is supposed to do all of this job.
2799 *
2800 * Looks in the dcache for
2801 * /proc/@pid
2802 * /proc/@tgid/task/@pid
2803 * if either directory is present flushes it and all of it'ts children
2804 * from the dcache.
2805 *
2806 * It is safe and reasonable to cache /proc entries for a task until
2807 * that task exits. After that they just clog up the dcache with
2808 * useless entries, possibly causing useful dcache entries to be
2809 * flushed instead. This routine is proved to flush those useless
2810 * dcache entries at process exit time.
2811 *
2812 * NOTE: This routine is just an optimization so it does not guarantee
2813 * that no dcache entries will exist at process exit time it
2814 * just makes it very unlikely that any will persist.
2815 */
2816
2817 void proc_flush_task(struct task_struct *task)
2818 {
2819 int i;
2820 struct pid *pid, *tgid;
2821 struct upid *upid;
2822
2823 pid = task_pid(task);
2824 tgid = task_tgid(task);
2825
2826 for (i = 0; i <= pid->level; i++) {
2827 upid = &pid->numbers[i];
2828 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2829 tgid->numbers[i].nr);
2830 }
2831
2832 upid = &pid->numbers[pid->level];
2833 if (upid->nr == 1)
2834 pid_ns_release_proc(upid->ns);
2835 }
2836
2837 static struct dentry *proc_pid_instantiate(struct inode *dir,
2838 struct dentry * dentry,
2839 struct task_struct *task, const void *ptr)
2840 {
2841 struct dentry *error = ERR_PTR(-ENOENT);
2842 struct inode *inode;
2843
2844 inode = proc_pid_make_inode(dir->i_sb, task);
2845 if (!inode)
2846 goto out;
2847
2848 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2849 inode->i_op = &proc_tgid_base_inode_operations;
2850 inode->i_fop = &proc_tgid_base_operations;
2851 inode->i_flags|=S_IMMUTABLE;
2852
2853 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2854 ARRAY_SIZE(tgid_base_stuff));
2855
2856 dentry->d_op = &pid_dentry_operations;
2857
2858 d_add(dentry, inode);
2859 /* Close the race of the process dying before we return the dentry */
2860 if (pid_revalidate(dentry, NULL))
2861 error = NULL;
2862 out:
2863 return error;
2864 }
2865
2866 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2867 {
2868 struct dentry *result;
2869 struct task_struct *task;
2870 unsigned tgid;
2871 struct pid_namespace *ns;
2872
2873 result = proc_base_lookup(dir, dentry);
2874 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2875 goto out;
2876
2877 tgid = name_to_int(dentry);
2878 if (tgid == ~0U)
2879 goto out;
2880
2881 ns = dentry->d_sb->s_fs_info;
2882 rcu_read_lock();
2883 task = find_task_by_pid_ns(tgid, ns);
2884 if (task)
2885 get_task_struct(task);
2886 rcu_read_unlock();
2887 if (!task)
2888 goto out;
2889
2890 result = proc_pid_instantiate(dir, dentry, task, NULL);
2891 put_task_struct(task);
2892 out:
2893 return result;
2894 }
2895
2896 /*
2897 * Find the first task with tgid >= tgid
2898 *
2899 */
2900 struct tgid_iter {
2901 unsigned int tgid;
2902 struct task_struct *task;
2903 };
2904 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2905 {
2906 struct pid *pid;
2907
2908 if (iter.task)
2909 put_task_struct(iter.task);
2910 rcu_read_lock();
2911 retry:
2912 iter.task = NULL;
2913 pid = find_ge_pid(iter.tgid, ns);
2914 if (pid) {
2915 iter.tgid = pid_nr_ns(pid, ns);
2916 iter.task = pid_task(pid, PIDTYPE_PID);
2917 /* What we to know is if the pid we have find is the
2918 * pid of a thread_group_leader. Testing for task
2919 * being a thread_group_leader is the obvious thing
2920 * todo but there is a window when it fails, due to
2921 * the pid transfer logic in de_thread.
2922 *
2923 * So we perform the straight forward test of seeing
2924 * if the pid we have found is the pid of a thread
2925 * group leader, and don't worry if the task we have
2926 * found doesn't happen to be a thread group leader.
2927 * As we don't care in the case of readdir.
2928 */
2929 if (!iter.task || !has_group_leader_pid(iter.task)) {
2930 iter.tgid += 1;
2931 goto retry;
2932 }
2933 get_task_struct(iter.task);
2934 }
2935 rcu_read_unlock();
2936 return iter;
2937 }
2938
2939 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2940
2941 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2942 struct tgid_iter iter)
2943 {
2944 char name[PROC_NUMBUF];
2945 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2946 return proc_fill_cache(filp, dirent, filldir, name, len,
2947 proc_pid_instantiate, iter.task, NULL);
2948 }
2949
2950 /* for the /proc/ directory itself, after non-process stuff has been done */
2951 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2952 {
2953 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2954 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2955 struct tgid_iter iter;
2956 struct pid_namespace *ns;
2957
2958 if (!reaper)
2959 goto out_no_task;
2960
2961 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2962 const struct pid_entry *p = &proc_base_stuff[nr];
2963 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2964 goto out;
2965 }
2966
2967 ns = filp->f_dentry->d_sb->s_fs_info;
2968 iter.task = NULL;
2969 iter.tgid = filp->f_pos - TGID_OFFSET;
2970 for (iter = next_tgid(ns, iter);
2971 iter.task;
2972 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2973 filp->f_pos = iter.tgid + TGID_OFFSET;
2974 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2975 put_task_struct(iter.task);
2976 goto out;
2977 }
2978 }
2979 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2980 out:
2981 put_task_struct(reaper);
2982 out_no_task:
2983 return 0;
2984 }
2985
2986 /*
2987 * Tasks
2988 */
2989 static const struct pid_entry tid_base_stuff[] = {
2990 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2991 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2992 REG("environ", S_IRUSR, proc_environ_operations),
2993 INF("auxv", S_IRUSR, proc_pid_auxv),
2994 ONE("status", S_IRUGO, proc_pid_status),
2995 ONE("personality", S_IRUSR, proc_pid_personality),
2996 INF("limits", S_IRUSR, proc_pid_limits),
2997 #ifdef CONFIG_SCHED_DEBUG
2998 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2999 #endif
3000 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3001 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3002 INF("syscall", S_IRUSR, proc_pid_syscall),
3003 #endif
3004 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3005 ONE("stat", S_IRUGO, proc_tid_stat),
3006 ONE("statm", S_IRUGO, proc_pid_statm),
3007 REG("maps", S_IRUGO, proc_maps_operations),
3008 #ifdef CONFIG_NUMA
3009 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3010 #endif
3011 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3012 LNK("cwd", proc_cwd_link),
3013 LNK("root", proc_root_link),
3014 LNK("exe", proc_exe_link),
3015 REG("mounts", S_IRUGO, proc_mounts_operations),
3016 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3017 #ifdef CONFIG_PROC_PAGE_MONITOR
3018 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3019 REG("smaps", S_IRUGO, proc_smaps_operations),
3020 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3021 #endif
3022 #ifdef CONFIG_SECURITY
3023 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3024 #endif
3025 #ifdef CONFIG_KALLSYMS
3026 INF("wchan", S_IRUGO, proc_pid_wchan),
3027 #endif
3028 #ifdef CONFIG_STACKTRACE
3029 ONE("stack", S_IRUSR, proc_pid_stack),
3030 #endif
3031 #ifdef CONFIG_SCHEDSTATS
3032 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3033 #endif
3034 #ifdef CONFIG_LATENCYTOP
3035 REG("latency", S_IRUGO, proc_lstats_operations),
3036 #endif
3037 #ifdef CONFIG_PROC_PID_CPUSET
3038 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3039 #endif
3040 #ifdef CONFIG_CGROUPS
3041 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3042 #endif
3043 INF("oom_score", S_IRUGO, proc_oom_score),
3044 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3045 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3046 #ifdef CONFIG_AUDITSYSCALL
3047 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3048 REG("sessionid", S_IRUSR, proc_sessionid_operations),
3049 #endif
3050 #ifdef CONFIG_FAULT_INJECTION
3051 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3052 #endif
3053 #ifdef CONFIG_TASK_IO_ACCOUNTING
3054 INF("io", S_IRUGO, proc_tid_io_accounting),
3055 #endif
3056 };
3057
3058 static int proc_tid_base_readdir(struct file * filp,
3059 void * dirent, filldir_t filldir)
3060 {
3061 return proc_pident_readdir(filp,dirent,filldir,
3062 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3063 }
3064
3065 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3066 return proc_pident_lookup(dir, dentry,
3067 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3068 }
3069
3070 static const struct file_operations proc_tid_base_operations = {
3071 .read = generic_read_dir,
3072 .readdir = proc_tid_base_readdir,
3073 };
3074
3075 static const struct inode_operations proc_tid_base_inode_operations = {
3076 .lookup = proc_tid_base_lookup,
3077 .getattr = pid_getattr,
3078 .setattr = proc_setattr,
3079 };
3080
3081 static struct dentry *proc_task_instantiate(struct inode *dir,
3082 struct dentry *dentry, struct task_struct *task, const void *ptr)
3083 {
3084 struct dentry *error = ERR_PTR(-ENOENT);
3085 struct inode *inode;
3086 inode = proc_pid_make_inode(dir->i_sb, task);
3087
3088 if (!inode)
3089 goto out;
3090 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3091 inode->i_op = &proc_tid_base_inode_operations;
3092 inode->i_fop = &proc_tid_base_operations;
3093 inode->i_flags|=S_IMMUTABLE;
3094
3095 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3096 ARRAY_SIZE(tid_base_stuff));
3097
3098 dentry->d_op = &pid_dentry_operations;
3099
3100 d_add(dentry, inode);
3101 /* Close the race of the process dying before we return the dentry */
3102 if (pid_revalidate(dentry, NULL))
3103 error = NULL;
3104 out:
3105 return error;
3106 }
3107
3108 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3109 {
3110 struct dentry *result = ERR_PTR(-ENOENT);
3111 struct task_struct *task;
3112 struct task_struct *leader = get_proc_task(dir);
3113 unsigned tid;
3114 struct pid_namespace *ns;
3115
3116 if (!leader)
3117 goto out_no_task;
3118
3119 tid = name_to_int(dentry);
3120 if (tid == ~0U)
3121 goto out;
3122
3123 ns = dentry->d_sb->s_fs_info;
3124 rcu_read_lock();
3125 task = find_task_by_pid_ns(tid, ns);
3126 if (task)
3127 get_task_struct(task);
3128 rcu_read_unlock();
3129 if (!task)
3130 goto out;
3131 if (!same_thread_group(leader, task))
3132 goto out_drop_task;
3133
3134 result = proc_task_instantiate(dir, dentry, task, NULL);
3135 out_drop_task:
3136 put_task_struct(task);
3137 out:
3138 put_task_struct(leader);
3139 out_no_task:
3140 return result;
3141 }
3142
3143 /*
3144 * Find the first tid of a thread group to return to user space.
3145 *
3146 * Usually this is just the thread group leader, but if the users
3147 * buffer was too small or there was a seek into the middle of the
3148 * directory we have more work todo.
3149 *
3150 * In the case of a short read we start with find_task_by_pid.
3151 *
3152 * In the case of a seek we start with the leader and walk nr
3153 * threads past it.
3154 */
3155 static struct task_struct *first_tid(struct task_struct *leader,
3156 int tid, int nr, struct pid_namespace *ns)
3157 {
3158 struct task_struct *pos;
3159
3160 rcu_read_lock();
3161 /* Attempt to start with the pid of a thread */
3162 if (tid && (nr > 0)) {
3163 pos = find_task_by_pid_ns(tid, ns);
3164 if (pos && (pos->group_leader == leader))
3165 goto found;
3166 }
3167
3168 /* If nr exceeds the number of threads there is nothing todo */
3169 pos = NULL;
3170 if (nr && nr >= get_nr_threads(leader))
3171 goto out;
3172
3173 /* If we haven't found our starting place yet start
3174 * with the leader and walk nr threads forward.
3175 */
3176 for (pos = leader; nr > 0; --nr) {
3177 pos = next_thread(pos);
3178 if (pos == leader) {
3179 pos = NULL;
3180 goto out;
3181 }
3182 }
3183 found:
3184 get_task_struct(pos);
3185 out:
3186 rcu_read_unlock();
3187 return pos;
3188 }
3189
3190 /*
3191 * Find the next thread in the thread list.
3192 * Return NULL if there is an error or no next thread.
3193 *
3194 * The reference to the input task_struct is released.
3195 */
3196 static struct task_struct *next_tid(struct task_struct *start)
3197 {
3198 struct task_struct *pos = NULL;
3199 rcu_read_lock();
3200 if (pid_alive(start)) {
3201 pos = next_thread(start);
3202 if (thread_group_leader(pos))
3203 pos = NULL;
3204 else
3205 get_task_struct(pos);
3206 }
3207 rcu_read_unlock();
3208 put_task_struct(start);
3209 return pos;
3210 }
3211
3212 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3213 struct task_struct *task, int tid)
3214 {
3215 char name[PROC_NUMBUF];
3216 int len = snprintf(name, sizeof(name), "%d", tid);
3217 return proc_fill_cache(filp, dirent, filldir, name, len,
3218 proc_task_instantiate, task, NULL);
3219 }
3220
3221 /* for the /proc/TGID/task/ directories */
3222 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3223 {
3224 struct dentry *dentry = filp->f_path.dentry;
3225 struct inode *inode = dentry->d_inode;
3226 struct task_struct *leader = NULL;
3227 struct task_struct *task;
3228 int retval = -ENOENT;
3229 ino_t ino;
3230 int tid;
3231 struct pid_namespace *ns;
3232
3233 task = get_proc_task(inode);
3234 if (!task)
3235 goto out_no_task;
3236 rcu_read_lock();
3237 if (pid_alive(task)) {
3238 leader = task->group_leader;
3239 get_task_struct(leader);
3240 }
3241 rcu_read_unlock();
3242 put_task_struct(task);
3243 if (!leader)
3244 goto out_no_task;
3245 retval = 0;
3246
3247 switch ((unsigned long)filp->f_pos) {
3248 case 0:
3249 ino = inode->i_ino;
3250 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3251 goto out;
3252 filp->f_pos++;
3253 /* fall through */
3254 case 1:
3255 ino = parent_ino(dentry);
3256 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3257 goto out;
3258 filp->f_pos++;
3259 /* fall through */
3260 }
3261
3262 /* f_version caches the tgid value that the last readdir call couldn't
3263 * return. lseek aka telldir automagically resets f_version to 0.
3264 */
3265 ns = filp->f_dentry->d_sb->s_fs_info;
3266 tid = (int)filp->f_version;
3267 filp->f_version = 0;
3268 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3269 task;
3270 task = next_tid(task), filp->f_pos++) {
3271 tid = task_pid_nr_ns(task, ns);
3272 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3273 /* returning this tgid failed, save it as the first
3274 * pid for the next readir call */
3275 filp->f_version = (u64)tid;
3276 put_task_struct(task);
3277 break;
3278 }
3279 }
3280 out:
3281 put_task_struct(leader);
3282 out_no_task:
3283 return retval;
3284 }
3285
3286 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3287 {
3288 struct inode *inode = dentry->d_inode;
3289 struct task_struct *p = get_proc_task(inode);
3290 generic_fillattr(inode, stat);
3291
3292 if (p) {
3293 stat->nlink += get_nr_threads(p);
3294 put_task_struct(p);
3295 }
3296
3297 return 0;
3298 }
3299
3300 static const struct inode_operations proc_task_inode_operations = {
3301 .lookup = proc_task_lookup,
3302 .getattr = proc_task_getattr,
3303 .setattr = proc_setattr,
3304 };
3305
3306 static const struct file_operations proc_task_operations = {
3307 .read = generic_read_dir,
3308 .readdir = proc_task_readdir,
3309 };
This page took 0.142191 seconds and 6 git commands to generate.