Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96
97 /* NOTE:
98 * Implementing inode permission operations in /proc is almost
99 * certainly an error. Permission checks need to happen during
100 * each system call not at open time. The reason is that most of
101 * what we wish to check for permissions in /proc varies at runtime.
102 *
103 * The classic example of a problem is opening file descriptors
104 * in /proc for a task before it execs a suid executable.
105 */
106
107 struct pid_entry {
108 const char *name;
109 int len;
110 umode_t mode;
111 const struct inode_operations *iop;
112 const struct file_operations *fop;
113 union proc_op op;
114 };
115
116 #define NOD(NAME, MODE, IOP, FOP, OP) { \
117 .name = (NAME), \
118 .len = sizeof(NAME) - 1, \
119 .mode = MODE, \
120 .iop = IOP, \
121 .fop = FOP, \
122 .op = OP, \
123 }
124
125 #define DIR(NAME, MODE, iops, fops) \
126 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link) \
128 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
129 &proc_pid_link_inode_operations, NULL, \
130 { .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops) \
132 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define ONE(NAME, MODE, show) \
134 NOD(NAME, (S_IFREG|(MODE)), \
135 NULL, &proc_single_file_operations, \
136 { .proc_show = show } )
137
138 /*
139 * Count the number of hardlinks for the pid_entry table, excluding the .
140 * and .. links.
141 */
142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143 unsigned int n)
144 {
145 unsigned int i;
146 unsigned int count;
147
148 count = 0;
149 for (i = 0; i < n; ++i) {
150 if (S_ISDIR(entries[i].mode))
151 ++count;
152 }
153
154 return count;
155 }
156
157 static int get_task_root(struct task_struct *task, struct path *root)
158 {
159 int result = -ENOENT;
160
161 task_lock(task);
162 if (task->fs) {
163 get_fs_root(task->fs, root);
164 result = 0;
165 }
166 task_unlock(task);
167 return result;
168 }
169
170 static int proc_cwd_link(struct dentry *dentry, struct path *path)
171 {
172 struct task_struct *task = get_proc_task(d_inode(dentry));
173 int result = -ENOENT;
174
175 if (task) {
176 task_lock(task);
177 if (task->fs) {
178 get_fs_pwd(task->fs, path);
179 result = 0;
180 }
181 task_unlock(task);
182 put_task_struct(task);
183 }
184 return result;
185 }
186
187 static int proc_root_link(struct dentry *dentry, struct path *path)
188 {
189 struct task_struct *task = get_proc_task(d_inode(dentry));
190 int result = -ENOENT;
191
192 if (task) {
193 result = get_task_root(task, path);
194 put_task_struct(task);
195 }
196 return result;
197 }
198
199 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
200 size_t _count, loff_t *pos)
201 {
202 struct task_struct *tsk;
203 struct mm_struct *mm;
204 char *page;
205 unsigned long count = _count;
206 unsigned long arg_start, arg_end, env_start, env_end;
207 unsigned long len1, len2, len;
208 unsigned long p;
209 char c;
210 ssize_t rv;
211
212 BUG_ON(*pos < 0);
213
214 tsk = get_proc_task(file_inode(file));
215 if (!tsk)
216 return -ESRCH;
217 mm = get_task_mm(tsk);
218 put_task_struct(tsk);
219 if (!mm)
220 return 0;
221 /* Check if process spawned far enough to have cmdline. */
222 if (!mm->env_end) {
223 rv = 0;
224 goto out_mmput;
225 }
226
227 page = (char *)__get_free_page(GFP_TEMPORARY);
228 if (!page) {
229 rv = -ENOMEM;
230 goto out_mmput;
231 }
232
233 down_read(&mm->mmap_sem);
234 arg_start = mm->arg_start;
235 arg_end = mm->arg_end;
236 env_start = mm->env_start;
237 env_end = mm->env_end;
238 up_read(&mm->mmap_sem);
239
240 BUG_ON(arg_start > arg_end);
241 BUG_ON(env_start > env_end);
242
243 len1 = arg_end - arg_start;
244 len2 = env_end - env_start;
245
246 /* Empty ARGV. */
247 if (len1 == 0) {
248 rv = 0;
249 goto out_free_page;
250 }
251 /*
252 * Inherently racy -- command line shares address space
253 * with code and data.
254 */
255 rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
256 if (rv <= 0)
257 goto out_free_page;
258
259 rv = 0;
260
261 if (c == '\0') {
262 /* Command line (set of strings) occupies whole ARGV. */
263 if (len1 <= *pos)
264 goto out_free_page;
265
266 p = arg_start + *pos;
267 len = len1 - *pos;
268 while (count > 0 && len > 0) {
269 unsigned int _count;
270 int nr_read;
271
272 _count = min3(count, len, PAGE_SIZE);
273 nr_read = access_remote_vm(mm, p, page, _count, 0);
274 if (nr_read < 0)
275 rv = nr_read;
276 if (nr_read <= 0)
277 goto out_free_page;
278
279 if (copy_to_user(buf, page, nr_read)) {
280 rv = -EFAULT;
281 goto out_free_page;
282 }
283
284 p += nr_read;
285 len -= nr_read;
286 buf += nr_read;
287 count -= nr_read;
288 rv += nr_read;
289 }
290 } else {
291 /*
292 * Command line (1 string) occupies ARGV and maybe
293 * extends into ENVP.
294 */
295 if (len1 + len2 <= *pos)
296 goto skip_argv_envp;
297 if (len1 <= *pos)
298 goto skip_argv;
299
300 p = arg_start + *pos;
301 len = len1 - *pos;
302 while (count > 0 && len > 0) {
303 unsigned int _count, l;
304 int nr_read;
305 bool final;
306
307 _count = min3(count, len, PAGE_SIZE);
308 nr_read = access_remote_vm(mm, p, page, _count, 0);
309 if (nr_read < 0)
310 rv = nr_read;
311 if (nr_read <= 0)
312 goto out_free_page;
313
314 /*
315 * Command line can be shorter than whole ARGV
316 * even if last "marker" byte says it is not.
317 */
318 final = false;
319 l = strnlen(page, nr_read);
320 if (l < nr_read) {
321 nr_read = l;
322 final = true;
323 }
324
325 if (copy_to_user(buf, page, nr_read)) {
326 rv = -EFAULT;
327 goto out_free_page;
328 }
329
330 p += nr_read;
331 len -= nr_read;
332 buf += nr_read;
333 count -= nr_read;
334 rv += nr_read;
335
336 if (final)
337 goto out_free_page;
338 }
339 skip_argv:
340 /*
341 * Command line (1 string) occupies ARGV and
342 * extends into ENVP.
343 */
344 if (len1 <= *pos) {
345 p = env_start + *pos - len1;
346 len = len1 + len2 - *pos;
347 } else {
348 p = env_start;
349 len = len2;
350 }
351 while (count > 0 && len > 0) {
352 unsigned int _count, l;
353 int nr_read;
354 bool final;
355
356 _count = min3(count, len, PAGE_SIZE);
357 nr_read = access_remote_vm(mm, p, page, _count, 0);
358 if (nr_read < 0)
359 rv = nr_read;
360 if (nr_read <= 0)
361 goto out_free_page;
362
363 /* Find EOS. */
364 final = false;
365 l = strnlen(page, nr_read);
366 if (l < nr_read) {
367 nr_read = l;
368 final = true;
369 }
370
371 if (copy_to_user(buf, page, nr_read)) {
372 rv = -EFAULT;
373 goto out_free_page;
374 }
375
376 p += nr_read;
377 len -= nr_read;
378 buf += nr_read;
379 count -= nr_read;
380 rv += nr_read;
381
382 if (final)
383 goto out_free_page;
384 }
385 skip_argv_envp:
386 ;
387 }
388
389 out_free_page:
390 free_page((unsigned long)page);
391 out_mmput:
392 mmput(mm);
393 if (rv > 0)
394 *pos += rv;
395 return rv;
396 }
397
398 static const struct file_operations proc_pid_cmdline_ops = {
399 .read = proc_pid_cmdline_read,
400 .llseek = generic_file_llseek,
401 };
402
403 static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
404 struct pid *pid, struct task_struct *task)
405 {
406 struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
407 if (mm && !IS_ERR(mm)) {
408 unsigned int nwords = 0;
409 do {
410 nwords += 2;
411 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
412 seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
413 mmput(mm);
414 return 0;
415 } else
416 return PTR_ERR(mm);
417 }
418
419
420 #ifdef CONFIG_KALLSYMS
421 /*
422 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
423 * Returns the resolved symbol. If that fails, simply return the address.
424 */
425 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
426 struct pid *pid, struct task_struct *task)
427 {
428 unsigned long wchan;
429 char symname[KSYM_NAME_LEN];
430
431 wchan = get_wchan(task);
432
433 if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
434 && !lookup_symbol_name(wchan, symname))
435 seq_printf(m, "%s", symname);
436 else
437 seq_putc(m, '0');
438
439 return 0;
440 }
441 #endif /* CONFIG_KALLSYMS */
442
443 static int lock_trace(struct task_struct *task)
444 {
445 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
446 if (err)
447 return err;
448 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
449 mutex_unlock(&task->signal->cred_guard_mutex);
450 return -EPERM;
451 }
452 return 0;
453 }
454
455 static void unlock_trace(struct task_struct *task)
456 {
457 mutex_unlock(&task->signal->cred_guard_mutex);
458 }
459
460 #ifdef CONFIG_STACKTRACE
461
462 #define MAX_STACK_TRACE_DEPTH 64
463
464 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
465 struct pid *pid, struct task_struct *task)
466 {
467 struct stack_trace trace;
468 unsigned long *entries;
469 int err;
470 int i;
471
472 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
473 if (!entries)
474 return -ENOMEM;
475
476 trace.nr_entries = 0;
477 trace.max_entries = MAX_STACK_TRACE_DEPTH;
478 trace.entries = entries;
479 trace.skip = 0;
480
481 err = lock_trace(task);
482 if (!err) {
483 save_stack_trace_tsk(task, &trace);
484
485 for (i = 0; i < trace.nr_entries; i++) {
486 seq_printf(m, "[<%pK>] %pS\n",
487 (void *)entries[i], (void *)entries[i]);
488 }
489 unlock_trace(task);
490 }
491 kfree(entries);
492
493 return err;
494 }
495 #endif
496
497 #ifdef CONFIG_SCHED_INFO
498 /*
499 * Provides /proc/PID/schedstat
500 */
501 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
502 struct pid *pid, struct task_struct *task)
503 {
504 if (unlikely(!sched_info_on()))
505 seq_printf(m, "0 0 0\n");
506 else
507 seq_printf(m, "%llu %llu %lu\n",
508 (unsigned long long)task->se.sum_exec_runtime,
509 (unsigned long long)task->sched_info.run_delay,
510 task->sched_info.pcount);
511
512 return 0;
513 }
514 #endif
515
516 #ifdef CONFIG_LATENCYTOP
517 static int lstats_show_proc(struct seq_file *m, void *v)
518 {
519 int i;
520 struct inode *inode = m->private;
521 struct task_struct *task = get_proc_task(inode);
522
523 if (!task)
524 return -ESRCH;
525 seq_puts(m, "Latency Top version : v0.1\n");
526 for (i = 0; i < 32; i++) {
527 struct latency_record *lr = &task->latency_record[i];
528 if (lr->backtrace[0]) {
529 int q;
530 seq_printf(m, "%i %li %li",
531 lr->count, lr->time, lr->max);
532 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
533 unsigned long bt = lr->backtrace[q];
534 if (!bt)
535 break;
536 if (bt == ULONG_MAX)
537 break;
538 seq_printf(m, " %ps", (void *)bt);
539 }
540 seq_putc(m, '\n');
541 }
542
543 }
544 put_task_struct(task);
545 return 0;
546 }
547
548 static int lstats_open(struct inode *inode, struct file *file)
549 {
550 return single_open(file, lstats_show_proc, inode);
551 }
552
553 static ssize_t lstats_write(struct file *file, const char __user *buf,
554 size_t count, loff_t *offs)
555 {
556 struct task_struct *task = get_proc_task(file_inode(file));
557
558 if (!task)
559 return -ESRCH;
560 clear_all_latency_tracing(task);
561 put_task_struct(task);
562
563 return count;
564 }
565
566 static const struct file_operations proc_lstats_operations = {
567 .open = lstats_open,
568 .read = seq_read,
569 .write = lstats_write,
570 .llseek = seq_lseek,
571 .release = single_release,
572 };
573
574 #endif
575
576 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
577 struct pid *pid, struct task_struct *task)
578 {
579 unsigned long totalpages = totalram_pages + total_swap_pages;
580 unsigned long points = 0;
581
582 read_lock(&tasklist_lock);
583 if (pid_alive(task))
584 points = oom_badness(task, NULL, NULL, totalpages) *
585 1000 / totalpages;
586 read_unlock(&tasklist_lock);
587 seq_printf(m, "%lu\n", points);
588
589 return 0;
590 }
591
592 struct limit_names {
593 const char *name;
594 const char *unit;
595 };
596
597 static const struct limit_names lnames[RLIM_NLIMITS] = {
598 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
599 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
600 [RLIMIT_DATA] = {"Max data size", "bytes"},
601 [RLIMIT_STACK] = {"Max stack size", "bytes"},
602 [RLIMIT_CORE] = {"Max core file size", "bytes"},
603 [RLIMIT_RSS] = {"Max resident set", "bytes"},
604 [RLIMIT_NPROC] = {"Max processes", "processes"},
605 [RLIMIT_NOFILE] = {"Max open files", "files"},
606 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
607 [RLIMIT_AS] = {"Max address space", "bytes"},
608 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
609 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
610 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
611 [RLIMIT_NICE] = {"Max nice priority", NULL},
612 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
613 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
614 };
615
616 /* Display limits for a process */
617 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
618 struct pid *pid, struct task_struct *task)
619 {
620 unsigned int i;
621 unsigned long flags;
622
623 struct rlimit rlim[RLIM_NLIMITS];
624
625 if (!lock_task_sighand(task, &flags))
626 return 0;
627 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
628 unlock_task_sighand(task, &flags);
629
630 /*
631 * print the file header
632 */
633 seq_printf(m, "%-25s %-20s %-20s %-10s\n",
634 "Limit", "Soft Limit", "Hard Limit", "Units");
635
636 for (i = 0; i < RLIM_NLIMITS; i++) {
637 if (rlim[i].rlim_cur == RLIM_INFINITY)
638 seq_printf(m, "%-25s %-20s ",
639 lnames[i].name, "unlimited");
640 else
641 seq_printf(m, "%-25s %-20lu ",
642 lnames[i].name, rlim[i].rlim_cur);
643
644 if (rlim[i].rlim_max == RLIM_INFINITY)
645 seq_printf(m, "%-20s ", "unlimited");
646 else
647 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
648
649 if (lnames[i].unit)
650 seq_printf(m, "%-10s\n", lnames[i].unit);
651 else
652 seq_putc(m, '\n');
653 }
654
655 return 0;
656 }
657
658 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
659 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
660 struct pid *pid, struct task_struct *task)
661 {
662 long nr;
663 unsigned long args[6], sp, pc;
664 int res;
665
666 res = lock_trace(task);
667 if (res)
668 return res;
669
670 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
671 seq_puts(m, "running\n");
672 else if (nr < 0)
673 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
674 else
675 seq_printf(m,
676 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
677 nr,
678 args[0], args[1], args[2], args[3], args[4], args[5],
679 sp, pc);
680 unlock_trace(task);
681
682 return 0;
683 }
684 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
685
686 /************************************************************************/
687 /* Here the fs part begins */
688 /************************************************************************/
689
690 /* permission checks */
691 static int proc_fd_access_allowed(struct inode *inode)
692 {
693 struct task_struct *task;
694 int allowed = 0;
695 /* Allow access to a task's file descriptors if it is us or we
696 * may use ptrace attach to the process and find out that
697 * information.
698 */
699 task = get_proc_task(inode);
700 if (task) {
701 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
702 put_task_struct(task);
703 }
704 return allowed;
705 }
706
707 int proc_setattr(struct dentry *dentry, struct iattr *attr)
708 {
709 int error;
710 struct inode *inode = d_inode(dentry);
711
712 if (attr->ia_valid & ATTR_MODE)
713 return -EPERM;
714
715 error = inode_change_ok(inode, attr);
716 if (error)
717 return error;
718
719 setattr_copy(inode, attr);
720 mark_inode_dirty(inode);
721 return 0;
722 }
723
724 /*
725 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
726 * or euid/egid (for hide_pid_min=2)?
727 */
728 static bool has_pid_permissions(struct pid_namespace *pid,
729 struct task_struct *task,
730 int hide_pid_min)
731 {
732 if (pid->hide_pid < hide_pid_min)
733 return true;
734 if (in_group_p(pid->pid_gid))
735 return true;
736 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
737 }
738
739
740 static int proc_pid_permission(struct inode *inode, int mask)
741 {
742 struct pid_namespace *pid = inode->i_sb->s_fs_info;
743 struct task_struct *task;
744 bool has_perms;
745
746 task = get_proc_task(inode);
747 if (!task)
748 return -ESRCH;
749 has_perms = has_pid_permissions(pid, task, 1);
750 put_task_struct(task);
751
752 if (!has_perms) {
753 if (pid->hide_pid == 2) {
754 /*
755 * Let's make getdents(), stat(), and open()
756 * consistent with each other. If a process
757 * may not stat() a file, it shouldn't be seen
758 * in procfs at all.
759 */
760 return -ENOENT;
761 }
762
763 return -EPERM;
764 }
765 return generic_permission(inode, mask);
766 }
767
768
769
770 static const struct inode_operations proc_def_inode_operations = {
771 .setattr = proc_setattr,
772 };
773
774 static int proc_single_show(struct seq_file *m, void *v)
775 {
776 struct inode *inode = m->private;
777 struct pid_namespace *ns;
778 struct pid *pid;
779 struct task_struct *task;
780 int ret;
781
782 ns = inode->i_sb->s_fs_info;
783 pid = proc_pid(inode);
784 task = get_pid_task(pid, PIDTYPE_PID);
785 if (!task)
786 return -ESRCH;
787
788 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
789
790 put_task_struct(task);
791 return ret;
792 }
793
794 static int proc_single_open(struct inode *inode, struct file *filp)
795 {
796 return single_open(filp, proc_single_show, inode);
797 }
798
799 static const struct file_operations proc_single_file_operations = {
800 .open = proc_single_open,
801 .read = seq_read,
802 .llseek = seq_lseek,
803 .release = single_release,
804 };
805
806
807 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
808 {
809 struct task_struct *task = get_proc_task(inode);
810 struct mm_struct *mm = ERR_PTR(-ESRCH);
811
812 if (task) {
813 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
814 put_task_struct(task);
815
816 if (!IS_ERR_OR_NULL(mm)) {
817 /* ensure this mm_struct can't be freed */
818 atomic_inc(&mm->mm_count);
819 /* but do not pin its memory */
820 mmput(mm);
821 }
822 }
823
824 return mm;
825 }
826
827 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
828 {
829 struct mm_struct *mm = proc_mem_open(inode, mode);
830
831 if (IS_ERR(mm))
832 return PTR_ERR(mm);
833
834 file->private_data = mm;
835 return 0;
836 }
837
838 static int mem_open(struct inode *inode, struct file *file)
839 {
840 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
841
842 /* OK to pass negative loff_t, we can catch out-of-range */
843 file->f_mode |= FMODE_UNSIGNED_OFFSET;
844
845 return ret;
846 }
847
848 static ssize_t mem_rw(struct file *file, char __user *buf,
849 size_t count, loff_t *ppos, int write)
850 {
851 struct mm_struct *mm = file->private_data;
852 unsigned long addr = *ppos;
853 ssize_t copied;
854 char *page;
855
856 if (!mm)
857 return 0;
858
859 page = (char *)__get_free_page(GFP_TEMPORARY);
860 if (!page)
861 return -ENOMEM;
862
863 copied = 0;
864 if (!atomic_inc_not_zero(&mm->mm_users))
865 goto free;
866
867 while (count > 0) {
868 int this_len = min_t(int, count, PAGE_SIZE);
869
870 if (write && copy_from_user(page, buf, this_len)) {
871 copied = -EFAULT;
872 break;
873 }
874
875 this_len = access_remote_vm(mm, addr, page, this_len, write);
876 if (!this_len) {
877 if (!copied)
878 copied = -EIO;
879 break;
880 }
881
882 if (!write && copy_to_user(buf, page, this_len)) {
883 copied = -EFAULT;
884 break;
885 }
886
887 buf += this_len;
888 addr += this_len;
889 copied += this_len;
890 count -= this_len;
891 }
892 *ppos = addr;
893
894 mmput(mm);
895 free:
896 free_page((unsigned long) page);
897 return copied;
898 }
899
900 static ssize_t mem_read(struct file *file, char __user *buf,
901 size_t count, loff_t *ppos)
902 {
903 return mem_rw(file, buf, count, ppos, 0);
904 }
905
906 static ssize_t mem_write(struct file *file, const char __user *buf,
907 size_t count, loff_t *ppos)
908 {
909 return mem_rw(file, (char __user*)buf, count, ppos, 1);
910 }
911
912 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
913 {
914 switch (orig) {
915 case 0:
916 file->f_pos = offset;
917 break;
918 case 1:
919 file->f_pos += offset;
920 break;
921 default:
922 return -EINVAL;
923 }
924 force_successful_syscall_return();
925 return file->f_pos;
926 }
927
928 static int mem_release(struct inode *inode, struct file *file)
929 {
930 struct mm_struct *mm = file->private_data;
931 if (mm)
932 mmdrop(mm);
933 return 0;
934 }
935
936 static const struct file_operations proc_mem_operations = {
937 .llseek = mem_lseek,
938 .read = mem_read,
939 .write = mem_write,
940 .open = mem_open,
941 .release = mem_release,
942 };
943
944 static int environ_open(struct inode *inode, struct file *file)
945 {
946 return __mem_open(inode, file, PTRACE_MODE_READ);
947 }
948
949 static ssize_t environ_read(struct file *file, char __user *buf,
950 size_t count, loff_t *ppos)
951 {
952 char *page;
953 unsigned long src = *ppos;
954 int ret = 0;
955 struct mm_struct *mm = file->private_data;
956 unsigned long env_start, env_end;
957
958 /* Ensure the process spawned far enough to have an environment. */
959 if (!mm || !mm->env_end)
960 return 0;
961
962 page = (char *)__get_free_page(GFP_TEMPORARY);
963 if (!page)
964 return -ENOMEM;
965
966 ret = 0;
967 if (!atomic_inc_not_zero(&mm->mm_users))
968 goto free;
969
970 down_read(&mm->mmap_sem);
971 env_start = mm->env_start;
972 env_end = mm->env_end;
973 up_read(&mm->mmap_sem);
974
975 while (count > 0) {
976 size_t this_len, max_len;
977 int retval;
978
979 if (src >= (env_end - env_start))
980 break;
981
982 this_len = env_end - (env_start + src);
983
984 max_len = min_t(size_t, PAGE_SIZE, count);
985 this_len = min(max_len, this_len);
986
987 retval = access_remote_vm(mm, (env_start + src),
988 page, this_len, 0);
989
990 if (retval <= 0) {
991 ret = retval;
992 break;
993 }
994
995 if (copy_to_user(buf, page, retval)) {
996 ret = -EFAULT;
997 break;
998 }
999
1000 ret += retval;
1001 src += retval;
1002 buf += retval;
1003 count -= retval;
1004 }
1005 *ppos = src;
1006 mmput(mm);
1007
1008 free:
1009 free_page((unsigned long) page);
1010 return ret;
1011 }
1012
1013 static const struct file_operations proc_environ_operations = {
1014 .open = environ_open,
1015 .read = environ_read,
1016 .llseek = generic_file_llseek,
1017 .release = mem_release,
1018 };
1019
1020 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1021 loff_t *ppos)
1022 {
1023 struct task_struct *task = get_proc_task(file_inode(file));
1024 char buffer[PROC_NUMBUF];
1025 int oom_adj = OOM_ADJUST_MIN;
1026 size_t len;
1027
1028 if (!task)
1029 return -ESRCH;
1030 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1031 oom_adj = OOM_ADJUST_MAX;
1032 else
1033 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1034 OOM_SCORE_ADJ_MAX;
1035 put_task_struct(task);
1036 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1037 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1038 }
1039
1040 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1041 {
1042 static DEFINE_MUTEX(oom_adj_mutex);
1043 struct mm_struct *mm = NULL;
1044 struct task_struct *task;
1045 int err = 0;
1046
1047 task = get_proc_task(file_inode(file));
1048 if (!task)
1049 return -ESRCH;
1050
1051 mutex_lock(&oom_adj_mutex);
1052 if (legacy) {
1053 if (oom_adj < task->signal->oom_score_adj &&
1054 !capable(CAP_SYS_RESOURCE)) {
1055 err = -EACCES;
1056 goto err_unlock;
1057 }
1058 /*
1059 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1060 * /proc/pid/oom_score_adj instead.
1061 */
1062 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1063 current->comm, task_pid_nr(current), task_pid_nr(task),
1064 task_pid_nr(task));
1065 } else {
1066 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1067 !capable(CAP_SYS_RESOURCE)) {
1068 err = -EACCES;
1069 goto err_unlock;
1070 }
1071 }
1072
1073 /*
1074 * Make sure we will check other processes sharing the mm if this is
1075 * not vfrok which wants its own oom_score_adj.
1076 * pin the mm so it doesn't go away and get reused after task_unlock
1077 */
1078 if (!task->vfork_done) {
1079 struct task_struct *p = find_lock_task_mm(task);
1080
1081 if (p) {
1082 if (atomic_read(&p->mm->mm_users) > 1) {
1083 mm = p->mm;
1084 atomic_inc(&mm->mm_count);
1085 }
1086 task_unlock(p);
1087 }
1088 }
1089
1090 task->signal->oom_score_adj = oom_adj;
1091 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1092 task->signal->oom_score_adj_min = (short)oom_adj;
1093 trace_oom_score_adj_update(task);
1094
1095 if (mm) {
1096 struct task_struct *p;
1097
1098 rcu_read_lock();
1099 for_each_process(p) {
1100 if (same_thread_group(task, p))
1101 continue;
1102
1103 /* do not touch kernel threads or the global init */
1104 if (p->flags & PF_KTHREAD || is_global_init(p))
1105 continue;
1106
1107 task_lock(p);
1108 if (!p->vfork_done && process_shares_mm(p, mm)) {
1109 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1110 task_pid_nr(p), p->comm,
1111 p->signal->oom_score_adj, oom_adj,
1112 task_pid_nr(task), task->comm);
1113 p->signal->oom_score_adj = oom_adj;
1114 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1115 p->signal->oom_score_adj_min = (short)oom_adj;
1116 }
1117 task_unlock(p);
1118 }
1119 rcu_read_unlock();
1120 mmdrop(mm);
1121 }
1122 err_unlock:
1123 mutex_unlock(&oom_adj_mutex);
1124 put_task_struct(task);
1125 return err;
1126 }
1127
1128 /*
1129 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1130 * kernels. The effective policy is defined by oom_score_adj, which has a
1131 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1132 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1133 * Processes that become oom disabled via oom_adj will still be oom disabled
1134 * with this implementation.
1135 *
1136 * oom_adj cannot be removed since existing userspace binaries use it.
1137 */
1138 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1139 size_t count, loff_t *ppos)
1140 {
1141 char buffer[PROC_NUMBUF];
1142 int oom_adj;
1143 int err;
1144
1145 memset(buffer, 0, sizeof(buffer));
1146 if (count > sizeof(buffer) - 1)
1147 count = sizeof(buffer) - 1;
1148 if (copy_from_user(buffer, buf, count)) {
1149 err = -EFAULT;
1150 goto out;
1151 }
1152
1153 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1154 if (err)
1155 goto out;
1156 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1157 oom_adj != OOM_DISABLE) {
1158 err = -EINVAL;
1159 goto out;
1160 }
1161
1162 /*
1163 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1164 * value is always attainable.
1165 */
1166 if (oom_adj == OOM_ADJUST_MAX)
1167 oom_adj = OOM_SCORE_ADJ_MAX;
1168 else
1169 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1170
1171 err = __set_oom_adj(file, oom_adj, true);
1172 out:
1173 return err < 0 ? err : count;
1174 }
1175
1176 static const struct file_operations proc_oom_adj_operations = {
1177 .read = oom_adj_read,
1178 .write = oom_adj_write,
1179 .llseek = generic_file_llseek,
1180 };
1181
1182 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1183 size_t count, loff_t *ppos)
1184 {
1185 struct task_struct *task = get_proc_task(file_inode(file));
1186 char buffer[PROC_NUMBUF];
1187 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1188 size_t len;
1189
1190 if (!task)
1191 return -ESRCH;
1192 oom_score_adj = task->signal->oom_score_adj;
1193 put_task_struct(task);
1194 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1195 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1196 }
1197
1198 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1199 size_t count, loff_t *ppos)
1200 {
1201 char buffer[PROC_NUMBUF];
1202 int oom_score_adj;
1203 int err;
1204
1205 memset(buffer, 0, sizeof(buffer));
1206 if (count > sizeof(buffer) - 1)
1207 count = sizeof(buffer) - 1;
1208 if (copy_from_user(buffer, buf, count)) {
1209 err = -EFAULT;
1210 goto out;
1211 }
1212
1213 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1214 if (err)
1215 goto out;
1216 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1217 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1218 err = -EINVAL;
1219 goto out;
1220 }
1221
1222 err = __set_oom_adj(file, oom_score_adj, false);
1223 out:
1224 return err < 0 ? err : count;
1225 }
1226
1227 static const struct file_operations proc_oom_score_adj_operations = {
1228 .read = oom_score_adj_read,
1229 .write = oom_score_adj_write,
1230 .llseek = default_llseek,
1231 };
1232
1233 #ifdef CONFIG_AUDITSYSCALL
1234 #define TMPBUFLEN 21
1235 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1236 size_t count, loff_t *ppos)
1237 {
1238 struct inode * inode = file_inode(file);
1239 struct task_struct *task = get_proc_task(inode);
1240 ssize_t length;
1241 char tmpbuf[TMPBUFLEN];
1242
1243 if (!task)
1244 return -ESRCH;
1245 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1246 from_kuid(file->f_cred->user_ns,
1247 audit_get_loginuid(task)));
1248 put_task_struct(task);
1249 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1250 }
1251
1252 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1253 size_t count, loff_t *ppos)
1254 {
1255 struct inode * inode = file_inode(file);
1256 uid_t loginuid;
1257 kuid_t kloginuid;
1258 int rv;
1259
1260 rcu_read_lock();
1261 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1262 rcu_read_unlock();
1263 return -EPERM;
1264 }
1265 rcu_read_unlock();
1266
1267 if (*ppos != 0) {
1268 /* No partial writes. */
1269 return -EINVAL;
1270 }
1271
1272 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1273 if (rv < 0)
1274 return rv;
1275
1276 /* is userspace tring to explicitly UNSET the loginuid? */
1277 if (loginuid == AUDIT_UID_UNSET) {
1278 kloginuid = INVALID_UID;
1279 } else {
1280 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1281 if (!uid_valid(kloginuid))
1282 return -EINVAL;
1283 }
1284
1285 rv = audit_set_loginuid(kloginuid);
1286 if (rv < 0)
1287 return rv;
1288 return count;
1289 }
1290
1291 static const struct file_operations proc_loginuid_operations = {
1292 .read = proc_loginuid_read,
1293 .write = proc_loginuid_write,
1294 .llseek = generic_file_llseek,
1295 };
1296
1297 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1298 size_t count, loff_t *ppos)
1299 {
1300 struct inode * inode = file_inode(file);
1301 struct task_struct *task = get_proc_task(inode);
1302 ssize_t length;
1303 char tmpbuf[TMPBUFLEN];
1304
1305 if (!task)
1306 return -ESRCH;
1307 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1308 audit_get_sessionid(task));
1309 put_task_struct(task);
1310 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1311 }
1312
1313 static const struct file_operations proc_sessionid_operations = {
1314 .read = proc_sessionid_read,
1315 .llseek = generic_file_llseek,
1316 };
1317 #endif
1318
1319 #ifdef CONFIG_FAULT_INJECTION
1320 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1321 size_t count, loff_t *ppos)
1322 {
1323 struct task_struct *task = get_proc_task(file_inode(file));
1324 char buffer[PROC_NUMBUF];
1325 size_t len;
1326 int make_it_fail;
1327
1328 if (!task)
1329 return -ESRCH;
1330 make_it_fail = task->make_it_fail;
1331 put_task_struct(task);
1332
1333 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1334
1335 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1336 }
1337
1338 static ssize_t proc_fault_inject_write(struct file * file,
1339 const char __user * buf, size_t count, loff_t *ppos)
1340 {
1341 struct task_struct *task;
1342 char buffer[PROC_NUMBUF];
1343 int make_it_fail;
1344 int rv;
1345
1346 if (!capable(CAP_SYS_RESOURCE))
1347 return -EPERM;
1348 memset(buffer, 0, sizeof(buffer));
1349 if (count > sizeof(buffer) - 1)
1350 count = sizeof(buffer) - 1;
1351 if (copy_from_user(buffer, buf, count))
1352 return -EFAULT;
1353 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1354 if (rv < 0)
1355 return rv;
1356 if (make_it_fail < 0 || make_it_fail > 1)
1357 return -EINVAL;
1358
1359 task = get_proc_task(file_inode(file));
1360 if (!task)
1361 return -ESRCH;
1362 task->make_it_fail = make_it_fail;
1363 put_task_struct(task);
1364
1365 return count;
1366 }
1367
1368 static const struct file_operations proc_fault_inject_operations = {
1369 .read = proc_fault_inject_read,
1370 .write = proc_fault_inject_write,
1371 .llseek = generic_file_llseek,
1372 };
1373 #endif
1374
1375
1376 #ifdef CONFIG_SCHED_DEBUG
1377 /*
1378 * Print out various scheduling related per-task fields:
1379 */
1380 static int sched_show(struct seq_file *m, void *v)
1381 {
1382 struct inode *inode = m->private;
1383 struct task_struct *p;
1384
1385 p = get_proc_task(inode);
1386 if (!p)
1387 return -ESRCH;
1388 proc_sched_show_task(p, m);
1389
1390 put_task_struct(p);
1391
1392 return 0;
1393 }
1394
1395 static ssize_t
1396 sched_write(struct file *file, const char __user *buf,
1397 size_t count, loff_t *offset)
1398 {
1399 struct inode *inode = file_inode(file);
1400 struct task_struct *p;
1401
1402 p = get_proc_task(inode);
1403 if (!p)
1404 return -ESRCH;
1405 proc_sched_set_task(p);
1406
1407 put_task_struct(p);
1408
1409 return count;
1410 }
1411
1412 static int sched_open(struct inode *inode, struct file *filp)
1413 {
1414 return single_open(filp, sched_show, inode);
1415 }
1416
1417 static const struct file_operations proc_pid_sched_operations = {
1418 .open = sched_open,
1419 .read = seq_read,
1420 .write = sched_write,
1421 .llseek = seq_lseek,
1422 .release = single_release,
1423 };
1424
1425 #endif
1426
1427 #ifdef CONFIG_SCHED_AUTOGROUP
1428 /*
1429 * Print out autogroup related information:
1430 */
1431 static int sched_autogroup_show(struct seq_file *m, void *v)
1432 {
1433 struct inode *inode = m->private;
1434 struct task_struct *p;
1435
1436 p = get_proc_task(inode);
1437 if (!p)
1438 return -ESRCH;
1439 proc_sched_autogroup_show_task(p, m);
1440
1441 put_task_struct(p);
1442
1443 return 0;
1444 }
1445
1446 static ssize_t
1447 sched_autogroup_write(struct file *file, const char __user *buf,
1448 size_t count, loff_t *offset)
1449 {
1450 struct inode *inode = file_inode(file);
1451 struct task_struct *p;
1452 char buffer[PROC_NUMBUF];
1453 int nice;
1454 int err;
1455
1456 memset(buffer, 0, sizeof(buffer));
1457 if (count > sizeof(buffer) - 1)
1458 count = sizeof(buffer) - 1;
1459 if (copy_from_user(buffer, buf, count))
1460 return -EFAULT;
1461
1462 err = kstrtoint(strstrip(buffer), 0, &nice);
1463 if (err < 0)
1464 return err;
1465
1466 p = get_proc_task(inode);
1467 if (!p)
1468 return -ESRCH;
1469
1470 err = proc_sched_autogroup_set_nice(p, nice);
1471 if (err)
1472 count = err;
1473
1474 put_task_struct(p);
1475
1476 return count;
1477 }
1478
1479 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1480 {
1481 int ret;
1482
1483 ret = single_open(filp, sched_autogroup_show, NULL);
1484 if (!ret) {
1485 struct seq_file *m = filp->private_data;
1486
1487 m->private = inode;
1488 }
1489 return ret;
1490 }
1491
1492 static const struct file_operations proc_pid_sched_autogroup_operations = {
1493 .open = sched_autogroup_open,
1494 .read = seq_read,
1495 .write = sched_autogroup_write,
1496 .llseek = seq_lseek,
1497 .release = single_release,
1498 };
1499
1500 #endif /* CONFIG_SCHED_AUTOGROUP */
1501
1502 static ssize_t comm_write(struct file *file, const char __user *buf,
1503 size_t count, loff_t *offset)
1504 {
1505 struct inode *inode = file_inode(file);
1506 struct task_struct *p;
1507 char buffer[TASK_COMM_LEN];
1508 const size_t maxlen = sizeof(buffer) - 1;
1509
1510 memset(buffer, 0, sizeof(buffer));
1511 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1512 return -EFAULT;
1513
1514 p = get_proc_task(inode);
1515 if (!p)
1516 return -ESRCH;
1517
1518 if (same_thread_group(current, p))
1519 set_task_comm(p, buffer);
1520 else
1521 count = -EINVAL;
1522
1523 put_task_struct(p);
1524
1525 return count;
1526 }
1527
1528 static int comm_show(struct seq_file *m, void *v)
1529 {
1530 struct inode *inode = m->private;
1531 struct task_struct *p;
1532
1533 p = get_proc_task(inode);
1534 if (!p)
1535 return -ESRCH;
1536
1537 task_lock(p);
1538 seq_printf(m, "%s\n", p->comm);
1539 task_unlock(p);
1540
1541 put_task_struct(p);
1542
1543 return 0;
1544 }
1545
1546 static int comm_open(struct inode *inode, struct file *filp)
1547 {
1548 return single_open(filp, comm_show, inode);
1549 }
1550
1551 static const struct file_operations proc_pid_set_comm_operations = {
1552 .open = comm_open,
1553 .read = seq_read,
1554 .write = comm_write,
1555 .llseek = seq_lseek,
1556 .release = single_release,
1557 };
1558
1559 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1560 {
1561 struct task_struct *task;
1562 struct mm_struct *mm;
1563 struct file *exe_file;
1564
1565 task = get_proc_task(d_inode(dentry));
1566 if (!task)
1567 return -ENOENT;
1568 mm = get_task_mm(task);
1569 put_task_struct(task);
1570 if (!mm)
1571 return -ENOENT;
1572 exe_file = get_mm_exe_file(mm);
1573 mmput(mm);
1574 if (exe_file) {
1575 *exe_path = exe_file->f_path;
1576 path_get(&exe_file->f_path);
1577 fput(exe_file);
1578 return 0;
1579 } else
1580 return -ENOENT;
1581 }
1582
1583 static const char *proc_pid_get_link(struct dentry *dentry,
1584 struct inode *inode,
1585 struct delayed_call *done)
1586 {
1587 struct path path;
1588 int error = -EACCES;
1589
1590 if (!dentry)
1591 return ERR_PTR(-ECHILD);
1592
1593 /* Are we allowed to snoop on the tasks file descriptors? */
1594 if (!proc_fd_access_allowed(inode))
1595 goto out;
1596
1597 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1598 if (error)
1599 goto out;
1600
1601 nd_jump_link(&path);
1602 return NULL;
1603 out:
1604 return ERR_PTR(error);
1605 }
1606
1607 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1608 {
1609 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1610 char *pathname;
1611 int len;
1612
1613 if (!tmp)
1614 return -ENOMEM;
1615
1616 pathname = d_path(path, tmp, PAGE_SIZE);
1617 len = PTR_ERR(pathname);
1618 if (IS_ERR(pathname))
1619 goto out;
1620 len = tmp + PAGE_SIZE - 1 - pathname;
1621
1622 if (len > buflen)
1623 len = buflen;
1624 if (copy_to_user(buffer, pathname, len))
1625 len = -EFAULT;
1626 out:
1627 free_page((unsigned long)tmp);
1628 return len;
1629 }
1630
1631 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1632 {
1633 int error = -EACCES;
1634 struct inode *inode = d_inode(dentry);
1635 struct path path;
1636
1637 /* Are we allowed to snoop on the tasks file descriptors? */
1638 if (!proc_fd_access_allowed(inode))
1639 goto out;
1640
1641 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1642 if (error)
1643 goto out;
1644
1645 error = do_proc_readlink(&path, buffer, buflen);
1646 path_put(&path);
1647 out:
1648 return error;
1649 }
1650
1651 const struct inode_operations proc_pid_link_inode_operations = {
1652 .readlink = proc_pid_readlink,
1653 .get_link = proc_pid_get_link,
1654 .setattr = proc_setattr,
1655 };
1656
1657
1658 /* building an inode */
1659
1660 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1661 {
1662 struct inode * inode;
1663 struct proc_inode *ei;
1664 const struct cred *cred;
1665
1666 /* We need a new inode */
1667
1668 inode = new_inode(sb);
1669 if (!inode)
1670 goto out;
1671
1672 /* Common stuff */
1673 ei = PROC_I(inode);
1674 inode->i_ino = get_next_ino();
1675 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1676 inode->i_op = &proc_def_inode_operations;
1677
1678 /*
1679 * grab the reference to task.
1680 */
1681 ei->pid = get_task_pid(task, PIDTYPE_PID);
1682 if (!ei->pid)
1683 goto out_unlock;
1684
1685 if (task_dumpable(task)) {
1686 rcu_read_lock();
1687 cred = __task_cred(task);
1688 inode->i_uid = cred->euid;
1689 inode->i_gid = cred->egid;
1690 rcu_read_unlock();
1691 }
1692 security_task_to_inode(task, inode);
1693
1694 out:
1695 return inode;
1696
1697 out_unlock:
1698 iput(inode);
1699 return NULL;
1700 }
1701
1702 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1703 {
1704 struct inode *inode = d_inode(dentry);
1705 struct task_struct *task;
1706 const struct cred *cred;
1707 struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1708
1709 generic_fillattr(inode, stat);
1710
1711 rcu_read_lock();
1712 stat->uid = GLOBAL_ROOT_UID;
1713 stat->gid = GLOBAL_ROOT_GID;
1714 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1715 if (task) {
1716 if (!has_pid_permissions(pid, task, 2)) {
1717 rcu_read_unlock();
1718 /*
1719 * This doesn't prevent learning whether PID exists,
1720 * it only makes getattr() consistent with readdir().
1721 */
1722 return -ENOENT;
1723 }
1724 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1725 task_dumpable(task)) {
1726 cred = __task_cred(task);
1727 stat->uid = cred->euid;
1728 stat->gid = cred->egid;
1729 }
1730 }
1731 rcu_read_unlock();
1732 return 0;
1733 }
1734
1735 /* dentry stuff */
1736
1737 /*
1738 * Exceptional case: normally we are not allowed to unhash a busy
1739 * directory. In this case, however, we can do it - no aliasing problems
1740 * due to the way we treat inodes.
1741 *
1742 * Rewrite the inode's ownerships here because the owning task may have
1743 * performed a setuid(), etc.
1744 *
1745 * Before the /proc/pid/status file was created the only way to read
1746 * the effective uid of a /process was to stat /proc/pid. Reading
1747 * /proc/pid/status is slow enough that procps and other packages
1748 * kept stating /proc/pid. To keep the rules in /proc simple I have
1749 * made this apply to all per process world readable and executable
1750 * directories.
1751 */
1752 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1753 {
1754 struct inode *inode;
1755 struct task_struct *task;
1756 const struct cred *cred;
1757
1758 if (flags & LOOKUP_RCU)
1759 return -ECHILD;
1760
1761 inode = d_inode(dentry);
1762 task = get_proc_task(inode);
1763
1764 if (task) {
1765 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1766 task_dumpable(task)) {
1767 rcu_read_lock();
1768 cred = __task_cred(task);
1769 inode->i_uid = cred->euid;
1770 inode->i_gid = cred->egid;
1771 rcu_read_unlock();
1772 } else {
1773 inode->i_uid = GLOBAL_ROOT_UID;
1774 inode->i_gid = GLOBAL_ROOT_GID;
1775 }
1776 inode->i_mode &= ~(S_ISUID | S_ISGID);
1777 security_task_to_inode(task, inode);
1778 put_task_struct(task);
1779 return 1;
1780 }
1781 return 0;
1782 }
1783
1784 static inline bool proc_inode_is_dead(struct inode *inode)
1785 {
1786 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1787 }
1788
1789 int pid_delete_dentry(const struct dentry *dentry)
1790 {
1791 /* Is the task we represent dead?
1792 * If so, then don't put the dentry on the lru list,
1793 * kill it immediately.
1794 */
1795 return proc_inode_is_dead(d_inode(dentry));
1796 }
1797
1798 const struct dentry_operations pid_dentry_operations =
1799 {
1800 .d_revalidate = pid_revalidate,
1801 .d_delete = pid_delete_dentry,
1802 };
1803
1804 /* Lookups */
1805
1806 /*
1807 * Fill a directory entry.
1808 *
1809 * If possible create the dcache entry and derive our inode number and
1810 * file type from dcache entry.
1811 *
1812 * Since all of the proc inode numbers are dynamically generated, the inode
1813 * numbers do not exist until the inode is cache. This means creating the
1814 * the dcache entry in readdir is necessary to keep the inode numbers
1815 * reported by readdir in sync with the inode numbers reported
1816 * by stat.
1817 */
1818 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1819 const char *name, int len,
1820 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1821 {
1822 struct dentry *child, *dir = file->f_path.dentry;
1823 struct qstr qname = QSTR_INIT(name, len);
1824 struct inode *inode;
1825 unsigned type;
1826 ino_t ino;
1827
1828 child = d_hash_and_lookup(dir, &qname);
1829 if (!child) {
1830 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1831 child = d_alloc_parallel(dir, &qname, &wq);
1832 if (IS_ERR(child))
1833 goto end_instantiate;
1834 if (d_in_lookup(child)) {
1835 int err = instantiate(d_inode(dir), child, task, ptr);
1836 d_lookup_done(child);
1837 if (err < 0) {
1838 dput(child);
1839 goto end_instantiate;
1840 }
1841 }
1842 }
1843 inode = d_inode(child);
1844 ino = inode->i_ino;
1845 type = inode->i_mode >> 12;
1846 dput(child);
1847 return dir_emit(ctx, name, len, ino, type);
1848
1849 end_instantiate:
1850 return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1851 }
1852
1853 /*
1854 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1855 * which represent vma start and end addresses.
1856 */
1857 static int dname_to_vma_addr(struct dentry *dentry,
1858 unsigned long *start, unsigned long *end)
1859 {
1860 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1861 return -EINVAL;
1862
1863 return 0;
1864 }
1865
1866 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1867 {
1868 unsigned long vm_start, vm_end;
1869 bool exact_vma_exists = false;
1870 struct mm_struct *mm = NULL;
1871 struct task_struct *task;
1872 const struct cred *cred;
1873 struct inode *inode;
1874 int status = 0;
1875
1876 if (flags & LOOKUP_RCU)
1877 return -ECHILD;
1878
1879 inode = d_inode(dentry);
1880 task = get_proc_task(inode);
1881 if (!task)
1882 goto out_notask;
1883
1884 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1885 if (IS_ERR_OR_NULL(mm))
1886 goto out;
1887
1888 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1889 down_read(&mm->mmap_sem);
1890 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1891 up_read(&mm->mmap_sem);
1892 }
1893
1894 mmput(mm);
1895
1896 if (exact_vma_exists) {
1897 if (task_dumpable(task)) {
1898 rcu_read_lock();
1899 cred = __task_cred(task);
1900 inode->i_uid = cred->euid;
1901 inode->i_gid = cred->egid;
1902 rcu_read_unlock();
1903 } else {
1904 inode->i_uid = GLOBAL_ROOT_UID;
1905 inode->i_gid = GLOBAL_ROOT_GID;
1906 }
1907 security_task_to_inode(task, inode);
1908 status = 1;
1909 }
1910
1911 out:
1912 put_task_struct(task);
1913
1914 out_notask:
1915 return status;
1916 }
1917
1918 static const struct dentry_operations tid_map_files_dentry_operations = {
1919 .d_revalidate = map_files_d_revalidate,
1920 .d_delete = pid_delete_dentry,
1921 };
1922
1923 static int map_files_get_link(struct dentry *dentry, struct path *path)
1924 {
1925 unsigned long vm_start, vm_end;
1926 struct vm_area_struct *vma;
1927 struct task_struct *task;
1928 struct mm_struct *mm;
1929 int rc;
1930
1931 rc = -ENOENT;
1932 task = get_proc_task(d_inode(dentry));
1933 if (!task)
1934 goto out;
1935
1936 mm = get_task_mm(task);
1937 put_task_struct(task);
1938 if (!mm)
1939 goto out;
1940
1941 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1942 if (rc)
1943 goto out_mmput;
1944
1945 rc = -ENOENT;
1946 down_read(&mm->mmap_sem);
1947 vma = find_exact_vma(mm, vm_start, vm_end);
1948 if (vma && vma->vm_file) {
1949 *path = vma->vm_file->f_path;
1950 path_get(path);
1951 rc = 0;
1952 }
1953 up_read(&mm->mmap_sem);
1954
1955 out_mmput:
1956 mmput(mm);
1957 out:
1958 return rc;
1959 }
1960
1961 struct map_files_info {
1962 fmode_t mode;
1963 unsigned long len;
1964 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1965 };
1966
1967 /*
1968 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1969 * symlinks may be used to bypass permissions on ancestor directories in the
1970 * path to the file in question.
1971 */
1972 static const char *
1973 proc_map_files_get_link(struct dentry *dentry,
1974 struct inode *inode,
1975 struct delayed_call *done)
1976 {
1977 if (!capable(CAP_SYS_ADMIN))
1978 return ERR_PTR(-EPERM);
1979
1980 return proc_pid_get_link(dentry, inode, done);
1981 }
1982
1983 /*
1984 * Identical to proc_pid_link_inode_operations except for get_link()
1985 */
1986 static const struct inode_operations proc_map_files_link_inode_operations = {
1987 .readlink = proc_pid_readlink,
1988 .get_link = proc_map_files_get_link,
1989 .setattr = proc_setattr,
1990 };
1991
1992 static int
1993 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1994 struct task_struct *task, const void *ptr)
1995 {
1996 fmode_t mode = (fmode_t)(unsigned long)ptr;
1997 struct proc_inode *ei;
1998 struct inode *inode;
1999
2000 inode = proc_pid_make_inode(dir->i_sb, task);
2001 if (!inode)
2002 return -ENOENT;
2003
2004 ei = PROC_I(inode);
2005 ei->op.proc_get_link = map_files_get_link;
2006
2007 inode->i_op = &proc_map_files_link_inode_operations;
2008 inode->i_size = 64;
2009 inode->i_mode = S_IFLNK;
2010
2011 if (mode & FMODE_READ)
2012 inode->i_mode |= S_IRUSR;
2013 if (mode & FMODE_WRITE)
2014 inode->i_mode |= S_IWUSR;
2015
2016 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2017 d_add(dentry, inode);
2018
2019 return 0;
2020 }
2021
2022 static struct dentry *proc_map_files_lookup(struct inode *dir,
2023 struct dentry *dentry, unsigned int flags)
2024 {
2025 unsigned long vm_start, vm_end;
2026 struct vm_area_struct *vma;
2027 struct task_struct *task;
2028 int result;
2029 struct mm_struct *mm;
2030
2031 result = -ENOENT;
2032 task = get_proc_task(dir);
2033 if (!task)
2034 goto out;
2035
2036 result = -EACCES;
2037 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2038 goto out_put_task;
2039
2040 result = -ENOENT;
2041 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2042 goto out_put_task;
2043
2044 mm = get_task_mm(task);
2045 if (!mm)
2046 goto out_put_task;
2047
2048 down_read(&mm->mmap_sem);
2049 vma = find_exact_vma(mm, vm_start, vm_end);
2050 if (!vma)
2051 goto out_no_vma;
2052
2053 if (vma->vm_file)
2054 result = proc_map_files_instantiate(dir, dentry, task,
2055 (void *)(unsigned long)vma->vm_file->f_mode);
2056
2057 out_no_vma:
2058 up_read(&mm->mmap_sem);
2059 mmput(mm);
2060 out_put_task:
2061 put_task_struct(task);
2062 out:
2063 return ERR_PTR(result);
2064 }
2065
2066 static const struct inode_operations proc_map_files_inode_operations = {
2067 .lookup = proc_map_files_lookup,
2068 .permission = proc_fd_permission,
2069 .setattr = proc_setattr,
2070 };
2071
2072 static int
2073 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2074 {
2075 struct vm_area_struct *vma;
2076 struct task_struct *task;
2077 struct mm_struct *mm;
2078 unsigned long nr_files, pos, i;
2079 struct flex_array *fa = NULL;
2080 struct map_files_info info;
2081 struct map_files_info *p;
2082 int ret;
2083
2084 ret = -ENOENT;
2085 task = get_proc_task(file_inode(file));
2086 if (!task)
2087 goto out;
2088
2089 ret = -EACCES;
2090 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2091 goto out_put_task;
2092
2093 ret = 0;
2094 if (!dir_emit_dots(file, ctx))
2095 goto out_put_task;
2096
2097 mm = get_task_mm(task);
2098 if (!mm)
2099 goto out_put_task;
2100 down_read(&mm->mmap_sem);
2101
2102 nr_files = 0;
2103
2104 /*
2105 * We need two passes here:
2106 *
2107 * 1) Collect vmas of mapped files with mmap_sem taken
2108 * 2) Release mmap_sem and instantiate entries
2109 *
2110 * otherwise we get lockdep complained, since filldir()
2111 * routine might require mmap_sem taken in might_fault().
2112 */
2113
2114 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2115 if (vma->vm_file && ++pos > ctx->pos)
2116 nr_files++;
2117 }
2118
2119 if (nr_files) {
2120 fa = flex_array_alloc(sizeof(info), nr_files,
2121 GFP_KERNEL);
2122 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2123 GFP_KERNEL)) {
2124 ret = -ENOMEM;
2125 if (fa)
2126 flex_array_free(fa);
2127 up_read(&mm->mmap_sem);
2128 mmput(mm);
2129 goto out_put_task;
2130 }
2131 for (i = 0, vma = mm->mmap, pos = 2; vma;
2132 vma = vma->vm_next) {
2133 if (!vma->vm_file)
2134 continue;
2135 if (++pos <= ctx->pos)
2136 continue;
2137
2138 info.mode = vma->vm_file->f_mode;
2139 info.len = snprintf(info.name,
2140 sizeof(info.name), "%lx-%lx",
2141 vma->vm_start, vma->vm_end);
2142 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2143 BUG();
2144 }
2145 }
2146 up_read(&mm->mmap_sem);
2147
2148 for (i = 0; i < nr_files; i++) {
2149 p = flex_array_get(fa, i);
2150 if (!proc_fill_cache(file, ctx,
2151 p->name, p->len,
2152 proc_map_files_instantiate,
2153 task,
2154 (void *)(unsigned long)p->mode))
2155 break;
2156 ctx->pos++;
2157 }
2158 if (fa)
2159 flex_array_free(fa);
2160 mmput(mm);
2161
2162 out_put_task:
2163 put_task_struct(task);
2164 out:
2165 return ret;
2166 }
2167
2168 static const struct file_operations proc_map_files_operations = {
2169 .read = generic_read_dir,
2170 .iterate_shared = proc_map_files_readdir,
2171 .llseek = generic_file_llseek,
2172 };
2173
2174 #ifdef CONFIG_CHECKPOINT_RESTORE
2175 struct timers_private {
2176 struct pid *pid;
2177 struct task_struct *task;
2178 struct sighand_struct *sighand;
2179 struct pid_namespace *ns;
2180 unsigned long flags;
2181 };
2182
2183 static void *timers_start(struct seq_file *m, loff_t *pos)
2184 {
2185 struct timers_private *tp = m->private;
2186
2187 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2188 if (!tp->task)
2189 return ERR_PTR(-ESRCH);
2190
2191 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2192 if (!tp->sighand)
2193 return ERR_PTR(-ESRCH);
2194
2195 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2196 }
2197
2198 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2199 {
2200 struct timers_private *tp = m->private;
2201 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2202 }
2203
2204 static void timers_stop(struct seq_file *m, void *v)
2205 {
2206 struct timers_private *tp = m->private;
2207
2208 if (tp->sighand) {
2209 unlock_task_sighand(tp->task, &tp->flags);
2210 tp->sighand = NULL;
2211 }
2212
2213 if (tp->task) {
2214 put_task_struct(tp->task);
2215 tp->task = NULL;
2216 }
2217 }
2218
2219 static int show_timer(struct seq_file *m, void *v)
2220 {
2221 struct k_itimer *timer;
2222 struct timers_private *tp = m->private;
2223 int notify;
2224 static const char * const nstr[] = {
2225 [SIGEV_SIGNAL] = "signal",
2226 [SIGEV_NONE] = "none",
2227 [SIGEV_THREAD] = "thread",
2228 };
2229
2230 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2231 notify = timer->it_sigev_notify;
2232
2233 seq_printf(m, "ID: %d\n", timer->it_id);
2234 seq_printf(m, "signal: %d/%p\n",
2235 timer->sigq->info.si_signo,
2236 timer->sigq->info.si_value.sival_ptr);
2237 seq_printf(m, "notify: %s/%s.%d\n",
2238 nstr[notify & ~SIGEV_THREAD_ID],
2239 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2240 pid_nr_ns(timer->it_pid, tp->ns));
2241 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2242
2243 return 0;
2244 }
2245
2246 static const struct seq_operations proc_timers_seq_ops = {
2247 .start = timers_start,
2248 .next = timers_next,
2249 .stop = timers_stop,
2250 .show = show_timer,
2251 };
2252
2253 static int proc_timers_open(struct inode *inode, struct file *file)
2254 {
2255 struct timers_private *tp;
2256
2257 tp = __seq_open_private(file, &proc_timers_seq_ops,
2258 sizeof(struct timers_private));
2259 if (!tp)
2260 return -ENOMEM;
2261
2262 tp->pid = proc_pid(inode);
2263 tp->ns = inode->i_sb->s_fs_info;
2264 return 0;
2265 }
2266
2267 static const struct file_operations proc_timers_operations = {
2268 .open = proc_timers_open,
2269 .read = seq_read,
2270 .llseek = seq_lseek,
2271 .release = seq_release_private,
2272 };
2273 #endif
2274
2275 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2276 size_t count, loff_t *offset)
2277 {
2278 struct inode *inode = file_inode(file);
2279 struct task_struct *p;
2280 u64 slack_ns;
2281 int err;
2282
2283 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2284 if (err < 0)
2285 return err;
2286
2287 p = get_proc_task(inode);
2288 if (!p)
2289 return -ESRCH;
2290
2291 if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) {
2292 task_lock(p);
2293 if (slack_ns == 0)
2294 p->timer_slack_ns = p->default_timer_slack_ns;
2295 else
2296 p->timer_slack_ns = slack_ns;
2297 task_unlock(p);
2298 } else
2299 count = -EPERM;
2300
2301 put_task_struct(p);
2302
2303 return count;
2304 }
2305
2306 static int timerslack_ns_show(struct seq_file *m, void *v)
2307 {
2308 struct inode *inode = m->private;
2309 struct task_struct *p;
2310 int err = 0;
2311
2312 p = get_proc_task(inode);
2313 if (!p)
2314 return -ESRCH;
2315
2316 if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) {
2317 task_lock(p);
2318 seq_printf(m, "%llu\n", p->timer_slack_ns);
2319 task_unlock(p);
2320 } else
2321 err = -EPERM;
2322
2323 put_task_struct(p);
2324
2325 return err;
2326 }
2327
2328 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2329 {
2330 return single_open(filp, timerslack_ns_show, inode);
2331 }
2332
2333 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2334 .open = timerslack_ns_open,
2335 .read = seq_read,
2336 .write = timerslack_ns_write,
2337 .llseek = seq_lseek,
2338 .release = single_release,
2339 };
2340
2341 static int proc_pident_instantiate(struct inode *dir,
2342 struct dentry *dentry, struct task_struct *task, const void *ptr)
2343 {
2344 const struct pid_entry *p = ptr;
2345 struct inode *inode;
2346 struct proc_inode *ei;
2347
2348 inode = proc_pid_make_inode(dir->i_sb, task);
2349 if (!inode)
2350 goto out;
2351
2352 ei = PROC_I(inode);
2353 inode->i_mode = p->mode;
2354 if (S_ISDIR(inode->i_mode))
2355 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2356 if (p->iop)
2357 inode->i_op = p->iop;
2358 if (p->fop)
2359 inode->i_fop = p->fop;
2360 ei->op = p->op;
2361 d_set_d_op(dentry, &pid_dentry_operations);
2362 d_add(dentry, inode);
2363 /* Close the race of the process dying before we return the dentry */
2364 if (pid_revalidate(dentry, 0))
2365 return 0;
2366 out:
2367 return -ENOENT;
2368 }
2369
2370 static struct dentry *proc_pident_lookup(struct inode *dir,
2371 struct dentry *dentry,
2372 const struct pid_entry *ents,
2373 unsigned int nents)
2374 {
2375 int error;
2376 struct task_struct *task = get_proc_task(dir);
2377 const struct pid_entry *p, *last;
2378
2379 error = -ENOENT;
2380
2381 if (!task)
2382 goto out_no_task;
2383
2384 /*
2385 * Yes, it does not scale. And it should not. Don't add
2386 * new entries into /proc/<tgid>/ without very good reasons.
2387 */
2388 last = &ents[nents - 1];
2389 for (p = ents; p <= last; p++) {
2390 if (p->len != dentry->d_name.len)
2391 continue;
2392 if (!memcmp(dentry->d_name.name, p->name, p->len))
2393 break;
2394 }
2395 if (p > last)
2396 goto out;
2397
2398 error = proc_pident_instantiate(dir, dentry, task, p);
2399 out:
2400 put_task_struct(task);
2401 out_no_task:
2402 return ERR_PTR(error);
2403 }
2404
2405 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2406 const struct pid_entry *ents, unsigned int nents)
2407 {
2408 struct task_struct *task = get_proc_task(file_inode(file));
2409 const struct pid_entry *p;
2410
2411 if (!task)
2412 return -ENOENT;
2413
2414 if (!dir_emit_dots(file, ctx))
2415 goto out;
2416
2417 if (ctx->pos >= nents + 2)
2418 goto out;
2419
2420 for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2421 if (!proc_fill_cache(file, ctx, p->name, p->len,
2422 proc_pident_instantiate, task, p))
2423 break;
2424 ctx->pos++;
2425 }
2426 out:
2427 put_task_struct(task);
2428 return 0;
2429 }
2430
2431 #ifdef CONFIG_SECURITY
2432 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2433 size_t count, loff_t *ppos)
2434 {
2435 struct inode * inode = file_inode(file);
2436 char *p = NULL;
2437 ssize_t length;
2438 struct task_struct *task = get_proc_task(inode);
2439
2440 if (!task)
2441 return -ESRCH;
2442
2443 length = security_getprocattr(task,
2444 (char*)file->f_path.dentry->d_name.name,
2445 &p);
2446 put_task_struct(task);
2447 if (length > 0)
2448 length = simple_read_from_buffer(buf, count, ppos, p, length);
2449 kfree(p);
2450 return length;
2451 }
2452
2453 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2454 size_t count, loff_t *ppos)
2455 {
2456 struct inode * inode = file_inode(file);
2457 void *page;
2458 ssize_t length;
2459 struct task_struct *task = get_proc_task(inode);
2460
2461 length = -ESRCH;
2462 if (!task)
2463 goto out_no_task;
2464 if (count > PAGE_SIZE)
2465 count = PAGE_SIZE;
2466
2467 /* No partial writes. */
2468 length = -EINVAL;
2469 if (*ppos != 0)
2470 goto out;
2471
2472 page = memdup_user(buf, count);
2473 if (IS_ERR(page)) {
2474 length = PTR_ERR(page);
2475 goto out;
2476 }
2477
2478 /* Guard against adverse ptrace interaction */
2479 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2480 if (length < 0)
2481 goto out_free;
2482
2483 length = security_setprocattr(task,
2484 (char*)file->f_path.dentry->d_name.name,
2485 page, count);
2486 mutex_unlock(&task->signal->cred_guard_mutex);
2487 out_free:
2488 kfree(page);
2489 out:
2490 put_task_struct(task);
2491 out_no_task:
2492 return length;
2493 }
2494
2495 static const struct file_operations proc_pid_attr_operations = {
2496 .read = proc_pid_attr_read,
2497 .write = proc_pid_attr_write,
2498 .llseek = generic_file_llseek,
2499 };
2500
2501 static const struct pid_entry attr_dir_stuff[] = {
2502 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2503 REG("prev", S_IRUGO, proc_pid_attr_operations),
2504 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2505 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2506 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2507 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2508 };
2509
2510 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2511 {
2512 return proc_pident_readdir(file, ctx,
2513 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2514 }
2515
2516 static const struct file_operations proc_attr_dir_operations = {
2517 .read = generic_read_dir,
2518 .iterate_shared = proc_attr_dir_readdir,
2519 .llseek = generic_file_llseek,
2520 };
2521
2522 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2523 struct dentry *dentry, unsigned int flags)
2524 {
2525 return proc_pident_lookup(dir, dentry,
2526 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2527 }
2528
2529 static const struct inode_operations proc_attr_dir_inode_operations = {
2530 .lookup = proc_attr_dir_lookup,
2531 .getattr = pid_getattr,
2532 .setattr = proc_setattr,
2533 };
2534
2535 #endif
2536
2537 #ifdef CONFIG_ELF_CORE
2538 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2539 size_t count, loff_t *ppos)
2540 {
2541 struct task_struct *task = get_proc_task(file_inode(file));
2542 struct mm_struct *mm;
2543 char buffer[PROC_NUMBUF];
2544 size_t len;
2545 int ret;
2546
2547 if (!task)
2548 return -ESRCH;
2549
2550 ret = 0;
2551 mm = get_task_mm(task);
2552 if (mm) {
2553 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2554 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2555 MMF_DUMP_FILTER_SHIFT));
2556 mmput(mm);
2557 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2558 }
2559
2560 put_task_struct(task);
2561
2562 return ret;
2563 }
2564
2565 static ssize_t proc_coredump_filter_write(struct file *file,
2566 const char __user *buf,
2567 size_t count,
2568 loff_t *ppos)
2569 {
2570 struct task_struct *task;
2571 struct mm_struct *mm;
2572 unsigned int val;
2573 int ret;
2574 int i;
2575 unsigned long mask;
2576
2577 ret = kstrtouint_from_user(buf, count, 0, &val);
2578 if (ret < 0)
2579 return ret;
2580
2581 ret = -ESRCH;
2582 task = get_proc_task(file_inode(file));
2583 if (!task)
2584 goto out_no_task;
2585
2586 mm = get_task_mm(task);
2587 if (!mm)
2588 goto out_no_mm;
2589 ret = 0;
2590
2591 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2592 if (val & mask)
2593 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2594 else
2595 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2596 }
2597
2598 mmput(mm);
2599 out_no_mm:
2600 put_task_struct(task);
2601 out_no_task:
2602 if (ret < 0)
2603 return ret;
2604 return count;
2605 }
2606
2607 static const struct file_operations proc_coredump_filter_operations = {
2608 .read = proc_coredump_filter_read,
2609 .write = proc_coredump_filter_write,
2610 .llseek = generic_file_llseek,
2611 };
2612 #endif
2613
2614 #ifdef CONFIG_TASK_IO_ACCOUNTING
2615 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2616 {
2617 struct task_io_accounting acct = task->ioac;
2618 unsigned long flags;
2619 int result;
2620
2621 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2622 if (result)
2623 return result;
2624
2625 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2626 result = -EACCES;
2627 goto out_unlock;
2628 }
2629
2630 if (whole && lock_task_sighand(task, &flags)) {
2631 struct task_struct *t = task;
2632
2633 task_io_accounting_add(&acct, &task->signal->ioac);
2634 while_each_thread(task, t)
2635 task_io_accounting_add(&acct, &t->ioac);
2636
2637 unlock_task_sighand(task, &flags);
2638 }
2639 seq_printf(m,
2640 "rchar: %llu\n"
2641 "wchar: %llu\n"
2642 "syscr: %llu\n"
2643 "syscw: %llu\n"
2644 "read_bytes: %llu\n"
2645 "write_bytes: %llu\n"
2646 "cancelled_write_bytes: %llu\n",
2647 (unsigned long long)acct.rchar,
2648 (unsigned long long)acct.wchar,
2649 (unsigned long long)acct.syscr,
2650 (unsigned long long)acct.syscw,
2651 (unsigned long long)acct.read_bytes,
2652 (unsigned long long)acct.write_bytes,
2653 (unsigned long long)acct.cancelled_write_bytes);
2654 result = 0;
2655
2656 out_unlock:
2657 mutex_unlock(&task->signal->cred_guard_mutex);
2658 return result;
2659 }
2660
2661 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2662 struct pid *pid, struct task_struct *task)
2663 {
2664 return do_io_accounting(task, m, 0);
2665 }
2666
2667 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2668 struct pid *pid, struct task_struct *task)
2669 {
2670 return do_io_accounting(task, m, 1);
2671 }
2672 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2673
2674 #ifdef CONFIG_USER_NS
2675 static int proc_id_map_open(struct inode *inode, struct file *file,
2676 const struct seq_operations *seq_ops)
2677 {
2678 struct user_namespace *ns = NULL;
2679 struct task_struct *task;
2680 struct seq_file *seq;
2681 int ret = -EINVAL;
2682
2683 task = get_proc_task(inode);
2684 if (task) {
2685 rcu_read_lock();
2686 ns = get_user_ns(task_cred_xxx(task, user_ns));
2687 rcu_read_unlock();
2688 put_task_struct(task);
2689 }
2690 if (!ns)
2691 goto err;
2692
2693 ret = seq_open(file, seq_ops);
2694 if (ret)
2695 goto err_put_ns;
2696
2697 seq = file->private_data;
2698 seq->private = ns;
2699
2700 return 0;
2701 err_put_ns:
2702 put_user_ns(ns);
2703 err:
2704 return ret;
2705 }
2706
2707 static int proc_id_map_release(struct inode *inode, struct file *file)
2708 {
2709 struct seq_file *seq = file->private_data;
2710 struct user_namespace *ns = seq->private;
2711 put_user_ns(ns);
2712 return seq_release(inode, file);
2713 }
2714
2715 static int proc_uid_map_open(struct inode *inode, struct file *file)
2716 {
2717 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2718 }
2719
2720 static int proc_gid_map_open(struct inode *inode, struct file *file)
2721 {
2722 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2723 }
2724
2725 static int proc_projid_map_open(struct inode *inode, struct file *file)
2726 {
2727 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2728 }
2729
2730 static const struct file_operations proc_uid_map_operations = {
2731 .open = proc_uid_map_open,
2732 .write = proc_uid_map_write,
2733 .read = seq_read,
2734 .llseek = seq_lseek,
2735 .release = proc_id_map_release,
2736 };
2737
2738 static const struct file_operations proc_gid_map_operations = {
2739 .open = proc_gid_map_open,
2740 .write = proc_gid_map_write,
2741 .read = seq_read,
2742 .llseek = seq_lseek,
2743 .release = proc_id_map_release,
2744 };
2745
2746 static const struct file_operations proc_projid_map_operations = {
2747 .open = proc_projid_map_open,
2748 .write = proc_projid_map_write,
2749 .read = seq_read,
2750 .llseek = seq_lseek,
2751 .release = proc_id_map_release,
2752 };
2753
2754 static int proc_setgroups_open(struct inode *inode, struct file *file)
2755 {
2756 struct user_namespace *ns = NULL;
2757 struct task_struct *task;
2758 int ret;
2759
2760 ret = -ESRCH;
2761 task = get_proc_task(inode);
2762 if (task) {
2763 rcu_read_lock();
2764 ns = get_user_ns(task_cred_xxx(task, user_ns));
2765 rcu_read_unlock();
2766 put_task_struct(task);
2767 }
2768 if (!ns)
2769 goto err;
2770
2771 if (file->f_mode & FMODE_WRITE) {
2772 ret = -EACCES;
2773 if (!ns_capable(ns, CAP_SYS_ADMIN))
2774 goto err_put_ns;
2775 }
2776
2777 ret = single_open(file, &proc_setgroups_show, ns);
2778 if (ret)
2779 goto err_put_ns;
2780
2781 return 0;
2782 err_put_ns:
2783 put_user_ns(ns);
2784 err:
2785 return ret;
2786 }
2787
2788 static int proc_setgroups_release(struct inode *inode, struct file *file)
2789 {
2790 struct seq_file *seq = file->private_data;
2791 struct user_namespace *ns = seq->private;
2792 int ret = single_release(inode, file);
2793 put_user_ns(ns);
2794 return ret;
2795 }
2796
2797 static const struct file_operations proc_setgroups_operations = {
2798 .open = proc_setgroups_open,
2799 .write = proc_setgroups_write,
2800 .read = seq_read,
2801 .llseek = seq_lseek,
2802 .release = proc_setgroups_release,
2803 };
2804 #endif /* CONFIG_USER_NS */
2805
2806 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2807 struct pid *pid, struct task_struct *task)
2808 {
2809 int err = lock_trace(task);
2810 if (!err) {
2811 seq_printf(m, "%08x\n", task->personality);
2812 unlock_trace(task);
2813 }
2814 return err;
2815 }
2816
2817 /*
2818 * Thread groups
2819 */
2820 static const struct file_operations proc_task_operations;
2821 static const struct inode_operations proc_task_inode_operations;
2822
2823 static const struct pid_entry tgid_base_stuff[] = {
2824 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2825 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2826 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2827 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2828 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2829 #ifdef CONFIG_NET
2830 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2831 #endif
2832 REG("environ", S_IRUSR, proc_environ_operations),
2833 ONE("auxv", S_IRUSR, proc_pid_auxv),
2834 ONE("status", S_IRUGO, proc_pid_status),
2835 ONE("personality", S_IRUSR, proc_pid_personality),
2836 ONE("limits", S_IRUGO, proc_pid_limits),
2837 #ifdef CONFIG_SCHED_DEBUG
2838 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2839 #endif
2840 #ifdef CONFIG_SCHED_AUTOGROUP
2841 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2842 #endif
2843 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2844 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2845 ONE("syscall", S_IRUSR, proc_pid_syscall),
2846 #endif
2847 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
2848 ONE("stat", S_IRUGO, proc_tgid_stat),
2849 ONE("statm", S_IRUGO, proc_pid_statm),
2850 REG("maps", S_IRUGO, proc_pid_maps_operations),
2851 #ifdef CONFIG_NUMA
2852 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2853 #endif
2854 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2855 LNK("cwd", proc_cwd_link),
2856 LNK("root", proc_root_link),
2857 LNK("exe", proc_exe_link),
2858 REG("mounts", S_IRUGO, proc_mounts_operations),
2859 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2860 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2861 #ifdef CONFIG_PROC_PAGE_MONITOR
2862 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2863 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2864 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2865 #endif
2866 #ifdef CONFIG_SECURITY
2867 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2868 #endif
2869 #ifdef CONFIG_KALLSYMS
2870 ONE("wchan", S_IRUGO, proc_pid_wchan),
2871 #endif
2872 #ifdef CONFIG_STACKTRACE
2873 ONE("stack", S_IRUSR, proc_pid_stack),
2874 #endif
2875 #ifdef CONFIG_SCHED_INFO
2876 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
2877 #endif
2878 #ifdef CONFIG_LATENCYTOP
2879 REG("latency", S_IRUGO, proc_lstats_operations),
2880 #endif
2881 #ifdef CONFIG_PROC_PID_CPUSET
2882 ONE("cpuset", S_IRUGO, proc_cpuset_show),
2883 #endif
2884 #ifdef CONFIG_CGROUPS
2885 ONE("cgroup", S_IRUGO, proc_cgroup_show),
2886 #endif
2887 ONE("oom_score", S_IRUGO, proc_oom_score),
2888 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2889 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2890 #ifdef CONFIG_AUDITSYSCALL
2891 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2892 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2893 #endif
2894 #ifdef CONFIG_FAULT_INJECTION
2895 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2896 #endif
2897 #ifdef CONFIG_ELF_CORE
2898 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2899 #endif
2900 #ifdef CONFIG_TASK_IO_ACCOUNTING
2901 ONE("io", S_IRUSR, proc_tgid_io_accounting),
2902 #endif
2903 #ifdef CONFIG_HARDWALL
2904 ONE("hardwall", S_IRUGO, proc_pid_hardwall),
2905 #endif
2906 #ifdef CONFIG_USER_NS
2907 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2908 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2909 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2910 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
2911 #endif
2912 #ifdef CONFIG_CHECKPOINT_RESTORE
2913 REG("timers", S_IRUGO, proc_timers_operations),
2914 #endif
2915 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2916 };
2917
2918 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2919 {
2920 return proc_pident_readdir(file, ctx,
2921 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2922 }
2923
2924 static const struct file_operations proc_tgid_base_operations = {
2925 .read = generic_read_dir,
2926 .iterate_shared = proc_tgid_base_readdir,
2927 .llseek = generic_file_llseek,
2928 };
2929
2930 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2931 {
2932 return proc_pident_lookup(dir, dentry,
2933 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2934 }
2935
2936 static const struct inode_operations proc_tgid_base_inode_operations = {
2937 .lookup = proc_tgid_base_lookup,
2938 .getattr = pid_getattr,
2939 .setattr = proc_setattr,
2940 .permission = proc_pid_permission,
2941 };
2942
2943 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2944 {
2945 struct dentry *dentry, *leader, *dir;
2946 char buf[PROC_NUMBUF];
2947 struct qstr name;
2948
2949 name.name = buf;
2950 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2951 /* no ->d_hash() rejects on procfs */
2952 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2953 if (dentry) {
2954 d_invalidate(dentry);
2955 dput(dentry);
2956 }
2957
2958 if (pid == tgid)
2959 return;
2960
2961 name.name = buf;
2962 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2963 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2964 if (!leader)
2965 goto out;
2966
2967 name.name = "task";
2968 name.len = strlen(name.name);
2969 dir = d_hash_and_lookup(leader, &name);
2970 if (!dir)
2971 goto out_put_leader;
2972
2973 name.name = buf;
2974 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2975 dentry = d_hash_and_lookup(dir, &name);
2976 if (dentry) {
2977 d_invalidate(dentry);
2978 dput(dentry);
2979 }
2980
2981 dput(dir);
2982 out_put_leader:
2983 dput(leader);
2984 out:
2985 return;
2986 }
2987
2988 /**
2989 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2990 * @task: task that should be flushed.
2991 *
2992 * When flushing dentries from proc, one needs to flush them from global
2993 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2994 * in. This call is supposed to do all of this job.
2995 *
2996 * Looks in the dcache for
2997 * /proc/@pid
2998 * /proc/@tgid/task/@pid
2999 * if either directory is present flushes it and all of it'ts children
3000 * from the dcache.
3001 *
3002 * It is safe and reasonable to cache /proc entries for a task until
3003 * that task exits. After that they just clog up the dcache with
3004 * useless entries, possibly causing useful dcache entries to be
3005 * flushed instead. This routine is proved to flush those useless
3006 * dcache entries at process exit time.
3007 *
3008 * NOTE: This routine is just an optimization so it does not guarantee
3009 * that no dcache entries will exist at process exit time it
3010 * just makes it very unlikely that any will persist.
3011 */
3012
3013 void proc_flush_task(struct task_struct *task)
3014 {
3015 int i;
3016 struct pid *pid, *tgid;
3017 struct upid *upid;
3018
3019 pid = task_pid(task);
3020 tgid = task_tgid(task);
3021
3022 for (i = 0; i <= pid->level; i++) {
3023 upid = &pid->numbers[i];
3024 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3025 tgid->numbers[i].nr);
3026 }
3027 }
3028
3029 static int proc_pid_instantiate(struct inode *dir,
3030 struct dentry * dentry,
3031 struct task_struct *task, const void *ptr)
3032 {
3033 struct inode *inode;
3034
3035 inode = proc_pid_make_inode(dir->i_sb, task);
3036 if (!inode)
3037 goto out;
3038
3039 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3040 inode->i_op = &proc_tgid_base_inode_operations;
3041 inode->i_fop = &proc_tgid_base_operations;
3042 inode->i_flags|=S_IMMUTABLE;
3043
3044 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3045 ARRAY_SIZE(tgid_base_stuff)));
3046
3047 d_set_d_op(dentry, &pid_dentry_operations);
3048
3049 d_add(dentry, inode);
3050 /* Close the race of the process dying before we return the dentry */
3051 if (pid_revalidate(dentry, 0))
3052 return 0;
3053 out:
3054 return -ENOENT;
3055 }
3056
3057 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3058 {
3059 int result = -ENOENT;
3060 struct task_struct *task;
3061 unsigned tgid;
3062 struct pid_namespace *ns;
3063
3064 tgid = name_to_int(&dentry->d_name);
3065 if (tgid == ~0U)
3066 goto out;
3067
3068 ns = dentry->d_sb->s_fs_info;
3069 rcu_read_lock();
3070 task = find_task_by_pid_ns(tgid, ns);
3071 if (task)
3072 get_task_struct(task);
3073 rcu_read_unlock();
3074 if (!task)
3075 goto out;
3076
3077 result = proc_pid_instantiate(dir, dentry, task, NULL);
3078 put_task_struct(task);
3079 out:
3080 return ERR_PTR(result);
3081 }
3082
3083 /*
3084 * Find the first task with tgid >= tgid
3085 *
3086 */
3087 struct tgid_iter {
3088 unsigned int tgid;
3089 struct task_struct *task;
3090 };
3091 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3092 {
3093 struct pid *pid;
3094
3095 if (iter.task)
3096 put_task_struct(iter.task);
3097 rcu_read_lock();
3098 retry:
3099 iter.task = NULL;
3100 pid = find_ge_pid(iter.tgid, ns);
3101 if (pid) {
3102 iter.tgid = pid_nr_ns(pid, ns);
3103 iter.task = pid_task(pid, PIDTYPE_PID);
3104 /* What we to know is if the pid we have find is the
3105 * pid of a thread_group_leader. Testing for task
3106 * being a thread_group_leader is the obvious thing
3107 * todo but there is a window when it fails, due to
3108 * the pid transfer logic in de_thread.
3109 *
3110 * So we perform the straight forward test of seeing
3111 * if the pid we have found is the pid of a thread
3112 * group leader, and don't worry if the task we have
3113 * found doesn't happen to be a thread group leader.
3114 * As we don't care in the case of readdir.
3115 */
3116 if (!iter.task || !has_group_leader_pid(iter.task)) {
3117 iter.tgid += 1;
3118 goto retry;
3119 }
3120 get_task_struct(iter.task);
3121 }
3122 rcu_read_unlock();
3123 return iter;
3124 }
3125
3126 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3127
3128 /* for the /proc/ directory itself, after non-process stuff has been done */
3129 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3130 {
3131 struct tgid_iter iter;
3132 struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3133 loff_t pos = ctx->pos;
3134
3135 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3136 return 0;
3137
3138 if (pos == TGID_OFFSET - 2) {
3139 struct inode *inode = d_inode(ns->proc_self);
3140 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3141 return 0;
3142 ctx->pos = pos = pos + 1;
3143 }
3144 if (pos == TGID_OFFSET - 1) {
3145 struct inode *inode = d_inode(ns->proc_thread_self);
3146 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3147 return 0;
3148 ctx->pos = pos = pos + 1;
3149 }
3150 iter.tgid = pos - TGID_OFFSET;
3151 iter.task = NULL;
3152 for (iter = next_tgid(ns, iter);
3153 iter.task;
3154 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3155 char name[PROC_NUMBUF];
3156 int len;
3157 if (!has_pid_permissions(ns, iter.task, 2))
3158 continue;
3159
3160 len = snprintf(name, sizeof(name), "%d", iter.tgid);
3161 ctx->pos = iter.tgid + TGID_OFFSET;
3162 if (!proc_fill_cache(file, ctx, name, len,
3163 proc_pid_instantiate, iter.task, NULL)) {
3164 put_task_struct(iter.task);
3165 return 0;
3166 }
3167 }
3168 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3169 return 0;
3170 }
3171
3172 /*
3173 * proc_tid_comm_permission is a special permission function exclusively
3174 * used for the node /proc/<pid>/task/<tid>/comm.
3175 * It bypasses generic permission checks in the case where a task of the same
3176 * task group attempts to access the node.
3177 * The rationale behind this is that glibc and bionic access this node for
3178 * cross thread naming (pthread_set/getname_np(!self)). However, if
3179 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3180 * which locks out the cross thread naming implementation.
3181 * This function makes sure that the node is always accessible for members of
3182 * same thread group.
3183 */
3184 static int proc_tid_comm_permission(struct inode *inode, int mask)
3185 {
3186 bool is_same_tgroup;
3187 struct task_struct *task;
3188
3189 task = get_proc_task(inode);
3190 if (!task)
3191 return -ESRCH;
3192 is_same_tgroup = same_thread_group(current, task);
3193 put_task_struct(task);
3194
3195 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3196 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3197 * read or written by the members of the corresponding
3198 * thread group.
3199 */
3200 return 0;
3201 }
3202
3203 return generic_permission(inode, mask);
3204 }
3205
3206 static const struct inode_operations proc_tid_comm_inode_operations = {
3207 .permission = proc_tid_comm_permission,
3208 };
3209
3210 /*
3211 * Tasks
3212 */
3213 static const struct pid_entry tid_base_stuff[] = {
3214 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3215 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3216 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3217 #ifdef CONFIG_NET
3218 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3219 #endif
3220 REG("environ", S_IRUSR, proc_environ_operations),
3221 ONE("auxv", S_IRUSR, proc_pid_auxv),
3222 ONE("status", S_IRUGO, proc_pid_status),
3223 ONE("personality", S_IRUSR, proc_pid_personality),
3224 ONE("limits", S_IRUGO, proc_pid_limits),
3225 #ifdef CONFIG_SCHED_DEBUG
3226 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3227 #endif
3228 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3229 &proc_tid_comm_inode_operations,
3230 &proc_pid_set_comm_operations, {}),
3231 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3232 ONE("syscall", S_IRUSR, proc_pid_syscall),
3233 #endif
3234 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3235 ONE("stat", S_IRUGO, proc_tid_stat),
3236 ONE("statm", S_IRUGO, proc_pid_statm),
3237 REG("maps", S_IRUGO, proc_tid_maps_operations),
3238 #ifdef CONFIG_PROC_CHILDREN
3239 REG("children", S_IRUGO, proc_tid_children_operations),
3240 #endif
3241 #ifdef CONFIG_NUMA
3242 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3243 #endif
3244 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3245 LNK("cwd", proc_cwd_link),
3246 LNK("root", proc_root_link),
3247 LNK("exe", proc_exe_link),
3248 REG("mounts", S_IRUGO, proc_mounts_operations),
3249 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3250 #ifdef CONFIG_PROC_PAGE_MONITOR
3251 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3252 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
3253 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3254 #endif
3255 #ifdef CONFIG_SECURITY
3256 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3257 #endif
3258 #ifdef CONFIG_KALLSYMS
3259 ONE("wchan", S_IRUGO, proc_pid_wchan),
3260 #endif
3261 #ifdef CONFIG_STACKTRACE
3262 ONE("stack", S_IRUSR, proc_pid_stack),
3263 #endif
3264 #ifdef CONFIG_SCHED_INFO
3265 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3266 #endif
3267 #ifdef CONFIG_LATENCYTOP
3268 REG("latency", S_IRUGO, proc_lstats_operations),
3269 #endif
3270 #ifdef CONFIG_PROC_PID_CPUSET
3271 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3272 #endif
3273 #ifdef CONFIG_CGROUPS
3274 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3275 #endif
3276 ONE("oom_score", S_IRUGO, proc_oom_score),
3277 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3278 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3279 #ifdef CONFIG_AUDITSYSCALL
3280 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3281 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3282 #endif
3283 #ifdef CONFIG_FAULT_INJECTION
3284 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3285 #endif
3286 #ifdef CONFIG_TASK_IO_ACCOUNTING
3287 ONE("io", S_IRUSR, proc_tid_io_accounting),
3288 #endif
3289 #ifdef CONFIG_HARDWALL
3290 ONE("hardwall", S_IRUGO, proc_pid_hardwall),
3291 #endif
3292 #ifdef CONFIG_USER_NS
3293 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3294 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3295 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3296 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3297 #endif
3298 };
3299
3300 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3301 {
3302 return proc_pident_readdir(file, ctx,
3303 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3304 }
3305
3306 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3307 {
3308 return proc_pident_lookup(dir, dentry,
3309 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3310 }
3311
3312 static const struct file_operations proc_tid_base_operations = {
3313 .read = generic_read_dir,
3314 .iterate_shared = proc_tid_base_readdir,
3315 .llseek = generic_file_llseek,
3316 };
3317
3318 static const struct inode_operations proc_tid_base_inode_operations = {
3319 .lookup = proc_tid_base_lookup,
3320 .getattr = pid_getattr,
3321 .setattr = proc_setattr,
3322 };
3323
3324 static int proc_task_instantiate(struct inode *dir,
3325 struct dentry *dentry, struct task_struct *task, const void *ptr)
3326 {
3327 struct inode *inode;
3328 inode = proc_pid_make_inode(dir->i_sb, task);
3329
3330 if (!inode)
3331 goto out;
3332 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3333 inode->i_op = &proc_tid_base_inode_operations;
3334 inode->i_fop = &proc_tid_base_operations;
3335 inode->i_flags|=S_IMMUTABLE;
3336
3337 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3338 ARRAY_SIZE(tid_base_stuff)));
3339
3340 d_set_d_op(dentry, &pid_dentry_operations);
3341
3342 d_add(dentry, inode);
3343 /* Close the race of the process dying before we return the dentry */
3344 if (pid_revalidate(dentry, 0))
3345 return 0;
3346 out:
3347 return -ENOENT;
3348 }
3349
3350 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3351 {
3352 int result = -ENOENT;
3353 struct task_struct *task;
3354 struct task_struct *leader = get_proc_task(dir);
3355 unsigned tid;
3356 struct pid_namespace *ns;
3357
3358 if (!leader)
3359 goto out_no_task;
3360
3361 tid = name_to_int(&dentry->d_name);
3362 if (tid == ~0U)
3363 goto out;
3364
3365 ns = dentry->d_sb->s_fs_info;
3366 rcu_read_lock();
3367 task = find_task_by_pid_ns(tid, ns);
3368 if (task)
3369 get_task_struct(task);
3370 rcu_read_unlock();
3371 if (!task)
3372 goto out;
3373 if (!same_thread_group(leader, task))
3374 goto out_drop_task;
3375
3376 result = proc_task_instantiate(dir, dentry, task, NULL);
3377 out_drop_task:
3378 put_task_struct(task);
3379 out:
3380 put_task_struct(leader);
3381 out_no_task:
3382 return ERR_PTR(result);
3383 }
3384
3385 /*
3386 * Find the first tid of a thread group to return to user space.
3387 *
3388 * Usually this is just the thread group leader, but if the users
3389 * buffer was too small or there was a seek into the middle of the
3390 * directory we have more work todo.
3391 *
3392 * In the case of a short read we start with find_task_by_pid.
3393 *
3394 * In the case of a seek we start with the leader and walk nr
3395 * threads past it.
3396 */
3397 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3398 struct pid_namespace *ns)
3399 {
3400 struct task_struct *pos, *task;
3401 unsigned long nr = f_pos;
3402
3403 if (nr != f_pos) /* 32bit overflow? */
3404 return NULL;
3405
3406 rcu_read_lock();
3407 task = pid_task(pid, PIDTYPE_PID);
3408 if (!task)
3409 goto fail;
3410
3411 /* Attempt to start with the tid of a thread */
3412 if (tid && nr) {
3413 pos = find_task_by_pid_ns(tid, ns);
3414 if (pos && same_thread_group(pos, task))
3415 goto found;
3416 }
3417
3418 /* If nr exceeds the number of threads there is nothing todo */
3419 if (nr >= get_nr_threads(task))
3420 goto fail;
3421
3422 /* If we haven't found our starting place yet start
3423 * with the leader and walk nr threads forward.
3424 */
3425 pos = task = task->group_leader;
3426 do {
3427 if (!nr--)
3428 goto found;
3429 } while_each_thread(task, pos);
3430 fail:
3431 pos = NULL;
3432 goto out;
3433 found:
3434 get_task_struct(pos);
3435 out:
3436 rcu_read_unlock();
3437 return pos;
3438 }
3439
3440 /*
3441 * Find the next thread in the thread list.
3442 * Return NULL if there is an error or no next thread.
3443 *
3444 * The reference to the input task_struct is released.
3445 */
3446 static struct task_struct *next_tid(struct task_struct *start)
3447 {
3448 struct task_struct *pos = NULL;
3449 rcu_read_lock();
3450 if (pid_alive(start)) {
3451 pos = next_thread(start);
3452 if (thread_group_leader(pos))
3453 pos = NULL;
3454 else
3455 get_task_struct(pos);
3456 }
3457 rcu_read_unlock();
3458 put_task_struct(start);
3459 return pos;
3460 }
3461
3462 /* for the /proc/TGID/task/ directories */
3463 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3464 {
3465 struct inode *inode = file_inode(file);
3466 struct task_struct *task;
3467 struct pid_namespace *ns;
3468 int tid;
3469
3470 if (proc_inode_is_dead(inode))
3471 return -ENOENT;
3472
3473 if (!dir_emit_dots(file, ctx))
3474 return 0;
3475
3476 /* f_version caches the tgid value that the last readdir call couldn't
3477 * return. lseek aka telldir automagically resets f_version to 0.
3478 */
3479 ns = inode->i_sb->s_fs_info;
3480 tid = (int)file->f_version;
3481 file->f_version = 0;
3482 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3483 task;
3484 task = next_tid(task), ctx->pos++) {
3485 char name[PROC_NUMBUF];
3486 int len;
3487 tid = task_pid_nr_ns(task, ns);
3488 len = snprintf(name, sizeof(name), "%d", tid);
3489 if (!proc_fill_cache(file, ctx, name, len,
3490 proc_task_instantiate, task, NULL)) {
3491 /* returning this tgid failed, save it as the first
3492 * pid for the next readir call */
3493 file->f_version = (u64)tid;
3494 put_task_struct(task);
3495 break;
3496 }
3497 }
3498
3499 return 0;
3500 }
3501
3502 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3503 {
3504 struct inode *inode = d_inode(dentry);
3505 struct task_struct *p = get_proc_task(inode);
3506 generic_fillattr(inode, stat);
3507
3508 if (p) {
3509 stat->nlink += get_nr_threads(p);
3510 put_task_struct(p);
3511 }
3512
3513 return 0;
3514 }
3515
3516 static const struct inode_operations proc_task_inode_operations = {
3517 .lookup = proc_task_lookup,
3518 .getattr = proc_task_getattr,
3519 .setattr = proc_setattr,
3520 .permission = proc_pid_permission,
3521 };
3522
3523 static const struct file_operations proc_task_operations = {
3524 .read = generic_read_dir,
3525 .iterate_shared = proc_task_readdir,
3526 .llseek = generic_file_llseek,
3527 };
This page took 0.123627 seconds and 6 git commands to generate.