Merge branch 'dock' into release
[deliverable/linux.git] / fs / reiserfs / fix_node.c
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5 /**
6 ** old_item_num
7 ** old_entry_num
8 ** set_entry_sizes
9 ** create_virtual_node
10 ** check_left
11 ** check_right
12 ** directory_part_size
13 ** get_num_ver
14 ** set_parameters
15 ** is_leaf_removable
16 ** are_leaves_removable
17 ** get_empty_nodes
18 ** get_lfree
19 ** get_rfree
20 ** is_left_neighbor_in_cache
21 ** decrement_key
22 ** get_far_parent
23 ** get_parents
24 ** can_node_be_removed
25 ** ip_check_balance
26 ** dc_check_balance_internal
27 ** dc_check_balance_leaf
28 ** dc_check_balance
29 ** check_balance
30 ** get_direct_parent
31 ** get_neighbors
32 ** fix_nodes
33 **
34 **
35 **/
36
37 #include <linux/time.h>
38 #include <linux/string.h>
39 #include <linux/reiserfs_fs.h>
40 #include <linux/buffer_head.h>
41
42 /* To make any changes in the tree we find a node, that contains item
43 to be changed/deleted or position in the node we insert a new item
44 to. We call this node S. To do balancing we need to decide what we
45 will shift to left/right neighbor, or to a new node, where new item
46 will be etc. To make this analysis simpler we build virtual
47 node. Virtual node is an array of items, that will replace items of
48 node S. (For instance if we are going to delete an item, virtual
49 node does not contain it). Virtual node keeps information about
50 item sizes and types, mergeability of first and last items, sizes
51 of all entries in directory item. We use this array of items when
52 calculating what we can shift to neighbors and how many nodes we
53 have to have if we do not any shiftings, if we shift to left/right
54 neighbor or to both. */
55
56 /* taking item number in virtual node, returns number of item, that it has in source buffer */
57 static inline int old_item_num(int new_num, int affected_item_num, int mode)
58 {
59 if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
60 return new_num;
61
62 if (mode == M_INSERT) {
63
64 RFALSE(new_num == 0,
65 "vs-8005: for INSERT mode and item number of inserted item");
66
67 return new_num - 1;
68 }
69
70 RFALSE(mode != M_DELETE,
71 "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
72 mode);
73 /* delete mode */
74 return new_num + 1;
75 }
76
77 static void create_virtual_node(struct tree_balance *tb, int h)
78 {
79 struct item_head *ih;
80 struct virtual_node *vn = tb->tb_vn;
81 int new_num;
82 struct buffer_head *Sh; /* this comes from tb->S[h] */
83
84 Sh = PATH_H_PBUFFER(tb->tb_path, h);
85
86 /* size of changed node */
87 vn->vn_size =
88 MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
89
90 /* for internal nodes array if virtual items is not created */
91 if (h) {
92 vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
93 return;
94 }
95
96 /* number of items in virtual node */
97 vn->vn_nr_item =
98 B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
99 ((vn->vn_mode == M_DELETE) ? 1 : 0);
100
101 /* first virtual item */
102 vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
103 memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
104 vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
105
106 /* first item in the node */
107 ih = B_N_PITEM_HEAD(Sh, 0);
108
109 /* define the mergeability for 0-th item (if it is not being deleted) */
110 if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size)
111 && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
112 vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
113
114 /* go through all items those remain in the virtual node (except for the new (inserted) one) */
115 for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
116 int j;
117 struct virtual_item *vi = vn->vn_vi + new_num;
118 int is_affected =
119 ((new_num != vn->vn_affected_item_num) ? 0 : 1);
120
121 if (is_affected && vn->vn_mode == M_INSERT)
122 continue;
123
124 /* get item number in source node */
125 j = old_item_num(new_num, vn->vn_affected_item_num,
126 vn->vn_mode);
127
128 vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
129 vi->vi_ih = ih + j;
130 vi->vi_item = B_I_PITEM(Sh, ih + j);
131 vi->vi_uarea = vn->vn_free_ptr;
132
133 // FIXME: there is no check, that item operation did not
134 // consume too much memory
135 vn->vn_free_ptr +=
136 op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
137 if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
138 reiserfs_panic(tb->tb_sb, "vs-8030",
139 "virtual node space consumed");
140
141 if (!is_affected)
142 /* this is not being changed */
143 continue;
144
145 if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
146 vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
147 vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted
148 }
149 }
150
151 /* virtual inserted item is not defined yet */
152 if (vn->vn_mode == M_INSERT) {
153 struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
154
155 RFALSE(vn->vn_ins_ih == NULL,
156 "vs-8040: item header of inserted item is not specified");
157 vi->vi_item_len = tb->insert_size[0];
158 vi->vi_ih = vn->vn_ins_ih;
159 vi->vi_item = vn->vn_data;
160 vi->vi_uarea = vn->vn_free_ptr;
161
162 op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
163 tb->insert_size[0]);
164 }
165
166 /* set right merge flag we take right delimiting key and check whether it is a mergeable item */
167 if (tb->CFR[0]) {
168 struct reiserfs_key *key;
169
170 key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]);
171 if (op_is_left_mergeable(key, Sh->b_size)
172 && (vn->vn_mode != M_DELETE
173 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
174 vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
175 VI_TYPE_RIGHT_MERGEABLE;
176
177 #ifdef CONFIG_REISERFS_CHECK
178 if (op_is_left_mergeable(key, Sh->b_size) &&
179 !(vn->vn_mode != M_DELETE
180 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
181 /* we delete last item and it could be merged with right neighbor's first item */
182 if (!
183 (B_NR_ITEMS(Sh) == 1
184 && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0))
185 && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) {
186 /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */
187 print_block(Sh, 0, -1, -1);
188 reiserfs_panic(tb->tb_sb, "vs-8045",
189 "rdkey %k, affected item==%d "
190 "(mode==%c) Must be %c",
191 key, vn->vn_affected_item_num,
192 vn->vn_mode, M_DELETE);
193 }
194 }
195 #endif
196
197 }
198 }
199
200 /* using virtual node check, how many items can be shifted to left
201 neighbor */
202 static void check_left(struct tree_balance *tb, int h, int cur_free)
203 {
204 int i;
205 struct virtual_node *vn = tb->tb_vn;
206 struct virtual_item *vi;
207 int d_size, ih_size;
208
209 RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
210
211 /* internal level */
212 if (h > 0) {
213 tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
214 return;
215 }
216
217 /* leaf level */
218
219 if (!cur_free || !vn->vn_nr_item) {
220 /* no free space or nothing to move */
221 tb->lnum[h] = 0;
222 tb->lbytes = -1;
223 return;
224 }
225
226 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
227 "vs-8055: parent does not exist or invalid");
228
229 vi = vn->vn_vi;
230 if ((unsigned int)cur_free >=
231 (vn->vn_size -
232 ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
233 /* all contents of S[0] fits into L[0] */
234
235 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
236 "vs-8055: invalid mode or balance condition failed");
237
238 tb->lnum[0] = vn->vn_nr_item;
239 tb->lbytes = -1;
240 return;
241 }
242
243 d_size = 0, ih_size = IH_SIZE;
244
245 /* first item may be merge with last item in left neighbor */
246 if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
247 d_size = -((int)IH_SIZE), ih_size = 0;
248
249 tb->lnum[0] = 0;
250 for (i = 0; i < vn->vn_nr_item;
251 i++, ih_size = IH_SIZE, d_size = 0, vi++) {
252 d_size += vi->vi_item_len;
253 if (cur_free >= d_size) {
254 /* the item can be shifted entirely */
255 cur_free -= d_size;
256 tb->lnum[0]++;
257 continue;
258 }
259
260 /* the item cannot be shifted entirely, try to split it */
261 /* check whether L[0] can hold ih and at least one byte of the item body */
262 if (cur_free <= ih_size) {
263 /* cannot shift even a part of the current item */
264 tb->lbytes = -1;
265 return;
266 }
267 cur_free -= ih_size;
268
269 tb->lbytes = op_check_left(vi, cur_free, 0, 0);
270 if (tb->lbytes != -1)
271 /* count partially shifted item */
272 tb->lnum[0]++;
273
274 break;
275 }
276
277 return;
278 }
279
280 /* using virtual node check, how many items can be shifted to right
281 neighbor */
282 static void check_right(struct tree_balance *tb, int h, int cur_free)
283 {
284 int i;
285 struct virtual_node *vn = tb->tb_vn;
286 struct virtual_item *vi;
287 int d_size, ih_size;
288
289 RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
290
291 /* internal level */
292 if (h > 0) {
293 tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
294 return;
295 }
296
297 /* leaf level */
298
299 if (!cur_free || !vn->vn_nr_item) {
300 /* no free space */
301 tb->rnum[h] = 0;
302 tb->rbytes = -1;
303 return;
304 }
305
306 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
307 "vs-8075: parent does not exist or invalid");
308
309 vi = vn->vn_vi + vn->vn_nr_item - 1;
310 if ((unsigned int)cur_free >=
311 (vn->vn_size -
312 ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
313 /* all contents of S[0] fits into R[0] */
314
315 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
316 "vs-8080: invalid mode or balance condition failed");
317
318 tb->rnum[h] = vn->vn_nr_item;
319 tb->rbytes = -1;
320 return;
321 }
322
323 d_size = 0, ih_size = IH_SIZE;
324
325 /* last item may be merge with first item in right neighbor */
326 if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
327 d_size = -(int)IH_SIZE, ih_size = 0;
328
329 tb->rnum[0] = 0;
330 for (i = vn->vn_nr_item - 1; i >= 0;
331 i--, d_size = 0, ih_size = IH_SIZE, vi--) {
332 d_size += vi->vi_item_len;
333 if (cur_free >= d_size) {
334 /* the item can be shifted entirely */
335 cur_free -= d_size;
336 tb->rnum[0]++;
337 continue;
338 }
339
340 /* check whether R[0] can hold ih and at least one byte of the item body */
341 if (cur_free <= ih_size) { /* cannot shift even a part of the current item */
342 tb->rbytes = -1;
343 return;
344 }
345
346 /* R[0] can hold the header of the item and at least one byte of its body */
347 cur_free -= ih_size; /* cur_free is still > 0 */
348
349 tb->rbytes = op_check_right(vi, cur_free);
350 if (tb->rbytes != -1)
351 /* count partially shifted item */
352 tb->rnum[0]++;
353
354 break;
355 }
356
357 return;
358 }
359
360 /*
361 * from - number of items, which are shifted to left neighbor entirely
362 * to - number of item, which are shifted to right neighbor entirely
363 * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor
364 * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */
365 static int get_num_ver(int mode, struct tree_balance *tb, int h,
366 int from, int from_bytes,
367 int to, int to_bytes, short *snum012, int flow)
368 {
369 int i;
370 int cur_free;
371 // int bytes;
372 int units;
373 struct virtual_node *vn = tb->tb_vn;
374 // struct virtual_item * vi;
375
376 int total_node_size, max_node_size, current_item_size;
377 int needed_nodes;
378 int start_item, /* position of item we start filling node from */
379 end_item, /* position of item we finish filling node by */
380 start_bytes, /* number of first bytes (entries for directory) of start_item-th item
381 we do not include into node that is being filled */
382 end_bytes; /* number of last bytes (entries for directory) of end_item-th item
383 we do node include into node that is being filled */
384 int split_item_positions[2]; /* these are positions in virtual item of
385 items, that are split between S[0] and
386 S1new and S1new and S2new */
387
388 split_item_positions[0] = -1;
389 split_item_positions[1] = -1;
390
391 /* We only create additional nodes if we are in insert or paste mode
392 or we are in replace mode at the internal level. If h is 0 and
393 the mode is M_REPLACE then in fix_nodes we change the mode to
394 paste or insert before we get here in the code. */
395 RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
396 "vs-8100: insert_size < 0 in overflow");
397
398 max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
399
400 /* snum012 [0-2] - number of items, that lay
401 to S[0], first new node and second new node */
402 snum012[3] = -1; /* s1bytes */
403 snum012[4] = -1; /* s2bytes */
404
405 /* internal level */
406 if (h > 0) {
407 i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
408 if (i == max_node_size)
409 return 1;
410 return (i / max_node_size + 1);
411 }
412
413 /* leaf level */
414 needed_nodes = 1;
415 total_node_size = 0;
416 cur_free = max_node_size;
417
418 // start from 'from'-th item
419 start_item = from;
420 // skip its first 'start_bytes' units
421 start_bytes = ((from_bytes != -1) ? from_bytes : 0);
422
423 // last included item is the 'end_item'-th one
424 end_item = vn->vn_nr_item - to - 1;
425 // do not count last 'end_bytes' units of 'end_item'-th item
426 end_bytes = (to_bytes != -1) ? to_bytes : 0;
427
428 /* go through all item beginning from the start_item-th item and ending by
429 the end_item-th item. Do not count first 'start_bytes' units of
430 'start_item'-th item and last 'end_bytes' of 'end_item'-th item */
431
432 for (i = start_item; i <= end_item; i++) {
433 struct virtual_item *vi = vn->vn_vi + i;
434 int skip_from_end = ((i == end_item) ? end_bytes : 0);
435
436 RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
437
438 /* get size of current item */
439 current_item_size = vi->vi_item_len;
440
441 /* do not take in calculation head part (from_bytes) of from-th item */
442 current_item_size -=
443 op_part_size(vi, 0 /*from start */ , start_bytes);
444
445 /* do not take in calculation tail part of last item */
446 current_item_size -=
447 op_part_size(vi, 1 /*from end */ , skip_from_end);
448
449 /* if item fits into current node entierly */
450 if (total_node_size + current_item_size <= max_node_size) {
451 snum012[needed_nodes - 1]++;
452 total_node_size += current_item_size;
453 start_bytes = 0;
454 continue;
455 }
456
457 if (current_item_size > max_node_size) {
458 /* virtual item length is longer, than max size of item in
459 a node. It is impossible for direct item */
460 RFALSE(is_direct_le_ih(vi->vi_ih),
461 "vs-8110: "
462 "direct item length is %d. It can not be longer than %d",
463 current_item_size, max_node_size);
464 /* we will try to split it */
465 flow = 1;
466 }
467
468 if (!flow) {
469 /* as we do not split items, take new node and continue */
470 needed_nodes++;
471 i--;
472 total_node_size = 0;
473 continue;
474 }
475 // calculate number of item units which fit into node being
476 // filled
477 {
478 int free_space;
479
480 free_space = max_node_size - total_node_size - IH_SIZE;
481 units =
482 op_check_left(vi, free_space, start_bytes,
483 skip_from_end);
484 if (units == -1) {
485 /* nothing fits into current node, take new node and continue */
486 needed_nodes++, i--, total_node_size = 0;
487 continue;
488 }
489 }
490
491 /* something fits into the current node */
492 //if (snum012[3] != -1 || needed_nodes != 1)
493 // reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required");
494 //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units;
495 start_bytes += units;
496 snum012[needed_nodes - 1 + 3] = units;
497
498 if (needed_nodes > 2)
499 reiserfs_warning(tb->tb_sb, "vs-8111",
500 "split_item_position is out of range");
501 snum012[needed_nodes - 1]++;
502 split_item_positions[needed_nodes - 1] = i;
503 needed_nodes++;
504 /* continue from the same item with start_bytes != -1 */
505 start_item = i;
506 i--;
507 total_node_size = 0;
508 }
509
510 // sum012[4] (if it is not -1) contains number of units of which
511 // are to be in S1new, snum012[3] - to be in S0. They are supposed
512 // to be S1bytes and S2bytes correspondingly, so recalculate
513 if (snum012[4] > 0) {
514 int split_item_num;
515 int bytes_to_r, bytes_to_l;
516 int bytes_to_S1new;
517
518 split_item_num = split_item_positions[1];
519 bytes_to_l =
520 ((from == split_item_num
521 && from_bytes != -1) ? from_bytes : 0);
522 bytes_to_r =
523 ((end_item == split_item_num
524 && end_bytes != -1) ? end_bytes : 0);
525 bytes_to_S1new =
526 ((split_item_positions[0] ==
527 split_item_positions[1]) ? snum012[3] : 0);
528
529 // s2bytes
530 snum012[4] =
531 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
532 bytes_to_r - bytes_to_l - bytes_to_S1new;
533
534 if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
535 vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
536 reiserfs_warning(tb->tb_sb, "vs-8115",
537 "not directory or indirect item");
538 }
539
540 /* now we know S2bytes, calculate S1bytes */
541 if (snum012[3] > 0) {
542 int split_item_num;
543 int bytes_to_r, bytes_to_l;
544 int bytes_to_S2new;
545
546 split_item_num = split_item_positions[0];
547 bytes_to_l =
548 ((from == split_item_num
549 && from_bytes != -1) ? from_bytes : 0);
550 bytes_to_r =
551 ((end_item == split_item_num
552 && end_bytes != -1) ? end_bytes : 0);
553 bytes_to_S2new =
554 ((split_item_positions[0] == split_item_positions[1]
555 && snum012[4] != -1) ? snum012[4] : 0);
556
557 // s1bytes
558 snum012[3] =
559 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
560 bytes_to_r - bytes_to_l - bytes_to_S2new;
561 }
562
563 return needed_nodes;
564 }
565
566
567 /* Set parameters for balancing.
568 * Performs write of results of analysis of balancing into structure tb,
569 * where it will later be used by the functions that actually do the balancing.
570 * Parameters:
571 * tb tree_balance structure;
572 * h current level of the node;
573 * lnum number of items from S[h] that must be shifted to L[h];
574 * rnum number of items from S[h] that must be shifted to R[h];
575 * blk_num number of blocks that S[h] will be splitted into;
576 * s012 number of items that fall into splitted nodes.
577 * lbytes number of bytes which flow to the left neighbor from the item that is not
578 * not shifted entirely
579 * rbytes number of bytes which flow to the right neighbor from the item that is not
580 * not shifted entirely
581 * s1bytes number of bytes which flow to the first new node when S[0] splits (this number is contained in s012 array)
582 */
583
584 static void set_parameters(struct tree_balance *tb, int h, int lnum,
585 int rnum, int blk_num, short *s012, int lb, int rb)
586 {
587
588 tb->lnum[h] = lnum;
589 tb->rnum[h] = rnum;
590 tb->blknum[h] = blk_num;
591
592 if (h == 0) { /* only for leaf level */
593 if (s012 != NULL) {
594 tb->s0num = *s012++,
595 tb->s1num = *s012++, tb->s2num = *s012++;
596 tb->s1bytes = *s012++;
597 tb->s2bytes = *s012;
598 }
599 tb->lbytes = lb;
600 tb->rbytes = rb;
601 }
602 PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
603 PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
604
605 PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
606 PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
607 }
608
609 /* check, does node disappear if we shift tb->lnum[0] items to left
610 neighbor and tb->rnum[0] to the right one. */
611 static int is_leaf_removable(struct tree_balance *tb)
612 {
613 struct virtual_node *vn = tb->tb_vn;
614 int to_left, to_right;
615 int size;
616 int remain_items;
617
618 /* number of items, that will be shifted to left (right) neighbor
619 entirely */
620 to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
621 to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
622 remain_items = vn->vn_nr_item;
623
624 /* how many items remain in S[0] after shiftings to neighbors */
625 remain_items -= (to_left + to_right);
626
627 if (remain_items < 1) {
628 /* all content of node can be shifted to neighbors */
629 set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
630 NULL, -1, -1);
631 return 1;
632 }
633
634 if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
635 /* S[0] is not removable */
636 return 0;
637
638 /* check, whether we can divide 1 remaining item between neighbors */
639
640 /* get size of remaining item (in item units) */
641 size = op_unit_num(&(vn->vn_vi[to_left]));
642
643 if (tb->lbytes + tb->rbytes >= size) {
644 set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
645 tb->lbytes, -1);
646 return 1;
647 }
648
649 return 0;
650 }
651
652 /* check whether L, S, R can be joined in one node */
653 static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
654 {
655 struct virtual_node *vn = tb->tb_vn;
656 int ih_size;
657 struct buffer_head *S0;
658
659 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
660
661 ih_size = 0;
662 if (vn->vn_nr_item) {
663 if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
664 ih_size += IH_SIZE;
665
666 if (vn->vn_vi[vn->vn_nr_item - 1].
667 vi_type & VI_TYPE_RIGHT_MERGEABLE)
668 ih_size += IH_SIZE;
669 } else {
670 /* there was only one item and it will be deleted */
671 struct item_head *ih;
672
673 RFALSE(B_NR_ITEMS(S0) != 1,
674 "vs-8125: item number must be 1: it is %d",
675 B_NR_ITEMS(S0));
676
677 ih = B_N_PITEM_HEAD(S0, 0);
678 if (tb->CFR[0]
679 && !comp_short_le_keys(&(ih->ih_key),
680 B_N_PDELIM_KEY(tb->CFR[0],
681 tb->rkey[0])))
682 if (is_direntry_le_ih(ih)) {
683 /* Directory must be in correct state here: that is
684 somewhere at the left side should exist first directory
685 item. But the item being deleted can not be that first
686 one because its right neighbor is item of the same
687 directory. (But first item always gets deleted in last
688 turn). So, neighbors of deleted item can be merged, so
689 we can save ih_size */
690 ih_size = IH_SIZE;
691
692 /* we might check that left neighbor exists and is of the
693 same directory */
694 RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
695 "vs-8130: first directory item can not be removed until directory is not empty");
696 }
697
698 }
699
700 if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
701 set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
702 PROC_INFO_INC(tb->tb_sb, leaves_removable);
703 return 1;
704 }
705 return 0;
706
707 }
708
709 /* when we do not split item, lnum and rnum are numbers of entire items */
710 #define SET_PAR_SHIFT_LEFT \
711 if (h)\
712 {\
713 int to_l;\
714 \
715 to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
716 (MAX_NR_KEY(Sh) + 1 - lpar);\
717 \
718 set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
719 }\
720 else \
721 {\
722 if (lset==LEFT_SHIFT_FLOW)\
723 set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
724 tb->lbytes, -1);\
725 else\
726 set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
727 -1, -1);\
728 }
729
730 #define SET_PAR_SHIFT_RIGHT \
731 if (h)\
732 {\
733 int to_r;\
734 \
735 to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
736 \
737 set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
738 }\
739 else \
740 {\
741 if (rset==RIGHT_SHIFT_FLOW)\
742 set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
743 -1, tb->rbytes);\
744 else\
745 set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
746 -1, -1);\
747 }
748
749 static void free_buffers_in_tb(struct tree_balance *tb)
750 {
751 int i;
752
753 pathrelse(tb->tb_path);
754
755 for (i = 0; i < MAX_HEIGHT; i++) {
756 brelse(tb->L[i]);
757 brelse(tb->R[i]);
758 brelse(tb->FL[i]);
759 brelse(tb->FR[i]);
760 brelse(tb->CFL[i]);
761 brelse(tb->CFR[i]);
762
763 tb->L[i] = NULL;
764 tb->R[i] = NULL;
765 tb->FL[i] = NULL;
766 tb->FR[i] = NULL;
767 tb->CFL[i] = NULL;
768 tb->CFR[i] = NULL;
769 }
770 }
771
772 /* Get new buffers for storing new nodes that are created while balancing.
773 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
774 * CARRY_ON - schedule didn't occur while the function worked;
775 * NO_DISK_SPACE - no disk space.
776 */
777 /* The function is NOT SCHEDULE-SAFE! */
778 static int get_empty_nodes(struct tree_balance *tb, int h)
779 {
780 struct buffer_head *new_bh,
781 *Sh = PATH_H_PBUFFER(tb->tb_path, h);
782 b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
783 int counter, number_of_freeblk, amount_needed, /* number of needed empty blocks */
784 retval = CARRY_ON;
785 struct super_block *sb = tb->tb_sb;
786
787 /* number_of_freeblk is the number of empty blocks which have been
788 acquired for use by the balancing algorithm minus the number of
789 empty blocks used in the previous levels of the analysis,
790 number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs
791 after empty blocks are acquired, and the balancing analysis is
792 then restarted, amount_needed is the number needed by this level
793 (h) of the balancing analysis.
794
795 Note that for systems with many processes writing, it would be
796 more layout optimal to calculate the total number needed by all
797 levels and then to run reiserfs_new_blocks to get all of them at once. */
798
799 /* Initiate number_of_freeblk to the amount acquired prior to the restart of
800 the analysis or 0 if not restarted, then subtract the amount needed
801 by all of the levels of the tree below h. */
802 /* blknum includes S[h], so we subtract 1 in this calculation */
803 for (counter = 0, number_of_freeblk = tb->cur_blknum;
804 counter < h; counter++)
805 number_of_freeblk -=
806 (tb->blknum[counter]) ? (tb->blknum[counter] -
807 1) : 0;
808
809 /* Allocate missing empty blocks. */
810 /* if Sh == 0 then we are getting a new root */
811 amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
812 /* Amount_needed = the amount that we need more than the amount that we have. */
813 if (amount_needed > number_of_freeblk)
814 amount_needed -= number_of_freeblk;
815 else /* If we have enough already then there is nothing to do. */
816 return CARRY_ON;
817
818 /* No need to check quota - is not allocated for blocks used for formatted nodes */
819 if (reiserfs_new_form_blocknrs(tb, blocknrs,
820 amount_needed) == NO_DISK_SPACE)
821 return NO_DISK_SPACE;
822
823 /* for each blocknumber we just got, get a buffer and stick it on FEB */
824 for (blocknr = blocknrs, counter = 0;
825 counter < amount_needed; blocknr++, counter++) {
826
827 RFALSE(!*blocknr,
828 "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
829
830 new_bh = sb_getblk(sb, *blocknr);
831 RFALSE(buffer_dirty(new_bh) ||
832 buffer_journaled(new_bh) ||
833 buffer_journal_dirty(new_bh),
834 "PAP-8140: journaled or dirty buffer %b for the new block",
835 new_bh);
836
837 /* Put empty buffers into the array. */
838 RFALSE(tb->FEB[tb->cur_blknum],
839 "PAP-8141: busy slot for new buffer");
840
841 set_buffer_journal_new(new_bh);
842 tb->FEB[tb->cur_blknum++] = new_bh;
843 }
844
845 if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
846 retval = REPEAT_SEARCH;
847
848 return retval;
849 }
850
851 /* Get free space of the left neighbor, which is stored in the parent
852 * node of the left neighbor. */
853 static int get_lfree(struct tree_balance *tb, int h)
854 {
855 struct buffer_head *l, *f;
856 int order;
857
858 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
859 (l = tb->FL[h]) == NULL)
860 return 0;
861
862 if (f == l)
863 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
864 else {
865 order = B_NR_ITEMS(l);
866 f = l;
867 }
868
869 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
870 }
871
872 /* Get free space of the right neighbor,
873 * which is stored in the parent node of the right neighbor.
874 */
875 static int get_rfree(struct tree_balance *tb, int h)
876 {
877 struct buffer_head *r, *f;
878 int order;
879
880 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
881 (r = tb->FR[h]) == NULL)
882 return 0;
883
884 if (f == r)
885 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
886 else {
887 order = 0;
888 f = r;
889 }
890
891 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
892
893 }
894
895 /* Check whether left neighbor is in memory. */
896 static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
897 {
898 struct buffer_head *father, *left;
899 struct super_block *sb = tb->tb_sb;
900 b_blocknr_t left_neighbor_blocknr;
901 int left_neighbor_position;
902
903 /* Father of the left neighbor does not exist. */
904 if (!tb->FL[h])
905 return 0;
906
907 /* Calculate father of the node to be balanced. */
908 father = PATH_H_PBUFFER(tb->tb_path, h + 1);
909
910 RFALSE(!father ||
911 !B_IS_IN_TREE(father) ||
912 !B_IS_IN_TREE(tb->FL[h]) ||
913 !buffer_uptodate(father) ||
914 !buffer_uptodate(tb->FL[h]),
915 "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
916 father, tb->FL[h]);
917
918 /* Get position of the pointer to the left neighbor into the left father. */
919 left_neighbor_position = (father == tb->FL[h]) ?
920 tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
921 /* Get left neighbor block number. */
922 left_neighbor_blocknr =
923 B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
924 /* Look for the left neighbor in the cache. */
925 if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
926
927 RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
928 "vs-8170: left neighbor (%b %z) is not in the tree",
929 left, left);
930 put_bh(left);
931 return 1;
932 }
933
934 return 0;
935 }
936
937 #define LEFT_PARENTS 'l'
938 #define RIGHT_PARENTS 'r'
939
940 static void decrement_key(struct cpu_key *key)
941 {
942 // call item specific function for this key
943 item_ops[cpu_key_k_type(key)]->decrement_key(key);
944 }
945
946 /* Calculate far left/right parent of the left/right neighbor of the current node, that
947 * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h].
948 * Calculate left/right common parent of the current node and L[h]/R[h].
949 * Calculate left/right delimiting key position.
950 * Returns: PATH_INCORRECT - path in the tree is not correct;
951 SCHEDULE_OCCURRED - schedule occurred while the function worked;
952 * CARRY_ON - schedule didn't occur while the function worked;
953 */
954 static int get_far_parent(struct tree_balance *tb,
955 int h,
956 struct buffer_head **pfather,
957 struct buffer_head **pcom_father, char c_lr_par)
958 {
959 struct buffer_head *parent;
960 INITIALIZE_PATH(s_path_to_neighbor_father);
961 struct treepath *path = tb->tb_path;
962 struct cpu_key s_lr_father_key;
963 int counter,
964 position = INT_MAX,
965 first_last_position = 0,
966 path_offset = PATH_H_PATH_OFFSET(path, h);
967
968 /* Starting from F[h] go upwards in the tree, and look for the common
969 ancestor of F[h], and its neighbor l/r, that should be obtained. */
970
971 counter = path_offset;
972
973 RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
974 "PAP-8180: invalid path length");
975
976 for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
977 /* Check whether parent of the current buffer in the path is really parent in the tree. */
978 if (!B_IS_IN_TREE
979 (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
980 return REPEAT_SEARCH;
981 /* Check whether position in the parent is correct. */
982 if ((position =
983 PATH_OFFSET_POSITION(path,
984 counter - 1)) >
985 B_NR_ITEMS(parent))
986 return REPEAT_SEARCH;
987 /* Check whether parent at the path really points to the child. */
988 if (B_N_CHILD_NUM(parent, position) !=
989 PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
990 return REPEAT_SEARCH;
991 /* Return delimiting key if position in the parent is not equal to first/last one. */
992 if (c_lr_par == RIGHT_PARENTS)
993 first_last_position = B_NR_ITEMS(parent);
994 if (position != first_last_position) {
995 *pcom_father = parent;
996 get_bh(*pcom_father);
997 /*(*pcom_father = parent)->b_count++; */
998 break;
999 }
1000 }
1001
1002 /* if we are in the root of the tree, then there is no common father */
1003 if (counter == FIRST_PATH_ELEMENT_OFFSET) {
1004 /* Check whether first buffer in the path is the root of the tree. */
1005 if (PATH_OFFSET_PBUFFER
1006 (tb->tb_path,
1007 FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1008 SB_ROOT_BLOCK(tb->tb_sb)) {
1009 *pfather = *pcom_father = NULL;
1010 return CARRY_ON;
1011 }
1012 return REPEAT_SEARCH;
1013 }
1014
1015 RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
1016 "PAP-8185: (%b %z) level too small",
1017 *pcom_father, *pcom_father);
1018
1019 /* Check whether the common parent is locked. */
1020
1021 if (buffer_locked(*pcom_father)) {
1022
1023 /* Release the write lock while the buffer is busy */
1024 reiserfs_write_unlock(tb->tb_sb);
1025 __wait_on_buffer(*pcom_father);
1026 reiserfs_write_lock(tb->tb_sb);
1027 if (FILESYSTEM_CHANGED_TB(tb)) {
1028 brelse(*pcom_father);
1029 return REPEAT_SEARCH;
1030 }
1031 }
1032
1033 /* So, we got common parent of the current node and its left/right neighbor.
1034 Now we are geting the parent of the left/right neighbor. */
1035
1036 /* Form key to get parent of the left/right neighbor. */
1037 le_key2cpu_key(&s_lr_father_key,
1038 B_N_PDELIM_KEY(*pcom_father,
1039 (c_lr_par ==
1040 LEFT_PARENTS) ? (tb->lkey[h - 1] =
1041 position -
1042 1) : (tb->rkey[h -
1043 1] =
1044 position)));
1045
1046 if (c_lr_par == LEFT_PARENTS)
1047 decrement_key(&s_lr_father_key);
1048
1049 if (search_by_key
1050 (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
1051 h + 1) == IO_ERROR)
1052 // path is released
1053 return IO_ERROR;
1054
1055 if (FILESYSTEM_CHANGED_TB(tb)) {
1056 pathrelse(&s_path_to_neighbor_father);
1057 brelse(*pcom_father);
1058 return REPEAT_SEARCH;
1059 }
1060
1061 *pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1062
1063 RFALSE(B_LEVEL(*pfather) != h + 1,
1064 "PAP-8190: (%b %z) level too small", *pfather, *pfather);
1065 RFALSE(s_path_to_neighbor_father.path_length <
1066 FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1067
1068 s_path_to_neighbor_father.path_length--;
1069 pathrelse(&s_path_to_neighbor_father);
1070 return CARRY_ON;
1071 }
1072
1073 /* Get parents of neighbors of node in the path(S[path_offset]) and common parents of
1074 * S[path_offset] and L[path_offset]/R[path_offset]: F[path_offset], FL[path_offset],
1075 * FR[path_offset], CFL[path_offset], CFR[path_offset].
1076 * Calculate numbers of left and right delimiting keys position: lkey[path_offset], rkey[path_offset].
1077 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
1078 * CARRY_ON - schedule didn't occur while the function worked;
1079 */
1080 static int get_parents(struct tree_balance *tb, int h)
1081 {
1082 struct treepath *path = tb->tb_path;
1083 int position,
1084 ret,
1085 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1086 struct buffer_head *curf, *curcf;
1087
1088 /* Current node is the root of the tree or will be root of the tree */
1089 if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1090 /* The root can not have parents.
1091 Release nodes which previously were obtained as parents of the current node neighbors. */
1092 brelse(tb->FL[h]);
1093 brelse(tb->CFL[h]);
1094 brelse(tb->FR[h]);
1095 brelse(tb->CFR[h]);
1096 tb->FL[h] = NULL;
1097 tb->CFL[h] = NULL;
1098 tb->FR[h] = NULL;
1099 tb->CFR[h] = NULL;
1100 return CARRY_ON;
1101 }
1102
1103 /* Get parent FL[path_offset] of L[path_offset]. */
1104 position = PATH_OFFSET_POSITION(path, path_offset - 1);
1105 if (position) {
1106 /* Current node is not the first child of its parent. */
1107 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1108 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1109 get_bh(curf);
1110 get_bh(curf);
1111 tb->lkey[h] = position - 1;
1112 } else {
1113 /* Calculate current parent of L[path_offset], which is the left neighbor of the current node.
1114 Calculate current common parent of L[path_offset] and the current node. Note that
1115 CFL[path_offset] not equal FL[path_offset] and CFL[path_offset] not equal F[path_offset].
1116 Calculate lkey[path_offset]. */
1117 if ((ret = get_far_parent(tb, h + 1, &curf,
1118 &curcf,
1119 LEFT_PARENTS)) != CARRY_ON)
1120 return ret;
1121 }
1122
1123 brelse(tb->FL[h]);
1124 tb->FL[h] = curf; /* New initialization of FL[h]. */
1125 brelse(tb->CFL[h]);
1126 tb->CFL[h] = curcf; /* New initialization of CFL[h]. */
1127
1128 RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1129 (curcf && !B_IS_IN_TREE(curcf)),
1130 "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
1131
1132 /* Get parent FR[h] of R[h]. */
1133
1134 /* Current node is the last child of F[h]. FR[h] != F[h]. */
1135 if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
1136 /* Calculate current parent of R[h], which is the right neighbor of F[h].
1137 Calculate current common parent of R[h] and current node. Note that CFR[h]
1138 not equal FR[path_offset] and CFR[h] not equal F[h]. */
1139 if ((ret =
1140 get_far_parent(tb, h + 1, &curf, &curcf,
1141 RIGHT_PARENTS)) != CARRY_ON)
1142 return ret;
1143 } else {
1144 /* Current node is not the last child of its parent F[h]. */
1145 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1146 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1147 get_bh(curf);
1148 get_bh(curf);
1149 tb->rkey[h] = position;
1150 }
1151
1152 brelse(tb->FR[h]);
1153 /* New initialization of FR[path_offset]. */
1154 tb->FR[h] = curf;
1155
1156 brelse(tb->CFR[h]);
1157 /* New initialization of CFR[path_offset]. */
1158 tb->CFR[h] = curcf;
1159
1160 RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1161 (curcf && !B_IS_IN_TREE(curcf)),
1162 "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
1163
1164 return CARRY_ON;
1165 }
1166
1167 /* it is possible to remove node as result of shiftings to
1168 neighbors even when we insert or paste item. */
1169 static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1170 struct tree_balance *tb, int h)
1171 {
1172 struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1173 int levbytes = tb->insert_size[h];
1174 struct item_head *ih;
1175 struct reiserfs_key *r_key = NULL;
1176
1177 ih = B_N_PITEM_HEAD(Sh, 0);
1178 if (tb->CFR[h])
1179 r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]);
1180
1181 if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1182 /* shifting may merge items which might save space */
1183 -
1184 ((!h
1185 && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0)
1186 -
1187 ((!h && r_key
1188 && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1189 + ((h) ? KEY_SIZE : 0)) {
1190 /* node can not be removed */
1191 if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
1192 if (!h)
1193 tb->s0num =
1194 B_NR_ITEMS(Sh) +
1195 ((mode == M_INSERT) ? 1 : 0);
1196 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1197 return NO_BALANCING_NEEDED;
1198 }
1199 }
1200 PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1201 return !NO_BALANCING_NEEDED;
1202 }
1203
1204 /* Check whether current node S[h] is balanced when increasing its size by
1205 * Inserting or Pasting.
1206 * Calculate parameters for balancing for current level h.
1207 * Parameters:
1208 * tb tree_balance structure;
1209 * h current level of the node;
1210 * inum item number in S[h];
1211 * mode i - insert, p - paste;
1212 * Returns: 1 - schedule occurred;
1213 * 0 - balancing for higher levels needed;
1214 * -1 - no balancing for higher levels needed;
1215 * -2 - no disk space.
1216 */
1217 /* ip means Inserting or Pasting */
1218 static int ip_check_balance(struct tree_balance *tb, int h)
1219 {
1220 struct virtual_node *vn = tb->tb_vn;
1221 int levbytes, /* Number of bytes that must be inserted into (value
1222 is negative if bytes are deleted) buffer which
1223 contains node being balanced. The mnemonic is
1224 that the attempted change in node space used level
1225 is levbytes bytes. */
1226 ret;
1227
1228 int lfree, sfree, rfree /* free space in L, S and R */ ;
1229
1230 /* nver is short for number of vertixes, and lnver is the number if
1231 we shift to the left, rnver is the number if we shift to the
1232 right, and lrnver is the number if we shift in both directions.
1233 The goal is to minimize first the number of vertixes, and second,
1234 the number of vertixes whose contents are changed by shifting,
1235 and third the number of uncached vertixes whose contents are
1236 changed by shifting and must be read from disk. */
1237 int nver, lnver, rnver, lrnver;
1238
1239 /* used at leaf level only, S0 = S[0] is the node being balanced,
1240 sInum [ I = 0,1,2 ] is the number of items that will
1241 remain in node SI after balancing. S1 and S2 are new
1242 nodes that might be created. */
1243
1244 /* we perform 8 calls to get_num_ver(). For each call we calculate five parameters.
1245 where 4th parameter is s1bytes and 5th - s2bytes
1246 */
1247 short snum012[40] = { 0, }; /* s0num, s1num, s2num for 8 cases
1248 0,1 - do not shift and do not shift but bottle
1249 2 - shift only whole item to left
1250 3 - shift to left and bottle as much as possible
1251 4,5 - shift to right (whole items and as much as possible
1252 6,7 - shift to both directions (whole items and as much as possible)
1253 */
1254
1255 /* Sh is the node whose balance is currently being checked */
1256 struct buffer_head *Sh;
1257
1258 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1259 levbytes = tb->insert_size[h];
1260
1261 /* Calculate balance parameters for creating new root. */
1262 if (!Sh) {
1263 if (!h)
1264 reiserfs_panic(tb->tb_sb, "vs-8210",
1265 "S[0] can not be 0");
1266 switch (ret = get_empty_nodes(tb, h)) {
1267 case CARRY_ON:
1268 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1269 return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1270
1271 case NO_DISK_SPACE:
1272 case REPEAT_SEARCH:
1273 return ret;
1274 default:
1275 reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
1276 "return value of get_empty_nodes");
1277 }
1278 }
1279
1280 if ((ret = get_parents(tb, h)) != CARRY_ON) /* get parents of S[h] neighbors. */
1281 return ret;
1282
1283 sfree = B_FREE_SPACE(Sh);
1284
1285 /* get free space of neighbors */
1286 rfree = get_rfree(tb, h);
1287 lfree = get_lfree(tb, h);
1288
1289 if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1290 NO_BALANCING_NEEDED)
1291 /* and new item fits into node S[h] without any shifting */
1292 return NO_BALANCING_NEEDED;
1293
1294 create_virtual_node(tb, h);
1295
1296 /*
1297 determine maximal number of items we can shift to the left neighbor (in tb structure)
1298 and the maximal number of bytes that can flow to the left neighbor
1299 from the left most liquid item that cannot be shifted from S[0] entirely (returned value)
1300 */
1301 check_left(tb, h, lfree);
1302
1303 /*
1304 determine maximal number of items we can shift to the right neighbor (in tb structure)
1305 and the maximal number of bytes that can flow to the right neighbor
1306 from the right most liquid item that cannot be shifted from S[0] entirely (returned value)
1307 */
1308 check_right(tb, h, rfree);
1309
1310 /* all contents of internal node S[h] can be moved into its
1311 neighbors, S[h] will be removed after balancing */
1312 if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1313 int to_r;
1314
1315 /* Since we are working on internal nodes, and our internal
1316 nodes have fixed size entries, then we can balance by the
1317 number of items rather than the space they consume. In this
1318 routine we set the left node equal to the right node,
1319 allowing a difference of less than or equal to 1 child
1320 pointer. */
1321 to_r =
1322 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1323 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1324 tb->rnum[h]);
1325 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1326 -1, -1);
1327 return CARRY_ON;
1328 }
1329
1330 /* this checks balance condition, that any two neighboring nodes can not fit in one node */
1331 RFALSE(h &&
1332 (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1333 tb->rnum[h] >= vn->vn_nr_item + 1),
1334 "vs-8220: tree is not balanced on internal level");
1335 RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1336 (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1337 "vs-8225: tree is not balanced on leaf level");
1338
1339 /* all contents of S[0] can be moved into its neighbors
1340 S[0] will be removed after balancing. */
1341 if (!h && is_leaf_removable(tb))
1342 return CARRY_ON;
1343
1344 /* why do we perform this check here rather than earlier??
1345 Answer: we can win 1 node in some cases above. Moreover we
1346 checked it above, when we checked, that S[0] is not removable
1347 in principle */
1348 if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
1349 if (!h)
1350 tb->s0num = vn->vn_nr_item;
1351 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1352 return NO_BALANCING_NEEDED;
1353 }
1354
1355 {
1356 int lpar, rpar, nset, lset, rset, lrset;
1357 /*
1358 * regular overflowing of the node
1359 */
1360
1361 /* get_num_ver works in 2 modes (FLOW & NO_FLOW)
1362 lpar, rpar - number of items we can shift to left/right neighbor (including splitting item)
1363 nset, lset, rset, lrset - shows, whether flowing items give better packing
1364 */
1365 #define FLOW 1
1366 #define NO_FLOW 0 /* do not any splitting */
1367
1368 /* we choose one the following */
1369 #define NOTHING_SHIFT_NO_FLOW 0
1370 #define NOTHING_SHIFT_FLOW 5
1371 #define LEFT_SHIFT_NO_FLOW 10
1372 #define LEFT_SHIFT_FLOW 15
1373 #define RIGHT_SHIFT_NO_FLOW 20
1374 #define RIGHT_SHIFT_FLOW 25
1375 #define LR_SHIFT_NO_FLOW 30
1376 #define LR_SHIFT_FLOW 35
1377
1378 lpar = tb->lnum[h];
1379 rpar = tb->rnum[h];
1380
1381 /* calculate number of blocks S[h] must be split into when
1382 nothing is shifted to the neighbors,
1383 as well as number of items in each part of the split node (s012 numbers),
1384 and number of bytes (s1bytes) of the shared drop which flow to S1 if any */
1385 nset = NOTHING_SHIFT_NO_FLOW;
1386 nver = get_num_ver(vn->vn_mode, tb, h,
1387 0, -1, h ? vn->vn_nr_item : 0, -1,
1388 snum012, NO_FLOW);
1389
1390 if (!h) {
1391 int nver1;
1392
1393 /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */
1394 nver1 = get_num_ver(vn->vn_mode, tb, h,
1395 0, -1, 0, -1,
1396 snum012 + NOTHING_SHIFT_FLOW, FLOW);
1397 if (nver > nver1)
1398 nset = NOTHING_SHIFT_FLOW, nver = nver1;
1399 }
1400
1401 /* calculate number of blocks S[h] must be split into when
1402 l_shift_num first items and l_shift_bytes of the right most
1403 liquid item to be shifted are shifted to the left neighbor,
1404 as well as number of items in each part of the splitted node (s012 numbers),
1405 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1406 */
1407 lset = LEFT_SHIFT_NO_FLOW;
1408 lnver = get_num_ver(vn->vn_mode, tb, h,
1409 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1410 -1, h ? vn->vn_nr_item : 0, -1,
1411 snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1412 if (!h) {
1413 int lnver1;
1414
1415 lnver1 = get_num_ver(vn->vn_mode, tb, h,
1416 lpar -
1417 ((tb->lbytes != -1) ? 1 : 0),
1418 tb->lbytes, 0, -1,
1419 snum012 + LEFT_SHIFT_FLOW, FLOW);
1420 if (lnver > lnver1)
1421 lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1422 }
1423
1424 /* calculate number of blocks S[h] must be split into when
1425 r_shift_num first items and r_shift_bytes of the left most
1426 liquid item to be shifted are shifted to the right neighbor,
1427 as well as number of items in each part of the splitted node (s012 numbers),
1428 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1429 */
1430 rset = RIGHT_SHIFT_NO_FLOW;
1431 rnver = get_num_ver(vn->vn_mode, tb, h,
1432 0, -1,
1433 h ? (vn->vn_nr_item - rpar) : (rpar -
1434 ((tb->
1435 rbytes !=
1436 -1) ? 1 :
1437 0)), -1,
1438 snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1439 if (!h) {
1440 int rnver1;
1441
1442 rnver1 = get_num_ver(vn->vn_mode, tb, h,
1443 0, -1,
1444 (rpar -
1445 ((tb->rbytes != -1) ? 1 : 0)),
1446 tb->rbytes,
1447 snum012 + RIGHT_SHIFT_FLOW, FLOW);
1448
1449 if (rnver > rnver1)
1450 rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1451 }
1452
1453 /* calculate number of blocks S[h] must be split into when
1454 items are shifted in both directions,
1455 as well as number of items in each part of the splitted node (s012 numbers),
1456 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1457 */
1458 lrset = LR_SHIFT_NO_FLOW;
1459 lrnver = get_num_ver(vn->vn_mode, tb, h,
1460 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1461 -1,
1462 h ? (vn->vn_nr_item - rpar) : (rpar -
1463 ((tb->
1464 rbytes !=
1465 -1) ? 1 :
1466 0)), -1,
1467 snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1468 if (!h) {
1469 int lrnver1;
1470
1471 lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1472 lpar -
1473 ((tb->lbytes != -1) ? 1 : 0),
1474 tb->lbytes,
1475 (rpar -
1476 ((tb->rbytes != -1) ? 1 : 0)),
1477 tb->rbytes,
1478 snum012 + LR_SHIFT_FLOW, FLOW);
1479 if (lrnver > lrnver1)
1480 lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1481 }
1482
1483 /* Our general shifting strategy is:
1484 1) to minimized number of new nodes;
1485 2) to minimized number of neighbors involved in shifting;
1486 3) to minimized number of disk reads; */
1487
1488 /* we can win TWO or ONE nodes by shifting in both directions */
1489 if (lrnver < lnver && lrnver < rnver) {
1490 RFALSE(h &&
1491 (tb->lnum[h] != 1 ||
1492 tb->rnum[h] != 1 ||
1493 lrnver != 1 || rnver != 2 || lnver != 2
1494 || h != 1), "vs-8230: bad h");
1495 if (lrset == LR_SHIFT_FLOW)
1496 set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1497 lrnver, snum012 + lrset,
1498 tb->lbytes, tb->rbytes);
1499 else
1500 set_parameters(tb, h,
1501 tb->lnum[h] -
1502 ((tb->lbytes == -1) ? 0 : 1),
1503 tb->rnum[h] -
1504 ((tb->rbytes == -1) ? 0 : 1),
1505 lrnver, snum012 + lrset, -1, -1);
1506
1507 return CARRY_ON;
1508 }
1509
1510 /* if shifting doesn't lead to better packing then don't shift */
1511 if (nver == lrnver) {
1512 set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1513 -1);
1514 return CARRY_ON;
1515 }
1516
1517 /* now we know that for better packing shifting in only one
1518 direction either to the left or to the right is required */
1519
1520 /* if shifting to the left is better than shifting to the right */
1521 if (lnver < rnver) {
1522 SET_PAR_SHIFT_LEFT;
1523 return CARRY_ON;
1524 }
1525
1526 /* if shifting to the right is better than shifting to the left */
1527 if (lnver > rnver) {
1528 SET_PAR_SHIFT_RIGHT;
1529 return CARRY_ON;
1530 }
1531
1532 /* now shifting in either direction gives the same number
1533 of nodes and we can make use of the cached neighbors */
1534 if (is_left_neighbor_in_cache(tb, h)) {
1535 SET_PAR_SHIFT_LEFT;
1536 return CARRY_ON;
1537 }
1538
1539 /* shift to the right independently on whether the right neighbor in cache or not */
1540 SET_PAR_SHIFT_RIGHT;
1541 return CARRY_ON;
1542 }
1543 }
1544
1545 /* Check whether current node S[h] is balanced when Decreasing its size by
1546 * Deleting or Cutting for INTERNAL node of S+tree.
1547 * Calculate parameters for balancing for current level h.
1548 * Parameters:
1549 * tb tree_balance structure;
1550 * h current level of the node;
1551 * inum item number in S[h];
1552 * mode i - insert, p - paste;
1553 * Returns: 1 - schedule occurred;
1554 * 0 - balancing for higher levels needed;
1555 * -1 - no balancing for higher levels needed;
1556 * -2 - no disk space.
1557 *
1558 * Note: Items of internal nodes have fixed size, so the balance condition for
1559 * the internal part of S+tree is as for the B-trees.
1560 */
1561 static int dc_check_balance_internal(struct tree_balance *tb, int h)
1562 {
1563 struct virtual_node *vn = tb->tb_vn;
1564
1565 /* Sh is the node whose balance is currently being checked,
1566 and Fh is its father. */
1567 struct buffer_head *Sh, *Fh;
1568 int maxsize, ret;
1569 int lfree, rfree /* free space in L and R */ ;
1570
1571 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1572 Fh = PATH_H_PPARENT(tb->tb_path, h);
1573
1574 maxsize = MAX_CHILD_SIZE(Sh);
1575
1576 /* using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */
1577 /* new_nr_item = number of items node would have if operation is */
1578 /* performed without balancing (new_nr_item); */
1579 create_virtual_node(tb, h);
1580
1581 if (!Fh) { /* S[h] is the root. */
1582 if (vn->vn_nr_item > 0) {
1583 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1584 return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1585 }
1586 /* new_nr_item == 0.
1587 * Current root will be deleted resulting in
1588 * decrementing the tree height. */
1589 set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1590 return CARRY_ON;
1591 }
1592
1593 if ((ret = get_parents(tb, h)) != CARRY_ON)
1594 return ret;
1595
1596 /* get free space of neighbors */
1597 rfree = get_rfree(tb, h);
1598 lfree = get_lfree(tb, h);
1599
1600 /* determine maximal number of items we can fit into neighbors */
1601 check_left(tb, h, lfree);
1602 check_right(tb, h, rfree);
1603
1604 if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) { /* Balance condition for the internal node is valid.
1605 * In this case we balance only if it leads to better packing. */
1606 if (vn->vn_nr_item == MIN_NR_KEY(Sh)) { /* Here we join S[h] with one of its neighbors,
1607 * which is impossible with greater values of new_nr_item. */
1608 if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1609 /* All contents of S[h] can be moved to L[h]. */
1610 int n;
1611 int order_L;
1612
1613 order_L =
1614 ((n =
1615 PATH_H_B_ITEM_ORDER(tb->tb_path,
1616 h)) ==
1617 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1618 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1619 (DC_SIZE + KEY_SIZE);
1620 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1621 -1);
1622 return CARRY_ON;
1623 }
1624
1625 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1626 /* All contents of S[h] can be moved to R[h]. */
1627 int n;
1628 int order_R;
1629
1630 order_R =
1631 ((n =
1632 PATH_H_B_ITEM_ORDER(tb->tb_path,
1633 h)) ==
1634 B_NR_ITEMS(Fh)) ? 0 : n + 1;
1635 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1636 (DC_SIZE + KEY_SIZE);
1637 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1638 -1);
1639 return CARRY_ON;
1640 }
1641 }
1642
1643 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1644 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1645 int to_r;
1646
1647 to_r =
1648 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1649 tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1650 (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1651 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1652 0, NULL, -1, -1);
1653 return CARRY_ON;
1654 }
1655
1656 /* Balancing does not lead to better packing. */
1657 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1658 return NO_BALANCING_NEEDED;
1659 }
1660
1661 /* Current node contain insufficient number of items. Balancing is required. */
1662 /* Check whether we can merge S[h] with left neighbor. */
1663 if (tb->lnum[h] >= vn->vn_nr_item + 1)
1664 if (is_left_neighbor_in_cache(tb, h)
1665 || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1666 int n;
1667 int order_L;
1668
1669 order_L =
1670 ((n =
1671 PATH_H_B_ITEM_ORDER(tb->tb_path,
1672 h)) ==
1673 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1674 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1675 KEY_SIZE);
1676 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1677 return CARRY_ON;
1678 }
1679
1680 /* Check whether we can merge S[h] with right neighbor. */
1681 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1682 int n;
1683 int order_R;
1684
1685 order_R =
1686 ((n =
1687 PATH_H_B_ITEM_ORDER(tb->tb_path,
1688 h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1689 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1690 KEY_SIZE);
1691 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1692 return CARRY_ON;
1693 }
1694
1695 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1696 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1697 int to_r;
1698
1699 to_r =
1700 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1701 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1702 tb->rnum[h]);
1703 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1704 -1, -1);
1705 return CARRY_ON;
1706 }
1707
1708 /* For internal nodes try to borrow item from a neighbor */
1709 RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1710
1711 /* Borrow one or two items from caching neighbor */
1712 if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1713 int from_l;
1714
1715 from_l =
1716 (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1717 1) / 2 - (vn->vn_nr_item + 1);
1718 set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1719 return CARRY_ON;
1720 }
1721
1722 set_parameters(tb, h, 0,
1723 -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1724 1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1725 return CARRY_ON;
1726 }
1727
1728 /* Check whether current node S[h] is balanced when Decreasing its size by
1729 * Deleting or Truncating for LEAF node of S+tree.
1730 * Calculate parameters for balancing for current level h.
1731 * Parameters:
1732 * tb tree_balance structure;
1733 * h current level of the node;
1734 * inum item number in S[h];
1735 * mode i - insert, p - paste;
1736 * Returns: 1 - schedule occurred;
1737 * 0 - balancing for higher levels needed;
1738 * -1 - no balancing for higher levels needed;
1739 * -2 - no disk space.
1740 */
1741 static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1742 {
1743 struct virtual_node *vn = tb->tb_vn;
1744
1745 /* Number of bytes that must be deleted from
1746 (value is negative if bytes are deleted) buffer which
1747 contains node being balanced. The mnemonic is that the
1748 attempted change in node space used level is levbytes bytes. */
1749 int levbytes;
1750 /* the maximal item size */
1751 int maxsize, ret;
1752 /* S0 is the node whose balance is currently being checked,
1753 and F0 is its father. */
1754 struct buffer_head *S0, *F0;
1755 int lfree, rfree /* free space in L and R */ ;
1756
1757 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1758 F0 = PATH_H_PPARENT(tb->tb_path, 0);
1759
1760 levbytes = tb->insert_size[h];
1761
1762 maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */
1763
1764 if (!F0) { /* S[0] is the root now. */
1765
1766 RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1767 "vs-8240: attempt to create empty buffer tree");
1768
1769 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1770 return NO_BALANCING_NEEDED;
1771 }
1772
1773 if ((ret = get_parents(tb, h)) != CARRY_ON)
1774 return ret;
1775
1776 /* get free space of neighbors */
1777 rfree = get_rfree(tb, h);
1778 lfree = get_lfree(tb, h);
1779
1780 create_virtual_node(tb, h);
1781
1782 /* if 3 leaves can be merge to one, set parameters and return */
1783 if (are_leaves_removable(tb, lfree, rfree))
1784 return CARRY_ON;
1785
1786 /* determine maximal number of items we can shift to the left/right neighbor
1787 and the maximal number of bytes that can flow to the left/right neighbor
1788 from the left/right most liquid item that cannot be shifted from S[0] entirely
1789 */
1790 check_left(tb, h, lfree);
1791 check_right(tb, h, rfree);
1792
1793 /* check whether we can merge S with left neighbor. */
1794 if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1795 if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */
1796 !tb->FR[h]) {
1797
1798 RFALSE(!tb->FL[h],
1799 "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1800
1801 /* set parameter to merge S[0] with its left neighbor */
1802 set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1803 return CARRY_ON;
1804 }
1805
1806 /* check whether we can merge S[0] with right neighbor. */
1807 if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
1808 set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
1809 return CARRY_ON;
1810 }
1811
1812 /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */
1813 if (is_leaf_removable(tb))
1814 return CARRY_ON;
1815
1816 /* Balancing is not required. */
1817 tb->s0num = vn->vn_nr_item;
1818 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1819 return NO_BALANCING_NEEDED;
1820 }
1821
1822 /* Check whether current node S[h] is balanced when Decreasing its size by
1823 * Deleting or Cutting.
1824 * Calculate parameters for balancing for current level h.
1825 * Parameters:
1826 * tb tree_balance structure;
1827 * h current level of the node;
1828 * inum item number in S[h];
1829 * mode d - delete, c - cut.
1830 * Returns: 1 - schedule occurred;
1831 * 0 - balancing for higher levels needed;
1832 * -1 - no balancing for higher levels needed;
1833 * -2 - no disk space.
1834 */
1835 static int dc_check_balance(struct tree_balance *tb, int h)
1836 {
1837 RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
1838 "vs-8250: S is not initialized");
1839
1840 if (h)
1841 return dc_check_balance_internal(tb, h);
1842 else
1843 return dc_check_balance_leaf(tb, h);
1844 }
1845
1846 /* Check whether current node S[h] is balanced.
1847 * Calculate parameters for balancing for current level h.
1848 * Parameters:
1849 *
1850 * tb tree_balance structure:
1851 *
1852 * tb is a large structure that must be read about in the header file
1853 * at the same time as this procedure if the reader is to successfully
1854 * understand this procedure
1855 *
1856 * h current level of the node;
1857 * inum item number in S[h];
1858 * mode i - insert, p - paste, d - delete, c - cut.
1859 * Returns: 1 - schedule occurred;
1860 * 0 - balancing for higher levels needed;
1861 * -1 - no balancing for higher levels needed;
1862 * -2 - no disk space.
1863 */
1864 static int check_balance(int mode,
1865 struct tree_balance *tb,
1866 int h,
1867 int inum,
1868 int pos_in_item,
1869 struct item_head *ins_ih, const void *data)
1870 {
1871 struct virtual_node *vn;
1872
1873 vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
1874 vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
1875 vn->vn_mode = mode;
1876 vn->vn_affected_item_num = inum;
1877 vn->vn_pos_in_item = pos_in_item;
1878 vn->vn_ins_ih = ins_ih;
1879 vn->vn_data = data;
1880
1881 RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
1882 "vs-8255: ins_ih can not be 0 in insert mode");
1883
1884 if (tb->insert_size[h] > 0)
1885 /* Calculate balance parameters when size of node is increasing. */
1886 return ip_check_balance(tb, h);
1887
1888 /* Calculate balance parameters when size of node is decreasing. */
1889 return dc_check_balance(tb, h);
1890 }
1891
1892 /* Check whether parent at the path is the really parent of the current node.*/
1893 static int get_direct_parent(struct tree_balance *tb, int h)
1894 {
1895 struct buffer_head *bh;
1896 struct treepath *path = tb->tb_path;
1897 int position,
1898 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1899
1900 /* We are in the root or in the new root. */
1901 if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1902
1903 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
1904 "PAP-8260: invalid offset in the path");
1905
1906 if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
1907 b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
1908 /* Root is not changed. */
1909 PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
1910 PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
1911 return CARRY_ON;
1912 }
1913 return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */
1914 }
1915
1916 if (!B_IS_IN_TREE
1917 (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
1918 return REPEAT_SEARCH; /* Parent in the path is not in the tree. */
1919
1920 if ((position =
1921 PATH_OFFSET_POSITION(path,
1922 path_offset - 1)) > B_NR_ITEMS(bh))
1923 return REPEAT_SEARCH;
1924
1925 if (B_N_CHILD_NUM(bh, position) !=
1926 PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
1927 /* Parent in the path is not parent of the current node in the tree. */
1928 return REPEAT_SEARCH;
1929
1930 if (buffer_locked(bh)) {
1931 reiserfs_write_unlock(tb->tb_sb);
1932 __wait_on_buffer(bh);
1933 reiserfs_write_lock(tb->tb_sb);
1934 if (FILESYSTEM_CHANGED_TB(tb))
1935 return REPEAT_SEARCH;
1936 }
1937
1938 return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node. */
1939 }
1940
1941 /* Using lnum[h] and rnum[h] we should determine what neighbors
1942 * of S[h] we
1943 * need in order to balance S[h], and get them if necessary.
1944 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
1945 * CARRY_ON - schedule didn't occur while the function worked;
1946 */
1947 static int get_neighbors(struct tree_balance *tb, int h)
1948 {
1949 int child_position,
1950 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
1951 unsigned long son_number;
1952 struct super_block *sb = tb->tb_sb;
1953 struct buffer_head *bh;
1954
1955 PROC_INFO_INC(sb, get_neighbors[h]);
1956
1957 if (tb->lnum[h]) {
1958 /* We need left neighbor to balance S[h]. */
1959 PROC_INFO_INC(sb, need_l_neighbor[h]);
1960 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
1961
1962 RFALSE(bh == tb->FL[h] &&
1963 !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
1964 "PAP-8270: invalid position in the parent");
1965
1966 child_position =
1967 (bh ==
1968 tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
1969 FL[h]);
1970 son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
1971 reiserfs_write_unlock(sb);
1972 bh = sb_bread(sb, son_number);
1973 reiserfs_write_lock(sb);
1974 if (!bh)
1975 return IO_ERROR;
1976 if (FILESYSTEM_CHANGED_TB(tb)) {
1977 brelse(bh);
1978 PROC_INFO_INC(sb, get_neighbors_restart[h]);
1979 return REPEAT_SEARCH;
1980 }
1981
1982 RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
1983 child_position > B_NR_ITEMS(tb->FL[h]) ||
1984 B_N_CHILD_NUM(tb->FL[h], child_position) !=
1985 bh->b_blocknr, "PAP-8275: invalid parent");
1986 RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
1987 RFALSE(!h &&
1988 B_FREE_SPACE(bh) !=
1989 MAX_CHILD_SIZE(bh) -
1990 dc_size(B_N_CHILD(tb->FL[0], child_position)),
1991 "PAP-8290: invalid child size of left neighbor");
1992
1993 brelse(tb->L[h]);
1994 tb->L[h] = bh;
1995 }
1996
1997 /* We need right neighbor to balance S[path_offset]. */
1998 if (tb->rnum[h]) { /* We need right neighbor to balance S[path_offset]. */
1999 PROC_INFO_INC(sb, need_r_neighbor[h]);
2000 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2001
2002 RFALSE(bh == tb->FR[h] &&
2003 PATH_OFFSET_POSITION(tb->tb_path,
2004 path_offset) >=
2005 B_NR_ITEMS(bh),
2006 "PAP-8295: invalid position in the parent");
2007
2008 child_position =
2009 (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
2010 son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
2011 reiserfs_write_unlock(sb);
2012 bh = sb_bread(sb, son_number);
2013 reiserfs_write_lock(sb);
2014 if (!bh)
2015 return IO_ERROR;
2016 if (FILESYSTEM_CHANGED_TB(tb)) {
2017 brelse(bh);
2018 PROC_INFO_INC(sb, get_neighbors_restart[h]);
2019 return REPEAT_SEARCH;
2020 }
2021 brelse(tb->R[h]);
2022 tb->R[h] = bh;
2023
2024 RFALSE(!h
2025 && B_FREE_SPACE(bh) !=
2026 MAX_CHILD_SIZE(bh) -
2027 dc_size(B_N_CHILD(tb->FR[0], child_position)),
2028 "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2029 B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
2030 dc_size(B_N_CHILD(tb->FR[0], child_position)));
2031
2032 }
2033 return CARRY_ON;
2034 }
2035
2036 static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
2037 {
2038 int max_num_of_items;
2039 int max_num_of_entries;
2040 unsigned long blocksize = sb->s_blocksize;
2041
2042 #define MIN_NAME_LEN 1
2043
2044 max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2045 max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2046 (DEH_SIZE + MIN_NAME_LEN);
2047
2048 return sizeof(struct virtual_node) +
2049 max(max_num_of_items * sizeof(struct virtual_item),
2050 sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2051 (max_num_of_entries - 1) * sizeof(__u16));
2052 }
2053
2054 /* maybe we should fail balancing we are going to perform when kmalloc
2055 fails several times. But now it will loop until kmalloc gets
2056 required memory */
2057 static int get_mem_for_virtual_node(struct tree_balance *tb)
2058 {
2059 int check_fs = 0;
2060 int size;
2061 char *buf;
2062
2063 size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2064
2065 if (size > tb->vn_buf_size) {
2066 /* we have to allocate more memory for virtual node */
2067 if (tb->vn_buf) {
2068 /* free memory allocated before */
2069 kfree(tb->vn_buf);
2070 /* this is not needed if kfree is atomic */
2071 check_fs = 1;
2072 }
2073
2074 /* virtual node requires now more memory */
2075 tb->vn_buf_size = size;
2076
2077 /* get memory for virtual item */
2078 buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
2079 if (!buf) {
2080 /* getting memory with GFP_KERNEL priority may involve
2081 balancing now (due to indirect_to_direct conversion on
2082 dcache shrinking). So, release path and collected
2083 resources here */
2084 free_buffers_in_tb(tb);
2085 buf = kmalloc(size, GFP_NOFS);
2086 if (!buf) {
2087 tb->vn_buf_size = 0;
2088 }
2089 tb->vn_buf = buf;
2090 schedule();
2091 return REPEAT_SEARCH;
2092 }
2093
2094 tb->vn_buf = buf;
2095 }
2096
2097 if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2098 return REPEAT_SEARCH;
2099
2100 return CARRY_ON;
2101 }
2102
2103 #ifdef CONFIG_REISERFS_CHECK
2104 static void tb_buffer_sanity_check(struct super_block *sb,
2105 struct buffer_head *bh,
2106 const char *descr, int level)
2107 {
2108 if (bh) {
2109 if (atomic_read(&(bh->b_count)) <= 0)
2110
2111 reiserfs_panic(sb, "jmacd-1", "negative or zero "
2112 "reference counter for buffer %s[%d] "
2113 "(%b)", descr, level, bh);
2114
2115 if (!buffer_uptodate(bh))
2116 reiserfs_panic(sb, "jmacd-2", "buffer is not up "
2117 "to date %s[%d] (%b)",
2118 descr, level, bh);
2119
2120 if (!B_IS_IN_TREE(bh))
2121 reiserfs_panic(sb, "jmacd-3", "buffer is not "
2122 "in tree %s[%d] (%b)",
2123 descr, level, bh);
2124
2125 if (bh->b_bdev != sb->s_bdev)
2126 reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
2127 "device %s[%d] (%b)",
2128 descr, level, bh);
2129
2130 if (bh->b_size != sb->s_blocksize)
2131 reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
2132 "blocksize %s[%d] (%b)",
2133 descr, level, bh);
2134
2135 if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
2136 reiserfs_panic(sb, "jmacd-6", "buffer block "
2137 "number too high %s[%d] (%b)",
2138 descr, level, bh);
2139 }
2140 }
2141 #else
2142 static void tb_buffer_sanity_check(struct super_block *sb,
2143 struct buffer_head *bh,
2144 const char *descr, int level)
2145 {;
2146 }
2147 #endif
2148
2149 static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2150 {
2151 return reiserfs_prepare_for_journal(s, bh, 0);
2152 }
2153
2154 static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
2155 {
2156 struct buffer_head *locked;
2157 #ifdef CONFIG_REISERFS_CHECK
2158 int repeat_counter = 0;
2159 #endif
2160 int i;
2161
2162 do {
2163
2164 locked = NULL;
2165
2166 for (i = tb->tb_path->path_length;
2167 !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
2168 if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
2169 /* if I understand correctly, we can only be sure the last buffer
2170 ** in the path is in the tree --clm
2171 */
2172 #ifdef CONFIG_REISERFS_CHECK
2173 if (PATH_PLAST_BUFFER(tb->tb_path) ==
2174 PATH_OFFSET_PBUFFER(tb->tb_path, i))
2175 tb_buffer_sanity_check(tb->tb_sb,
2176 PATH_OFFSET_PBUFFER
2177 (tb->tb_path,
2178 i), "S",
2179 tb->tb_path->
2180 path_length - i);
2181 #endif
2182 if (!clear_all_dirty_bits(tb->tb_sb,
2183 PATH_OFFSET_PBUFFER
2184 (tb->tb_path,
2185 i))) {
2186 locked =
2187 PATH_OFFSET_PBUFFER(tb->tb_path,
2188 i);
2189 }
2190 }
2191 }
2192
2193 for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
2194 i++) {
2195
2196 if (tb->lnum[i]) {
2197
2198 if (tb->L[i]) {
2199 tb_buffer_sanity_check(tb->tb_sb,
2200 tb->L[i],
2201 "L", i);
2202 if (!clear_all_dirty_bits
2203 (tb->tb_sb, tb->L[i]))
2204 locked = tb->L[i];
2205 }
2206
2207 if (!locked && tb->FL[i]) {
2208 tb_buffer_sanity_check(tb->tb_sb,
2209 tb->FL[i],
2210 "FL", i);
2211 if (!clear_all_dirty_bits
2212 (tb->tb_sb, tb->FL[i]))
2213 locked = tb->FL[i];
2214 }
2215
2216 if (!locked && tb->CFL[i]) {
2217 tb_buffer_sanity_check(tb->tb_sb,
2218 tb->CFL[i],
2219 "CFL", i);
2220 if (!clear_all_dirty_bits
2221 (tb->tb_sb, tb->CFL[i]))
2222 locked = tb->CFL[i];
2223 }
2224
2225 }
2226
2227 if (!locked && (tb->rnum[i])) {
2228
2229 if (tb->R[i]) {
2230 tb_buffer_sanity_check(tb->tb_sb,
2231 tb->R[i],
2232 "R", i);
2233 if (!clear_all_dirty_bits
2234 (tb->tb_sb, tb->R[i]))
2235 locked = tb->R[i];
2236 }
2237
2238 if (!locked && tb->FR[i]) {
2239 tb_buffer_sanity_check(tb->tb_sb,
2240 tb->FR[i],
2241 "FR", i);
2242 if (!clear_all_dirty_bits
2243 (tb->tb_sb, tb->FR[i]))
2244 locked = tb->FR[i];
2245 }
2246
2247 if (!locked && tb->CFR[i]) {
2248 tb_buffer_sanity_check(tb->tb_sb,
2249 tb->CFR[i],
2250 "CFR", i);
2251 if (!clear_all_dirty_bits
2252 (tb->tb_sb, tb->CFR[i]))
2253 locked = tb->CFR[i];
2254 }
2255 }
2256 }
2257 /* as far as I can tell, this is not required. The FEB list seems
2258 ** to be full of newly allocated nodes, which will never be locked,
2259 ** dirty, or anything else.
2260 ** To be safe, I'm putting in the checks and waits in. For the moment,
2261 ** they are needed to keep the code in journal.c from complaining
2262 ** about the buffer. That code is inside CONFIG_REISERFS_CHECK as well.
2263 ** --clm
2264 */
2265 for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
2266 if (tb->FEB[i]) {
2267 if (!clear_all_dirty_bits
2268 (tb->tb_sb, tb->FEB[i]))
2269 locked = tb->FEB[i];
2270 }
2271 }
2272
2273 if (locked) {
2274 #ifdef CONFIG_REISERFS_CHECK
2275 repeat_counter++;
2276 if ((repeat_counter % 10000) == 0) {
2277 reiserfs_warning(tb->tb_sb, "reiserfs-8200",
2278 "too many iterations waiting "
2279 "for buffer to unlock "
2280 "(%b)", locked);
2281
2282 /* Don't loop forever. Try to recover from possible error. */
2283
2284 return (FILESYSTEM_CHANGED_TB(tb)) ?
2285 REPEAT_SEARCH : CARRY_ON;
2286 }
2287 #endif
2288 reiserfs_write_unlock(tb->tb_sb);
2289 __wait_on_buffer(locked);
2290 reiserfs_write_lock(tb->tb_sb);
2291 if (FILESYSTEM_CHANGED_TB(tb))
2292 return REPEAT_SEARCH;
2293 }
2294
2295 } while (locked);
2296
2297 return CARRY_ON;
2298 }
2299
2300 /* Prepare for balancing, that is
2301 * get all necessary parents, and neighbors;
2302 * analyze what and where should be moved;
2303 * get sufficient number of new nodes;
2304 * Balancing will start only after all resources will be collected at a time.
2305 *
2306 * When ported to SMP kernels, only at the last moment after all needed nodes
2307 * are collected in cache, will the resources be locked using the usual
2308 * textbook ordered lock acquisition algorithms. Note that ensuring that
2309 * this code neither write locks what it does not need to write lock nor locks out of order
2310 * will be a pain in the butt that could have been avoided. Grumble grumble. -Hans
2311 *
2312 * fix is meant in the sense of render unchanging
2313 *
2314 * Latency might be improved by first gathering a list of what buffers are needed
2315 * and then getting as many of them in parallel as possible? -Hans
2316 *
2317 * Parameters:
2318 * op_mode i - insert, d - delete, c - cut (truncate), p - paste (append)
2319 * tb tree_balance structure;
2320 * inum item number in S[h];
2321 * pos_in_item - comment this if you can
2322 * ins_ih item head of item being inserted
2323 * data inserted item or data to be pasted
2324 * Returns: 1 - schedule occurred while the function worked;
2325 * 0 - schedule didn't occur while the function worked;
2326 * -1 - if no_disk_space
2327 */
2328
2329 int fix_nodes(int op_mode, struct tree_balance *tb,
2330 struct item_head *ins_ih, const void *data)
2331 {
2332 int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
2333 int pos_in_item;
2334
2335 /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared
2336 ** during wait_tb_buffers_run
2337 */
2338 int wait_tb_buffers_run = 0;
2339 struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
2340
2341 ++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
2342
2343 pos_in_item = tb->tb_path->pos_in_item;
2344
2345 tb->fs_gen = get_generation(tb->tb_sb);
2346
2347 /* we prepare and log the super here so it will already be in the
2348 ** transaction when do_balance needs to change it.
2349 ** This way do_balance won't have to schedule when trying to prepare
2350 ** the super for logging
2351 */
2352 reiserfs_prepare_for_journal(tb->tb_sb,
2353 SB_BUFFER_WITH_SB(tb->tb_sb), 1);
2354 journal_mark_dirty(tb->transaction_handle, tb->tb_sb,
2355 SB_BUFFER_WITH_SB(tb->tb_sb));
2356 if (FILESYSTEM_CHANGED_TB(tb))
2357 return REPEAT_SEARCH;
2358
2359 /* if it possible in indirect_to_direct conversion */
2360 if (buffer_locked(tbS0)) {
2361 reiserfs_write_unlock(tb->tb_sb);
2362 __wait_on_buffer(tbS0);
2363 reiserfs_write_lock(tb->tb_sb);
2364 if (FILESYSTEM_CHANGED_TB(tb))
2365 return REPEAT_SEARCH;
2366 }
2367 #ifdef CONFIG_REISERFS_CHECK
2368 if (REISERFS_SB(tb->tb_sb)->cur_tb) {
2369 print_cur_tb("fix_nodes");
2370 reiserfs_panic(tb->tb_sb, "PAP-8305",
2371 "there is pending do_balance");
2372 }
2373
2374 if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
2375 reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
2376 "not uptodate at the beginning of fix_nodes "
2377 "or not in tree (mode %c)",
2378 tbS0, tbS0, op_mode);
2379
2380 /* Check parameters. */
2381 switch (op_mode) {
2382 case M_INSERT:
2383 if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
2384 reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
2385 "item number %d (in S0 - %d) in case "
2386 "of insert", item_num,
2387 B_NR_ITEMS(tbS0));
2388 break;
2389 case M_PASTE:
2390 case M_DELETE:
2391 case M_CUT:
2392 if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
2393 print_block(tbS0, 0, -1, -1);
2394 reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
2395 "item number(%d); mode = %c "
2396 "insert_size = %d",
2397 item_num, op_mode,
2398 tb->insert_size[0]);
2399 }
2400 break;
2401 default:
2402 reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
2403 "of operation");
2404 }
2405 #endif
2406
2407 if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
2408 // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat
2409 return REPEAT_SEARCH;
2410
2411 /* Starting from the leaf level; for all levels h of the tree. */
2412 for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
2413 ret = get_direct_parent(tb, h);
2414 if (ret != CARRY_ON)
2415 goto repeat;
2416
2417 ret = check_balance(op_mode, tb, h, item_num,
2418 pos_in_item, ins_ih, data);
2419 if (ret != CARRY_ON) {
2420 if (ret == NO_BALANCING_NEEDED) {
2421 /* No balancing for higher levels needed. */
2422 ret = get_neighbors(tb, h);
2423 if (ret != CARRY_ON)
2424 goto repeat;
2425 if (h != MAX_HEIGHT - 1)
2426 tb->insert_size[h + 1] = 0;
2427 /* ok, analysis and resource gathering are complete */
2428 break;
2429 }
2430 goto repeat;
2431 }
2432
2433 ret = get_neighbors(tb, h);
2434 if (ret != CARRY_ON)
2435 goto repeat;
2436
2437 /* No disk space, or schedule occurred and analysis may be
2438 * invalid and needs to be redone. */
2439 ret = get_empty_nodes(tb, h);
2440 if (ret != CARRY_ON)
2441 goto repeat;
2442
2443 if (!PATH_H_PBUFFER(tb->tb_path, h)) {
2444 /* We have a positive insert size but no nodes exist on this
2445 level, this means that we are creating a new root. */
2446
2447 RFALSE(tb->blknum[h] != 1,
2448 "PAP-8350: creating new empty root");
2449
2450 if (h < MAX_HEIGHT - 1)
2451 tb->insert_size[h + 1] = 0;
2452 } else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
2453 if (tb->blknum[h] > 1) {
2454 /* The tree needs to be grown, so this node S[h]
2455 which is the root node is split into two nodes,
2456 and a new node (S[h+1]) will be created to
2457 become the root node. */
2458
2459 RFALSE(h == MAX_HEIGHT - 1,
2460 "PAP-8355: attempt to create too high of a tree");
2461
2462 tb->insert_size[h + 1] =
2463 (DC_SIZE +
2464 KEY_SIZE) * (tb->blknum[h] - 1) +
2465 DC_SIZE;
2466 } else if (h < MAX_HEIGHT - 1)
2467 tb->insert_size[h + 1] = 0;
2468 } else
2469 tb->insert_size[h + 1] =
2470 (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
2471 }
2472
2473 ret = wait_tb_buffers_until_unlocked(tb);
2474 if (ret == CARRY_ON) {
2475 if (FILESYSTEM_CHANGED_TB(tb)) {
2476 wait_tb_buffers_run = 1;
2477 ret = REPEAT_SEARCH;
2478 goto repeat;
2479 } else {
2480 return CARRY_ON;
2481 }
2482 } else {
2483 wait_tb_buffers_run = 1;
2484 goto repeat;
2485 }
2486
2487 repeat:
2488 // fix_nodes was unable to perform its calculation due to
2489 // filesystem got changed under us, lack of free disk space or i/o
2490 // failure. If the first is the case - the search will be
2491 // repeated. For now - free all resources acquired so far except
2492 // for the new allocated nodes
2493 {
2494 int i;
2495
2496 /* Release path buffers. */
2497 if (wait_tb_buffers_run) {
2498 pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2499 } else {
2500 pathrelse(tb->tb_path);
2501 }
2502 /* brelse all resources collected for balancing */
2503 for (i = 0; i < MAX_HEIGHT; i++) {
2504 if (wait_tb_buffers_run) {
2505 reiserfs_restore_prepared_buffer(tb->tb_sb,
2506 tb->L[i]);
2507 reiserfs_restore_prepared_buffer(tb->tb_sb,
2508 tb->R[i]);
2509 reiserfs_restore_prepared_buffer(tb->tb_sb,
2510 tb->FL[i]);
2511 reiserfs_restore_prepared_buffer(tb->tb_sb,
2512 tb->FR[i]);
2513 reiserfs_restore_prepared_buffer(tb->tb_sb,
2514 tb->
2515 CFL[i]);
2516 reiserfs_restore_prepared_buffer(tb->tb_sb,
2517 tb->
2518 CFR[i]);
2519 }
2520
2521 brelse(tb->L[i]);
2522 brelse(tb->R[i]);
2523 brelse(tb->FL[i]);
2524 brelse(tb->FR[i]);
2525 brelse(tb->CFL[i]);
2526 brelse(tb->CFR[i]);
2527
2528 tb->L[i] = NULL;
2529 tb->R[i] = NULL;
2530 tb->FL[i] = NULL;
2531 tb->FR[i] = NULL;
2532 tb->CFL[i] = NULL;
2533 tb->CFR[i] = NULL;
2534 }
2535
2536 if (wait_tb_buffers_run) {
2537 for (i = 0; i < MAX_FEB_SIZE; i++) {
2538 if (tb->FEB[i])
2539 reiserfs_restore_prepared_buffer
2540 (tb->tb_sb, tb->FEB[i]);
2541 }
2542 }
2543 return ret;
2544 }
2545
2546 }
2547
2548 /* Anatoly will probably forgive me renaming tb to tb. I just
2549 wanted to make lines shorter */
2550 void unfix_nodes(struct tree_balance *tb)
2551 {
2552 int i;
2553
2554 /* Release path buffers. */
2555 pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2556
2557 /* brelse all resources collected for balancing */
2558 for (i = 0; i < MAX_HEIGHT; i++) {
2559 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2560 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2561 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2562 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2563 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2564 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2565
2566 brelse(tb->L[i]);
2567 brelse(tb->R[i]);
2568 brelse(tb->FL[i]);
2569 brelse(tb->FR[i]);
2570 brelse(tb->CFL[i]);
2571 brelse(tb->CFR[i]);
2572 }
2573
2574 /* deal with list of allocated (used and unused) nodes */
2575 for (i = 0; i < MAX_FEB_SIZE; i++) {
2576 if (tb->FEB[i]) {
2577 b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2578 /* de-allocated block which was not used by balancing and
2579 bforget about buffer for it */
2580 brelse(tb->FEB[i]);
2581 reiserfs_free_block(tb->transaction_handle, NULL,
2582 blocknr, 0);
2583 }
2584 if (tb->used[i]) {
2585 /* release used as new nodes including a new root */
2586 brelse(tb->used[i]);
2587 }
2588 }
2589
2590 kfree(tb->vn_buf);
2591
2592 }
This page took 0.113354 seconds and 5 git commands to generate.