Merge branch 'reiserfs/kill-bkl' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / reiserfs / inode.c
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/exportfs.h>
11 #include <linux/smp_lock.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21
22 int reiserfs_commit_write(struct file *f, struct page *page,
23 unsigned from, unsigned to);
24 int reiserfs_prepare_write(struct file *f, struct page *page,
25 unsigned from, unsigned to);
26
27 void reiserfs_delete_inode(struct inode *inode)
28 {
29 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
30 int jbegin_count =
31 JOURNAL_PER_BALANCE_CNT * 2 +
32 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
33 struct reiserfs_transaction_handle th;
34 int depth;
35 int err;
36
37 truncate_inode_pages(&inode->i_data, 0);
38
39 depth = reiserfs_write_lock_once(inode->i_sb);
40
41 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
42 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
43 reiserfs_delete_xattrs(inode);
44
45 if (journal_begin(&th, inode->i_sb, jbegin_count))
46 goto out;
47 reiserfs_update_inode_transaction(inode);
48
49 reiserfs_discard_prealloc(&th, inode);
50
51 err = reiserfs_delete_object(&th, inode);
52
53 /* Do quota update inside a transaction for journaled quotas. We must do that
54 * after delete_object so that quota updates go into the same transaction as
55 * stat data deletion */
56 if (!err)
57 vfs_dq_free_inode(inode);
58
59 if (journal_end(&th, inode->i_sb, jbegin_count))
60 goto out;
61
62 /* check return value from reiserfs_delete_object after
63 * ending the transaction
64 */
65 if (err)
66 goto out;
67
68 /* all items of file are deleted, so we can remove "save" link */
69 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
70 * about an error here */
71 } else {
72 /* no object items are in the tree */
73 ;
74 }
75 out:
76 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */
77 inode->i_blocks = 0;
78 reiserfs_write_unlock_once(inode->i_sb, depth);
79 }
80
81 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
82 __u32 objectid, loff_t offset, int type, int length)
83 {
84 key->version = version;
85
86 key->on_disk_key.k_dir_id = dirid;
87 key->on_disk_key.k_objectid = objectid;
88 set_cpu_key_k_offset(key, offset);
89 set_cpu_key_k_type(key, type);
90 key->key_length = length;
91 }
92
93 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
94 offset and type of key */
95 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
96 int type, int length)
97 {
98 _make_cpu_key(key, get_inode_item_key_version(inode),
99 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
100 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
101 length);
102 }
103
104 //
105 // when key is 0, do not set version and short key
106 //
107 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
108 int version,
109 loff_t offset, int type, int length,
110 int entry_count /*or ih_free_space */ )
111 {
112 if (key) {
113 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
114 ih->ih_key.k_objectid =
115 cpu_to_le32(key->on_disk_key.k_objectid);
116 }
117 put_ih_version(ih, version);
118 set_le_ih_k_offset(ih, offset);
119 set_le_ih_k_type(ih, type);
120 put_ih_item_len(ih, length);
121 /* set_ih_free_space (ih, 0); */
122 // for directory items it is entry count, for directs and stat
123 // datas - 0xffff, for indirects - 0
124 put_ih_entry_count(ih, entry_count);
125 }
126
127 //
128 // FIXME: we might cache recently accessed indirect item
129
130 // Ugh. Not too eager for that....
131 // I cut the code until such time as I see a convincing argument (benchmark).
132 // I don't want a bloated inode struct..., and I don't like code complexity....
133
134 /* cutting the code is fine, since it really isn't in use yet and is easy
135 ** to add back in. But, Vladimir has a really good idea here. Think
136 ** about what happens for reading a file. For each page,
137 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
138 ** an indirect item. This indirect item has X number of pointers, where
139 ** X is a big number if we've done the block allocation right. But,
140 ** we only use one or two of these pointers during each call to readpage,
141 ** needlessly researching again later on.
142 **
143 ** The size of the cache could be dynamic based on the size of the file.
144 **
145 ** I'd also like to see us cache the location the stat data item, since
146 ** we are needlessly researching for that frequently.
147 **
148 ** --chris
149 */
150
151 /* If this page has a file tail in it, and
152 ** it was read in by get_block_create_0, the page data is valid,
153 ** but tail is still sitting in a direct item, and we can't write to
154 ** it. So, look through this page, and check all the mapped buffers
155 ** to make sure they have valid block numbers. Any that don't need
156 ** to be unmapped, so that block_prepare_write will correctly call
157 ** reiserfs_get_block to convert the tail into an unformatted node
158 */
159 static inline void fix_tail_page_for_writing(struct page *page)
160 {
161 struct buffer_head *head, *next, *bh;
162
163 if (page && page_has_buffers(page)) {
164 head = page_buffers(page);
165 bh = head;
166 do {
167 next = bh->b_this_page;
168 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
169 reiserfs_unmap_buffer(bh);
170 }
171 bh = next;
172 } while (bh != head);
173 }
174 }
175
176 /* reiserfs_get_block does not need to allocate a block only if it has been
177 done already or non-hole position has been found in the indirect item */
178 static inline int allocation_needed(int retval, b_blocknr_t allocated,
179 struct item_head *ih,
180 __le32 * item, int pos_in_item)
181 {
182 if (allocated)
183 return 0;
184 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
185 get_block_num(item, pos_in_item))
186 return 0;
187 return 1;
188 }
189
190 static inline int indirect_item_found(int retval, struct item_head *ih)
191 {
192 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
193 }
194
195 static inline void set_block_dev_mapped(struct buffer_head *bh,
196 b_blocknr_t block, struct inode *inode)
197 {
198 map_bh(bh, inode->i_sb, block);
199 }
200
201 //
202 // files which were created in the earlier version can not be longer,
203 // than 2 gb
204 //
205 static int file_capable(struct inode *inode, sector_t block)
206 {
207 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
208 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
209 return 1;
210
211 return 0;
212 }
213
214 static int restart_transaction(struct reiserfs_transaction_handle *th,
215 struct inode *inode, struct treepath *path)
216 {
217 struct super_block *s = th->t_super;
218 int len = th->t_blocks_allocated;
219 int err;
220
221 BUG_ON(!th->t_trans_id);
222 BUG_ON(!th->t_refcount);
223
224 pathrelse(path);
225
226 /* we cannot restart while nested */
227 if (th->t_refcount > 1) {
228 return 0;
229 }
230 reiserfs_update_sd(th, inode);
231 err = journal_end(th, s, len);
232 if (!err) {
233 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
234 if (!err)
235 reiserfs_update_inode_transaction(inode);
236 }
237 return err;
238 }
239
240 // it is called by get_block when create == 0. Returns block number
241 // for 'block'-th logical block of file. When it hits direct item it
242 // returns 0 (being called from bmap) or read direct item into piece
243 // of page (bh_result)
244
245 // Please improve the english/clarity in the comment above, as it is
246 // hard to understand.
247
248 static int _get_block_create_0(struct inode *inode, sector_t block,
249 struct buffer_head *bh_result, int args)
250 {
251 INITIALIZE_PATH(path);
252 struct cpu_key key;
253 struct buffer_head *bh;
254 struct item_head *ih, tmp_ih;
255 b_blocknr_t blocknr;
256 char *p = NULL;
257 int chars;
258 int ret;
259 int result;
260 int done = 0;
261 unsigned long offset;
262
263 // prepare the key to look for the 'block'-th block of file
264 make_cpu_key(&key, inode,
265 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
266 3);
267
268 result = search_for_position_by_key(inode->i_sb, &key, &path);
269 if (result != POSITION_FOUND) {
270 pathrelse(&path);
271 if (p)
272 kunmap(bh_result->b_page);
273 if (result == IO_ERROR)
274 return -EIO;
275 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
276 // That there is some MMAPED data associated with it that is yet to be written to disk.
277 if ((args & GET_BLOCK_NO_HOLE)
278 && !PageUptodate(bh_result->b_page)) {
279 return -ENOENT;
280 }
281 return 0;
282 }
283 //
284 bh = get_last_bh(&path);
285 ih = get_ih(&path);
286 if (is_indirect_le_ih(ih)) {
287 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
288
289 /* FIXME: here we could cache indirect item or part of it in
290 the inode to avoid search_by_key in case of subsequent
291 access to file */
292 blocknr = get_block_num(ind_item, path.pos_in_item);
293 ret = 0;
294 if (blocknr) {
295 map_bh(bh_result, inode->i_sb, blocknr);
296 if (path.pos_in_item ==
297 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
298 set_buffer_boundary(bh_result);
299 }
300 } else
301 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
302 // That there is some MMAPED data associated with it that is yet to be written to disk.
303 if ((args & GET_BLOCK_NO_HOLE)
304 && !PageUptodate(bh_result->b_page)) {
305 ret = -ENOENT;
306 }
307
308 pathrelse(&path);
309 if (p)
310 kunmap(bh_result->b_page);
311 return ret;
312 }
313 // requested data are in direct item(s)
314 if (!(args & GET_BLOCK_READ_DIRECT)) {
315 // we are called by bmap. FIXME: we can not map block of file
316 // when it is stored in direct item(s)
317 pathrelse(&path);
318 if (p)
319 kunmap(bh_result->b_page);
320 return -ENOENT;
321 }
322
323 /* if we've got a direct item, and the buffer or page was uptodate,
324 ** we don't want to pull data off disk again. skip to the
325 ** end, where we map the buffer and return
326 */
327 if (buffer_uptodate(bh_result)) {
328 goto finished;
329 } else
330 /*
331 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
332 ** pages without any buffers. If the page is up to date, we don't want
333 ** read old data off disk. Set the up to date bit on the buffer instead
334 ** and jump to the end
335 */
336 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
337 set_buffer_uptodate(bh_result);
338 goto finished;
339 }
340 // read file tail into part of page
341 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
342 copy_item_head(&tmp_ih, ih);
343
344 /* we only want to kmap if we are reading the tail into the page.
345 ** this is not the common case, so we don't kmap until we are
346 ** sure we need to. But, this means the item might move if
347 ** kmap schedules
348 */
349 if (!p)
350 p = (char *)kmap(bh_result->b_page);
351
352 p += offset;
353 memset(p, 0, inode->i_sb->s_blocksize);
354 do {
355 if (!is_direct_le_ih(ih)) {
356 BUG();
357 }
358 /* make sure we don't read more bytes than actually exist in
359 ** the file. This can happen in odd cases where i_size isn't
360 ** correct, and when direct item padding results in a few
361 ** extra bytes at the end of the direct item
362 */
363 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
364 break;
365 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
366 chars =
367 inode->i_size - (le_ih_k_offset(ih) - 1) -
368 path.pos_in_item;
369 done = 1;
370 } else {
371 chars = ih_item_len(ih) - path.pos_in_item;
372 }
373 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
374
375 if (done)
376 break;
377
378 p += chars;
379
380 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
381 // we done, if read direct item is not the last item of
382 // node FIXME: we could try to check right delimiting key
383 // to see whether direct item continues in the right
384 // neighbor or rely on i_size
385 break;
386
387 // update key to look for the next piece
388 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
389 result = search_for_position_by_key(inode->i_sb, &key, &path);
390 if (result != POSITION_FOUND)
391 // i/o error most likely
392 break;
393 bh = get_last_bh(&path);
394 ih = get_ih(&path);
395 } while (1);
396
397 flush_dcache_page(bh_result->b_page);
398 kunmap(bh_result->b_page);
399
400 finished:
401 pathrelse(&path);
402
403 if (result == IO_ERROR)
404 return -EIO;
405
406 /* this buffer has valid data, but isn't valid for io. mapping it to
407 * block #0 tells the rest of reiserfs it just has a tail in it
408 */
409 map_bh(bh_result, inode->i_sb, 0);
410 set_buffer_uptodate(bh_result);
411 return 0;
412 }
413
414 // this is called to create file map. So, _get_block_create_0 will not
415 // read direct item
416 static int reiserfs_bmap(struct inode *inode, sector_t block,
417 struct buffer_head *bh_result, int create)
418 {
419 if (!file_capable(inode, block))
420 return -EFBIG;
421
422 reiserfs_write_lock(inode->i_sb);
423 /* do not read the direct item */
424 _get_block_create_0(inode, block, bh_result, 0);
425 reiserfs_write_unlock(inode->i_sb);
426 return 0;
427 }
428
429 /* special version of get_block that is only used by grab_tail_page right
430 ** now. It is sent to block_prepare_write, and when you try to get a
431 ** block past the end of the file (or a block from a hole) it returns
432 ** -ENOENT instead of a valid buffer. block_prepare_write expects to
433 ** be able to do i/o on the buffers returned, unless an error value
434 ** is also returned.
435 **
436 ** So, this allows block_prepare_write to be used for reading a single block
437 ** in a page. Where it does not produce a valid page for holes, or past the
438 ** end of the file. This turns out to be exactly what we need for reading
439 ** tails for conversion.
440 **
441 ** The point of the wrapper is forcing a certain value for create, even
442 ** though the VFS layer is calling this function with create==1. If you
443 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
444 ** don't use this function.
445 */
446 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
447 struct buffer_head *bh_result,
448 int create)
449 {
450 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
451 }
452
453 /* This is special helper for reiserfs_get_block in case we are executing
454 direct_IO request. */
455 static int reiserfs_get_blocks_direct_io(struct inode *inode,
456 sector_t iblock,
457 struct buffer_head *bh_result,
458 int create)
459 {
460 int ret;
461
462 bh_result->b_page = NULL;
463
464 /* We set the b_size before reiserfs_get_block call since it is
465 referenced in convert_tail_for_hole() that may be called from
466 reiserfs_get_block() */
467 bh_result->b_size = (1 << inode->i_blkbits);
468
469 ret = reiserfs_get_block(inode, iblock, bh_result,
470 create | GET_BLOCK_NO_DANGLE);
471 if (ret)
472 goto out;
473
474 /* don't allow direct io onto tail pages */
475 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
476 /* make sure future calls to the direct io funcs for this offset
477 ** in the file fail by unmapping the buffer
478 */
479 clear_buffer_mapped(bh_result);
480 ret = -EINVAL;
481 }
482 /* Possible unpacked tail. Flush the data before pages have
483 disappeared */
484 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
485 int err;
486
487 reiserfs_write_lock(inode->i_sb);
488
489 err = reiserfs_commit_for_inode(inode);
490 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
491
492 reiserfs_write_unlock(inode->i_sb);
493
494 if (err < 0)
495 ret = err;
496 }
497 out:
498 return ret;
499 }
500
501 /*
502 ** helper function for when reiserfs_get_block is called for a hole
503 ** but the file tail is still in a direct item
504 ** bh_result is the buffer head for the hole
505 ** tail_offset is the offset of the start of the tail in the file
506 **
507 ** This calls prepare_write, which will start a new transaction
508 ** you should not be in a transaction, or have any paths held when you
509 ** call this.
510 */
511 static int convert_tail_for_hole(struct inode *inode,
512 struct buffer_head *bh_result,
513 loff_t tail_offset)
514 {
515 unsigned long index;
516 unsigned long tail_end;
517 unsigned long tail_start;
518 struct page *tail_page;
519 struct page *hole_page = bh_result->b_page;
520 int retval = 0;
521
522 if ((tail_offset & (bh_result->b_size - 1)) != 1)
523 return -EIO;
524
525 /* always try to read until the end of the block */
526 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
527 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
528
529 index = tail_offset >> PAGE_CACHE_SHIFT;
530 /* hole_page can be zero in case of direct_io, we are sure
531 that we cannot get here if we write with O_DIRECT into
532 tail page */
533 if (!hole_page || index != hole_page->index) {
534 tail_page = grab_cache_page(inode->i_mapping, index);
535 retval = -ENOMEM;
536 if (!tail_page) {
537 goto out;
538 }
539 } else {
540 tail_page = hole_page;
541 }
542
543 /* we don't have to make sure the conversion did not happen while
544 ** we were locking the page because anyone that could convert
545 ** must first take i_mutex.
546 **
547 ** We must fix the tail page for writing because it might have buffers
548 ** that are mapped, but have a block number of 0. This indicates tail
549 ** data that has been read directly into the page, and block_prepare_write
550 ** won't trigger a get_block in this case.
551 */
552 fix_tail_page_for_writing(tail_page);
553 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
554 if (retval)
555 goto unlock;
556
557 /* tail conversion might change the data in the page */
558 flush_dcache_page(tail_page);
559
560 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
561
562 unlock:
563 if (tail_page != hole_page) {
564 unlock_page(tail_page);
565 page_cache_release(tail_page);
566 }
567 out:
568 return retval;
569 }
570
571 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
572 sector_t block,
573 struct inode *inode,
574 b_blocknr_t * allocated_block_nr,
575 struct treepath *path, int flags)
576 {
577 BUG_ON(!th->t_trans_id);
578
579 #ifdef REISERFS_PREALLOCATE
580 if (!(flags & GET_BLOCK_NO_IMUX)) {
581 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
582 path, block);
583 }
584 #endif
585 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
586 block);
587 }
588
589 int reiserfs_get_block(struct inode *inode, sector_t block,
590 struct buffer_head *bh_result, int create)
591 {
592 int repeat, retval = 0;
593 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
594 INITIALIZE_PATH(path);
595 int pos_in_item;
596 struct cpu_key key;
597 struct buffer_head *bh, *unbh = NULL;
598 struct item_head *ih, tmp_ih;
599 __le32 *item;
600 int done;
601 int fs_gen;
602 int lock_depth;
603 struct reiserfs_transaction_handle *th = NULL;
604 /* space reserved in transaction batch:
605 . 3 balancings in direct->indirect conversion
606 . 1 block involved into reiserfs_update_sd()
607 XXX in practically impossible worst case direct2indirect()
608 can incur (much) more than 3 balancings.
609 quota update for user, group */
610 int jbegin_count =
611 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
612 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
613 int version;
614 int dangle = 1;
615 loff_t new_offset =
616 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
617
618 lock_depth = reiserfs_write_lock_once(inode->i_sb);
619 version = get_inode_item_key_version(inode);
620
621 if (!file_capable(inode, block)) {
622 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
623 return -EFBIG;
624 }
625
626 /* if !create, we aren't changing the FS, so we don't need to
627 ** log anything, so we don't need to start a transaction
628 */
629 if (!(create & GET_BLOCK_CREATE)) {
630 int ret;
631 /* find number of block-th logical block of the file */
632 ret = _get_block_create_0(inode, block, bh_result,
633 create | GET_BLOCK_READ_DIRECT);
634 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
635 return ret;
636 }
637 /*
638 * if we're already in a transaction, make sure to close
639 * any new transactions we start in this func
640 */
641 if ((create & GET_BLOCK_NO_DANGLE) ||
642 reiserfs_transaction_running(inode->i_sb))
643 dangle = 0;
644
645 /* If file is of such a size, that it might have a tail and tails are enabled
646 ** we should mark it as possibly needing tail packing on close
647 */
648 if ((have_large_tails(inode->i_sb)
649 && inode->i_size < i_block_size(inode) * 4)
650 || (have_small_tails(inode->i_sb)
651 && inode->i_size < i_block_size(inode)))
652 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
653
654 /* set the key of the first byte in the 'block'-th block of file */
655 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
656 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
657 start_trans:
658 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
659 if (!th) {
660 retval = -ENOMEM;
661 goto failure;
662 }
663 reiserfs_update_inode_transaction(inode);
664 }
665 research:
666
667 retval = search_for_position_by_key(inode->i_sb, &key, &path);
668 if (retval == IO_ERROR) {
669 retval = -EIO;
670 goto failure;
671 }
672
673 bh = get_last_bh(&path);
674 ih = get_ih(&path);
675 item = get_item(&path);
676 pos_in_item = path.pos_in_item;
677
678 fs_gen = get_generation(inode->i_sb);
679 copy_item_head(&tmp_ih, ih);
680
681 if (allocation_needed
682 (retval, allocated_block_nr, ih, item, pos_in_item)) {
683 /* we have to allocate block for the unformatted node */
684 if (!th) {
685 pathrelse(&path);
686 goto start_trans;
687 }
688
689 repeat =
690 _allocate_block(th, block, inode, &allocated_block_nr,
691 &path, create);
692
693 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
694 /* restart the transaction to give the journal a chance to free
695 ** some blocks. releases the path, so we have to go back to
696 ** research if we succeed on the second try
697 */
698 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
699 retval = restart_transaction(th, inode, &path);
700 if (retval)
701 goto failure;
702 repeat =
703 _allocate_block(th, block, inode,
704 &allocated_block_nr, NULL, create);
705
706 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
707 goto research;
708 }
709 if (repeat == QUOTA_EXCEEDED)
710 retval = -EDQUOT;
711 else
712 retval = -ENOSPC;
713 goto failure;
714 }
715
716 if (fs_changed(fs_gen, inode->i_sb)
717 && item_moved(&tmp_ih, &path)) {
718 goto research;
719 }
720 }
721
722 if (indirect_item_found(retval, ih)) {
723 b_blocknr_t unfm_ptr;
724 /* 'block'-th block is in the file already (there is
725 corresponding cell in some indirect item). But it may be
726 zero unformatted node pointer (hole) */
727 unfm_ptr = get_block_num(item, pos_in_item);
728 if (unfm_ptr == 0) {
729 /* use allocated block to plug the hole */
730 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
731 if (fs_changed(fs_gen, inode->i_sb)
732 && item_moved(&tmp_ih, &path)) {
733 reiserfs_restore_prepared_buffer(inode->i_sb,
734 bh);
735 goto research;
736 }
737 set_buffer_new(bh_result);
738 if (buffer_dirty(bh_result)
739 && reiserfs_data_ordered(inode->i_sb))
740 reiserfs_add_ordered_list(inode, bh_result);
741 put_block_num(item, pos_in_item, allocated_block_nr);
742 unfm_ptr = allocated_block_nr;
743 journal_mark_dirty(th, inode->i_sb, bh);
744 reiserfs_update_sd(th, inode);
745 }
746 set_block_dev_mapped(bh_result, unfm_ptr, inode);
747 pathrelse(&path);
748 retval = 0;
749 if (!dangle && th)
750 retval = reiserfs_end_persistent_transaction(th);
751
752 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
753
754 /* the item was found, so new blocks were not added to the file
755 ** there is no need to make sure the inode is updated with this
756 ** transaction
757 */
758 return retval;
759 }
760
761 if (!th) {
762 pathrelse(&path);
763 goto start_trans;
764 }
765
766 /* desired position is not found or is in the direct item. We have
767 to append file with holes up to 'block'-th block converting
768 direct items to indirect one if necessary */
769 done = 0;
770 do {
771 if (is_statdata_le_ih(ih)) {
772 __le32 unp = 0;
773 struct cpu_key tmp_key;
774
775 /* indirect item has to be inserted */
776 make_le_item_head(&tmp_ih, &key, version, 1,
777 TYPE_INDIRECT, UNFM_P_SIZE,
778 0 /* free_space */ );
779
780 if (cpu_key_k_offset(&key) == 1) {
781 /* we are going to add 'block'-th block to the file. Use
782 allocated block for that */
783 unp = cpu_to_le32(allocated_block_nr);
784 set_block_dev_mapped(bh_result,
785 allocated_block_nr, inode);
786 set_buffer_new(bh_result);
787 done = 1;
788 }
789 tmp_key = key; // ;)
790 set_cpu_key_k_offset(&tmp_key, 1);
791 PATH_LAST_POSITION(&path)++;
792
793 retval =
794 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
795 inode, (char *)&unp);
796 if (retval) {
797 reiserfs_free_block(th, inode,
798 allocated_block_nr, 1);
799 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
800 }
801 //mark_tail_converted (inode);
802 } else if (is_direct_le_ih(ih)) {
803 /* direct item has to be converted */
804 loff_t tail_offset;
805
806 tail_offset =
807 ((le_ih_k_offset(ih) -
808 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
809 if (tail_offset == cpu_key_k_offset(&key)) {
810 /* direct item we just found fits into block we have
811 to map. Convert it into unformatted node: use
812 bh_result for the conversion */
813 set_block_dev_mapped(bh_result,
814 allocated_block_nr, inode);
815 unbh = bh_result;
816 done = 1;
817 } else {
818 /* we have to padd file tail stored in direct item(s)
819 up to block size and convert it to unformatted
820 node. FIXME: this should also get into page cache */
821
822 pathrelse(&path);
823 /*
824 * ugly, but we can only end the transaction if
825 * we aren't nested
826 */
827 BUG_ON(!th->t_refcount);
828 if (th->t_refcount == 1) {
829 retval =
830 reiserfs_end_persistent_transaction
831 (th);
832 th = NULL;
833 if (retval)
834 goto failure;
835 }
836
837 retval =
838 convert_tail_for_hole(inode, bh_result,
839 tail_offset);
840 if (retval) {
841 if (retval != -ENOSPC)
842 reiserfs_error(inode->i_sb,
843 "clm-6004",
844 "convert tail failed "
845 "inode %lu, error %d",
846 inode->i_ino,
847 retval);
848 if (allocated_block_nr) {
849 /* the bitmap, the super, and the stat data == 3 */
850 if (!th)
851 th = reiserfs_persistent_transaction(inode->i_sb, 3);
852 if (th)
853 reiserfs_free_block(th,
854 inode,
855 allocated_block_nr,
856 1);
857 }
858 goto failure;
859 }
860 goto research;
861 }
862 retval =
863 direct2indirect(th, inode, &path, unbh,
864 tail_offset);
865 if (retval) {
866 reiserfs_unmap_buffer(unbh);
867 reiserfs_free_block(th, inode,
868 allocated_block_nr, 1);
869 goto failure;
870 }
871 /* it is important the set_buffer_uptodate is done after
872 ** the direct2indirect. The buffer might contain valid
873 ** data newer than the data on disk (read by readpage, changed,
874 ** and then sent here by writepage). direct2indirect needs
875 ** to know if unbh was already up to date, so it can decide
876 ** if the data in unbh needs to be replaced with data from
877 ** the disk
878 */
879 set_buffer_uptodate(unbh);
880
881 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
882 buffer will disappear shortly, so it should not be added to
883 */
884 if (unbh->b_page) {
885 /* we've converted the tail, so we must
886 ** flush unbh before the transaction commits
887 */
888 reiserfs_add_tail_list(inode, unbh);
889
890 /* mark it dirty now to prevent commit_write from adding
891 ** this buffer to the inode's dirty buffer list
892 */
893 /*
894 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
895 * It's still atomic, but it sets the page dirty too,
896 * which makes it eligible for writeback at any time by the
897 * VM (which was also the case with __mark_buffer_dirty())
898 */
899 mark_buffer_dirty(unbh);
900 }
901 } else {
902 /* append indirect item with holes if needed, when appending
903 pointer to 'block'-th block use block, which is already
904 allocated */
905 struct cpu_key tmp_key;
906 unp_t unf_single = 0; // We use this in case we need to allocate only
907 // one block which is a fastpath
908 unp_t *un;
909 __u64 max_to_insert =
910 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
911 UNFM_P_SIZE;
912 __u64 blocks_needed;
913
914 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
915 "vs-804: invalid position for append");
916 /* indirect item has to be appended, set up key of that position */
917 make_cpu_key(&tmp_key, inode,
918 le_key_k_offset(version,
919 &(ih->ih_key)) +
920 op_bytes_number(ih,
921 inode->i_sb->s_blocksize),
922 //pos_in_item * inode->i_sb->s_blocksize,
923 TYPE_INDIRECT, 3); // key type is unimportant
924
925 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
926 "green-805: invalid offset");
927 blocks_needed =
928 1 +
929 ((cpu_key_k_offset(&key) -
930 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
931 s_blocksize_bits);
932
933 if (blocks_needed == 1) {
934 un = &unf_single;
935 } else {
936 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
937 if (!un) {
938 un = &unf_single;
939 blocks_needed = 1;
940 max_to_insert = 0;
941 }
942 }
943 if (blocks_needed <= max_to_insert) {
944 /* we are going to add target block to the file. Use allocated
945 block for that */
946 un[blocks_needed - 1] =
947 cpu_to_le32(allocated_block_nr);
948 set_block_dev_mapped(bh_result,
949 allocated_block_nr, inode);
950 set_buffer_new(bh_result);
951 done = 1;
952 } else {
953 /* paste hole to the indirect item */
954 /* If kmalloc failed, max_to_insert becomes zero and it means we
955 only have space for one block */
956 blocks_needed =
957 max_to_insert ? max_to_insert : 1;
958 }
959 retval =
960 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
961 (char *)un,
962 UNFM_P_SIZE *
963 blocks_needed);
964
965 if (blocks_needed != 1)
966 kfree(un);
967
968 if (retval) {
969 reiserfs_free_block(th, inode,
970 allocated_block_nr, 1);
971 goto failure;
972 }
973 if (!done) {
974 /* We need to mark new file size in case this function will be
975 interrupted/aborted later on. And we may do this only for
976 holes. */
977 inode->i_size +=
978 inode->i_sb->s_blocksize * blocks_needed;
979 }
980 }
981
982 if (done == 1)
983 break;
984
985 /* this loop could log more blocks than we had originally asked
986 ** for. So, we have to allow the transaction to end if it is
987 ** too big or too full. Update the inode so things are
988 ** consistent if we crash before the function returns
989 **
990 ** release the path so that anybody waiting on the path before
991 ** ending their transaction will be able to continue.
992 */
993 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
994 retval = restart_transaction(th, inode, &path);
995 if (retval)
996 goto failure;
997 }
998 /*
999 * inserting indirect pointers for a hole can take a
1000 * long time. reschedule if needed and also release the write
1001 * lock for others.
1002 */
1003 if (need_resched()) {
1004 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1005 schedule();
1006 lock_depth = reiserfs_write_lock_once(inode->i_sb);
1007 }
1008
1009 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1010 if (retval == IO_ERROR) {
1011 retval = -EIO;
1012 goto failure;
1013 }
1014 if (retval == POSITION_FOUND) {
1015 reiserfs_warning(inode->i_sb, "vs-825",
1016 "%K should not be found", &key);
1017 retval = -EEXIST;
1018 if (allocated_block_nr)
1019 reiserfs_free_block(th, inode,
1020 allocated_block_nr, 1);
1021 pathrelse(&path);
1022 goto failure;
1023 }
1024 bh = get_last_bh(&path);
1025 ih = get_ih(&path);
1026 item = get_item(&path);
1027 pos_in_item = path.pos_in_item;
1028 } while (1);
1029
1030 retval = 0;
1031
1032 failure:
1033 if (th && (!dangle || (retval && !th->t_trans_id))) {
1034 int err;
1035 if (th->t_trans_id)
1036 reiserfs_update_sd(th, inode);
1037 err = reiserfs_end_persistent_transaction(th);
1038 if (err)
1039 retval = err;
1040 }
1041
1042 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1043 reiserfs_check_path(&path);
1044 return retval;
1045 }
1046
1047 static int
1048 reiserfs_readpages(struct file *file, struct address_space *mapping,
1049 struct list_head *pages, unsigned nr_pages)
1050 {
1051 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1052 }
1053
1054 /* Compute real number of used bytes by file
1055 * Following three functions can go away when we'll have enough space in stat item
1056 */
1057 static int real_space_diff(struct inode *inode, int sd_size)
1058 {
1059 int bytes;
1060 loff_t blocksize = inode->i_sb->s_blocksize;
1061
1062 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1063 return sd_size;
1064
1065 /* End of file is also in full block with indirect reference, so round
1066 ** up to the next block.
1067 **
1068 ** there is just no way to know if the tail is actually packed
1069 ** on the file, so we have to assume it isn't. When we pack the
1070 ** tail, we add 4 bytes to pretend there really is an unformatted
1071 ** node pointer
1072 */
1073 bytes =
1074 ((inode->i_size +
1075 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1076 sd_size;
1077 return bytes;
1078 }
1079
1080 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1081 int sd_size)
1082 {
1083 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1084 return inode->i_size +
1085 (loff_t) (real_space_diff(inode, sd_size));
1086 }
1087 return ((loff_t) real_space_diff(inode, sd_size)) +
1088 (((loff_t) blocks) << 9);
1089 }
1090
1091 /* Compute number of blocks used by file in ReiserFS counting */
1092 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1093 {
1094 loff_t bytes = inode_get_bytes(inode);
1095 loff_t real_space = real_space_diff(inode, sd_size);
1096
1097 /* keeps fsck and non-quota versions of reiserfs happy */
1098 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1099 bytes += (loff_t) 511;
1100 }
1101
1102 /* files from before the quota patch might i_blocks such that
1103 ** bytes < real_space. Deal with that here to prevent it from
1104 ** going negative.
1105 */
1106 if (bytes < real_space)
1107 return 0;
1108 return (bytes - real_space) >> 9;
1109 }
1110
1111 //
1112 // BAD: new directories have stat data of new type and all other items
1113 // of old type. Version stored in the inode says about body items, so
1114 // in update_stat_data we can not rely on inode, but have to check
1115 // item version directly
1116 //
1117
1118 // called by read_locked_inode
1119 static void init_inode(struct inode *inode, struct treepath *path)
1120 {
1121 struct buffer_head *bh;
1122 struct item_head *ih;
1123 __u32 rdev;
1124 //int version = ITEM_VERSION_1;
1125
1126 bh = PATH_PLAST_BUFFER(path);
1127 ih = PATH_PITEM_HEAD(path);
1128
1129 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1130
1131 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1132 REISERFS_I(inode)->i_flags = 0;
1133 REISERFS_I(inode)->i_prealloc_block = 0;
1134 REISERFS_I(inode)->i_prealloc_count = 0;
1135 REISERFS_I(inode)->i_trans_id = 0;
1136 REISERFS_I(inode)->i_jl = NULL;
1137 mutex_init(&(REISERFS_I(inode)->i_mmap));
1138 reiserfs_init_xattr_rwsem(inode);
1139
1140 if (stat_data_v1(ih)) {
1141 struct stat_data_v1 *sd =
1142 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1143 unsigned long blocks;
1144
1145 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1146 set_inode_sd_version(inode, STAT_DATA_V1);
1147 inode->i_mode = sd_v1_mode(sd);
1148 inode->i_nlink = sd_v1_nlink(sd);
1149 inode->i_uid = sd_v1_uid(sd);
1150 inode->i_gid = sd_v1_gid(sd);
1151 inode->i_size = sd_v1_size(sd);
1152 inode->i_atime.tv_sec = sd_v1_atime(sd);
1153 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1154 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1155 inode->i_atime.tv_nsec = 0;
1156 inode->i_ctime.tv_nsec = 0;
1157 inode->i_mtime.tv_nsec = 0;
1158
1159 inode->i_blocks = sd_v1_blocks(sd);
1160 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1161 blocks = (inode->i_size + 511) >> 9;
1162 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1163 if (inode->i_blocks > blocks) {
1164 // there was a bug in <=3.5.23 when i_blocks could take negative
1165 // values. Starting from 3.5.17 this value could even be stored in
1166 // stat data. For such files we set i_blocks based on file
1167 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1168 // only updated if file's inode will ever change
1169 inode->i_blocks = blocks;
1170 }
1171
1172 rdev = sd_v1_rdev(sd);
1173 REISERFS_I(inode)->i_first_direct_byte =
1174 sd_v1_first_direct_byte(sd);
1175 /* an early bug in the quota code can give us an odd number for the
1176 ** block count. This is incorrect, fix it here.
1177 */
1178 if (inode->i_blocks & 1) {
1179 inode->i_blocks++;
1180 }
1181 inode_set_bytes(inode,
1182 to_real_used_space(inode, inode->i_blocks,
1183 SD_V1_SIZE));
1184 /* nopack is initially zero for v1 objects. For v2 objects,
1185 nopack is initialised from sd_attrs */
1186 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1187 } else {
1188 // new stat data found, but object may have old items
1189 // (directories and symlinks)
1190 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1191
1192 inode->i_mode = sd_v2_mode(sd);
1193 inode->i_nlink = sd_v2_nlink(sd);
1194 inode->i_uid = sd_v2_uid(sd);
1195 inode->i_size = sd_v2_size(sd);
1196 inode->i_gid = sd_v2_gid(sd);
1197 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1198 inode->i_atime.tv_sec = sd_v2_atime(sd);
1199 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1200 inode->i_ctime.tv_nsec = 0;
1201 inode->i_mtime.tv_nsec = 0;
1202 inode->i_atime.tv_nsec = 0;
1203 inode->i_blocks = sd_v2_blocks(sd);
1204 rdev = sd_v2_rdev(sd);
1205 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1206 inode->i_generation =
1207 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1208 else
1209 inode->i_generation = sd_v2_generation(sd);
1210
1211 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1212 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1213 else
1214 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1215 REISERFS_I(inode)->i_first_direct_byte = 0;
1216 set_inode_sd_version(inode, STAT_DATA_V2);
1217 inode_set_bytes(inode,
1218 to_real_used_space(inode, inode->i_blocks,
1219 SD_V2_SIZE));
1220 /* read persistent inode attributes from sd and initalise
1221 generic inode flags from them */
1222 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1223 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1224 }
1225
1226 pathrelse(path);
1227 if (S_ISREG(inode->i_mode)) {
1228 inode->i_op = &reiserfs_file_inode_operations;
1229 inode->i_fop = &reiserfs_file_operations;
1230 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1231 } else if (S_ISDIR(inode->i_mode)) {
1232 inode->i_op = &reiserfs_dir_inode_operations;
1233 inode->i_fop = &reiserfs_dir_operations;
1234 } else if (S_ISLNK(inode->i_mode)) {
1235 inode->i_op = &reiserfs_symlink_inode_operations;
1236 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1237 } else {
1238 inode->i_blocks = 0;
1239 inode->i_op = &reiserfs_special_inode_operations;
1240 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1241 }
1242 }
1243
1244 // update new stat data with inode fields
1245 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1246 {
1247 struct stat_data *sd_v2 = (struct stat_data *)sd;
1248 __u16 flags;
1249
1250 set_sd_v2_mode(sd_v2, inode->i_mode);
1251 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1252 set_sd_v2_uid(sd_v2, inode->i_uid);
1253 set_sd_v2_size(sd_v2, size);
1254 set_sd_v2_gid(sd_v2, inode->i_gid);
1255 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1256 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1257 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1258 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1259 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1260 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1261 else
1262 set_sd_v2_generation(sd_v2, inode->i_generation);
1263 flags = REISERFS_I(inode)->i_attrs;
1264 i_attrs_to_sd_attrs(inode, &flags);
1265 set_sd_v2_attrs(sd_v2, flags);
1266 }
1267
1268 // used to copy inode's fields to old stat data
1269 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1270 {
1271 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1272
1273 set_sd_v1_mode(sd_v1, inode->i_mode);
1274 set_sd_v1_uid(sd_v1, inode->i_uid);
1275 set_sd_v1_gid(sd_v1, inode->i_gid);
1276 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1277 set_sd_v1_size(sd_v1, size);
1278 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1279 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1280 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1281
1282 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1283 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1284 else
1285 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1286
1287 // Sigh. i_first_direct_byte is back
1288 set_sd_v1_first_direct_byte(sd_v1,
1289 REISERFS_I(inode)->i_first_direct_byte);
1290 }
1291
1292 /* NOTE, you must prepare the buffer head before sending it here,
1293 ** and then log it after the call
1294 */
1295 static void update_stat_data(struct treepath *path, struct inode *inode,
1296 loff_t size)
1297 {
1298 struct buffer_head *bh;
1299 struct item_head *ih;
1300
1301 bh = PATH_PLAST_BUFFER(path);
1302 ih = PATH_PITEM_HEAD(path);
1303
1304 if (!is_statdata_le_ih(ih))
1305 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1306 INODE_PKEY(inode), ih);
1307
1308 if (stat_data_v1(ih)) {
1309 // path points to old stat data
1310 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1311 } else {
1312 inode2sd(B_I_PITEM(bh, ih), inode, size);
1313 }
1314
1315 return;
1316 }
1317
1318 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1319 struct inode *inode, loff_t size)
1320 {
1321 struct cpu_key key;
1322 INITIALIZE_PATH(path);
1323 struct buffer_head *bh;
1324 int fs_gen;
1325 struct item_head *ih, tmp_ih;
1326 int retval;
1327
1328 BUG_ON(!th->t_trans_id);
1329
1330 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1331
1332 for (;;) {
1333 int pos;
1334 /* look for the object's stat data */
1335 retval = search_item(inode->i_sb, &key, &path);
1336 if (retval == IO_ERROR) {
1337 reiserfs_error(inode->i_sb, "vs-13050",
1338 "i/o failure occurred trying to "
1339 "update %K stat data", &key);
1340 return;
1341 }
1342 if (retval == ITEM_NOT_FOUND) {
1343 pos = PATH_LAST_POSITION(&path);
1344 pathrelse(&path);
1345 if (inode->i_nlink == 0) {
1346 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1347 return;
1348 }
1349 reiserfs_warning(inode->i_sb, "vs-13060",
1350 "stat data of object %k (nlink == %d) "
1351 "not found (pos %d)",
1352 INODE_PKEY(inode), inode->i_nlink,
1353 pos);
1354 reiserfs_check_path(&path);
1355 return;
1356 }
1357
1358 /* sigh, prepare_for_journal might schedule. When it schedules the
1359 ** FS might change. We have to detect that, and loop back to the
1360 ** search if the stat data item has moved
1361 */
1362 bh = get_last_bh(&path);
1363 ih = get_ih(&path);
1364 copy_item_head(&tmp_ih, ih);
1365 fs_gen = get_generation(inode->i_sb);
1366 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1367 if (fs_changed(fs_gen, inode->i_sb)
1368 && item_moved(&tmp_ih, &path)) {
1369 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1370 continue; /* Stat_data item has been moved after scheduling. */
1371 }
1372 break;
1373 }
1374 update_stat_data(&path, inode, size);
1375 journal_mark_dirty(th, th->t_super, bh);
1376 pathrelse(&path);
1377 return;
1378 }
1379
1380 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1381 ** does a make_bad_inode when things go wrong. But, we need to make sure
1382 ** and clear the key in the private portion of the inode, otherwise a
1383 ** corresponding iput might try to delete whatever object the inode last
1384 ** represented.
1385 */
1386 static void reiserfs_make_bad_inode(struct inode *inode)
1387 {
1388 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1389 make_bad_inode(inode);
1390 }
1391
1392 //
1393 // initially this function was derived from minix or ext2's analog and
1394 // evolved as the prototype did
1395 //
1396
1397 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1398 {
1399 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1400 inode->i_ino = args->objectid;
1401 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1402 return 0;
1403 }
1404
1405 /* looks for stat data in the tree, and fills up the fields of in-core
1406 inode stat data fields */
1407 void reiserfs_read_locked_inode(struct inode *inode,
1408 struct reiserfs_iget_args *args)
1409 {
1410 INITIALIZE_PATH(path_to_sd);
1411 struct cpu_key key;
1412 unsigned long dirino;
1413 int retval;
1414
1415 dirino = args->dirid;
1416
1417 /* set version 1, version 2 could be used too, because stat data
1418 key is the same in both versions */
1419 key.version = KEY_FORMAT_3_5;
1420 key.on_disk_key.k_dir_id = dirino;
1421 key.on_disk_key.k_objectid = inode->i_ino;
1422 key.on_disk_key.k_offset = 0;
1423 key.on_disk_key.k_type = 0;
1424
1425 /* look for the object's stat data */
1426 retval = search_item(inode->i_sb, &key, &path_to_sd);
1427 if (retval == IO_ERROR) {
1428 reiserfs_error(inode->i_sb, "vs-13070",
1429 "i/o failure occurred trying to find "
1430 "stat data of %K", &key);
1431 reiserfs_make_bad_inode(inode);
1432 return;
1433 }
1434 if (retval != ITEM_FOUND) {
1435 /* a stale NFS handle can trigger this without it being an error */
1436 pathrelse(&path_to_sd);
1437 reiserfs_make_bad_inode(inode);
1438 inode->i_nlink = 0;
1439 return;
1440 }
1441
1442 init_inode(inode, &path_to_sd);
1443
1444 /* It is possible that knfsd is trying to access inode of a file
1445 that is being removed from the disk by some other thread. As we
1446 update sd on unlink all that is required is to check for nlink
1447 here. This bug was first found by Sizif when debugging
1448 SquidNG/Butterfly, forgotten, and found again after Philippe
1449 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1450
1451 More logical fix would require changes in fs/inode.c:iput() to
1452 remove inode from hash-table _after_ fs cleaned disk stuff up and
1453 in iget() to return NULL if I_FREEING inode is found in
1454 hash-table. */
1455 /* Currently there is one place where it's ok to meet inode with
1456 nlink==0: processing of open-unlinked and half-truncated files
1457 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1458 if ((inode->i_nlink == 0) &&
1459 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1460 reiserfs_warning(inode->i_sb, "vs-13075",
1461 "dead inode read from disk %K. "
1462 "This is likely to be race with knfsd. Ignore",
1463 &key);
1464 reiserfs_make_bad_inode(inode);
1465 }
1466
1467 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1468
1469 }
1470
1471 /**
1472 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1473 *
1474 * @inode: inode from hash table to check
1475 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1476 *
1477 * This function is called by iget5_locked() to distinguish reiserfs inodes
1478 * having the same inode numbers. Such inodes can only exist due to some
1479 * error condition. One of them should be bad. Inodes with identical
1480 * inode numbers (objectids) are distinguished by parent directory ids.
1481 *
1482 */
1483 int reiserfs_find_actor(struct inode *inode, void *opaque)
1484 {
1485 struct reiserfs_iget_args *args;
1486
1487 args = opaque;
1488 /* args is already in CPU order */
1489 return (inode->i_ino == args->objectid) &&
1490 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1491 }
1492
1493 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1494 {
1495 struct inode *inode;
1496 struct reiserfs_iget_args args;
1497
1498 args.objectid = key->on_disk_key.k_objectid;
1499 args.dirid = key->on_disk_key.k_dir_id;
1500 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1501 reiserfs_find_actor, reiserfs_init_locked_inode,
1502 (void *)(&args));
1503 if (!inode)
1504 return ERR_PTR(-ENOMEM);
1505
1506 if (inode->i_state & I_NEW) {
1507 reiserfs_read_locked_inode(inode, &args);
1508 unlock_new_inode(inode);
1509 }
1510
1511 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1512 /* either due to i/o error or a stale NFS handle */
1513 iput(inode);
1514 inode = NULL;
1515 }
1516 return inode;
1517 }
1518
1519 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1520 u32 objectid, u32 dir_id, u32 generation)
1521
1522 {
1523 struct cpu_key key;
1524 struct inode *inode;
1525
1526 key.on_disk_key.k_objectid = objectid;
1527 key.on_disk_key.k_dir_id = dir_id;
1528 reiserfs_write_lock(sb);
1529 inode = reiserfs_iget(sb, &key);
1530 if (inode && !IS_ERR(inode) && generation != 0 &&
1531 generation != inode->i_generation) {
1532 iput(inode);
1533 inode = NULL;
1534 }
1535 reiserfs_write_unlock(sb);
1536
1537 return d_obtain_alias(inode);
1538 }
1539
1540 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1541 int fh_len, int fh_type)
1542 {
1543 /* fhtype happens to reflect the number of u32s encoded.
1544 * due to a bug in earlier code, fhtype might indicate there
1545 * are more u32s then actually fitted.
1546 * so if fhtype seems to be more than len, reduce fhtype.
1547 * Valid types are:
1548 * 2 - objectid + dir_id - legacy support
1549 * 3 - objectid + dir_id + generation
1550 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1551 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1552 * 6 - as above plus generation of directory
1553 * 6 does not fit in NFSv2 handles
1554 */
1555 if (fh_type > fh_len) {
1556 if (fh_type != 6 || fh_len != 5)
1557 reiserfs_warning(sb, "reiserfs-13077",
1558 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1559 fh_type, fh_len);
1560 fh_type = 5;
1561 }
1562
1563 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1564 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1565 }
1566
1567 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1568 int fh_len, int fh_type)
1569 {
1570 if (fh_type < 4)
1571 return NULL;
1572
1573 return reiserfs_get_dentry(sb,
1574 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1575 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1576 (fh_type == 6) ? fid->raw[5] : 0);
1577 }
1578
1579 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1580 int need_parent)
1581 {
1582 struct inode *inode = dentry->d_inode;
1583 int maxlen = *lenp;
1584
1585 if (maxlen < 3)
1586 return 255;
1587
1588 data[0] = inode->i_ino;
1589 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1590 data[2] = inode->i_generation;
1591 *lenp = 3;
1592 /* no room for directory info? return what we've stored so far */
1593 if (maxlen < 5 || !need_parent)
1594 return 3;
1595
1596 spin_lock(&dentry->d_lock);
1597 inode = dentry->d_parent->d_inode;
1598 data[3] = inode->i_ino;
1599 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1600 *lenp = 5;
1601 if (maxlen >= 6) {
1602 data[5] = inode->i_generation;
1603 *lenp = 6;
1604 }
1605 spin_unlock(&dentry->d_lock);
1606 return *lenp;
1607 }
1608
1609 /* looks for stat data, then copies fields to it, marks the buffer
1610 containing stat data as dirty */
1611 /* reiserfs inodes are never really dirty, since the dirty inode call
1612 ** always logs them. This call allows the VFS inode marking routines
1613 ** to properly mark inodes for datasync and such, but only actually
1614 ** does something when called for a synchronous update.
1615 */
1616 int reiserfs_write_inode(struct inode *inode, int do_sync)
1617 {
1618 struct reiserfs_transaction_handle th;
1619 int jbegin_count = 1;
1620
1621 if (inode->i_sb->s_flags & MS_RDONLY)
1622 return -EROFS;
1623 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1624 ** these cases are just when the system needs ram, not when the
1625 ** inode needs to reach disk for safety, and they can safely be
1626 ** ignored because the altered inode has already been logged.
1627 */
1628 if (do_sync && !(current->flags & PF_MEMALLOC)) {
1629 reiserfs_write_lock(inode->i_sb);
1630 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1631 reiserfs_update_sd(&th, inode);
1632 journal_end_sync(&th, inode->i_sb, jbegin_count);
1633 }
1634 reiserfs_write_unlock(inode->i_sb);
1635 }
1636 return 0;
1637 }
1638
1639 /* stat data of new object is inserted already, this inserts the item
1640 containing "." and ".." entries */
1641 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1642 struct inode *inode,
1643 struct item_head *ih, struct treepath *path,
1644 struct inode *dir)
1645 {
1646 struct super_block *sb = th->t_super;
1647 char empty_dir[EMPTY_DIR_SIZE];
1648 char *body = empty_dir;
1649 struct cpu_key key;
1650 int retval;
1651
1652 BUG_ON(!th->t_trans_id);
1653
1654 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1655 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1656 TYPE_DIRENTRY, 3 /*key length */ );
1657
1658 /* compose item head for new item. Directories consist of items of
1659 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1660 is done by reiserfs_new_inode */
1661 if (old_format_only(sb)) {
1662 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1663 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1664
1665 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1666 ih->ih_key.k_objectid,
1667 INODE_PKEY(dir)->k_dir_id,
1668 INODE_PKEY(dir)->k_objectid);
1669 } else {
1670 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1671 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1672
1673 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1674 ih->ih_key.k_objectid,
1675 INODE_PKEY(dir)->k_dir_id,
1676 INODE_PKEY(dir)->k_objectid);
1677 }
1678
1679 /* look for place in the tree for new item */
1680 retval = search_item(sb, &key, path);
1681 if (retval == IO_ERROR) {
1682 reiserfs_error(sb, "vs-13080",
1683 "i/o failure occurred creating new directory");
1684 return -EIO;
1685 }
1686 if (retval == ITEM_FOUND) {
1687 pathrelse(path);
1688 reiserfs_warning(sb, "vs-13070",
1689 "object with this key exists (%k)",
1690 &(ih->ih_key));
1691 return -EEXIST;
1692 }
1693
1694 /* insert item, that is empty directory item */
1695 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1696 }
1697
1698 /* stat data of object has been inserted, this inserts the item
1699 containing the body of symlink */
1700 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1701 struct item_head *ih,
1702 struct treepath *path, const char *symname,
1703 int item_len)
1704 {
1705 struct super_block *sb = th->t_super;
1706 struct cpu_key key;
1707 int retval;
1708
1709 BUG_ON(!th->t_trans_id);
1710
1711 _make_cpu_key(&key, KEY_FORMAT_3_5,
1712 le32_to_cpu(ih->ih_key.k_dir_id),
1713 le32_to_cpu(ih->ih_key.k_objectid),
1714 1, TYPE_DIRECT, 3 /*key length */ );
1715
1716 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1717 0 /*free_space */ );
1718
1719 /* look for place in the tree for new item */
1720 retval = search_item(sb, &key, path);
1721 if (retval == IO_ERROR) {
1722 reiserfs_error(sb, "vs-13080",
1723 "i/o failure occurred creating new symlink");
1724 return -EIO;
1725 }
1726 if (retval == ITEM_FOUND) {
1727 pathrelse(path);
1728 reiserfs_warning(sb, "vs-13080",
1729 "object with this key exists (%k)",
1730 &(ih->ih_key));
1731 return -EEXIST;
1732 }
1733
1734 /* insert item, that is body of symlink */
1735 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1736 }
1737
1738 /* inserts the stat data into the tree, and then calls
1739 reiserfs_new_directory (to insert ".", ".." item if new object is
1740 directory) or reiserfs_new_symlink (to insert symlink body if new
1741 object is symlink) or nothing (if new object is regular file)
1742
1743 NOTE! uid and gid must already be set in the inode. If we return
1744 non-zero due to an error, we have to drop the quota previously allocated
1745 for the fresh inode. This can only be done outside a transaction, so
1746 if we return non-zero, we also end the transaction. */
1747 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1748 struct inode *dir, int mode, const char *symname,
1749 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1750 strlen (symname) for symlinks) */
1751 loff_t i_size, struct dentry *dentry,
1752 struct inode *inode,
1753 struct reiserfs_security_handle *security)
1754 {
1755 struct super_block *sb;
1756 struct reiserfs_iget_args args;
1757 INITIALIZE_PATH(path_to_key);
1758 struct cpu_key key;
1759 struct item_head ih;
1760 struct stat_data sd;
1761 int retval;
1762 int err;
1763
1764 BUG_ON(!th->t_trans_id);
1765
1766 if (vfs_dq_alloc_inode(inode)) {
1767 err = -EDQUOT;
1768 goto out_end_trans;
1769 }
1770 if (!dir->i_nlink) {
1771 err = -EPERM;
1772 goto out_bad_inode;
1773 }
1774
1775 sb = dir->i_sb;
1776
1777 /* item head of new item */
1778 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1779 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1780 if (!ih.ih_key.k_objectid) {
1781 err = -ENOMEM;
1782 goto out_bad_inode;
1783 }
1784 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1785 if (old_format_only(sb))
1786 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1787 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1788 else
1789 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1790 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1791 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1792 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1793 if (insert_inode_locked4(inode, args.objectid,
1794 reiserfs_find_actor, &args) < 0) {
1795 err = -EINVAL;
1796 goto out_bad_inode;
1797 }
1798 if (old_format_only(sb))
1799 /* not a perfect generation count, as object ids can be reused, but
1800 ** this is as good as reiserfs can do right now.
1801 ** note that the private part of inode isn't filled in yet, we have
1802 ** to use the directory.
1803 */
1804 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1805 else
1806 #if defined( USE_INODE_GENERATION_COUNTER )
1807 inode->i_generation =
1808 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1809 #else
1810 inode->i_generation = ++event;
1811 #endif
1812
1813 /* fill stat data */
1814 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1815
1816 /* uid and gid must already be set by the caller for quota init */
1817
1818 /* symlink cannot be immutable or append only, right? */
1819 if (S_ISLNK(inode->i_mode))
1820 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1821
1822 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1823 inode->i_size = i_size;
1824 inode->i_blocks = 0;
1825 inode->i_bytes = 0;
1826 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1827 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1828
1829 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1830 REISERFS_I(inode)->i_flags = 0;
1831 REISERFS_I(inode)->i_prealloc_block = 0;
1832 REISERFS_I(inode)->i_prealloc_count = 0;
1833 REISERFS_I(inode)->i_trans_id = 0;
1834 REISERFS_I(inode)->i_jl = NULL;
1835 REISERFS_I(inode)->i_attrs =
1836 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1837 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1838 mutex_init(&(REISERFS_I(inode)->i_mmap));
1839 reiserfs_init_xattr_rwsem(inode);
1840
1841 /* key to search for correct place for new stat data */
1842 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1843 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1844 TYPE_STAT_DATA, 3 /*key length */ );
1845
1846 /* find proper place for inserting of stat data */
1847 retval = search_item(sb, &key, &path_to_key);
1848 if (retval == IO_ERROR) {
1849 err = -EIO;
1850 goto out_bad_inode;
1851 }
1852 if (retval == ITEM_FOUND) {
1853 pathrelse(&path_to_key);
1854 err = -EEXIST;
1855 goto out_bad_inode;
1856 }
1857 if (old_format_only(sb)) {
1858 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1859 pathrelse(&path_to_key);
1860 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1861 err = -EINVAL;
1862 goto out_bad_inode;
1863 }
1864 inode2sd_v1(&sd, inode, inode->i_size);
1865 } else {
1866 inode2sd(&sd, inode, inode->i_size);
1867 }
1868 // store in in-core inode the key of stat data and version all
1869 // object items will have (directory items will have old offset
1870 // format, other new objects will consist of new items)
1871 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1872 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1873 else
1874 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1875 if (old_format_only(sb))
1876 set_inode_sd_version(inode, STAT_DATA_V1);
1877 else
1878 set_inode_sd_version(inode, STAT_DATA_V2);
1879
1880 /* insert the stat data into the tree */
1881 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1882 if (REISERFS_I(dir)->new_packing_locality)
1883 th->displace_new_blocks = 1;
1884 #endif
1885 retval =
1886 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1887 (char *)(&sd));
1888 if (retval) {
1889 err = retval;
1890 reiserfs_check_path(&path_to_key);
1891 goto out_bad_inode;
1892 }
1893 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1894 if (!th->displace_new_blocks)
1895 REISERFS_I(dir)->new_packing_locality = 0;
1896 #endif
1897 if (S_ISDIR(mode)) {
1898 /* insert item with "." and ".." */
1899 retval =
1900 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1901 }
1902
1903 if (S_ISLNK(mode)) {
1904 /* insert body of symlink */
1905 if (!old_format_only(sb))
1906 i_size = ROUND_UP(i_size);
1907 retval =
1908 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1909 i_size);
1910 }
1911 if (retval) {
1912 err = retval;
1913 reiserfs_check_path(&path_to_key);
1914 journal_end(th, th->t_super, th->t_blocks_allocated);
1915 goto out_inserted_sd;
1916 }
1917
1918 if (reiserfs_posixacl(inode->i_sb)) {
1919 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1920 if (retval) {
1921 err = retval;
1922 reiserfs_check_path(&path_to_key);
1923 journal_end(th, th->t_super, th->t_blocks_allocated);
1924 goto out_inserted_sd;
1925 }
1926 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1927 reiserfs_warning(inode->i_sb, "jdm-13090",
1928 "ACLs aren't enabled in the fs, "
1929 "but vfs thinks they are!");
1930 } else if (IS_PRIVATE(dir))
1931 inode->i_flags |= S_PRIVATE;
1932
1933 if (security->name) {
1934 retval = reiserfs_security_write(th, inode, security);
1935 if (retval) {
1936 err = retval;
1937 reiserfs_check_path(&path_to_key);
1938 retval = journal_end(th, th->t_super,
1939 th->t_blocks_allocated);
1940 if (retval)
1941 err = retval;
1942 goto out_inserted_sd;
1943 }
1944 }
1945
1946 reiserfs_update_sd(th, inode);
1947 reiserfs_check_path(&path_to_key);
1948
1949 return 0;
1950
1951 /* it looks like you can easily compress these two goto targets into
1952 * one. Keeping it like this doesn't actually hurt anything, and they
1953 * are place holders for what the quota code actually needs.
1954 */
1955 out_bad_inode:
1956 /* Invalidate the object, nothing was inserted yet */
1957 INODE_PKEY(inode)->k_objectid = 0;
1958
1959 /* Quota change must be inside a transaction for journaling */
1960 vfs_dq_free_inode(inode);
1961
1962 out_end_trans:
1963 journal_end(th, th->t_super, th->t_blocks_allocated);
1964 /* Drop can be outside and it needs more credits so it's better to have it outside */
1965 vfs_dq_drop(inode);
1966 inode->i_flags |= S_NOQUOTA;
1967 make_bad_inode(inode);
1968
1969 out_inserted_sd:
1970 inode->i_nlink = 0;
1971 th->t_trans_id = 0; /* so the caller can't use this handle later */
1972 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1973 iput(inode);
1974 return err;
1975 }
1976
1977 /*
1978 ** finds the tail page in the page cache,
1979 ** reads the last block in.
1980 **
1981 ** On success, page_result is set to a locked, pinned page, and bh_result
1982 ** is set to an up to date buffer for the last block in the file. returns 0.
1983 **
1984 ** tail conversion is not done, so bh_result might not be valid for writing
1985 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1986 ** trying to write the block.
1987 **
1988 ** on failure, nonzero is returned, page_result and bh_result are untouched.
1989 */
1990 static int grab_tail_page(struct inode *inode,
1991 struct page **page_result,
1992 struct buffer_head **bh_result)
1993 {
1994
1995 /* we want the page with the last byte in the file,
1996 ** not the page that will hold the next byte for appending
1997 */
1998 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
1999 unsigned long pos = 0;
2000 unsigned long start = 0;
2001 unsigned long blocksize = inode->i_sb->s_blocksize;
2002 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2003 struct buffer_head *bh;
2004 struct buffer_head *head;
2005 struct page *page;
2006 int error;
2007
2008 /* we know that we are only called with inode->i_size > 0.
2009 ** we also know that a file tail can never be as big as a block
2010 ** If i_size % blocksize == 0, our file is currently block aligned
2011 ** and it won't need converting or zeroing after a truncate.
2012 */
2013 if ((offset & (blocksize - 1)) == 0) {
2014 return -ENOENT;
2015 }
2016 page = grab_cache_page(inode->i_mapping, index);
2017 error = -ENOMEM;
2018 if (!page) {
2019 goto out;
2020 }
2021 /* start within the page of the last block in the file */
2022 start = (offset / blocksize) * blocksize;
2023
2024 error = block_prepare_write(page, start, offset,
2025 reiserfs_get_block_create_0);
2026 if (error)
2027 goto unlock;
2028
2029 head = page_buffers(page);
2030 bh = head;
2031 do {
2032 if (pos >= start) {
2033 break;
2034 }
2035 bh = bh->b_this_page;
2036 pos += blocksize;
2037 } while (bh != head);
2038
2039 if (!buffer_uptodate(bh)) {
2040 /* note, this should never happen, prepare_write should
2041 ** be taking care of this for us. If the buffer isn't up to date,
2042 ** I've screwed up the code to find the buffer, or the code to
2043 ** call prepare_write
2044 */
2045 reiserfs_error(inode->i_sb, "clm-6000",
2046 "error reading block %lu", bh->b_blocknr);
2047 error = -EIO;
2048 goto unlock;
2049 }
2050 *bh_result = bh;
2051 *page_result = page;
2052
2053 out:
2054 return error;
2055
2056 unlock:
2057 unlock_page(page);
2058 page_cache_release(page);
2059 return error;
2060 }
2061
2062 /*
2063 ** vfs version of truncate file. Must NOT be called with
2064 ** a transaction already started.
2065 **
2066 ** some code taken from block_truncate_page
2067 */
2068 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2069 {
2070 struct reiserfs_transaction_handle th;
2071 /* we want the offset for the first byte after the end of the file */
2072 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2073 unsigned blocksize = inode->i_sb->s_blocksize;
2074 unsigned length;
2075 struct page *page = NULL;
2076 int error;
2077 struct buffer_head *bh = NULL;
2078 int err2;
2079 int lock_depth;
2080
2081 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2082
2083 if (inode->i_size > 0) {
2084 error = grab_tail_page(inode, &page, &bh);
2085 if (error) {
2086 // -ENOENT means we truncated past the end of the file,
2087 // and get_block_create_0 could not find a block to read in,
2088 // which is ok.
2089 if (error != -ENOENT)
2090 reiserfs_error(inode->i_sb, "clm-6001",
2091 "grab_tail_page failed %d",
2092 error);
2093 page = NULL;
2094 bh = NULL;
2095 }
2096 }
2097
2098 /* so, if page != NULL, we have a buffer head for the offset at
2099 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2100 ** then we have an unformatted node. Otherwise, we have a direct item,
2101 ** and no zeroing is required on disk. We zero after the truncate,
2102 ** because the truncate might pack the item anyway
2103 ** (it will unmap bh if it packs).
2104 */
2105 /* it is enough to reserve space in transaction for 2 balancings:
2106 one for "save" link adding and another for the first
2107 cut_from_item. 1 is for update_sd */
2108 error = journal_begin(&th, inode->i_sb,
2109 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2110 if (error)
2111 goto out;
2112 reiserfs_update_inode_transaction(inode);
2113 if (update_timestamps)
2114 /* we are doing real truncate: if the system crashes before the last
2115 transaction of truncating gets committed - on reboot the file
2116 either appears truncated properly or not truncated at all */
2117 add_save_link(&th, inode, 1);
2118 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2119 error =
2120 journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2121 if (error)
2122 goto out;
2123
2124 /* check reiserfs_do_truncate after ending the transaction */
2125 if (err2) {
2126 error = err2;
2127 goto out;
2128 }
2129
2130 if (update_timestamps) {
2131 error = remove_save_link(inode, 1 /* truncate */);
2132 if (error)
2133 goto out;
2134 }
2135
2136 if (page) {
2137 length = offset & (blocksize - 1);
2138 /* if we are not on a block boundary */
2139 if (length) {
2140 length = blocksize - length;
2141 zero_user(page, offset, length);
2142 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2143 mark_buffer_dirty(bh);
2144 }
2145 }
2146 unlock_page(page);
2147 page_cache_release(page);
2148 }
2149
2150 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2151
2152 return 0;
2153 out:
2154 if (page) {
2155 unlock_page(page);
2156 page_cache_release(page);
2157 }
2158
2159 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2160
2161 return error;
2162 }
2163
2164 static int map_block_for_writepage(struct inode *inode,
2165 struct buffer_head *bh_result,
2166 unsigned long block)
2167 {
2168 struct reiserfs_transaction_handle th;
2169 int fs_gen;
2170 struct item_head tmp_ih;
2171 struct item_head *ih;
2172 struct buffer_head *bh;
2173 __le32 *item;
2174 struct cpu_key key;
2175 INITIALIZE_PATH(path);
2176 int pos_in_item;
2177 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2178 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2179 int retval;
2180 int use_get_block = 0;
2181 int bytes_copied = 0;
2182 int copy_size;
2183 int trans_running = 0;
2184
2185 /* catch places below that try to log something without starting a trans */
2186 th.t_trans_id = 0;
2187
2188 if (!buffer_uptodate(bh_result)) {
2189 return -EIO;
2190 }
2191
2192 kmap(bh_result->b_page);
2193 start_over:
2194 reiserfs_write_lock(inode->i_sb);
2195 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2196
2197 research:
2198 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2199 if (retval != POSITION_FOUND) {
2200 use_get_block = 1;
2201 goto out;
2202 }
2203
2204 bh = get_last_bh(&path);
2205 ih = get_ih(&path);
2206 item = get_item(&path);
2207 pos_in_item = path.pos_in_item;
2208
2209 /* we've found an unformatted node */
2210 if (indirect_item_found(retval, ih)) {
2211 if (bytes_copied > 0) {
2212 reiserfs_warning(inode->i_sb, "clm-6002",
2213 "bytes_copied %d", bytes_copied);
2214 }
2215 if (!get_block_num(item, pos_in_item)) {
2216 /* crap, we are writing to a hole */
2217 use_get_block = 1;
2218 goto out;
2219 }
2220 set_block_dev_mapped(bh_result,
2221 get_block_num(item, pos_in_item), inode);
2222 } else if (is_direct_le_ih(ih)) {
2223 char *p;
2224 p = page_address(bh_result->b_page);
2225 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2226 copy_size = ih_item_len(ih) - pos_in_item;
2227
2228 fs_gen = get_generation(inode->i_sb);
2229 copy_item_head(&tmp_ih, ih);
2230
2231 if (!trans_running) {
2232 /* vs-3050 is gone, no need to drop the path */
2233 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2234 if (retval)
2235 goto out;
2236 reiserfs_update_inode_transaction(inode);
2237 trans_running = 1;
2238 if (fs_changed(fs_gen, inode->i_sb)
2239 && item_moved(&tmp_ih, &path)) {
2240 reiserfs_restore_prepared_buffer(inode->i_sb,
2241 bh);
2242 goto research;
2243 }
2244 }
2245
2246 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2247
2248 if (fs_changed(fs_gen, inode->i_sb)
2249 && item_moved(&tmp_ih, &path)) {
2250 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2251 goto research;
2252 }
2253
2254 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2255 copy_size);
2256
2257 journal_mark_dirty(&th, inode->i_sb, bh);
2258 bytes_copied += copy_size;
2259 set_block_dev_mapped(bh_result, 0, inode);
2260
2261 /* are there still bytes left? */
2262 if (bytes_copied < bh_result->b_size &&
2263 (byte_offset + bytes_copied) < inode->i_size) {
2264 set_cpu_key_k_offset(&key,
2265 cpu_key_k_offset(&key) +
2266 copy_size);
2267 goto research;
2268 }
2269 } else {
2270 reiserfs_warning(inode->i_sb, "clm-6003",
2271 "bad item inode %lu", inode->i_ino);
2272 retval = -EIO;
2273 goto out;
2274 }
2275 retval = 0;
2276
2277 out:
2278 pathrelse(&path);
2279 if (trans_running) {
2280 int err = journal_end(&th, inode->i_sb, jbegin_count);
2281 if (err)
2282 retval = err;
2283 trans_running = 0;
2284 }
2285 reiserfs_write_unlock(inode->i_sb);
2286
2287 /* this is where we fill in holes in the file. */
2288 if (use_get_block) {
2289 retval = reiserfs_get_block(inode, block, bh_result,
2290 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2291 | GET_BLOCK_NO_DANGLE);
2292 if (!retval) {
2293 if (!buffer_mapped(bh_result)
2294 || bh_result->b_blocknr == 0) {
2295 /* get_block failed to find a mapped unformatted node. */
2296 use_get_block = 0;
2297 goto start_over;
2298 }
2299 }
2300 }
2301 kunmap(bh_result->b_page);
2302
2303 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2304 /* we've copied data from the page into the direct item, so the
2305 * buffer in the page is now clean, mark it to reflect that.
2306 */
2307 lock_buffer(bh_result);
2308 clear_buffer_dirty(bh_result);
2309 unlock_buffer(bh_result);
2310 }
2311 return retval;
2312 }
2313
2314 /*
2315 * mason@suse.com: updated in 2.5.54 to follow the same general io
2316 * start/recovery path as __block_write_full_page, along with special
2317 * code to handle reiserfs tails.
2318 */
2319 static int reiserfs_write_full_page(struct page *page,
2320 struct writeback_control *wbc)
2321 {
2322 struct inode *inode = page->mapping->host;
2323 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2324 int error = 0;
2325 unsigned long block;
2326 sector_t last_block;
2327 struct buffer_head *head, *bh;
2328 int partial = 0;
2329 int nr = 0;
2330 int checked = PageChecked(page);
2331 struct reiserfs_transaction_handle th;
2332 struct super_block *s = inode->i_sb;
2333 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2334 th.t_trans_id = 0;
2335
2336 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2337 if (checked && (current->flags & PF_MEMALLOC)) {
2338 redirty_page_for_writepage(wbc, page);
2339 unlock_page(page);
2340 return 0;
2341 }
2342
2343 /* The page dirty bit is cleared before writepage is called, which
2344 * means we have to tell create_empty_buffers to make dirty buffers
2345 * The page really should be up to date at this point, so tossing
2346 * in the BH_Uptodate is just a sanity check.
2347 */
2348 if (!page_has_buffers(page)) {
2349 create_empty_buffers(page, s->s_blocksize,
2350 (1 << BH_Dirty) | (1 << BH_Uptodate));
2351 }
2352 head = page_buffers(page);
2353
2354 /* last page in the file, zero out any contents past the
2355 ** last byte in the file
2356 */
2357 if (page->index >= end_index) {
2358 unsigned last_offset;
2359
2360 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2361 /* no file contents in this page */
2362 if (page->index >= end_index + 1 || !last_offset) {
2363 unlock_page(page);
2364 return 0;
2365 }
2366 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2367 }
2368 bh = head;
2369 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2370 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2371 /* first map all the buffers, logging any direct items we find */
2372 do {
2373 if (block > last_block) {
2374 /*
2375 * This can happen when the block size is less than
2376 * the page size. The corresponding bytes in the page
2377 * were zero filled above
2378 */
2379 clear_buffer_dirty(bh);
2380 set_buffer_uptodate(bh);
2381 } else if ((checked || buffer_dirty(bh)) &&
2382 (!buffer_mapped(bh) || (buffer_mapped(bh)
2383 && bh->b_blocknr ==
2384 0))) {
2385 /* not mapped yet, or it points to a direct item, search
2386 * the btree for the mapping info, and log any direct
2387 * items found
2388 */
2389 if ((error = map_block_for_writepage(inode, bh, block))) {
2390 goto fail;
2391 }
2392 }
2393 bh = bh->b_this_page;
2394 block++;
2395 } while (bh != head);
2396
2397 /*
2398 * we start the transaction after map_block_for_writepage,
2399 * because it can create holes in the file (an unbounded operation).
2400 * starting it here, we can make a reliable estimate for how many
2401 * blocks we're going to log
2402 */
2403 if (checked) {
2404 ClearPageChecked(page);
2405 reiserfs_write_lock(s);
2406 error = journal_begin(&th, s, bh_per_page + 1);
2407 if (error) {
2408 reiserfs_write_unlock(s);
2409 goto fail;
2410 }
2411 reiserfs_update_inode_transaction(inode);
2412 }
2413 /* now go through and lock any dirty buffers on the page */
2414 do {
2415 get_bh(bh);
2416 if (!buffer_mapped(bh))
2417 continue;
2418 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2419 continue;
2420
2421 if (checked) {
2422 reiserfs_prepare_for_journal(s, bh, 1);
2423 journal_mark_dirty(&th, s, bh);
2424 continue;
2425 }
2426 /* from this point on, we know the buffer is mapped to a
2427 * real block and not a direct item
2428 */
2429 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2430 lock_buffer(bh);
2431 } else {
2432 if (!trylock_buffer(bh)) {
2433 redirty_page_for_writepage(wbc, page);
2434 continue;
2435 }
2436 }
2437 if (test_clear_buffer_dirty(bh)) {
2438 mark_buffer_async_write(bh);
2439 } else {
2440 unlock_buffer(bh);
2441 }
2442 } while ((bh = bh->b_this_page) != head);
2443
2444 if (checked) {
2445 error = journal_end(&th, s, bh_per_page + 1);
2446 reiserfs_write_unlock(s);
2447 if (error)
2448 goto fail;
2449 }
2450 BUG_ON(PageWriteback(page));
2451 set_page_writeback(page);
2452 unlock_page(page);
2453
2454 /*
2455 * since any buffer might be the only dirty buffer on the page,
2456 * the first submit_bh can bring the page out of writeback.
2457 * be careful with the buffers.
2458 */
2459 do {
2460 struct buffer_head *next = bh->b_this_page;
2461 if (buffer_async_write(bh)) {
2462 submit_bh(WRITE, bh);
2463 nr++;
2464 }
2465 put_bh(bh);
2466 bh = next;
2467 } while (bh != head);
2468
2469 error = 0;
2470 done:
2471 if (nr == 0) {
2472 /*
2473 * if this page only had a direct item, it is very possible for
2474 * no io to be required without there being an error. Or,
2475 * someone else could have locked them and sent them down the
2476 * pipe without locking the page
2477 */
2478 bh = head;
2479 do {
2480 if (!buffer_uptodate(bh)) {
2481 partial = 1;
2482 break;
2483 }
2484 bh = bh->b_this_page;
2485 } while (bh != head);
2486 if (!partial)
2487 SetPageUptodate(page);
2488 end_page_writeback(page);
2489 }
2490 return error;
2491
2492 fail:
2493 /* catches various errors, we need to make sure any valid dirty blocks
2494 * get to the media. The page is currently locked and not marked for
2495 * writeback
2496 */
2497 ClearPageUptodate(page);
2498 bh = head;
2499 do {
2500 get_bh(bh);
2501 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2502 lock_buffer(bh);
2503 mark_buffer_async_write(bh);
2504 } else {
2505 /*
2506 * clear any dirty bits that might have come from getting
2507 * attached to a dirty page
2508 */
2509 clear_buffer_dirty(bh);
2510 }
2511 bh = bh->b_this_page;
2512 } while (bh != head);
2513 SetPageError(page);
2514 BUG_ON(PageWriteback(page));
2515 set_page_writeback(page);
2516 unlock_page(page);
2517 do {
2518 struct buffer_head *next = bh->b_this_page;
2519 if (buffer_async_write(bh)) {
2520 clear_buffer_dirty(bh);
2521 submit_bh(WRITE, bh);
2522 nr++;
2523 }
2524 put_bh(bh);
2525 bh = next;
2526 } while (bh != head);
2527 goto done;
2528 }
2529
2530 static int reiserfs_readpage(struct file *f, struct page *page)
2531 {
2532 return block_read_full_page(page, reiserfs_get_block);
2533 }
2534
2535 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2536 {
2537 struct inode *inode = page->mapping->host;
2538 reiserfs_wait_on_write_block(inode->i_sb);
2539 return reiserfs_write_full_page(page, wbc);
2540 }
2541
2542 static void reiserfs_truncate_failed_write(struct inode *inode)
2543 {
2544 truncate_inode_pages(inode->i_mapping, inode->i_size);
2545 reiserfs_truncate_file(inode, 0);
2546 }
2547
2548 static int reiserfs_write_begin(struct file *file,
2549 struct address_space *mapping,
2550 loff_t pos, unsigned len, unsigned flags,
2551 struct page **pagep, void **fsdata)
2552 {
2553 struct inode *inode;
2554 struct page *page;
2555 pgoff_t index;
2556 int ret;
2557 int old_ref = 0;
2558
2559 inode = mapping->host;
2560 *fsdata = 0;
2561 if (flags & AOP_FLAG_CONT_EXPAND &&
2562 (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2563 pos ++;
2564 *fsdata = (void *)(unsigned long)flags;
2565 }
2566
2567 index = pos >> PAGE_CACHE_SHIFT;
2568 page = grab_cache_page_write_begin(mapping, index, flags);
2569 if (!page)
2570 return -ENOMEM;
2571 *pagep = page;
2572
2573 reiserfs_wait_on_write_block(inode->i_sb);
2574 fix_tail_page_for_writing(page);
2575 if (reiserfs_transaction_running(inode->i_sb)) {
2576 struct reiserfs_transaction_handle *th;
2577 th = (struct reiserfs_transaction_handle *)current->
2578 journal_info;
2579 BUG_ON(!th->t_refcount);
2580 BUG_ON(!th->t_trans_id);
2581 old_ref = th->t_refcount;
2582 th->t_refcount++;
2583 }
2584 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2585 reiserfs_get_block);
2586 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2587 struct reiserfs_transaction_handle *th = current->journal_info;
2588 /* this gets a little ugly. If reiserfs_get_block returned an
2589 * error and left a transacstion running, we've got to close it,
2590 * and we've got to free handle if it was a persistent transaction.
2591 *
2592 * But, if we had nested into an existing transaction, we need
2593 * to just drop the ref count on the handle.
2594 *
2595 * If old_ref == 0, the transaction is from reiserfs_get_block,
2596 * and it was a persistent trans. Otherwise, it was nested above.
2597 */
2598 if (th->t_refcount > old_ref) {
2599 if (old_ref)
2600 th->t_refcount--;
2601 else {
2602 int err;
2603 reiserfs_write_lock(inode->i_sb);
2604 err = reiserfs_end_persistent_transaction(th);
2605 reiserfs_write_unlock(inode->i_sb);
2606 if (err)
2607 ret = err;
2608 }
2609 }
2610 }
2611 if (ret) {
2612 unlock_page(page);
2613 page_cache_release(page);
2614 /* Truncate allocated blocks */
2615 reiserfs_truncate_failed_write(inode);
2616 }
2617 return ret;
2618 }
2619
2620 int reiserfs_prepare_write(struct file *f, struct page *page,
2621 unsigned from, unsigned to)
2622 {
2623 struct inode *inode = page->mapping->host;
2624 int ret;
2625 int old_ref = 0;
2626
2627 reiserfs_write_unlock(inode->i_sb);
2628 reiserfs_wait_on_write_block(inode->i_sb);
2629 reiserfs_write_lock(inode->i_sb);
2630
2631 fix_tail_page_for_writing(page);
2632 if (reiserfs_transaction_running(inode->i_sb)) {
2633 struct reiserfs_transaction_handle *th;
2634 th = (struct reiserfs_transaction_handle *)current->
2635 journal_info;
2636 BUG_ON(!th->t_refcount);
2637 BUG_ON(!th->t_trans_id);
2638 old_ref = th->t_refcount;
2639 th->t_refcount++;
2640 }
2641
2642 ret = block_prepare_write(page, from, to, reiserfs_get_block);
2643 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2644 struct reiserfs_transaction_handle *th = current->journal_info;
2645 /* this gets a little ugly. If reiserfs_get_block returned an
2646 * error and left a transacstion running, we've got to close it,
2647 * and we've got to free handle if it was a persistent transaction.
2648 *
2649 * But, if we had nested into an existing transaction, we need
2650 * to just drop the ref count on the handle.
2651 *
2652 * If old_ref == 0, the transaction is from reiserfs_get_block,
2653 * and it was a persistent trans. Otherwise, it was nested above.
2654 */
2655 if (th->t_refcount > old_ref) {
2656 if (old_ref)
2657 th->t_refcount--;
2658 else {
2659 int err;
2660 reiserfs_write_lock(inode->i_sb);
2661 err = reiserfs_end_persistent_transaction(th);
2662 reiserfs_write_unlock(inode->i_sb);
2663 if (err)
2664 ret = err;
2665 }
2666 }
2667 }
2668 return ret;
2669
2670 }
2671
2672 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2673 {
2674 return generic_block_bmap(as, block, reiserfs_bmap);
2675 }
2676
2677 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2678 loff_t pos, unsigned len, unsigned copied,
2679 struct page *page, void *fsdata)
2680 {
2681 struct inode *inode = page->mapping->host;
2682 int ret = 0;
2683 int update_sd = 0;
2684 struct reiserfs_transaction_handle *th;
2685 unsigned start;
2686 int lock_depth = 0;
2687 bool locked = false;
2688
2689 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2690 pos ++;
2691
2692 reiserfs_wait_on_write_block(inode->i_sb);
2693 if (reiserfs_transaction_running(inode->i_sb))
2694 th = current->journal_info;
2695 else
2696 th = NULL;
2697
2698 start = pos & (PAGE_CACHE_SIZE - 1);
2699 if (unlikely(copied < len)) {
2700 if (!PageUptodate(page))
2701 copied = 0;
2702
2703 page_zero_new_buffers(page, start + copied, start + len);
2704 }
2705 flush_dcache_page(page);
2706
2707 reiserfs_commit_page(inode, page, start, start + copied);
2708
2709 /* generic_commit_write does this for us, but does not update the
2710 ** transaction tracking stuff when the size changes. So, we have
2711 ** to do the i_size updates here.
2712 */
2713 if (pos + copied > inode->i_size) {
2714 struct reiserfs_transaction_handle myth;
2715 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2716 locked = true;
2717 /* If the file have grown beyond the border where it
2718 can have a tail, unmark it as needing a tail
2719 packing */
2720 if ((have_large_tails(inode->i_sb)
2721 && inode->i_size > i_block_size(inode) * 4)
2722 || (have_small_tails(inode->i_sb)
2723 && inode->i_size > i_block_size(inode)))
2724 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2725
2726 ret = journal_begin(&myth, inode->i_sb, 1);
2727 if (ret)
2728 goto journal_error;
2729
2730 reiserfs_update_inode_transaction(inode);
2731 inode->i_size = pos + copied;
2732 /*
2733 * this will just nest into our transaction. It's important
2734 * to use mark_inode_dirty so the inode gets pushed around on the
2735 * dirty lists, and so that O_SYNC works as expected
2736 */
2737 mark_inode_dirty(inode);
2738 reiserfs_update_sd(&myth, inode);
2739 update_sd = 1;
2740 ret = journal_end(&myth, inode->i_sb, 1);
2741 if (ret)
2742 goto journal_error;
2743 }
2744 if (th) {
2745 if (!locked) {
2746 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2747 locked = true;
2748 }
2749 if (!update_sd)
2750 mark_inode_dirty(inode);
2751 ret = reiserfs_end_persistent_transaction(th);
2752 if (ret)
2753 goto out;
2754 }
2755
2756 out:
2757 if (locked)
2758 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2759 unlock_page(page);
2760 page_cache_release(page);
2761
2762 if (pos + len > inode->i_size)
2763 reiserfs_truncate_failed_write(inode);
2764
2765 return ret == 0 ? copied : ret;
2766
2767 journal_error:
2768 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2769 locked = false;
2770 if (th) {
2771 if (!update_sd)
2772 reiserfs_update_sd(th, inode);
2773 ret = reiserfs_end_persistent_transaction(th);
2774 }
2775 goto out;
2776 }
2777
2778 int reiserfs_commit_write(struct file *f, struct page *page,
2779 unsigned from, unsigned to)
2780 {
2781 struct inode *inode = page->mapping->host;
2782 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2783 int ret = 0;
2784 int update_sd = 0;
2785 struct reiserfs_transaction_handle *th = NULL;
2786
2787 reiserfs_write_unlock(inode->i_sb);
2788 reiserfs_wait_on_write_block(inode->i_sb);
2789 reiserfs_write_lock(inode->i_sb);
2790
2791 if (reiserfs_transaction_running(inode->i_sb)) {
2792 th = current->journal_info;
2793 }
2794 reiserfs_commit_page(inode, page, from, to);
2795
2796 /* generic_commit_write does this for us, but does not update the
2797 ** transaction tracking stuff when the size changes. So, we have
2798 ** to do the i_size updates here.
2799 */
2800 if (pos > inode->i_size) {
2801 struct reiserfs_transaction_handle myth;
2802 /* If the file have grown beyond the border where it
2803 can have a tail, unmark it as needing a tail
2804 packing */
2805 if ((have_large_tails(inode->i_sb)
2806 && inode->i_size > i_block_size(inode) * 4)
2807 || (have_small_tails(inode->i_sb)
2808 && inode->i_size > i_block_size(inode)))
2809 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2810
2811 ret = journal_begin(&myth, inode->i_sb, 1);
2812 if (ret)
2813 goto journal_error;
2814
2815 reiserfs_update_inode_transaction(inode);
2816 inode->i_size = pos;
2817 /*
2818 * this will just nest into our transaction. It's important
2819 * to use mark_inode_dirty so the inode gets pushed around on the
2820 * dirty lists, and so that O_SYNC works as expected
2821 */
2822 mark_inode_dirty(inode);
2823 reiserfs_update_sd(&myth, inode);
2824 update_sd = 1;
2825 ret = journal_end(&myth, inode->i_sb, 1);
2826 if (ret)
2827 goto journal_error;
2828 }
2829 if (th) {
2830 if (!update_sd)
2831 mark_inode_dirty(inode);
2832 ret = reiserfs_end_persistent_transaction(th);
2833 if (ret)
2834 goto out;
2835 }
2836
2837 out:
2838 return ret;
2839
2840 journal_error:
2841 if (th) {
2842 if (!update_sd)
2843 reiserfs_update_sd(th, inode);
2844 ret = reiserfs_end_persistent_transaction(th);
2845 }
2846
2847 return ret;
2848 }
2849
2850 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2851 {
2852 if (reiserfs_attrs(inode->i_sb)) {
2853 if (sd_attrs & REISERFS_SYNC_FL)
2854 inode->i_flags |= S_SYNC;
2855 else
2856 inode->i_flags &= ~S_SYNC;
2857 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2858 inode->i_flags |= S_IMMUTABLE;
2859 else
2860 inode->i_flags &= ~S_IMMUTABLE;
2861 if (sd_attrs & REISERFS_APPEND_FL)
2862 inode->i_flags |= S_APPEND;
2863 else
2864 inode->i_flags &= ~S_APPEND;
2865 if (sd_attrs & REISERFS_NOATIME_FL)
2866 inode->i_flags |= S_NOATIME;
2867 else
2868 inode->i_flags &= ~S_NOATIME;
2869 if (sd_attrs & REISERFS_NOTAIL_FL)
2870 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2871 else
2872 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2873 }
2874 }
2875
2876 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2877 {
2878 if (reiserfs_attrs(inode->i_sb)) {
2879 if (inode->i_flags & S_IMMUTABLE)
2880 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2881 else
2882 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2883 if (inode->i_flags & S_SYNC)
2884 *sd_attrs |= REISERFS_SYNC_FL;
2885 else
2886 *sd_attrs &= ~REISERFS_SYNC_FL;
2887 if (inode->i_flags & S_NOATIME)
2888 *sd_attrs |= REISERFS_NOATIME_FL;
2889 else
2890 *sd_attrs &= ~REISERFS_NOATIME_FL;
2891 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2892 *sd_attrs |= REISERFS_NOTAIL_FL;
2893 else
2894 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2895 }
2896 }
2897
2898 /* decide if this buffer needs to stay around for data logging or ordered
2899 ** write purposes
2900 */
2901 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2902 {
2903 int ret = 1;
2904 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2905
2906 lock_buffer(bh);
2907 spin_lock(&j->j_dirty_buffers_lock);
2908 if (!buffer_mapped(bh)) {
2909 goto free_jh;
2910 }
2911 /* the page is locked, and the only places that log a data buffer
2912 * also lock the page.
2913 */
2914 if (reiserfs_file_data_log(inode)) {
2915 /*
2916 * very conservative, leave the buffer pinned if
2917 * anyone might need it.
2918 */
2919 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2920 ret = 0;
2921 }
2922 } else if (buffer_dirty(bh)) {
2923 struct reiserfs_journal_list *jl;
2924 struct reiserfs_jh *jh = bh->b_private;
2925
2926 /* why is this safe?
2927 * reiserfs_setattr updates i_size in the on disk
2928 * stat data before allowing vmtruncate to be called.
2929 *
2930 * If buffer was put onto the ordered list for this
2931 * transaction, we know for sure either this transaction
2932 * or an older one already has updated i_size on disk,
2933 * and this ordered data won't be referenced in the file
2934 * if we crash.
2935 *
2936 * if the buffer was put onto the ordered list for an older
2937 * transaction, we need to leave it around
2938 */
2939 if (jh && (jl = jh->jl)
2940 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2941 ret = 0;
2942 }
2943 free_jh:
2944 if (ret && bh->b_private) {
2945 reiserfs_free_jh(bh);
2946 }
2947 spin_unlock(&j->j_dirty_buffers_lock);
2948 unlock_buffer(bh);
2949 return ret;
2950 }
2951
2952 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2953 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2954 {
2955 struct buffer_head *head, *bh, *next;
2956 struct inode *inode = page->mapping->host;
2957 unsigned int curr_off = 0;
2958 int ret = 1;
2959
2960 BUG_ON(!PageLocked(page));
2961
2962 if (offset == 0)
2963 ClearPageChecked(page);
2964
2965 if (!page_has_buffers(page))
2966 goto out;
2967
2968 head = page_buffers(page);
2969 bh = head;
2970 do {
2971 unsigned int next_off = curr_off + bh->b_size;
2972 next = bh->b_this_page;
2973
2974 /*
2975 * is this block fully invalidated?
2976 */
2977 if (offset <= curr_off) {
2978 if (invalidatepage_can_drop(inode, bh))
2979 reiserfs_unmap_buffer(bh);
2980 else
2981 ret = 0;
2982 }
2983 curr_off = next_off;
2984 bh = next;
2985 } while (bh != head);
2986
2987 /*
2988 * We release buffers only if the entire page is being invalidated.
2989 * The get_block cached value has been unconditionally invalidated,
2990 * so real IO is not possible anymore.
2991 */
2992 if (!offset && ret) {
2993 ret = try_to_release_page(page, 0);
2994 /* maybe should BUG_ON(!ret); - neilb */
2995 }
2996 out:
2997 return;
2998 }
2999
3000 static int reiserfs_set_page_dirty(struct page *page)
3001 {
3002 struct inode *inode = page->mapping->host;
3003 if (reiserfs_file_data_log(inode)) {
3004 SetPageChecked(page);
3005 return __set_page_dirty_nobuffers(page);
3006 }
3007 return __set_page_dirty_buffers(page);
3008 }
3009
3010 /*
3011 * Returns 1 if the page's buffers were dropped. The page is locked.
3012 *
3013 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3014 * in the buffers at page_buffers(page).
3015 *
3016 * even in -o notail mode, we can't be sure an old mount without -o notail
3017 * didn't create files with tails.
3018 */
3019 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3020 {
3021 struct inode *inode = page->mapping->host;
3022 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3023 struct buffer_head *head;
3024 struct buffer_head *bh;
3025 int ret = 1;
3026
3027 WARN_ON(PageChecked(page));
3028 spin_lock(&j->j_dirty_buffers_lock);
3029 head = page_buffers(page);
3030 bh = head;
3031 do {
3032 if (bh->b_private) {
3033 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3034 reiserfs_free_jh(bh);
3035 } else {
3036 ret = 0;
3037 break;
3038 }
3039 }
3040 bh = bh->b_this_page;
3041 } while (bh != head);
3042 if (ret)
3043 ret = try_to_free_buffers(page);
3044 spin_unlock(&j->j_dirty_buffers_lock);
3045 return ret;
3046 }
3047
3048 /* We thank Mingming Cao for helping us understand in great detail what
3049 to do in this section of the code. */
3050 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3051 const struct iovec *iov, loff_t offset,
3052 unsigned long nr_segs)
3053 {
3054 struct file *file = iocb->ki_filp;
3055 struct inode *inode = file->f_mapping->host;
3056
3057 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3058 offset, nr_segs,
3059 reiserfs_get_blocks_direct_io, NULL);
3060 }
3061
3062 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3063 {
3064 struct inode *inode = dentry->d_inode;
3065 unsigned int ia_valid;
3066 int depth;
3067 int error;
3068
3069 /* must be turned off for recursive notify_change calls */
3070 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3071
3072 depth = reiserfs_write_lock_once(inode->i_sb);
3073 if (attr->ia_valid & ATTR_SIZE) {
3074 /* version 2 items will be caught by the s_maxbytes check
3075 ** done for us in vmtruncate
3076 */
3077 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3078 attr->ia_size > MAX_NON_LFS) {
3079 error = -EFBIG;
3080 goto out;
3081 }
3082 /* fill in hole pointers in the expanding truncate case. */
3083 if (attr->ia_size > inode->i_size) {
3084 error = generic_cont_expand_simple(inode, attr->ia_size);
3085 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3086 int err;
3087 struct reiserfs_transaction_handle th;
3088 /* we're changing at most 2 bitmaps, inode + super */
3089 err = journal_begin(&th, inode->i_sb, 4);
3090 if (!err) {
3091 reiserfs_discard_prealloc(&th, inode);
3092 err = journal_end(&th, inode->i_sb, 4);
3093 }
3094 if (err)
3095 error = err;
3096 }
3097 if (error)
3098 goto out;
3099 /*
3100 * file size is changed, ctime and mtime are
3101 * to be updated
3102 */
3103 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3104 }
3105 }
3106
3107 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3108 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3109 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3110 /* stat data of format v3.5 has 16 bit uid and gid */
3111 error = -EINVAL;
3112 goto out;
3113 }
3114
3115 error = inode_change_ok(inode, attr);
3116 if (!error) {
3117 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3118 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3119 error = reiserfs_chown_xattrs(inode, attr);
3120
3121 if (!error) {
3122 struct reiserfs_transaction_handle th;
3123 int jbegin_count =
3124 2 *
3125 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3126 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3127 2;
3128
3129 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3130 error =
3131 journal_begin(&th, inode->i_sb,
3132 jbegin_count);
3133 if (error)
3134 goto out;
3135 error =
3136 vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
3137 if (error) {
3138 journal_end(&th, inode->i_sb,
3139 jbegin_count);
3140 goto out;
3141 }
3142 /* Update corresponding info in inode so that everything is in
3143 * one transaction */
3144 if (attr->ia_valid & ATTR_UID)
3145 inode->i_uid = attr->ia_uid;
3146 if (attr->ia_valid & ATTR_GID)
3147 inode->i_gid = attr->ia_gid;
3148 mark_inode_dirty(inode);
3149 error =
3150 journal_end(&th, inode->i_sb, jbegin_count);
3151 }
3152 }
3153 if (!error) {
3154 /*
3155 * Relax the lock here, as it might truncate the
3156 * inode pages and wait for inode pages locks.
3157 * To release such page lock, the owner needs the
3158 * reiserfs lock
3159 */
3160 reiserfs_write_unlock_once(inode->i_sb, depth);
3161 error = inode_setattr(inode, attr);
3162 depth = reiserfs_write_lock_once(inode->i_sb);
3163 }
3164 }
3165
3166 if (!error && reiserfs_posixacl(inode->i_sb)) {
3167 if (attr->ia_valid & ATTR_MODE)
3168 error = reiserfs_acl_chmod(inode);
3169 }
3170
3171 out:
3172 reiserfs_write_unlock_once(inode->i_sb, depth);
3173
3174 return error;
3175 }
3176
3177 const struct address_space_operations reiserfs_address_space_operations = {
3178 .writepage = reiserfs_writepage,
3179 .readpage = reiserfs_readpage,
3180 .readpages = reiserfs_readpages,
3181 .releasepage = reiserfs_releasepage,
3182 .invalidatepage = reiserfs_invalidatepage,
3183 .sync_page = block_sync_page,
3184 .write_begin = reiserfs_write_begin,
3185 .write_end = reiserfs_write_end,
3186 .bmap = reiserfs_aop_bmap,
3187 .direct_IO = reiserfs_direct_IO,
3188 .set_page_dirty = reiserfs_set_page_dirty,
3189 };
This page took 0.152508 seconds and 5 git commands to generate.