dquot: cleanup dquot initialize routine
[deliverable/linux.git] / fs / reiserfs / inode.c
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/exportfs.h>
11 #include <linux/smp_lock.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21
22 int reiserfs_commit_write(struct file *f, struct page *page,
23 unsigned from, unsigned to);
24 int reiserfs_prepare_write(struct file *f, struct page *page,
25 unsigned from, unsigned to);
26
27 void reiserfs_delete_inode(struct inode *inode)
28 {
29 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
30 int jbegin_count =
31 JOURNAL_PER_BALANCE_CNT * 2 +
32 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
33 struct reiserfs_transaction_handle th;
34 int depth;
35 int err;
36
37 if (!is_bad_inode(inode))
38 dquot_initialize(inode);
39
40 truncate_inode_pages(&inode->i_data, 0);
41
42 depth = reiserfs_write_lock_once(inode->i_sb);
43
44 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
45 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
46 reiserfs_delete_xattrs(inode);
47
48 if (journal_begin(&th, inode->i_sb, jbegin_count))
49 goto out;
50 reiserfs_update_inode_transaction(inode);
51
52 reiserfs_discard_prealloc(&th, inode);
53
54 err = reiserfs_delete_object(&th, inode);
55
56 /* Do quota update inside a transaction for journaled quotas. We must do that
57 * after delete_object so that quota updates go into the same transaction as
58 * stat data deletion */
59 if (!err)
60 dquot_free_inode(inode);
61
62 if (journal_end(&th, inode->i_sb, jbegin_count))
63 goto out;
64
65 /* check return value from reiserfs_delete_object after
66 * ending the transaction
67 */
68 if (err)
69 goto out;
70
71 /* all items of file are deleted, so we can remove "save" link */
72 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
73 * about an error here */
74 } else {
75 /* no object items are in the tree */
76 ;
77 }
78 out:
79 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */
80 inode->i_blocks = 0;
81 reiserfs_write_unlock_once(inode->i_sb, depth);
82 }
83
84 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
85 __u32 objectid, loff_t offset, int type, int length)
86 {
87 key->version = version;
88
89 key->on_disk_key.k_dir_id = dirid;
90 key->on_disk_key.k_objectid = objectid;
91 set_cpu_key_k_offset(key, offset);
92 set_cpu_key_k_type(key, type);
93 key->key_length = length;
94 }
95
96 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
97 offset and type of key */
98 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
99 int type, int length)
100 {
101 _make_cpu_key(key, get_inode_item_key_version(inode),
102 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
103 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
104 length);
105 }
106
107 //
108 // when key is 0, do not set version and short key
109 //
110 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
111 int version,
112 loff_t offset, int type, int length,
113 int entry_count /*or ih_free_space */ )
114 {
115 if (key) {
116 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
117 ih->ih_key.k_objectid =
118 cpu_to_le32(key->on_disk_key.k_objectid);
119 }
120 put_ih_version(ih, version);
121 set_le_ih_k_offset(ih, offset);
122 set_le_ih_k_type(ih, type);
123 put_ih_item_len(ih, length);
124 /* set_ih_free_space (ih, 0); */
125 // for directory items it is entry count, for directs and stat
126 // datas - 0xffff, for indirects - 0
127 put_ih_entry_count(ih, entry_count);
128 }
129
130 //
131 // FIXME: we might cache recently accessed indirect item
132
133 // Ugh. Not too eager for that....
134 // I cut the code until such time as I see a convincing argument (benchmark).
135 // I don't want a bloated inode struct..., and I don't like code complexity....
136
137 /* cutting the code is fine, since it really isn't in use yet and is easy
138 ** to add back in. But, Vladimir has a really good idea here. Think
139 ** about what happens for reading a file. For each page,
140 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
141 ** an indirect item. This indirect item has X number of pointers, where
142 ** X is a big number if we've done the block allocation right. But,
143 ** we only use one or two of these pointers during each call to readpage,
144 ** needlessly researching again later on.
145 **
146 ** The size of the cache could be dynamic based on the size of the file.
147 **
148 ** I'd also like to see us cache the location the stat data item, since
149 ** we are needlessly researching for that frequently.
150 **
151 ** --chris
152 */
153
154 /* If this page has a file tail in it, and
155 ** it was read in by get_block_create_0, the page data is valid,
156 ** but tail is still sitting in a direct item, and we can't write to
157 ** it. So, look through this page, and check all the mapped buffers
158 ** to make sure they have valid block numbers. Any that don't need
159 ** to be unmapped, so that block_prepare_write will correctly call
160 ** reiserfs_get_block to convert the tail into an unformatted node
161 */
162 static inline void fix_tail_page_for_writing(struct page *page)
163 {
164 struct buffer_head *head, *next, *bh;
165
166 if (page && page_has_buffers(page)) {
167 head = page_buffers(page);
168 bh = head;
169 do {
170 next = bh->b_this_page;
171 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
172 reiserfs_unmap_buffer(bh);
173 }
174 bh = next;
175 } while (bh != head);
176 }
177 }
178
179 /* reiserfs_get_block does not need to allocate a block only if it has been
180 done already or non-hole position has been found in the indirect item */
181 static inline int allocation_needed(int retval, b_blocknr_t allocated,
182 struct item_head *ih,
183 __le32 * item, int pos_in_item)
184 {
185 if (allocated)
186 return 0;
187 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
188 get_block_num(item, pos_in_item))
189 return 0;
190 return 1;
191 }
192
193 static inline int indirect_item_found(int retval, struct item_head *ih)
194 {
195 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
196 }
197
198 static inline void set_block_dev_mapped(struct buffer_head *bh,
199 b_blocknr_t block, struct inode *inode)
200 {
201 map_bh(bh, inode->i_sb, block);
202 }
203
204 //
205 // files which were created in the earlier version can not be longer,
206 // than 2 gb
207 //
208 static int file_capable(struct inode *inode, sector_t block)
209 {
210 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
211 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
212 return 1;
213
214 return 0;
215 }
216
217 static int restart_transaction(struct reiserfs_transaction_handle *th,
218 struct inode *inode, struct treepath *path)
219 {
220 struct super_block *s = th->t_super;
221 int len = th->t_blocks_allocated;
222 int err;
223
224 BUG_ON(!th->t_trans_id);
225 BUG_ON(!th->t_refcount);
226
227 pathrelse(path);
228
229 /* we cannot restart while nested */
230 if (th->t_refcount > 1) {
231 return 0;
232 }
233 reiserfs_update_sd(th, inode);
234 err = journal_end(th, s, len);
235 if (!err) {
236 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
237 if (!err)
238 reiserfs_update_inode_transaction(inode);
239 }
240 return err;
241 }
242
243 // it is called by get_block when create == 0. Returns block number
244 // for 'block'-th logical block of file. When it hits direct item it
245 // returns 0 (being called from bmap) or read direct item into piece
246 // of page (bh_result)
247
248 // Please improve the english/clarity in the comment above, as it is
249 // hard to understand.
250
251 static int _get_block_create_0(struct inode *inode, sector_t block,
252 struct buffer_head *bh_result, int args)
253 {
254 INITIALIZE_PATH(path);
255 struct cpu_key key;
256 struct buffer_head *bh;
257 struct item_head *ih, tmp_ih;
258 b_blocknr_t blocknr;
259 char *p = NULL;
260 int chars;
261 int ret;
262 int result;
263 int done = 0;
264 unsigned long offset;
265
266 // prepare the key to look for the 'block'-th block of file
267 make_cpu_key(&key, inode,
268 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
269 3);
270
271 result = search_for_position_by_key(inode->i_sb, &key, &path);
272 if (result != POSITION_FOUND) {
273 pathrelse(&path);
274 if (p)
275 kunmap(bh_result->b_page);
276 if (result == IO_ERROR)
277 return -EIO;
278 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
279 // That there is some MMAPED data associated with it that is yet to be written to disk.
280 if ((args & GET_BLOCK_NO_HOLE)
281 && !PageUptodate(bh_result->b_page)) {
282 return -ENOENT;
283 }
284 return 0;
285 }
286 //
287 bh = get_last_bh(&path);
288 ih = get_ih(&path);
289 if (is_indirect_le_ih(ih)) {
290 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
291
292 /* FIXME: here we could cache indirect item or part of it in
293 the inode to avoid search_by_key in case of subsequent
294 access to file */
295 blocknr = get_block_num(ind_item, path.pos_in_item);
296 ret = 0;
297 if (blocknr) {
298 map_bh(bh_result, inode->i_sb, blocknr);
299 if (path.pos_in_item ==
300 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
301 set_buffer_boundary(bh_result);
302 }
303 } else
304 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
305 // That there is some MMAPED data associated with it that is yet to be written to disk.
306 if ((args & GET_BLOCK_NO_HOLE)
307 && !PageUptodate(bh_result->b_page)) {
308 ret = -ENOENT;
309 }
310
311 pathrelse(&path);
312 if (p)
313 kunmap(bh_result->b_page);
314 return ret;
315 }
316 // requested data are in direct item(s)
317 if (!(args & GET_BLOCK_READ_DIRECT)) {
318 // we are called by bmap. FIXME: we can not map block of file
319 // when it is stored in direct item(s)
320 pathrelse(&path);
321 if (p)
322 kunmap(bh_result->b_page);
323 return -ENOENT;
324 }
325
326 /* if we've got a direct item, and the buffer or page was uptodate,
327 ** we don't want to pull data off disk again. skip to the
328 ** end, where we map the buffer and return
329 */
330 if (buffer_uptodate(bh_result)) {
331 goto finished;
332 } else
333 /*
334 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
335 ** pages without any buffers. If the page is up to date, we don't want
336 ** read old data off disk. Set the up to date bit on the buffer instead
337 ** and jump to the end
338 */
339 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
340 set_buffer_uptodate(bh_result);
341 goto finished;
342 }
343 // read file tail into part of page
344 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
345 copy_item_head(&tmp_ih, ih);
346
347 /* we only want to kmap if we are reading the tail into the page.
348 ** this is not the common case, so we don't kmap until we are
349 ** sure we need to. But, this means the item might move if
350 ** kmap schedules
351 */
352 if (!p)
353 p = (char *)kmap(bh_result->b_page);
354
355 p += offset;
356 memset(p, 0, inode->i_sb->s_blocksize);
357 do {
358 if (!is_direct_le_ih(ih)) {
359 BUG();
360 }
361 /* make sure we don't read more bytes than actually exist in
362 ** the file. This can happen in odd cases where i_size isn't
363 ** correct, and when direct item padding results in a few
364 ** extra bytes at the end of the direct item
365 */
366 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
367 break;
368 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
369 chars =
370 inode->i_size - (le_ih_k_offset(ih) - 1) -
371 path.pos_in_item;
372 done = 1;
373 } else {
374 chars = ih_item_len(ih) - path.pos_in_item;
375 }
376 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
377
378 if (done)
379 break;
380
381 p += chars;
382
383 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
384 // we done, if read direct item is not the last item of
385 // node FIXME: we could try to check right delimiting key
386 // to see whether direct item continues in the right
387 // neighbor or rely on i_size
388 break;
389
390 // update key to look for the next piece
391 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
392 result = search_for_position_by_key(inode->i_sb, &key, &path);
393 if (result != POSITION_FOUND)
394 // i/o error most likely
395 break;
396 bh = get_last_bh(&path);
397 ih = get_ih(&path);
398 } while (1);
399
400 flush_dcache_page(bh_result->b_page);
401 kunmap(bh_result->b_page);
402
403 finished:
404 pathrelse(&path);
405
406 if (result == IO_ERROR)
407 return -EIO;
408
409 /* this buffer has valid data, but isn't valid for io. mapping it to
410 * block #0 tells the rest of reiserfs it just has a tail in it
411 */
412 map_bh(bh_result, inode->i_sb, 0);
413 set_buffer_uptodate(bh_result);
414 return 0;
415 }
416
417 // this is called to create file map. So, _get_block_create_0 will not
418 // read direct item
419 static int reiserfs_bmap(struct inode *inode, sector_t block,
420 struct buffer_head *bh_result, int create)
421 {
422 if (!file_capable(inode, block))
423 return -EFBIG;
424
425 reiserfs_write_lock(inode->i_sb);
426 /* do not read the direct item */
427 _get_block_create_0(inode, block, bh_result, 0);
428 reiserfs_write_unlock(inode->i_sb);
429 return 0;
430 }
431
432 /* special version of get_block that is only used by grab_tail_page right
433 ** now. It is sent to block_prepare_write, and when you try to get a
434 ** block past the end of the file (or a block from a hole) it returns
435 ** -ENOENT instead of a valid buffer. block_prepare_write expects to
436 ** be able to do i/o on the buffers returned, unless an error value
437 ** is also returned.
438 **
439 ** So, this allows block_prepare_write to be used for reading a single block
440 ** in a page. Where it does not produce a valid page for holes, or past the
441 ** end of the file. This turns out to be exactly what we need for reading
442 ** tails for conversion.
443 **
444 ** The point of the wrapper is forcing a certain value for create, even
445 ** though the VFS layer is calling this function with create==1. If you
446 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
447 ** don't use this function.
448 */
449 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
450 struct buffer_head *bh_result,
451 int create)
452 {
453 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
454 }
455
456 /* This is special helper for reiserfs_get_block in case we are executing
457 direct_IO request. */
458 static int reiserfs_get_blocks_direct_io(struct inode *inode,
459 sector_t iblock,
460 struct buffer_head *bh_result,
461 int create)
462 {
463 int ret;
464
465 bh_result->b_page = NULL;
466
467 /* We set the b_size before reiserfs_get_block call since it is
468 referenced in convert_tail_for_hole() that may be called from
469 reiserfs_get_block() */
470 bh_result->b_size = (1 << inode->i_blkbits);
471
472 ret = reiserfs_get_block(inode, iblock, bh_result,
473 create | GET_BLOCK_NO_DANGLE);
474 if (ret)
475 goto out;
476
477 /* don't allow direct io onto tail pages */
478 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
479 /* make sure future calls to the direct io funcs for this offset
480 ** in the file fail by unmapping the buffer
481 */
482 clear_buffer_mapped(bh_result);
483 ret = -EINVAL;
484 }
485 /* Possible unpacked tail. Flush the data before pages have
486 disappeared */
487 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
488 int err;
489
490 reiserfs_write_lock(inode->i_sb);
491
492 err = reiserfs_commit_for_inode(inode);
493 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
494
495 reiserfs_write_unlock(inode->i_sb);
496
497 if (err < 0)
498 ret = err;
499 }
500 out:
501 return ret;
502 }
503
504 /*
505 ** helper function for when reiserfs_get_block is called for a hole
506 ** but the file tail is still in a direct item
507 ** bh_result is the buffer head for the hole
508 ** tail_offset is the offset of the start of the tail in the file
509 **
510 ** This calls prepare_write, which will start a new transaction
511 ** you should not be in a transaction, or have any paths held when you
512 ** call this.
513 */
514 static int convert_tail_for_hole(struct inode *inode,
515 struct buffer_head *bh_result,
516 loff_t tail_offset)
517 {
518 unsigned long index;
519 unsigned long tail_end;
520 unsigned long tail_start;
521 struct page *tail_page;
522 struct page *hole_page = bh_result->b_page;
523 int retval = 0;
524
525 if ((tail_offset & (bh_result->b_size - 1)) != 1)
526 return -EIO;
527
528 /* always try to read until the end of the block */
529 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
530 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
531
532 index = tail_offset >> PAGE_CACHE_SHIFT;
533 /* hole_page can be zero in case of direct_io, we are sure
534 that we cannot get here if we write with O_DIRECT into
535 tail page */
536 if (!hole_page || index != hole_page->index) {
537 tail_page = grab_cache_page(inode->i_mapping, index);
538 retval = -ENOMEM;
539 if (!tail_page) {
540 goto out;
541 }
542 } else {
543 tail_page = hole_page;
544 }
545
546 /* we don't have to make sure the conversion did not happen while
547 ** we were locking the page because anyone that could convert
548 ** must first take i_mutex.
549 **
550 ** We must fix the tail page for writing because it might have buffers
551 ** that are mapped, but have a block number of 0. This indicates tail
552 ** data that has been read directly into the page, and block_prepare_write
553 ** won't trigger a get_block in this case.
554 */
555 fix_tail_page_for_writing(tail_page);
556 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
557 if (retval)
558 goto unlock;
559
560 /* tail conversion might change the data in the page */
561 flush_dcache_page(tail_page);
562
563 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
564
565 unlock:
566 if (tail_page != hole_page) {
567 unlock_page(tail_page);
568 page_cache_release(tail_page);
569 }
570 out:
571 return retval;
572 }
573
574 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
575 sector_t block,
576 struct inode *inode,
577 b_blocknr_t * allocated_block_nr,
578 struct treepath *path, int flags)
579 {
580 BUG_ON(!th->t_trans_id);
581
582 #ifdef REISERFS_PREALLOCATE
583 if (!(flags & GET_BLOCK_NO_IMUX)) {
584 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
585 path, block);
586 }
587 #endif
588 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
589 block);
590 }
591
592 int reiserfs_get_block(struct inode *inode, sector_t block,
593 struct buffer_head *bh_result, int create)
594 {
595 int repeat, retval = 0;
596 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
597 INITIALIZE_PATH(path);
598 int pos_in_item;
599 struct cpu_key key;
600 struct buffer_head *bh, *unbh = NULL;
601 struct item_head *ih, tmp_ih;
602 __le32 *item;
603 int done;
604 int fs_gen;
605 int lock_depth;
606 struct reiserfs_transaction_handle *th = NULL;
607 /* space reserved in transaction batch:
608 . 3 balancings in direct->indirect conversion
609 . 1 block involved into reiserfs_update_sd()
610 XXX in practically impossible worst case direct2indirect()
611 can incur (much) more than 3 balancings.
612 quota update for user, group */
613 int jbegin_count =
614 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
615 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
616 int version;
617 int dangle = 1;
618 loff_t new_offset =
619 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
620
621 lock_depth = reiserfs_write_lock_once(inode->i_sb);
622 version = get_inode_item_key_version(inode);
623
624 if (!file_capable(inode, block)) {
625 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
626 return -EFBIG;
627 }
628
629 /* if !create, we aren't changing the FS, so we don't need to
630 ** log anything, so we don't need to start a transaction
631 */
632 if (!(create & GET_BLOCK_CREATE)) {
633 int ret;
634 /* find number of block-th logical block of the file */
635 ret = _get_block_create_0(inode, block, bh_result,
636 create | GET_BLOCK_READ_DIRECT);
637 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
638 return ret;
639 }
640 /*
641 * if we're already in a transaction, make sure to close
642 * any new transactions we start in this func
643 */
644 if ((create & GET_BLOCK_NO_DANGLE) ||
645 reiserfs_transaction_running(inode->i_sb))
646 dangle = 0;
647
648 /* If file is of such a size, that it might have a tail and tails are enabled
649 ** we should mark it as possibly needing tail packing on close
650 */
651 if ((have_large_tails(inode->i_sb)
652 && inode->i_size < i_block_size(inode) * 4)
653 || (have_small_tails(inode->i_sb)
654 && inode->i_size < i_block_size(inode)))
655 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
656
657 /* set the key of the first byte in the 'block'-th block of file */
658 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
659 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
660 start_trans:
661 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
662 if (!th) {
663 retval = -ENOMEM;
664 goto failure;
665 }
666 reiserfs_update_inode_transaction(inode);
667 }
668 research:
669
670 retval = search_for_position_by_key(inode->i_sb, &key, &path);
671 if (retval == IO_ERROR) {
672 retval = -EIO;
673 goto failure;
674 }
675
676 bh = get_last_bh(&path);
677 ih = get_ih(&path);
678 item = get_item(&path);
679 pos_in_item = path.pos_in_item;
680
681 fs_gen = get_generation(inode->i_sb);
682 copy_item_head(&tmp_ih, ih);
683
684 if (allocation_needed
685 (retval, allocated_block_nr, ih, item, pos_in_item)) {
686 /* we have to allocate block for the unformatted node */
687 if (!th) {
688 pathrelse(&path);
689 goto start_trans;
690 }
691
692 repeat =
693 _allocate_block(th, block, inode, &allocated_block_nr,
694 &path, create);
695
696 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
697 /* restart the transaction to give the journal a chance to free
698 ** some blocks. releases the path, so we have to go back to
699 ** research if we succeed on the second try
700 */
701 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
702 retval = restart_transaction(th, inode, &path);
703 if (retval)
704 goto failure;
705 repeat =
706 _allocate_block(th, block, inode,
707 &allocated_block_nr, NULL, create);
708
709 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
710 goto research;
711 }
712 if (repeat == QUOTA_EXCEEDED)
713 retval = -EDQUOT;
714 else
715 retval = -ENOSPC;
716 goto failure;
717 }
718
719 if (fs_changed(fs_gen, inode->i_sb)
720 && item_moved(&tmp_ih, &path)) {
721 goto research;
722 }
723 }
724
725 if (indirect_item_found(retval, ih)) {
726 b_blocknr_t unfm_ptr;
727 /* 'block'-th block is in the file already (there is
728 corresponding cell in some indirect item). But it may be
729 zero unformatted node pointer (hole) */
730 unfm_ptr = get_block_num(item, pos_in_item);
731 if (unfm_ptr == 0) {
732 /* use allocated block to plug the hole */
733 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
734 if (fs_changed(fs_gen, inode->i_sb)
735 && item_moved(&tmp_ih, &path)) {
736 reiserfs_restore_prepared_buffer(inode->i_sb,
737 bh);
738 goto research;
739 }
740 set_buffer_new(bh_result);
741 if (buffer_dirty(bh_result)
742 && reiserfs_data_ordered(inode->i_sb))
743 reiserfs_add_ordered_list(inode, bh_result);
744 put_block_num(item, pos_in_item, allocated_block_nr);
745 unfm_ptr = allocated_block_nr;
746 journal_mark_dirty(th, inode->i_sb, bh);
747 reiserfs_update_sd(th, inode);
748 }
749 set_block_dev_mapped(bh_result, unfm_ptr, inode);
750 pathrelse(&path);
751 retval = 0;
752 if (!dangle && th)
753 retval = reiserfs_end_persistent_transaction(th);
754
755 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
756
757 /* the item was found, so new blocks were not added to the file
758 ** there is no need to make sure the inode is updated with this
759 ** transaction
760 */
761 return retval;
762 }
763
764 if (!th) {
765 pathrelse(&path);
766 goto start_trans;
767 }
768
769 /* desired position is not found or is in the direct item. We have
770 to append file with holes up to 'block'-th block converting
771 direct items to indirect one if necessary */
772 done = 0;
773 do {
774 if (is_statdata_le_ih(ih)) {
775 __le32 unp = 0;
776 struct cpu_key tmp_key;
777
778 /* indirect item has to be inserted */
779 make_le_item_head(&tmp_ih, &key, version, 1,
780 TYPE_INDIRECT, UNFM_P_SIZE,
781 0 /* free_space */ );
782
783 if (cpu_key_k_offset(&key) == 1) {
784 /* we are going to add 'block'-th block to the file. Use
785 allocated block for that */
786 unp = cpu_to_le32(allocated_block_nr);
787 set_block_dev_mapped(bh_result,
788 allocated_block_nr, inode);
789 set_buffer_new(bh_result);
790 done = 1;
791 }
792 tmp_key = key; // ;)
793 set_cpu_key_k_offset(&tmp_key, 1);
794 PATH_LAST_POSITION(&path)++;
795
796 retval =
797 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
798 inode, (char *)&unp);
799 if (retval) {
800 reiserfs_free_block(th, inode,
801 allocated_block_nr, 1);
802 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
803 }
804 //mark_tail_converted (inode);
805 } else if (is_direct_le_ih(ih)) {
806 /* direct item has to be converted */
807 loff_t tail_offset;
808
809 tail_offset =
810 ((le_ih_k_offset(ih) -
811 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
812 if (tail_offset == cpu_key_k_offset(&key)) {
813 /* direct item we just found fits into block we have
814 to map. Convert it into unformatted node: use
815 bh_result for the conversion */
816 set_block_dev_mapped(bh_result,
817 allocated_block_nr, inode);
818 unbh = bh_result;
819 done = 1;
820 } else {
821 /* we have to padd file tail stored in direct item(s)
822 up to block size and convert it to unformatted
823 node. FIXME: this should also get into page cache */
824
825 pathrelse(&path);
826 /*
827 * ugly, but we can only end the transaction if
828 * we aren't nested
829 */
830 BUG_ON(!th->t_refcount);
831 if (th->t_refcount == 1) {
832 retval =
833 reiserfs_end_persistent_transaction
834 (th);
835 th = NULL;
836 if (retval)
837 goto failure;
838 }
839
840 retval =
841 convert_tail_for_hole(inode, bh_result,
842 tail_offset);
843 if (retval) {
844 if (retval != -ENOSPC)
845 reiserfs_error(inode->i_sb,
846 "clm-6004",
847 "convert tail failed "
848 "inode %lu, error %d",
849 inode->i_ino,
850 retval);
851 if (allocated_block_nr) {
852 /* the bitmap, the super, and the stat data == 3 */
853 if (!th)
854 th = reiserfs_persistent_transaction(inode->i_sb, 3);
855 if (th)
856 reiserfs_free_block(th,
857 inode,
858 allocated_block_nr,
859 1);
860 }
861 goto failure;
862 }
863 goto research;
864 }
865 retval =
866 direct2indirect(th, inode, &path, unbh,
867 tail_offset);
868 if (retval) {
869 reiserfs_unmap_buffer(unbh);
870 reiserfs_free_block(th, inode,
871 allocated_block_nr, 1);
872 goto failure;
873 }
874 /* it is important the set_buffer_uptodate is done after
875 ** the direct2indirect. The buffer might contain valid
876 ** data newer than the data on disk (read by readpage, changed,
877 ** and then sent here by writepage). direct2indirect needs
878 ** to know if unbh was already up to date, so it can decide
879 ** if the data in unbh needs to be replaced with data from
880 ** the disk
881 */
882 set_buffer_uptodate(unbh);
883
884 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
885 buffer will disappear shortly, so it should not be added to
886 */
887 if (unbh->b_page) {
888 /* we've converted the tail, so we must
889 ** flush unbh before the transaction commits
890 */
891 reiserfs_add_tail_list(inode, unbh);
892
893 /* mark it dirty now to prevent commit_write from adding
894 ** this buffer to the inode's dirty buffer list
895 */
896 /*
897 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
898 * It's still atomic, but it sets the page dirty too,
899 * which makes it eligible for writeback at any time by the
900 * VM (which was also the case with __mark_buffer_dirty())
901 */
902 mark_buffer_dirty(unbh);
903 }
904 } else {
905 /* append indirect item with holes if needed, when appending
906 pointer to 'block'-th block use block, which is already
907 allocated */
908 struct cpu_key tmp_key;
909 unp_t unf_single = 0; // We use this in case we need to allocate only
910 // one block which is a fastpath
911 unp_t *un;
912 __u64 max_to_insert =
913 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
914 UNFM_P_SIZE;
915 __u64 blocks_needed;
916
917 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
918 "vs-804: invalid position for append");
919 /* indirect item has to be appended, set up key of that position */
920 make_cpu_key(&tmp_key, inode,
921 le_key_k_offset(version,
922 &(ih->ih_key)) +
923 op_bytes_number(ih,
924 inode->i_sb->s_blocksize),
925 //pos_in_item * inode->i_sb->s_blocksize,
926 TYPE_INDIRECT, 3); // key type is unimportant
927
928 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
929 "green-805: invalid offset");
930 blocks_needed =
931 1 +
932 ((cpu_key_k_offset(&key) -
933 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
934 s_blocksize_bits);
935
936 if (blocks_needed == 1) {
937 un = &unf_single;
938 } else {
939 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
940 if (!un) {
941 un = &unf_single;
942 blocks_needed = 1;
943 max_to_insert = 0;
944 }
945 }
946 if (blocks_needed <= max_to_insert) {
947 /* we are going to add target block to the file. Use allocated
948 block for that */
949 un[blocks_needed - 1] =
950 cpu_to_le32(allocated_block_nr);
951 set_block_dev_mapped(bh_result,
952 allocated_block_nr, inode);
953 set_buffer_new(bh_result);
954 done = 1;
955 } else {
956 /* paste hole to the indirect item */
957 /* If kmalloc failed, max_to_insert becomes zero and it means we
958 only have space for one block */
959 blocks_needed =
960 max_to_insert ? max_to_insert : 1;
961 }
962 retval =
963 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
964 (char *)un,
965 UNFM_P_SIZE *
966 blocks_needed);
967
968 if (blocks_needed != 1)
969 kfree(un);
970
971 if (retval) {
972 reiserfs_free_block(th, inode,
973 allocated_block_nr, 1);
974 goto failure;
975 }
976 if (!done) {
977 /* We need to mark new file size in case this function will be
978 interrupted/aborted later on. And we may do this only for
979 holes. */
980 inode->i_size +=
981 inode->i_sb->s_blocksize * blocks_needed;
982 }
983 }
984
985 if (done == 1)
986 break;
987
988 /* this loop could log more blocks than we had originally asked
989 ** for. So, we have to allow the transaction to end if it is
990 ** too big or too full. Update the inode so things are
991 ** consistent if we crash before the function returns
992 **
993 ** release the path so that anybody waiting on the path before
994 ** ending their transaction will be able to continue.
995 */
996 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
997 retval = restart_transaction(th, inode, &path);
998 if (retval)
999 goto failure;
1000 }
1001 /*
1002 * inserting indirect pointers for a hole can take a
1003 * long time. reschedule if needed and also release the write
1004 * lock for others.
1005 */
1006 if (need_resched()) {
1007 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1008 schedule();
1009 lock_depth = reiserfs_write_lock_once(inode->i_sb);
1010 }
1011
1012 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1013 if (retval == IO_ERROR) {
1014 retval = -EIO;
1015 goto failure;
1016 }
1017 if (retval == POSITION_FOUND) {
1018 reiserfs_warning(inode->i_sb, "vs-825",
1019 "%K should not be found", &key);
1020 retval = -EEXIST;
1021 if (allocated_block_nr)
1022 reiserfs_free_block(th, inode,
1023 allocated_block_nr, 1);
1024 pathrelse(&path);
1025 goto failure;
1026 }
1027 bh = get_last_bh(&path);
1028 ih = get_ih(&path);
1029 item = get_item(&path);
1030 pos_in_item = path.pos_in_item;
1031 } while (1);
1032
1033 retval = 0;
1034
1035 failure:
1036 if (th && (!dangle || (retval && !th->t_trans_id))) {
1037 int err;
1038 if (th->t_trans_id)
1039 reiserfs_update_sd(th, inode);
1040 err = reiserfs_end_persistent_transaction(th);
1041 if (err)
1042 retval = err;
1043 }
1044
1045 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1046 reiserfs_check_path(&path);
1047 return retval;
1048 }
1049
1050 static int
1051 reiserfs_readpages(struct file *file, struct address_space *mapping,
1052 struct list_head *pages, unsigned nr_pages)
1053 {
1054 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1055 }
1056
1057 /* Compute real number of used bytes by file
1058 * Following three functions can go away when we'll have enough space in stat item
1059 */
1060 static int real_space_diff(struct inode *inode, int sd_size)
1061 {
1062 int bytes;
1063 loff_t blocksize = inode->i_sb->s_blocksize;
1064
1065 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1066 return sd_size;
1067
1068 /* End of file is also in full block with indirect reference, so round
1069 ** up to the next block.
1070 **
1071 ** there is just no way to know if the tail is actually packed
1072 ** on the file, so we have to assume it isn't. When we pack the
1073 ** tail, we add 4 bytes to pretend there really is an unformatted
1074 ** node pointer
1075 */
1076 bytes =
1077 ((inode->i_size +
1078 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1079 sd_size;
1080 return bytes;
1081 }
1082
1083 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1084 int sd_size)
1085 {
1086 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1087 return inode->i_size +
1088 (loff_t) (real_space_diff(inode, sd_size));
1089 }
1090 return ((loff_t) real_space_diff(inode, sd_size)) +
1091 (((loff_t) blocks) << 9);
1092 }
1093
1094 /* Compute number of blocks used by file in ReiserFS counting */
1095 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1096 {
1097 loff_t bytes = inode_get_bytes(inode);
1098 loff_t real_space = real_space_diff(inode, sd_size);
1099
1100 /* keeps fsck and non-quota versions of reiserfs happy */
1101 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1102 bytes += (loff_t) 511;
1103 }
1104
1105 /* files from before the quota patch might i_blocks such that
1106 ** bytes < real_space. Deal with that here to prevent it from
1107 ** going negative.
1108 */
1109 if (bytes < real_space)
1110 return 0;
1111 return (bytes - real_space) >> 9;
1112 }
1113
1114 //
1115 // BAD: new directories have stat data of new type and all other items
1116 // of old type. Version stored in the inode says about body items, so
1117 // in update_stat_data we can not rely on inode, but have to check
1118 // item version directly
1119 //
1120
1121 // called by read_locked_inode
1122 static void init_inode(struct inode *inode, struct treepath *path)
1123 {
1124 struct buffer_head *bh;
1125 struct item_head *ih;
1126 __u32 rdev;
1127 //int version = ITEM_VERSION_1;
1128
1129 bh = PATH_PLAST_BUFFER(path);
1130 ih = PATH_PITEM_HEAD(path);
1131
1132 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1133
1134 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1135 REISERFS_I(inode)->i_flags = 0;
1136 REISERFS_I(inode)->i_prealloc_block = 0;
1137 REISERFS_I(inode)->i_prealloc_count = 0;
1138 REISERFS_I(inode)->i_trans_id = 0;
1139 REISERFS_I(inode)->i_jl = NULL;
1140 mutex_init(&(REISERFS_I(inode)->i_mmap));
1141 reiserfs_init_xattr_rwsem(inode);
1142
1143 if (stat_data_v1(ih)) {
1144 struct stat_data_v1 *sd =
1145 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1146 unsigned long blocks;
1147
1148 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1149 set_inode_sd_version(inode, STAT_DATA_V1);
1150 inode->i_mode = sd_v1_mode(sd);
1151 inode->i_nlink = sd_v1_nlink(sd);
1152 inode->i_uid = sd_v1_uid(sd);
1153 inode->i_gid = sd_v1_gid(sd);
1154 inode->i_size = sd_v1_size(sd);
1155 inode->i_atime.tv_sec = sd_v1_atime(sd);
1156 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1157 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1158 inode->i_atime.tv_nsec = 0;
1159 inode->i_ctime.tv_nsec = 0;
1160 inode->i_mtime.tv_nsec = 0;
1161
1162 inode->i_blocks = sd_v1_blocks(sd);
1163 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1164 blocks = (inode->i_size + 511) >> 9;
1165 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1166 if (inode->i_blocks > blocks) {
1167 // there was a bug in <=3.5.23 when i_blocks could take negative
1168 // values. Starting from 3.5.17 this value could even be stored in
1169 // stat data. For such files we set i_blocks based on file
1170 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1171 // only updated if file's inode will ever change
1172 inode->i_blocks = blocks;
1173 }
1174
1175 rdev = sd_v1_rdev(sd);
1176 REISERFS_I(inode)->i_first_direct_byte =
1177 sd_v1_first_direct_byte(sd);
1178 /* an early bug in the quota code can give us an odd number for the
1179 ** block count. This is incorrect, fix it here.
1180 */
1181 if (inode->i_blocks & 1) {
1182 inode->i_blocks++;
1183 }
1184 inode_set_bytes(inode,
1185 to_real_used_space(inode, inode->i_blocks,
1186 SD_V1_SIZE));
1187 /* nopack is initially zero for v1 objects. For v2 objects,
1188 nopack is initialised from sd_attrs */
1189 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1190 } else {
1191 // new stat data found, but object may have old items
1192 // (directories and symlinks)
1193 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1194
1195 inode->i_mode = sd_v2_mode(sd);
1196 inode->i_nlink = sd_v2_nlink(sd);
1197 inode->i_uid = sd_v2_uid(sd);
1198 inode->i_size = sd_v2_size(sd);
1199 inode->i_gid = sd_v2_gid(sd);
1200 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1201 inode->i_atime.tv_sec = sd_v2_atime(sd);
1202 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1203 inode->i_ctime.tv_nsec = 0;
1204 inode->i_mtime.tv_nsec = 0;
1205 inode->i_atime.tv_nsec = 0;
1206 inode->i_blocks = sd_v2_blocks(sd);
1207 rdev = sd_v2_rdev(sd);
1208 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1209 inode->i_generation =
1210 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1211 else
1212 inode->i_generation = sd_v2_generation(sd);
1213
1214 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1215 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1216 else
1217 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1218 REISERFS_I(inode)->i_first_direct_byte = 0;
1219 set_inode_sd_version(inode, STAT_DATA_V2);
1220 inode_set_bytes(inode,
1221 to_real_used_space(inode, inode->i_blocks,
1222 SD_V2_SIZE));
1223 /* read persistent inode attributes from sd and initalise
1224 generic inode flags from them */
1225 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1226 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1227 }
1228
1229 pathrelse(path);
1230 if (S_ISREG(inode->i_mode)) {
1231 inode->i_op = &reiserfs_file_inode_operations;
1232 inode->i_fop = &reiserfs_file_operations;
1233 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1234 } else if (S_ISDIR(inode->i_mode)) {
1235 inode->i_op = &reiserfs_dir_inode_operations;
1236 inode->i_fop = &reiserfs_dir_operations;
1237 } else if (S_ISLNK(inode->i_mode)) {
1238 inode->i_op = &reiserfs_symlink_inode_operations;
1239 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1240 } else {
1241 inode->i_blocks = 0;
1242 inode->i_op = &reiserfs_special_inode_operations;
1243 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1244 }
1245 }
1246
1247 // update new stat data with inode fields
1248 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1249 {
1250 struct stat_data *sd_v2 = (struct stat_data *)sd;
1251 __u16 flags;
1252
1253 set_sd_v2_mode(sd_v2, inode->i_mode);
1254 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1255 set_sd_v2_uid(sd_v2, inode->i_uid);
1256 set_sd_v2_size(sd_v2, size);
1257 set_sd_v2_gid(sd_v2, inode->i_gid);
1258 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1259 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1260 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1261 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1262 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1263 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1264 else
1265 set_sd_v2_generation(sd_v2, inode->i_generation);
1266 flags = REISERFS_I(inode)->i_attrs;
1267 i_attrs_to_sd_attrs(inode, &flags);
1268 set_sd_v2_attrs(sd_v2, flags);
1269 }
1270
1271 // used to copy inode's fields to old stat data
1272 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1273 {
1274 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1275
1276 set_sd_v1_mode(sd_v1, inode->i_mode);
1277 set_sd_v1_uid(sd_v1, inode->i_uid);
1278 set_sd_v1_gid(sd_v1, inode->i_gid);
1279 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1280 set_sd_v1_size(sd_v1, size);
1281 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1282 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1283 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1284
1285 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1286 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1287 else
1288 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1289
1290 // Sigh. i_first_direct_byte is back
1291 set_sd_v1_first_direct_byte(sd_v1,
1292 REISERFS_I(inode)->i_first_direct_byte);
1293 }
1294
1295 /* NOTE, you must prepare the buffer head before sending it here,
1296 ** and then log it after the call
1297 */
1298 static void update_stat_data(struct treepath *path, struct inode *inode,
1299 loff_t size)
1300 {
1301 struct buffer_head *bh;
1302 struct item_head *ih;
1303
1304 bh = PATH_PLAST_BUFFER(path);
1305 ih = PATH_PITEM_HEAD(path);
1306
1307 if (!is_statdata_le_ih(ih))
1308 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1309 INODE_PKEY(inode), ih);
1310
1311 if (stat_data_v1(ih)) {
1312 // path points to old stat data
1313 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1314 } else {
1315 inode2sd(B_I_PITEM(bh, ih), inode, size);
1316 }
1317
1318 return;
1319 }
1320
1321 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1322 struct inode *inode, loff_t size)
1323 {
1324 struct cpu_key key;
1325 INITIALIZE_PATH(path);
1326 struct buffer_head *bh;
1327 int fs_gen;
1328 struct item_head *ih, tmp_ih;
1329 int retval;
1330
1331 BUG_ON(!th->t_trans_id);
1332
1333 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1334
1335 for (;;) {
1336 int pos;
1337 /* look for the object's stat data */
1338 retval = search_item(inode->i_sb, &key, &path);
1339 if (retval == IO_ERROR) {
1340 reiserfs_error(inode->i_sb, "vs-13050",
1341 "i/o failure occurred trying to "
1342 "update %K stat data", &key);
1343 return;
1344 }
1345 if (retval == ITEM_NOT_FOUND) {
1346 pos = PATH_LAST_POSITION(&path);
1347 pathrelse(&path);
1348 if (inode->i_nlink == 0) {
1349 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1350 return;
1351 }
1352 reiserfs_warning(inode->i_sb, "vs-13060",
1353 "stat data of object %k (nlink == %d) "
1354 "not found (pos %d)",
1355 INODE_PKEY(inode), inode->i_nlink,
1356 pos);
1357 reiserfs_check_path(&path);
1358 return;
1359 }
1360
1361 /* sigh, prepare_for_journal might schedule. When it schedules the
1362 ** FS might change. We have to detect that, and loop back to the
1363 ** search if the stat data item has moved
1364 */
1365 bh = get_last_bh(&path);
1366 ih = get_ih(&path);
1367 copy_item_head(&tmp_ih, ih);
1368 fs_gen = get_generation(inode->i_sb);
1369 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1370 if (fs_changed(fs_gen, inode->i_sb)
1371 && item_moved(&tmp_ih, &path)) {
1372 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1373 continue; /* Stat_data item has been moved after scheduling. */
1374 }
1375 break;
1376 }
1377 update_stat_data(&path, inode, size);
1378 journal_mark_dirty(th, th->t_super, bh);
1379 pathrelse(&path);
1380 return;
1381 }
1382
1383 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1384 ** does a make_bad_inode when things go wrong. But, we need to make sure
1385 ** and clear the key in the private portion of the inode, otherwise a
1386 ** corresponding iput might try to delete whatever object the inode last
1387 ** represented.
1388 */
1389 static void reiserfs_make_bad_inode(struct inode *inode)
1390 {
1391 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1392 make_bad_inode(inode);
1393 }
1394
1395 //
1396 // initially this function was derived from minix or ext2's analog and
1397 // evolved as the prototype did
1398 //
1399
1400 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1401 {
1402 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1403 inode->i_ino = args->objectid;
1404 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1405 return 0;
1406 }
1407
1408 /* looks for stat data in the tree, and fills up the fields of in-core
1409 inode stat data fields */
1410 void reiserfs_read_locked_inode(struct inode *inode,
1411 struct reiserfs_iget_args *args)
1412 {
1413 INITIALIZE_PATH(path_to_sd);
1414 struct cpu_key key;
1415 unsigned long dirino;
1416 int retval;
1417
1418 dirino = args->dirid;
1419
1420 /* set version 1, version 2 could be used too, because stat data
1421 key is the same in both versions */
1422 key.version = KEY_FORMAT_3_5;
1423 key.on_disk_key.k_dir_id = dirino;
1424 key.on_disk_key.k_objectid = inode->i_ino;
1425 key.on_disk_key.k_offset = 0;
1426 key.on_disk_key.k_type = 0;
1427
1428 /* look for the object's stat data */
1429 retval = search_item(inode->i_sb, &key, &path_to_sd);
1430 if (retval == IO_ERROR) {
1431 reiserfs_error(inode->i_sb, "vs-13070",
1432 "i/o failure occurred trying to find "
1433 "stat data of %K", &key);
1434 reiserfs_make_bad_inode(inode);
1435 return;
1436 }
1437 if (retval != ITEM_FOUND) {
1438 /* a stale NFS handle can trigger this without it being an error */
1439 pathrelse(&path_to_sd);
1440 reiserfs_make_bad_inode(inode);
1441 inode->i_nlink = 0;
1442 return;
1443 }
1444
1445 init_inode(inode, &path_to_sd);
1446
1447 /* It is possible that knfsd is trying to access inode of a file
1448 that is being removed from the disk by some other thread. As we
1449 update sd on unlink all that is required is to check for nlink
1450 here. This bug was first found by Sizif when debugging
1451 SquidNG/Butterfly, forgotten, and found again after Philippe
1452 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1453
1454 More logical fix would require changes in fs/inode.c:iput() to
1455 remove inode from hash-table _after_ fs cleaned disk stuff up and
1456 in iget() to return NULL if I_FREEING inode is found in
1457 hash-table. */
1458 /* Currently there is one place where it's ok to meet inode with
1459 nlink==0: processing of open-unlinked and half-truncated files
1460 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1461 if ((inode->i_nlink == 0) &&
1462 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1463 reiserfs_warning(inode->i_sb, "vs-13075",
1464 "dead inode read from disk %K. "
1465 "This is likely to be race with knfsd. Ignore",
1466 &key);
1467 reiserfs_make_bad_inode(inode);
1468 }
1469
1470 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1471
1472 }
1473
1474 /**
1475 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1476 *
1477 * @inode: inode from hash table to check
1478 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1479 *
1480 * This function is called by iget5_locked() to distinguish reiserfs inodes
1481 * having the same inode numbers. Such inodes can only exist due to some
1482 * error condition. One of them should be bad. Inodes with identical
1483 * inode numbers (objectids) are distinguished by parent directory ids.
1484 *
1485 */
1486 int reiserfs_find_actor(struct inode *inode, void *opaque)
1487 {
1488 struct reiserfs_iget_args *args;
1489
1490 args = opaque;
1491 /* args is already in CPU order */
1492 return (inode->i_ino == args->objectid) &&
1493 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1494 }
1495
1496 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1497 {
1498 struct inode *inode;
1499 struct reiserfs_iget_args args;
1500
1501 args.objectid = key->on_disk_key.k_objectid;
1502 args.dirid = key->on_disk_key.k_dir_id;
1503 reiserfs_write_unlock(s);
1504 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1505 reiserfs_find_actor, reiserfs_init_locked_inode,
1506 (void *)(&args));
1507 reiserfs_write_lock(s);
1508 if (!inode)
1509 return ERR_PTR(-ENOMEM);
1510
1511 if (inode->i_state & I_NEW) {
1512 reiserfs_read_locked_inode(inode, &args);
1513 unlock_new_inode(inode);
1514 }
1515
1516 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1517 /* either due to i/o error or a stale NFS handle */
1518 iput(inode);
1519 inode = NULL;
1520 }
1521 return inode;
1522 }
1523
1524 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1525 u32 objectid, u32 dir_id, u32 generation)
1526
1527 {
1528 struct cpu_key key;
1529 struct inode *inode;
1530
1531 key.on_disk_key.k_objectid = objectid;
1532 key.on_disk_key.k_dir_id = dir_id;
1533 reiserfs_write_lock(sb);
1534 inode = reiserfs_iget(sb, &key);
1535 if (inode && !IS_ERR(inode) && generation != 0 &&
1536 generation != inode->i_generation) {
1537 iput(inode);
1538 inode = NULL;
1539 }
1540 reiserfs_write_unlock(sb);
1541
1542 return d_obtain_alias(inode);
1543 }
1544
1545 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1546 int fh_len, int fh_type)
1547 {
1548 /* fhtype happens to reflect the number of u32s encoded.
1549 * due to a bug in earlier code, fhtype might indicate there
1550 * are more u32s then actually fitted.
1551 * so if fhtype seems to be more than len, reduce fhtype.
1552 * Valid types are:
1553 * 2 - objectid + dir_id - legacy support
1554 * 3 - objectid + dir_id + generation
1555 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1556 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1557 * 6 - as above plus generation of directory
1558 * 6 does not fit in NFSv2 handles
1559 */
1560 if (fh_type > fh_len) {
1561 if (fh_type != 6 || fh_len != 5)
1562 reiserfs_warning(sb, "reiserfs-13077",
1563 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1564 fh_type, fh_len);
1565 fh_type = 5;
1566 }
1567
1568 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1569 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1570 }
1571
1572 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1573 int fh_len, int fh_type)
1574 {
1575 if (fh_type < 4)
1576 return NULL;
1577
1578 return reiserfs_get_dentry(sb,
1579 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1580 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1581 (fh_type == 6) ? fid->raw[5] : 0);
1582 }
1583
1584 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1585 int need_parent)
1586 {
1587 struct inode *inode = dentry->d_inode;
1588 int maxlen = *lenp;
1589
1590 if (maxlen < 3)
1591 return 255;
1592
1593 data[0] = inode->i_ino;
1594 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1595 data[2] = inode->i_generation;
1596 *lenp = 3;
1597 /* no room for directory info? return what we've stored so far */
1598 if (maxlen < 5 || !need_parent)
1599 return 3;
1600
1601 spin_lock(&dentry->d_lock);
1602 inode = dentry->d_parent->d_inode;
1603 data[3] = inode->i_ino;
1604 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1605 *lenp = 5;
1606 if (maxlen >= 6) {
1607 data[5] = inode->i_generation;
1608 *lenp = 6;
1609 }
1610 spin_unlock(&dentry->d_lock);
1611 return *lenp;
1612 }
1613
1614 /* looks for stat data, then copies fields to it, marks the buffer
1615 containing stat data as dirty */
1616 /* reiserfs inodes are never really dirty, since the dirty inode call
1617 ** always logs them. This call allows the VFS inode marking routines
1618 ** to properly mark inodes for datasync and such, but only actually
1619 ** does something when called for a synchronous update.
1620 */
1621 int reiserfs_write_inode(struct inode *inode, int do_sync)
1622 {
1623 struct reiserfs_transaction_handle th;
1624 int jbegin_count = 1;
1625
1626 if (inode->i_sb->s_flags & MS_RDONLY)
1627 return -EROFS;
1628 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1629 ** these cases are just when the system needs ram, not when the
1630 ** inode needs to reach disk for safety, and they can safely be
1631 ** ignored because the altered inode has already been logged.
1632 */
1633 if (do_sync && !(current->flags & PF_MEMALLOC)) {
1634 reiserfs_write_lock(inode->i_sb);
1635 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1636 reiserfs_update_sd(&th, inode);
1637 journal_end_sync(&th, inode->i_sb, jbegin_count);
1638 }
1639 reiserfs_write_unlock(inode->i_sb);
1640 }
1641 return 0;
1642 }
1643
1644 /* stat data of new object is inserted already, this inserts the item
1645 containing "." and ".." entries */
1646 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1647 struct inode *inode,
1648 struct item_head *ih, struct treepath *path,
1649 struct inode *dir)
1650 {
1651 struct super_block *sb = th->t_super;
1652 char empty_dir[EMPTY_DIR_SIZE];
1653 char *body = empty_dir;
1654 struct cpu_key key;
1655 int retval;
1656
1657 BUG_ON(!th->t_trans_id);
1658
1659 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1660 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1661 TYPE_DIRENTRY, 3 /*key length */ );
1662
1663 /* compose item head for new item. Directories consist of items of
1664 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1665 is done by reiserfs_new_inode */
1666 if (old_format_only(sb)) {
1667 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1668 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1669
1670 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1671 ih->ih_key.k_objectid,
1672 INODE_PKEY(dir)->k_dir_id,
1673 INODE_PKEY(dir)->k_objectid);
1674 } else {
1675 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1676 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1677
1678 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1679 ih->ih_key.k_objectid,
1680 INODE_PKEY(dir)->k_dir_id,
1681 INODE_PKEY(dir)->k_objectid);
1682 }
1683
1684 /* look for place in the tree for new item */
1685 retval = search_item(sb, &key, path);
1686 if (retval == IO_ERROR) {
1687 reiserfs_error(sb, "vs-13080",
1688 "i/o failure occurred creating new directory");
1689 return -EIO;
1690 }
1691 if (retval == ITEM_FOUND) {
1692 pathrelse(path);
1693 reiserfs_warning(sb, "vs-13070",
1694 "object with this key exists (%k)",
1695 &(ih->ih_key));
1696 return -EEXIST;
1697 }
1698
1699 /* insert item, that is empty directory item */
1700 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1701 }
1702
1703 /* stat data of object has been inserted, this inserts the item
1704 containing the body of symlink */
1705 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1706 struct item_head *ih,
1707 struct treepath *path, const char *symname,
1708 int item_len)
1709 {
1710 struct super_block *sb = th->t_super;
1711 struct cpu_key key;
1712 int retval;
1713
1714 BUG_ON(!th->t_trans_id);
1715
1716 _make_cpu_key(&key, KEY_FORMAT_3_5,
1717 le32_to_cpu(ih->ih_key.k_dir_id),
1718 le32_to_cpu(ih->ih_key.k_objectid),
1719 1, TYPE_DIRECT, 3 /*key length */ );
1720
1721 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1722 0 /*free_space */ );
1723
1724 /* look for place in the tree for new item */
1725 retval = search_item(sb, &key, path);
1726 if (retval == IO_ERROR) {
1727 reiserfs_error(sb, "vs-13080",
1728 "i/o failure occurred creating new symlink");
1729 return -EIO;
1730 }
1731 if (retval == ITEM_FOUND) {
1732 pathrelse(path);
1733 reiserfs_warning(sb, "vs-13080",
1734 "object with this key exists (%k)",
1735 &(ih->ih_key));
1736 return -EEXIST;
1737 }
1738
1739 /* insert item, that is body of symlink */
1740 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1741 }
1742
1743 /* inserts the stat data into the tree, and then calls
1744 reiserfs_new_directory (to insert ".", ".." item if new object is
1745 directory) or reiserfs_new_symlink (to insert symlink body if new
1746 object is symlink) or nothing (if new object is regular file)
1747
1748 NOTE! uid and gid must already be set in the inode. If we return
1749 non-zero due to an error, we have to drop the quota previously allocated
1750 for the fresh inode. This can only be done outside a transaction, so
1751 if we return non-zero, we also end the transaction. */
1752 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1753 struct inode *dir, int mode, const char *symname,
1754 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1755 strlen (symname) for symlinks) */
1756 loff_t i_size, struct dentry *dentry,
1757 struct inode *inode,
1758 struct reiserfs_security_handle *security)
1759 {
1760 struct super_block *sb;
1761 struct reiserfs_iget_args args;
1762 INITIALIZE_PATH(path_to_key);
1763 struct cpu_key key;
1764 struct item_head ih;
1765 struct stat_data sd;
1766 int retval;
1767 int err;
1768
1769 BUG_ON(!th->t_trans_id);
1770
1771 dquot_initialize(inode);
1772 err = dquot_alloc_inode(inode);
1773 if (err)
1774 goto out_end_trans;
1775 if (!dir->i_nlink) {
1776 err = -EPERM;
1777 goto out_bad_inode;
1778 }
1779
1780 sb = dir->i_sb;
1781
1782 /* item head of new item */
1783 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1784 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1785 if (!ih.ih_key.k_objectid) {
1786 err = -ENOMEM;
1787 goto out_bad_inode;
1788 }
1789 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1790 if (old_format_only(sb))
1791 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1792 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1793 else
1794 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1795 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1796 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1797 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1798 if (insert_inode_locked4(inode, args.objectid,
1799 reiserfs_find_actor, &args) < 0) {
1800 err = -EINVAL;
1801 goto out_bad_inode;
1802 }
1803 if (old_format_only(sb))
1804 /* not a perfect generation count, as object ids can be reused, but
1805 ** this is as good as reiserfs can do right now.
1806 ** note that the private part of inode isn't filled in yet, we have
1807 ** to use the directory.
1808 */
1809 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1810 else
1811 #if defined( USE_INODE_GENERATION_COUNTER )
1812 inode->i_generation =
1813 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1814 #else
1815 inode->i_generation = ++event;
1816 #endif
1817
1818 /* fill stat data */
1819 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1820
1821 /* uid and gid must already be set by the caller for quota init */
1822
1823 /* symlink cannot be immutable or append only, right? */
1824 if (S_ISLNK(inode->i_mode))
1825 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1826
1827 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1828 inode->i_size = i_size;
1829 inode->i_blocks = 0;
1830 inode->i_bytes = 0;
1831 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1832 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1833
1834 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1835 REISERFS_I(inode)->i_flags = 0;
1836 REISERFS_I(inode)->i_prealloc_block = 0;
1837 REISERFS_I(inode)->i_prealloc_count = 0;
1838 REISERFS_I(inode)->i_trans_id = 0;
1839 REISERFS_I(inode)->i_jl = NULL;
1840 REISERFS_I(inode)->i_attrs =
1841 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1842 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1843 mutex_init(&(REISERFS_I(inode)->i_mmap));
1844 reiserfs_init_xattr_rwsem(inode);
1845
1846 /* key to search for correct place for new stat data */
1847 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1848 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1849 TYPE_STAT_DATA, 3 /*key length */ );
1850
1851 /* find proper place for inserting of stat data */
1852 retval = search_item(sb, &key, &path_to_key);
1853 if (retval == IO_ERROR) {
1854 err = -EIO;
1855 goto out_bad_inode;
1856 }
1857 if (retval == ITEM_FOUND) {
1858 pathrelse(&path_to_key);
1859 err = -EEXIST;
1860 goto out_bad_inode;
1861 }
1862 if (old_format_only(sb)) {
1863 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1864 pathrelse(&path_to_key);
1865 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1866 err = -EINVAL;
1867 goto out_bad_inode;
1868 }
1869 inode2sd_v1(&sd, inode, inode->i_size);
1870 } else {
1871 inode2sd(&sd, inode, inode->i_size);
1872 }
1873 // store in in-core inode the key of stat data and version all
1874 // object items will have (directory items will have old offset
1875 // format, other new objects will consist of new items)
1876 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1877 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1878 else
1879 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1880 if (old_format_only(sb))
1881 set_inode_sd_version(inode, STAT_DATA_V1);
1882 else
1883 set_inode_sd_version(inode, STAT_DATA_V2);
1884
1885 /* insert the stat data into the tree */
1886 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1887 if (REISERFS_I(dir)->new_packing_locality)
1888 th->displace_new_blocks = 1;
1889 #endif
1890 retval =
1891 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1892 (char *)(&sd));
1893 if (retval) {
1894 err = retval;
1895 reiserfs_check_path(&path_to_key);
1896 goto out_bad_inode;
1897 }
1898 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1899 if (!th->displace_new_blocks)
1900 REISERFS_I(dir)->new_packing_locality = 0;
1901 #endif
1902 if (S_ISDIR(mode)) {
1903 /* insert item with "." and ".." */
1904 retval =
1905 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1906 }
1907
1908 if (S_ISLNK(mode)) {
1909 /* insert body of symlink */
1910 if (!old_format_only(sb))
1911 i_size = ROUND_UP(i_size);
1912 retval =
1913 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1914 i_size);
1915 }
1916 if (retval) {
1917 err = retval;
1918 reiserfs_check_path(&path_to_key);
1919 journal_end(th, th->t_super, th->t_blocks_allocated);
1920 goto out_inserted_sd;
1921 }
1922
1923 if (reiserfs_posixacl(inode->i_sb)) {
1924 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1925 if (retval) {
1926 err = retval;
1927 reiserfs_check_path(&path_to_key);
1928 journal_end(th, th->t_super, th->t_blocks_allocated);
1929 goto out_inserted_sd;
1930 }
1931 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1932 reiserfs_warning(inode->i_sb, "jdm-13090",
1933 "ACLs aren't enabled in the fs, "
1934 "but vfs thinks they are!");
1935 } else if (IS_PRIVATE(dir))
1936 inode->i_flags |= S_PRIVATE;
1937
1938 if (security->name) {
1939 retval = reiserfs_security_write(th, inode, security);
1940 if (retval) {
1941 err = retval;
1942 reiserfs_check_path(&path_to_key);
1943 retval = journal_end(th, th->t_super,
1944 th->t_blocks_allocated);
1945 if (retval)
1946 err = retval;
1947 goto out_inserted_sd;
1948 }
1949 }
1950
1951 reiserfs_update_sd(th, inode);
1952 reiserfs_check_path(&path_to_key);
1953
1954 return 0;
1955
1956 /* it looks like you can easily compress these two goto targets into
1957 * one. Keeping it like this doesn't actually hurt anything, and they
1958 * are place holders for what the quota code actually needs.
1959 */
1960 out_bad_inode:
1961 /* Invalidate the object, nothing was inserted yet */
1962 INODE_PKEY(inode)->k_objectid = 0;
1963
1964 /* Quota change must be inside a transaction for journaling */
1965 dquot_free_inode(inode);
1966
1967 out_end_trans:
1968 journal_end(th, th->t_super, th->t_blocks_allocated);
1969 /* Drop can be outside and it needs more credits so it's better to have it outside */
1970 dquot_drop(inode);
1971 inode->i_flags |= S_NOQUOTA;
1972 make_bad_inode(inode);
1973
1974 out_inserted_sd:
1975 inode->i_nlink = 0;
1976 th->t_trans_id = 0; /* so the caller can't use this handle later */
1977 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1978 iput(inode);
1979 return err;
1980 }
1981
1982 /*
1983 ** finds the tail page in the page cache,
1984 ** reads the last block in.
1985 **
1986 ** On success, page_result is set to a locked, pinned page, and bh_result
1987 ** is set to an up to date buffer for the last block in the file. returns 0.
1988 **
1989 ** tail conversion is not done, so bh_result might not be valid for writing
1990 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1991 ** trying to write the block.
1992 **
1993 ** on failure, nonzero is returned, page_result and bh_result are untouched.
1994 */
1995 static int grab_tail_page(struct inode *inode,
1996 struct page **page_result,
1997 struct buffer_head **bh_result)
1998 {
1999
2000 /* we want the page with the last byte in the file,
2001 ** not the page that will hold the next byte for appending
2002 */
2003 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2004 unsigned long pos = 0;
2005 unsigned long start = 0;
2006 unsigned long blocksize = inode->i_sb->s_blocksize;
2007 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2008 struct buffer_head *bh;
2009 struct buffer_head *head;
2010 struct page *page;
2011 int error;
2012
2013 /* we know that we are only called with inode->i_size > 0.
2014 ** we also know that a file tail can never be as big as a block
2015 ** If i_size % blocksize == 0, our file is currently block aligned
2016 ** and it won't need converting or zeroing after a truncate.
2017 */
2018 if ((offset & (blocksize - 1)) == 0) {
2019 return -ENOENT;
2020 }
2021 page = grab_cache_page(inode->i_mapping, index);
2022 error = -ENOMEM;
2023 if (!page) {
2024 goto out;
2025 }
2026 /* start within the page of the last block in the file */
2027 start = (offset / blocksize) * blocksize;
2028
2029 error = block_prepare_write(page, start, offset,
2030 reiserfs_get_block_create_0);
2031 if (error)
2032 goto unlock;
2033
2034 head = page_buffers(page);
2035 bh = head;
2036 do {
2037 if (pos >= start) {
2038 break;
2039 }
2040 bh = bh->b_this_page;
2041 pos += blocksize;
2042 } while (bh != head);
2043
2044 if (!buffer_uptodate(bh)) {
2045 /* note, this should never happen, prepare_write should
2046 ** be taking care of this for us. If the buffer isn't up to date,
2047 ** I've screwed up the code to find the buffer, or the code to
2048 ** call prepare_write
2049 */
2050 reiserfs_error(inode->i_sb, "clm-6000",
2051 "error reading block %lu", bh->b_blocknr);
2052 error = -EIO;
2053 goto unlock;
2054 }
2055 *bh_result = bh;
2056 *page_result = page;
2057
2058 out:
2059 return error;
2060
2061 unlock:
2062 unlock_page(page);
2063 page_cache_release(page);
2064 return error;
2065 }
2066
2067 /*
2068 ** vfs version of truncate file. Must NOT be called with
2069 ** a transaction already started.
2070 **
2071 ** some code taken from block_truncate_page
2072 */
2073 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2074 {
2075 struct reiserfs_transaction_handle th;
2076 /* we want the offset for the first byte after the end of the file */
2077 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2078 unsigned blocksize = inode->i_sb->s_blocksize;
2079 unsigned length;
2080 struct page *page = NULL;
2081 int error;
2082 struct buffer_head *bh = NULL;
2083 int err2;
2084 int lock_depth;
2085
2086 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2087
2088 if (inode->i_size > 0) {
2089 error = grab_tail_page(inode, &page, &bh);
2090 if (error) {
2091 // -ENOENT means we truncated past the end of the file,
2092 // and get_block_create_0 could not find a block to read in,
2093 // which is ok.
2094 if (error != -ENOENT)
2095 reiserfs_error(inode->i_sb, "clm-6001",
2096 "grab_tail_page failed %d",
2097 error);
2098 page = NULL;
2099 bh = NULL;
2100 }
2101 }
2102
2103 /* so, if page != NULL, we have a buffer head for the offset at
2104 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2105 ** then we have an unformatted node. Otherwise, we have a direct item,
2106 ** and no zeroing is required on disk. We zero after the truncate,
2107 ** because the truncate might pack the item anyway
2108 ** (it will unmap bh if it packs).
2109 */
2110 /* it is enough to reserve space in transaction for 2 balancings:
2111 one for "save" link adding and another for the first
2112 cut_from_item. 1 is for update_sd */
2113 error = journal_begin(&th, inode->i_sb,
2114 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2115 if (error)
2116 goto out;
2117 reiserfs_update_inode_transaction(inode);
2118 if (update_timestamps)
2119 /* we are doing real truncate: if the system crashes before the last
2120 transaction of truncating gets committed - on reboot the file
2121 either appears truncated properly or not truncated at all */
2122 add_save_link(&th, inode, 1);
2123 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2124 error =
2125 journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2126 if (error)
2127 goto out;
2128
2129 /* check reiserfs_do_truncate after ending the transaction */
2130 if (err2) {
2131 error = err2;
2132 goto out;
2133 }
2134
2135 if (update_timestamps) {
2136 error = remove_save_link(inode, 1 /* truncate */);
2137 if (error)
2138 goto out;
2139 }
2140
2141 if (page) {
2142 length = offset & (blocksize - 1);
2143 /* if we are not on a block boundary */
2144 if (length) {
2145 length = blocksize - length;
2146 zero_user(page, offset, length);
2147 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2148 mark_buffer_dirty(bh);
2149 }
2150 }
2151 unlock_page(page);
2152 page_cache_release(page);
2153 }
2154
2155 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2156
2157 return 0;
2158 out:
2159 if (page) {
2160 unlock_page(page);
2161 page_cache_release(page);
2162 }
2163
2164 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2165
2166 return error;
2167 }
2168
2169 static int map_block_for_writepage(struct inode *inode,
2170 struct buffer_head *bh_result,
2171 unsigned long block)
2172 {
2173 struct reiserfs_transaction_handle th;
2174 int fs_gen;
2175 struct item_head tmp_ih;
2176 struct item_head *ih;
2177 struct buffer_head *bh;
2178 __le32 *item;
2179 struct cpu_key key;
2180 INITIALIZE_PATH(path);
2181 int pos_in_item;
2182 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2183 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2184 int retval;
2185 int use_get_block = 0;
2186 int bytes_copied = 0;
2187 int copy_size;
2188 int trans_running = 0;
2189
2190 /* catch places below that try to log something without starting a trans */
2191 th.t_trans_id = 0;
2192
2193 if (!buffer_uptodate(bh_result)) {
2194 return -EIO;
2195 }
2196
2197 kmap(bh_result->b_page);
2198 start_over:
2199 reiserfs_write_lock(inode->i_sb);
2200 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2201
2202 research:
2203 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2204 if (retval != POSITION_FOUND) {
2205 use_get_block = 1;
2206 goto out;
2207 }
2208
2209 bh = get_last_bh(&path);
2210 ih = get_ih(&path);
2211 item = get_item(&path);
2212 pos_in_item = path.pos_in_item;
2213
2214 /* we've found an unformatted node */
2215 if (indirect_item_found(retval, ih)) {
2216 if (bytes_copied > 0) {
2217 reiserfs_warning(inode->i_sb, "clm-6002",
2218 "bytes_copied %d", bytes_copied);
2219 }
2220 if (!get_block_num(item, pos_in_item)) {
2221 /* crap, we are writing to a hole */
2222 use_get_block = 1;
2223 goto out;
2224 }
2225 set_block_dev_mapped(bh_result,
2226 get_block_num(item, pos_in_item), inode);
2227 } else if (is_direct_le_ih(ih)) {
2228 char *p;
2229 p = page_address(bh_result->b_page);
2230 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2231 copy_size = ih_item_len(ih) - pos_in_item;
2232
2233 fs_gen = get_generation(inode->i_sb);
2234 copy_item_head(&tmp_ih, ih);
2235
2236 if (!trans_running) {
2237 /* vs-3050 is gone, no need to drop the path */
2238 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2239 if (retval)
2240 goto out;
2241 reiserfs_update_inode_transaction(inode);
2242 trans_running = 1;
2243 if (fs_changed(fs_gen, inode->i_sb)
2244 && item_moved(&tmp_ih, &path)) {
2245 reiserfs_restore_prepared_buffer(inode->i_sb,
2246 bh);
2247 goto research;
2248 }
2249 }
2250
2251 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2252
2253 if (fs_changed(fs_gen, inode->i_sb)
2254 && item_moved(&tmp_ih, &path)) {
2255 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2256 goto research;
2257 }
2258
2259 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2260 copy_size);
2261
2262 journal_mark_dirty(&th, inode->i_sb, bh);
2263 bytes_copied += copy_size;
2264 set_block_dev_mapped(bh_result, 0, inode);
2265
2266 /* are there still bytes left? */
2267 if (bytes_copied < bh_result->b_size &&
2268 (byte_offset + bytes_copied) < inode->i_size) {
2269 set_cpu_key_k_offset(&key,
2270 cpu_key_k_offset(&key) +
2271 copy_size);
2272 goto research;
2273 }
2274 } else {
2275 reiserfs_warning(inode->i_sb, "clm-6003",
2276 "bad item inode %lu", inode->i_ino);
2277 retval = -EIO;
2278 goto out;
2279 }
2280 retval = 0;
2281
2282 out:
2283 pathrelse(&path);
2284 if (trans_running) {
2285 int err = journal_end(&th, inode->i_sb, jbegin_count);
2286 if (err)
2287 retval = err;
2288 trans_running = 0;
2289 }
2290 reiserfs_write_unlock(inode->i_sb);
2291
2292 /* this is where we fill in holes in the file. */
2293 if (use_get_block) {
2294 retval = reiserfs_get_block(inode, block, bh_result,
2295 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2296 | GET_BLOCK_NO_DANGLE);
2297 if (!retval) {
2298 if (!buffer_mapped(bh_result)
2299 || bh_result->b_blocknr == 0) {
2300 /* get_block failed to find a mapped unformatted node. */
2301 use_get_block = 0;
2302 goto start_over;
2303 }
2304 }
2305 }
2306 kunmap(bh_result->b_page);
2307
2308 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2309 /* we've copied data from the page into the direct item, so the
2310 * buffer in the page is now clean, mark it to reflect that.
2311 */
2312 lock_buffer(bh_result);
2313 clear_buffer_dirty(bh_result);
2314 unlock_buffer(bh_result);
2315 }
2316 return retval;
2317 }
2318
2319 /*
2320 * mason@suse.com: updated in 2.5.54 to follow the same general io
2321 * start/recovery path as __block_write_full_page, along with special
2322 * code to handle reiserfs tails.
2323 */
2324 static int reiserfs_write_full_page(struct page *page,
2325 struct writeback_control *wbc)
2326 {
2327 struct inode *inode = page->mapping->host;
2328 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2329 int error = 0;
2330 unsigned long block;
2331 sector_t last_block;
2332 struct buffer_head *head, *bh;
2333 int partial = 0;
2334 int nr = 0;
2335 int checked = PageChecked(page);
2336 struct reiserfs_transaction_handle th;
2337 struct super_block *s = inode->i_sb;
2338 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2339 th.t_trans_id = 0;
2340
2341 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2342 if (checked && (current->flags & PF_MEMALLOC)) {
2343 redirty_page_for_writepage(wbc, page);
2344 unlock_page(page);
2345 return 0;
2346 }
2347
2348 /* The page dirty bit is cleared before writepage is called, which
2349 * means we have to tell create_empty_buffers to make dirty buffers
2350 * The page really should be up to date at this point, so tossing
2351 * in the BH_Uptodate is just a sanity check.
2352 */
2353 if (!page_has_buffers(page)) {
2354 create_empty_buffers(page, s->s_blocksize,
2355 (1 << BH_Dirty) | (1 << BH_Uptodate));
2356 }
2357 head = page_buffers(page);
2358
2359 /* last page in the file, zero out any contents past the
2360 ** last byte in the file
2361 */
2362 if (page->index >= end_index) {
2363 unsigned last_offset;
2364
2365 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2366 /* no file contents in this page */
2367 if (page->index >= end_index + 1 || !last_offset) {
2368 unlock_page(page);
2369 return 0;
2370 }
2371 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2372 }
2373 bh = head;
2374 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2375 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2376 /* first map all the buffers, logging any direct items we find */
2377 do {
2378 if (block > last_block) {
2379 /*
2380 * This can happen when the block size is less than
2381 * the page size. The corresponding bytes in the page
2382 * were zero filled above
2383 */
2384 clear_buffer_dirty(bh);
2385 set_buffer_uptodate(bh);
2386 } else if ((checked || buffer_dirty(bh)) &&
2387 (!buffer_mapped(bh) || (buffer_mapped(bh)
2388 && bh->b_blocknr ==
2389 0))) {
2390 /* not mapped yet, or it points to a direct item, search
2391 * the btree for the mapping info, and log any direct
2392 * items found
2393 */
2394 if ((error = map_block_for_writepage(inode, bh, block))) {
2395 goto fail;
2396 }
2397 }
2398 bh = bh->b_this_page;
2399 block++;
2400 } while (bh != head);
2401
2402 /*
2403 * we start the transaction after map_block_for_writepage,
2404 * because it can create holes in the file (an unbounded operation).
2405 * starting it here, we can make a reliable estimate for how many
2406 * blocks we're going to log
2407 */
2408 if (checked) {
2409 ClearPageChecked(page);
2410 reiserfs_write_lock(s);
2411 error = journal_begin(&th, s, bh_per_page + 1);
2412 if (error) {
2413 reiserfs_write_unlock(s);
2414 goto fail;
2415 }
2416 reiserfs_update_inode_transaction(inode);
2417 }
2418 /* now go through and lock any dirty buffers on the page */
2419 do {
2420 get_bh(bh);
2421 if (!buffer_mapped(bh))
2422 continue;
2423 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2424 continue;
2425
2426 if (checked) {
2427 reiserfs_prepare_for_journal(s, bh, 1);
2428 journal_mark_dirty(&th, s, bh);
2429 continue;
2430 }
2431 /* from this point on, we know the buffer is mapped to a
2432 * real block and not a direct item
2433 */
2434 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2435 lock_buffer(bh);
2436 } else {
2437 if (!trylock_buffer(bh)) {
2438 redirty_page_for_writepage(wbc, page);
2439 continue;
2440 }
2441 }
2442 if (test_clear_buffer_dirty(bh)) {
2443 mark_buffer_async_write(bh);
2444 } else {
2445 unlock_buffer(bh);
2446 }
2447 } while ((bh = bh->b_this_page) != head);
2448
2449 if (checked) {
2450 error = journal_end(&th, s, bh_per_page + 1);
2451 reiserfs_write_unlock(s);
2452 if (error)
2453 goto fail;
2454 }
2455 BUG_ON(PageWriteback(page));
2456 set_page_writeback(page);
2457 unlock_page(page);
2458
2459 /*
2460 * since any buffer might be the only dirty buffer on the page,
2461 * the first submit_bh can bring the page out of writeback.
2462 * be careful with the buffers.
2463 */
2464 do {
2465 struct buffer_head *next = bh->b_this_page;
2466 if (buffer_async_write(bh)) {
2467 submit_bh(WRITE, bh);
2468 nr++;
2469 }
2470 put_bh(bh);
2471 bh = next;
2472 } while (bh != head);
2473
2474 error = 0;
2475 done:
2476 if (nr == 0) {
2477 /*
2478 * if this page only had a direct item, it is very possible for
2479 * no io to be required without there being an error. Or,
2480 * someone else could have locked them and sent them down the
2481 * pipe without locking the page
2482 */
2483 bh = head;
2484 do {
2485 if (!buffer_uptodate(bh)) {
2486 partial = 1;
2487 break;
2488 }
2489 bh = bh->b_this_page;
2490 } while (bh != head);
2491 if (!partial)
2492 SetPageUptodate(page);
2493 end_page_writeback(page);
2494 }
2495 return error;
2496
2497 fail:
2498 /* catches various errors, we need to make sure any valid dirty blocks
2499 * get to the media. The page is currently locked and not marked for
2500 * writeback
2501 */
2502 ClearPageUptodate(page);
2503 bh = head;
2504 do {
2505 get_bh(bh);
2506 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2507 lock_buffer(bh);
2508 mark_buffer_async_write(bh);
2509 } else {
2510 /*
2511 * clear any dirty bits that might have come from getting
2512 * attached to a dirty page
2513 */
2514 clear_buffer_dirty(bh);
2515 }
2516 bh = bh->b_this_page;
2517 } while (bh != head);
2518 SetPageError(page);
2519 BUG_ON(PageWriteback(page));
2520 set_page_writeback(page);
2521 unlock_page(page);
2522 do {
2523 struct buffer_head *next = bh->b_this_page;
2524 if (buffer_async_write(bh)) {
2525 clear_buffer_dirty(bh);
2526 submit_bh(WRITE, bh);
2527 nr++;
2528 }
2529 put_bh(bh);
2530 bh = next;
2531 } while (bh != head);
2532 goto done;
2533 }
2534
2535 static int reiserfs_readpage(struct file *f, struct page *page)
2536 {
2537 return block_read_full_page(page, reiserfs_get_block);
2538 }
2539
2540 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2541 {
2542 struct inode *inode = page->mapping->host;
2543 reiserfs_wait_on_write_block(inode->i_sb);
2544 return reiserfs_write_full_page(page, wbc);
2545 }
2546
2547 static void reiserfs_truncate_failed_write(struct inode *inode)
2548 {
2549 truncate_inode_pages(inode->i_mapping, inode->i_size);
2550 reiserfs_truncate_file(inode, 0);
2551 }
2552
2553 static int reiserfs_write_begin(struct file *file,
2554 struct address_space *mapping,
2555 loff_t pos, unsigned len, unsigned flags,
2556 struct page **pagep, void **fsdata)
2557 {
2558 struct inode *inode;
2559 struct page *page;
2560 pgoff_t index;
2561 int ret;
2562 int old_ref = 0;
2563
2564 inode = mapping->host;
2565 *fsdata = 0;
2566 if (flags & AOP_FLAG_CONT_EXPAND &&
2567 (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2568 pos ++;
2569 *fsdata = (void *)(unsigned long)flags;
2570 }
2571
2572 index = pos >> PAGE_CACHE_SHIFT;
2573 page = grab_cache_page_write_begin(mapping, index, flags);
2574 if (!page)
2575 return -ENOMEM;
2576 *pagep = page;
2577
2578 reiserfs_wait_on_write_block(inode->i_sb);
2579 fix_tail_page_for_writing(page);
2580 if (reiserfs_transaction_running(inode->i_sb)) {
2581 struct reiserfs_transaction_handle *th;
2582 th = (struct reiserfs_transaction_handle *)current->
2583 journal_info;
2584 BUG_ON(!th->t_refcount);
2585 BUG_ON(!th->t_trans_id);
2586 old_ref = th->t_refcount;
2587 th->t_refcount++;
2588 }
2589 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2590 reiserfs_get_block);
2591 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2592 struct reiserfs_transaction_handle *th = current->journal_info;
2593 /* this gets a little ugly. If reiserfs_get_block returned an
2594 * error and left a transacstion running, we've got to close it,
2595 * and we've got to free handle if it was a persistent transaction.
2596 *
2597 * But, if we had nested into an existing transaction, we need
2598 * to just drop the ref count on the handle.
2599 *
2600 * If old_ref == 0, the transaction is from reiserfs_get_block,
2601 * and it was a persistent trans. Otherwise, it was nested above.
2602 */
2603 if (th->t_refcount > old_ref) {
2604 if (old_ref)
2605 th->t_refcount--;
2606 else {
2607 int err;
2608 reiserfs_write_lock(inode->i_sb);
2609 err = reiserfs_end_persistent_transaction(th);
2610 reiserfs_write_unlock(inode->i_sb);
2611 if (err)
2612 ret = err;
2613 }
2614 }
2615 }
2616 if (ret) {
2617 unlock_page(page);
2618 page_cache_release(page);
2619 /* Truncate allocated blocks */
2620 reiserfs_truncate_failed_write(inode);
2621 }
2622 return ret;
2623 }
2624
2625 int reiserfs_prepare_write(struct file *f, struct page *page,
2626 unsigned from, unsigned to)
2627 {
2628 struct inode *inode = page->mapping->host;
2629 int ret;
2630 int old_ref = 0;
2631
2632 reiserfs_write_unlock(inode->i_sb);
2633 reiserfs_wait_on_write_block(inode->i_sb);
2634 reiserfs_write_lock(inode->i_sb);
2635
2636 fix_tail_page_for_writing(page);
2637 if (reiserfs_transaction_running(inode->i_sb)) {
2638 struct reiserfs_transaction_handle *th;
2639 th = (struct reiserfs_transaction_handle *)current->
2640 journal_info;
2641 BUG_ON(!th->t_refcount);
2642 BUG_ON(!th->t_trans_id);
2643 old_ref = th->t_refcount;
2644 th->t_refcount++;
2645 }
2646
2647 ret = block_prepare_write(page, from, to, reiserfs_get_block);
2648 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2649 struct reiserfs_transaction_handle *th = current->journal_info;
2650 /* this gets a little ugly. If reiserfs_get_block returned an
2651 * error and left a transacstion running, we've got to close it,
2652 * and we've got to free handle if it was a persistent transaction.
2653 *
2654 * But, if we had nested into an existing transaction, we need
2655 * to just drop the ref count on the handle.
2656 *
2657 * If old_ref == 0, the transaction is from reiserfs_get_block,
2658 * and it was a persistent trans. Otherwise, it was nested above.
2659 */
2660 if (th->t_refcount > old_ref) {
2661 if (old_ref)
2662 th->t_refcount--;
2663 else {
2664 int err;
2665 reiserfs_write_lock(inode->i_sb);
2666 err = reiserfs_end_persistent_transaction(th);
2667 reiserfs_write_unlock(inode->i_sb);
2668 if (err)
2669 ret = err;
2670 }
2671 }
2672 }
2673 return ret;
2674
2675 }
2676
2677 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2678 {
2679 return generic_block_bmap(as, block, reiserfs_bmap);
2680 }
2681
2682 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2683 loff_t pos, unsigned len, unsigned copied,
2684 struct page *page, void *fsdata)
2685 {
2686 struct inode *inode = page->mapping->host;
2687 int ret = 0;
2688 int update_sd = 0;
2689 struct reiserfs_transaction_handle *th;
2690 unsigned start;
2691 int lock_depth = 0;
2692 bool locked = false;
2693
2694 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2695 pos ++;
2696
2697 reiserfs_wait_on_write_block(inode->i_sb);
2698 if (reiserfs_transaction_running(inode->i_sb))
2699 th = current->journal_info;
2700 else
2701 th = NULL;
2702
2703 start = pos & (PAGE_CACHE_SIZE - 1);
2704 if (unlikely(copied < len)) {
2705 if (!PageUptodate(page))
2706 copied = 0;
2707
2708 page_zero_new_buffers(page, start + copied, start + len);
2709 }
2710 flush_dcache_page(page);
2711
2712 reiserfs_commit_page(inode, page, start, start + copied);
2713
2714 /* generic_commit_write does this for us, but does not update the
2715 ** transaction tracking stuff when the size changes. So, we have
2716 ** to do the i_size updates here.
2717 */
2718 if (pos + copied > inode->i_size) {
2719 struct reiserfs_transaction_handle myth;
2720 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2721 locked = true;
2722 /* If the file have grown beyond the border where it
2723 can have a tail, unmark it as needing a tail
2724 packing */
2725 if ((have_large_tails(inode->i_sb)
2726 && inode->i_size > i_block_size(inode) * 4)
2727 || (have_small_tails(inode->i_sb)
2728 && inode->i_size > i_block_size(inode)))
2729 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2730
2731 ret = journal_begin(&myth, inode->i_sb, 1);
2732 if (ret)
2733 goto journal_error;
2734
2735 reiserfs_update_inode_transaction(inode);
2736 inode->i_size = pos + copied;
2737 /*
2738 * this will just nest into our transaction. It's important
2739 * to use mark_inode_dirty so the inode gets pushed around on the
2740 * dirty lists, and so that O_SYNC works as expected
2741 */
2742 mark_inode_dirty(inode);
2743 reiserfs_update_sd(&myth, inode);
2744 update_sd = 1;
2745 ret = journal_end(&myth, inode->i_sb, 1);
2746 if (ret)
2747 goto journal_error;
2748 }
2749 if (th) {
2750 if (!locked) {
2751 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2752 locked = true;
2753 }
2754 if (!update_sd)
2755 mark_inode_dirty(inode);
2756 ret = reiserfs_end_persistent_transaction(th);
2757 if (ret)
2758 goto out;
2759 }
2760
2761 out:
2762 if (locked)
2763 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2764 unlock_page(page);
2765 page_cache_release(page);
2766
2767 if (pos + len > inode->i_size)
2768 reiserfs_truncate_failed_write(inode);
2769
2770 return ret == 0 ? copied : ret;
2771
2772 journal_error:
2773 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2774 locked = false;
2775 if (th) {
2776 if (!update_sd)
2777 reiserfs_update_sd(th, inode);
2778 ret = reiserfs_end_persistent_transaction(th);
2779 }
2780 goto out;
2781 }
2782
2783 int reiserfs_commit_write(struct file *f, struct page *page,
2784 unsigned from, unsigned to)
2785 {
2786 struct inode *inode = page->mapping->host;
2787 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2788 int ret = 0;
2789 int update_sd = 0;
2790 struct reiserfs_transaction_handle *th = NULL;
2791
2792 reiserfs_write_unlock(inode->i_sb);
2793 reiserfs_wait_on_write_block(inode->i_sb);
2794 reiserfs_write_lock(inode->i_sb);
2795
2796 if (reiserfs_transaction_running(inode->i_sb)) {
2797 th = current->journal_info;
2798 }
2799 reiserfs_commit_page(inode, page, from, to);
2800
2801 /* generic_commit_write does this for us, but does not update the
2802 ** transaction tracking stuff when the size changes. So, we have
2803 ** to do the i_size updates here.
2804 */
2805 if (pos > inode->i_size) {
2806 struct reiserfs_transaction_handle myth;
2807 /* If the file have grown beyond the border where it
2808 can have a tail, unmark it as needing a tail
2809 packing */
2810 if ((have_large_tails(inode->i_sb)
2811 && inode->i_size > i_block_size(inode) * 4)
2812 || (have_small_tails(inode->i_sb)
2813 && inode->i_size > i_block_size(inode)))
2814 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2815
2816 ret = journal_begin(&myth, inode->i_sb, 1);
2817 if (ret)
2818 goto journal_error;
2819
2820 reiserfs_update_inode_transaction(inode);
2821 inode->i_size = pos;
2822 /*
2823 * this will just nest into our transaction. It's important
2824 * to use mark_inode_dirty so the inode gets pushed around on the
2825 * dirty lists, and so that O_SYNC works as expected
2826 */
2827 mark_inode_dirty(inode);
2828 reiserfs_update_sd(&myth, inode);
2829 update_sd = 1;
2830 ret = journal_end(&myth, inode->i_sb, 1);
2831 if (ret)
2832 goto journal_error;
2833 }
2834 if (th) {
2835 if (!update_sd)
2836 mark_inode_dirty(inode);
2837 ret = reiserfs_end_persistent_transaction(th);
2838 if (ret)
2839 goto out;
2840 }
2841
2842 out:
2843 return ret;
2844
2845 journal_error:
2846 if (th) {
2847 if (!update_sd)
2848 reiserfs_update_sd(th, inode);
2849 ret = reiserfs_end_persistent_transaction(th);
2850 }
2851
2852 return ret;
2853 }
2854
2855 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2856 {
2857 if (reiserfs_attrs(inode->i_sb)) {
2858 if (sd_attrs & REISERFS_SYNC_FL)
2859 inode->i_flags |= S_SYNC;
2860 else
2861 inode->i_flags &= ~S_SYNC;
2862 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2863 inode->i_flags |= S_IMMUTABLE;
2864 else
2865 inode->i_flags &= ~S_IMMUTABLE;
2866 if (sd_attrs & REISERFS_APPEND_FL)
2867 inode->i_flags |= S_APPEND;
2868 else
2869 inode->i_flags &= ~S_APPEND;
2870 if (sd_attrs & REISERFS_NOATIME_FL)
2871 inode->i_flags |= S_NOATIME;
2872 else
2873 inode->i_flags &= ~S_NOATIME;
2874 if (sd_attrs & REISERFS_NOTAIL_FL)
2875 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2876 else
2877 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2878 }
2879 }
2880
2881 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2882 {
2883 if (reiserfs_attrs(inode->i_sb)) {
2884 if (inode->i_flags & S_IMMUTABLE)
2885 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2886 else
2887 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2888 if (inode->i_flags & S_SYNC)
2889 *sd_attrs |= REISERFS_SYNC_FL;
2890 else
2891 *sd_attrs &= ~REISERFS_SYNC_FL;
2892 if (inode->i_flags & S_NOATIME)
2893 *sd_attrs |= REISERFS_NOATIME_FL;
2894 else
2895 *sd_attrs &= ~REISERFS_NOATIME_FL;
2896 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2897 *sd_attrs |= REISERFS_NOTAIL_FL;
2898 else
2899 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2900 }
2901 }
2902
2903 /* decide if this buffer needs to stay around for data logging or ordered
2904 ** write purposes
2905 */
2906 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2907 {
2908 int ret = 1;
2909 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2910
2911 lock_buffer(bh);
2912 spin_lock(&j->j_dirty_buffers_lock);
2913 if (!buffer_mapped(bh)) {
2914 goto free_jh;
2915 }
2916 /* the page is locked, and the only places that log a data buffer
2917 * also lock the page.
2918 */
2919 if (reiserfs_file_data_log(inode)) {
2920 /*
2921 * very conservative, leave the buffer pinned if
2922 * anyone might need it.
2923 */
2924 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2925 ret = 0;
2926 }
2927 } else if (buffer_dirty(bh)) {
2928 struct reiserfs_journal_list *jl;
2929 struct reiserfs_jh *jh = bh->b_private;
2930
2931 /* why is this safe?
2932 * reiserfs_setattr updates i_size in the on disk
2933 * stat data before allowing vmtruncate to be called.
2934 *
2935 * If buffer was put onto the ordered list for this
2936 * transaction, we know for sure either this transaction
2937 * or an older one already has updated i_size on disk,
2938 * and this ordered data won't be referenced in the file
2939 * if we crash.
2940 *
2941 * if the buffer was put onto the ordered list for an older
2942 * transaction, we need to leave it around
2943 */
2944 if (jh && (jl = jh->jl)
2945 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2946 ret = 0;
2947 }
2948 free_jh:
2949 if (ret && bh->b_private) {
2950 reiserfs_free_jh(bh);
2951 }
2952 spin_unlock(&j->j_dirty_buffers_lock);
2953 unlock_buffer(bh);
2954 return ret;
2955 }
2956
2957 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2958 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2959 {
2960 struct buffer_head *head, *bh, *next;
2961 struct inode *inode = page->mapping->host;
2962 unsigned int curr_off = 0;
2963 int ret = 1;
2964
2965 BUG_ON(!PageLocked(page));
2966
2967 if (offset == 0)
2968 ClearPageChecked(page);
2969
2970 if (!page_has_buffers(page))
2971 goto out;
2972
2973 head = page_buffers(page);
2974 bh = head;
2975 do {
2976 unsigned int next_off = curr_off + bh->b_size;
2977 next = bh->b_this_page;
2978
2979 /*
2980 * is this block fully invalidated?
2981 */
2982 if (offset <= curr_off) {
2983 if (invalidatepage_can_drop(inode, bh))
2984 reiserfs_unmap_buffer(bh);
2985 else
2986 ret = 0;
2987 }
2988 curr_off = next_off;
2989 bh = next;
2990 } while (bh != head);
2991
2992 /*
2993 * We release buffers only if the entire page is being invalidated.
2994 * The get_block cached value has been unconditionally invalidated,
2995 * so real IO is not possible anymore.
2996 */
2997 if (!offset && ret) {
2998 ret = try_to_release_page(page, 0);
2999 /* maybe should BUG_ON(!ret); - neilb */
3000 }
3001 out:
3002 return;
3003 }
3004
3005 static int reiserfs_set_page_dirty(struct page *page)
3006 {
3007 struct inode *inode = page->mapping->host;
3008 if (reiserfs_file_data_log(inode)) {
3009 SetPageChecked(page);
3010 return __set_page_dirty_nobuffers(page);
3011 }
3012 return __set_page_dirty_buffers(page);
3013 }
3014
3015 /*
3016 * Returns 1 if the page's buffers were dropped. The page is locked.
3017 *
3018 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3019 * in the buffers at page_buffers(page).
3020 *
3021 * even in -o notail mode, we can't be sure an old mount without -o notail
3022 * didn't create files with tails.
3023 */
3024 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3025 {
3026 struct inode *inode = page->mapping->host;
3027 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3028 struct buffer_head *head;
3029 struct buffer_head *bh;
3030 int ret = 1;
3031
3032 WARN_ON(PageChecked(page));
3033 spin_lock(&j->j_dirty_buffers_lock);
3034 head = page_buffers(page);
3035 bh = head;
3036 do {
3037 if (bh->b_private) {
3038 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3039 reiserfs_free_jh(bh);
3040 } else {
3041 ret = 0;
3042 break;
3043 }
3044 }
3045 bh = bh->b_this_page;
3046 } while (bh != head);
3047 if (ret)
3048 ret = try_to_free_buffers(page);
3049 spin_unlock(&j->j_dirty_buffers_lock);
3050 return ret;
3051 }
3052
3053 /* We thank Mingming Cao for helping us understand in great detail what
3054 to do in this section of the code. */
3055 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3056 const struct iovec *iov, loff_t offset,
3057 unsigned long nr_segs)
3058 {
3059 struct file *file = iocb->ki_filp;
3060 struct inode *inode = file->f_mapping->host;
3061
3062 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3063 offset, nr_segs,
3064 reiserfs_get_blocks_direct_io, NULL);
3065 }
3066
3067 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3068 {
3069 struct inode *inode = dentry->d_inode;
3070 unsigned int ia_valid;
3071 int depth;
3072 int error;
3073
3074 /* must be turned off for recursive notify_change calls */
3075 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3076
3077 depth = reiserfs_write_lock_once(inode->i_sb);
3078 if (attr->ia_valid & ATTR_SIZE) {
3079 dquot_initialize(inode);
3080
3081 /* version 2 items will be caught by the s_maxbytes check
3082 ** done for us in vmtruncate
3083 */
3084 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3085 attr->ia_size > MAX_NON_LFS) {
3086 error = -EFBIG;
3087 goto out;
3088 }
3089 /* fill in hole pointers in the expanding truncate case. */
3090 if (attr->ia_size > inode->i_size) {
3091 error = generic_cont_expand_simple(inode, attr->ia_size);
3092 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3093 int err;
3094 struct reiserfs_transaction_handle th;
3095 /* we're changing at most 2 bitmaps, inode + super */
3096 err = journal_begin(&th, inode->i_sb, 4);
3097 if (!err) {
3098 reiserfs_discard_prealloc(&th, inode);
3099 err = journal_end(&th, inode->i_sb, 4);
3100 }
3101 if (err)
3102 error = err;
3103 }
3104 if (error)
3105 goto out;
3106 /*
3107 * file size is changed, ctime and mtime are
3108 * to be updated
3109 */
3110 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3111 }
3112 }
3113
3114 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3115 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3116 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3117 /* stat data of format v3.5 has 16 bit uid and gid */
3118 error = -EINVAL;
3119 goto out;
3120 }
3121
3122 error = inode_change_ok(inode, attr);
3123 if (!error) {
3124 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3125 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3126 error = reiserfs_chown_xattrs(inode, attr);
3127
3128 if (!error) {
3129 struct reiserfs_transaction_handle th;
3130 int jbegin_count =
3131 2 *
3132 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3133 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3134 2;
3135
3136 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3137 error =
3138 journal_begin(&th, inode->i_sb,
3139 jbegin_count);
3140 if (error)
3141 goto out;
3142 error = dquot_transfer(inode, attr);
3143 if (error) {
3144 journal_end(&th, inode->i_sb,
3145 jbegin_count);
3146 goto out;
3147 }
3148 /* Update corresponding info in inode so that everything is in
3149 * one transaction */
3150 if (attr->ia_valid & ATTR_UID)
3151 inode->i_uid = attr->ia_uid;
3152 if (attr->ia_valid & ATTR_GID)
3153 inode->i_gid = attr->ia_gid;
3154 mark_inode_dirty(inode);
3155 error =
3156 journal_end(&th, inode->i_sb, jbegin_count);
3157 }
3158 }
3159 if (!error) {
3160 /*
3161 * Relax the lock here, as it might truncate the
3162 * inode pages and wait for inode pages locks.
3163 * To release such page lock, the owner needs the
3164 * reiserfs lock
3165 */
3166 reiserfs_write_unlock_once(inode->i_sb, depth);
3167 error = inode_setattr(inode, attr);
3168 depth = reiserfs_write_lock_once(inode->i_sb);
3169 }
3170 }
3171
3172 if (!error && reiserfs_posixacl(inode->i_sb)) {
3173 if (attr->ia_valid & ATTR_MODE)
3174 error = reiserfs_acl_chmod(inode);
3175 }
3176
3177 out:
3178 reiserfs_write_unlock_once(inode->i_sb, depth);
3179
3180 return error;
3181 }
3182
3183 const struct address_space_operations reiserfs_address_space_operations = {
3184 .writepage = reiserfs_writepage,
3185 .readpage = reiserfs_readpage,
3186 .readpages = reiserfs_readpages,
3187 .releasepage = reiserfs_releasepage,
3188 .invalidatepage = reiserfs_invalidatepage,
3189 .sync_page = block_sync_page,
3190 .write_begin = reiserfs_write_begin,
3191 .write_end = reiserfs_write_end,
3192 .bmap = reiserfs_aop_bmap,
3193 .direct_IO = reiserfs_direct_IO,
3194 .set_page_dirty = reiserfs_set_page_dirty,
3195 };
This page took 0.116923 seconds and 5 git commands to generate.