Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm
[deliverable/linux.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33
34 /*
35 * Attempt to steal a page from a pipe buffer. This should perhaps go into
36 * a vm helper function, it's already simplified quite a bit by the
37 * addition of remove_mapping(). If success is returned, the caller may
38 * attempt to reuse this page for another destination.
39 */
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 struct pipe_buffer *buf)
42 {
43 struct page *page = buf->page;
44 struct address_space *mapping;
45
46 lock_page(page);
47
48 mapping = page_mapping(page);
49 if (mapping) {
50 WARN_ON(!PageUptodate(page));
51
52 /*
53 * At least for ext2 with nobh option, we need to wait on
54 * writeback completing on this page, since we'll remove it
55 * from the pagecache. Otherwise truncate wont wait on the
56 * page, allowing the disk blocks to be reused by someone else
57 * before we actually wrote our data to them. fs corruption
58 * ensues.
59 */
60 wait_on_page_writeback(page);
61
62 if (page_has_private(page) &&
63 !try_to_release_page(page, GFP_KERNEL))
64 goto out_unlock;
65
66 /*
67 * If we succeeded in removing the mapping, set LRU flag
68 * and return good.
69 */
70 if (remove_mapping(mapping, page)) {
71 buf->flags |= PIPE_BUF_FLAG_LRU;
72 return 0;
73 }
74 }
75
76 /*
77 * Raced with truncate or failed to remove page from current
78 * address space, unlock and return failure.
79 */
80 out_unlock:
81 unlock_page(page);
82 return 1;
83 }
84
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86 struct pipe_buffer *buf)
87 {
88 page_cache_release(buf->page);
89 buf->flags &= ~PIPE_BUF_FLAG_LRU;
90 }
91
92 /*
93 * Check whether the contents of buf is OK to access. Since the content
94 * is a page cache page, IO may be in flight.
95 */
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97 struct pipe_buffer *buf)
98 {
99 struct page *page = buf->page;
100 int err;
101
102 if (!PageUptodate(page)) {
103 lock_page(page);
104
105 /*
106 * Page got truncated/unhashed. This will cause a 0-byte
107 * splice, if this is the first page.
108 */
109 if (!page->mapping) {
110 err = -ENODATA;
111 goto error;
112 }
113
114 /*
115 * Uh oh, read-error from disk.
116 */
117 if (!PageUptodate(page)) {
118 err = -EIO;
119 goto error;
120 }
121
122 /*
123 * Page is ok afterall, we are done.
124 */
125 unlock_page(page);
126 }
127
128 return 0;
129 error:
130 unlock_page(page);
131 return err;
132 }
133
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135 .can_merge = 0,
136 .map = generic_pipe_buf_map,
137 .unmap = generic_pipe_buf_unmap,
138 .confirm = page_cache_pipe_buf_confirm,
139 .release = page_cache_pipe_buf_release,
140 .steal = page_cache_pipe_buf_steal,
141 .get = generic_pipe_buf_get,
142 };
143
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145 struct pipe_buffer *buf)
146 {
147 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148 return 1;
149
150 buf->flags |= PIPE_BUF_FLAG_LRU;
151 return generic_pipe_buf_steal(pipe, buf);
152 }
153
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155 .can_merge = 0,
156 .map = generic_pipe_buf_map,
157 .unmap = generic_pipe_buf_unmap,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
162 };
163
164 /**
165 * splice_to_pipe - fill passed data into a pipe
166 * @pipe: pipe to fill
167 * @spd: data to fill
168 *
169 * Description:
170 * @spd contains a map of pages and len/offset tuples, along with
171 * the struct pipe_buf_operations associated with these pages. This
172 * function will link that data to the pipe.
173 *
174 */
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176 struct splice_pipe_desc *spd)
177 {
178 unsigned int spd_pages = spd->nr_pages;
179 int ret, do_wakeup, page_nr;
180
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
184
185 pipe_lock(pipe);
186
187 for (;;) {
188 if (!pipe->readers) {
189 send_sig(SIGPIPE, current, 0);
190 if (!ret)
191 ret = -EPIPE;
192 break;
193 }
194
195 if (pipe->nrbufs < PIPE_BUFFERS) {
196 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
197 struct pipe_buffer *buf = pipe->bufs + newbuf;
198
199 buf->page = spd->pages[page_nr];
200 buf->offset = spd->partial[page_nr].offset;
201 buf->len = spd->partial[page_nr].len;
202 buf->private = spd->partial[page_nr].private;
203 buf->ops = spd->ops;
204 if (spd->flags & SPLICE_F_GIFT)
205 buf->flags |= PIPE_BUF_FLAG_GIFT;
206
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
210
211 if (pipe->inode)
212 do_wakeup = 1;
213
214 if (!--spd->nr_pages)
215 break;
216 if (pipe->nrbufs < PIPE_BUFFERS)
217 continue;
218
219 break;
220 }
221
222 if (spd->flags & SPLICE_F_NONBLOCK) {
223 if (!ret)
224 ret = -EAGAIN;
225 break;
226 }
227
228 if (signal_pending(current)) {
229 if (!ret)
230 ret = -ERESTARTSYS;
231 break;
232 }
233
234 if (do_wakeup) {
235 smp_mb();
236 if (waitqueue_active(&pipe->wait))
237 wake_up_interruptible_sync(&pipe->wait);
238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 do_wakeup = 0;
240 }
241
242 pipe->waiting_writers++;
243 pipe_wait(pipe);
244 pipe->waiting_writers--;
245 }
246
247 pipe_unlock(pipe);
248
249 if (do_wakeup) {
250 smp_mb();
251 if (waitqueue_active(&pipe->wait))
252 wake_up_interruptible(&pipe->wait);
253 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
254 }
255
256 while (page_nr < spd_pages)
257 spd->spd_release(spd, page_nr++);
258
259 return ret;
260 }
261
262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
263 {
264 page_cache_release(spd->pages[i]);
265 }
266
267 static int
268 __generic_file_splice_read(struct file *in, loff_t *ppos,
269 struct pipe_inode_info *pipe, size_t len,
270 unsigned int flags)
271 {
272 struct address_space *mapping = in->f_mapping;
273 unsigned int loff, nr_pages, req_pages;
274 struct page *pages[PIPE_BUFFERS];
275 struct partial_page partial[PIPE_BUFFERS];
276 struct page *page;
277 pgoff_t index, end_index;
278 loff_t isize;
279 int error, page_nr;
280 struct splice_pipe_desc spd = {
281 .pages = pages,
282 .partial = partial,
283 .flags = flags,
284 .ops = &page_cache_pipe_buf_ops,
285 .spd_release = spd_release_page,
286 };
287
288 index = *ppos >> PAGE_CACHE_SHIFT;
289 loff = *ppos & ~PAGE_CACHE_MASK;
290 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
291 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
292
293 /*
294 * Lookup the (hopefully) full range of pages we need.
295 */
296 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
297 index += spd.nr_pages;
298
299 /*
300 * If find_get_pages_contig() returned fewer pages than we needed,
301 * readahead/allocate the rest and fill in the holes.
302 */
303 if (spd.nr_pages < nr_pages)
304 page_cache_sync_readahead(mapping, &in->f_ra, in,
305 index, req_pages - spd.nr_pages);
306
307 error = 0;
308 while (spd.nr_pages < nr_pages) {
309 /*
310 * Page could be there, find_get_pages_contig() breaks on
311 * the first hole.
312 */
313 page = find_get_page(mapping, index);
314 if (!page) {
315 /*
316 * page didn't exist, allocate one.
317 */
318 page = page_cache_alloc_cold(mapping);
319 if (!page)
320 break;
321
322 error = add_to_page_cache_lru(page, mapping, index,
323 mapping_gfp_mask(mapping));
324 if (unlikely(error)) {
325 page_cache_release(page);
326 if (error == -EEXIST)
327 continue;
328 break;
329 }
330 /*
331 * add_to_page_cache() locks the page, unlock it
332 * to avoid convoluting the logic below even more.
333 */
334 unlock_page(page);
335 }
336
337 pages[spd.nr_pages++] = page;
338 index++;
339 }
340
341 /*
342 * Now loop over the map and see if we need to start IO on any
343 * pages, fill in the partial map, etc.
344 */
345 index = *ppos >> PAGE_CACHE_SHIFT;
346 nr_pages = spd.nr_pages;
347 spd.nr_pages = 0;
348 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
349 unsigned int this_len;
350
351 if (!len)
352 break;
353
354 /*
355 * this_len is the max we'll use from this page
356 */
357 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
358 page = pages[page_nr];
359
360 if (PageReadahead(page))
361 page_cache_async_readahead(mapping, &in->f_ra, in,
362 page, index, req_pages - page_nr);
363
364 /*
365 * If the page isn't uptodate, we may need to start io on it
366 */
367 if (!PageUptodate(page)) {
368 /*
369 * If in nonblock mode then dont block on waiting
370 * for an in-flight io page
371 */
372 if (flags & SPLICE_F_NONBLOCK) {
373 if (!trylock_page(page)) {
374 error = -EAGAIN;
375 break;
376 }
377 } else
378 lock_page(page);
379
380 /*
381 * Page was truncated, or invalidated by the
382 * filesystem. Redo the find/create, but this time the
383 * page is kept locked, so there's no chance of another
384 * race with truncate/invalidate.
385 */
386 if (!page->mapping) {
387 unlock_page(page);
388 page = find_or_create_page(mapping, index,
389 mapping_gfp_mask(mapping));
390
391 if (!page) {
392 error = -ENOMEM;
393 break;
394 }
395 page_cache_release(pages[page_nr]);
396 pages[page_nr] = page;
397 }
398 /*
399 * page was already under io and is now done, great
400 */
401 if (PageUptodate(page)) {
402 unlock_page(page);
403 goto fill_it;
404 }
405
406 /*
407 * need to read in the page
408 */
409 error = mapping->a_ops->readpage(in, page);
410 if (unlikely(error)) {
411 /*
412 * We really should re-lookup the page here,
413 * but it complicates things a lot. Instead
414 * lets just do what we already stored, and
415 * we'll get it the next time we are called.
416 */
417 if (error == AOP_TRUNCATED_PAGE)
418 error = 0;
419
420 break;
421 }
422 }
423 fill_it:
424 /*
425 * i_size must be checked after PageUptodate.
426 */
427 isize = i_size_read(mapping->host);
428 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
429 if (unlikely(!isize || index > end_index))
430 break;
431
432 /*
433 * if this is the last page, see if we need to shrink
434 * the length and stop
435 */
436 if (end_index == index) {
437 unsigned int plen;
438
439 /*
440 * max good bytes in this page
441 */
442 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
443 if (plen <= loff)
444 break;
445
446 /*
447 * force quit after adding this page
448 */
449 this_len = min(this_len, plen - loff);
450 len = this_len;
451 }
452
453 partial[page_nr].offset = loff;
454 partial[page_nr].len = this_len;
455 len -= this_len;
456 loff = 0;
457 spd.nr_pages++;
458 index++;
459 }
460
461 /*
462 * Release any pages at the end, if we quit early. 'page_nr' is how far
463 * we got, 'nr_pages' is how many pages are in the map.
464 */
465 while (page_nr < nr_pages)
466 page_cache_release(pages[page_nr++]);
467 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
468
469 if (spd.nr_pages)
470 return splice_to_pipe(pipe, &spd);
471
472 return error;
473 }
474
475 /**
476 * generic_file_splice_read - splice data from file to a pipe
477 * @in: file to splice from
478 * @ppos: position in @in
479 * @pipe: pipe to splice to
480 * @len: number of bytes to splice
481 * @flags: splice modifier flags
482 *
483 * Description:
484 * Will read pages from given file and fill them into a pipe. Can be
485 * used as long as the address_space operations for the source implements
486 * a readpage() hook.
487 *
488 */
489 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
490 struct pipe_inode_info *pipe, size_t len,
491 unsigned int flags)
492 {
493 loff_t isize, left;
494 int ret;
495
496 isize = i_size_read(in->f_mapping->host);
497 if (unlikely(*ppos >= isize))
498 return 0;
499
500 left = isize - *ppos;
501 if (unlikely(left < len))
502 len = left;
503
504 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
505 if (ret > 0)
506 *ppos += ret;
507
508 return ret;
509 }
510 EXPORT_SYMBOL(generic_file_splice_read);
511
512 static const struct pipe_buf_operations default_pipe_buf_ops = {
513 .can_merge = 0,
514 .map = generic_pipe_buf_map,
515 .unmap = generic_pipe_buf_unmap,
516 .confirm = generic_pipe_buf_confirm,
517 .release = generic_pipe_buf_release,
518 .steal = generic_pipe_buf_steal,
519 .get = generic_pipe_buf_get,
520 };
521
522 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
523 unsigned long vlen, loff_t offset)
524 {
525 mm_segment_t old_fs;
526 loff_t pos = offset;
527 ssize_t res;
528
529 old_fs = get_fs();
530 set_fs(get_ds());
531 /* The cast to a user pointer is valid due to the set_fs() */
532 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
533 set_fs(old_fs);
534
535 return res;
536 }
537
538 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
539 loff_t pos)
540 {
541 mm_segment_t old_fs;
542 ssize_t res;
543
544 old_fs = get_fs();
545 set_fs(get_ds());
546 /* The cast to a user pointer is valid due to the set_fs() */
547 res = vfs_write(file, (const char __user *)buf, count, &pos);
548 set_fs(old_fs);
549
550 return res;
551 }
552
553 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
554 struct pipe_inode_info *pipe, size_t len,
555 unsigned int flags)
556 {
557 unsigned int nr_pages;
558 unsigned int nr_freed;
559 size_t offset;
560 struct page *pages[PIPE_BUFFERS];
561 struct partial_page partial[PIPE_BUFFERS];
562 struct iovec vec[PIPE_BUFFERS];
563 pgoff_t index;
564 ssize_t res;
565 size_t this_len;
566 int error;
567 int i;
568 struct splice_pipe_desc spd = {
569 .pages = pages,
570 .partial = partial,
571 .flags = flags,
572 .ops = &default_pipe_buf_ops,
573 .spd_release = spd_release_page,
574 };
575
576 index = *ppos >> PAGE_CACHE_SHIFT;
577 offset = *ppos & ~PAGE_CACHE_MASK;
578 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
579
580 for (i = 0; i < nr_pages && i < PIPE_BUFFERS && len; i++) {
581 struct page *page;
582
583 page = alloc_page(GFP_USER);
584 error = -ENOMEM;
585 if (!page)
586 goto err;
587
588 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
589 vec[i].iov_base = (void __user *) page_address(page);
590 vec[i].iov_len = this_len;
591 pages[i] = page;
592 spd.nr_pages++;
593 len -= this_len;
594 offset = 0;
595 }
596
597 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
598 if (res < 0) {
599 error = res;
600 goto err;
601 }
602
603 error = 0;
604 if (!res)
605 goto err;
606
607 nr_freed = 0;
608 for (i = 0; i < spd.nr_pages; i++) {
609 this_len = min_t(size_t, vec[i].iov_len, res);
610 partial[i].offset = 0;
611 partial[i].len = this_len;
612 if (!this_len) {
613 __free_page(pages[i]);
614 pages[i] = NULL;
615 nr_freed++;
616 }
617 res -= this_len;
618 }
619 spd.nr_pages -= nr_freed;
620
621 res = splice_to_pipe(pipe, &spd);
622 if (res > 0)
623 *ppos += res;
624
625 return res;
626
627 err:
628 for (i = 0; i < spd.nr_pages; i++)
629 __free_page(pages[i]);
630
631 return error;
632 }
633 EXPORT_SYMBOL(default_file_splice_read);
634
635 /*
636 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
637 * using sendpage(). Return the number of bytes sent.
638 */
639 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
640 struct pipe_buffer *buf, struct splice_desc *sd)
641 {
642 struct file *file = sd->u.file;
643 loff_t pos = sd->pos;
644 int ret, more;
645
646 ret = buf->ops->confirm(pipe, buf);
647 if (!ret) {
648 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
649
650 ret = file->f_op->sendpage(file, buf->page, buf->offset,
651 sd->len, &pos, more);
652 }
653
654 return ret;
655 }
656
657 /*
658 * This is a little more tricky than the file -> pipe splicing. There are
659 * basically three cases:
660 *
661 * - Destination page already exists in the address space and there
662 * are users of it. For that case we have no other option that
663 * copying the data. Tough luck.
664 * - Destination page already exists in the address space, but there
665 * are no users of it. Make sure it's uptodate, then drop it. Fall
666 * through to last case.
667 * - Destination page does not exist, we can add the pipe page to
668 * the page cache and avoid the copy.
669 *
670 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
671 * sd->flags), we attempt to migrate pages from the pipe to the output
672 * file address space page cache. This is possible if no one else has
673 * the pipe page referenced outside of the pipe and page cache. If
674 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
675 * a new page in the output file page cache and fill/dirty that.
676 */
677 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
678 struct splice_desc *sd)
679 {
680 struct file *file = sd->u.file;
681 struct address_space *mapping = file->f_mapping;
682 unsigned int offset, this_len;
683 struct page *page;
684 void *fsdata;
685 int ret;
686
687 /*
688 * make sure the data in this buffer is uptodate
689 */
690 ret = buf->ops->confirm(pipe, buf);
691 if (unlikely(ret))
692 return ret;
693
694 offset = sd->pos & ~PAGE_CACHE_MASK;
695
696 this_len = sd->len;
697 if (this_len + offset > PAGE_CACHE_SIZE)
698 this_len = PAGE_CACHE_SIZE - offset;
699
700 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
701 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
702 if (unlikely(ret))
703 goto out;
704
705 if (buf->page != page) {
706 /*
707 * Careful, ->map() uses KM_USER0!
708 */
709 char *src = buf->ops->map(pipe, buf, 1);
710 char *dst = kmap_atomic(page, KM_USER1);
711
712 memcpy(dst + offset, src + buf->offset, this_len);
713 flush_dcache_page(page);
714 kunmap_atomic(dst, KM_USER1);
715 buf->ops->unmap(pipe, buf, src);
716 }
717 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
718 page, fsdata);
719 out:
720 return ret;
721 }
722 EXPORT_SYMBOL(pipe_to_file);
723
724 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
725 {
726 smp_mb();
727 if (waitqueue_active(&pipe->wait))
728 wake_up_interruptible(&pipe->wait);
729 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
730 }
731
732 /**
733 * splice_from_pipe_feed - feed available data from a pipe to a file
734 * @pipe: pipe to splice from
735 * @sd: information to @actor
736 * @actor: handler that splices the data
737 *
738 * Description:
739 * This function loops over the pipe and calls @actor to do the
740 * actual moving of a single struct pipe_buffer to the desired
741 * destination. It returns when there's no more buffers left in
742 * the pipe or if the requested number of bytes (@sd->total_len)
743 * have been copied. It returns a positive number (one) if the
744 * pipe needs to be filled with more data, zero if the required
745 * number of bytes have been copied and -errno on error.
746 *
747 * This, together with splice_from_pipe_{begin,end,next}, may be
748 * used to implement the functionality of __splice_from_pipe() when
749 * locking is required around copying the pipe buffers to the
750 * destination.
751 */
752 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
753 splice_actor *actor)
754 {
755 int ret;
756
757 while (pipe->nrbufs) {
758 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
759 const struct pipe_buf_operations *ops = buf->ops;
760
761 sd->len = buf->len;
762 if (sd->len > sd->total_len)
763 sd->len = sd->total_len;
764
765 ret = actor(pipe, buf, sd);
766 if (ret <= 0) {
767 if (ret == -ENODATA)
768 ret = 0;
769 return ret;
770 }
771 buf->offset += ret;
772 buf->len -= ret;
773
774 sd->num_spliced += ret;
775 sd->len -= ret;
776 sd->pos += ret;
777 sd->total_len -= ret;
778
779 if (!buf->len) {
780 buf->ops = NULL;
781 ops->release(pipe, buf);
782 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
783 pipe->nrbufs--;
784 if (pipe->inode)
785 sd->need_wakeup = true;
786 }
787
788 if (!sd->total_len)
789 return 0;
790 }
791
792 return 1;
793 }
794 EXPORT_SYMBOL(splice_from_pipe_feed);
795
796 /**
797 * splice_from_pipe_next - wait for some data to splice from
798 * @pipe: pipe to splice from
799 * @sd: information about the splice operation
800 *
801 * Description:
802 * This function will wait for some data and return a positive
803 * value (one) if pipe buffers are available. It will return zero
804 * or -errno if no more data needs to be spliced.
805 */
806 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
807 {
808 while (!pipe->nrbufs) {
809 if (!pipe->writers)
810 return 0;
811
812 if (!pipe->waiting_writers && sd->num_spliced)
813 return 0;
814
815 if (sd->flags & SPLICE_F_NONBLOCK)
816 return -EAGAIN;
817
818 if (signal_pending(current))
819 return -ERESTARTSYS;
820
821 if (sd->need_wakeup) {
822 wakeup_pipe_writers(pipe);
823 sd->need_wakeup = false;
824 }
825
826 pipe_wait(pipe);
827 }
828
829 return 1;
830 }
831 EXPORT_SYMBOL(splice_from_pipe_next);
832
833 /**
834 * splice_from_pipe_begin - start splicing from pipe
835 * @sd: information about the splice operation
836 *
837 * Description:
838 * This function should be called before a loop containing
839 * splice_from_pipe_next() and splice_from_pipe_feed() to
840 * initialize the necessary fields of @sd.
841 */
842 void splice_from_pipe_begin(struct splice_desc *sd)
843 {
844 sd->num_spliced = 0;
845 sd->need_wakeup = false;
846 }
847 EXPORT_SYMBOL(splice_from_pipe_begin);
848
849 /**
850 * splice_from_pipe_end - finish splicing from pipe
851 * @pipe: pipe to splice from
852 * @sd: information about the splice operation
853 *
854 * Description:
855 * This function will wake up pipe writers if necessary. It should
856 * be called after a loop containing splice_from_pipe_next() and
857 * splice_from_pipe_feed().
858 */
859 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
860 {
861 if (sd->need_wakeup)
862 wakeup_pipe_writers(pipe);
863 }
864 EXPORT_SYMBOL(splice_from_pipe_end);
865
866 /**
867 * __splice_from_pipe - splice data from a pipe to given actor
868 * @pipe: pipe to splice from
869 * @sd: information to @actor
870 * @actor: handler that splices the data
871 *
872 * Description:
873 * This function does little more than loop over the pipe and call
874 * @actor to do the actual moving of a single struct pipe_buffer to
875 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
876 * pipe_to_user.
877 *
878 */
879 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
880 splice_actor *actor)
881 {
882 int ret;
883
884 splice_from_pipe_begin(sd);
885 do {
886 ret = splice_from_pipe_next(pipe, sd);
887 if (ret > 0)
888 ret = splice_from_pipe_feed(pipe, sd, actor);
889 } while (ret > 0);
890 splice_from_pipe_end(pipe, sd);
891
892 return sd->num_spliced ? sd->num_spliced : ret;
893 }
894 EXPORT_SYMBOL(__splice_from_pipe);
895
896 /**
897 * splice_from_pipe - splice data from a pipe to a file
898 * @pipe: pipe to splice from
899 * @out: file to splice to
900 * @ppos: position in @out
901 * @len: how many bytes to splice
902 * @flags: splice modifier flags
903 * @actor: handler that splices the data
904 *
905 * Description:
906 * See __splice_from_pipe. This function locks the pipe inode,
907 * otherwise it's identical to __splice_from_pipe().
908 *
909 */
910 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
911 loff_t *ppos, size_t len, unsigned int flags,
912 splice_actor *actor)
913 {
914 ssize_t ret;
915 struct splice_desc sd = {
916 .total_len = len,
917 .flags = flags,
918 .pos = *ppos,
919 .u.file = out,
920 };
921
922 pipe_lock(pipe);
923 ret = __splice_from_pipe(pipe, &sd, actor);
924 pipe_unlock(pipe);
925
926 return ret;
927 }
928
929 /**
930 * generic_file_splice_write - splice data from a pipe to a file
931 * @pipe: pipe info
932 * @out: file to write to
933 * @ppos: position in @out
934 * @len: number of bytes to splice
935 * @flags: splice modifier flags
936 *
937 * Description:
938 * Will either move or copy pages (determined by @flags options) from
939 * the given pipe inode to the given file.
940 *
941 */
942 ssize_t
943 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
944 loff_t *ppos, size_t len, unsigned int flags)
945 {
946 struct address_space *mapping = out->f_mapping;
947 struct inode *inode = mapping->host;
948 struct splice_desc sd = {
949 .total_len = len,
950 .flags = flags,
951 .pos = *ppos,
952 .u.file = out,
953 };
954 ssize_t ret;
955
956 pipe_lock(pipe);
957
958 splice_from_pipe_begin(&sd);
959 do {
960 ret = splice_from_pipe_next(pipe, &sd);
961 if (ret <= 0)
962 break;
963
964 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
965 ret = file_remove_suid(out);
966 if (!ret)
967 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
968 mutex_unlock(&inode->i_mutex);
969 } while (ret > 0);
970 splice_from_pipe_end(pipe, &sd);
971
972 pipe_unlock(pipe);
973
974 if (sd.num_spliced)
975 ret = sd.num_spliced;
976
977 if (ret > 0) {
978 unsigned long nr_pages;
979 int err;
980
981 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
982
983 err = generic_write_sync(out, *ppos, ret);
984 if (err)
985 ret = err;
986 else
987 *ppos += ret;
988 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
989 }
990
991 return ret;
992 }
993
994 EXPORT_SYMBOL(generic_file_splice_write);
995
996 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
997 struct splice_desc *sd)
998 {
999 int ret;
1000 void *data;
1001
1002 ret = buf->ops->confirm(pipe, buf);
1003 if (ret)
1004 return ret;
1005
1006 data = buf->ops->map(pipe, buf, 0);
1007 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1008 buf->ops->unmap(pipe, buf, data);
1009
1010 return ret;
1011 }
1012
1013 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1014 struct file *out, loff_t *ppos,
1015 size_t len, unsigned int flags)
1016 {
1017 ssize_t ret;
1018
1019 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1020 if (ret > 0)
1021 *ppos += ret;
1022
1023 return ret;
1024 }
1025
1026 /**
1027 * generic_splice_sendpage - splice data from a pipe to a socket
1028 * @pipe: pipe to splice from
1029 * @out: socket to write to
1030 * @ppos: position in @out
1031 * @len: number of bytes to splice
1032 * @flags: splice modifier flags
1033 *
1034 * Description:
1035 * Will send @len bytes from the pipe to a network socket. No data copying
1036 * is involved.
1037 *
1038 */
1039 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1040 loff_t *ppos, size_t len, unsigned int flags)
1041 {
1042 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1043 }
1044
1045 EXPORT_SYMBOL(generic_splice_sendpage);
1046
1047 /*
1048 * Attempt to initiate a splice from pipe to file.
1049 */
1050 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1051 loff_t *ppos, size_t len, unsigned int flags)
1052 {
1053 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1054 loff_t *, size_t, unsigned int);
1055 int ret;
1056
1057 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1058 return -EBADF;
1059
1060 if (unlikely(out->f_flags & O_APPEND))
1061 return -EINVAL;
1062
1063 ret = rw_verify_area(WRITE, out, ppos, len);
1064 if (unlikely(ret < 0))
1065 return ret;
1066
1067 splice_write = out->f_op->splice_write;
1068 if (!splice_write)
1069 splice_write = default_file_splice_write;
1070
1071 return splice_write(pipe, out, ppos, len, flags);
1072 }
1073
1074 /*
1075 * Attempt to initiate a splice from a file to a pipe.
1076 */
1077 static long do_splice_to(struct file *in, loff_t *ppos,
1078 struct pipe_inode_info *pipe, size_t len,
1079 unsigned int flags)
1080 {
1081 ssize_t (*splice_read)(struct file *, loff_t *,
1082 struct pipe_inode_info *, size_t, unsigned int);
1083 int ret;
1084
1085 if (unlikely(!(in->f_mode & FMODE_READ)))
1086 return -EBADF;
1087
1088 ret = rw_verify_area(READ, in, ppos, len);
1089 if (unlikely(ret < 0))
1090 return ret;
1091
1092 splice_read = in->f_op->splice_read;
1093 if (!splice_read)
1094 splice_read = default_file_splice_read;
1095
1096 return splice_read(in, ppos, pipe, len, flags);
1097 }
1098
1099 /**
1100 * splice_direct_to_actor - splices data directly between two non-pipes
1101 * @in: file to splice from
1102 * @sd: actor information on where to splice to
1103 * @actor: handles the data splicing
1104 *
1105 * Description:
1106 * This is a special case helper to splice directly between two
1107 * points, without requiring an explicit pipe. Internally an allocated
1108 * pipe is cached in the process, and reused during the lifetime of
1109 * that process.
1110 *
1111 */
1112 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1113 splice_direct_actor *actor)
1114 {
1115 struct pipe_inode_info *pipe;
1116 long ret, bytes;
1117 umode_t i_mode;
1118 size_t len;
1119 int i, flags;
1120
1121 /*
1122 * We require the input being a regular file, as we don't want to
1123 * randomly drop data for eg socket -> socket splicing. Use the
1124 * piped splicing for that!
1125 */
1126 i_mode = in->f_path.dentry->d_inode->i_mode;
1127 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1128 return -EINVAL;
1129
1130 /*
1131 * neither in nor out is a pipe, setup an internal pipe attached to
1132 * 'out' and transfer the wanted data from 'in' to 'out' through that
1133 */
1134 pipe = current->splice_pipe;
1135 if (unlikely(!pipe)) {
1136 pipe = alloc_pipe_info(NULL);
1137 if (!pipe)
1138 return -ENOMEM;
1139
1140 /*
1141 * We don't have an immediate reader, but we'll read the stuff
1142 * out of the pipe right after the splice_to_pipe(). So set
1143 * PIPE_READERS appropriately.
1144 */
1145 pipe->readers = 1;
1146
1147 current->splice_pipe = pipe;
1148 }
1149
1150 /*
1151 * Do the splice.
1152 */
1153 ret = 0;
1154 bytes = 0;
1155 len = sd->total_len;
1156 flags = sd->flags;
1157
1158 /*
1159 * Don't block on output, we have to drain the direct pipe.
1160 */
1161 sd->flags &= ~SPLICE_F_NONBLOCK;
1162
1163 while (len) {
1164 size_t read_len;
1165 loff_t pos = sd->pos, prev_pos = pos;
1166
1167 ret = do_splice_to(in, &pos, pipe, len, flags);
1168 if (unlikely(ret <= 0))
1169 goto out_release;
1170
1171 read_len = ret;
1172 sd->total_len = read_len;
1173
1174 /*
1175 * NOTE: nonblocking mode only applies to the input. We
1176 * must not do the output in nonblocking mode as then we
1177 * could get stuck data in the internal pipe:
1178 */
1179 ret = actor(pipe, sd);
1180 if (unlikely(ret <= 0)) {
1181 sd->pos = prev_pos;
1182 goto out_release;
1183 }
1184
1185 bytes += ret;
1186 len -= ret;
1187 sd->pos = pos;
1188
1189 if (ret < read_len) {
1190 sd->pos = prev_pos + ret;
1191 goto out_release;
1192 }
1193 }
1194
1195 done:
1196 pipe->nrbufs = pipe->curbuf = 0;
1197 file_accessed(in);
1198 return bytes;
1199
1200 out_release:
1201 /*
1202 * If we did an incomplete transfer we must release
1203 * the pipe buffers in question:
1204 */
1205 for (i = 0; i < PIPE_BUFFERS; i++) {
1206 struct pipe_buffer *buf = pipe->bufs + i;
1207
1208 if (buf->ops) {
1209 buf->ops->release(pipe, buf);
1210 buf->ops = NULL;
1211 }
1212 }
1213
1214 if (!bytes)
1215 bytes = ret;
1216
1217 goto done;
1218 }
1219 EXPORT_SYMBOL(splice_direct_to_actor);
1220
1221 static int direct_splice_actor(struct pipe_inode_info *pipe,
1222 struct splice_desc *sd)
1223 {
1224 struct file *file = sd->u.file;
1225
1226 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1227 }
1228
1229 /**
1230 * do_splice_direct - splices data directly between two files
1231 * @in: file to splice from
1232 * @ppos: input file offset
1233 * @out: file to splice to
1234 * @len: number of bytes to splice
1235 * @flags: splice modifier flags
1236 *
1237 * Description:
1238 * For use by do_sendfile(). splice can easily emulate sendfile, but
1239 * doing it in the application would incur an extra system call
1240 * (splice in + splice out, as compared to just sendfile()). So this helper
1241 * can splice directly through a process-private pipe.
1242 *
1243 */
1244 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1245 size_t len, unsigned int flags)
1246 {
1247 struct splice_desc sd = {
1248 .len = len,
1249 .total_len = len,
1250 .flags = flags,
1251 .pos = *ppos,
1252 .u.file = out,
1253 };
1254 long ret;
1255
1256 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1257 if (ret > 0)
1258 *ppos = sd.pos;
1259
1260 return ret;
1261 }
1262
1263 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1264 struct pipe_inode_info *opipe,
1265 size_t len, unsigned int flags);
1266 /*
1267 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1268 * location, so checking ->i_pipe is not enough to verify that this is a
1269 * pipe.
1270 */
1271 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1272 {
1273 if (S_ISFIFO(inode->i_mode))
1274 return inode->i_pipe;
1275
1276 return NULL;
1277 }
1278
1279 /*
1280 * Determine where to splice to/from.
1281 */
1282 static long do_splice(struct file *in, loff_t __user *off_in,
1283 struct file *out, loff_t __user *off_out,
1284 size_t len, unsigned int flags)
1285 {
1286 struct pipe_inode_info *ipipe;
1287 struct pipe_inode_info *opipe;
1288 loff_t offset, *off;
1289 long ret;
1290
1291 ipipe = pipe_info(in->f_path.dentry->d_inode);
1292 opipe = pipe_info(out->f_path.dentry->d_inode);
1293
1294 if (ipipe && opipe) {
1295 if (off_in || off_out)
1296 return -ESPIPE;
1297
1298 if (!(in->f_mode & FMODE_READ))
1299 return -EBADF;
1300
1301 if (!(out->f_mode & FMODE_WRITE))
1302 return -EBADF;
1303
1304 /* Splicing to self would be fun, but... */
1305 if (ipipe == opipe)
1306 return -EINVAL;
1307
1308 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1309 }
1310
1311 if (ipipe) {
1312 if (off_in)
1313 return -ESPIPE;
1314 if (off_out) {
1315 if (out->f_op->llseek == no_llseek)
1316 return -EINVAL;
1317 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1318 return -EFAULT;
1319 off = &offset;
1320 } else
1321 off = &out->f_pos;
1322
1323 ret = do_splice_from(ipipe, out, off, len, flags);
1324
1325 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1326 ret = -EFAULT;
1327
1328 return ret;
1329 }
1330
1331 if (opipe) {
1332 if (off_out)
1333 return -ESPIPE;
1334 if (off_in) {
1335 if (in->f_op->llseek == no_llseek)
1336 return -EINVAL;
1337 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1338 return -EFAULT;
1339 off = &offset;
1340 } else
1341 off = &in->f_pos;
1342
1343 ret = do_splice_to(in, off, opipe, len, flags);
1344
1345 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1346 ret = -EFAULT;
1347
1348 return ret;
1349 }
1350
1351 return -EINVAL;
1352 }
1353
1354 /*
1355 * Map an iov into an array of pages and offset/length tupples. With the
1356 * partial_page structure, we can map several non-contiguous ranges into
1357 * our ones pages[] map instead of splitting that operation into pieces.
1358 * Could easily be exported as a generic helper for other users, in which
1359 * case one would probably want to add a 'max_nr_pages' parameter as well.
1360 */
1361 static int get_iovec_page_array(const struct iovec __user *iov,
1362 unsigned int nr_vecs, struct page **pages,
1363 struct partial_page *partial, int aligned)
1364 {
1365 int buffers = 0, error = 0;
1366
1367 while (nr_vecs) {
1368 unsigned long off, npages;
1369 struct iovec entry;
1370 void __user *base;
1371 size_t len;
1372 int i;
1373
1374 error = -EFAULT;
1375 if (copy_from_user(&entry, iov, sizeof(entry)))
1376 break;
1377
1378 base = entry.iov_base;
1379 len = entry.iov_len;
1380
1381 /*
1382 * Sanity check this iovec. 0 read succeeds.
1383 */
1384 error = 0;
1385 if (unlikely(!len))
1386 break;
1387 error = -EFAULT;
1388 if (!access_ok(VERIFY_READ, base, len))
1389 break;
1390
1391 /*
1392 * Get this base offset and number of pages, then map
1393 * in the user pages.
1394 */
1395 off = (unsigned long) base & ~PAGE_MASK;
1396
1397 /*
1398 * If asked for alignment, the offset must be zero and the
1399 * length a multiple of the PAGE_SIZE.
1400 */
1401 error = -EINVAL;
1402 if (aligned && (off || len & ~PAGE_MASK))
1403 break;
1404
1405 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1406 if (npages > PIPE_BUFFERS - buffers)
1407 npages = PIPE_BUFFERS - buffers;
1408
1409 error = get_user_pages_fast((unsigned long)base, npages,
1410 0, &pages[buffers]);
1411
1412 if (unlikely(error <= 0))
1413 break;
1414
1415 /*
1416 * Fill this contiguous range into the partial page map.
1417 */
1418 for (i = 0; i < error; i++) {
1419 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1420
1421 partial[buffers].offset = off;
1422 partial[buffers].len = plen;
1423
1424 off = 0;
1425 len -= plen;
1426 buffers++;
1427 }
1428
1429 /*
1430 * We didn't complete this iov, stop here since it probably
1431 * means we have to move some of this into a pipe to
1432 * be able to continue.
1433 */
1434 if (len)
1435 break;
1436
1437 /*
1438 * Don't continue if we mapped fewer pages than we asked for,
1439 * or if we mapped the max number of pages that we have
1440 * room for.
1441 */
1442 if (error < npages || buffers == PIPE_BUFFERS)
1443 break;
1444
1445 nr_vecs--;
1446 iov++;
1447 }
1448
1449 if (buffers)
1450 return buffers;
1451
1452 return error;
1453 }
1454
1455 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1456 struct splice_desc *sd)
1457 {
1458 char *src;
1459 int ret;
1460
1461 ret = buf->ops->confirm(pipe, buf);
1462 if (unlikely(ret))
1463 return ret;
1464
1465 /*
1466 * See if we can use the atomic maps, by prefaulting in the
1467 * pages and doing an atomic copy
1468 */
1469 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1470 src = buf->ops->map(pipe, buf, 1);
1471 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1472 sd->len);
1473 buf->ops->unmap(pipe, buf, src);
1474 if (!ret) {
1475 ret = sd->len;
1476 goto out;
1477 }
1478 }
1479
1480 /*
1481 * No dice, use slow non-atomic map and copy
1482 */
1483 src = buf->ops->map(pipe, buf, 0);
1484
1485 ret = sd->len;
1486 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1487 ret = -EFAULT;
1488
1489 buf->ops->unmap(pipe, buf, src);
1490 out:
1491 if (ret > 0)
1492 sd->u.userptr += ret;
1493 return ret;
1494 }
1495
1496 /*
1497 * For lack of a better implementation, implement vmsplice() to userspace
1498 * as a simple copy of the pipes pages to the user iov.
1499 */
1500 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1501 unsigned long nr_segs, unsigned int flags)
1502 {
1503 struct pipe_inode_info *pipe;
1504 struct splice_desc sd;
1505 ssize_t size;
1506 int error;
1507 long ret;
1508
1509 pipe = pipe_info(file->f_path.dentry->d_inode);
1510 if (!pipe)
1511 return -EBADF;
1512
1513 pipe_lock(pipe);
1514
1515 error = ret = 0;
1516 while (nr_segs) {
1517 void __user *base;
1518 size_t len;
1519
1520 /*
1521 * Get user address base and length for this iovec.
1522 */
1523 error = get_user(base, &iov->iov_base);
1524 if (unlikely(error))
1525 break;
1526 error = get_user(len, &iov->iov_len);
1527 if (unlikely(error))
1528 break;
1529
1530 /*
1531 * Sanity check this iovec. 0 read succeeds.
1532 */
1533 if (unlikely(!len))
1534 break;
1535 if (unlikely(!base)) {
1536 error = -EFAULT;
1537 break;
1538 }
1539
1540 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1541 error = -EFAULT;
1542 break;
1543 }
1544
1545 sd.len = 0;
1546 sd.total_len = len;
1547 sd.flags = flags;
1548 sd.u.userptr = base;
1549 sd.pos = 0;
1550
1551 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1552 if (size < 0) {
1553 if (!ret)
1554 ret = size;
1555
1556 break;
1557 }
1558
1559 ret += size;
1560
1561 if (size < len)
1562 break;
1563
1564 nr_segs--;
1565 iov++;
1566 }
1567
1568 pipe_unlock(pipe);
1569
1570 if (!ret)
1571 ret = error;
1572
1573 return ret;
1574 }
1575
1576 /*
1577 * vmsplice splices a user address range into a pipe. It can be thought of
1578 * as splice-from-memory, where the regular splice is splice-from-file (or
1579 * to file). In both cases the output is a pipe, naturally.
1580 */
1581 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1582 unsigned long nr_segs, unsigned int flags)
1583 {
1584 struct pipe_inode_info *pipe;
1585 struct page *pages[PIPE_BUFFERS];
1586 struct partial_page partial[PIPE_BUFFERS];
1587 struct splice_pipe_desc spd = {
1588 .pages = pages,
1589 .partial = partial,
1590 .flags = flags,
1591 .ops = &user_page_pipe_buf_ops,
1592 .spd_release = spd_release_page,
1593 };
1594
1595 pipe = pipe_info(file->f_path.dentry->d_inode);
1596 if (!pipe)
1597 return -EBADF;
1598
1599 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1600 flags & SPLICE_F_GIFT);
1601 if (spd.nr_pages <= 0)
1602 return spd.nr_pages;
1603
1604 return splice_to_pipe(pipe, &spd);
1605 }
1606
1607 /*
1608 * Note that vmsplice only really supports true splicing _from_ user memory
1609 * to a pipe, not the other way around. Splicing from user memory is a simple
1610 * operation that can be supported without any funky alignment restrictions
1611 * or nasty vm tricks. We simply map in the user memory and fill them into
1612 * a pipe. The reverse isn't quite as easy, though. There are two possible
1613 * solutions for that:
1614 *
1615 * - memcpy() the data internally, at which point we might as well just
1616 * do a regular read() on the buffer anyway.
1617 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1618 * has restriction limitations on both ends of the pipe).
1619 *
1620 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1621 *
1622 */
1623 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1624 unsigned long, nr_segs, unsigned int, flags)
1625 {
1626 struct file *file;
1627 long error;
1628 int fput;
1629
1630 if (unlikely(nr_segs > UIO_MAXIOV))
1631 return -EINVAL;
1632 else if (unlikely(!nr_segs))
1633 return 0;
1634
1635 error = -EBADF;
1636 file = fget_light(fd, &fput);
1637 if (file) {
1638 if (file->f_mode & FMODE_WRITE)
1639 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1640 else if (file->f_mode & FMODE_READ)
1641 error = vmsplice_to_user(file, iov, nr_segs, flags);
1642
1643 fput_light(file, fput);
1644 }
1645
1646 return error;
1647 }
1648
1649 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1650 int, fd_out, loff_t __user *, off_out,
1651 size_t, len, unsigned int, flags)
1652 {
1653 long error;
1654 struct file *in, *out;
1655 int fput_in, fput_out;
1656
1657 if (unlikely(!len))
1658 return 0;
1659
1660 error = -EBADF;
1661 in = fget_light(fd_in, &fput_in);
1662 if (in) {
1663 if (in->f_mode & FMODE_READ) {
1664 out = fget_light(fd_out, &fput_out);
1665 if (out) {
1666 if (out->f_mode & FMODE_WRITE)
1667 error = do_splice(in, off_in,
1668 out, off_out,
1669 len, flags);
1670 fput_light(out, fput_out);
1671 }
1672 }
1673
1674 fput_light(in, fput_in);
1675 }
1676
1677 return error;
1678 }
1679
1680 /*
1681 * Make sure there's data to read. Wait for input if we can, otherwise
1682 * return an appropriate error.
1683 */
1684 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1685 {
1686 int ret;
1687
1688 /*
1689 * Check ->nrbufs without the inode lock first. This function
1690 * is speculative anyways, so missing one is ok.
1691 */
1692 if (pipe->nrbufs)
1693 return 0;
1694
1695 ret = 0;
1696 pipe_lock(pipe);
1697
1698 while (!pipe->nrbufs) {
1699 if (signal_pending(current)) {
1700 ret = -ERESTARTSYS;
1701 break;
1702 }
1703 if (!pipe->writers)
1704 break;
1705 if (!pipe->waiting_writers) {
1706 if (flags & SPLICE_F_NONBLOCK) {
1707 ret = -EAGAIN;
1708 break;
1709 }
1710 }
1711 pipe_wait(pipe);
1712 }
1713
1714 pipe_unlock(pipe);
1715 return ret;
1716 }
1717
1718 /*
1719 * Make sure there's writeable room. Wait for room if we can, otherwise
1720 * return an appropriate error.
1721 */
1722 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1723 {
1724 int ret;
1725
1726 /*
1727 * Check ->nrbufs without the inode lock first. This function
1728 * is speculative anyways, so missing one is ok.
1729 */
1730 if (pipe->nrbufs < PIPE_BUFFERS)
1731 return 0;
1732
1733 ret = 0;
1734 pipe_lock(pipe);
1735
1736 while (pipe->nrbufs >= PIPE_BUFFERS) {
1737 if (!pipe->readers) {
1738 send_sig(SIGPIPE, current, 0);
1739 ret = -EPIPE;
1740 break;
1741 }
1742 if (flags & SPLICE_F_NONBLOCK) {
1743 ret = -EAGAIN;
1744 break;
1745 }
1746 if (signal_pending(current)) {
1747 ret = -ERESTARTSYS;
1748 break;
1749 }
1750 pipe->waiting_writers++;
1751 pipe_wait(pipe);
1752 pipe->waiting_writers--;
1753 }
1754
1755 pipe_unlock(pipe);
1756 return ret;
1757 }
1758
1759 /*
1760 * Splice contents of ipipe to opipe.
1761 */
1762 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1763 struct pipe_inode_info *opipe,
1764 size_t len, unsigned int flags)
1765 {
1766 struct pipe_buffer *ibuf, *obuf;
1767 int ret = 0, nbuf;
1768 bool input_wakeup = false;
1769
1770
1771 retry:
1772 ret = ipipe_prep(ipipe, flags);
1773 if (ret)
1774 return ret;
1775
1776 ret = opipe_prep(opipe, flags);
1777 if (ret)
1778 return ret;
1779
1780 /*
1781 * Potential ABBA deadlock, work around it by ordering lock
1782 * grabbing by pipe info address. Otherwise two different processes
1783 * could deadlock (one doing tee from A -> B, the other from B -> A).
1784 */
1785 pipe_double_lock(ipipe, opipe);
1786
1787 do {
1788 if (!opipe->readers) {
1789 send_sig(SIGPIPE, current, 0);
1790 if (!ret)
1791 ret = -EPIPE;
1792 break;
1793 }
1794
1795 if (!ipipe->nrbufs && !ipipe->writers)
1796 break;
1797
1798 /*
1799 * Cannot make any progress, because either the input
1800 * pipe is empty or the output pipe is full.
1801 */
1802 if (!ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) {
1803 /* Already processed some buffers, break */
1804 if (ret)
1805 break;
1806
1807 if (flags & SPLICE_F_NONBLOCK) {
1808 ret = -EAGAIN;
1809 break;
1810 }
1811
1812 /*
1813 * We raced with another reader/writer and haven't
1814 * managed to process any buffers. A zero return
1815 * value means EOF, so retry instead.
1816 */
1817 pipe_unlock(ipipe);
1818 pipe_unlock(opipe);
1819 goto retry;
1820 }
1821
1822 ibuf = ipipe->bufs + ipipe->curbuf;
1823 nbuf = (opipe->curbuf + opipe->nrbufs) % PIPE_BUFFERS;
1824 obuf = opipe->bufs + nbuf;
1825
1826 if (len >= ibuf->len) {
1827 /*
1828 * Simply move the whole buffer from ipipe to opipe
1829 */
1830 *obuf = *ibuf;
1831 ibuf->ops = NULL;
1832 opipe->nrbufs++;
1833 ipipe->curbuf = (ipipe->curbuf + 1) % PIPE_BUFFERS;
1834 ipipe->nrbufs--;
1835 input_wakeup = true;
1836 } else {
1837 /*
1838 * Get a reference to this pipe buffer,
1839 * so we can copy the contents over.
1840 */
1841 ibuf->ops->get(ipipe, ibuf);
1842 *obuf = *ibuf;
1843
1844 /*
1845 * Don't inherit the gift flag, we need to
1846 * prevent multiple steals of this page.
1847 */
1848 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1849
1850 obuf->len = len;
1851 opipe->nrbufs++;
1852 ibuf->offset += obuf->len;
1853 ibuf->len -= obuf->len;
1854 }
1855 ret += obuf->len;
1856 len -= obuf->len;
1857 } while (len);
1858
1859 pipe_unlock(ipipe);
1860 pipe_unlock(opipe);
1861
1862 /*
1863 * If we put data in the output pipe, wakeup any potential readers.
1864 */
1865 if (ret > 0) {
1866 smp_mb();
1867 if (waitqueue_active(&opipe->wait))
1868 wake_up_interruptible(&opipe->wait);
1869 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1870 }
1871 if (input_wakeup)
1872 wakeup_pipe_writers(ipipe);
1873
1874 return ret;
1875 }
1876
1877 /*
1878 * Link contents of ipipe to opipe.
1879 */
1880 static int link_pipe(struct pipe_inode_info *ipipe,
1881 struct pipe_inode_info *opipe,
1882 size_t len, unsigned int flags)
1883 {
1884 struct pipe_buffer *ibuf, *obuf;
1885 int ret = 0, i = 0, nbuf;
1886
1887 /*
1888 * Potential ABBA deadlock, work around it by ordering lock
1889 * grabbing by pipe info address. Otherwise two different processes
1890 * could deadlock (one doing tee from A -> B, the other from B -> A).
1891 */
1892 pipe_double_lock(ipipe, opipe);
1893
1894 do {
1895 if (!opipe->readers) {
1896 send_sig(SIGPIPE, current, 0);
1897 if (!ret)
1898 ret = -EPIPE;
1899 break;
1900 }
1901
1902 /*
1903 * If we have iterated all input buffers or ran out of
1904 * output room, break.
1905 */
1906 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1907 break;
1908
1909 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1910 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1911
1912 /*
1913 * Get a reference to this pipe buffer,
1914 * so we can copy the contents over.
1915 */
1916 ibuf->ops->get(ipipe, ibuf);
1917
1918 obuf = opipe->bufs + nbuf;
1919 *obuf = *ibuf;
1920
1921 /*
1922 * Don't inherit the gift flag, we need to
1923 * prevent multiple steals of this page.
1924 */
1925 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1926
1927 if (obuf->len > len)
1928 obuf->len = len;
1929
1930 opipe->nrbufs++;
1931 ret += obuf->len;
1932 len -= obuf->len;
1933 i++;
1934 } while (len);
1935
1936 /*
1937 * return EAGAIN if we have the potential of some data in the
1938 * future, otherwise just return 0
1939 */
1940 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1941 ret = -EAGAIN;
1942
1943 pipe_unlock(ipipe);
1944 pipe_unlock(opipe);
1945
1946 /*
1947 * If we put data in the output pipe, wakeup any potential readers.
1948 */
1949 if (ret > 0) {
1950 smp_mb();
1951 if (waitqueue_active(&opipe->wait))
1952 wake_up_interruptible(&opipe->wait);
1953 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1954 }
1955
1956 return ret;
1957 }
1958
1959 /*
1960 * This is a tee(1) implementation that works on pipes. It doesn't copy
1961 * any data, it simply references the 'in' pages on the 'out' pipe.
1962 * The 'flags' used are the SPLICE_F_* variants, currently the only
1963 * applicable one is SPLICE_F_NONBLOCK.
1964 */
1965 static long do_tee(struct file *in, struct file *out, size_t len,
1966 unsigned int flags)
1967 {
1968 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1969 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1970 int ret = -EINVAL;
1971
1972 /*
1973 * Duplicate the contents of ipipe to opipe without actually
1974 * copying the data.
1975 */
1976 if (ipipe && opipe && ipipe != opipe) {
1977 /*
1978 * Keep going, unless we encounter an error. The ipipe/opipe
1979 * ordering doesn't really matter.
1980 */
1981 ret = ipipe_prep(ipipe, flags);
1982 if (!ret) {
1983 ret = opipe_prep(opipe, flags);
1984 if (!ret)
1985 ret = link_pipe(ipipe, opipe, len, flags);
1986 }
1987 }
1988
1989 return ret;
1990 }
1991
1992 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1993 {
1994 struct file *in;
1995 int error, fput_in;
1996
1997 if (unlikely(!len))
1998 return 0;
1999
2000 error = -EBADF;
2001 in = fget_light(fdin, &fput_in);
2002 if (in) {
2003 if (in->f_mode & FMODE_READ) {
2004 int fput_out;
2005 struct file *out = fget_light(fdout, &fput_out);
2006
2007 if (out) {
2008 if (out->f_mode & FMODE_WRITE)
2009 error = do_tee(in, out, len, flags);
2010 fput_light(out, fput_out);
2011 }
2012 }
2013 fput_light(in, fput_in);
2014 }
2015
2016 return error;
2017 }
This page took 0.072776 seconds and 6 git commands to generate.