Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34
35 /*
36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
37 * a vm helper function, it's already simplified quite a bit by the
38 * addition of remove_mapping(). If success is returned, the caller may
39 * attempt to reuse this page for another destination.
40 */
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 struct pipe_buffer *buf)
43 {
44 struct page *page = buf->page;
45 struct address_space *mapping;
46
47 lock_page(page);
48
49 mapping = page_mapping(page);
50 if (mapping) {
51 WARN_ON(!PageUptodate(page));
52
53 /*
54 * At least for ext2 with nobh option, we need to wait on
55 * writeback completing on this page, since we'll remove it
56 * from the pagecache. Otherwise truncate wont wait on the
57 * page, allowing the disk blocks to be reused by someone else
58 * before we actually wrote our data to them. fs corruption
59 * ensues.
60 */
61 wait_on_page_writeback(page);
62
63 if (page_has_private(page) &&
64 !try_to_release_page(page, GFP_KERNEL))
65 goto out_unlock;
66
67 /*
68 * If we succeeded in removing the mapping, set LRU flag
69 * and return good.
70 */
71 if (remove_mapping(mapping, page)) {
72 buf->flags |= PIPE_BUF_FLAG_LRU;
73 return 0;
74 }
75 }
76
77 /*
78 * Raced with truncate or failed to remove page from current
79 * address space, unlock and return failure.
80 */
81 out_unlock:
82 unlock_page(page);
83 return 1;
84 }
85
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 struct pipe_buffer *buf)
88 {
89 page_cache_release(buf->page);
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 }
92
93 /*
94 * Check whether the contents of buf is OK to access. Since the content
95 * is a page cache page, IO may be in flight.
96 */
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
99 {
100 struct page *page = buf->page;
101 int err;
102
103 if (!PageUptodate(page)) {
104 lock_page(page);
105
106 /*
107 * Page got truncated/unhashed. This will cause a 0-byte
108 * splice, if this is the first page.
109 */
110 if (!page->mapping) {
111 err = -ENODATA;
112 goto error;
113 }
114
115 /*
116 * Uh oh, read-error from disk.
117 */
118 if (!PageUptodate(page)) {
119 err = -EIO;
120 goto error;
121 }
122
123 /*
124 * Page is ok afterall, we are done.
125 */
126 unlock_page(page);
127 }
128
129 return 0;
130 error:
131 unlock_page(page);
132 return err;
133 }
134
135 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 .can_merge = 0,
137 .map = generic_pipe_buf_map,
138 .unmap = generic_pipe_buf_unmap,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143 };
144
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147 {
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153 }
154
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .map = generic_pipe_buf_map,
158 .unmap = generic_pipe_buf_unmap,
159 .confirm = generic_pipe_buf_confirm,
160 .release = page_cache_pipe_buf_release,
161 .steal = user_page_pipe_buf_steal,
162 .get = generic_pipe_buf_get,
163 };
164
165 /**
166 * splice_to_pipe - fill passed data into a pipe
167 * @pipe: pipe to fill
168 * @spd: data to fill
169 *
170 * Description:
171 * @spd contains a map of pages and len/offset tuples, along with
172 * the struct pipe_buf_operations associated with these pages. This
173 * function will link that data to the pipe.
174 *
175 */
176 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 struct splice_pipe_desc *spd)
178 {
179 unsigned int spd_pages = spd->nr_pages;
180 int ret, do_wakeup, page_nr;
181
182 ret = 0;
183 do_wakeup = 0;
184 page_nr = 0;
185
186 pipe_lock(pipe);
187
188 for (;;) {
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
191 if (!ret)
192 ret = -EPIPE;
193 break;
194 }
195
196 if (pipe->nrbufs < pipe->buffers) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
199
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->private = spd->partial[page_nr].private;
204 buf->ops = spd->ops;
205 if (spd->flags & SPLICE_F_GIFT)
206 buf->flags |= PIPE_BUF_FLAG_GIFT;
207
208 pipe->nrbufs++;
209 page_nr++;
210 ret += buf->len;
211
212 if (pipe->inode)
213 do_wakeup = 1;
214
215 if (!--spd->nr_pages)
216 break;
217 if (pipe->nrbufs < pipe->buffers)
218 continue;
219
220 break;
221 }
222
223 if (spd->flags & SPLICE_F_NONBLOCK) {
224 if (!ret)
225 ret = -EAGAIN;
226 break;
227 }
228
229 if (signal_pending(current)) {
230 if (!ret)
231 ret = -ERESTARTSYS;
232 break;
233 }
234
235 if (do_wakeup) {
236 smp_mb();
237 if (waitqueue_active(&pipe->wait))
238 wake_up_interruptible_sync(&pipe->wait);
239 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240 do_wakeup = 0;
241 }
242
243 pipe->waiting_writers++;
244 pipe_wait(pipe);
245 pipe->waiting_writers--;
246 }
247
248 pipe_unlock(pipe);
249
250 if (do_wakeup) {
251 smp_mb();
252 if (waitqueue_active(&pipe->wait))
253 wake_up_interruptible(&pipe->wait);
254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
255 }
256
257 while (page_nr < spd_pages)
258 spd->spd_release(spd, page_nr++);
259
260 return ret;
261 }
262
263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
264 {
265 page_cache_release(spd->pages[i]);
266 }
267
268 /*
269 * Check if we need to grow the arrays holding pages and partial page
270 * descriptions.
271 */
272 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
273 {
274 if (pipe->buffers <= PIPE_DEF_BUFFERS)
275 return 0;
276
277 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
278 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
279
280 if (spd->pages && spd->partial)
281 return 0;
282
283 kfree(spd->pages);
284 kfree(spd->partial);
285 return -ENOMEM;
286 }
287
288 void splice_shrink_spd(struct pipe_inode_info *pipe,
289 struct splice_pipe_desc *spd)
290 {
291 if (pipe->buffers <= PIPE_DEF_BUFFERS)
292 return;
293
294 kfree(spd->pages);
295 kfree(spd->partial);
296 }
297
298 static int
299 __generic_file_splice_read(struct file *in, loff_t *ppos,
300 struct pipe_inode_info *pipe, size_t len,
301 unsigned int flags)
302 {
303 struct address_space *mapping = in->f_mapping;
304 unsigned int loff, nr_pages, req_pages;
305 struct page *pages[PIPE_DEF_BUFFERS];
306 struct partial_page partial[PIPE_DEF_BUFFERS];
307 struct page *page;
308 pgoff_t index, end_index;
309 loff_t isize;
310 int error, page_nr;
311 struct splice_pipe_desc spd = {
312 .pages = pages,
313 .partial = partial,
314 .flags = flags,
315 .ops = &page_cache_pipe_buf_ops,
316 .spd_release = spd_release_page,
317 };
318
319 if (splice_grow_spd(pipe, &spd))
320 return -ENOMEM;
321
322 index = *ppos >> PAGE_CACHE_SHIFT;
323 loff = *ppos & ~PAGE_CACHE_MASK;
324 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
325 nr_pages = min(req_pages, pipe->buffers);
326
327 /*
328 * Lookup the (hopefully) full range of pages we need.
329 */
330 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
331 index += spd.nr_pages;
332
333 /*
334 * If find_get_pages_contig() returned fewer pages than we needed,
335 * readahead/allocate the rest and fill in the holes.
336 */
337 if (spd.nr_pages < nr_pages)
338 page_cache_sync_readahead(mapping, &in->f_ra, in,
339 index, req_pages - spd.nr_pages);
340
341 error = 0;
342 while (spd.nr_pages < nr_pages) {
343 /*
344 * Page could be there, find_get_pages_contig() breaks on
345 * the first hole.
346 */
347 page = find_get_page(mapping, index);
348 if (!page) {
349 /*
350 * page didn't exist, allocate one.
351 */
352 page = page_cache_alloc_cold(mapping);
353 if (!page)
354 break;
355
356 error = add_to_page_cache_lru(page, mapping, index,
357 GFP_KERNEL);
358 if (unlikely(error)) {
359 page_cache_release(page);
360 if (error == -EEXIST)
361 continue;
362 break;
363 }
364 /*
365 * add_to_page_cache() locks the page, unlock it
366 * to avoid convoluting the logic below even more.
367 */
368 unlock_page(page);
369 }
370
371 spd.pages[spd.nr_pages++] = page;
372 index++;
373 }
374
375 /*
376 * Now loop over the map and see if we need to start IO on any
377 * pages, fill in the partial map, etc.
378 */
379 index = *ppos >> PAGE_CACHE_SHIFT;
380 nr_pages = spd.nr_pages;
381 spd.nr_pages = 0;
382 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
383 unsigned int this_len;
384
385 if (!len)
386 break;
387
388 /*
389 * this_len is the max we'll use from this page
390 */
391 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
392 page = spd.pages[page_nr];
393
394 if (PageReadahead(page))
395 page_cache_async_readahead(mapping, &in->f_ra, in,
396 page, index, req_pages - page_nr);
397
398 /*
399 * If the page isn't uptodate, we may need to start io on it
400 */
401 if (!PageUptodate(page)) {
402 lock_page(page);
403
404 /*
405 * Page was truncated, or invalidated by the
406 * filesystem. Redo the find/create, but this time the
407 * page is kept locked, so there's no chance of another
408 * race with truncate/invalidate.
409 */
410 if (!page->mapping) {
411 unlock_page(page);
412 page = find_or_create_page(mapping, index,
413 mapping_gfp_mask(mapping));
414
415 if (!page) {
416 error = -ENOMEM;
417 break;
418 }
419 page_cache_release(spd.pages[page_nr]);
420 spd.pages[page_nr] = page;
421 }
422 /*
423 * page was already under io and is now done, great
424 */
425 if (PageUptodate(page)) {
426 unlock_page(page);
427 goto fill_it;
428 }
429
430 /*
431 * need to read in the page
432 */
433 error = mapping->a_ops->readpage(in, page);
434 if (unlikely(error)) {
435 /*
436 * We really should re-lookup the page here,
437 * but it complicates things a lot. Instead
438 * lets just do what we already stored, and
439 * we'll get it the next time we are called.
440 */
441 if (error == AOP_TRUNCATED_PAGE)
442 error = 0;
443
444 break;
445 }
446 }
447 fill_it:
448 /*
449 * i_size must be checked after PageUptodate.
450 */
451 isize = i_size_read(mapping->host);
452 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
453 if (unlikely(!isize || index > end_index))
454 break;
455
456 /*
457 * if this is the last page, see if we need to shrink
458 * the length and stop
459 */
460 if (end_index == index) {
461 unsigned int plen;
462
463 /*
464 * max good bytes in this page
465 */
466 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
467 if (plen <= loff)
468 break;
469
470 /*
471 * force quit after adding this page
472 */
473 this_len = min(this_len, plen - loff);
474 len = this_len;
475 }
476
477 spd.partial[page_nr].offset = loff;
478 spd.partial[page_nr].len = this_len;
479 len -= this_len;
480 loff = 0;
481 spd.nr_pages++;
482 index++;
483 }
484
485 /*
486 * Release any pages at the end, if we quit early. 'page_nr' is how far
487 * we got, 'nr_pages' is how many pages are in the map.
488 */
489 while (page_nr < nr_pages)
490 page_cache_release(spd.pages[page_nr++]);
491 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
492
493 if (spd.nr_pages)
494 error = splice_to_pipe(pipe, &spd);
495
496 splice_shrink_spd(pipe, &spd);
497 return error;
498 }
499
500 /**
501 * generic_file_splice_read - splice data from file to a pipe
502 * @in: file to splice from
503 * @ppos: position in @in
504 * @pipe: pipe to splice to
505 * @len: number of bytes to splice
506 * @flags: splice modifier flags
507 *
508 * Description:
509 * Will read pages from given file and fill them into a pipe. Can be
510 * used as long as the address_space operations for the source implements
511 * a readpage() hook.
512 *
513 */
514 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
515 struct pipe_inode_info *pipe, size_t len,
516 unsigned int flags)
517 {
518 loff_t isize, left;
519 int ret;
520
521 isize = i_size_read(in->f_mapping->host);
522 if (unlikely(*ppos >= isize))
523 return 0;
524
525 left = isize - *ppos;
526 if (unlikely(left < len))
527 len = left;
528
529 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
530 if (ret > 0) {
531 *ppos += ret;
532 file_accessed(in);
533 }
534
535 return ret;
536 }
537 EXPORT_SYMBOL(generic_file_splice_read);
538
539 static const struct pipe_buf_operations default_pipe_buf_ops = {
540 .can_merge = 0,
541 .map = generic_pipe_buf_map,
542 .unmap = generic_pipe_buf_unmap,
543 .confirm = generic_pipe_buf_confirm,
544 .release = generic_pipe_buf_release,
545 .steal = generic_pipe_buf_steal,
546 .get = generic_pipe_buf_get,
547 };
548
549 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
550 unsigned long vlen, loff_t offset)
551 {
552 mm_segment_t old_fs;
553 loff_t pos = offset;
554 ssize_t res;
555
556 old_fs = get_fs();
557 set_fs(get_ds());
558 /* The cast to a user pointer is valid due to the set_fs() */
559 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
560 set_fs(old_fs);
561
562 return res;
563 }
564
565 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
566 loff_t pos)
567 {
568 mm_segment_t old_fs;
569 ssize_t res;
570
571 old_fs = get_fs();
572 set_fs(get_ds());
573 /* The cast to a user pointer is valid due to the set_fs() */
574 res = vfs_write(file, (const char __user *)buf, count, &pos);
575 set_fs(old_fs);
576
577 return res;
578 }
579
580 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
581 struct pipe_inode_info *pipe, size_t len,
582 unsigned int flags)
583 {
584 unsigned int nr_pages;
585 unsigned int nr_freed;
586 size_t offset;
587 struct page *pages[PIPE_DEF_BUFFERS];
588 struct partial_page partial[PIPE_DEF_BUFFERS];
589 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
590 ssize_t res;
591 size_t this_len;
592 int error;
593 int i;
594 struct splice_pipe_desc spd = {
595 .pages = pages,
596 .partial = partial,
597 .flags = flags,
598 .ops = &default_pipe_buf_ops,
599 .spd_release = spd_release_page,
600 };
601
602 if (splice_grow_spd(pipe, &spd))
603 return -ENOMEM;
604
605 res = -ENOMEM;
606 vec = __vec;
607 if (pipe->buffers > PIPE_DEF_BUFFERS) {
608 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
609 if (!vec)
610 goto shrink_ret;
611 }
612
613 offset = *ppos & ~PAGE_CACHE_MASK;
614 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
615
616 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
617 struct page *page;
618
619 page = alloc_page(GFP_USER);
620 error = -ENOMEM;
621 if (!page)
622 goto err;
623
624 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
625 vec[i].iov_base = (void __user *) page_address(page);
626 vec[i].iov_len = this_len;
627 spd.pages[i] = page;
628 spd.nr_pages++;
629 len -= this_len;
630 offset = 0;
631 }
632
633 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
634 if (res < 0) {
635 error = res;
636 goto err;
637 }
638
639 error = 0;
640 if (!res)
641 goto err;
642
643 nr_freed = 0;
644 for (i = 0; i < spd.nr_pages; i++) {
645 this_len = min_t(size_t, vec[i].iov_len, res);
646 spd.partial[i].offset = 0;
647 spd.partial[i].len = this_len;
648 if (!this_len) {
649 __free_page(spd.pages[i]);
650 spd.pages[i] = NULL;
651 nr_freed++;
652 }
653 res -= this_len;
654 }
655 spd.nr_pages -= nr_freed;
656
657 res = splice_to_pipe(pipe, &spd);
658 if (res > 0)
659 *ppos += res;
660
661 shrink_ret:
662 if (vec != __vec)
663 kfree(vec);
664 splice_shrink_spd(pipe, &spd);
665 return res;
666
667 err:
668 for (i = 0; i < spd.nr_pages; i++)
669 __free_page(spd.pages[i]);
670
671 res = error;
672 goto shrink_ret;
673 }
674 EXPORT_SYMBOL(default_file_splice_read);
675
676 /*
677 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
678 * using sendpage(). Return the number of bytes sent.
679 */
680 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
681 struct pipe_buffer *buf, struct splice_desc *sd)
682 {
683 struct file *file = sd->u.file;
684 loff_t pos = sd->pos;
685 int more;
686
687 if (!likely(file->f_op && file->f_op->sendpage))
688 return -EINVAL;
689
690 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
691 return file->f_op->sendpage(file, buf->page, buf->offset,
692 sd->len, &pos, more);
693 }
694
695 /*
696 * This is a little more tricky than the file -> pipe splicing. There are
697 * basically three cases:
698 *
699 * - Destination page already exists in the address space and there
700 * are users of it. For that case we have no other option that
701 * copying the data. Tough luck.
702 * - Destination page already exists in the address space, but there
703 * are no users of it. Make sure it's uptodate, then drop it. Fall
704 * through to last case.
705 * - Destination page does not exist, we can add the pipe page to
706 * the page cache and avoid the copy.
707 *
708 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
709 * sd->flags), we attempt to migrate pages from the pipe to the output
710 * file address space page cache. This is possible if no one else has
711 * the pipe page referenced outside of the pipe and page cache. If
712 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
713 * a new page in the output file page cache and fill/dirty that.
714 */
715 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
716 struct splice_desc *sd)
717 {
718 struct file *file = sd->u.file;
719 struct address_space *mapping = file->f_mapping;
720 unsigned int offset, this_len;
721 struct page *page;
722 void *fsdata;
723 int ret;
724
725 offset = sd->pos & ~PAGE_CACHE_MASK;
726
727 this_len = sd->len;
728 if (this_len + offset > PAGE_CACHE_SIZE)
729 this_len = PAGE_CACHE_SIZE - offset;
730
731 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
732 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
733 if (unlikely(ret))
734 goto out;
735
736 if (buf->page != page) {
737 /*
738 * Careful, ->map() uses KM_USER0!
739 */
740 char *src = buf->ops->map(pipe, buf, 1);
741 char *dst = kmap_atomic(page, KM_USER1);
742
743 memcpy(dst + offset, src + buf->offset, this_len);
744 flush_dcache_page(page);
745 kunmap_atomic(dst, KM_USER1);
746 buf->ops->unmap(pipe, buf, src);
747 }
748 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
749 page, fsdata);
750 out:
751 return ret;
752 }
753 EXPORT_SYMBOL(pipe_to_file);
754
755 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
756 {
757 smp_mb();
758 if (waitqueue_active(&pipe->wait))
759 wake_up_interruptible(&pipe->wait);
760 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
761 }
762
763 /**
764 * splice_from_pipe_feed - feed available data from a pipe to a file
765 * @pipe: pipe to splice from
766 * @sd: information to @actor
767 * @actor: handler that splices the data
768 *
769 * Description:
770 * This function loops over the pipe and calls @actor to do the
771 * actual moving of a single struct pipe_buffer to the desired
772 * destination. It returns when there's no more buffers left in
773 * the pipe or if the requested number of bytes (@sd->total_len)
774 * have been copied. It returns a positive number (one) if the
775 * pipe needs to be filled with more data, zero if the required
776 * number of bytes have been copied and -errno on error.
777 *
778 * This, together with splice_from_pipe_{begin,end,next}, may be
779 * used to implement the functionality of __splice_from_pipe() when
780 * locking is required around copying the pipe buffers to the
781 * destination.
782 */
783 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
784 splice_actor *actor)
785 {
786 int ret;
787
788 while (pipe->nrbufs) {
789 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
790 const struct pipe_buf_operations *ops = buf->ops;
791
792 sd->len = buf->len;
793 if (sd->len > sd->total_len)
794 sd->len = sd->total_len;
795
796 ret = buf->ops->confirm(pipe, buf);
797 if (unlikely(ret)) {
798 if (ret == -ENODATA)
799 ret = 0;
800 return ret;
801 }
802
803 ret = actor(pipe, buf, sd);
804 if (ret <= 0)
805 return ret;
806
807 buf->offset += ret;
808 buf->len -= ret;
809
810 sd->num_spliced += ret;
811 sd->len -= ret;
812 sd->pos += ret;
813 sd->total_len -= ret;
814
815 if (!buf->len) {
816 buf->ops = NULL;
817 ops->release(pipe, buf);
818 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
819 pipe->nrbufs--;
820 if (pipe->inode)
821 sd->need_wakeup = true;
822 }
823
824 if (!sd->total_len)
825 return 0;
826 }
827
828 return 1;
829 }
830 EXPORT_SYMBOL(splice_from_pipe_feed);
831
832 /**
833 * splice_from_pipe_next - wait for some data to splice from
834 * @pipe: pipe to splice from
835 * @sd: information about the splice operation
836 *
837 * Description:
838 * This function will wait for some data and return a positive
839 * value (one) if pipe buffers are available. It will return zero
840 * or -errno if no more data needs to be spliced.
841 */
842 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
843 {
844 while (!pipe->nrbufs) {
845 if (!pipe->writers)
846 return 0;
847
848 if (!pipe->waiting_writers && sd->num_spliced)
849 return 0;
850
851 if (sd->flags & SPLICE_F_NONBLOCK)
852 return -EAGAIN;
853
854 if (signal_pending(current))
855 return -ERESTARTSYS;
856
857 if (sd->need_wakeup) {
858 wakeup_pipe_writers(pipe);
859 sd->need_wakeup = false;
860 }
861
862 pipe_wait(pipe);
863 }
864
865 return 1;
866 }
867 EXPORT_SYMBOL(splice_from_pipe_next);
868
869 /**
870 * splice_from_pipe_begin - start splicing from pipe
871 * @sd: information about the splice operation
872 *
873 * Description:
874 * This function should be called before a loop containing
875 * splice_from_pipe_next() and splice_from_pipe_feed() to
876 * initialize the necessary fields of @sd.
877 */
878 void splice_from_pipe_begin(struct splice_desc *sd)
879 {
880 sd->num_spliced = 0;
881 sd->need_wakeup = false;
882 }
883 EXPORT_SYMBOL(splice_from_pipe_begin);
884
885 /**
886 * splice_from_pipe_end - finish splicing from pipe
887 * @pipe: pipe to splice from
888 * @sd: information about the splice operation
889 *
890 * Description:
891 * This function will wake up pipe writers if necessary. It should
892 * be called after a loop containing splice_from_pipe_next() and
893 * splice_from_pipe_feed().
894 */
895 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
896 {
897 if (sd->need_wakeup)
898 wakeup_pipe_writers(pipe);
899 }
900 EXPORT_SYMBOL(splice_from_pipe_end);
901
902 /**
903 * __splice_from_pipe - splice data from a pipe to given actor
904 * @pipe: pipe to splice from
905 * @sd: information to @actor
906 * @actor: handler that splices the data
907 *
908 * Description:
909 * This function does little more than loop over the pipe and call
910 * @actor to do the actual moving of a single struct pipe_buffer to
911 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
912 * pipe_to_user.
913 *
914 */
915 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
916 splice_actor *actor)
917 {
918 int ret;
919
920 splice_from_pipe_begin(sd);
921 do {
922 ret = splice_from_pipe_next(pipe, sd);
923 if (ret > 0)
924 ret = splice_from_pipe_feed(pipe, sd, actor);
925 } while (ret > 0);
926 splice_from_pipe_end(pipe, sd);
927
928 return sd->num_spliced ? sd->num_spliced : ret;
929 }
930 EXPORT_SYMBOL(__splice_from_pipe);
931
932 /**
933 * splice_from_pipe - splice data from a pipe to a file
934 * @pipe: pipe to splice from
935 * @out: file to splice to
936 * @ppos: position in @out
937 * @len: how many bytes to splice
938 * @flags: splice modifier flags
939 * @actor: handler that splices the data
940 *
941 * Description:
942 * See __splice_from_pipe. This function locks the pipe inode,
943 * otherwise it's identical to __splice_from_pipe().
944 *
945 */
946 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
947 loff_t *ppos, size_t len, unsigned int flags,
948 splice_actor *actor)
949 {
950 ssize_t ret;
951 struct splice_desc sd = {
952 .total_len = len,
953 .flags = flags,
954 .pos = *ppos,
955 .u.file = out,
956 };
957
958 pipe_lock(pipe);
959 ret = __splice_from_pipe(pipe, &sd, actor);
960 pipe_unlock(pipe);
961
962 return ret;
963 }
964
965 /**
966 * generic_file_splice_write - splice data from a pipe to a file
967 * @pipe: pipe info
968 * @out: file to write to
969 * @ppos: position in @out
970 * @len: number of bytes to splice
971 * @flags: splice modifier flags
972 *
973 * Description:
974 * Will either move or copy pages (determined by @flags options) from
975 * the given pipe inode to the given file.
976 *
977 */
978 ssize_t
979 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
980 loff_t *ppos, size_t len, unsigned int flags)
981 {
982 struct address_space *mapping = out->f_mapping;
983 struct inode *inode = mapping->host;
984 struct splice_desc sd = {
985 .total_len = len,
986 .flags = flags,
987 .pos = *ppos,
988 .u.file = out,
989 };
990 ssize_t ret;
991
992 pipe_lock(pipe);
993
994 splice_from_pipe_begin(&sd);
995 do {
996 ret = splice_from_pipe_next(pipe, &sd);
997 if (ret <= 0)
998 break;
999
1000 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1001 ret = file_remove_suid(out);
1002 if (!ret) {
1003 file_update_time(out);
1004 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1005 }
1006 mutex_unlock(&inode->i_mutex);
1007 } while (ret > 0);
1008 splice_from_pipe_end(pipe, &sd);
1009
1010 pipe_unlock(pipe);
1011
1012 if (sd.num_spliced)
1013 ret = sd.num_spliced;
1014
1015 if (ret > 0) {
1016 unsigned long nr_pages;
1017 int err;
1018
1019 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1020
1021 err = generic_write_sync(out, *ppos, ret);
1022 if (err)
1023 ret = err;
1024 else
1025 *ppos += ret;
1026 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1027 }
1028
1029 return ret;
1030 }
1031
1032 EXPORT_SYMBOL(generic_file_splice_write);
1033
1034 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1035 struct splice_desc *sd)
1036 {
1037 int ret;
1038 void *data;
1039
1040 data = buf->ops->map(pipe, buf, 0);
1041 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1042 buf->ops->unmap(pipe, buf, data);
1043
1044 return ret;
1045 }
1046
1047 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1048 struct file *out, loff_t *ppos,
1049 size_t len, unsigned int flags)
1050 {
1051 ssize_t ret;
1052
1053 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1054 if (ret > 0)
1055 *ppos += ret;
1056
1057 return ret;
1058 }
1059
1060 /**
1061 * generic_splice_sendpage - splice data from a pipe to a socket
1062 * @pipe: pipe to splice from
1063 * @out: socket to write to
1064 * @ppos: position in @out
1065 * @len: number of bytes to splice
1066 * @flags: splice modifier flags
1067 *
1068 * Description:
1069 * Will send @len bytes from the pipe to a network socket. No data copying
1070 * is involved.
1071 *
1072 */
1073 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1074 loff_t *ppos, size_t len, unsigned int flags)
1075 {
1076 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1077 }
1078
1079 EXPORT_SYMBOL(generic_splice_sendpage);
1080
1081 /*
1082 * Attempt to initiate a splice from pipe to file.
1083 */
1084 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1085 loff_t *ppos, size_t len, unsigned int flags)
1086 {
1087 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1088 loff_t *, size_t, unsigned int);
1089 int ret;
1090
1091 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1092 return -EBADF;
1093
1094 if (unlikely(out->f_flags & O_APPEND))
1095 return -EINVAL;
1096
1097 ret = rw_verify_area(WRITE, out, ppos, len);
1098 if (unlikely(ret < 0))
1099 return ret;
1100
1101 if (out->f_op && out->f_op->splice_write)
1102 splice_write = out->f_op->splice_write;
1103 else
1104 splice_write = default_file_splice_write;
1105
1106 return splice_write(pipe, out, ppos, len, flags);
1107 }
1108
1109 /*
1110 * Attempt to initiate a splice from a file to a pipe.
1111 */
1112 static long do_splice_to(struct file *in, loff_t *ppos,
1113 struct pipe_inode_info *pipe, size_t len,
1114 unsigned int flags)
1115 {
1116 ssize_t (*splice_read)(struct file *, loff_t *,
1117 struct pipe_inode_info *, size_t, unsigned int);
1118 int ret;
1119
1120 if (unlikely(!(in->f_mode & FMODE_READ)))
1121 return -EBADF;
1122
1123 ret = rw_verify_area(READ, in, ppos, len);
1124 if (unlikely(ret < 0))
1125 return ret;
1126
1127 if (in->f_op && in->f_op->splice_read)
1128 splice_read = in->f_op->splice_read;
1129 else
1130 splice_read = default_file_splice_read;
1131
1132 return splice_read(in, ppos, pipe, len, flags);
1133 }
1134
1135 /**
1136 * splice_direct_to_actor - splices data directly between two non-pipes
1137 * @in: file to splice from
1138 * @sd: actor information on where to splice to
1139 * @actor: handles the data splicing
1140 *
1141 * Description:
1142 * This is a special case helper to splice directly between two
1143 * points, without requiring an explicit pipe. Internally an allocated
1144 * pipe is cached in the process, and reused during the lifetime of
1145 * that process.
1146 *
1147 */
1148 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1149 splice_direct_actor *actor)
1150 {
1151 struct pipe_inode_info *pipe;
1152 long ret, bytes;
1153 umode_t i_mode;
1154 size_t len;
1155 int i, flags;
1156
1157 /*
1158 * We require the input being a regular file, as we don't want to
1159 * randomly drop data for eg socket -> socket splicing. Use the
1160 * piped splicing for that!
1161 */
1162 i_mode = in->f_path.dentry->d_inode->i_mode;
1163 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1164 return -EINVAL;
1165
1166 /*
1167 * neither in nor out is a pipe, setup an internal pipe attached to
1168 * 'out' and transfer the wanted data from 'in' to 'out' through that
1169 */
1170 pipe = current->splice_pipe;
1171 if (unlikely(!pipe)) {
1172 pipe = alloc_pipe_info(NULL);
1173 if (!pipe)
1174 return -ENOMEM;
1175
1176 /*
1177 * We don't have an immediate reader, but we'll read the stuff
1178 * out of the pipe right after the splice_to_pipe(). So set
1179 * PIPE_READERS appropriately.
1180 */
1181 pipe->readers = 1;
1182
1183 current->splice_pipe = pipe;
1184 }
1185
1186 /*
1187 * Do the splice.
1188 */
1189 ret = 0;
1190 bytes = 0;
1191 len = sd->total_len;
1192 flags = sd->flags;
1193
1194 /*
1195 * Don't block on output, we have to drain the direct pipe.
1196 */
1197 sd->flags &= ~SPLICE_F_NONBLOCK;
1198
1199 while (len) {
1200 size_t read_len;
1201 loff_t pos = sd->pos, prev_pos = pos;
1202
1203 ret = do_splice_to(in, &pos, pipe, len, flags);
1204 if (unlikely(ret <= 0))
1205 goto out_release;
1206
1207 read_len = ret;
1208 sd->total_len = read_len;
1209
1210 /*
1211 * NOTE: nonblocking mode only applies to the input. We
1212 * must not do the output in nonblocking mode as then we
1213 * could get stuck data in the internal pipe:
1214 */
1215 ret = actor(pipe, sd);
1216 if (unlikely(ret <= 0)) {
1217 sd->pos = prev_pos;
1218 goto out_release;
1219 }
1220
1221 bytes += ret;
1222 len -= ret;
1223 sd->pos = pos;
1224
1225 if (ret < read_len) {
1226 sd->pos = prev_pos + ret;
1227 goto out_release;
1228 }
1229 }
1230
1231 done:
1232 pipe->nrbufs = pipe->curbuf = 0;
1233 file_accessed(in);
1234 return bytes;
1235
1236 out_release:
1237 /*
1238 * If we did an incomplete transfer we must release
1239 * the pipe buffers in question:
1240 */
1241 for (i = 0; i < pipe->buffers; i++) {
1242 struct pipe_buffer *buf = pipe->bufs + i;
1243
1244 if (buf->ops) {
1245 buf->ops->release(pipe, buf);
1246 buf->ops = NULL;
1247 }
1248 }
1249
1250 if (!bytes)
1251 bytes = ret;
1252
1253 goto done;
1254 }
1255 EXPORT_SYMBOL(splice_direct_to_actor);
1256
1257 static int direct_splice_actor(struct pipe_inode_info *pipe,
1258 struct splice_desc *sd)
1259 {
1260 struct file *file = sd->u.file;
1261
1262 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1263 sd->flags);
1264 }
1265
1266 /**
1267 * do_splice_direct - splices data directly between two files
1268 * @in: file to splice from
1269 * @ppos: input file offset
1270 * @out: file to splice to
1271 * @len: number of bytes to splice
1272 * @flags: splice modifier flags
1273 *
1274 * Description:
1275 * For use by do_sendfile(). splice can easily emulate sendfile, but
1276 * doing it in the application would incur an extra system call
1277 * (splice in + splice out, as compared to just sendfile()). So this helper
1278 * can splice directly through a process-private pipe.
1279 *
1280 */
1281 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1282 size_t len, unsigned int flags)
1283 {
1284 struct splice_desc sd = {
1285 .len = len,
1286 .total_len = len,
1287 .flags = flags,
1288 .pos = *ppos,
1289 .u.file = out,
1290 };
1291 long ret;
1292
1293 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1294 if (ret > 0)
1295 *ppos = sd.pos;
1296
1297 return ret;
1298 }
1299
1300 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1301 struct pipe_inode_info *opipe,
1302 size_t len, unsigned int flags);
1303
1304 /*
1305 * Determine where to splice to/from.
1306 */
1307 static long do_splice(struct file *in, loff_t __user *off_in,
1308 struct file *out, loff_t __user *off_out,
1309 size_t len, unsigned int flags)
1310 {
1311 struct pipe_inode_info *ipipe;
1312 struct pipe_inode_info *opipe;
1313 loff_t offset, *off;
1314 long ret;
1315
1316 ipipe = get_pipe_info(in);
1317 opipe = get_pipe_info(out);
1318
1319 if (ipipe && opipe) {
1320 if (off_in || off_out)
1321 return -ESPIPE;
1322
1323 if (!(in->f_mode & FMODE_READ))
1324 return -EBADF;
1325
1326 if (!(out->f_mode & FMODE_WRITE))
1327 return -EBADF;
1328
1329 /* Splicing to self would be fun, but... */
1330 if (ipipe == opipe)
1331 return -EINVAL;
1332
1333 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1334 }
1335
1336 if (ipipe) {
1337 if (off_in)
1338 return -ESPIPE;
1339 if (off_out) {
1340 if (!(out->f_mode & FMODE_PWRITE))
1341 return -EINVAL;
1342 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1343 return -EFAULT;
1344 off = &offset;
1345 } else
1346 off = &out->f_pos;
1347
1348 ret = do_splice_from(ipipe, out, off, len, flags);
1349
1350 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1351 ret = -EFAULT;
1352
1353 return ret;
1354 }
1355
1356 if (opipe) {
1357 if (off_out)
1358 return -ESPIPE;
1359 if (off_in) {
1360 if (!(in->f_mode & FMODE_PREAD))
1361 return -EINVAL;
1362 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1363 return -EFAULT;
1364 off = &offset;
1365 } else
1366 off = &in->f_pos;
1367
1368 ret = do_splice_to(in, off, opipe, len, flags);
1369
1370 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1371 ret = -EFAULT;
1372
1373 return ret;
1374 }
1375
1376 return -EINVAL;
1377 }
1378
1379 /*
1380 * Map an iov into an array of pages and offset/length tupples. With the
1381 * partial_page structure, we can map several non-contiguous ranges into
1382 * our ones pages[] map instead of splitting that operation into pieces.
1383 * Could easily be exported as a generic helper for other users, in which
1384 * case one would probably want to add a 'max_nr_pages' parameter as well.
1385 */
1386 static int get_iovec_page_array(const struct iovec __user *iov,
1387 unsigned int nr_vecs, struct page **pages,
1388 struct partial_page *partial, int aligned,
1389 unsigned int pipe_buffers)
1390 {
1391 int buffers = 0, error = 0;
1392
1393 while (nr_vecs) {
1394 unsigned long off, npages;
1395 struct iovec entry;
1396 void __user *base;
1397 size_t len;
1398 int i;
1399
1400 error = -EFAULT;
1401 if (copy_from_user(&entry, iov, sizeof(entry)))
1402 break;
1403
1404 base = entry.iov_base;
1405 len = entry.iov_len;
1406
1407 /*
1408 * Sanity check this iovec. 0 read succeeds.
1409 */
1410 error = 0;
1411 if (unlikely(!len))
1412 break;
1413 error = -EFAULT;
1414 if (!access_ok(VERIFY_READ, base, len))
1415 break;
1416
1417 /*
1418 * Get this base offset and number of pages, then map
1419 * in the user pages.
1420 */
1421 off = (unsigned long) base & ~PAGE_MASK;
1422
1423 /*
1424 * If asked for alignment, the offset must be zero and the
1425 * length a multiple of the PAGE_SIZE.
1426 */
1427 error = -EINVAL;
1428 if (aligned && (off || len & ~PAGE_MASK))
1429 break;
1430
1431 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1432 if (npages > pipe_buffers - buffers)
1433 npages = pipe_buffers - buffers;
1434
1435 error = get_user_pages_fast((unsigned long)base, npages,
1436 0, &pages[buffers]);
1437
1438 if (unlikely(error <= 0))
1439 break;
1440
1441 /*
1442 * Fill this contiguous range into the partial page map.
1443 */
1444 for (i = 0; i < error; i++) {
1445 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1446
1447 partial[buffers].offset = off;
1448 partial[buffers].len = plen;
1449
1450 off = 0;
1451 len -= plen;
1452 buffers++;
1453 }
1454
1455 /*
1456 * We didn't complete this iov, stop here since it probably
1457 * means we have to move some of this into a pipe to
1458 * be able to continue.
1459 */
1460 if (len)
1461 break;
1462
1463 /*
1464 * Don't continue if we mapped fewer pages than we asked for,
1465 * or if we mapped the max number of pages that we have
1466 * room for.
1467 */
1468 if (error < npages || buffers == pipe_buffers)
1469 break;
1470
1471 nr_vecs--;
1472 iov++;
1473 }
1474
1475 if (buffers)
1476 return buffers;
1477
1478 return error;
1479 }
1480
1481 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1482 struct splice_desc *sd)
1483 {
1484 char *src;
1485 int ret;
1486
1487 /*
1488 * See if we can use the atomic maps, by prefaulting in the
1489 * pages and doing an atomic copy
1490 */
1491 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1492 src = buf->ops->map(pipe, buf, 1);
1493 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1494 sd->len);
1495 buf->ops->unmap(pipe, buf, src);
1496 if (!ret) {
1497 ret = sd->len;
1498 goto out;
1499 }
1500 }
1501
1502 /*
1503 * No dice, use slow non-atomic map and copy
1504 */
1505 src = buf->ops->map(pipe, buf, 0);
1506
1507 ret = sd->len;
1508 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1509 ret = -EFAULT;
1510
1511 buf->ops->unmap(pipe, buf, src);
1512 out:
1513 if (ret > 0)
1514 sd->u.userptr += ret;
1515 return ret;
1516 }
1517
1518 /*
1519 * For lack of a better implementation, implement vmsplice() to userspace
1520 * as a simple copy of the pipes pages to the user iov.
1521 */
1522 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1523 unsigned long nr_segs, unsigned int flags)
1524 {
1525 struct pipe_inode_info *pipe;
1526 struct splice_desc sd;
1527 ssize_t size;
1528 int error;
1529 long ret;
1530
1531 pipe = get_pipe_info(file);
1532 if (!pipe)
1533 return -EBADF;
1534
1535 pipe_lock(pipe);
1536
1537 error = ret = 0;
1538 while (nr_segs) {
1539 void __user *base;
1540 size_t len;
1541
1542 /*
1543 * Get user address base and length for this iovec.
1544 */
1545 error = get_user(base, &iov->iov_base);
1546 if (unlikely(error))
1547 break;
1548 error = get_user(len, &iov->iov_len);
1549 if (unlikely(error))
1550 break;
1551
1552 /*
1553 * Sanity check this iovec. 0 read succeeds.
1554 */
1555 if (unlikely(!len))
1556 break;
1557 if (unlikely(!base)) {
1558 error = -EFAULT;
1559 break;
1560 }
1561
1562 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1563 error = -EFAULT;
1564 break;
1565 }
1566
1567 sd.len = 0;
1568 sd.total_len = len;
1569 sd.flags = flags;
1570 sd.u.userptr = base;
1571 sd.pos = 0;
1572
1573 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1574 if (size < 0) {
1575 if (!ret)
1576 ret = size;
1577
1578 break;
1579 }
1580
1581 ret += size;
1582
1583 if (size < len)
1584 break;
1585
1586 nr_segs--;
1587 iov++;
1588 }
1589
1590 pipe_unlock(pipe);
1591
1592 if (!ret)
1593 ret = error;
1594
1595 return ret;
1596 }
1597
1598 /*
1599 * vmsplice splices a user address range into a pipe. It can be thought of
1600 * as splice-from-memory, where the regular splice is splice-from-file (or
1601 * to file). In both cases the output is a pipe, naturally.
1602 */
1603 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1604 unsigned long nr_segs, unsigned int flags)
1605 {
1606 struct pipe_inode_info *pipe;
1607 struct page *pages[PIPE_DEF_BUFFERS];
1608 struct partial_page partial[PIPE_DEF_BUFFERS];
1609 struct splice_pipe_desc spd = {
1610 .pages = pages,
1611 .partial = partial,
1612 .flags = flags,
1613 .ops = &user_page_pipe_buf_ops,
1614 .spd_release = spd_release_page,
1615 };
1616 long ret;
1617
1618 pipe = get_pipe_info(file);
1619 if (!pipe)
1620 return -EBADF;
1621
1622 if (splice_grow_spd(pipe, &spd))
1623 return -ENOMEM;
1624
1625 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1626 spd.partial, flags & SPLICE_F_GIFT,
1627 pipe->buffers);
1628 if (spd.nr_pages <= 0)
1629 ret = spd.nr_pages;
1630 else
1631 ret = splice_to_pipe(pipe, &spd);
1632
1633 splice_shrink_spd(pipe, &spd);
1634 return ret;
1635 }
1636
1637 /*
1638 * Note that vmsplice only really supports true splicing _from_ user memory
1639 * to a pipe, not the other way around. Splicing from user memory is a simple
1640 * operation that can be supported without any funky alignment restrictions
1641 * or nasty vm tricks. We simply map in the user memory and fill them into
1642 * a pipe. The reverse isn't quite as easy, though. There are two possible
1643 * solutions for that:
1644 *
1645 * - memcpy() the data internally, at which point we might as well just
1646 * do a regular read() on the buffer anyway.
1647 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1648 * has restriction limitations on both ends of the pipe).
1649 *
1650 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1651 *
1652 */
1653 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1654 unsigned long, nr_segs, unsigned int, flags)
1655 {
1656 struct file *file;
1657 long error;
1658 int fput;
1659
1660 if (unlikely(nr_segs > UIO_MAXIOV))
1661 return -EINVAL;
1662 else if (unlikely(!nr_segs))
1663 return 0;
1664
1665 error = -EBADF;
1666 file = fget_light(fd, &fput);
1667 if (file) {
1668 if (file->f_mode & FMODE_WRITE)
1669 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1670 else if (file->f_mode & FMODE_READ)
1671 error = vmsplice_to_user(file, iov, nr_segs, flags);
1672
1673 fput_light(file, fput);
1674 }
1675
1676 return error;
1677 }
1678
1679 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1680 int, fd_out, loff_t __user *, off_out,
1681 size_t, len, unsigned int, flags)
1682 {
1683 long error;
1684 struct file *in, *out;
1685 int fput_in, fput_out;
1686
1687 if (unlikely(!len))
1688 return 0;
1689
1690 error = -EBADF;
1691 in = fget_light(fd_in, &fput_in);
1692 if (in) {
1693 if (in->f_mode & FMODE_READ) {
1694 out = fget_light(fd_out, &fput_out);
1695 if (out) {
1696 if (out->f_mode & FMODE_WRITE)
1697 error = do_splice(in, off_in,
1698 out, off_out,
1699 len, flags);
1700 fput_light(out, fput_out);
1701 }
1702 }
1703
1704 fput_light(in, fput_in);
1705 }
1706
1707 return error;
1708 }
1709
1710 /*
1711 * Make sure there's data to read. Wait for input if we can, otherwise
1712 * return an appropriate error.
1713 */
1714 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1715 {
1716 int ret;
1717
1718 /*
1719 * Check ->nrbufs without the inode lock first. This function
1720 * is speculative anyways, so missing one is ok.
1721 */
1722 if (pipe->nrbufs)
1723 return 0;
1724
1725 ret = 0;
1726 pipe_lock(pipe);
1727
1728 while (!pipe->nrbufs) {
1729 if (signal_pending(current)) {
1730 ret = -ERESTARTSYS;
1731 break;
1732 }
1733 if (!pipe->writers)
1734 break;
1735 if (!pipe->waiting_writers) {
1736 if (flags & SPLICE_F_NONBLOCK) {
1737 ret = -EAGAIN;
1738 break;
1739 }
1740 }
1741 pipe_wait(pipe);
1742 }
1743
1744 pipe_unlock(pipe);
1745 return ret;
1746 }
1747
1748 /*
1749 * Make sure there's writeable room. Wait for room if we can, otherwise
1750 * return an appropriate error.
1751 */
1752 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1753 {
1754 int ret;
1755
1756 /*
1757 * Check ->nrbufs without the inode lock first. This function
1758 * is speculative anyways, so missing one is ok.
1759 */
1760 if (pipe->nrbufs < pipe->buffers)
1761 return 0;
1762
1763 ret = 0;
1764 pipe_lock(pipe);
1765
1766 while (pipe->nrbufs >= pipe->buffers) {
1767 if (!pipe->readers) {
1768 send_sig(SIGPIPE, current, 0);
1769 ret = -EPIPE;
1770 break;
1771 }
1772 if (flags & SPLICE_F_NONBLOCK) {
1773 ret = -EAGAIN;
1774 break;
1775 }
1776 if (signal_pending(current)) {
1777 ret = -ERESTARTSYS;
1778 break;
1779 }
1780 pipe->waiting_writers++;
1781 pipe_wait(pipe);
1782 pipe->waiting_writers--;
1783 }
1784
1785 pipe_unlock(pipe);
1786 return ret;
1787 }
1788
1789 /*
1790 * Splice contents of ipipe to opipe.
1791 */
1792 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1793 struct pipe_inode_info *opipe,
1794 size_t len, unsigned int flags)
1795 {
1796 struct pipe_buffer *ibuf, *obuf;
1797 int ret = 0, nbuf;
1798 bool input_wakeup = false;
1799
1800
1801 retry:
1802 ret = ipipe_prep(ipipe, flags);
1803 if (ret)
1804 return ret;
1805
1806 ret = opipe_prep(opipe, flags);
1807 if (ret)
1808 return ret;
1809
1810 /*
1811 * Potential ABBA deadlock, work around it by ordering lock
1812 * grabbing by pipe info address. Otherwise two different processes
1813 * could deadlock (one doing tee from A -> B, the other from B -> A).
1814 */
1815 pipe_double_lock(ipipe, opipe);
1816
1817 do {
1818 if (!opipe->readers) {
1819 send_sig(SIGPIPE, current, 0);
1820 if (!ret)
1821 ret = -EPIPE;
1822 break;
1823 }
1824
1825 if (!ipipe->nrbufs && !ipipe->writers)
1826 break;
1827
1828 /*
1829 * Cannot make any progress, because either the input
1830 * pipe is empty or the output pipe is full.
1831 */
1832 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1833 /* Already processed some buffers, break */
1834 if (ret)
1835 break;
1836
1837 if (flags & SPLICE_F_NONBLOCK) {
1838 ret = -EAGAIN;
1839 break;
1840 }
1841
1842 /*
1843 * We raced with another reader/writer and haven't
1844 * managed to process any buffers. A zero return
1845 * value means EOF, so retry instead.
1846 */
1847 pipe_unlock(ipipe);
1848 pipe_unlock(opipe);
1849 goto retry;
1850 }
1851
1852 ibuf = ipipe->bufs + ipipe->curbuf;
1853 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1854 obuf = opipe->bufs + nbuf;
1855
1856 if (len >= ibuf->len) {
1857 /*
1858 * Simply move the whole buffer from ipipe to opipe
1859 */
1860 *obuf = *ibuf;
1861 ibuf->ops = NULL;
1862 opipe->nrbufs++;
1863 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1864 ipipe->nrbufs--;
1865 input_wakeup = true;
1866 } else {
1867 /*
1868 * Get a reference to this pipe buffer,
1869 * so we can copy the contents over.
1870 */
1871 ibuf->ops->get(ipipe, ibuf);
1872 *obuf = *ibuf;
1873
1874 /*
1875 * Don't inherit the gift flag, we need to
1876 * prevent multiple steals of this page.
1877 */
1878 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1879
1880 obuf->len = len;
1881 opipe->nrbufs++;
1882 ibuf->offset += obuf->len;
1883 ibuf->len -= obuf->len;
1884 }
1885 ret += obuf->len;
1886 len -= obuf->len;
1887 } while (len);
1888
1889 pipe_unlock(ipipe);
1890 pipe_unlock(opipe);
1891
1892 /*
1893 * If we put data in the output pipe, wakeup any potential readers.
1894 */
1895 if (ret > 0) {
1896 smp_mb();
1897 if (waitqueue_active(&opipe->wait))
1898 wake_up_interruptible(&opipe->wait);
1899 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1900 }
1901 if (input_wakeup)
1902 wakeup_pipe_writers(ipipe);
1903
1904 return ret;
1905 }
1906
1907 /*
1908 * Link contents of ipipe to opipe.
1909 */
1910 static int link_pipe(struct pipe_inode_info *ipipe,
1911 struct pipe_inode_info *opipe,
1912 size_t len, unsigned int flags)
1913 {
1914 struct pipe_buffer *ibuf, *obuf;
1915 int ret = 0, i = 0, nbuf;
1916
1917 /*
1918 * Potential ABBA deadlock, work around it by ordering lock
1919 * grabbing by pipe info address. Otherwise two different processes
1920 * could deadlock (one doing tee from A -> B, the other from B -> A).
1921 */
1922 pipe_double_lock(ipipe, opipe);
1923
1924 do {
1925 if (!opipe->readers) {
1926 send_sig(SIGPIPE, current, 0);
1927 if (!ret)
1928 ret = -EPIPE;
1929 break;
1930 }
1931
1932 /*
1933 * If we have iterated all input buffers or ran out of
1934 * output room, break.
1935 */
1936 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1937 break;
1938
1939 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1940 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1941
1942 /*
1943 * Get a reference to this pipe buffer,
1944 * so we can copy the contents over.
1945 */
1946 ibuf->ops->get(ipipe, ibuf);
1947
1948 obuf = opipe->bufs + nbuf;
1949 *obuf = *ibuf;
1950
1951 /*
1952 * Don't inherit the gift flag, we need to
1953 * prevent multiple steals of this page.
1954 */
1955 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1956
1957 if (obuf->len > len)
1958 obuf->len = len;
1959
1960 opipe->nrbufs++;
1961 ret += obuf->len;
1962 len -= obuf->len;
1963 i++;
1964 } while (len);
1965
1966 /*
1967 * return EAGAIN if we have the potential of some data in the
1968 * future, otherwise just return 0
1969 */
1970 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1971 ret = -EAGAIN;
1972
1973 pipe_unlock(ipipe);
1974 pipe_unlock(opipe);
1975
1976 /*
1977 * If we put data in the output pipe, wakeup any potential readers.
1978 */
1979 if (ret > 0) {
1980 smp_mb();
1981 if (waitqueue_active(&opipe->wait))
1982 wake_up_interruptible(&opipe->wait);
1983 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1984 }
1985
1986 return ret;
1987 }
1988
1989 /*
1990 * This is a tee(1) implementation that works on pipes. It doesn't copy
1991 * any data, it simply references the 'in' pages on the 'out' pipe.
1992 * The 'flags' used are the SPLICE_F_* variants, currently the only
1993 * applicable one is SPLICE_F_NONBLOCK.
1994 */
1995 static long do_tee(struct file *in, struct file *out, size_t len,
1996 unsigned int flags)
1997 {
1998 struct pipe_inode_info *ipipe = get_pipe_info(in);
1999 struct pipe_inode_info *opipe = get_pipe_info(out);
2000 int ret = -EINVAL;
2001
2002 /*
2003 * Duplicate the contents of ipipe to opipe without actually
2004 * copying the data.
2005 */
2006 if (ipipe && opipe && ipipe != opipe) {
2007 /*
2008 * Keep going, unless we encounter an error. The ipipe/opipe
2009 * ordering doesn't really matter.
2010 */
2011 ret = ipipe_prep(ipipe, flags);
2012 if (!ret) {
2013 ret = opipe_prep(opipe, flags);
2014 if (!ret)
2015 ret = link_pipe(ipipe, opipe, len, flags);
2016 }
2017 }
2018
2019 return ret;
2020 }
2021
2022 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2023 {
2024 struct file *in;
2025 int error, fput_in;
2026
2027 if (unlikely(!len))
2028 return 0;
2029
2030 error = -EBADF;
2031 in = fget_light(fdin, &fput_in);
2032 if (in) {
2033 if (in->f_mode & FMODE_READ) {
2034 int fput_out;
2035 struct file *out = fget_light(fdout, &fput_out);
2036
2037 if (out) {
2038 if (out->f_mode & FMODE_WRITE)
2039 error = do_tee(in, out, len, flags);
2040 fput_light(out, fput_out);
2041 }
2042 }
2043 fput_light(in, fput_in);
2044 }
2045
2046 return error;
2047 }
This page took 0.163799 seconds and 6 git commands to generate.