Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33
34 /*
35 * Attempt to steal a page from a pipe buffer. This should perhaps go into
36 * a vm helper function, it's already simplified quite a bit by the
37 * addition of remove_mapping(). If success is returned, the caller may
38 * attempt to reuse this page for another destination.
39 */
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 struct pipe_buffer *buf)
42 {
43 struct page *page = buf->page;
44 struct address_space *mapping;
45
46 lock_page(page);
47
48 mapping = page_mapping(page);
49 if (mapping) {
50 WARN_ON(!PageUptodate(page));
51
52 /*
53 * At least for ext2 with nobh option, we need to wait on
54 * writeback completing on this page, since we'll remove it
55 * from the pagecache. Otherwise truncate wont wait on the
56 * page, allowing the disk blocks to be reused by someone else
57 * before we actually wrote our data to them. fs corruption
58 * ensues.
59 */
60 wait_on_page_writeback(page);
61
62 if (page_has_private(page) &&
63 !try_to_release_page(page, GFP_KERNEL))
64 goto out_unlock;
65
66 /*
67 * If we succeeded in removing the mapping, set LRU flag
68 * and return good.
69 */
70 if (remove_mapping(mapping, page)) {
71 buf->flags |= PIPE_BUF_FLAG_LRU;
72 return 0;
73 }
74 }
75
76 /*
77 * Raced with truncate or failed to remove page from current
78 * address space, unlock and return failure.
79 */
80 out_unlock:
81 unlock_page(page);
82 return 1;
83 }
84
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86 struct pipe_buffer *buf)
87 {
88 page_cache_release(buf->page);
89 buf->flags &= ~PIPE_BUF_FLAG_LRU;
90 }
91
92 /*
93 * Check whether the contents of buf is OK to access. Since the content
94 * is a page cache page, IO may be in flight.
95 */
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97 struct pipe_buffer *buf)
98 {
99 struct page *page = buf->page;
100 int err;
101
102 if (!PageUptodate(page)) {
103 lock_page(page);
104
105 /*
106 * Page got truncated/unhashed. This will cause a 0-byte
107 * splice, if this is the first page.
108 */
109 if (!page->mapping) {
110 err = -ENODATA;
111 goto error;
112 }
113
114 /*
115 * Uh oh, read-error from disk.
116 */
117 if (!PageUptodate(page)) {
118 err = -EIO;
119 goto error;
120 }
121
122 /*
123 * Page is ok afterall, we are done.
124 */
125 unlock_page(page);
126 }
127
128 return 0;
129 error:
130 unlock_page(page);
131 return err;
132 }
133
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135 .can_merge = 0,
136 .map = generic_pipe_buf_map,
137 .unmap = generic_pipe_buf_unmap,
138 .confirm = page_cache_pipe_buf_confirm,
139 .release = page_cache_pipe_buf_release,
140 .steal = page_cache_pipe_buf_steal,
141 .get = generic_pipe_buf_get,
142 };
143
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145 struct pipe_buffer *buf)
146 {
147 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148 return 1;
149
150 buf->flags |= PIPE_BUF_FLAG_LRU;
151 return generic_pipe_buf_steal(pipe, buf);
152 }
153
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155 .can_merge = 0,
156 .map = generic_pipe_buf_map,
157 .unmap = generic_pipe_buf_unmap,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
162 };
163
164 /**
165 * splice_to_pipe - fill passed data into a pipe
166 * @pipe: pipe to fill
167 * @spd: data to fill
168 *
169 * Description:
170 * @spd contains a map of pages and len/offset tuples, along with
171 * the struct pipe_buf_operations associated with these pages. This
172 * function will link that data to the pipe.
173 *
174 */
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176 struct splice_pipe_desc *spd)
177 {
178 unsigned int spd_pages = spd->nr_pages;
179 int ret, do_wakeup, page_nr;
180
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
184
185 if (pipe->inode)
186 mutex_lock(&pipe->inode->i_mutex);
187
188 for (;;) {
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
191 if (!ret)
192 ret = -EPIPE;
193 break;
194 }
195
196 if (pipe->nrbufs < PIPE_BUFFERS) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
199
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->private = spd->partial[page_nr].private;
204 buf->ops = spd->ops;
205 if (spd->flags & SPLICE_F_GIFT)
206 buf->flags |= PIPE_BUF_FLAG_GIFT;
207
208 pipe->nrbufs++;
209 page_nr++;
210 ret += buf->len;
211
212 if (pipe->inode)
213 do_wakeup = 1;
214
215 if (!--spd->nr_pages)
216 break;
217 if (pipe->nrbufs < PIPE_BUFFERS)
218 continue;
219
220 break;
221 }
222
223 if (spd->flags & SPLICE_F_NONBLOCK) {
224 if (!ret)
225 ret = -EAGAIN;
226 break;
227 }
228
229 if (signal_pending(current)) {
230 if (!ret)
231 ret = -ERESTARTSYS;
232 break;
233 }
234
235 if (do_wakeup) {
236 smp_mb();
237 if (waitqueue_active(&pipe->wait))
238 wake_up_interruptible_sync(&pipe->wait);
239 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240 do_wakeup = 0;
241 }
242
243 pipe->waiting_writers++;
244 pipe_wait(pipe);
245 pipe->waiting_writers--;
246 }
247
248 if (pipe->inode) {
249 mutex_unlock(&pipe->inode->i_mutex);
250
251 if (do_wakeup) {
252 smp_mb();
253 if (waitqueue_active(&pipe->wait))
254 wake_up_interruptible(&pipe->wait);
255 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
256 }
257 }
258
259 while (page_nr < spd_pages)
260 spd->spd_release(spd, page_nr++);
261
262 return ret;
263 }
264
265 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
266 {
267 page_cache_release(spd->pages[i]);
268 }
269
270 static int
271 __generic_file_splice_read(struct file *in, loff_t *ppos,
272 struct pipe_inode_info *pipe, size_t len,
273 unsigned int flags)
274 {
275 struct address_space *mapping = in->f_mapping;
276 unsigned int loff, nr_pages, req_pages;
277 struct page *pages[PIPE_BUFFERS];
278 struct partial_page partial[PIPE_BUFFERS];
279 struct page *page;
280 pgoff_t index, end_index;
281 loff_t isize;
282 int error, page_nr;
283 struct splice_pipe_desc spd = {
284 .pages = pages,
285 .partial = partial,
286 .flags = flags,
287 .ops = &page_cache_pipe_buf_ops,
288 .spd_release = spd_release_page,
289 };
290
291 index = *ppos >> PAGE_CACHE_SHIFT;
292 loff = *ppos & ~PAGE_CACHE_MASK;
293 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
294 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
295
296 /*
297 * Lookup the (hopefully) full range of pages we need.
298 */
299 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
300 index += spd.nr_pages;
301
302 /*
303 * If find_get_pages_contig() returned fewer pages than we needed,
304 * readahead/allocate the rest and fill in the holes.
305 */
306 if (spd.nr_pages < nr_pages)
307 page_cache_sync_readahead(mapping, &in->f_ra, in,
308 index, req_pages - spd.nr_pages);
309
310 error = 0;
311 while (spd.nr_pages < nr_pages) {
312 /*
313 * Page could be there, find_get_pages_contig() breaks on
314 * the first hole.
315 */
316 page = find_get_page(mapping, index);
317 if (!page) {
318 /*
319 * page didn't exist, allocate one.
320 */
321 page = page_cache_alloc_cold(mapping);
322 if (!page)
323 break;
324
325 error = add_to_page_cache_lru(page, mapping, index,
326 mapping_gfp_mask(mapping));
327 if (unlikely(error)) {
328 page_cache_release(page);
329 if (error == -EEXIST)
330 continue;
331 break;
332 }
333 /*
334 * add_to_page_cache() locks the page, unlock it
335 * to avoid convoluting the logic below even more.
336 */
337 unlock_page(page);
338 }
339
340 pages[spd.nr_pages++] = page;
341 index++;
342 }
343
344 /*
345 * Now loop over the map and see if we need to start IO on any
346 * pages, fill in the partial map, etc.
347 */
348 index = *ppos >> PAGE_CACHE_SHIFT;
349 nr_pages = spd.nr_pages;
350 spd.nr_pages = 0;
351 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
352 unsigned int this_len;
353
354 if (!len)
355 break;
356
357 /*
358 * this_len is the max we'll use from this page
359 */
360 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
361 page = pages[page_nr];
362
363 if (PageReadahead(page))
364 page_cache_async_readahead(mapping, &in->f_ra, in,
365 page, index, req_pages - page_nr);
366
367 /*
368 * If the page isn't uptodate, we may need to start io on it
369 */
370 if (!PageUptodate(page)) {
371 /*
372 * If in nonblock mode then dont block on waiting
373 * for an in-flight io page
374 */
375 if (flags & SPLICE_F_NONBLOCK) {
376 if (!trylock_page(page)) {
377 error = -EAGAIN;
378 break;
379 }
380 } else
381 lock_page(page);
382
383 /*
384 * Page was truncated, or invalidated by the
385 * filesystem. Redo the find/create, but this time the
386 * page is kept locked, so there's no chance of another
387 * race with truncate/invalidate.
388 */
389 if (!page->mapping) {
390 unlock_page(page);
391 page = find_or_create_page(mapping, index,
392 mapping_gfp_mask(mapping));
393
394 if (!page) {
395 error = -ENOMEM;
396 break;
397 }
398 page_cache_release(pages[page_nr]);
399 pages[page_nr] = page;
400 }
401 /*
402 * page was already under io and is now done, great
403 */
404 if (PageUptodate(page)) {
405 unlock_page(page);
406 goto fill_it;
407 }
408
409 /*
410 * need to read in the page
411 */
412 error = mapping->a_ops->readpage(in, page);
413 if (unlikely(error)) {
414 /*
415 * We really should re-lookup the page here,
416 * but it complicates things a lot. Instead
417 * lets just do what we already stored, and
418 * we'll get it the next time we are called.
419 */
420 if (error == AOP_TRUNCATED_PAGE)
421 error = 0;
422
423 break;
424 }
425 }
426 fill_it:
427 /*
428 * i_size must be checked after PageUptodate.
429 */
430 isize = i_size_read(mapping->host);
431 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
432 if (unlikely(!isize || index > end_index))
433 break;
434
435 /*
436 * if this is the last page, see if we need to shrink
437 * the length and stop
438 */
439 if (end_index == index) {
440 unsigned int plen;
441
442 /*
443 * max good bytes in this page
444 */
445 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
446 if (plen <= loff)
447 break;
448
449 /*
450 * force quit after adding this page
451 */
452 this_len = min(this_len, plen - loff);
453 len = this_len;
454 }
455
456 partial[page_nr].offset = loff;
457 partial[page_nr].len = this_len;
458 len -= this_len;
459 loff = 0;
460 spd.nr_pages++;
461 index++;
462 }
463
464 /*
465 * Release any pages at the end, if we quit early. 'page_nr' is how far
466 * we got, 'nr_pages' is how many pages are in the map.
467 */
468 while (page_nr < nr_pages)
469 page_cache_release(pages[page_nr++]);
470 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
471
472 if (spd.nr_pages)
473 return splice_to_pipe(pipe, &spd);
474
475 return error;
476 }
477
478 /**
479 * generic_file_splice_read - splice data from file to a pipe
480 * @in: file to splice from
481 * @ppos: position in @in
482 * @pipe: pipe to splice to
483 * @len: number of bytes to splice
484 * @flags: splice modifier flags
485 *
486 * Description:
487 * Will read pages from given file and fill them into a pipe. Can be
488 * used as long as the address_space operations for the source implements
489 * a readpage() hook.
490 *
491 */
492 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
493 struct pipe_inode_info *pipe, size_t len,
494 unsigned int flags)
495 {
496 loff_t isize, left;
497 int ret;
498
499 isize = i_size_read(in->f_mapping->host);
500 if (unlikely(*ppos >= isize))
501 return 0;
502
503 left = isize - *ppos;
504 if (unlikely(left < len))
505 len = left;
506
507 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
508 if (ret > 0)
509 *ppos += ret;
510
511 return ret;
512 }
513
514 EXPORT_SYMBOL(generic_file_splice_read);
515
516 /*
517 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
518 * using sendpage(). Return the number of bytes sent.
519 */
520 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
521 struct pipe_buffer *buf, struct splice_desc *sd)
522 {
523 struct file *file = sd->u.file;
524 loff_t pos = sd->pos;
525 int ret, more;
526
527 ret = buf->ops->confirm(pipe, buf);
528 if (!ret) {
529 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
530
531 ret = file->f_op->sendpage(file, buf->page, buf->offset,
532 sd->len, &pos, more);
533 }
534
535 return ret;
536 }
537
538 /*
539 * This is a little more tricky than the file -> pipe splicing. There are
540 * basically three cases:
541 *
542 * - Destination page already exists in the address space and there
543 * are users of it. For that case we have no other option that
544 * copying the data. Tough luck.
545 * - Destination page already exists in the address space, but there
546 * are no users of it. Make sure it's uptodate, then drop it. Fall
547 * through to last case.
548 * - Destination page does not exist, we can add the pipe page to
549 * the page cache and avoid the copy.
550 *
551 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
552 * sd->flags), we attempt to migrate pages from the pipe to the output
553 * file address space page cache. This is possible if no one else has
554 * the pipe page referenced outside of the pipe and page cache. If
555 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
556 * a new page in the output file page cache and fill/dirty that.
557 */
558 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
559 struct splice_desc *sd)
560 {
561 struct file *file = sd->u.file;
562 struct address_space *mapping = file->f_mapping;
563 unsigned int offset, this_len;
564 struct page *page;
565 void *fsdata;
566 int ret;
567
568 /*
569 * make sure the data in this buffer is uptodate
570 */
571 ret = buf->ops->confirm(pipe, buf);
572 if (unlikely(ret))
573 return ret;
574
575 offset = sd->pos & ~PAGE_CACHE_MASK;
576
577 this_len = sd->len;
578 if (this_len + offset > PAGE_CACHE_SIZE)
579 this_len = PAGE_CACHE_SIZE - offset;
580
581 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
582 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
583 if (unlikely(ret))
584 goto out;
585
586 if (buf->page != page) {
587 /*
588 * Careful, ->map() uses KM_USER0!
589 */
590 char *src = buf->ops->map(pipe, buf, 1);
591 char *dst = kmap_atomic(page, KM_USER1);
592
593 memcpy(dst + offset, src + buf->offset, this_len);
594 flush_dcache_page(page);
595 kunmap_atomic(dst, KM_USER1);
596 buf->ops->unmap(pipe, buf, src);
597 }
598 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
599 page, fsdata);
600 out:
601 return ret;
602 }
603
604 /**
605 * __splice_from_pipe - splice data from a pipe to given actor
606 * @pipe: pipe to splice from
607 * @sd: information to @actor
608 * @actor: handler that splices the data
609 *
610 * Description:
611 * This function does little more than loop over the pipe and call
612 * @actor to do the actual moving of a single struct pipe_buffer to
613 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
614 * pipe_to_user.
615 *
616 */
617 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
618 splice_actor *actor)
619 {
620 int ret, do_wakeup, err;
621
622 ret = 0;
623 do_wakeup = 0;
624
625 for (;;) {
626 if (pipe->nrbufs) {
627 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
628 const struct pipe_buf_operations *ops = buf->ops;
629
630 sd->len = buf->len;
631 if (sd->len > sd->total_len)
632 sd->len = sd->total_len;
633
634 err = actor(pipe, buf, sd);
635 if (err <= 0) {
636 if (!ret && err != -ENODATA)
637 ret = err;
638
639 break;
640 }
641
642 ret += err;
643 buf->offset += err;
644 buf->len -= err;
645
646 sd->len -= err;
647 sd->pos += err;
648 sd->total_len -= err;
649 if (sd->len)
650 continue;
651
652 if (!buf->len) {
653 buf->ops = NULL;
654 ops->release(pipe, buf);
655 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
656 pipe->nrbufs--;
657 if (pipe->inode)
658 do_wakeup = 1;
659 }
660
661 if (!sd->total_len)
662 break;
663 }
664
665 if (pipe->nrbufs)
666 continue;
667 if (!pipe->writers)
668 break;
669 if (!pipe->waiting_writers) {
670 if (ret)
671 break;
672 }
673
674 if (sd->flags & SPLICE_F_NONBLOCK) {
675 if (!ret)
676 ret = -EAGAIN;
677 break;
678 }
679
680 if (signal_pending(current)) {
681 if (!ret)
682 ret = -ERESTARTSYS;
683 break;
684 }
685
686 if (do_wakeup) {
687 smp_mb();
688 if (waitqueue_active(&pipe->wait))
689 wake_up_interruptible_sync(&pipe->wait);
690 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
691 do_wakeup = 0;
692 }
693
694 pipe_wait(pipe);
695 }
696
697 if (do_wakeup) {
698 smp_mb();
699 if (waitqueue_active(&pipe->wait))
700 wake_up_interruptible(&pipe->wait);
701 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
702 }
703
704 return ret;
705 }
706 EXPORT_SYMBOL(__splice_from_pipe);
707
708 /**
709 * splice_from_pipe - splice data from a pipe to a file
710 * @pipe: pipe to splice from
711 * @out: file to splice to
712 * @ppos: position in @out
713 * @len: how many bytes to splice
714 * @flags: splice modifier flags
715 * @actor: handler that splices the data
716 *
717 * Description:
718 * See __splice_from_pipe. This function locks the input and output inodes,
719 * otherwise it's identical to __splice_from_pipe().
720 *
721 */
722 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
723 loff_t *ppos, size_t len, unsigned int flags,
724 splice_actor *actor)
725 {
726 ssize_t ret;
727 struct inode *inode = out->f_mapping->host;
728 struct splice_desc sd = {
729 .total_len = len,
730 .flags = flags,
731 .pos = *ppos,
732 .u.file = out,
733 };
734
735 /*
736 * The actor worker might be calling ->write_begin and
737 * ->write_end. Most of the time, these expect i_mutex to
738 * be held. Since this may result in an ABBA deadlock with
739 * pipe->inode, we have to order lock acquiry here.
740 */
741 inode_double_lock(inode, pipe->inode);
742 ret = __splice_from_pipe(pipe, &sd, actor);
743 inode_double_unlock(inode, pipe->inode);
744
745 return ret;
746 }
747
748 /**
749 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
750 * @pipe: pipe info
751 * @out: file to write to
752 * @ppos: position in @out
753 * @len: number of bytes to splice
754 * @flags: splice modifier flags
755 *
756 * Description:
757 * Will either move or copy pages (determined by @flags options) from
758 * the given pipe inode to the given file. The caller is responsible
759 * for acquiring i_mutex on both inodes.
760 *
761 */
762 ssize_t
763 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
764 loff_t *ppos, size_t len, unsigned int flags)
765 {
766 struct address_space *mapping = out->f_mapping;
767 struct inode *inode = mapping->host;
768 struct splice_desc sd = {
769 .total_len = len,
770 .flags = flags,
771 .pos = *ppos,
772 .u.file = out,
773 };
774 ssize_t ret;
775 int err;
776
777 err = file_remove_suid(out);
778 if (unlikely(err))
779 return err;
780
781 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
782 if (ret > 0) {
783 unsigned long nr_pages;
784
785 *ppos += ret;
786 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
787
788 /*
789 * If file or inode is SYNC and we actually wrote some data,
790 * sync it.
791 */
792 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
793 err = generic_osync_inode(inode, mapping,
794 OSYNC_METADATA|OSYNC_DATA);
795
796 if (err)
797 ret = err;
798 }
799 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
800 }
801
802 return ret;
803 }
804
805 EXPORT_SYMBOL(generic_file_splice_write_nolock);
806
807 /**
808 * generic_file_splice_write - splice data from a pipe to a file
809 * @pipe: pipe info
810 * @out: file to write to
811 * @ppos: position in @out
812 * @len: number of bytes to splice
813 * @flags: splice modifier flags
814 *
815 * Description:
816 * Will either move or copy pages (determined by @flags options) from
817 * the given pipe inode to the given file.
818 *
819 */
820 ssize_t
821 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
822 loff_t *ppos, size_t len, unsigned int flags)
823 {
824 struct address_space *mapping = out->f_mapping;
825 struct inode *inode = mapping->host;
826 struct splice_desc sd = {
827 .total_len = len,
828 .flags = flags,
829 .pos = *ppos,
830 .u.file = out,
831 };
832 ssize_t ret;
833
834 inode_double_lock(inode, pipe->inode);
835 ret = file_remove_suid(out);
836 if (likely(!ret))
837 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
838 inode_double_unlock(inode, pipe->inode);
839 if (ret > 0) {
840 unsigned long nr_pages;
841
842 *ppos += ret;
843 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
844
845 /*
846 * If file or inode is SYNC and we actually wrote some data,
847 * sync it.
848 */
849 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
850 int err;
851
852 mutex_lock(&inode->i_mutex);
853 err = generic_osync_inode(inode, mapping,
854 OSYNC_METADATA|OSYNC_DATA);
855 mutex_unlock(&inode->i_mutex);
856
857 if (err)
858 ret = err;
859 }
860 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
861 }
862
863 return ret;
864 }
865
866 EXPORT_SYMBOL(generic_file_splice_write);
867
868 /**
869 * generic_splice_sendpage - splice data from a pipe to a socket
870 * @pipe: pipe to splice from
871 * @out: socket to write to
872 * @ppos: position in @out
873 * @len: number of bytes to splice
874 * @flags: splice modifier flags
875 *
876 * Description:
877 * Will send @len bytes from the pipe to a network socket. No data copying
878 * is involved.
879 *
880 */
881 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
882 loff_t *ppos, size_t len, unsigned int flags)
883 {
884 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
885 }
886
887 EXPORT_SYMBOL(generic_splice_sendpage);
888
889 /*
890 * Attempt to initiate a splice from pipe to file.
891 */
892 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
893 loff_t *ppos, size_t len, unsigned int flags)
894 {
895 int ret;
896
897 if (unlikely(!out->f_op || !out->f_op->splice_write))
898 return -EINVAL;
899
900 if (unlikely(!(out->f_mode & FMODE_WRITE)))
901 return -EBADF;
902
903 if (unlikely(out->f_flags & O_APPEND))
904 return -EINVAL;
905
906 ret = rw_verify_area(WRITE, out, ppos, len);
907 if (unlikely(ret < 0))
908 return ret;
909
910 return out->f_op->splice_write(pipe, out, ppos, len, flags);
911 }
912
913 /*
914 * Attempt to initiate a splice from a file to a pipe.
915 */
916 static long do_splice_to(struct file *in, loff_t *ppos,
917 struct pipe_inode_info *pipe, size_t len,
918 unsigned int flags)
919 {
920 int ret;
921
922 if (unlikely(!in->f_op || !in->f_op->splice_read))
923 return -EINVAL;
924
925 if (unlikely(!(in->f_mode & FMODE_READ)))
926 return -EBADF;
927
928 ret = rw_verify_area(READ, in, ppos, len);
929 if (unlikely(ret < 0))
930 return ret;
931
932 return in->f_op->splice_read(in, ppos, pipe, len, flags);
933 }
934
935 /**
936 * splice_direct_to_actor - splices data directly between two non-pipes
937 * @in: file to splice from
938 * @sd: actor information on where to splice to
939 * @actor: handles the data splicing
940 *
941 * Description:
942 * This is a special case helper to splice directly between two
943 * points, without requiring an explicit pipe. Internally an allocated
944 * pipe is cached in the process, and reused during the lifetime of
945 * that process.
946 *
947 */
948 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
949 splice_direct_actor *actor)
950 {
951 struct pipe_inode_info *pipe;
952 long ret, bytes;
953 umode_t i_mode;
954 size_t len;
955 int i, flags;
956
957 /*
958 * We require the input being a regular file, as we don't want to
959 * randomly drop data for eg socket -> socket splicing. Use the
960 * piped splicing for that!
961 */
962 i_mode = in->f_path.dentry->d_inode->i_mode;
963 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
964 return -EINVAL;
965
966 /*
967 * neither in nor out is a pipe, setup an internal pipe attached to
968 * 'out' and transfer the wanted data from 'in' to 'out' through that
969 */
970 pipe = current->splice_pipe;
971 if (unlikely(!pipe)) {
972 pipe = alloc_pipe_info(NULL);
973 if (!pipe)
974 return -ENOMEM;
975
976 /*
977 * We don't have an immediate reader, but we'll read the stuff
978 * out of the pipe right after the splice_to_pipe(). So set
979 * PIPE_READERS appropriately.
980 */
981 pipe->readers = 1;
982
983 current->splice_pipe = pipe;
984 }
985
986 /*
987 * Do the splice.
988 */
989 ret = 0;
990 bytes = 0;
991 len = sd->total_len;
992 flags = sd->flags;
993
994 /*
995 * Don't block on output, we have to drain the direct pipe.
996 */
997 sd->flags &= ~SPLICE_F_NONBLOCK;
998
999 while (len) {
1000 size_t read_len;
1001 loff_t pos = sd->pos, prev_pos = pos;
1002
1003 ret = do_splice_to(in, &pos, pipe, len, flags);
1004 if (unlikely(ret <= 0))
1005 goto out_release;
1006
1007 read_len = ret;
1008 sd->total_len = read_len;
1009
1010 /*
1011 * NOTE: nonblocking mode only applies to the input. We
1012 * must not do the output in nonblocking mode as then we
1013 * could get stuck data in the internal pipe:
1014 */
1015 ret = actor(pipe, sd);
1016 if (unlikely(ret <= 0)) {
1017 sd->pos = prev_pos;
1018 goto out_release;
1019 }
1020
1021 bytes += ret;
1022 len -= ret;
1023 sd->pos = pos;
1024
1025 if (ret < read_len) {
1026 sd->pos = prev_pos + ret;
1027 goto out_release;
1028 }
1029 }
1030
1031 done:
1032 pipe->nrbufs = pipe->curbuf = 0;
1033 file_accessed(in);
1034 return bytes;
1035
1036 out_release:
1037 /*
1038 * If we did an incomplete transfer we must release
1039 * the pipe buffers in question:
1040 */
1041 for (i = 0; i < PIPE_BUFFERS; i++) {
1042 struct pipe_buffer *buf = pipe->bufs + i;
1043
1044 if (buf->ops) {
1045 buf->ops->release(pipe, buf);
1046 buf->ops = NULL;
1047 }
1048 }
1049
1050 if (!bytes)
1051 bytes = ret;
1052
1053 goto done;
1054 }
1055 EXPORT_SYMBOL(splice_direct_to_actor);
1056
1057 static int direct_splice_actor(struct pipe_inode_info *pipe,
1058 struct splice_desc *sd)
1059 {
1060 struct file *file = sd->u.file;
1061
1062 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1063 }
1064
1065 /**
1066 * do_splice_direct - splices data directly between two files
1067 * @in: file to splice from
1068 * @ppos: input file offset
1069 * @out: file to splice to
1070 * @len: number of bytes to splice
1071 * @flags: splice modifier flags
1072 *
1073 * Description:
1074 * For use by do_sendfile(). splice can easily emulate sendfile, but
1075 * doing it in the application would incur an extra system call
1076 * (splice in + splice out, as compared to just sendfile()). So this helper
1077 * can splice directly through a process-private pipe.
1078 *
1079 */
1080 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1081 size_t len, unsigned int flags)
1082 {
1083 struct splice_desc sd = {
1084 .len = len,
1085 .total_len = len,
1086 .flags = flags,
1087 .pos = *ppos,
1088 .u.file = out,
1089 };
1090 long ret;
1091
1092 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1093 if (ret > 0)
1094 *ppos = sd.pos;
1095
1096 return ret;
1097 }
1098
1099 /*
1100 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1101 * location, so checking ->i_pipe is not enough to verify that this is a
1102 * pipe.
1103 */
1104 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1105 {
1106 if (S_ISFIFO(inode->i_mode))
1107 return inode->i_pipe;
1108
1109 return NULL;
1110 }
1111
1112 /*
1113 * Determine where to splice to/from.
1114 */
1115 static long do_splice(struct file *in, loff_t __user *off_in,
1116 struct file *out, loff_t __user *off_out,
1117 size_t len, unsigned int flags)
1118 {
1119 struct pipe_inode_info *pipe;
1120 loff_t offset, *off;
1121 long ret;
1122
1123 pipe = pipe_info(in->f_path.dentry->d_inode);
1124 if (pipe) {
1125 if (off_in)
1126 return -ESPIPE;
1127 if (off_out) {
1128 if (out->f_op->llseek == no_llseek)
1129 return -EINVAL;
1130 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1131 return -EFAULT;
1132 off = &offset;
1133 } else
1134 off = &out->f_pos;
1135
1136 ret = do_splice_from(pipe, out, off, len, flags);
1137
1138 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1139 ret = -EFAULT;
1140
1141 return ret;
1142 }
1143
1144 pipe = pipe_info(out->f_path.dentry->d_inode);
1145 if (pipe) {
1146 if (off_out)
1147 return -ESPIPE;
1148 if (off_in) {
1149 if (in->f_op->llseek == no_llseek)
1150 return -EINVAL;
1151 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1152 return -EFAULT;
1153 off = &offset;
1154 } else
1155 off = &in->f_pos;
1156
1157 ret = do_splice_to(in, off, pipe, len, flags);
1158
1159 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1160 ret = -EFAULT;
1161
1162 return ret;
1163 }
1164
1165 return -EINVAL;
1166 }
1167
1168 /*
1169 * Map an iov into an array of pages and offset/length tupples. With the
1170 * partial_page structure, we can map several non-contiguous ranges into
1171 * our ones pages[] map instead of splitting that operation into pieces.
1172 * Could easily be exported as a generic helper for other users, in which
1173 * case one would probably want to add a 'max_nr_pages' parameter as well.
1174 */
1175 static int get_iovec_page_array(const struct iovec __user *iov,
1176 unsigned int nr_vecs, struct page **pages,
1177 struct partial_page *partial, int aligned)
1178 {
1179 int buffers = 0, error = 0;
1180
1181 while (nr_vecs) {
1182 unsigned long off, npages;
1183 struct iovec entry;
1184 void __user *base;
1185 size_t len;
1186 int i;
1187
1188 error = -EFAULT;
1189 if (copy_from_user(&entry, iov, sizeof(entry)))
1190 break;
1191
1192 base = entry.iov_base;
1193 len = entry.iov_len;
1194
1195 /*
1196 * Sanity check this iovec. 0 read succeeds.
1197 */
1198 error = 0;
1199 if (unlikely(!len))
1200 break;
1201 error = -EFAULT;
1202 if (!access_ok(VERIFY_READ, base, len))
1203 break;
1204
1205 /*
1206 * Get this base offset and number of pages, then map
1207 * in the user pages.
1208 */
1209 off = (unsigned long) base & ~PAGE_MASK;
1210
1211 /*
1212 * If asked for alignment, the offset must be zero and the
1213 * length a multiple of the PAGE_SIZE.
1214 */
1215 error = -EINVAL;
1216 if (aligned && (off || len & ~PAGE_MASK))
1217 break;
1218
1219 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1220 if (npages > PIPE_BUFFERS - buffers)
1221 npages = PIPE_BUFFERS - buffers;
1222
1223 error = get_user_pages_fast((unsigned long)base, npages,
1224 0, &pages[buffers]);
1225
1226 if (unlikely(error <= 0))
1227 break;
1228
1229 /*
1230 * Fill this contiguous range into the partial page map.
1231 */
1232 for (i = 0; i < error; i++) {
1233 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1234
1235 partial[buffers].offset = off;
1236 partial[buffers].len = plen;
1237
1238 off = 0;
1239 len -= plen;
1240 buffers++;
1241 }
1242
1243 /*
1244 * We didn't complete this iov, stop here since it probably
1245 * means we have to move some of this into a pipe to
1246 * be able to continue.
1247 */
1248 if (len)
1249 break;
1250
1251 /*
1252 * Don't continue if we mapped fewer pages than we asked for,
1253 * or if we mapped the max number of pages that we have
1254 * room for.
1255 */
1256 if (error < npages || buffers == PIPE_BUFFERS)
1257 break;
1258
1259 nr_vecs--;
1260 iov++;
1261 }
1262
1263 if (buffers)
1264 return buffers;
1265
1266 return error;
1267 }
1268
1269 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1270 struct splice_desc *sd)
1271 {
1272 char *src;
1273 int ret;
1274
1275 ret = buf->ops->confirm(pipe, buf);
1276 if (unlikely(ret))
1277 return ret;
1278
1279 /*
1280 * See if we can use the atomic maps, by prefaulting in the
1281 * pages and doing an atomic copy
1282 */
1283 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1284 src = buf->ops->map(pipe, buf, 1);
1285 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1286 sd->len);
1287 buf->ops->unmap(pipe, buf, src);
1288 if (!ret) {
1289 ret = sd->len;
1290 goto out;
1291 }
1292 }
1293
1294 /*
1295 * No dice, use slow non-atomic map and copy
1296 */
1297 src = buf->ops->map(pipe, buf, 0);
1298
1299 ret = sd->len;
1300 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1301 ret = -EFAULT;
1302
1303 buf->ops->unmap(pipe, buf, src);
1304 out:
1305 if (ret > 0)
1306 sd->u.userptr += ret;
1307 return ret;
1308 }
1309
1310 /*
1311 * For lack of a better implementation, implement vmsplice() to userspace
1312 * as a simple copy of the pipes pages to the user iov.
1313 */
1314 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1315 unsigned long nr_segs, unsigned int flags)
1316 {
1317 struct pipe_inode_info *pipe;
1318 struct splice_desc sd;
1319 ssize_t size;
1320 int error;
1321 long ret;
1322
1323 pipe = pipe_info(file->f_path.dentry->d_inode);
1324 if (!pipe)
1325 return -EBADF;
1326
1327 if (pipe->inode)
1328 mutex_lock(&pipe->inode->i_mutex);
1329
1330 error = ret = 0;
1331 while (nr_segs) {
1332 void __user *base;
1333 size_t len;
1334
1335 /*
1336 * Get user address base and length for this iovec.
1337 */
1338 error = get_user(base, &iov->iov_base);
1339 if (unlikely(error))
1340 break;
1341 error = get_user(len, &iov->iov_len);
1342 if (unlikely(error))
1343 break;
1344
1345 /*
1346 * Sanity check this iovec. 0 read succeeds.
1347 */
1348 if (unlikely(!len))
1349 break;
1350 if (unlikely(!base)) {
1351 error = -EFAULT;
1352 break;
1353 }
1354
1355 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1356 error = -EFAULT;
1357 break;
1358 }
1359
1360 sd.len = 0;
1361 sd.total_len = len;
1362 sd.flags = flags;
1363 sd.u.userptr = base;
1364 sd.pos = 0;
1365
1366 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1367 if (size < 0) {
1368 if (!ret)
1369 ret = size;
1370
1371 break;
1372 }
1373
1374 ret += size;
1375
1376 if (size < len)
1377 break;
1378
1379 nr_segs--;
1380 iov++;
1381 }
1382
1383 if (pipe->inode)
1384 mutex_unlock(&pipe->inode->i_mutex);
1385
1386 if (!ret)
1387 ret = error;
1388
1389 return ret;
1390 }
1391
1392 /*
1393 * vmsplice splices a user address range into a pipe. It can be thought of
1394 * as splice-from-memory, where the regular splice is splice-from-file (or
1395 * to file). In both cases the output is a pipe, naturally.
1396 */
1397 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1398 unsigned long nr_segs, unsigned int flags)
1399 {
1400 struct pipe_inode_info *pipe;
1401 struct page *pages[PIPE_BUFFERS];
1402 struct partial_page partial[PIPE_BUFFERS];
1403 struct splice_pipe_desc spd = {
1404 .pages = pages,
1405 .partial = partial,
1406 .flags = flags,
1407 .ops = &user_page_pipe_buf_ops,
1408 .spd_release = spd_release_page,
1409 };
1410
1411 pipe = pipe_info(file->f_path.dentry->d_inode);
1412 if (!pipe)
1413 return -EBADF;
1414
1415 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1416 flags & SPLICE_F_GIFT);
1417 if (spd.nr_pages <= 0)
1418 return spd.nr_pages;
1419
1420 return splice_to_pipe(pipe, &spd);
1421 }
1422
1423 /*
1424 * Note that vmsplice only really supports true splicing _from_ user memory
1425 * to a pipe, not the other way around. Splicing from user memory is a simple
1426 * operation that can be supported without any funky alignment restrictions
1427 * or nasty vm tricks. We simply map in the user memory and fill them into
1428 * a pipe. The reverse isn't quite as easy, though. There are two possible
1429 * solutions for that:
1430 *
1431 * - memcpy() the data internally, at which point we might as well just
1432 * do a regular read() on the buffer anyway.
1433 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1434 * has restriction limitations on both ends of the pipe).
1435 *
1436 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1437 *
1438 */
1439 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1440 unsigned long, nr_segs, unsigned int, flags)
1441 {
1442 struct file *file;
1443 long error;
1444 int fput;
1445
1446 if (unlikely(nr_segs > UIO_MAXIOV))
1447 return -EINVAL;
1448 else if (unlikely(!nr_segs))
1449 return 0;
1450
1451 error = -EBADF;
1452 file = fget_light(fd, &fput);
1453 if (file) {
1454 if (file->f_mode & FMODE_WRITE)
1455 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1456 else if (file->f_mode & FMODE_READ)
1457 error = vmsplice_to_user(file, iov, nr_segs, flags);
1458
1459 fput_light(file, fput);
1460 }
1461
1462 return error;
1463 }
1464
1465 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1466 int, fd_out, loff_t __user *, off_out,
1467 size_t, len, unsigned int, flags)
1468 {
1469 long error;
1470 struct file *in, *out;
1471 int fput_in, fput_out;
1472
1473 if (unlikely(!len))
1474 return 0;
1475
1476 error = -EBADF;
1477 in = fget_light(fd_in, &fput_in);
1478 if (in) {
1479 if (in->f_mode & FMODE_READ) {
1480 out = fget_light(fd_out, &fput_out);
1481 if (out) {
1482 if (out->f_mode & FMODE_WRITE)
1483 error = do_splice(in, off_in,
1484 out, off_out,
1485 len, flags);
1486 fput_light(out, fput_out);
1487 }
1488 }
1489
1490 fput_light(in, fput_in);
1491 }
1492
1493 return error;
1494 }
1495
1496 /*
1497 * Make sure there's data to read. Wait for input if we can, otherwise
1498 * return an appropriate error.
1499 */
1500 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1501 {
1502 int ret;
1503
1504 /*
1505 * Check ->nrbufs without the inode lock first. This function
1506 * is speculative anyways, so missing one is ok.
1507 */
1508 if (pipe->nrbufs)
1509 return 0;
1510
1511 ret = 0;
1512 mutex_lock(&pipe->inode->i_mutex);
1513
1514 while (!pipe->nrbufs) {
1515 if (signal_pending(current)) {
1516 ret = -ERESTARTSYS;
1517 break;
1518 }
1519 if (!pipe->writers)
1520 break;
1521 if (!pipe->waiting_writers) {
1522 if (flags & SPLICE_F_NONBLOCK) {
1523 ret = -EAGAIN;
1524 break;
1525 }
1526 }
1527 pipe_wait(pipe);
1528 }
1529
1530 mutex_unlock(&pipe->inode->i_mutex);
1531 return ret;
1532 }
1533
1534 /*
1535 * Make sure there's writeable room. Wait for room if we can, otherwise
1536 * return an appropriate error.
1537 */
1538 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1539 {
1540 int ret;
1541
1542 /*
1543 * Check ->nrbufs without the inode lock first. This function
1544 * is speculative anyways, so missing one is ok.
1545 */
1546 if (pipe->nrbufs < PIPE_BUFFERS)
1547 return 0;
1548
1549 ret = 0;
1550 mutex_lock(&pipe->inode->i_mutex);
1551
1552 while (pipe->nrbufs >= PIPE_BUFFERS) {
1553 if (!pipe->readers) {
1554 send_sig(SIGPIPE, current, 0);
1555 ret = -EPIPE;
1556 break;
1557 }
1558 if (flags & SPLICE_F_NONBLOCK) {
1559 ret = -EAGAIN;
1560 break;
1561 }
1562 if (signal_pending(current)) {
1563 ret = -ERESTARTSYS;
1564 break;
1565 }
1566 pipe->waiting_writers++;
1567 pipe_wait(pipe);
1568 pipe->waiting_writers--;
1569 }
1570
1571 mutex_unlock(&pipe->inode->i_mutex);
1572 return ret;
1573 }
1574
1575 /*
1576 * Link contents of ipipe to opipe.
1577 */
1578 static int link_pipe(struct pipe_inode_info *ipipe,
1579 struct pipe_inode_info *opipe,
1580 size_t len, unsigned int flags)
1581 {
1582 struct pipe_buffer *ibuf, *obuf;
1583 int ret = 0, i = 0, nbuf;
1584
1585 /*
1586 * Potential ABBA deadlock, work around it by ordering lock
1587 * grabbing by inode address. Otherwise two different processes
1588 * could deadlock (one doing tee from A -> B, the other from B -> A).
1589 */
1590 inode_double_lock(ipipe->inode, opipe->inode);
1591
1592 do {
1593 if (!opipe->readers) {
1594 send_sig(SIGPIPE, current, 0);
1595 if (!ret)
1596 ret = -EPIPE;
1597 break;
1598 }
1599
1600 /*
1601 * If we have iterated all input buffers or ran out of
1602 * output room, break.
1603 */
1604 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1605 break;
1606
1607 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1608 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1609
1610 /*
1611 * Get a reference to this pipe buffer,
1612 * so we can copy the contents over.
1613 */
1614 ibuf->ops->get(ipipe, ibuf);
1615
1616 obuf = opipe->bufs + nbuf;
1617 *obuf = *ibuf;
1618
1619 /*
1620 * Don't inherit the gift flag, we need to
1621 * prevent multiple steals of this page.
1622 */
1623 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1624
1625 if (obuf->len > len)
1626 obuf->len = len;
1627
1628 opipe->nrbufs++;
1629 ret += obuf->len;
1630 len -= obuf->len;
1631 i++;
1632 } while (len);
1633
1634 /*
1635 * return EAGAIN if we have the potential of some data in the
1636 * future, otherwise just return 0
1637 */
1638 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1639 ret = -EAGAIN;
1640
1641 inode_double_unlock(ipipe->inode, opipe->inode);
1642
1643 /*
1644 * If we put data in the output pipe, wakeup any potential readers.
1645 */
1646 if (ret > 0) {
1647 smp_mb();
1648 if (waitqueue_active(&opipe->wait))
1649 wake_up_interruptible(&opipe->wait);
1650 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1651 }
1652
1653 return ret;
1654 }
1655
1656 /*
1657 * This is a tee(1) implementation that works on pipes. It doesn't copy
1658 * any data, it simply references the 'in' pages on the 'out' pipe.
1659 * The 'flags' used are the SPLICE_F_* variants, currently the only
1660 * applicable one is SPLICE_F_NONBLOCK.
1661 */
1662 static long do_tee(struct file *in, struct file *out, size_t len,
1663 unsigned int flags)
1664 {
1665 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1666 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1667 int ret = -EINVAL;
1668
1669 /*
1670 * Duplicate the contents of ipipe to opipe without actually
1671 * copying the data.
1672 */
1673 if (ipipe && opipe && ipipe != opipe) {
1674 /*
1675 * Keep going, unless we encounter an error. The ipipe/opipe
1676 * ordering doesn't really matter.
1677 */
1678 ret = link_ipipe_prep(ipipe, flags);
1679 if (!ret) {
1680 ret = link_opipe_prep(opipe, flags);
1681 if (!ret)
1682 ret = link_pipe(ipipe, opipe, len, flags);
1683 }
1684 }
1685
1686 return ret;
1687 }
1688
1689 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1690 {
1691 struct file *in;
1692 int error, fput_in;
1693
1694 if (unlikely(!len))
1695 return 0;
1696
1697 error = -EBADF;
1698 in = fget_light(fdin, &fput_in);
1699 if (in) {
1700 if (in->f_mode & FMODE_READ) {
1701 int fput_out;
1702 struct file *out = fget_light(fdout, &fput_out);
1703
1704 if (out) {
1705 if (out->f_mode & FMODE_WRITE)
1706 error = do_tee(in, out, len, flags);
1707 fput_light(out, fput_out);
1708 }
1709 }
1710 fput_light(in, fput_in);
1711 }
1712
1713 return error;
1714 }
This page took 0.112548 seconds and 6 git commands to generate.