Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[deliverable/linux.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31
32 struct partial_page {
33 unsigned int offset;
34 unsigned int len;
35 };
36
37 /*
38 * Passed to splice_to_pipe
39 */
40 struct splice_pipe_desc {
41 struct page **pages; /* page map */
42 struct partial_page *partial; /* pages[] may not be contig */
43 int nr_pages; /* number of pages in map */
44 unsigned int flags; /* splice flags */
45 const struct pipe_buf_operations *ops;/* ops associated with output pipe */
46 };
47
48 /*
49 * Attempt to steal a page from a pipe buffer. This should perhaps go into
50 * a vm helper function, it's already simplified quite a bit by the
51 * addition of remove_mapping(). If success is returned, the caller may
52 * attempt to reuse this page for another destination.
53 */
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55 struct pipe_buffer *buf)
56 {
57 struct page *page = buf->page;
58 struct address_space *mapping;
59
60 lock_page(page);
61
62 mapping = page_mapping(page);
63 if (mapping) {
64 WARN_ON(!PageUptodate(page));
65
66 /*
67 * At least for ext2 with nobh option, we need to wait on
68 * writeback completing on this page, since we'll remove it
69 * from the pagecache. Otherwise truncate wont wait on the
70 * page, allowing the disk blocks to be reused by someone else
71 * before we actually wrote our data to them. fs corruption
72 * ensues.
73 */
74 wait_on_page_writeback(page);
75
76 if (PagePrivate(page))
77 try_to_release_page(page, GFP_KERNEL);
78
79 /*
80 * If we succeeded in removing the mapping, set LRU flag
81 * and return good.
82 */
83 if (remove_mapping(mapping, page)) {
84 buf->flags |= PIPE_BUF_FLAG_LRU;
85 return 0;
86 }
87 }
88
89 /*
90 * Raced with truncate or failed to remove page from current
91 * address space, unlock and return failure.
92 */
93 unlock_page(page);
94 return 1;
95 }
96
97 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
99 {
100 page_cache_release(buf->page);
101 buf->flags &= ~PIPE_BUF_FLAG_LRU;
102 }
103
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
105 struct pipe_buffer *buf)
106 {
107 struct page *page = buf->page;
108 int err;
109
110 if (!PageUptodate(page)) {
111 lock_page(page);
112
113 /*
114 * Page got truncated/unhashed. This will cause a 0-byte
115 * splice, if this is the first page.
116 */
117 if (!page->mapping) {
118 err = -ENODATA;
119 goto error;
120 }
121
122 /*
123 * Uh oh, read-error from disk.
124 */
125 if (!PageUptodate(page)) {
126 err = -EIO;
127 goto error;
128 }
129
130 /*
131 * Page is ok afterall, we are done.
132 */
133 unlock_page(page);
134 }
135
136 return 0;
137 error:
138 unlock_page(page);
139 return err;
140 }
141
142 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
143 .can_merge = 0,
144 .map = generic_pipe_buf_map,
145 .unmap = generic_pipe_buf_unmap,
146 .pin = page_cache_pipe_buf_pin,
147 .release = page_cache_pipe_buf_release,
148 .steal = page_cache_pipe_buf_steal,
149 .get = generic_pipe_buf_get,
150 };
151
152 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
153 struct pipe_buffer *buf)
154 {
155 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
156 return 1;
157
158 buf->flags |= PIPE_BUF_FLAG_LRU;
159 return generic_pipe_buf_steal(pipe, buf);
160 }
161
162 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
163 .can_merge = 0,
164 .map = generic_pipe_buf_map,
165 .unmap = generic_pipe_buf_unmap,
166 .pin = generic_pipe_buf_pin,
167 .release = page_cache_pipe_buf_release,
168 .steal = user_page_pipe_buf_steal,
169 .get = generic_pipe_buf_get,
170 };
171
172 /*
173 * Pipe output worker. This sets up our pipe format with the page cache
174 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
175 */
176 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 struct splice_pipe_desc *spd)
178 {
179 int ret, do_wakeup, page_nr;
180
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
184
185 if (pipe->inode)
186 mutex_lock(&pipe->inode->i_mutex);
187
188 for (;;) {
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
191 if (!ret)
192 ret = -EPIPE;
193 break;
194 }
195
196 if (pipe->nrbufs < PIPE_BUFFERS) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
199
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->ops = spd->ops;
204 if (spd->flags & SPLICE_F_GIFT)
205 buf->flags |= PIPE_BUF_FLAG_GIFT;
206
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
210
211 if (pipe->inode)
212 do_wakeup = 1;
213
214 if (!--spd->nr_pages)
215 break;
216 if (pipe->nrbufs < PIPE_BUFFERS)
217 continue;
218
219 break;
220 }
221
222 if (spd->flags & SPLICE_F_NONBLOCK) {
223 if (!ret)
224 ret = -EAGAIN;
225 break;
226 }
227
228 if (signal_pending(current)) {
229 if (!ret)
230 ret = -ERESTARTSYS;
231 break;
232 }
233
234 if (do_wakeup) {
235 smp_mb();
236 if (waitqueue_active(&pipe->wait))
237 wake_up_interruptible_sync(&pipe->wait);
238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 do_wakeup = 0;
240 }
241
242 pipe->waiting_writers++;
243 pipe_wait(pipe);
244 pipe->waiting_writers--;
245 }
246
247 if (pipe->inode)
248 mutex_unlock(&pipe->inode->i_mutex);
249
250 if (do_wakeup) {
251 smp_mb();
252 if (waitqueue_active(&pipe->wait))
253 wake_up_interruptible(&pipe->wait);
254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
255 }
256
257 while (page_nr < spd->nr_pages)
258 page_cache_release(spd->pages[page_nr++]);
259
260 return ret;
261 }
262
263 static int
264 __generic_file_splice_read(struct file *in, loff_t *ppos,
265 struct pipe_inode_info *pipe, size_t len,
266 unsigned int flags)
267 {
268 struct address_space *mapping = in->f_mapping;
269 unsigned int loff, nr_pages;
270 struct page *pages[PIPE_BUFFERS];
271 struct partial_page partial[PIPE_BUFFERS];
272 struct page *page;
273 pgoff_t index, end_index;
274 loff_t isize;
275 int error, page_nr;
276 struct splice_pipe_desc spd = {
277 .pages = pages,
278 .partial = partial,
279 .flags = flags,
280 .ops = &page_cache_pipe_buf_ops,
281 };
282
283 index = *ppos >> PAGE_CACHE_SHIFT;
284 loff = *ppos & ~PAGE_CACHE_MASK;
285 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
286
287 if (nr_pages > PIPE_BUFFERS)
288 nr_pages = PIPE_BUFFERS;
289
290 /*
291 * Don't try to 2nd guess the read-ahead logic, call into
292 * page_cache_readahead() like the page cache reads would do.
293 */
294 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
295
296 /*
297 * Now fill in the holes:
298 */
299 error = 0;
300
301 /*
302 * Lookup the (hopefully) full range of pages we need.
303 */
304 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
305
306 /*
307 * If find_get_pages_contig() returned fewer pages than we needed,
308 * allocate the rest.
309 */
310 index += spd.nr_pages;
311 while (spd.nr_pages < nr_pages) {
312 /*
313 * Page could be there, find_get_pages_contig() breaks on
314 * the first hole.
315 */
316 page = find_get_page(mapping, index);
317 if (!page) {
318 /*
319 * Make sure the read-ahead engine is notified
320 * about this failure.
321 */
322 handle_ra_miss(mapping, &in->f_ra, index);
323
324 /*
325 * page didn't exist, allocate one.
326 */
327 page = page_cache_alloc_cold(mapping);
328 if (!page)
329 break;
330
331 error = add_to_page_cache_lru(page, mapping, index,
332 GFP_KERNEL);
333 if (unlikely(error)) {
334 page_cache_release(page);
335 if (error == -EEXIST)
336 continue;
337 break;
338 }
339 /*
340 * add_to_page_cache() locks the page, unlock it
341 * to avoid convoluting the logic below even more.
342 */
343 unlock_page(page);
344 }
345
346 pages[spd.nr_pages++] = page;
347 index++;
348 }
349
350 /*
351 * Now loop over the map and see if we need to start IO on any
352 * pages, fill in the partial map, etc.
353 */
354 index = *ppos >> PAGE_CACHE_SHIFT;
355 nr_pages = spd.nr_pages;
356 spd.nr_pages = 0;
357 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
358 unsigned int this_len;
359
360 if (!len)
361 break;
362
363 /*
364 * this_len is the max we'll use from this page
365 */
366 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
367 page = pages[page_nr];
368
369 /*
370 * If the page isn't uptodate, we may need to start io on it
371 */
372 if (!PageUptodate(page)) {
373 /*
374 * If in nonblock mode then dont block on waiting
375 * for an in-flight io page
376 */
377 if (flags & SPLICE_F_NONBLOCK) {
378 if (TestSetPageLocked(page))
379 break;
380 } else
381 lock_page(page);
382
383 /*
384 * page was truncated, stop here. if this isn't the
385 * first page, we'll just complete what we already
386 * added
387 */
388 if (!page->mapping) {
389 unlock_page(page);
390 break;
391 }
392 /*
393 * page was already under io and is now done, great
394 */
395 if (PageUptodate(page)) {
396 unlock_page(page);
397 goto fill_it;
398 }
399
400 /*
401 * need to read in the page
402 */
403 error = mapping->a_ops->readpage(in, page);
404 if (unlikely(error)) {
405 /*
406 * We really should re-lookup the page here,
407 * but it complicates things a lot. Instead
408 * lets just do what we already stored, and
409 * we'll get it the next time we are called.
410 */
411 if (error == AOP_TRUNCATED_PAGE)
412 error = 0;
413
414 break;
415 }
416 }
417 fill_it:
418 /*
419 * i_size must be checked after PageUptodate.
420 */
421 isize = i_size_read(mapping->host);
422 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
423 if (unlikely(!isize || index > end_index))
424 break;
425
426 /*
427 * if this is the last page, see if we need to shrink
428 * the length and stop
429 */
430 if (end_index == index) {
431 unsigned int plen;
432
433 /*
434 * max good bytes in this page
435 */
436 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
437 if (plen <= loff)
438 break;
439
440 /*
441 * force quit after adding this page
442 */
443 this_len = min(this_len, plen - loff);
444 len = this_len;
445 }
446
447 partial[page_nr].offset = loff;
448 partial[page_nr].len = this_len;
449 len -= this_len;
450 loff = 0;
451 spd.nr_pages++;
452 index++;
453 }
454
455 /*
456 * Release any pages at the end, if we quit early. 'page_nr' is how far
457 * we got, 'nr_pages' is how many pages are in the map.
458 */
459 while (page_nr < nr_pages)
460 page_cache_release(pages[page_nr++]);
461
462 if (spd.nr_pages)
463 return splice_to_pipe(pipe, &spd);
464
465 return error;
466 }
467
468 /**
469 * generic_file_splice_read - splice data from file to a pipe
470 * @in: file to splice from
471 * @pipe: pipe to splice to
472 * @len: number of bytes to splice
473 * @flags: splice modifier flags
474 *
475 * Will read pages from given file and fill them into a pipe.
476 */
477 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
478 struct pipe_inode_info *pipe, size_t len,
479 unsigned int flags)
480 {
481 ssize_t spliced;
482 int ret;
483 loff_t isize, left;
484
485 isize = i_size_read(in->f_mapping->host);
486 if (unlikely(*ppos >= isize))
487 return 0;
488
489 left = isize - *ppos;
490 if (unlikely(left < len))
491 len = left;
492
493 ret = 0;
494 spliced = 0;
495 while (len) {
496 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
497
498 if (ret < 0)
499 break;
500 else if (!ret) {
501 if (spliced)
502 break;
503 if (flags & SPLICE_F_NONBLOCK) {
504 ret = -EAGAIN;
505 break;
506 }
507 }
508
509 *ppos += ret;
510 len -= ret;
511 spliced += ret;
512 }
513
514 if (spliced)
515 return spliced;
516
517 return ret;
518 }
519
520 EXPORT_SYMBOL(generic_file_splice_read);
521
522 /*
523 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
524 * using sendpage(). Return the number of bytes sent.
525 */
526 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
527 struct pipe_buffer *buf, struct splice_desc *sd)
528 {
529 struct file *file = sd->file;
530 loff_t pos = sd->pos;
531 int ret, more;
532
533 ret = buf->ops->pin(pipe, buf);
534 if (!ret) {
535 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
536
537 ret = file->f_op->sendpage(file, buf->page, buf->offset,
538 sd->len, &pos, more);
539 }
540
541 return ret;
542 }
543
544 /*
545 * This is a little more tricky than the file -> pipe splicing. There are
546 * basically three cases:
547 *
548 * - Destination page already exists in the address space and there
549 * are users of it. For that case we have no other option that
550 * copying the data. Tough luck.
551 * - Destination page already exists in the address space, but there
552 * are no users of it. Make sure it's uptodate, then drop it. Fall
553 * through to last case.
554 * - Destination page does not exist, we can add the pipe page to
555 * the page cache and avoid the copy.
556 *
557 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
558 * sd->flags), we attempt to migrate pages from the pipe to the output
559 * file address space page cache. This is possible if no one else has
560 * the pipe page referenced outside of the pipe and page cache. If
561 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
562 * a new page in the output file page cache and fill/dirty that.
563 */
564 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
565 struct splice_desc *sd)
566 {
567 struct file *file = sd->file;
568 struct address_space *mapping = file->f_mapping;
569 unsigned int offset, this_len;
570 struct page *page;
571 pgoff_t index;
572 int ret;
573
574 /*
575 * make sure the data in this buffer is uptodate
576 */
577 ret = buf->ops->pin(pipe, buf);
578 if (unlikely(ret))
579 return ret;
580
581 index = sd->pos >> PAGE_CACHE_SHIFT;
582 offset = sd->pos & ~PAGE_CACHE_MASK;
583
584 this_len = sd->len;
585 if (this_len + offset > PAGE_CACHE_SIZE)
586 this_len = PAGE_CACHE_SIZE - offset;
587
588 find_page:
589 page = find_lock_page(mapping, index);
590 if (!page) {
591 ret = -ENOMEM;
592 page = page_cache_alloc_cold(mapping);
593 if (unlikely(!page))
594 goto out_ret;
595
596 /*
597 * This will also lock the page
598 */
599 ret = add_to_page_cache_lru(page, mapping, index,
600 GFP_KERNEL);
601 if (unlikely(ret))
602 goto out;
603 }
604
605 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
606 if (unlikely(ret)) {
607 loff_t isize = i_size_read(mapping->host);
608
609 if (ret != AOP_TRUNCATED_PAGE)
610 unlock_page(page);
611 page_cache_release(page);
612 if (ret == AOP_TRUNCATED_PAGE)
613 goto find_page;
614
615 /*
616 * prepare_write() may have instantiated a few blocks
617 * outside i_size. Trim these off again.
618 */
619 if (sd->pos + this_len > isize)
620 vmtruncate(mapping->host, isize);
621
622 goto out_ret;
623 }
624
625 if (buf->page != page) {
626 /*
627 * Careful, ->map() uses KM_USER0!
628 */
629 char *src = buf->ops->map(pipe, buf, 1);
630 char *dst = kmap_atomic(page, KM_USER1);
631
632 memcpy(dst + offset, src + buf->offset, this_len);
633 flush_dcache_page(page);
634 kunmap_atomic(dst, KM_USER1);
635 buf->ops->unmap(pipe, buf, src);
636 }
637
638 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
639 if (ret) {
640 if (ret == AOP_TRUNCATED_PAGE) {
641 page_cache_release(page);
642 goto find_page;
643 }
644 if (ret < 0)
645 goto out;
646 /*
647 * Partial write has happened, so 'ret' already initialized by
648 * number of bytes written, Where is nothing we have to do here.
649 */
650 } else
651 ret = this_len;
652 /*
653 * Return the number of bytes written and mark page as
654 * accessed, we are now done!
655 */
656 mark_page_accessed(page);
657 out:
658 page_cache_release(page);
659 unlock_page(page);
660 out_ret:
661 return ret;
662 }
663
664 /*
665 * Pipe input worker. Most of this logic works like a regular pipe, the
666 * key here is the 'actor' worker passed in that actually moves the data
667 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
668 */
669 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe,
670 struct file *out, loff_t *ppos, size_t len,
671 unsigned int flags, splice_actor *actor)
672 {
673 int ret, do_wakeup, err;
674 struct splice_desc sd;
675
676 ret = 0;
677 do_wakeup = 0;
678
679 sd.total_len = len;
680 sd.flags = flags;
681 sd.file = out;
682 sd.pos = *ppos;
683
684 for (;;) {
685 if (pipe->nrbufs) {
686 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
687 const struct pipe_buf_operations *ops = buf->ops;
688
689 sd.len = buf->len;
690 if (sd.len > sd.total_len)
691 sd.len = sd.total_len;
692
693 err = actor(pipe, buf, &sd);
694 if (err <= 0) {
695 if (!ret && err != -ENODATA)
696 ret = err;
697
698 break;
699 }
700
701 ret += err;
702 buf->offset += err;
703 buf->len -= err;
704
705 sd.len -= err;
706 sd.pos += err;
707 sd.total_len -= err;
708 if (sd.len)
709 continue;
710
711 if (!buf->len) {
712 buf->ops = NULL;
713 ops->release(pipe, buf);
714 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
715 pipe->nrbufs--;
716 if (pipe->inode)
717 do_wakeup = 1;
718 }
719
720 if (!sd.total_len)
721 break;
722 }
723
724 if (pipe->nrbufs)
725 continue;
726 if (!pipe->writers)
727 break;
728 if (!pipe->waiting_writers) {
729 if (ret)
730 break;
731 }
732
733 if (flags & SPLICE_F_NONBLOCK) {
734 if (!ret)
735 ret = -EAGAIN;
736 break;
737 }
738
739 if (signal_pending(current)) {
740 if (!ret)
741 ret = -ERESTARTSYS;
742 break;
743 }
744
745 if (do_wakeup) {
746 smp_mb();
747 if (waitqueue_active(&pipe->wait))
748 wake_up_interruptible_sync(&pipe->wait);
749 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
750 do_wakeup = 0;
751 }
752
753 pipe_wait(pipe);
754 }
755
756 if (do_wakeup) {
757 smp_mb();
758 if (waitqueue_active(&pipe->wait))
759 wake_up_interruptible(&pipe->wait);
760 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
761 }
762
763 return ret;
764 }
765 EXPORT_SYMBOL(__splice_from_pipe);
766
767 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
768 loff_t *ppos, size_t len, unsigned int flags,
769 splice_actor *actor)
770 {
771 ssize_t ret;
772 struct inode *inode = out->f_mapping->host;
773
774 /*
775 * The actor worker might be calling ->prepare_write and
776 * ->commit_write. Most of the time, these expect i_mutex to
777 * be held. Since this may result in an ABBA deadlock with
778 * pipe->inode, we have to order lock acquiry here.
779 */
780 inode_double_lock(inode, pipe->inode);
781 ret = __splice_from_pipe(pipe, out, ppos, len, flags, actor);
782 inode_double_unlock(inode, pipe->inode);
783
784 return ret;
785 }
786
787 /**
788 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
789 * @pipe: pipe info
790 * @out: file to write to
791 * @len: number of bytes to splice
792 * @flags: splice modifier flags
793 *
794 * Will either move or copy pages (determined by @flags options) from
795 * the given pipe inode to the given file. The caller is responsible
796 * for acquiring i_mutex on both inodes.
797 *
798 */
799 ssize_t
800 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
801 loff_t *ppos, size_t len, unsigned int flags)
802 {
803 struct address_space *mapping = out->f_mapping;
804 struct inode *inode = mapping->host;
805 ssize_t ret;
806 int err;
807
808 err = remove_suid(out->f_path.dentry);
809 if (unlikely(err))
810 return err;
811
812 ret = __splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
813 if (ret > 0) {
814 *ppos += ret;
815
816 /*
817 * If file or inode is SYNC and we actually wrote some data,
818 * sync it.
819 */
820 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
821 err = generic_osync_inode(inode, mapping,
822 OSYNC_METADATA|OSYNC_DATA);
823
824 if (err)
825 ret = err;
826 }
827 balance_dirty_pages_ratelimited(mapping);
828 }
829
830 return ret;
831 }
832
833 EXPORT_SYMBOL(generic_file_splice_write_nolock);
834
835 /**
836 * generic_file_splice_write - splice data from a pipe to a file
837 * @pipe: pipe info
838 * @out: file to write to
839 * @len: number of bytes to splice
840 * @flags: splice modifier flags
841 *
842 * Will either move or copy pages (determined by @flags options) from
843 * the given pipe inode to the given file.
844 *
845 */
846 ssize_t
847 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
848 loff_t *ppos, size_t len, unsigned int flags)
849 {
850 struct address_space *mapping = out->f_mapping;
851 struct inode *inode = mapping->host;
852 ssize_t ret;
853 int err;
854
855 err = should_remove_suid(out->f_path.dentry);
856 if (unlikely(err)) {
857 mutex_lock(&inode->i_mutex);
858 err = __remove_suid(out->f_path.dentry, err);
859 mutex_unlock(&inode->i_mutex);
860 if (err)
861 return err;
862 }
863
864 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
865 if (ret > 0) {
866 *ppos += ret;
867
868 /*
869 * If file or inode is SYNC and we actually wrote some data,
870 * sync it.
871 */
872 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
873 mutex_lock(&inode->i_mutex);
874 err = generic_osync_inode(inode, mapping,
875 OSYNC_METADATA|OSYNC_DATA);
876 mutex_unlock(&inode->i_mutex);
877
878 if (err)
879 ret = err;
880 }
881 balance_dirty_pages_ratelimited(mapping);
882 }
883
884 return ret;
885 }
886
887 EXPORT_SYMBOL(generic_file_splice_write);
888
889 /**
890 * generic_splice_sendpage - splice data from a pipe to a socket
891 * @inode: pipe inode
892 * @out: socket to write to
893 * @len: number of bytes to splice
894 * @flags: splice modifier flags
895 *
896 * Will send @len bytes from the pipe to a network socket. No data copying
897 * is involved.
898 *
899 */
900 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
901 loff_t *ppos, size_t len, unsigned int flags)
902 {
903 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
904 }
905
906 EXPORT_SYMBOL(generic_splice_sendpage);
907
908 /*
909 * Attempt to initiate a splice from pipe to file.
910 */
911 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
912 loff_t *ppos, size_t len, unsigned int flags)
913 {
914 int ret;
915
916 if (unlikely(!out->f_op || !out->f_op->splice_write))
917 return -EINVAL;
918
919 if (unlikely(!(out->f_mode & FMODE_WRITE)))
920 return -EBADF;
921
922 ret = rw_verify_area(WRITE, out, ppos, len);
923 if (unlikely(ret < 0))
924 return ret;
925
926 return out->f_op->splice_write(pipe, out, ppos, len, flags);
927 }
928
929 /*
930 * Attempt to initiate a splice from a file to a pipe.
931 */
932 static long do_splice_to(struct file *in, loff_t *ppos,
933 struct pipe_inode_info *pipe, size_t len,
934 unsigned int flags)
935 {
936 int ret;
937
938 if (unlikely(!in->f_op || !in->f_op->splice_read))
939 return -EINVAL;
940
941 if (unlikely(!(in->f_mode & FMODE_READ)))
942 return -EBADF;
943
944 ret = rw_verify_area(READ, in, ppos, len);
945 if (unlikely(ret < 0))
946 return ret;
947
948 return in->f_op->splice_read(in, ppos, pipe, len, flags);
949 }
950
951 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
952 size_t len, unsigned int flags)
953 {
954 struct pipe_inode_info *pipe;
955 long ret, bytes;
956 loff_t out_off;
957 umode_t i_mode;
958 int i;
959
960 /*
961 * We require the input being a regular file, as we don't want to
962 * randomly drop data for eg socket -> socket splicing. Use the
963 * piped splicing for that!
964 */
965 i_mode = in->f_path.dentry->d_inode->i_mode;
966 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
967 return -EINVAL;
968
969 /*
970 * neither in nor out is a pipe, setup an internal pipe attached to
971 * 'out' and transfer the wanted data from 'in' to 'out' through that
972 */
973 pipe = current->splice_pipe;
974 if (unlikely(!pipe)) {
975 pipe = alloc_pipe_info(NULL);
976 if (!pipe)
977 return -ENOMEM;
978
979 /*
980 * We don't have an immediate reader, but we'll read the stuff
981 * out of the pipe right after the splice_to_pipe(). So set
982 * PIPE_READERS appropriately.
983 */
984 pipe->readers = 1;
985
986 current->splice_pipe = pipe;
987 }
988
989 /*
990 * Do the splice.
991 */
992 ret = 0;
993 bytes = 0;
994 out_off = 0;
995
996 while (len) {
997 size_t read_len, max_read_len;
998
999 /*
1000 * Do at most PIPE_BUFFERS pages worth of transfer:
1001 */
1002 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1003
1004 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
1005 if (unlikely(ret < 0))
1006 goto out_release;
1007
1008 read_len = ret;
1009
1010 /*
1011 * NOTE: nonblocking mode only applies to the input. We
1012 * must not do the output in nonblocking mode as then we
1013 * could get stuck data in the internal pipe:
1014 */
1015 ret = do_splice_from(pipe, out, &out_off, read_len,
1016 flags & ~SPLICE_F_NONBLOCK);
1017 if (unlikely(ret < 0))
1018 goto out_release;
1019
1020 bytes += ret;
1021 len -= ret;
1022
1023 /*
1024 * In nonblocking mode, if we got back a short read then
1025 * that was due to either an IO error or due to the
1026 * pagecache entry not being there. In the IO error case
1027 * the _next_ splice attempt will produce a clean IO error
1028 * return value (not a short read), so in both cases it's
1029 * correct to break out of the loop here:
1030 */
1031 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1032 break;
1033 }
1034
1035 pipe->nrbufs = pipe->curbuf = 0;
1036
1037 return bytes;
1038
1039 out_release:
1040 /*
1041 * If we did an incomplete transfer we must release
1042 * the pipe buffers in question:
1043 */
1044 for (i = 0; i < PIPE_BUFFERS; i++) {
1045 struct pipe_buffer *buf = pipe->bufs + i;
1046
1047 if (buf->ops) {
1048 buf->ops->release(pipe, buf);
1049 buf->ops = NULL;
1050 }
1051 }
1052 pipe->nrbufs = pipe->curbuf = 0;
1053
1054 /*
1055 * If we transferred some data, return the number of bytes:
1056 */
1057 if (bytes > 0)
1058 return bytes;
1059
1060 return ret;
1061 }
1062
1063 /*
1064 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1065 * location, so checking ->i_pipe is not enough to verify that this is a
1066 * pipe.
1067 */
1068 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1069 {
1070 if (S_ISFIFO(inode->i_mode))
1071 return inode->i_pipe;
1072
1073 return NULL;
1074 }
1075
1076 /*
1077 * Determine where to splice to/from.
1078 */
1079 static long do_splice(struct file *in, loff_t __user *off_in,
1080 struct file *out, loff_t __user *off_out,
1081 size_t len, unsigned int flags)
1082 {
1083 struct pipe_inode_info *pipe;
1084 loff_t offset, *off;
1085 long ret;
1086
1087 pipe = pipe_info(in->f_path.dentry->d_inode);
1088 if (pipe) {
1089 if (off_in)
1090 return -ESPIPE;
1091 if (off_out) {
1092 if (out->f_op->llseek == no_llseek)
1093 return -EINVAL;
1094 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1095 return -EFAULT;
1096 off = &offset;
1097 } else
1098 off = &out->f_pos;
1099
1100 ret = do_splice_from(pipe, out, off, len, flags);
1101
1102 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1103 ret = -EFAULT;
1104
1105 return ret;
1106 }
1107
1108 pipe = pipe_info(out->f_path.dentry->d_inode);
1109 if (pipe) {
1110 if (off_out)
1111 return -ESPIPE;
1112 if (off_in) {
1113 if (in->f_op->llseek == no_llseek)
1114 return -EINVAL;
1115 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1116 return -EFAULT;
1117 off = &offset;
1118 } else
1119 off = &in->f_pos;
1120
1121 ret = do_splice_to(in, off, pipe, len, flags);
1122
1123 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1124 ret = -EFAULT;
1125
1126 return ret;
1127 }
1128
1129 return -EINVAL;
1130 }
1131
1132 /*
1133 * Map an iov into an array of pages and offset/length tupples. With the
1134 * partial_page structure, we can map several non-contiguous ranges into
1135 * our ones pages[] map instead of splitting that operation into pieces.
1136 * Could easily be exported as a generic helper for other users, in which
1137 * case one would probably want to add a 'max_nr_pages' parameter as well.
1138 */
1139 static int get_iovec_page_array(const struct iovec __user *iov,
1140 unsigned int nr_vecs, struct page **pages,
1141 struct partial_page *partial, int aligned)
1142 {
1143 int buffers = 0, error = 0;
1144
1145 /*
1146 * It's ok to take the mmap_sem for reading, even
1147 * across a "get_user()".
1148 */
1149 down_read(&current->mm->mmap_sem);
1150
1151 while (nr_vecs) {
1152 unsigned long off, npages;
1153 void __user *base;
1154 size_t len;
1155 int i;
1156
1157 /*
1158 * Get user address base and length for this iovec.
1159 */
1160 error = get_user(base, &iov->iov_base);
1161 if (unlikely(error))
1162 break;
1163 error = get_user(len, &iov->iov_len);
1164 if (unlikely(error))
1165 break;
1166
1167 /*
1168 * Sanity check this iovec. 0 read succeeds.
1169 */
1170 if (unlikely(!len))
1171 break;
1172 error = -EFAULT;
1173 if (unlikely(!base))
1174 break;
1175
1176 /*
1177 * Get this base offset and number of pages, then map
1178 * in the user pages.
1179 */
1180 off = (unsigned long) base & ~PAGE_MASK;
1181
1182 /*
1183 * If asked for alignment, the offset must be zero and the
1184 * length a multiple of the PAGE_SIZE.
1185 */
1186 error = -EINVAL;
1187 if (aligned && (off || len & ~PAGE_MASK))
1188 break;
1189
1190 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1191 if (npages > PIPE_BUFFERS - buffers)
1192 npages = PIPE_BUFFERS - buffers;
1193
1194 error = get_user_pages(current, current->mm,
1195 (unsigned long) base, npages, 0, 0,
1196 &pages[buffers], NULL);
1197
1198 if (unlikely(error <= 0))
1199 break;
1200
1201 /*
1202 * Fill this contiguous range into the partial page map.
1203 */
1204 for (i = 0; i < error; i++) {
1205 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1206
1207 partial[buffers].offset = off;
1208 partial[buffers].len = plen;
1209
1210 off = 0;
1211 len -= plen;
1212 buffers++;
1213 }
1214
1215 /*
1216 * We didn't complete this iov, stop here since it probably
1217 * means we have to move some of this into a pipe to
1218 * be able to continue.
1219 */
1220 if (len)
1221 break;
1222
1223 /*
1224 * Don't continue if we mapped fewer pages than we asked for,
1225 * or if we mapped the max number of pages that we have
1226 * room for.
1227 */
1228 if (error < npages || buffers == PIPE_BUFFERS)
1229 break;
1230
1231 nr_vecs--;
1232 iov++;
1233 }
1234
1235 up_read(&current->mm->mmap_sem);
1236
1237 if (buffers)
1238 return buffers;
1239
1240 return error;
1241 }
1242
1243 /*
1244 * vmsplice splices a user address range into a pipe. It can be thought of
1245 * as splice-from-memory, where the regular splice is splice-from-file (or
1246 * to file). In both cases the output is a pipe, naturally.
1247 *
1248 * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1249 * not the other way around. Splicing from user memory is a simple operation
1250 * that can be supported without any funky alignment restrictions or nasty
1251 * vm tricks. We simply map in the user memory and fill them into a pipe.
1252 * The reverse isn't quite as easy, though. There are two possible solutions
1253 * for that:
1254 *
1255 * - memcpy() the data internally, at which point we might as well just
1256 * do a regular read() on the buffer anyway.
1257 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1258 * has restriction limitations on both ends of the pipe).
1259 *
1260 * Alas, it isn't here.
1261 *
1262 */
1263 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1264 unsigned long nr_segs, unsigned int flags)
1265 {
1266 struct pipe_inode_info *pipe;
1267 struct page *pages[PIPE_BUFFERS];
1268 struct partial_page partial[PIPE_BUFFERS];
1269 struct splice_pipe_desc spd = {
1270 .pages = pages,
1271 .partial = partial,
1272 .flags = flags,
1273 .ops = &user_page_pipe_buf_ops,
1274 };
1275
1276 pipe = pipe_info(file->f_path.dentry->d_inode);
1277 if (!pipe)
1278 return -EBADF;
1279 if (unlikely(nr_segs > UIO_MAXIOV))
1280 return -EINVAL;
1281 else if (unlikely(!nr_segs))
1282 return 0;
1283
1284 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1285 flags & SPLICE_F_GIFT);
1286 if (spd.nr_pages <= 0)
1287 return spd.nr_pages;
1288
1289 return splice_to_pipe(pipe, &spd);
1290 }
1291
1292 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1293 unsigned long nr_segs, unsigned int flags)
1294 {
1295 struct file *file;
1296 long error;
1297 int fput;
1298
1299 error = -EBADF;
1300 file = fget_light(fd, &fput);
1301 if (file) {
1302 if (file->f_mode & FMODE_WRITE)
1303 error = do_vmsplice(file, iov, nr_segs, flags);
1304
1305 fput_light(file, fput);
1306 }
1307
1308 return error;
1309 }
1310
1311 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1312 int fd_out, loff_t __user *off_out,
1313 size_t len, unsigned int flags)
1314 {
1315 long error;
1316 struct file *in, *out;
1317 int fput_in, fput_out;
1318
1319 if (unlikely(!len))
1320 return 0;
1321
1322 error = -EBADF;
1323 in = fget_light(fd_in, &fput_in);
1324 if (in) {
1325 if (in->f_mode & FMODE_READ) {
1326 out = fget_light(fd_out, &fput_out);
1327 if (out) {
1328 if (out->f_mode & FMODE_WRITE)
1329 error = do_splice(in, off_in,
1330 out, off_out,
1331 len, flags);
1332 fput_light(out, fput_out);
1333 }
1334 }
1335
1336 fput_light(in, fput_in);
1337 }
1338
1339 return error;
1340 }
1341
1342 /*
1343 * Make sure there's data to read. Wait for input if we can, otherwise
1344 * return an appropriate error.
1345 */
1346 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1347 {
1348 int ret;
1349
1350 /*
1351 * Check ->nrbufs without the inode lock first. This function
1352 * is speculative anyways, so missing one is ok.
1353 */
1354 if (pipe->nrbufs)
1355 return 0;
1356
1357 ret = 0;
1358 mutex_lock(&pipe->inode->i_mutex);
1359
1360 while (!pipe->nrbufs) {
1361 if (signal_pending(current)) {
1362 ret = -ERESTARTSYS;
1363 break;
1364 }
1365 if (!pipe->writers)
1366 break;
1367 if (!pipe->waiting_writers) {
1368 if (flags & SPLICE_F_NONBLOCK) {
1369 ret = -EAGAIN;
1370 break;
1371 }
1372 }
1373 pipe_wait(pipe);
1374 }
1375
1376 mutex_unlock(&pipe->inode->i_mutex);
1377 return ret;
1378 }
1379
1380 /*
1381 * Make sure there's writeable room. Wait for room if we can, otherwise
1382 * return an appropriate error.
1383 */
1384 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1385 {
1386 int ret;
1387
1388 /*
1389 * Check ->nrbufs without the inode lock first. This function
1390 * is speculative anyways, so missing one is ok.
1391 */
1392 if (pipe->nrbufs < PIPE_BUFFERS)
1393 return 0;
1394
1395 ret = 0;
1396 mutex_lock(&pipe->inode->i_mutex);
1397
1398 while (pipe->nrbufs >= PIPE_BUFFERS) {
1399 if (!pipe->readers) {
1400 send_sig(SIGPIPE, current, 0);
1401 ret = -EPIPE;
1402 break;
1403 }
1404 if (flags & SPLICE_F_NONBLOCK) {
1405 ret = -EAGAIN;
1406 break;
1407 }
1408 if (signal_pending(current)) {
1409 ret = -ERESTARTSYS;
1410 break;
1411 }
1412 pipe->waiting_writers++;
1413 pipe_wait(pipe);
1414 pipe->waiting_writers--;
1415 }
1416
1417 mutex_unlock(&pipe->inode->i_mutex);
1418 return ret;
1419 }
1420
1421 /*
1422 * Link contents of ipipe to opipe.
1423 */
1424 static int link_pipe(struct pipe_inode_info *ipipe,
1425 struct pipe_inode_info *opipe,
1426 size_t len, unsigned int flags)
1427 {
1428 struct pipe_buffer *ibuf, *obuf;
1429 int ret = 0, i = 0, nbuf;
1430
1431 /*
1432 * Potential ABBA deadlock, work around it by ordering lock
1433 * grabbing by inode address. Otherwise two different processes
1434 * could deadlock (one doing tee from A -> B, the other from B -> A).
1435 */
1436 inode_double_lock(ipipe->inode, opipe->inode);
1437
1438 do {
1439 if (!opipe->readers) {
1440 send_sig(SIGPIPE, current, 0);
1441 if (!ret)
1442 ret = -EPIPE;
1443 break;
1444 }
1445
1446 /*
1447 * If we have iterated all input buffers or ran out of
1448 * output room, break.
1449 */
1450 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1451 break;
1452
1453 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1454 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1455
1456 /*
1457 * Get a reference to this pipe buffer,
1458 * so we can copy the contents over.
1459 */
1460 ibuf->ops->get(ipipe, ibuf);
1461
1462 obuf = opipe->bufs + nbuf;
1463 *obuf = *ibuf;
1464
1465 /*
1466 * Don't inherit the gift flag, we need to
1467 * prevent multiple steals of this page.
1468 */
1469 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1470
1471 if (obuf->len > len)
1472 obuf->len = len;
1473
1474 opipe->nrbufs++;
1475 ret += obuf->len;
1476 len -= obuf->len;
1477 i++;
1478 } while (len);
1479
1480 inode_double_unlock(ipipe->inode, opipe->inode);
1481
1482 /*
1483 * If we put data in the output pipe, wakeup any potential readers.
1484 */
1485 if (ret > 0) {
1486 smp_mb();
1487 if (waitqueue_active(&opipe->wait))
1488 wake_up_interruptible(&opipe->wait);
1489 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1490 }
1491
1492 return ret;
1493 }
1494
1495 /*
1496 * This is a tee(1) implementation that works on pipes. It doesn't copy
1497 * any data, it simply references the 'in' pages on the 'out' pipe.
1498 * The 'flags' used are the SPLICE_F_* variants, currently the only
1499 * applicable one is SPLICE_F_NONBLOCK.
1500 */
1501 static long do_tee(struct file *in, struct file *out, size_t len,
1502 unsigned int flags)
1503 {
1504 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1505 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1506 int ret = -EINVAL;
1507
1508 /*
1509 * Duplicate the contents of ipipe to opipe without actually
1510 * copying the data.
1511 */
1512 if (ipipe && opipe && ipipe != opipe) {
1513 /*
1514 * Keep going, unless we encounter an error. The ipipe/opipe
1515 * ordering doesn't really matter.
1516 */
1517 ret = link_ipipe_prep(ipipe, flags);
1518 if (!ret) {
1519 ret = link_opipe_prep(opipe, flags);
1520 if (!ret) {
1521 ret = link_pipe(ipipe, opipe, len, flags);
1522 if (!ret && (flags & SPLICE_F_NONBLOCK))
1523 ret = -EAGAIN;
1524 }
1525 }
1526 }
1527
1528 return ret;
1529 }
1530
1531 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1532 {
1533 struct file *in;
1534 int error, fput_in;
1535
1536 if (unlikely(!len))
1537 return 0;
1538
1539 error = -EBADF;
1540 in = fget_light(fdin, &fput_in);
1541 if (in) {
1542 if (in->f_mode & FMODE_READ) {
1543 int fput_out;
1544 struct file *out = fget_light(fdout, &fput_out);
1545
1546 if (out) {
1547 if (out->f_mode & FMODE_WRITE)
1548 error = do_tee(in, out, len, flags);
1549 fput_light(out, fput_out);
1550 }
1551 }
1552 fput_light(in, fput_in);
1553 }
1554
1555 return error;
1556 }
This page took 0.059911 seconds and 6 git commands to generate.