splice: move inode size check into generic_file_splice_read()
[deliverable/linux.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31
32 struct partial_page {
33 unsigned int offset;
34 unsigned int len;
35 };
36
37 /*
38 * Passed to splice_to_pipe
39 */
40 struct splice_pipe_desc {
41 struct page **pages; /* page map */
42 struct partial_page *partial; /* pages[] may not be contig */
43 int nr_pages; /* number of pages in map */
44 unsigned int flags; /* splice flags */
45 const struct pipe_buf_operations *ops;/* ops associated with output pipe */
46 };
47
48 /*
49 * Attempt to steal a page from a pipe buffer. This should perhaps go into
50 * a vm helper function, it's already simplified quite a bit by the
51 * addition of remove_mapping(). If success is returned, the caller may
52 * attempt to reuse this page for another destination.
53 */
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55 struct pipe_buffer *buf)
56 {
57 struct page *page = buf->page;
58 struct address_space *mapping;
59
60 lock_page(page);
61
62 mapping = page_mapping(page);
63 if (mapping) {
64 WARN_ON(!PageUptodate(page));
65
66 /*
67 * At least for ext2 with nobh option, we need to wait on
68 * writeback completing on this page, since we'll remove it
69 * from the pagecache. Otherwise truncate wont wait on the
70 * page, allowing the disk blocks to be reused by someone else
71 * before we actually wrote our data to them. fs corruption
72 * ensues.
73 */
74 wait_on_page_writeback(page);
75
76 if (PagePrivate(page))
77 try_to_release_page(page, GFP_KERNEL);
78
79 /*
80 * If we succeeded in removing the mapping, set LRU flag
81 * and return good.
82 */
83 if (remove_mapping(mapping, page)) {
84 buf->flags |= PIPE_BUF_FLAG_LRU;
85 return 0;
86 }
87 }
88
89 /*
90 * Raced with truncate or failed to remove page from current
91 * address space, unlock and return failure.
92 */
93 unlock_page(page);
94 return 1;
95 }
96
97 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
99 {
100 page_cache_release(buf->page);
101 buf->flags &= ~PIPE_BUF_FLAG_LRU;
102 }
103
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
105 struct pipe_buffer *buf)
106 {
107 struct page *page = buf->page;
108 int err;
109
110 if (!PageUptodate(page)) {
111 lock_page(page);
112
113 /*
114 * Page got truncated/unhashed. This will cause a 0-byte
115 * splice, if this is the first page.
116 */
117 if (!page->mapping) {
118 err = -ENODATA;
119 goto error;
120 }
121
122 /*
123 * Uh oh, read-error from disk.
124 */
125 if (!PageUptodate(page)) {
126 err = -EIO;
127 goto error;
128 }
129
130 /*
131 * Page is ok afterall, we are done.
132 */
133 unlock_page(page);
134 }
135
136 return 0;
137 error:
138 unlock_page(page);
139 return err;
140 }
141
142 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
143 .can_merge = 0,
144 .map = generic_pipe_buf_map,
145 .unmap = generic_pipe_buf_unmap,
146 .pin = page_cache_pipe_buf_pin,
147 .release = page_cache_pipe_buf_release,
148 .steal = page_cache_pipe_buf_steal,
149 .get = generic_pipe_buf_get,
150 };
151
152 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
153 struct pipe_buffer *buf)
154 {
155 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
156 return 1;
157
158 buf->flags |= PIPE_BUF_FLAG_LRU;
159 return generic_pipe_buf_steal(pipe, buf);
160 }
161
162 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
163 .can_merge = 0,
164 .map = generic_pipe_buf_map,
165 .unmap = generic_pipe_buf_unmap,
166 .pin = generic_pipe_buf_pin,
167 .release = page_cache_pipe_buf_release,
168 .steal = user_page_pipe_buf_steal,
169 .get = generic_pipe_buf_get,
170 };
171
172 /*
173 * Pipe output worker. This sets up our pipe format with the page cache
174 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
175 */
176 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 struct splice_pipe_desc *spd)
178 {
179 int ret, do_wakeup, page_nr;
180
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
184
185 if (pipe->inode)
186 mutex_lock(&pipe->inode->i_mutex);
187
188 for (;;) {
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
191 if (!ret)
192 ret = -EPIPE;
193 break;
194 }
195
196 if (pipe->nrbufs < PIPE_BUFFERS) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
199
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->ops = spd->ops;
204 if (spd->flags & SPLICE_F_GIFT)
205 buf->flags |= PIPE_BUF_FLAG_GIFT;
206
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
210
211 if (pipe->inode)
212 do_wakeup = 1;
213
214 if (!--spd->nr_pages)
215 break;
216 if (pipe->nrbufs < PIPE_BUFFERS)
217 continue;
218
219 break;
220 }
221
222 if (spd->flags & SPLICE_F_NONBLOCK) {
223 if (!ret)
224 ret = -EAGAIN;
225 break;
226 }
227
228 if (signal_pending(current)) {
229 if (!ret)
230 ret = -ERESTARTSYS;
231 break;
232 }
233
234 if (do_wakeup) {
235 smp_mb();
236 if (waitqueue_active(&pipe->wait))
237 wake_up_interruptible_sync(&pipe->wait);
238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 do_wakeup = 0;
240 }
241
242 pipe->waiting_writers++;
243 pipe_wait(pipe);
244 pipe->waiting_writers--;
245 }
246
247 if (pipe->inode)
248 mutex_unlock(&pipe->inode->i_mutex);
249
250 if (do_wakeup) {
251 smp_mb();
252 if (waitqueue_active(&pipe->wait))
253 wake_up_interruptible(&pipe->wait);
254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
255 }
256
257 while (page_nr < spd->nr_pages)
258 page_cache_release(spd->pages[page_nr++]);
259
260 return ret;
261 }
262
263 static int
264 __generic_file_splice_read(struct file *in, loff_t *ppos,
265 struct pipe_inode_info *pipe, size_t len,
266 unsigned int flags)
267 {
268 struct address_space *mapping = in->f_mapping;
269 unsigned int loff, nr_pages;
270 struct page *pages[PIPE_BUFFERS];
271 struct partial_page partial[PIPE_BUFFERS];
272 struct page *page;
273 pgoff_t index, end_index;
274 loff_t isize;
275 size_t total_len;
276 int error, page_nr;
277 struct splice_pipe_desc spd = {
278 .pages = pages,
279 .partial = partial,
280 .flags = flags,
281 .ops = &page_cache_pipe_buf_ops,
282 };
283
284 index = *ppos >> PAGE_CACHE_SHIFT;
285 loff = *ppos & ~PAGE_CACHE_MASK;
286 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
287
288 if (nr_pages > PIPE_BUFFERS)
289 nr_pages = PIPE_BUFFERS;
290
291 /*
292 * Don't try to 2nd guess the read-ahead logic, call into
293 * page_cache_readahead() like the page cache reads would do.
294 */
295 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
296
297 /*
298 * Now fill in the holes:
299 */
300 error = 0;
301 total_len = 0;
302
303 /*
304 * Lookup the (hopefully) full range of pages we need.
305 */
306 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
307
308 /*
309 * If find_get_pages_contig() returned fewer pages than we needed,
310 * allocate the rest.
311 */
312 index += spd.nr_pages;
313 while (spd.nr_pages < nr_pages) {
314 /*
315 * Page could be there, find_get_pages_contig() breaks on
316 * the first hole.
317 */
318 page = find_get_page(mapping, index);
319 if (!page) {
320 /*
321 * Make sure the read-ahead engine is notified
322 * about this failure.
323 */
324 handle_ra_miss(mapping, &in->f_ra, index);
325
326 /*
327 * page didn't exist, allocate one.
328 */
329 page = page_cache_alloc_cold(mapping);
330 if (!page)
331 break;
332
333 error = add_to_page_cache_lru(page, mapping, index,
334 GFP_KERNEL);
335 if (unlikely(error)) {
336 page_cache_release(page);
337 if (error == -EEXIST)
338 continue;
339 break;
340 }
341 /*
342 * add_to_page_cache() locks the page, unlock it
343 * to avoid convoluting the logic below even more.
344 */
345 unlock_page(page);
346 }
347
348 pages[spd.nr_pages++] = page;
349 index++;
350 }
351
352 /*
353 * Now loop over the map and see if we need to start IO on any
354 * pages, fill in the partial map, etc.
355 */
356 index = *ppos >> PAGE_CACHE_SHIFT;
357 nr_pages = spd.nr_pages;
358 spd.nr_pages = 0;
359 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
360 unsigned int this_len;
361
362 if (!len)
363 break;
364
365 /*
366 * this_len is the max we'll use from this page
367 */
368 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
369 page = pages[page_nr];
370
371 /*
372 * If the page isn't uptodate, we may need to start io on it
373 */
374 if (!PageUptodate(page)) {
375 /*
376 * If in nonblock mode then dont block on waiting
377 * for an in-flight io page
378 */
379 if (flags & SPLICE_F_NONBLOCK) {
380 if (TestSetPageLocked(page))
381 break;
382 } else
383 lock_page(page);
384
385 /*
386 * page was truncated, stop here. if this isn't the
387 * first page, we'll just complete what we already
388 * added
389 */
390 if (!page->mapping) {
391 unlock_page(page);
392 break;
393 }
394 /*
395 * page was already under io and is now done, great
396 */
397 if (PageUptodate(page)) {
398 unlock_page(page);
399 goto fill_it;
400 }
401
402 /*
403 * need to read in the page
404 */
405 error = mapping->a_ops->readpage(in, page);
406 if (unlikely(error)) {
407 /*
408 * We really should re-lookup the page here,
409 * but it complicates things a lot. Instead
410 * lets just do what we already stored, and
411 * we'll get it the next time we are called.
412 */
413 if (error == AOP_TRUNCATED_PAGE)
414 error = 0;
415
416 break;
417 }
418
419 /*
420 * i_size must be checked after ->readpage().
421 */
422 isize = i_size_read(mapping->host);
423 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
424 if (unlikely(!isize || index > end_index))
425 break;
426
427 /*
428 * if this is the last page, see if we need to shrink
429 * the length and stop
430 */
431 if (end_index == index) {
432 loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
433 if (total_len + loff > isize)
434 break;
435 /*
436 * force quit after adding this page
437 */
438 len = this_len;
439 this_len = min(this_len, loff);
440 loff = 0;
441 }
442 }
443 fill_it:
444 partial[page_nr].offset = loff;
445 partial[page_nr].len = this_len;
446 len -= this_len;
447 total_len += this_len;
448 loff = 0;
449 spd.nr_pages++;
450 index++;
451 }
452
453 /*
454 * Release any pages at the end, if we quit early. 'i' is how far
455 * we got, 'nr_pages' is how many pages are in the map.
456 */
457 while (page_nr < nr_pages)
458 page_cache_release(pages[page_nr++]);
459
460 if (spd.nr_pages)
461 return splice_to_pipe(pipe, &spd);
462
463 return error;
464 }
465
466 /**
467 * generic_file_splice_read - splice data from file to a pipe
468 * @in: file to splice from
469 * @pipe: pipe to splice to
470 * @len: number of bytes to splice
471 * @flags: splice modifier flags
472 *
473 * Will read pages from given file and fill them into a pipe.
474 */
475 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
476 struct pipe_inode_info *pipe, size_t len,
477 unsigned int flags)
478 {
479 ssize_t spliced;
480 int ret;
481 loff_t isize, left;
482
483 isize = i_size_read(in->f_mapping->host);
484 if (unlikely(*ppos >= isize))
485 return 0;
486
487 left = isize - *ppos;
488 if (unlikely(left < len))
489 len = left;
490
491 ret = 0;
492 spliced = 0;
493 while (len) {
494 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
495
496 if (ret < 0)
497 break;
498 else if (!ret) {
499 if (spliced)
500 break;
501 if (flags & SPLICE_F_NONBLOCK) {
502 ret = -EAGAIN;
503 break;
504 }
505 }
506
507 *ppos += ret;
508 len -= ret;
509 spliced += ret;
510 }
511
512 if (spliced)
513 return spliced;
514
515 return ret;
516 }
517
518 EXPORT_SYMBOL(generic_file_splice_read);
519
520 /*
521 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
522 * using sendpage(). Return the number of bytes sent.
523 */
524 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
525 struct pipe_buffer *buf, struct splice_desc *sd)
526 {
527 struct file *file = sd->file;
528 loff_t pos = sd->pos;
529 int ret, more;
530
531 ret = buf->ops->pin(pipe, buf);
532 if (!ret) {
533 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
534
535 ret = file->f_op->sendpage(file, buf->page, buf->offset,
536 sd->len, &pos, more);
537 }
538
539 return ret;
540 }
541
542 /*
543 * This is a little more tricky than the file -> pipe splicing. There are
544 * basically three cases:
545 *
546 * - Destination page already exists in the address space and there
547 * are users of it. For that case we have no other option that
548 * copying the data. Tough luck.
549 * - Destination page already exists in the address space, but there
550 * are no users of it. Make sure it's uptodate, then drop it. Fall
551 * through to last case.
552 * - Destination page does not exist, we can add the pipe page to
553 * the page cache and avoid the copy.
554 *
555 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
556 * sd->flags), we attempt to migrate pages from the pipe to the output
557 * file address space page cache. This is possible if no one else has
558 * the pipe page referenced outside of the pipe and page cache. If
559 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
560 * a new page in the output file page cache and fill/dirty that.
561 */
562 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
563 struct splice_desc *sd)
564 {
565 struct file *file = sd->file;
566 struct address_space *mapping = file->f_mapping;
567 unsigned int offset, this_len;
568 struct page *page;
569 pgoff_t index;
570 int ret;
571
572 /*
573 * make sure the data in this buffer is uptodate
574 */
575 ret = buf->ops->pin(pipe, buf);
576 if (unlikely(ret))
577 return ret;
578
579 index = sd->pos >> PAGE_CACHE_SHIFT;
580 offset = sd->pos & ~PAGE_CACHE_MASK;
581
582 this_len = sd->len;
583 if (this_len + offset > PAGE_CACHE_SIZE)
584 this_len = PAGE_CACHE_SIZE - offset;
585
586 find_page:
587 page = find_lock_page(mapping, index);
588 if (!page) {
589 ret = -ENOMEM;
590 page = page_cache_alloc_cold(mapping);
591 if (unlikely(!page))
592 goto out_ret;
593
594 /*
595 * This will also lock the page
596 */
597 ret = add_to_page_cache_lru(page, mapping, index,
598 GFP_KERNEL);
599 if (unlikely(ret))
600 goto out;
601 }
602
603 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
604 if (unlikely(ret)) {
605 loff_t isize = i_size_read(mapping->host);
606
607 if (ret != AOP_TRUNCATED_PAGE)
608 unlock_page(page);
609 page_cache_release(page);
610 if (ret == AOP_TRUNCATED_PAGE)
611 goto find_page;
612
613 /*
614 * prepare_write() may have instantiated a few blocks
615 * outside i_size. Trim these off again.
616 */
617 if (sd->pos + this_len > isize)
618 vmtruncate(mapping->host, isize);
619
620 goto out_ret;
621 }
622
623 if (buf->page != page) {
624 /*
625 * Careful, ->map() uses KM_USER0!
626 */
627 char *src = buf->ops->map(pipe, buf, 1);
628 char *dst = kmap_atomic(page, KM_USER1);
629
630 memcpy(dst + offset, src + buf->offset, this_len);
631 flush_dcache_page(page);
632 kunmap_atomic(dst, KM_USER1);
633 buf->ops->unmap(pipe, buf, src);
634 }
635
636 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
637 if (ret) {
638 if (ret == AOP_TRUNCATED_PAGE) {
639 page_cache_release(page);
640 goto find_page;
641 }
642 if (ret < 0)
643 goto out;
644 /*
645 * Partial write has happened, so 'ret' already initialized by
646 * number of bytes written, Where is nothing we have to do here.
647 */
648 } else
649 ret = this_len;
650 /*
651 * Return the number of bytes written and mark page as
652 * accessed, we are now done!
653 */
654 mark_page_accessed(page);
655 balance_dirty_pages_ratelimited(mapping);
656 out:
657 page_cache_release(page);
658 unlock_page(page);
659 out_ret:
660 return ret;
661 }
662
663 /*
664 * Pipe input worker. Most of this logic works like a regular pipe, the
665 * key here is the 'actor' worker passed in that actually moves the data
666 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
667 */
668 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe,
669 struct file *out, loff_t *ppos, size_t len,
670 unsigned int flags, splice_actor *actor)
671 {
672 int ret, do_wakeup, err;
673 struct splice_desc sd;
674
675 ret = 0;
676 do_wakeup = 0;
677
678 sd.total_len = len;
679 sd.flags = flags;
680 sd.file = out;
681 sd.pos = *ppos;
682
683 for (;;) {
684 if (pipe->nrbufs) {
685 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
686 const struct pipe_buf_operations *ops = buf->ops;
687
688 sd.len = buf->len;
689 if (sd.len > sd.total_len)
690 sd.len = sd.total_len;
691
692 err = actor(pipe, buf, &sd);
693 if (err <= 0) {
694 if (!ret && err != -ENODATA)
695 ret = err;
696
697 break;
698 }
699
700 ret += err;
701 buf->offset += err;
702 buf->len -= err;
703
704 sd.len -= err;
705 sd.pos += err;
706 sd.total_len -= err;
707 if (sd.len)
708 continue;
709
710 if (!buf->len) {
711 buf->ops = NULL;
712 ops->release(pipe, buf);
713 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
714 pipe->nrbufs--;
715 if (pipe->inode)
716 do_wakeup = 1;
717 }
718
719 if (!sd.total_len)
720 break;
721 }
722
723 if (pipe->nrbufs)
724 continue;
725 if (!pipe->writers)
726 break;
727 if (!pipe->waiting_writers) {
728 if (ret)
729 break;
730 }
731
732 if (flags & SPLICE_F_NONBLOCK) {
733 if (!ret)
734 ret = -EAGAIN;
735 break;
736 }
737
738 if (signal_pending(current)) {
739 if (!ret)
740 ret = -ERESTARTSYS;
741 break;
742 }
743
744 if (do_wakeup) {
745 smp_mb();
746 if (waitqueue_active(&pipe->wait))
747 wake_up_interruptible_sync(&pipe->wait);
748 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
749 do_wakeup = 0;
750 }
751
752 pipe_wait(pipe);
753 }
754
755 if (do_wakeup) {
756 smp_mb();
757 if (waitqueue_active(&pipe->wait))
758 wake_up_interruptible(&pipe->wait);
759 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
760 }
761
762 return ret;
763 }
764 EXPORT_SYMBOL(__splice_from_pipe);
765
766 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
767 loff_t *ppos, size_t len, unsigned int flags,
768 splice_actor *actor)
769 {
770 ssize_t ret;
771 struct inode *inode = out->f_mapping->host;
772
773 /*
774 * The actor worker might be calling ->prepare_write and
775 * ->commit_write. Most of the time, these expect i_mutex to
776 * be held. Since this may result in an ABBA deadlock with
777 * pipe->inode, we have to order lock acquiry here.
778 */
779 inode_double_lock(inode, pipe->inode);
780 ret = __splice_from_pipe(pipe, out, ppos, len, flags, actor);
781 inode_double_unlock(inode, pipe->inode);
782
783 return ret;
784 }
785
786 /**
787 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
788 * @pipe: pipe info
789 * @out: file to write to
790 * @len: number of bytes to splice
791 * @flags: splice modifier flags
792 *
793 * Will either move or copy pages (determined by @flags options) from
794 * the given pipe inode to the given file. The caller is responsible
795 * for acquiring i_mutex on both inodes.
796 *
797 */
798 ssize_t
799 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
800 loff_t *ppos, size_t len, unsigned int flags)
801 {
802 struct address_space *mapping = out->f_mapping;
803 struct inode *inode = mapping->host;
804 ssize_t ret;
805 int err;
806
807 err = remove_suid(out->f_path.dentry);
808 if (unlikely(err))
809 return err;
810
811 ret = __splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
812 if (ret > 0) {
813 *ppos += ret;
814
815 /*
816 * If file or inode is SYNC and we actually wrote some data,
817 * sync it.
818 */
819 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
820 err = generic_osync_inode(inode, mapping,
821 OSYNC_METADATA|OSYNC_DATA);
822
823 if (err)
824 ret = err;
825 }
826 }
827
828 return ret;
829 }
830
831 EXPORT_SYMBOL(generic_file_splice_write_nolock);
832
833 /**
834 * generic_file_splice_write - splice data from a pipe to a file
835 * @pipe: pipe info
836 * @out: file to write to
837 * @len: number of bytes to splice
838 * @flags: splice modifier flags
839 *
840 * Will either move or copy pages (determined by @flags options) from
841 * the given pipe inode to the given file.
842 *
843 */
844 ssize_t
845 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
846 loff_t *ppos, size_t len, unsigned int flags)
847 {
848 struct address_space *mapping = out->f_mapping;
849 struct inode *inode = mapping->host;
850 ssize_t ret;
851 int err;
852
853 err = should_remove_suid(out->f_path.dentry);
854 if (unlikely(err)) {
855 mutex_lock(&inode->i_mutex);
856 err = __remove_suid(out->f_path.dentry, err);
857 mutex_unlock(&inode->i_mutex);
858 if (err)
859 return err;
860 }
861
862 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
863 if (ret > 0) {
864 *ppos += ret;
865
866 /*
867 * If file or inode is SYNC and we actually wrote some data,
868 * sync it.
869 */
870 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
871 mutex_lock(&inode->i_mutex);
872 err = generic_osync_inode(inode, mapping,
873 OSYNC_METADATA|OSYNC_DATA);
874 mutex_unlock(&inode->i_mutex);
875
876 if (err)
877 ret = err;
878 }
879 }
880
881 return ret;
882 }
883
884 EXPORT_SYMBOL(generic_file_splice_write);
885
886 /**
887 * generic_splice_sendpage - splice data from a pipe to a socket
888 * @inode: pipe inode
889 * @out: socket to write to
890 * @len: number of bytes to splice
891 * @flags: splice modifier flags
892 *
893 * Will send @len bytes from the pipe to a network socket. No data copying
894 * is involved.
895 *
896 */
897 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
898 loff_t *ppos, size_t len, unsigned int flags)
899 {
900 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
901 }
902
903 EXPORT_SYMBOL(generic_splice_sendpage);
904
905 /*
906 * Attempt to initiate a splice from pipe to file.
907 */
908 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
909 loff_t *ppos, size_t len, unsigned int flags)
910 {
911 int ret;
912
913 if (unlikely(!out->f_op || !out->f_op->splice_write))
914 return -EINVAL;
915
916 if (unlikely(!(out->f_mode & FMODE_WRITE)))
917 return -EBADF;
918
919 ret = rw_verify_area(WRITE, out, ppos, len);
920 if (unlikely(ret < 0))
921 return ret;
922
923 return out->f_op->splice_write(pipe, out, ppos, len, flags);
924 }
925
926 /*
927 * Attempt to initiate a splice from a file to a pipe.
928 */
929 static long do_splice_to(struct file *in, loff_t *ppos,
930 struct pipe_inode_info *pipe, size_t len,
931 unsigned int flags)
932 {
933 int ret;
934
935 if (unlikely(!in->f_op || !in->f_op->splice_read))
936 return -EINVAL;
937
938 if (unlikely(!(in->f_mode & FMODE_READ)))
939 return -EBADF;
940
941 ret = rw_verify_area(READ, in, ppos, len);
942 if (unlikely(ret < 0))
943 return ret;
944
945 return in->f_op->splice_read(in, ppos, pipe, len, flags);
946 }
947
948 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
949 size_t len, unsigned int flags)
950 {
951 struct pipe_inode_info *pipe;
952 long ret, bytes;
953 loff_t out_off;
954 umode_t i_mode;
955 int i;
956
957 /*
958 * We require the input being a regular file, as we don't want to
959 * randomly drop data for eg socket -> socket splicing. Use the
960 * piped splicing for that!
961 */
962 i_mode = in->f_path.dentry->d_inode->i_mode;
963 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
964 return -EINVAL;
965
966 /*
967 * neither in nor out is a pipe, setup an internal pipe attached to
968 * 'out' and transfer the wanted data from 'in' to 'out' through that
969 */
970 pipe = current->splice_pipe;
971 if (unlikely(!pipe)) {
972 pipe = alloc_pipe_info(NULL);
973 if (!pipe)
974 return -ENOMEM;
975
976 /*
977 * We don't have an immediate reader, but we'll read the stuff
978 * out of the pipe right after the splice_to_pipe(). So set
979 * PIPE_READERS appropriately.
980 */
981 pipe->readers = 1;
982
983 current->splice_pipe = pipe;
984 }
985
986 /*
987 * Do the splice.
988 */
989 ret = 0;
990 bytes = 0;
991 out_off = 0;
992
993 while (len) {
994 size_t read_len, max_read_len;
995
996 /*
997 * Do at most PIPE_BUFFERS pages worth of transfer:
998 */
999 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1000
1001 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
1002 if (unlikely(ret < 0))
1003 goto out_release;
1004
1005 read_len = ret;
1006
1007 /*
1008 * NOTE: nonblocking mode only applies to the input. We
1009 * must not do the output in nonblocking mode as then we
1010 * could get stuck data in the internal pipe:
1011 */
1012 ret = do_splice_from(pipe, out, &out_off, read_len,
1013 flags & ~SPLICE_F_NONBLOCK);
1014 if (unlikely(ret < 0))
1015 goto out_release;
1016
1017 bytes += ret;
1018 len -= ret;
1019
1020 /*
1021 * In nonblocking mode, if we got back a short read then
1022 * that was due to either an IO error or due to the
1023 * pagecache entry not being there. In the IO error case
1024 * the _next_ splice attempt will produce a clean IO error
1025 * return value (not a short read), so in both cases it's
1026 * correct to break out of the loop here:
1027 */
1028 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1029 break;
1030 }
1031
1032 pipe->nrbufs = pipe->curbuf = 0;
1033
1034 return bytes;
1035
1036 out_release:
1037 /*
1038 * If we did an incomplete transfer we must release
1039 * the pipe buffers in question:
1040 */
1041 for (i = 0; i < PIPE_BUFFERS; i++) {
1042 struct pipe_buffer *buf = pipe->bufs + i;
1043
1044 if (buf->ops) {
1045 buf->ops->release(pipe, buf);
1046 buf->ops = NULL;
1047 }
1048 }
1049 pipe->nrbufs = pipe->curbuf = 0;
1050
1051 /*
1052 * If we transferred some data, return the number of bytes:
1053 */
1054 if (bytes > 0)
1055 return bytes;
1056
1057 return ret;
1058 }
1059
1060 EXPORT_SYMBOL(do_splice_direct);
1061
1062 /*
1063 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1064 * location, so checking ->i_pipe is not enough to verify that this is a
1065 * pipe.
1066 */
1067 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1068 {
1069 if (S_ISFIFO(inode->i_mode))
1070 return inode->i_pipe;
1071
1072 return NULL;
1073 }
1074
1075 /*
1076 * Determine where to splice to/from.
1077 */
1078 static long do_splice(struct file *in, loff_t __user *off_in,
1079 struct file *out, loff_t __user *off_out,
1080 size_t len, unsigned int flags)
1081 {
1082 struct pipe_inode_info *pipe;
1083 loff_t offset, *off;
1084 long ret;
1085
1086 pipe = pipe_info(in->f_path.dentry->d_inode);
1087 if (pipe) {
1088 if (off_in)
1089 return -ESPIPE;
1090 if (off_out) {
1091 if (out->f_op->llseek == no_llseek)
1092 return -EINVAL;
1093 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1094 return -EFAULT;
1095 off = &offset;
1096 } else
1097 off = &out->f_pos;
1098
1099 ret = do_splice_from(pipe, out, off, len, flags);
1100
1101 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1102 ret = -EFAULT;
1103
1104 return ret;
1105 }
1106
1107 pipe = pipe_info(out->f_path.dentry->d_inode);
1108 if (pipe) {
1109 if (off_out)
1110 return -ESPIPE;
1111 if (off_in) {
1112 if (in->f_op->llseek == no_llseek)
1113 return -EINVAL;
1114 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1115 return -EFAULT;
1116 off = &offset;
1117 } else
1118 off = &in->f_pos;
1119
1120 ret = do_splice_to(in, off, pipe, len, flags);
1121
1122 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1123 ret = -EFAULT;
1124
1125 return ret;
1126 }
1127
1128 return -EINVAL;
1129 }
1130
1131 /*
1132 * Map an iov into an array of pages and offset/length tupples. With the
1133 * partial_page structure, we can map several non-contiguous ranges into
1134 * our ones pages[] map instead of splitting that operation into pieces.
1135 * Could easily be exported as a generic helper for other users, in which
1136 * case one would probably want to add a 'max_nr_pages' parameter as well.
1137 */
1138 static int get_iovec_page_array(const struct iovec __user *iov,
1139 unsigned int nr_vecs, struct page **pages,
1140 struct partial_page *partial, int aligned)
1141 {
1142 int buffers = 0, error = 0;
1143
1144 /*
1145 * It's ok to take the mmap_sem for reading, even
1146 * across a "get_user()".
1147 */
1148 down_read(&current->mm->mmap_sem);
1149
1150 while (nr_vecs) {
1151 unsigned long off, npages;
1152 void __user *base;
1153 size_t len;
1154 int i;
1155
1156 /*
1157 * Get user address base and length for this iovec.
1158 */
1159 error = get_user(base, &iov->iov_base);
1160 if (unlikely(error))
1161 break;
1162 error = get_user(len, &iov->iov_len);
1163 if (unlikely(error))
1164 break;
1165
1166 /*
1167 * Sanity check this iovec. 0 read succeeds.
1168 */
1169 if (unlikely(!len))
1170 break;
1171 error = -EFAULT;
1172 if (unlikely(!base))
1173 break;
1174
1175 /*
1176 * Get this base offset and number of pages, then map
1177 * in the user pages.
1178 */
1179 off = (unsigned long) base & ~PAGE_MASK;
1180
1181 /*
1182 * If asked for alignment, the offset must be zero and the
1183 * length a multiple of the PAGE_SIZE.
1184 */
1185 error = -EINVAL;
1186 if (aligned && (off || len & ~PAGE_MASK))
1187 break;
1188
1189 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1190 if (npages > PIPE_BUFFERS - buffers)
1191 npages = PIPE_BUFFERS - buffers;
1192
1193 error = get_user_pages(current, current->mm,
1194 (unsigned long) base, npages, 0, 0,
1195 &pages[buffers], NULL);
1196
1197 if (unlikely(error <= 0))
1198 break;
1199
1200 /*
1201 * Fill this contiguous range into the partial page map.
1202 */
1203 for (i = 0; i < error; i++) {
1204 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1205
1206 partial[buffers].offset = off;
1207 partial[buffers].len = plen;
1208
1209 off = 0;
1210 len -= plen;
1211 buffers++;
1212 }
1213
1214 /*
1215 * We didn't complete this iov, stop here since it probably
1216 * means we have to move some of this into a pipe to
1217 * be able to continue.
1218 */
1219 if (len)
1220 break;
1221
1222 /*
1223 * Don't continue if we mapped fewer pages than we asked for,
1224 * or if we mapped the max number of pages that we have
1225 * room for.
1226 */
1227 if (error < npages || buffers == PIPE_BUFFERS)
1228 break;
1229
1230 nr_vecs--;
1231 iov++;
1232 }
1233
1234 up_read(&current->mm->mmap_sem);
1235
1236 if (buffers)
1237 return buffers;
1238
1239 return error;
1240 }
1241
1242 /*
1243 * vmsplice splices a user address range into a pipe. It can be thought of
1244 * as splice-from-memory, where the regular splice is splice-from-file (or
1245 * to file). In both cases the output is a pipe, naturally.
1246 *
1247 * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1248 * not the other way around. Splicing from user memory is a simple operation
1249 * that can be supported without any funky alignment restrictions or nasty
1250 * vm tricks. We simply map in the user memory and fill them into a pipe.
1251 * The reverse isn't quite as easy, though. There are two possible solutions
1252 * for that:
1253 *
1254 * - memcpy() the data internally, at which point we might as well just
1255 * do a regular read() on the buffer anyway.
1256 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1257 * has restriction limitations on both ends of the pipe).
1258 *
1259 * Alas, it isn't here.
1260 *
1261 */
1262 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1263 unsigned long nr_segs, unsigned int flags)
1264 {
1265 struct pipe_inode_info *pipe;
1266 struct page *pages[PIPE_BUFFERS];
1267 struct partial_page partial[PIPE_BUFFERS];
1268 struct splice_pipe_desc spd = {
1269 .pages = pages,
1270 .partial = partial,
1271 .flags = flags,
1272 .ops = &user_page_pipe_buf_ops,
1273 };
1274
1275 pipe = pipe_info(file->f_path.dentry->d_inode);
1276 if (!pipe)
1277 return -EBADF;
1278 if (unlikely(nr_segs > UIO_MAXIOV))
1279 return -EINVAL;
1280 else if (unlikely(!nr_segs))
1281 return 0;
1282
1283 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1284 flags & SPLICE_F_GIFT);
1285 if (spd.nr_pages <= 0)
1286 return spd.nr_pages;
1287
1288 return splice_to_pipe(pipe, &spd);
1289 }
1290
1291 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1292 unsigned long nr_segs, unsigned int flags)
1293 {
1294 struct file *file;
1295 long error;
1296 int fput;
1297
1298 error = -EBADF;
1299 file = fget_light(fd, &fput);
1300 if (file) {
1301 if (file->f_mode & FMODE_WRITE)
1302 error = do_vmsplice(file, iov, nr_segs, flags);
1303
1304 fput_light(file, fput);
1305 }
1306
1307 return error;
1308 }
1309
1310 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1311 int fd_out, loff_t __user *off_out,
1312 size_t len, unsigned int flags)
1313 {
1314 long error;
1315 struct file *in, *out;
1316 int fput_in, fput_out;
1317
1318 if (unlikely(!len))
1319 return 0;
1320
1321 error = -EBADF;
1322 in = fget_light(fd_in, &fput_in);
1323 if (in) {
1324 if (in->f_mode & FMODE_READ) {
1325 out = fget_light(fd_out, &fput_out);
1326 if (out) {
1327 if (out->f_mode & FMODE_WRITE)
1328 error = do_splice(in, off_in,
1329 out, off_out,
1330 len, flags);
1331 fput_light(out, fput_out);
1332 }
1333 }
1334
1335 fput_light(in, fput_in);
1336 }
1337
1338 return error;
1339 }
1340
1341 /*
1342 * Make sure there's data to read. Wait for input if we can, otherwise
1343 * return an appropriate error.
1344 */
1345 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1346 {
1347 int ret;
1348
1349 /*
1350 * Check ->nrbufs without the inode lock first. This function
1351 * is speculative anyways, so missing one is ok.
1352 */
1353 if (pipe->nrbufs)
1354 return 0;
1355
1356 ret = 0;
1357 mutex_lock(&pipe->inode->i_mutex);
1358
1359 while (!pipe->nrbufs) {
1360 if (signal_pending(current)) {
1361 ret = -ERESTARTSYS;
1362 break;
1363 }
1364 if (!pipe->writers)
1365 break;
1366 if (!pipe->waiting_writers) {
1367 if (flags & SPLICE_F_NONBLOCK) {
1368 ret = -EAGAIN;
1369 break;
1370 }
1371 }
1372 pipe_wait(pipe);
1373 }
1374
1375 mutex_unlock(&pipe->inode->i_mutex);
1376 return ret;
1377 }
1378
1379 /*
1380 * Make sure there's writeable room. Wait for room if we can, otherwise
1381 * return an appropriate error.
1382 */
1383 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1384 {
1385 int ret;
1386
1387 /*
1388 * Check ->nrbufs without the inode lock first. This function
1389 * is speculative anyways, so missing one is ok.
1390 */
1391 if (pipe->nrbufs < PIPE_BUFFERS)
1392 return 0;
1393
1394 ret = 0;
1395 mutex_lock(&pipe->inode->i_mutex);
1396
1397 while (pipe->nrbufs >= PIPE_BUFFERS) {
1398 if (!pipe->readers) {
1399 send_sig(SIGPIPE, current, 0);
1400 ret = -EPIPE;
1401 break;
1402 }
1403 if (flags & SPLICE_F_NONBLOCK) {
1404 ret = -EAGAIN;
1405 break;
1406 }
1407 if (signal_pending(current)) {
1408 ret = -ERESTARTSYS;
1409 break;
1410 }
1411 pipe->waiting_writers++;
1412 pipe_wait(pipe);
1413 pipe->waiting_writers--;
1414 }
1415
1416 mutex_unlock(&pipe->inode->i_mutex);
1417 return ret;
1418 }
1419
1420 /*
1421 * Link contents of ipipe to opipe.
1422 */
1423 static int link_pipe(struct pipe_inode_info *ipipe,
1424 struct pipe_inode_info *opipe,
1425 size_t len, unsigned int flags)
1426 {
1427 struct pipe_buffer *ibuf, *obuf;
1428 int ret = 0, i = 0, nbuf;
1429
1430 /*
1431 * Potential ABBA deadlock, work around it by ordering lock
1432 * grabbing by inode address. Otherwise two different processes
1433 * could deadlock (one doing tee from A -> B, the other from B -> A).
1434 */
1435 inode_double_lock(ipipe->inode, opipe->inode);
1436
1437 do {
1438 if (!opipe->readers) {
1439 send_sig(SIGPIPE, current, 0);
1440 if (!ret)
1441 ret = -EPIPE;
1442 break;
1443 }
1444
1445 /*
1446 * If we have iterated all input buffers or ran out of
1447 * output room, break.
1448 */
1449 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1450 break;
1451
1452 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1453 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1454
1455 /*
1456 * Get a reference to this pipe buffer,
1457 * so we can copy the contents over.
1458 */
1459 ibuf->ops->get(ipipe, ibuf);
1460
1461 obuf = opipe->bufs + nbuf;
1462 *obuf = *ibuf;
1463
1464 /*
1465 * Don't inherit the gift flag, we need to
1466 * prevent multiple steals of this page.
1467 */
1468 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1469
1470 if (obuf->len > len)
1471 obuf->len = len;
1472
1473 opipe->nrbufs++;
1474 ret += obuf->len;
1475 len -= obuf->len;
1476 i++;
1477 } while (len);
1478
1479 inode_double_unlock(ipipe->inode, opipe->inode);
1480
1481 /*
1482 * If we put data in the output pipe, wakeup any potential readers.
1483 */
1484 if (ret > 0) {
1485 smp_mb();
1486 if (waitqueue_active(&opipe->wait))
1487 wake_up_interruptible(&opipe->wait);
1488 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1489 }
1490
1491 return ret;
1492 }
1493
1494 /*
1495 * This is a tee(1) implementation that works on pipes. It doesn't copy
1496 * any data, it simply references the 'in' pages on the 'out' pipe.
1497 * The 'flags' used are the SPLICE_F_* variants, currently the only
1498 * applicable one is SPLICE_F_NONBLOCK.
1499 */
1500 static long do_tee(struct file *in, struct file *out, size_t len,
1501 unsigned int flags)
1502 {
1503 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1504 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1505 int ret = -EINVAL;
1506
1507 /*
1508 * Duplicate the contents of ipipe to opipe without actually
1509 * copying the data.
1510 */
1511 if (ipipe && opipe && ipipe != opipe) {
1512 /*
1513 * Keep going, unless we encounter an error. The ipipe/opipe
1514 * ordering doesn't really matter.
1515 */
1516 ret = link_ipipe_prep(ipipe, flags);
1517 if (!ret) {
1518 ret = link_opipe_prep(opipe, flags);
1519 if (!ret) {
1520 ret = link_pipe(ipipe, opipe, len, flags);
1521 if (!ret && (flags & SPLICE_F_NONBLOCK))
1522 ret = -EAGAIN;
1523 }
1524 }
1525 }
1526
1527 return ret;
1528 }
1529
1530 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1531 {
1532 struct file *in;
1533 int error, fput_in;
1534
1535 if (unlikely(!len))
1536 return 0;
1537
1538 error = -EBADF;
1539 in = fget_light(fdin, &fput_in);
1540 if (in) {
1541 if (in->f_mode & FMODE_READ) {
1542 int fput_out;
1543 struct file *out = fget_light(fdout, &fput_out);
1544
1545 if (out) {
1546 if (out->f_mode & FMODE_WRITE)
1547 error = do_tee(in, out, len, flags);
1548 fput_light(out, fput_out);
1549 }
1550 }
1551 fput_light(in, fput_in);
1552 }
1553
1554 return error;
1555 }
This page took 0.087689 seconds and 6 git commands to generate.