[media] dvb_usb_v2: af9015, af9035, anysee use .reset_resume
[deliverable/linux.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include "internal.h"
38
39
40 LIST_HEAD(super_blocks);
41 DEFINE_SPINLOCK(sb_lock);
42
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 "sb_writers",
45 "sb_pagefaults",
46 "sb_internal",
47 };
48
49 /*
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
55 */
56 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
57 {
58 struct super_block *sb;
59 int fs_objects = 0;
60 int total_objects;
61
62 sb = container_of(shrink, struct super_block, s_shrink);
63
64 /*
65 * Deadlock avoidance. We may hold various FS locks, and we don't want
66 * to recurse into the FS that called us in clear_inode() and friends..
67 */
68 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
69 return -1;
70
71 if (!grab_super_passive(sb))
72 return -1;
73
74 if (sb->s_op && sb->s_op->nr_cached_objects)
75 fs_objects = sb->s_op->nr_cached_objects(sb);
76
77 total_objects = sb->s_nr_dentry_unused +
78 sb->s_nr_inodes_unused + fs_objects + 1;
79
80 if (sc->nr_to_scan) {
81 int dentries;
82 int inodes;
83
84 /* proportion the scan between the caches */
85 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
86 total_objects;
87 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
88 total_objects;
89 if (fs_objects)
90 fs_objects = (sc->nr_to_scan * fs_objects) /
91 total_objects;
92 /*
93 * prune the dcache first as the icache is pinned by it, then
94 * prune the icache, followed by the filesystem specific caches
95 */
96 prune_dcache_sb(sb, dentries);
97 prune_icache_sb(sb, inodes);
98
99 if (fs_objects && sb->s_op->free_cached_objects) {
100 sb->s_op->free_cached_objects(sb, fs_objects);
101 fs_objects = sb->s_op->nr_cached_objects(sb);
102 }
103 total_objects = sb->s_nr_dentry_unused +
104 sb->s_nr_inodes_unused + fs_objects;
105 }
106
107 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
108 drop_super(sb);
109 return total_objects;
110 }
111
112 static int init_sb_writers(struct super_block *s, struct file_system_type *type)
113 {
114 int err;
115 int i;
116
117 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
118 err = percpu_counter_init(&s->s_writers.counter[i], 0);
119 if (err < 0)
120 goto err_out;
121 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
122 &type->s_writers_key[i], 0);
123 }
124 init_waitqueue_head(&s->s_writers.wait);
125 init_waitqueue_head(&s->s_writers.wait_unfrozen);
126 return 0;
127 err_out:
128 while (--i >= 0)
129 percpu_counter_destroy(&s->s_writers.counter[i]);
130 return err;
131 }
132
133 static void destroy_sb_writers(struct super_block *s)
134 {
135 int i;
136
137 for (i = 0; i < SB_FREEZE_LEVELS; i++)
138 percpu_counter_destroy(&s->s_writers.counter[i]);
139 }
140
141 /**
142 * alloc_super - create new superblock
143 * @type: filesystem type superblock should belong to
144 * @flags: the mount flags
145 *
146 * Allocates and initializes a new &struct super_block. alloc_super()
147 * returns a pointer new superblock or %NULL if allocation had failed.
148 */
149 static struct super_block *alloc_super(struct file_system_type *type, int flags)
150 {
151 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
152 static const struct super_operations default_op;
153
154 if (s) {
155 if (security_sb_alloc(s)) {
156 /*
157 * We cannot call security_sb_free() without
158 * security_sb_alloc() succeeding. So bail out manually
159 */
160 kfree(s);
161 s = NULL;
162 goto out;
163 }
164 #ifdef CONFIG_SMP
165 s->s_files = alloc_percpu(struct list_head);
166 if (!s->s_files)
167 goto err_out;
168 else {
169 int i;
170
171 for_each_possible_cpu(i)
172 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
173 }
174 #else
175 INIT_LIST_HEAD(&s->s_files);
176 #endif
177 if (init_sb_writers(s, type))
178 goto err_out;
179 s->s_flags = flags;
180 s->s_bdi = &default_backing_dev_info;
181 INIT_HLIST_NODE(&s->s_instances);
182 INIT_HLIST_BL_HEAD(&s->s_anon);
183 INIT_LIST_HEAD(&s->s_inodes);
184 INIT_LIST_HEAD(&s->s_dentry_lru);
185 INIT_LIST_HEAD(&s->s_inode_lru);
186 spin_lock_init(&s->s_inode_lru_lock);
187 INIT_LIST_HEAD(&s->s_mounts);
188 init_rwsem(&s->s_umount);
189 mutex_init(&s->s_lock);
190 lockdep_set_class(&s->s_umount, &type->s_umount_key);
191 /*
192 * The locking rules for s_lock are up to the
193 * filesystem. For example ext3fs has different
194 * lock ordering than usbfs:
195 */
196 lockdep_set_class(&s->s_lock, &type->s_lock_key);
197 /*
198 * sget() can have s_umount recursion.
199 *
200 * When it cannot find a suitable sb, it allocates a new
201 * one (this one), and tries again to find a suitable old
202 * one.
203 *
204 * In case that succeeds, it will acquire the s_umount
205 * lock of the old one. Since these are clearly distrinct
206 * locks, and this object isn't exposed yet, there's no
207 * risk of deadlocks.
208 *
209 * Annotate this by putting this lock in a different
210 * subclass.
211 */
212 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
213 s->s_count = 1;
214 atomic_set(&s->s_active, 1);
215 mutex_init(&s->s_vfs_rename_mutex);
216 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
217 mutex_init(&s->s_dquot.dqio_mutex);
218 mutex_init(&s->s_dquot.dqonoff_mutex);
219 init_rwsem(&s->s_dquot.dqptr_sem);
220 s->s_maxbytes = MAX_NON_LFS;
221 s->s_op = &default_op;
222 s->s_time_gran = 1000000000;
223 s->cleancache_poolid = -1;
224
225 s->s_shrink.seeks = DEFAULT_SEEKS;
226 s->s_shrink.shrink = prune_super;
227 s->s_shrink.batch = 1024;
228 }
229 out:
230 return s;
231 err_out:
232 security_sb_free(s);
233 #ifdef CONFIG_SMP
234 if (s->s_files)
235 free_percpu(s->s_files);
236 #endif
237 destroy_sb_writers(s);
238 kfree(s);
239 s = NULL;
240 goto out;
241 }
242
243 /**
244 * destroy_super - frees a superblock
245 * @s: superblock to free
246 *
247 * Frees a superblock.
248 */
249 static inline void destroy_super(struct super_block *s)
250 {
251 #ifdef CONFIG_SMP
252 free_percpu(s->s_files);
253 #endif
254 destroy_sb_writers(s);
255 security_sb_free(s);
256 WARN_ON(!list_empty(&s->s_mounts));
257 kfree(s->s_subtype);
258 kfree(s->s_options);
259 kfree(s);
260 }
261
262 /* Superblock refcounting */
263
264 /*
265 * Drop a superblock's refcount. The caller must hold sb_lock.
266 */
267 static void __put_super(struct super_block *sb)
268 {
269 if (!--sb->s_count) {
270 list_del_init(&sb->s_list);
271 destroy_super(sb);
272 }
273 }
274
275 /**
276 * put_super - drop a temporary reference to superblock
277 * @sb: superblock in question
278 *
279 * Drops a temporary reference, frees superblock if there's no
280 * references left.
281 */
282 static void put_super(struct super_block *sb)
283 {
284 spin_lock(&sb_lock);
285 __put_super(sb);
286 spin_unlock(&sb_lock);
287 }
288
289
290 /**
291 * deactivate_locked_super - drop an active reference to superblock
292 * @s: superblock to deactivate
293 *
294 * Drops an active reference to superblock, converting it into a temprory
295 * one if there is no other active references left. In that case we
296 * tell fs driver to shut it down and drop the temporary reference we
297 * had just acquired.
298 *
299 * Caller holds exclusive lock on superblock; that lock is released.
300 */
301 void deactivate_locked_super(struct super_block *s)
302 {
303 struct file_system_type *fs = s->s_type;
304 if (atomic_dec_and_test(&s->s_active)) {
305 cleancache_invalidate_fs(s);
306 fs->kill_sb(s);
307
308 /* caches are now gone, we can safely kill the shrinker now */
309 unregister_shrinker(&s->s_shrink);
310
311 /*
312 * We need to call rcu_barrier so all the delayed rcu free
313 * inodes are flushed before we release the fs module.
314 */
315 rcu_barrier();
316 put_filesystem(fs);
317 put_super(s);
318 } else {
319 up_write(&s->s_umount);
320 }
321 }
322
323 EXPORT_SYMBOL(deactivate_locked_super);
324
325 /**
326 * deactivate_super - drop an active reference to superblock
327 * @s: superblock to deactivate
328 *
329 * Variant of deactivate_locked_super(), except that superblock is *not*
330 * locked by caller. If we are going to drop the final active reference,
331 * lock will be acquired prior to that.
332 */
333 void deactivate_super(struct super_block *s)
334 {
335 if (!atomic_add_unless(&s->s_active, -1, 1)) {
336 down_write(&s->s_umount);
337 deactivate_locked_super(s);
338 }
339 }
340
341 EXPORT_SYMBOL(deactivate_super);
342
343 /**
344 * grab_super - acquire an active reference
345 * @s: reference we are trying to make active
346 *
347 * Tries to acquire an active reference. grab_super() is used when we
348 * had just found a superblock in super_blocks or fs_type->fs_supers
349 * and want to turn it into a full-blown active reference. grab_super()
350 * is called with sb_lock held and drops it. Returns 1 in case of
351 * success, 0 if we had failed (superblock contents was already dead or
352 * dying when grab_super() had been called).
353 */
354 static int grab_super(struct super_block *s) __releases(sb_lock)
355 {
356 if (atomic_inc_not_zero(&s->s_active)) {
357 spin_unlock(&sb_lock);
358 return 1;
359 }
360 /* it's going away */
361 s->s_count++;
362 spin_unlock(&sb_lock);
363 /* wait for it to die */
364 down_write(&s->s_umount);
365 up_write(&s->s_umount);
366 put_super(s);
367 return 0;
368 }
369
370 /*
371 * grab_super_passive - acquire a passive reference
372 * @sb: reference we are trying to grab
373 *
374 * Tries to acquire a passive reference. This is used in places where we
375 * cannot take an active reference but we need to ensure that the
376 * superblock does not go away while we are working on it. It returns
377 * false if a reference was not gained, and returns true with the s_umount
378 * lock held in read mode if a reference is gained. On successful return,
379 * the caller must drop the s_umount lock and the passive reference when
380 * done.
381 */
382 bool grab_super_passive(struct super_block *sb)
383 {
384 spin_lock(&sb_lock);
385 if (hlist_unhashed(&sb->s_instances)) {
386 spin_unlock(&sb_lock);
387 return false;
388 }
389
390 sb->s_count++;
391 spin_unlock(&sb_lock);
392
393 if (down_read_trylock(&sb->s_umount)) {
394 if (sb->s_root && (sb->s_flags & MS_BORN))
395 return true;
396 up_read(&sb->s_umount);
397 }
398
399 put_super(sb);
400 return false;
401 }
402
403 /*
404 * Superblock locking. We really ought to get rid of these two.
405 */
406 void lock_super(struct super_block * sb)
407 {
408 mutex_lock(&sb->s_lock);
409 }
410
411 void unlock_super(struct super_block * sb)
412 {
413 mutex_unlock(&sb->s_lock);
414 }
415
416 EXPORT_SYMBOL(lock_super);
417 EXPORT_SYMBOL(unlock_super);
418
419 /**
420 * generic_shutdown_super - common helper for ->kill_sb()
421 * @sb: superblock to kill
422 *
423 * generic_shutdown_super() does all fs-independent work on superblock
424 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
425 * that need destruction out of superblock, call generic_shutdown_super()
426 * and release aforementioned objects. Note: dentries and inodes _are_
427 * taken care of and do not need specific handling.
428 *
429 * Upon calling this function, the filesystem may no longer alter or
430 * rearrange the set of dentries belonging to this super_block, nor may it
431 * change the attachments of dentries to inodes.
432 */
433 void generic_shutdown_super(struct super_block *sb)
434 {
435 const struct super_operations *sop = sb->s_op;
436
437 if (sb->s_root) {
438 shrink_dcache_for_umount(sb);
439 sync_filesystem(sb);
440 sb->s_flags &= ~MS_ACTIVE;
441
442 fsnotify_unmount_inodes(&sb->s_inodes);
443
444 evict_inodes(sb);
445
446 if (sop->put_super)
447 sop->put_super(sb);
448
449 if (!list_empty(&sb->s_inodes)) {
450 printk("VFS: Busy inodes after unmount of %s. "
451 "Self-destruct in 5 seconds. Have a nice day...\n",
452 sb->s_id);
453 }
454 }
455 spin_lock(&sb_lock);
456 /* should be initialized for __put_super_and_need_restart() */
457 hlist_del_init(&sb->s_instances);
458 spin_unlock(&sb_lock);
459 up_write(&sb->s_umount);
460 }
461
462 EXPORT_SYMBOL(generic_shutdown_super);
463
464 /**
465 * sget - find or create a superblock
466 * @type: filesystem type superblock should belong to
467 * @test: comparison callback
468 * @set: setup callback
469 * @flags: mount flags
470 * @data: argument to each of them
471 */
472 struct super_block *sget(struct file_system_type *type,
473 int (*test)(struct super_block *,void *),
474 int (*set)(struct super_block *,void *),
475 int flags,
476 void *data)
477 {
478 struct super_block *s = NULL;
479 struct hlist_node *node;
480 struct super_block *old;
481 int err;
482
483 retry:
484 spin_lock(&sb_lock);
485 if (test) {
486 hlist_for_each_entry(old, node, &type->fs_supers, s_instances) {
487 if (!test(old, data))
488 continue;
489 if (!grab_super(old))
490 goto retry;
491 if (s) {
492 up_write(&s->s_umount);
493 destroy_super(s);
494 s = NULL;
495 }
496 down_write(&old->s_umount);
497 if (unlikely(!(old->s_flags & MS_BORN))) {
498 deactivate_locked_super(old);
499 goto retry;
500 }
501 return old;
502 }
503 }
504 if (!s) {
505 spin_unlock(&sb_lock);
506 s = alloc_super(type, flags);
507 if (!s)
508 return ERR_PTR(-ENOMEM);
509 goto retry;
510 }
511
512 err = set(s, data);
513 if (err) {
514 spin_unlock(&sb_lock);
515 up_write(&s->s_umount);
516 destroy_super(s);
517 return ERR_PTR(err);
518 }
519 s->s_type = type;
520 strlcpy(s->s_id, type->name, sizeof(s->s_id));
521 list_add_tail(&s->s_list, &super_blocks);
522 hlist_add_head(&s->s_instances, &type->fs_supers);
523 spin_unlock(&sb_lock);
524 get_filesystem(type);
525 register_shrinker(&s->s_shrink);
526 return s;
527 }
528
529 EXPORT_SYMBOL(sget);
530
531 void drop_super(struct super_block *sb)
532 {
533 up_read(&sb->s_umount);
534 put_super(sb);
535 }
536
537 EXPORT_SYMBOL(drop_super);
538
539 /**
540 * sync_supers - helper for periodic superblock writeback
541 *
542 * Call the write_super method if present on all dirty superblocks in
543 * the system. This is for the periodic writeback used by most older
544 * filesystems. For data integrity superblock writeback use
545 * sync_filesystems() instead.
546 *
547 * Note: check the dirty flag before waiting, so we don't
548 * hold up the sync while mounting a device. (The newly
549 * mounted device won't need syncing.)
550 */
551 void sync_supers(void)
552 {
553 struct super_block *sb, *p = NULL;
554
555 spin_lock(&sb_lock);
556 list_for_each_entry(sb, &super_blocks, s_list) {
557 if (hlist_unhashed(&sb->s_instances))
558 continue;
559 if (sb->s_op->write_super && sb->s_dirt) {
560 sb->s_count++;
561 spin_unlock(&sb_lock);
562
563 down_read(&sb->s_umount);
564 if (sb->s_root && sb->s_dirt && (sb->s_flags & MS_BORN))
565 sb->s_op->write_super(sb);
566 up_read(&sb->s_umount);
567
568 spin_lock(&sb_lock);
569 if (p)
570 __put_super(p);
571 p = sb;
572 }
573 }
574 if (p)
575 __put_super(p);
576 spin_unlock(&sb_lock);
577 }
578
579 /**
580 * iterate_supers - call function for all active superblocks
581 * @f: function to call
582 * @arg: argument to pass to it
583 *
584 * Scans the superblock list and calls given function, passing it
585 * locked superblock and given argument.
586 */
587 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
588 {
589 struct super_block *sb, *p = NULL;
590
591 spin_lock(&sb_lock);
592 list_for_each_entry(sb, &super_blocks, s_list) {
593 if (hlist_unhashed(&sb->s_instances))
594 continue;
595 sb->s_count++;
596 spin_unlock(&sb_lock);
597
598 down_read(&sb->s_umount);
599 if (sb->s_root && (sb->s_flags & MS_BORN))
600 f(sb, arg);
601 up_read(&sb->s_umount);
602
603 spin_lock(&sb_lock);
604 if (p)
605 __put_super(p);
606 p = sb;
607 }
608 if (p)
609 __put_super(p);
610 spin_unlock(&sb_lock);
611 }
612
613 /**
614 * iterate_supers_type - call function for superblocks of given type
615 * @type: fs type
616 * @f: function to call
617 * @arg: argument to pass to it
618 *
619 * Scans the superblock list and calls given function, passing it
620 * locked superblock and given argument.
621 */
622 void iterate_supers_type(struct file_system_type *type,
623 void (*f)(struct super_block *, void *), void *arg)
624 {
625 struct super_block *sb, *p = NULL;
626 struct hlist_node *node;
627
628 spin_lock(&sb_lock);
629 hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) {
630 sb->s_count++;
631 spin_unlock(&sb_lock);
632
633 down_read(&sb->s_umount);
634 if (sb->s_root && (sb->s_flags & MS_BORN))
635 f(sb, arg);
636 up_read(&sb->s_umount);
637
638 spin_lock(&sb_lock);
639 if (p)
640 __put_super(p);
641 p = sb;
642 }
643 if (p)
644 __put_super(p);
645 spin_unlock(&sb_lock);
646 }
647
648 EXPORT_SYMBOL(iterate_supers_type);
649
650 /**
651 * get_super - get the superblock of a device
652 * @bdev: device to get the superblock for
653 *
654 * Scans the superblock list and finds the superblock of the file system
655 * mounted on the device given. %NULL is returned if no match is found.
656 */
657
658 struct super_block *get_super(struct block_device *bdev)
659 {
660 struct super_block *sb;
661
662 if (!bdev)
663 return NULL;
664
665 spin_lock(&sb_lock);
666 rescan:
667 list_for_each_entry(sb, &super_blocks, s_list) {
668 if (hlist_unhashed(&sb->s_instances))
669 continue;
670 if (sb->s_bdev == bdev) {
671 sb->s_count++;
672 spin_unlock(&sb_lock);
673 down_read(&sb->s_umount);
674 /* still alive? */
675 if (sb->s_root && (sb->s_flags & MS_BORN))
676 return sb;
677 up_read(&sb->s_umount);
678 /* nope, got unmounted */
679 spin_lock(&sb_lock);
680 __put_super(sb);
681 goto rescan;
682 }
683 }
684 spin_unlock(&sb_lock);
685 return NULL;
686 }
687
688 EXPORT_SYMBOL(get_super);
689
690 /**
691 * get_super_thawed - get thawed superblock of a device
692 * @bdev: device to get the superblock for
693 *
694 * Scans the superblock list and finds the superblock of the file system
695 * mounted on the device. The superblock is returned once it is thawed
696 * (or immediately if it was not frozen). %NULL is returned if no match
697 * is found.
698 */
699 struct super_block *get_super_thawed(struct block_device *bdev)
700 {
701 while (1) {
702 struct super_block *s = get_super(bdev);
703 if (!s || s->s_writers.frozen == SB_UNFROZEN)
704 return s;
705 up_read(&s->s_umount);
706 wait_event(s->s_writers.wait_unfrozen,
707 s->s_writers.frozen == SB_UNFROZEN);
708 put_super(s);
709 }
710 }
711 EXPORT_SYMBOL(get_super_thawed);
712
713 /**
714 * get_active_super - get an active reference to the superblock of a device
715 * @bdev: device to get the superblock for
716 *
717 * Scans the superblock list and finds the superblock of the file system
718 * mounted on the device given. Returns the superblock with an active
719 * reference or %NULL if none was found.
720 */
721 struct super_block *get_active_super(struct block_device *bdev)
722 {
723 struct super_block *sb;
724
725 if (!bdev)
726 return NULL;
727
728 restart:
729 spin_lock(&sb_lock);
730 list_for_each_entry(sb, &super_blocks, s_list) {
731 if (hlist_unhashed(&sb->s_instances))
732 continue;
733 if (sb->s_bdev == bdev) {
734 if (grab_super(sb)) /* drops sb_lock */
735 return sb;
736 else
737 goto restart;
738 }
739 }
740 spin_unlock(&sb_lock);
741 return NULL;
742 }
743
744 struct super_block *user_get_super(dev_t dev)
745 {
746 struct super_block *sb;
747
748 spin_lock(&sb_lock);
749 rescan:
750 list_for_each_entry(sb, &super_blocks, s_list) {
751 if (hlist_unhashed(&sb->s_instances))
752 continue;
753 if (sb->s_dev == dev) {
754 sb->s_count++;
755 spin_unlock(&sb_lock);
756 down_read(&sb->s_umount);
757 /* still alive? */
758 if (sb->s_root && (sb->s_flags & MS_BORN))
759 return sb;
760 up_read(&sb->s_umount);
761 /* nope, got unmounted */
762 spin_lock(&sb_lock);
763 __put_super(sb);
764 goto rescan;
765 }
766 }
767 spin_unlock(&sb_lock);
768 return NULL;
769 }
770
771 /**
772 * do_remount_sb - asks filesystem to change mount options.
773 * @sb: superblock in question
774 * @flags: numeric part of options
775 * @data: the rest of options
776 * @force: whether or not to force the change
777 *
778 * Alters the mount options of a mounted file system.
779 */
780 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
781 {
782 int retval;
783 int remount_ro;
784
785 if (sb->s_writers.frozen != SB_UNFROZEN)
786 return -EBUSY;
787
788 #ifdef CONFIG_BLOCK
789 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
790 return -EACCES;
791 #endif
792
793 if (flags & MS_RDONLY)
794 acct_auto_close(sb);
795 shrink_dcache_sb(sb);
796 sync_filesystem(sb);
797
798 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
799
800 /* If we are remounting RDONLY and current sb is read/write,
801 make sure there are no rw files opened */
802 if (remount_ro) {
803 if (force) {
804 mark_files_ro(sb);
805 } else {
806 retval = sb_prepare_remount_readonly(sb);
807 if (retval)
808 return retval;
809 }
810 }
811
812 if (sb->s_op->remount_fs) {
813 retval = sb->s_op->remount_fs(sb, &flags, data);
814 if (retval) {
815 if (!force)
816 goto cancel_readonly;
817 /* If forced remount, go ahead despite any errors */
818 WARN(1, "forced remount of a %s fs returned %i\n",
819 sb->s_type->name, retval);
820 }
821 }
822 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
823 /* Needs to be ordered wrt mnt_is_readonly() */
824 smp_wmb();
825 sb->s_readonly_remount = 0;
826
827 /*
828 * Some filesystems modify their metadata via some other path than the
829 * bdev buffer cache (eg. use a private mapping, or directories in
830 * pagecache, etc). Also file data modifications go via their own
831 * mappings. So If we try to mount readonly then copy the filesystem
832 * from bdev, we could get stale data, so invalidate it to give a best
833 * effort at coherency.
834 */
835 if (remount_ro && sb->s_bdev)
836 invalidate_bdev(sb->s_bdev);
837 return 0;
838
839 cancel_readonly:
840 sb->s_readonly_remount = 0;
841 return retval;
842 }
843
844 static void do_emergency_remount(struct work_struct *work)
845 {
846 struct super_block *sb, *p = NULL;
847
848 spin_lock(&sb_lock);
849 list_for_each_entry(sb, &super_blocks, s_list) {
850 if (hlist_unhashed(&sb->s_instances))
851 continue;
852 sb->s_count++;
853 spin_unlock(&sb_lock);
854 down_write(&sb->s_umount);
855 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
856 !(sb->s_flags & MS_RDONLY)) {
857 /*
858 * What lock protects sb->s_flags??
859 */
860 do_remount_sb(sb, MS_RDONLY, NULL, 1);
861 }
862 up_write(&sb->s_umount);
863 spin_lock(&sb_lock);
864 if (p)
865 __put_super(p);
866 p = sb;
867 }
868 if (p)
869 __put_super(p);
870 spin_unlock(&sb_lock);
871 kfree(work);
872 printk("Emergency Remount complete\n");
873 }
874
875 void emergency_remount(void)
876 {
877 struct work_struct *work;
878
879 work = kmalloc(sizeof(*work), GFP_ATOMIC);
880 if (work) {
881 INIT_WORK(work, do_emergency_remount);
882 schedule_work(work);
883 }
884 }
885
886 /*
887 * Unnamed block devices are dummy devices used by virtual
888 * filesystems which don't use real block-devices. -- jrs
889 */
890
891 static DEFINE_IDA(unnamed_dev_ida);
892 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
893 static int unnamed_dev_start = 0; /* don't bother trying below it */
894
895 int get_anon_bdev(dev_t *p)
896 {
897 int dev;
898 int error;
899
900 retry:
901 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
902 return -ENOMEM;
903 spin_lock(&unnamed_dev_lock);
904 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
905 if (!error)
906 unnamed_dev_start = dev + 1;
907 spin_unlock(&unnamed_dev_lock);
908 if (error == -EAGAIN)
909 /* We raced and lost with another CPU. */
910 goto retry;
911 else if (error)
912 return -EAGAIN;
913
914 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
915 spin_lock(&unnamed_dev_lock);
916 ida_remove(&unnamed_dev_ida, dev);
917 if (unnamed_dev_start > dev)
918 unnamed_dev_start = dev;
919 spin_unlock(&unnamed_dev_lock);
920 return -EMFILE;
921 }
922 *p = MKDEV(0, dev & MINORMASK);
923 return 0;
924 }
925 EXPORT_SYMBOL(get_anon_bdev);
926
927 void free_anon_bdev(dev_t dev)
928 {
929 int slot = MINOR(dev);
930 spin_lock(&unnamed_dev_lock);
931 ida_remove(&unnamed_dev_ida, slot);
932 if (slot < unnamed_dev_start)
933 unnamed_dev_start = slot;
934 spin_unlock(&unnamed_dev_lock);
935 }
936 EXPORT_SYMBOL(free_anon_bdev);
937
938 int set_anon_super(struct super_block *s, void *data)
939 {
940 int error = get_anon_bdev(&s->s_dev);
941 if (!error)
942 s->s_bdi = &noop_backing_dev_info;
943 return error;
944 }
945
946 EXPORT_SYMBOL(set_anon_super);
947
948 void kill_anon_super(struct super_block *sb)
949 {
950 dev_t dev = sb->s_dev;
951 generic_shutdown_super(sb);
952 free_anon_bdev(dev);
953 }
954
955 EXPORT_SYMBOL(kill_anon_super);
956
957 void kill_litter_super(struct super_block *sb)
958 {
959 if (sb->s_root)
960 d_genocide(sb->s_root);
961 kill_anon_super(sb);
962 }
963
964 EXPORT_SYMBOL(kill_litter_super);
965
966 static int ns_test_super(struct super_block *sb, void *data)
967 {
968 return sb->s_fs_info == data;
969 }
970
971 static int ns_set_super(struct super_block *sb, void *data)
972 {
973 sb->s_fs_info = data;
974 return set_anon_super(sb, NULL);
975 }
976
977 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
978 void *data, int (*fill_super)(struct super_block *, void *, int))
979 {
980 struct super_block *sb;
981
982 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
983 if (IS_ERR(sb))
984 return ERR_CAST(sb);
985
986 if (!sb->s_root) {
987 int err;
988 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
989 if (err) {
990 deactivate_locked_super(sb);
991 return ERR_PTR(err);
992 }
993
994 sb->s_flags |= MS_ACTIVE;
995 }
996
997 return dget(sb->s_root);
998 }
999
1000 EXPORT_SYMBOL(mount_ns);
1001
1002 #ifdef CONFIG_BLOCK
1003 static int set_bdev_super(struct super_block *s, void *data)
1004 {
1005 s->s_bdev = data;
1006 s->s_dev = s->s_bdev->bd_dev;
1007
1008 /*
1009 * We set the bdi here to the queue backing, file systems can
1010 * overwrite this in ->fill_super()
1011 */
1012 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
1013 return 0;
1014 }
1015
1016 static int test_bdev_super(struct super_block *s, void *data)
1017 {
1018 return (void *)s->s_bdev == data;
1019 }
1020
1021 struct dentry *mount_bdev(struct file_system_type *fs_type,
1022 int flags, const char *dev_name, void *data,
1023 int (*fill_super)(struct super_block *, void *, int))
1024 {
1025 struct block_device *bdev;
1026 struct super_block *s;
1027 fmode_t mode = FMODE_READ | FMODE_EXCL;
1028 int error = 0;
1029
1030 if (!(flags & MS_RDONLY))
1031 mode |= FMODE_WRITE;
1032
1033 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1034 if (IS_ERR(bdev))
1035 return ERR_CAST(bdev);
1036
1037 /*
1038 * once the super is inserted into the list by sget, s_umount
1039 * will protect the lockfs code from trying to start a snapshot
1040 * while we are mounting
1041 */
1042 mutex_lock(&bdev->bd_fsfreeze_mutex);
1043 if (bdev->bd_fsfreeze_count > 0) {
1044 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1045 error = -EBUSY;
1046 goto error_bdev;
1047 }
1048 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
1049 bdev);
1050 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1051 if (IS_ERR(s))
1052 goto error_s;
1053
1054 if (s->s_root) {
1055 if ((flags ^ s->s_flags) & MS_RDONLY) {
1056 deactivate_locked_super(s);
1057 error = -EBUSY;
1058 goto error_bdev;
1059 }
1060
1061 /*
1062 * s_umount nests inside bd_mutex during
1063 * __invalidate_device(). blkdev_put() acquires
1064 * bd_mutex and can't be called under s_umount. Drop
1065 * s_umount temporarily. This is safe as we're
1066 * holding an active reference.
1067 */
1068 up_write(&s->s_umount);
1069 blkdev_put(bdev, mode);
1070 down_write(&s->s_umount);
1071 } else {
1072 char b[BDEVNAME_SIZE];
1073
1074 s->s_mode = mode;
1075 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1076 sb_set_blocksize(s, block_size(bdev));
1077 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1078 if (error) {
1079 deactivate_locked_super(s);
1080 goto error;
1081 }
1082
1083 s->s_flags |= MS_ACTIVE;
1084 bdev->bd_super = s;
1085 }
1086
1087 return dget(s->s_root);
1088
1089 error_s:
1090 error = PTR_ERR(s);
1091 error_bdev:
1092 blkdev_put(bdev, mode);
1093 error:
1094 return ERR_PTR(error);
1095 }
1096 EXPORT_SYMBOL(mount_bdev);
1097
1098 void kill_block_super(struct super_block *sb)
1099 {
1100 struct block_device *bdev = sb->s_bdev;
1101 fmode_t mode = sb->s_mode;
1102
1103 bdev->bd_super = NULL;
1104 generic_shutdown_super(sb);
1105 sync_blockdev(bdev);
1106 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1107 blkdev_put(bdev, mode | FMODE_EXCL);
1108 }
1109
1110 EXPORT_SYMBOL(kill_block_super);
1111 #endif
1112
1113 struct dentry *mount_nodev(struct file_system_type *fs_type,
1114 int flags, void *data,
1115 int (*fill_super)(struct super_block *, void *, int))
1116 {
1117 int error;
1118 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1119
1120 if (IS_ERR(s))
1121 return ERR_CAST(s);
1122
1123 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1124 if (error) {
1125 deactivate_locked_super(s);
1126 return ERR_PTR(error);
1127 }
1128 s->s_flags |= MS_ACTIVE;
1129 return dget(s->s_root);
1130 }
1131 EXPORT_SYMBOL(mount_nodev);
1132
1133 static int compare_single(struct super_block *s, void *p)
1134 {
1135 return 1;
1136 }
1137
1138 struct dentry *mount_single(struct file_system_type *fs_type,
1139 int flags, void *data,
1140 int (*fill_super)(struct super_block *, void *, int))
1141 {
1142 struct super_block *s;
1143 int error;
1144
1145 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1146 if (IS_ERR(s))
1147 return ERR_CAST(s);
1148 if (!s->s_root) {
1149 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1150 if (error) {
1151 deactivate_locked_super(s);
1152 return ERR_PTR(error);
1153 }
1154 s->s_flags |= MS_ACTIVE;
1155 } else {
1156 do_remount_sb(s, flags, data, 0);
1157 }
1158 return dget(s->s_root);
1159 }
1160 EXPORT_SYMBOL(mount_single);
1161
1162 struct dentry *
1163 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1164 {
1165 struct dentry *root;
1166 struct super_block *sb;
1167 char *secdata = NULL;
1168 int error = -ENOMEM;
1169
1170 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1171 secdata = alloc_secdata();
1172 if (!secdata)
1173 goto out;
1174
1175 error = security_sb_copy_data(data, secdata);
1176 if (error)
1177 goto out_free_secdata;
1178 }
1179
1180 root = type->mount(type, flags, name, data);
1181 if (IS_ERR(root)) {
1182 error = PTR_ERR(root);
1183 goto out_free_secdata;
1184 }
1185 sb = root->d_sb;
1186 BUG_ON(!sb);
1187 WARN_ON(!sb->s_bdi);
1188 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1189 sb->s_flags |= MS_BORN;
1190
1191 error = security_sb_kern_mount(sb, flags, secdata);
1192 if (error)
1193 goto out_sb;
1194
1195 /*
1196 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1197 * but s_maxbytes was an unsigned long long for many releases. Throw
1198 * this warning for a little while to try and catch filesystems that
1199 * violate this rule.
1200 */
1201 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1202 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1203
1204 up_write(&sb->s_umount);
1205 free_secdata(secdata);
1206 return root;
1207 out_sb:
1208 dput(root);
1209 deactivate_locked_super(sb);
1210 out_free_secdata:
1211 free_secdata(secdata);
1212 out:
1213 return ERR_PTR(error);
1214 }
1215
1216 /*
1217 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1218 * instead.
1219 */
1220 void __sb_end_write(struct super_block *sb, int level)
1221 {
1222 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1223 /*
1224 * Make sure s_writers are updated before we wake up waiters in
1225 * freeze_super().
1226 */
1227 smp_mb();
1228 if (waitqueue_active(&sb->s_writers.wait))
1229 wake_up(&sb->s_writers.wait);
1230 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1231 }
1232 EXPORT_SYMBOL(__sb_end_write);
1233
1234 #ifdef CONFIG_LOCKDEP
1235 /*
1236 * We want lockdep to tell us about possible deadlocks with freezing but
1237 * it's it bit tricky to properly instrument it. Getting a freeze protection
1238 * works as getting a read lock but there are subtle problems. XFS for example
1239 * gets freeze protection on internal level twice in some cases, which is OK
1240 * only because we already hold a freeze protection also on higher level. Due
1241 * to these cases we have to tell lockdep we are doing trylock when we
1242 * already hold a freeze protection for a higher freeze level.
1243 */
1244 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1245 unsigned long ip)
1246 {
1247 int i;
1248
1249 if (!trylock) {
1250 for (i = 0; i < level - 1; i++)
1251 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1252 trylock = true;
1253 break;
1254 }
1255 }
1256 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1257 }
1258 #endif
1259
1260 /*
1261 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1262 * instead.
1263 */
1264 int __sb_start_write(struct super_block *sb, int level, bool wait)
1265 {
1266 retry:
1267 if (unlikely(sb->s_writers.frozen >= level)) {
1268 if (!wait)
1269 return 0;
1270 wait_event(sb->s_writers.wait_unfrozen,
1271 sb->s_writers.frozen < level);
1272 }
1273
1274 #ifdef CONFIG_LOCKDEP
1275 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1276 #endif
1277 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1278 /*
1279 * Make sure counter is updated before we check for frozen.
1280 * freeze_super() first sets frozen and then checks the counter.
1281 */
1282 smp_mb();
1283 if (unlikely(sb->s_writers.frozen >= level)) {
1284 __sb_end_write(sb, level);
1285 goto retry;
1286 }
1287 return 1;
1288 }
1289 EXPORT_SYMBOL(__sb_start_write);
1290
1291 /**
1292 * sb_wait_write - wait until all writers to given file system finish
1293 * @sb: the super for which we wait
1294 * @level: type of writers we wait for (normal vs page fault)
1295 *
1296 * This function waits until there are no writers of given type to given file
1297 * system. Caller of this function should make sure there can be no new writers
1298 * of type @level before calling this function. Otherwise this function can
1299 * livelock.
1300 */
1301 static void sb_wait_write(struct super_block *sb, int level)
1302 {
1303 s64 writers;
1304
1305 /*
1306 * We just cycle-through lockdep here so that it does not complain
1307 * about returning with lock to userspace
1308 */
1309 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1310 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1311
1312 do {
1313 DEFINE_WAIT(wait);
1314
1315 /*
1316 * We use a barrier in prepare_to_wait() to separate setting
1317 * of frozen and checking of the counter
1318 */
1319 prepare_to_wait(&sb->s_writers.wait, &wait,
1320 TASK_UNINTERRUPTIBLE);
1321
1322 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1323 if (writers)
1324 schedule();
1325
1326 finish_wait(&sb->s_writers.wait, &wait);
1327 } while (writers);
1328 }
1329
1330 /**
1331 * freeze_super - lock the filesystem and force it into a consistent state
1332 * @sb: the super to lock
1333 *
1334 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1335 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1336 * -EBUSY.
1337 *
1338 * During this function, sb->s_writers.frozen goes through these values:
1339 *
1340 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1341 *
1342 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1343 * writes should be blocked, though page faults are still allowed. We wait for
1344 * all writes to complete and then proceed to the next stage.
1345 *
1346 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1347 * but internal fs threads can still modify the filesystem (although they
1348 * should not dirty new pages or inodes), writeback can run etc. After waiting
1349 * for all running page faults we sync the filesystem which will clean all
1350 * dirty pages and inodes (no new dirty pages or inodes can be created when
1351 * sync is running).
1352 *
1353 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1354 * modification are blocked (e.g. XFS preallocation truncation on inode
1355 * reclaim). This is usually implemented by blocking new transactions for
1356 * filesystems that have them and need this additional guard. After all
1357 * internal writers are finished we call ->freeze_fs() to finish filesystem
1358 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1359 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1360 *
1361 * sb->s_writers.frozen is protected by sb->s_umount.
1362 */
1363 int freeze_super(struct super_block *sb)
1364 {
1365 int ret;
1366
1367 atomic_inc(&sb->s_active);
1368 down_write(&sb->s_umount);
1369 if (sb->s_writers.frozen != SB_UNFROZEN) {
1370 deactivate_locked_super(sb);
1371 return -EBUSY;
1372 }
1373
1374 if (!(sb->s_flags & MS_BORN)) {
1375 up_write(&sb->s_umount);
1376 return 0; /* sic - it's "nothing to do" */
1377 }
1378
1379 if (sb->s_flags & MS_RDONLY) {
1380 /* Nothing to do really... */
1381 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1382 up_write(&sb->s_umount);
1383 return 0;
1384 }
1385
1386 /* From now on, no new normal writers can start */
1387 sb->s_writers.frozen = SB_FREEZE_WRITE;
1388 smp_wmb();
1389
1390 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1391 up_write(&sb->s_umount);
1392
1393 sb_wait_write(sb, SB_FREEZE_WRITE);
1394
1395 /* Now we go and block page faults... */
1396 down_write(&sb->s_umount);
1397 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1398 smp_wmb();
1399
1400 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1401
1402 /* All writers are done so after syncing there won't be dirty data */
1403 sync_filesystem(sb);
1404
1405 /* Now wait for internal filesystem counter */
1406 sb->s_writers.frozen = SB_FREEZE_FS;
1407 smp_wmb();
1408 sb_wait_write(sb, SB_FREEZE_FS);
1409
1410 if (sb->s_op->freeze_fs) {
1411 ret = sb->s_op->freeze_fs(sb);
1412 if (ret) {
1413 printk(KERN_ERR
1414 "VFS:Filesystem freeze failed\n");
1415 sb->s_writers.frozen = SB_UNFROZEN;
1416 smp_wmb();
1417 wake_up(&sb->s_writers.wait_unfrozen);
1418 deactivate_locked_super(sb);
1419 return ret;
1420 }
1421 }
1422 /*
1423 * This is just for debugging purposes so that fs can warn if it
1424 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1425 */
1426 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1427 up_write(&sb->s_umount);
1428 return 0;
1429 }
1430 EXPORT_SYMBOL(freeze_super);
1431
1432 /**
1433 * thaw_super -- unlock filesystem
1434 * @sb: the super to thaw
1435 *
1436 * Unlocks the filesystem and marks it writeable again after freeze_super().
1437 */
1438 int thaw_super(struct super_block *sb)
1439 {
1440 int error;
1441
1442 down_write(&sb->s_umount);
1443 if (sb->s_writers.frozen == SB_UNFROZEN) {
1444 up_write(&sb->s_umount);
1445 return -EINVAL;
1446 }
1447
1448 if (sb->s_flags & MS_RDONLY)
1449 goto out;
1450
1451 if (sb->s_op->unfreeze_fs) {
1452 error = sb->s_op->unfreeze_fs(sb);
1453 if (error) {
1454 printk(KERN_ERR
1455 "VFS:Filesystem thaw failed\n");
1456 up_write(&sb->s_umount);
1457 return error;
1458 }
1459 }
1460
1461 out:
1462 sb->s_writers.frozen = SB_UNFROZEN;
1463 smp_wmb();
1464 wake_up(&sb->s_writers.wait_unfrozen);
1465 deactivate_locked_super(sb);
1466
1467 return 0;
1468 }
1469 EXPORT_SYMBOL(thaw_super);
This page took 0.062824 seconds and 5 git commands to generate.