Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[deliverable/linux.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h> /* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include "internal.h"
37
38
39 static LIST_HEAD(super_blocks);
40 static DEFINE_SPINLOCK(sb_lock);
41
42 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
43 "sb_writers",
44 "sb_pagefaults",
45 "sb_internal",
46 };
47
48 /*
49 * One thing we have to be careful of with a per-sb shrinker is that we don't
50 * drop the last active reference to the superblock from within the shrinker.
51 * If that happens we could trigger unregistering the shrinker from within the
52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53 * take a passive reference to the superblock to avoid this from occurring.
54 */
55 static unsigned long super_cache_scan(struct shrinker *shrink,
56 struct shrink_control *sc)
57 {
58 struct super_block *sb;
59 long fs_objects = 0;
60 long total_objects;
61 long freed = 0;
62 long dentries;
63 long inodes;
64
65 sb = container_of(shrink, struct super_block, s_shrink);
66
67 /*
68 * Deadlock avoidance. We may hold various FS locks, and we don't want
69 * to recurse into the FS that called us in clear_inode() and friends..
70 */
71 if (!(sc->gfp_mask & __GFP_FS))
72 return SHRINK_STOP;
73
74 if (!grab_super_passive(sb))
75 return SHRINK_STOP;
76
77 if (sb->s_op->nr_cached_objects)
78 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
79
80 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
81 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
82 total_objects = dentries + inodes + fs_objects + 1;
83 if (!total_objects)
84 total_objects = 1;
85
86 /* proportion the scan between the caches */
87 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
88 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
89 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
90
91 /*
92 * prune the dcache first as the icache is pinned by it, then
93 * prune the icache, followed by the filesystem specific caches
94 *
95 * Ensure that we always scan at least one object - memcg kmem
96 * accounting uses this to fully empty the caches.
97 */
98 sc->nr_to_scan = dentries + 1;
99 freed = prune_dcache_sb(sb, sc);
100 sc->nr_to_scan = inodes + 1;
101 freed += prune_icache_sb(sb, sc);
102
103 if (fs_objects) {
104 sc->nr_to_scan = fs_objects + 1;
105 freed += sb->s_op->free_cached_objects(sb, sc);
106 }
107
108 drop_super(sb);
109 return freed;
110 }
111
112 static unsigned long super_cache_count(struct shrinker *shrink,
113 struct shrink_control *sc)
114 {
115 struct super_block *sb;
116 long total_objects = 0;
117
118 sb = container_of(shrink, struct super_block, s_shrink);
119
120 /*
121 * Don't call grab_super_passive as it is a potential
122 * scalability bottleneck. The counts could get updated
123 * between super_cache_count and super_cache_scan anyway.
124 * Call to super_cache_count with shrinker_rwsem held
125 * ensures the safety of call to list_lru_shrink_count() and
126 * s_op->nr_cached_objects().
127 */
128 if (sb->s_op && sb->s_op->nr_cached_objects)
129 total_objects = sb->s_op->nr_cached_objects(sb, sc);
130
131 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
132 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
133
134 total_objects = vfs_pressure_ratio(total_objects);
135 return total_objects;
136 }
137
138 /**
139 * destroy_super - frees a superblock
140 * @s: superblock to free
141 *
142 * Frees a superblock.
143 */
144 static void destroy_super(struct super_block *s)
145 {
146 int i;
147 list_lru_destroy(&s->s_dentry_lru);
148 list_lru_destroy(&s->s_inode_lru);
149 for (i = 0; i < SB_FREEZE_LEVELS; i++)
150 percpu_counter_destroy(&s->s_writers.counter[i]);
151 security_sb_free(s);
152 WARN_ON(!list_empty(&s->s_mounts));
153 kfree(s->s_subtype);
154 kfree(s->s_options);
155 kfree_rcu(s, rcu);
156 }
157
158 /**
159 * alloc_super - create new superblock
160 * @type: filesystem type superblock should belong to
161 * @flags: the mount flags
162 *
163 * Allocates and initializes a new &struct super_block. alloc_super()
164 * returns a pointer new superblock or %NULL if allocation had failed.
165 */
166 static struct super_block *alloc_super(struct file_system_type *type, int flags)
167 {
168 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
169 static const struct super_operations default_op;
170 int i;
171
172 if (!s)
173 return NULL;
174
175 INIT_LIST_HEAD(&s->s_mounts);
176
177 if (security_sb_alloc(s))
178 goto fail;
179
180 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
181 if (percpu_counter_init(&s->s_writers.counter[i], 0,
182 GFP_KERNEL) < 0)
183 goto fail;
184 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
185 &type->s_writers_key[i], 0);
186 }
187 init_waitqueue_head(&s->s_writers.wait);
188 init_waitqueue_head(&s->s_writers.wait_unfrozen);
189 s->s_bdi = &noop_backing_dev_info;
190 s->s_flags = flags;
191 INIT_HLIST_NODE(&s->s_instances);
192 INIT_HLIST_BL_HEAD(&s->s_anon);
193 INIT_LIST_HEAD(&s->s_inodes);
194
195 if (list_lru_init_memcg(&s->s_dentry_lru))
196 goto fail;
197 if (list_lru_init_memcg(&s->s_inode_lru))
198 goto fail;
199
200 init_rwsem(&s->s_umount);
201 lockdep_set_class(&s->s_umount, &type->s_umount_key);
202 /*
203 * sget() can have s_umount recursion.
204 *
205 * When it cannot find a suitable sb, it allocates a new
206 * one (this one), and tries again to find a suitable old
207 * one.
208 *
209 * In case that succeeds, it will acquire the s_umount
210 * lock of the old one. Since these are clearly distrinct
211 * locks, and this object isn't exposed yet, there's no
212 * risk of deadlocks.
213 *
214 * Annotate this by putting this lock in a different
215 * subclass.
216 */
217 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
218 s->s_count = 1;
219 atomic_set(&s->s_active, 1);
220 mutex_init(&s->s_vfs_rename_mutex);
221 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
222 mutex_init(&s->s_dquot.dqio_mutex);
223 mutex_init(&s->s_dquot.dqonoff_mutex);
224 s->s_maxbytes = MAX_NON_LFS;
225 s->s_op = &default_op;
226 s->s_time_gran = 1000000000;
227 s->cleancache_poolid = -1;
228
229 s->s_shrink.seeks = DEFAULT_SEEKS;
230 s->s_shrink.scan_objects = super_cache_scan;
231 s->s_shrink.count_objects = super_cache_count;
232 s->s_shrink.batch = 1024;
233 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
234 return s;
235
236 fail:
237 destroy_super(s);
238 return NULL;
239 }
240
241 /* Superblock refcounting */
242
243 /*
244 * Drop a superblock's refcount. The caller must hold sb_lock.
245 */
246 static void __put_super(struct super_block *sb)
247 {
248 if (!--sb->s_count) {
249 list_del_init(&sb->s_list);
250 destroy_super(sb);
251 }
252 }
253
254 /**
255 * put_super - drop a temporary reference to superblock
256 * @sb: superblock in question
257 *
258 * Drops a temporary reference, frees superblock if there's no
259 * references left.
260 */
261 static void put_super(struct super_block *sb)
262 {
263 spin_lock(&sb_lock);
264 __put_super(sb);
265 spin_unlock(&sb_lock);
266 }
267
268
269 /**
270 * deactivate_locked_super - drop an active reference to superblock
271 * @s: superblock to deactivate
272 *
273 * Drops an active reference to superblock, converting it into a temprory
274 * one if there is no other active references left. In that case we
275 * tell fs driver to shut it down and drop the temporary reference we
276 * had just acquired.
277 *
278 * Caller holds exclusive lock on superblock; that lock is released.
279 */
280 void deactivate_locked_super(struct super_block *s)
281 {
282 struct file_system_type *fs = s->s_type;
283 if (atomic_dec_and_test(&s->s_active)) {
284 cleancache_invalidate_fs(s);
285 unregister_shrinker(&s->s_shrink);
286 fs->kill_sb(s);
287
288 /*
289 * Since list_lru_destroy() may sleep, we cannot call it from
290 * put_super(), where we hold the sb_lock. Therefore we destroy
291 * the lru lists right now.
292 */
293 list_lru_destroy(&s->s_dentry_lru);
294 list_lru_destroy(&s->s_inode_lru);
295
296 put_filesystem(fs);
297 put_super(s);
298 } else {
299 up_write(&s->s_umount);
300 }
301 }
302
303 EXPORT_SYMBOL(deactivate_locked_super);
304
305 /**
306 * deactivate_super - drop an active reference to superblock
307 * @s: superblock to deactivate
308 *
309 * Variant of deactivate_locked_super(), except that superblock is *not*
310 * locked by caller. If we are going to drop the final active reference,
311 * lock will be acquired prior to that.
312 */
313 void deactivate_super(struct super_block *s)
314 {
315 if (!atomic_add_unless(&s->s_active, -1, 1)) {
316 down_write(&s->s_umount);
317 deactivate_locked_super(s);
318 }
319 }
320
321 EXPORT_SYMBOL(deactivate_super);
322
323 /**
324 * grab_super - acquire an active reference
325 * @s: reference we are trying to make active
326 *
327 * Tries to acquire an active reference. grab_super() is used when we
328 * had just found a superblock in super_blocks or fs_type->fs_supers
329 * and want to turn it into a full-blown active reference. grab_super()
330 * is called with sb_lock held and drops it. Returns 1 in case of
331 * success, 0 if we had failed (superblock contents was already dead or
332 * dying when grab_super() had been called). Note that this is only
333 * called for superblocks not in rundown mode (== ones still on ->fs_supers
334 * of their type), so increment of ->s_count is OK here.
335 */
336 static int grab_super(struct super_block *s) __releases(sb_lock)
337 {
338 s->s_count++;
339 spin_unlock(&sb_lock);
340 down_write(&s->s_umount);
341 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
342 put_super(s);
343 return 1;
344 }
345 up_write(&s->s_umount);
346 put_super(s);
347 return 0;
348 }
349
350 /*
351 * grab_super_passive - acquire a passive reference
352 * @sb: reference we are trying to grab
353 *
354 * Tries to acquire a passive reference. This is used in places where we
355 * cannot take an active reference but we need to ensure that the
356 * superblock does not go away while we are working on it. It returns
357 * false if a reference was not gained, and returns true with the s_umount
358 * lock held in read mode if a reference is gained. On successful return,
359 * the caller must drop the s_umount lock and the passive reference when
360 * done.
361 */
362 bool grab_super_passive(struct super_block *sb)
363 {
364 spin_lock(&sb_lock);
365 if (hlist_unhashed(&sb->s_instances)) {
366 spin_unlock(&sb_lock);
367 return false;
368 }
369
370 sb->s_count++;
371 spin_unlock(&sb_lock);
372
373 if (down_read_trylock(&sb->s_umount)) {
374 if (sb->s_root && (sb->s_flags & MS_BORN))
375 return true;
376 up_read(&sb->s_umount);
377 }
378
379 put_super(sb);
380 return false;
381 }
382
383 /**
384 * generic_shutdown_super - common helper for ->kill_sb()
385 * @sb: superblock to kill
386 *
387 * generic_shutdown_super() does all fs-independent work on superblock
388 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
389 * that need destruction out of superblock, call generic_shutdown_super()
390 * and release aforementioned objects. Note: dentries and inodes _are_
391 * taken care of and do not need specific handling.
392 *
393 * Upon calling this function, the filesystem may no longer alter or
394 * rearrange the set of dentries belonging to this super_block, nor may it
395 * change the attachments of dentries to inodes.
396 */
397 void generic_shutdown_super(struct super_block *sb)
398 {
399 const struct super_operations *sop = sb->s_op;
400
401 if (sb->s_root) {
402 shrink_dcache_for_umount(sb);
403 sync_filesystem(sb);
404 sb->s_flags &= ~MS_ACTIVE;
405
406 fsnotify_unmount_inodes(&sb->s_inodes);
407
408 evict_inodes(sb);
409
410 if (sb->s_dio_done_wq) {
411 destroy_workqueue(sb->s_dio_done_wq);
412 sb->s_dio_done_wq = NULL;
413 }
414
415 if (sop->put_super)
416 sop->put_super(sb);
417
418 if (!list_empty(&sb->s_inodes)) {
419 printk("VFS: Busy inodes after unmount of %s. "
420 "Self-destruct in 5 seconds. Have a nice day...\n",
421 sb->s_id);
422 }
423 }
424 spin_lock(&sb_lock);
425 /* should be initialized for __put_super_and_need_restart() */
426 hlist_del_init(&sb->s_instances);
427 spin_unlock(&sb_lock);
428 up_write(&sb->s_umount);
429 }
430
431 EXPORT_SYMBOL(generic_shutdown_super);
432
433 /**
434 * sget - find or create a superblock
435 * @type: filesystem type superblock should belong to
436 * @test: comparison callback
437 * @set: setup callback
438 * @flags: mount flags
439 * @data: argument to each of them
440 */
441 struct super_block *sget(struct file_system_type *type,
442 int (*test)(struct super_block *,void *),
443 int (*set)(struct super_block *,void *),
444 int flags,
445 void *data)
446 {
447 struct super_block *s = NULL;
448 struct super_block *old;
449 int err;
450
451 retry:
452 spin_lock(&sb_lock);
453 if (test) {
454 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
455 if (!test(old, data))
456 continue;
457 if (!grab_super(old))
458 goto retry;
459 if (s) {
460 up_write(&s->s_umount);
461 destroy_super(s);
462 s = NULL;
463 }
464 return old;
465 }
466 }
467 if (!s) {
468 spin_unlock(&sb_lock);
469 s = alloc_super(type, flags);
470 if (!s)
471 return ERR_PTR(-ENOMEM);
472 goto retry;
473 }
474
475 err = set(s, data);
476 if (err) {
477 spin_unlock(&sb_lock);
478 up_write(&s->s_umount);
479 destroy_super(s);
480 return ERR_PTR(err);
481 }
482 s->s_type = type;
483 strlcpy(s->s_id, type->name, sizeof(s->s_id));
484 list_add_tail(&s->s_list, &super_blocks);
485 hlist_add_head(&s->s_instances, &type->fs_supers);
486 spin_unlock(&sb_lock);
487 get_filesystem(type);
488 register_shrinker(&s->s_shrink);
489 return s;
490 }
491
492 EXPORT_SYMBOL(sget);
493
494 void drop_super(struct super_block *sb)
495 {
496 up_read(&sb->s_umount);
497 put_super(sb);
498 }
499
500 EXPORT_SYMBOL(drop_super);
501
502 /**
503 * iterate_supers - call function for all active superblocks
504 * @f: function to call
505 * @arg: argument to pass to it
506 *
507 * Scans the superblock list and calls given function, passing it
508 * locked superblock and given argument.
509 */
510 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
511 {
512 struct super_block *sb, *p = NULL;
513
514 spin_lock(&sb_lock);
515 list_for_each_entry(sb, &super_blocks, s_list) {
516 if (hlist_unhashed(&sb->s_instances))
517 continue;
518 sb->s_count++;
519 spin_unlock(&sb_lock);
520
521 down_read(&sb->s_umount);
522 if (sb->s_root && (sb->s_flags & MS_BORN))
523 f(sb, arg);
524 up_read(&sb->s_umount);
525
526 spin_lock(&sb_lock);
527 if (p)
528 __put_super(p);
529 p = sb;
530 }
531 if (p)
532 __put_super(p);
533 spin_unlock(&sb_lock);
534 }
535
536 /**
537 * iterate_supers_type - call function for superblocks of given type
538 * @type: fs type
539 * @f: function to call
540 * @arg: argument to pass to it
541 *
542 * Scans the superblock list and calls given function, passing it
543 * locked superblock and given argument.
544 */
545 void iterate_supers_type(struct file_system_type *type,
546 void (*f)(struct super_block *, void *), void *arg)
547 {
548 struct super_block *sb, *p = NULL;
549
550 spin_lock(&sb_lock);
551 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
552 sb->s_count++;
553 spin_unlock(&sb_lock);
554
555 down_read(&sb->s_umount);
556 if (sb->s_root && (sb->s_flags & MS_BORN))
557 f(sb, arg);
558 up_read(&sb->s_umount);
559
560 spin_lock(&sb_lock);
561 if (p)
562 __put_super(p);
563 p = sb;
564 }
565 if (p)
566 __put_super(p);
567 spin_unlock(&sb_lock);
568 }
569
570 EXPORT_SYMBOL(iterate_supers_type);
571
572 /**
573 * get_super - get the superblock of a device
574 * @bdev: device to get the superblock for
575 *
576 * Scans the superblock list and finds the superblock of the file system
577 * mounted on the device given. %NULL is returned if no match is found.
578 */
579
580 struct super_block *get_super(struct block_device *bdev)
581 {
582 struct super_block *sb;
583
584 if (!bdev)
585 return NULL;
586
587 spin_lock(&sb_lock);
588 rescan:
589 list_for_each_entry(sb, &super_blocks, s_list) {
590 if (hlist_unhashed(&sb->s_instances))
591 continue;
592 if (sb->s_bdev == bdev) {
593 sb->s_count++;
594 spin_unlock(&sb_lock);
595 down_read(&sb->s_umount);
596 /* still alive? */
597 if (sb->s_root && (sb->s_flags & MS_BORN))
598 return sb;
599 up_read(&sb->s_umount);
600 /* nope, got unmounted */
601 spin_lock(&sb_lock);
602 __put_super(sb);
603 goto rescan;
604 }
605 }
606 spin_unlock(&sb_lock);
607 return NULL;
608 }
609
610 EXPORT_SYMBOL(get_super);
611
612 /**
613 * get_super_thawed - get thawed superblock of a device
614 * @bdev: device to get the superblock for
615 *
616 * Scans the superblock list and finds the superblock of the file system
617 * mounted on the device. The superblock is returned once it is thawed
618 * (or immediately if it was not frozen). %NULL is returned if no match
619 * is found.
620 */
621 struct super_block *get_super_thawed(struct block_device *bdev)
622 {
623 while (1) {
624 struct super_block *s = get_super(bdev);
625 if (!s || s->s_writers.frozen == SB_UNFROZEN)
626 return s;
627 up_read(&s->s_umount);
628 wait_event(s->s_writers.wait_unfrozen,
629 s->s_writers.frozen == SB_UNFROZEN);
630 put_super(s);
631 }
632 }
633 EXPORT_SYMBOL(get_super_thawed);
634
635 /**
636 * get_active_super - get an active reference to the superblock of a device
637 * @bdev: device to get the superblock for
638 *
639 * Scans the superblock list and finds the superblock of the file system
640 * mounted on the device given. Returns the superblock with an active
641 * reference or %NULL if none was found.
642 */
643 struct super_block *get_active_super(struct block_device *bdev)
644 {
645 struct super_block *sb;
646
647 if (!bdev)
648 return NULL;
649
650 restart:
651 spin_lock(&sb_lock);
652 list_for_each_entry(sb, &super_blocks, s_list) {
653 if (hlist_unhashed(&sb->s_instances))
654 continue;
655 if (sb->s_bdev == bdev) {
656 if (!grab_super(sb))
657 goto restart;
658 up_write(&sb->s_umount);
659 return sb;
660 }
661 }
662 spin_unlock(&sb_lock);
663 return NULL;
664 }
665
666 struct super_block *user_get_super(dev_t dev)
667 {
668 struct super_block *sb;
669
670 spin_lock(&sb_lock);
671 rescan:
672 list_for_each_entry(sb, &super_blocks, s_list) {
673 if (hlist_unhashed(&sb->s_instances))
674 continue;
675 if (sb->s_dev == dev) {
676 sb->s_count++;
677 spin_unlock(&sb_lock);
678 down_read(&sb->s_umount);
679 /* still alive? */
680 if (sb->s_root && (sb->s_flags & MS_BORN))
681 return sb;
682 up_read(&sb->s_umount);
683 /* nope, got unmounted */
684 spin_lock(&sb_lock);
685 __put_super(sb);
686 goto rescan;
687 }
688 }
689 spin_unlock(&sb_lock);
690 return NULL;
691 }
692
693 /**
694 * do_remount_sb - asks filesystem to change mount options.
695 * @sb: superblock in question
696 * @flags: numeric part of options
697 * @data: the rest of options
698 * @force: whether or not to force the change
699 *
700 * Alters the mount options of a mounted file system.
701 */
702 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
703 {
704 int retval;
705 int remount_ro;
706
707 if (sb->s_writers.frozen != SB_UNFROZEN)
708 return -EBUSY;
709
710 #ifdef CONFIG_BLOCK
711 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
712 return -EACCES;
713 #endif
714
715 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
716
717 if (remount_ro) {
718 if (sb->s_pins.first) {
719 up_write(&sb->s_umount);
720 sb_pin_kill(sb);
721 down_write(&sb->s_umount);
722 if (!sb->s_root)
723 return 0;
724 if (sb->s_writers.frozen != SB_UNFROZEN)
725 return -EBUSY;
726 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
727 }
728 }
729 shrink_dcache_sb(sb);
730
731 /* If we are remounting RDONLY and current sb is read/write,
732 make sure there are no rw files opened */
733 if (remount_ro) {
734 if (force) {
735 sb->s_readonly_remount = 1;
736 smp_wmb();
737 } else {
738 retval = sb_prepare_remount_readonly(sb);
739 if (retval)
740 return retval;
741 }
742 }
743
744 if (sb->s_op->remount_fs) {
745 retval = sb->s_op->remount_fs(sb, &flags, data);
746 if (retval) {
747 if (!force)
748 goto cancel_readonly;
749 /* If forced remount, go ahead despite any errors */
750 WARN(1, "forced remount of a %s fs returned %i\n",
751 sb->s_type->name, retval);
752 }
753 }
754 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
755 /* Needs to be ordered wrt mnt_is_readonly() */
756 smp_wmb();
757 sb->s_readonly_remount = 0;
758
759 /*
760 * Some filesystems modify their metadata via some other path than the
761 * bdev buffer cache (eg. use a private mapping, or directories in
762 * pagecache, etc). Also file data modifications go via their own
763 * mappings. So If we try to mount readonly then copy the filesystem
764 * from bdev, we could get stale data, so invalidate it to give a best
765 * effort at coherency.
766 */
767 if (remount_ro && sb->s_bdev)
768 invalidate_bdev(sb->s_bdev);
769 return 0;
770
771 cancel_readonly:
772 sb->s_readonly_remount = 0;
773 return retval;
774 }
775
776 static void do_emergency_remount(struct work_struct *work)
777 {
778 struct super_block *sb, *p = NULL;
779
780 spin_lock(&sb_lock);
781 list_for_each_entry(sb, &super_blocks, s_list) {
782 if (hlist_unhashed(&sb->s_instances))
783 continue;
784 sb->s_count++;
785 spin_unlock(&sb_lock);
786 down_write(&sb->s_umount);
787 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
788 !(sb->s_flags & MS_RDONLY)) {
789 /*
790 * What lock protects sb->s_flags??
791 */
792 do_remount_sb(sb, MS_RDONLY, NULL, 1);
793 }
794 up_write(&sb->s_umount);
795 spin_lock(&sb_lock);
796 if (p)
797 __put_super(p);
798 p = sb;
799 }
800 if (p)
801 __put_super(p);
802 spin_unlock(&sb_lock);
803 kfree(work);
804 printk("Emergency Remount complete\n");
805 }
806
807 void emergency_remount(void)
808 {
809 struct work_struct *work;
810
811 work = kmalloc(sizeof(*work), GFP_ATOMIC);
812 if (work) {
813 INIT_WORK(work, do_emergency_remount);
814 schedule_work(work);
815 }
816 }
817
818 /*
819 * Unnamed block devices are dummy devices used by virtual
820 * filesystems which don't use real block-devices. -- jrs
821 */
822
823 static DEFINE_IDA(unnamed_dev_ida);
824 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
825 /* Many userspace utilities consider an FSID of 0 invalid.
826 * Always return at least 1 from get_anon_bdev.
827 */
828 static int unnamed_dev_start = 1;
829
830 int get_anon_bdev(dev_t *p)
831 {
832 int dev;
833 int error;
834
835 retry:
836 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
837 return -ENOMEM;
838 spin_lock(&unnamed_dev_lock);
839 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
840 if (!error)
841 unnamed_dev_start = dev + 1;
842 spin_unlock(&unnamed_dev_lock);
843 if (error == -EAGAIN)
844 /* We raced and lost with another CPU. */
845 goto retry;
846 else if (error)
847 return -EAGAIN;
848
849 if (dev == (1 << MINORBITS)) {
850 spin_lock(&unnamed_dev_lock);
851 ida_remove(&unnamed_dev_ida, dev);
852 if (unnamed_dev_start > dev)
853 unnamed_dev_start = dev;
854 spin_unlock(&unnamed_dev_lock);
855 return -EMFILE;
856 }
857 *p = MKDEV(0, dev & MINORMASK);
858 return 0;
859 }
860 EXPORT_SYMBOL(get_anon_bdev);
861
862 void free_anon_bdev(dev_t dev)
863 {
864 int slot = MINOR(dev);
865 spin_lock(&unnamed_dev_lock);
866 ida_remove(&unnamed_dev_ida, slot);
867 if (slot < unnamed_dev_start)
868 unnamed_dev_start = slot;
869 spin_unlock(&unnamed_dev_lock);
870 }
871 EXPORT_SYMBOL(free_anon_bdev);
872
873 int set_anon_super(struct super_block *s, void *data)
874 {
875 return get_anon_bdev(&s->s_dev);
876 }
877
878 EXPORT_SYMBOL(set_anon_super);
879
880 void kill_anon_super(struct super_block *sb)
881 {
882 dev_t dev = sb->s_dev;
883 generic_shutdown_super(sb);
884 free_anon_bdev(dev);
885 }
886
887 EXPORT_SYMBOL(kill_anon_super);
888
889 void kill_litter_super(struct super_block *sb)
890 {
891 if (sb->s_root)
892 d_genocide(sb->s_root);
893 kill_anon_super(sb);
894 }
895
896 EXPORT_SYMBOL(kill_litter_super);
897
898 static int ns_test_super(struct super_block *sb, void *data)
899 {
900 return sb->s_fs_info == data;
901 }
902
903 static int ns_set_super(struct super_block *sb, void *data)
904 {
905 sb->s_fs_info = data;
906 return set_anon_super(sb, NULL);
907 }
908
909 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
910 void *data, int (*fill_super)(struct super_block *, void *, int))
911 {
912 struct super_block *sb;
913
914 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
915 if (IS_ERR(sb))
916 return ERR_CAST(sb);
917
918 if (!sb->s_root) {
919 int err;
920 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
921 if (err) {
922 deactivate_locked_super(sb);
923 return ERR_PTR(err);
924 }
925
926 sb->s_flags |= MS_ACTIVE;
927 }
928
929 return dget(sb->s_root);
930 }
931
932 EXPORT_SYMBOL(mount_ns);
933
934 #ifdef CONFIG_BLOCK
935 static int set_bdev_super(struct super_block *s, void *data)
936 {
937 s->s_bdev = data;
938 s->s_dev = s->s_bdev->bd_dev;
939
940 /*
941 * We set the bdi here to the queue backing, file systems can
942 * overwrite this in ->fill_super()
943 */
944 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
945 return 0;
946 }
947
948 static int test_bdev_super(struct super_block *s, void *data)
949 {
950 return (void *)s->s_bdev == data;
951 }
952
953 struct dentry *mount_bdev(struct file_system_type *fs_type,
954 int flags, const char *dev_name, void *data,
955 int (*fill_super)(struct super_block *, void *, int))
956 {
957 struct block_device *bdev;
958 struct super_block *s;
959 fmode_t mode = FMODE_READ | FMODE_EXCL;
960 int error = 0;
961
962 if (!(flags & MS_RDONLY))
963 mode |= FMODE_WRITE;
964
965 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
966 if (IS_ERR(bdev))
967 return ERR_CAST(bdev);
968
969 /*
970 * once the super is inserted into the list by sget, s_umount
971 * will protect the lockfs code from trying to start a snapshot
972 * while we are mounting
973 */
974 mutex_lock(&bdev->bd_fsfreeze_mutex);
975 if (bdev->bd_fsfreeze_count > 0) {
976 mutex_unlock(&bdev->bd_fsfreeze_mutex);
977 error = -EBUSY;
978 goto error_bdev;
979 }
980 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
981 bdev);
982 mutex_unlock(&bdev->bd_fsfreeze_mutex);
983 if (IS_ERR(s))
984 goto error_s;
985
986 if (s->s_root) {
987 if ((flags ^ s->s_flags) & MS_RDONLY) {
988 deactivate_locked_super(s);
989 error = -EBUSY;
990 goto error_bdev;
991 }
992
993 /*
994 * s_umount nests inside bd_mutex during
995 * __invalidate_device(). blkdev_put() acquires
996 * bd_mutex and can't be called under s_umount. Drop
997 * s_umount temporarily. This is safe as we're
998 * holding an active reference.
999 */
1000 up_write(&s->s_umount);
1001 blkdev_put(bdev, mode);
1002 down_write(&s->s_umount);
1003 } else {
1004 char b[BDEVNAME_SIZE];
1005
1006 s->s_mode = mode;
1007 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1008 sb_set_blocksize(s, block_size(bdev));
1009 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1010 if (error) {
1011 deactivate_locked_super(s);
1012 goto error;
1013 }
1014
1015 s->s_flags |= MS_ACTIVE;
1016 bdev->bd_super = s;
1017 }
1018
1019 return dget(s->s_root);
1020
1021 error_s:
1022 error = PTR_ERR(s);
1023 error_bdev:
1024 blkdev_put(bdev, mode);
1025 error:
1026 return ERR_PTR(error);
1027 }
1028 EXPORT_SYMBOL(mount_bdev);
1029
1030 void kill_block_super(struct super_block *sb)
1031 {
1032 struct block_device *bdev = sb->s_bdev;
1033 fmode_t mode = sb->s_mode;
1034
1035 bdev->bd_super = NULL;
1036 generic_shutdown_super(sb);
1037 sync_blockdev(bdev);
1038 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1039 blkdev_put(bdev, mode | FMODE_EXCL);
1040 }
1041
1042 EXPORT_SYMBOL(kill_block_super);
1043 #endif
1044
1045 struct dentry *mount_nodev(struct file_system_type *fs_type,
1046 int flags, void *data,
1047 int (*fill_super)(struct super_block *, void *, int))
1048 {
1049 int error;
1050 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1051
1052 if (IS_ERR(s))
1053 return ERR_CAST(s);
1054
1055 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1056 if (error) {
1057 deactivate_locked_super(s);
1058 return ERR_PTR(error);
1059 }
1060 s->s_flags |= MS_ACTIVE;
1061 return dget(s->s_root);
1062 }
1063 EXPORT_SYMBOL(mount_nodev);
1064
1065 static int compare_single(struct super_block *s, void *p)
1066 {
1067 return 1;
1068 }
1069
1070 struct dentry *mount_single(struct file_system_type *fs_type,
1071 int flags, void *data,
1072 int (*fill_super)(struct super_block *, void *, int))
1073 {
1074 struct super_block *s;
1075 int error;
1076
1077 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1078 if (IS_ERR(s))
1079 return ERR_CAST(s);
1080 if (!s->s_root) {
1081 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1082 if (error) {
1083 deactivate_locked_super(s);
1084 return ERR_PTR(error);
1085 }
1086 s->s_flags |= MS_ACTIVE;
1087 } else {
1088 do_remount_sb(s, flags, data, 0);
1089 }
1090 return dget(s->s_root);
1091 }
1092 EXPORT_SYMBOL(mount_single);
1093
1094 struct dentry *
1095 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1096 {
1097 struct dentry *root;
1098 struct super_block *sb;
1099 char *secdata = NULL;
1100 int error = -ENOMEM;
1101
1102 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1103 secdata = alloc_secdata();
1104 if (!secdata)
1105 goto out;
1106
1107 error = security_sb_copy_data(data, secdata);
1108 if (error)
1109 goto out_free_secdata;
1110 }
1111
1112 root = type->mount(type, flags, name, data);
1113 if (IS_ERR(root)) {
1114 error = PTR_ERR(root);
1115 goto out_free_secdata;
1116 }
1117 sb = root->d_sb;
1118 BUG_ON(!sb);
1119 WARN_ON(!sb->s_bdi);
1120 sb->s_flags |= MS_BORN;
1121
1122 error = security_sb_kern_mount(sb, flags, secdata);
1123 if (error)
1124 goto out_sb;
1125
1126 /*
1127 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1128 * but s_maxbytes was an unsigned long long for many releases. Throw
1129 * this warning for a little while to try and catch filesystems that
1130 * violate this rule.
1131 */
1132 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1133 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1134
1135 up_write(&sb->s_umount);
1136 free_secdata(secdata);
1137 return root;
1138 out_sb:
1139 dput(root);
1140 deactivate_locked_super(sb);
1141 out_free_secdata:
1142 free_secdata(secdata);
1143 out:
1144 return ERR_PTR(error);
1145 }
1146
1147 /*
1148 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1149 * instead.
1150 */
1151 void __sb_end_write(struct super_block *sb, int level)
1152 {
1153 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1154 /*
1155 * Make sure s_writers are updated before we wake up waiters in
1156 * freeze_super().
1157 */
1158 smp_mb();
1159 if (waitqueue_active(&sb->s_writers.wait))
1160 wake_up(&sb->s_writers.wait);
1161 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1162 }
1163 EXPORT_SYMBOL(__sb_end_write);
1164
1165 #ifdef CONFIG_LOCKDEP
1166 /*
1167 * We want lockdep to tell us about possible deadlocks with freezing but
1168 * it's it bit tricky to properly instrument it. Getting a freeze protection
1169 * works as getting a read lock but there are subtle problems. XFS for example
1170 * gets freeze protection on internal level twice in some cases, which is OK
1171 * only because we already hold a freeze protection also on higher level. Due
1172 * to these cases we have to tell lockdep we are doing trylock when we
1173 * already hold a freeze protection for a higher freeze level.
1174 */
1175 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1176 unsigned long ip)
1177 {
1178 int i;
1179
1180 if (!trylock) {
1181 for (i = 0; i < level - 1; i++)
1182 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1183 trylock = true;
1184 break;
1185 }
1186 }
1187 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1188 }
1189 #endif
1190
1191 /*
1192 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1193 * instead.
1194 */
1195 int __sb_start_write(struct super_block *sb, int level, bool wait)
1196 {
1197 retry:
1198 if (unlikely(sb->s_writers.frozen >= level)) {
1199 if (!wait)
1200 return 0;
1201 wait_event(sb->s_writers.wait_unfrozen,
1202 sb->s_writers.frozen < level);
1203 }
1204
1205 #ifdef CONFIG_LOCKDEP
1206 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1207 #endif
1208 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1209 /*
1210 * Make sure counter is updated before we check for frozen.
1211 * freeze_super() first sets frozen and then checks the counter.
1212 */
1213 smp_mb();
1214 if (unlikely(sb->s_writers.frozen >= level)) {
1215 __sb_end_write(sb, level);
1216 goto retry;
1217 }
1218 return 1;
1219 }
1220 EXPORT_SYMBOL(__sb_start_write);
1221
1222 /**
1223 * sb_wait_write - wait until all writers to given file system finish
1224 * @sb: the super for which we wait
1225 * @level: type of writers we wait for (normal vs page fault)
1226 *
1227 * This function waits until there are no writers of given type to given file
1228 * system. Caller of this function should make sure there can be no new writers
1229 * of type @level before calling this function. Otherwise this function can
1230 * livelock.
1231 */
1232 static void sb_wait_write(struct super_block *sb, int level)
1233 {
1234 s64 writers;
1235
1236 /*
1237 * We just cycle-through lockdep here so that it does not complain
1238 * about returning with lock to userspace
1239 */
1240 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1241 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1242
1243 do {
1244 DEFINE_WAIT(wait);
1245
1246 /*
1247 * We use a barrier in prepare_to_wait() to separate setting
1248 * of frozen and checking of the counter
1249 */
1250 prepare_to_wait(&sb->s_writers.wait, &wait,
1251 TASK_UNINTERRUPTIBLE);
1252
1253 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1254 if (writers)
1255 schedule();
1256
1257 finish_wait(&sb->s_writers.wait, &wait);
1258 } while (writers);
1259 }
1260
1261 /**
1262 * freeze_super - lock the filesystem and force it into a consistent state
1263 * @sb: the super to lock
1264 *
1265 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1266 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1267 * -EBUSY.
1268 *
1269 * During this function, sb->s_writers.frozen goes through these values:
1270 *
1271 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1272 *
1273 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1274 * writes should be blocked, though page faults are still allowed. We wait for
1275 * all writes to complete and then proceed to the next stage.
1276 *
1277 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1278 * but internal fs threads can still modify the filesystem (although they
1279 * should not dirty new pages or inodes), writeback can run etc. After waiting
1280 * for all running page faults we sync the filesystem which will clean all
1281 * dirty pages and inodes (no new dirty pages or inodes can be created when
1282 * sync is running).
1283 *
1284 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1285 * modification are blocked (e.g. XFS preallocation truncation on inode
1286 * reclaim). This is usually implemented by blocking new transactions for
1287 * filesystems that have them and need this additional guard. After all
1288 * internal writers are finished we call ->freeze_fs() to finish filesystem
1289 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1290 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1291 *
1292 * sb->s_writers.frozen is protected by sb->s_umount.
1293 */
1294 int freeze_super(struct super_block *sb)
1295 {
1296 int ret;
1297
1298 atomic_inc(&sb->s_active);
1299 down_write(&sb->s_umount);
1300 if (sb->s_writers.frozen != SB_UNFROZEN) {
1301 deactivate_locked_super(sb);
1302 return -EBUSY;
1303 }
1304
1305 if (!(sb->s_flags & MS_BORN)) {
1306 up_write(&sb->s_umount);
1307 return 0; /* sic - it's "nothing to do" */
1308 }
1309
1310 if (sb->s_flags & MS_RDONLY) {
1311 /* Nothing to do really... */
1312 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1313 up_write(&sb->s_umount);
1314 return 0;
1315 }
1316
1317 /* From now on, no new normal writers can start */
1318 sb->s_writers.frozen = SB_FREEZE_WRITE;
1319 smp_wmb();
1320
1321 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1322 up_write(&sb->s_umount);
1323
1324 sb_wait_write(sb, SB_FREEZE_WRITE);
1325
1326 /* Now we go and block page faults... */
1327 down_write(&sb->s_umount);
1328 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1329 smp_wmb();
1330
1331 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1332
1333 /* All writers are done so after syncing there won't be dirty data */
1334 sync_filesystem(sb);
1335
1336 /* Now wait for internal filesystem counter */
1337 sb->s_writers.frozen = SB_FREEZE_FS;
1338 smp_wmb();
1339 sb_wait_write(sb, SB_FREEZE_FS);
1340
1341 if (sb->s_op->freeze_fs) {
1342 ret = sb->s_op->freeze_fs(sb);
1343 if (ret) {
1344 printk(KERN_ERR
1345 "VFS:Filesystem freeze failed\n");
1346 sb->s_writers.frozen = SB_UNFROZEN;
1347 smp_wmb();
1348 wake_up(&sb->s_writers.wait_unfrozen);
1349 deactivate_locked_super(sb);
1350 return ret;
1351 }
1352 }
1353 /*
1354 * This is just for debugging purposes so that fs can warn if it
1355 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1356 */
1357 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1358 up_write(&sb->s_umount);
1359 return 0;
1360 }
1361 EXPORT_SYMBOL(freeze_super);
1362
1363 /**
1364 * thaw_super -- unlock filesystem
1365 * @sb: the super to thaw
1366 *
1367 * Unlocks the filesystem and marks it writeable again after freeze_super().
1368 */
1369 int thaw_super(struct super_block *sb)
1370 {
1371 int error;
1372
1373 down_write(&sb->s_umount);
1374 if (sb->s_writers.frozen == SB_UNFROZEN) {
1375 up_write(&sb->s_umount);
1376 return -EINVAL;
1377 }
1378
1379 if (sb->s_flags & MS_RDONLY)
1380 goto out;
1381
1382 if (sb->s_op->unfreeze_fs) {
1383 error = sb->s_op->unfreeze_fs(sb);
1384 if (error) {
1385 printk(KERN_ERR
1386 "VFS:Filesystem thaw failed\n");
1387 up_write(&sb->s_umount);
1388 return error;
1389 }
1390 }
1391
1392 out:
1393 sb->s_writers.frozen = SB_UNFROZEN;
1394 smp_wmb();
1395 wake_up(&sb->s_writers.wait_unfrozen);
1396 deactivate_locked_super(sb);
1397
1398 return 0;
1399 }
1400 EXPORT_SYMBOL(thaw_super);
This page took 0.057287 seconds and 6 git commands to generate.