UBIFS: fix sparse warnings
[deliverable/linux.git] / fs / ubifs / debug.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23 /*
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
28 */
29
30 #define UBIFS_DBG_PRESERVE_UBI
31
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
37
38 #ifdef CONFIG_UBIFS_FS_DEBUG
39
40 DEFINE_SPINLOCK(dbg_lock);
41
42 static char dbg_key_buf0[128];
43 static char dbg_key_buf1[128];
44
45 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
46 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
47 unsigned int ubifs_tst_flags;
48
49 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
50 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
51 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
52
53 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
54 MODULE_PARM_DESC(debug_chks, "Debug check flags");
55 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
56
57 static const char *get_key_fmt(int fmt)
58 {
59 switch (fmt) {
60 case UBIFS_SIMPLE_KEY_FMT:
61 return "simple";
62 default:
63 return "unknown/invalid format";
64 }
65 }
66
67 static const char *get_key_hash(int hash)
68 {
69 switch (hash) {
70 case UBIFS_KEY_HASH_R5:
71 return "R5";
72 case UBIFS_KEY_HASH_TEST:
73 return "test";
74 default:
75 return "unknown/invalid name hash";
76 }
77 }
78
79 static const char *get_key_type(int type)
80 {
81 switch (type) {
82 case UBIFS_INO_KEY:
83 return "inode";
84 case UBIFS_DENT_KEY:
85 return "direntry";
86 case UBIFS_XENT_KEY:
87 return "xentry";
88 case UBIFS_DATA_KEY:
89 return "data";
90 case UBIFS_TRUN_KEY:
91 return "truncate";
92 default:
93 return "unknown/invalid key";
94 }
95 }
96
97 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
98 char *buffer)
99 {
100 char *p = buffer;
101 int type = key_type(c, key);
102
103 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
104 switch (type) {
105 case UBIFS_INO_KEY:
106 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
107 get_key_type(type));
108 break;
109 case UBIFS_DENT_KEY:
110 case UBIFS_XENT_KEY:
111 sprintf(p, "(%lu, %s, %#08x)",
112 (unsigned long)key_inum(c, key),
113 get_key_type(type), key_hash(c, key));
114 break;
115 case UBIFS_DATA_KEY:
116 sprintf(p, "(%lu, %s, %u)",
117 (unsigned long)key_inum(c, key),
118 get_key_type(type), key_block(c, key));
119 break;
120 case UBIFS_TRUN_KEY:
121 sprintf(p, "(%lu, %s)",
122 (unsigned long)key_inum(c, key),
123 get_key_type(type));
124 break;
125 default:
126 sprintf(p, "(bad key type: %#08x, %#08x)",
127 key->u32[0], key->u32[1]);
128 }
129 } else
130 sprintf(p, "bad key format %d", c->key_fmt);
131 }
132
133 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
134 {
135 /* dbg_lock must be held */
136 sprintf_key(c, key, dbg_key_buf0);
137 return dbg_key_buf0;
138 }
139
140 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
141 {
142 /* dbg_lock must be held */
143 sprintf_key(c, key, dbg_key_buf1);
144 return dbg_key_buf1;
145 }
146
147 const char *dbg_ntype(int type)
148 {
149 switch (type) {
150 case UBIFS_PAD_NODE:
151 return "padding node";
152 case UBIFS_SB_NODE:
153 return "superblock node";
154 case UBIFS_MST_NODE:
155 return "master node";
156 case UBIFS_REF_NODE:
157 return "reference node";
158 case UBIFS_INO_NODE:
159 return "inode node";
160 case UBIFS_DENT_NODE:
161 return "direntry node";
162 case UBIFS_XENT_NODE:
163 return "xentry node";
164 case UBIFS_DATA_NODE:
165 return "data node";
166 case UBIFS_TRUN_NODE:
167 return "truncate node";
168 case UBIFS_IDX_NODE:
169 return "indexing node";
170 case UBIFS_CS_NODE:
171 return "commit start node";
172 case UBIFS_ORPH_NODE:
173 return "orphan node";
174 default:
175 return "unknown node";
176 }
177 }
178
179 static const char *dbg_gtype(int type)
180 {
181 switch (type) {
182 case UBIFS_NO_NODE_GROUP:
183 return "no node group";
184 case UBIFS_IN_NODE_GROUP:
185 return "in node group";
186 case UBIFS_LAST_OF_NODE_GROUP:
187 return "last of node group";
188 default:
189 return "unknown";
190 }
191 }
192
193 const char *dbg_cstate(int cmt_state)
194 {
195 switch (cmt_state) {
196 case COMMIT_RESTING:
197 return "commit resting";
198 case COMMIT_BACKGROUND:
199 return "background commit requested";
200 case COMMIT_REQUIRED:
201 return "commit required";
202 case COMMIT_RUNNING_BACKGROUND:
203 return "BACKGROUND commit running";
204 case COMMIT_RUNNING_REQUIRED:
205 return "commit running and required";
206 case COMMIT_BROKEN:
207 return "broken commit";
208 default:
209 return "unknown commit state";
210 }
211 }
212
213 static void dump_ch(const struct ubifs_ch *ch)
214 {
215 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
216 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
217 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
218 dbg_ntype(ch->node_type));
219 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
220 dbg_gtype(ch->group_type));
221 printk(KERN_DEBUG "\tsqnum %llu\n",
222 (unsigned long long)le64_to_cpu(ch->sqnum));
223 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
224 }
225
226 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
227 {
228 const struct ubifs_inode *ui = ubifs_inode(inode);
229
230 printk(KERN_DEBUG "Dump in-memory inode:");
231 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
232 printk(KERN_DEBUG "\tsize %llu\n",
233 (unsigned long long)i_size_read(inode));
234 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
235 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
236 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
237 printk(KERN_DEBUG "\tatime %u.%u\n",
238 (unsigned int)inode->i_atime.tv_sec,
239 (unsigned int)inode->i_atime.tv_nsec);
240 printk(KERN_DEBUG "\tmtime %u.%u\n",
241 (unsigned int)inode->i_mtime.tv_sec,
242 (unsigned int)inode->i_mtime.tv_nsec);
243 printk(KERN_DEBUG "\tctime %u.%u\n",
244 (unsigned int)inode->i_ctime.tv_sec,
245 (unsigned int)inode->i_ctime.tv_nsec);
246 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
247 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
248 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
249 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
250 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
251 printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
252 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
253 printk(KERN_DEBUG "\tsynced_i_size %llu\n",
254 (unsigned long long)ui->synced_i_size);
255 printk(KERN_DEBUG "\tui_size %llu\n",
256 (unsigned long long)ui->ui_size);
257 printk(KERN_DEBUG "\tflags %d\n", ui->flags);
258 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
259 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
260 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
261 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
262 }
263
264 void dbg_dump_node(const struct ubifs_info *c, const void *node)
265 {
266 int i, n;
267 union ubifs_key key;
268 const struct ubifs_ch *ch = node;
269
270 if (dbg_failure_mode)
271 return;
272
273 /* If the magic is incorrect, just hexdump the first bytes */
274 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
275 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
276 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
277 (void *)node, UBIFS_CH_SZ, 1);
278 return;
279 }
280
281 spin_lock(&dbg_lock);
282 dump_ch(node);
283
284 switch (ch->node_type) {
285 case UBIFS_PAD_NODE:
286 {
287 const struct ubifs_pad_node *pad = node;
288
289 printk(KERN_DEBUG "\tpad_len %u\n",
290 le32_to_cpu(pad->pad_len));
291 break;
292 }
293 case UBIFS_SB_NODE:
294 {
295 const struct ubifs_sb_node *sup = node;
296 unsigned int sup_flags = le32_to_cpu(sup->flags);
297
298 printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
299 (int)sup->key_hash, get_key_hash(sup->key_hash));
300 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
301 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
302 printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
303 printk(KERN_DEBUG "\t big_lpt %u\n",
304 !!(sup_flags & UBIFS_FLG_BIGLPT));
305 printk(KERN_DEBUG "\tmin_io_size %u\n",
306 le32_to_cpu(sup->min_io_size));
307 printk(KERN_DEBUG "\tleb_size %u\n",
308 le32_to_cpu(sup->leb_size));
309 printk(KERN_DEBUG "\tleb_cnt %u\n",
310 le32_to_cpu(sup->leb_cnt));
311 printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
312 le32_to_cpu(sup->max_leb_cnt));
313 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
314 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
315 printk(KERN_DEBUG "\tlog_lebs %u\n",
316 le32_to_cpu(sup->log_lebs));
317 printk(KERN_DEBUG "\tlpt_lebs %u\n",
318 le32_to_cpu(sup->lpt_lebs));
319 printk(KERN_DEBUG "\torph_lebs %u\n",
320 le32_to_cpu(sup->orph_lebs));
321 printk(KERN_DEBUG "\tjhead_cnt %u\n",
322 le32_to_cpu(sup->jhead_cnt));
323 printk(KERN_DEBUG "\tfanout %u\n",
324 le32_to_cpu(sup->fanout));
325 printk(KERN_DEBUG "\tlsave_cnt %u\n",
326 le32_to_cpu(sup->lsave_cnt));
327 printk(KERN_DEBUG "\tdefault_compr %u\n",
328 (int)le16_to_cpu(sup->default_compr));
329 printk(KERN_DEBUG "\trp_size %llu\n",
330 (unsigned long long)le64_to_cpu(sup->rp_size));
331 printk(KERN_DEBUG "\trp_uid %u\n",
332 le32_to_cpu(sup->rp_uid));
333 printk(KERN_DEBUG "\trp_gid %u\n",
334 le32_to_cpu(sup->rp_gid));
335 printk(KERN_DEBUG "\tfmt_version %u\n",
336 le32_to_cpu(sup->fmt_version));
337 printk(KERN_DEBUG "\ttime_gran %u\n",
338 le32_to_cpu(sup->time_gran));
339 printk(KERN_DEBUG "\tUUID %02X%02X%02X%02X-%02X%02X"
340 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
341 sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
342 sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
343 sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
344 sup->uuid[12], sup->uuid[13], sup->uuid[14],
345 sup->uuid[15]);
346 break;
347 }
348 case UBIFS_MST_NODE:
349 {
350 const struct ubifs_mst_node *mst = node;
351
352 printk(KERN_DEBUG "\thighest_inum %llu\n",
353 (unsigned long long)le64_to_cpu(mst->highest_inum));
354 printk(KERN_DEBUG "\tcommit number %llu\n",
355 (unsigned long long)le64_to_cpu(mst->cmt_no));
356 printk(KERN_DEBUG "\tflags %#x\n",
357 le32_to_cpu(mst->flags));
358 printk(KERN_DEBUG "\tlog_lnum %u\n",
359 le32_to_cpu(mst->log_lnum));
360 printk(KERN_DEBUG "\troot_lnum %u\n",
361 le32_to_cpu(mst->root_lnum));
362 printk(KERN_DEBUG "\troot_offs %u\n",
363 le32_to_cpu(mst->root_offs));
364 printk(KERN_DEBUG "\troot_len %u\n",
365 le32_to_cpu(mst->root_len));
366 printk(KERN_DEBUG "\tgc_lnum %u\n",
367 le32_to_cpu(mst->gc_lnum));
368 printk(KERN_DEBUG "\tihead_lnum %u\n",
369 le32_to_cpu(mst->ihead_lnum));
370 printk(KERN_DEBUG "\tihead_offs %u\n",
371 le32_to_cpu(mst->ihead_offs));
372 printk(KERN_DEBUG "\tindex_size %llu\n",
373 (unsigned long long)le64_to_cpu(mst->index_size));
374 printk(KERN_DEBUG "\tlpt_lnum %u\n",
375 le32_to_cpu(mst->lpt_lnum));
376 printk(KERN_DEBUG "\tlpt_offs %u\n",
377 le32_to_cpu(mst->lpt_offs));
378 printk(KERN_DEBUG "\tnhead_lnum %u\n",
379 le32_to_cpu(mst->nhead_lnum));
380 printk(KERN_DEBUG "\tnhead_offs %u\n",
381 le32_to_cpu(mst->nhead_offs));
382 printk(KERN_DEBUG "\tltab_lnum %u\n",
383 le32_to_cpu(mst->ltab_lnum));
384 printk(KERN_DEBUG "\tltab_offs %u\n",
385 le32_to_cpu(mst->ltab_offs));
386 printk(KERN_DEBUG "\tlsave_lnum %u\n",
387 le32_to_cpu(mst->lsave_lnum));
388 printk(KERN_DEBUG "\tlsave_offs %u\n",
389 le32_to_cpu(mst->lsave_offs));
390 printk(KERN_DEBUG "\tlscan_lnum %u\n",
391 le32_to_cpu(mst->lscan_lnum));
392 printk(KERN_DEBUG "\tleb_cnt %u\n",
393 le32_to_cpu(mst->leb_cnt));
394 printk(KERN_DEBUG "\tempty_lebs %u\n",
395 le32_to_cpu(mst->empty_lebs));
396 printk(KERN_DEBUG "\tidx_lebs %u\n",
397 le32_to_cpu(mst->idx_lebs));
398 printk(KERN_DEBUG "\ttotal_free %llu\n",
399 (unsigned long long)le64_to_cpu(mst->total_free));
400 printk(KERN_DEBUG "\ttotal_dirty %llu\n",
401 (unsigned long long)le64_to_cpu(mst->total_dirty));
402 printk(KERN_DEBUG "\ttotal_used %llu\n",
403 (unsigned long long)le64_to_cpu(mst->total_used));
404 printk(KERN_DEBUG "\ttotal_dead %llu\n",
405 (unsigned long long)le64_to_cpu(mst->total_dead));
406 printk(KERN_DEBUG "\ttotal_dark %llu\n",
407 (unsigned long long)le64_to_cpu(mst->total_dark));
408 break;
409 }
410 case UBIFS_REF_NODE:
411 {
412 const struct ubifs_ref_node *ref = node;
413
414 printk(KERN_DEBUG "\tlnum %u\n",
415 le32_to_cpu(ref->lnum));
416 printk(KERN_DEBUG "\toffs %u\n",
417 le32_to_cpu(ref->offs));
418 printk(KERN_DEBUG "\tjhead %u\n",
419 le32_to_cpu(ref->jhead));
420 break;
421 }
422 case UBIFS_INO_NODE:
423 {
424 const struct ubifs_ino_node *ino = node;
425
426 key_read(c, &ino->key, &key);
427 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
428 printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
429 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
430 printk(KERN_DEBUG "\tsize %llu\n",
431 (unsigned long long)le64_to_cpu(ino->size));
432 printk(KERN_DEBUG "\tnlink %u\n",
433 le32_to_cpu(ino->nlink));
434 printk(KERN_DEBUG "\tatime %lld.%u\n",
435 (long long)le64_to_cpu(ino->atime_sec),
436 le32_to_cpu(ino->atime_nsec));
437 printk(KERN_DEBUG "\tmtime %lld.%u\n",
438 (long long)le64_to_cpu(ino->mtime_sec),
439 le32_to_cpu(ino->mtime_nsec));
440 printk(KERN_DEBUG "\tctime %lld.%u\n",
441 (long long)le64_to_cpu(ino->ctime_sec),
442 le32_to_cpu(ino->ctime_nsec));
443 printk(KERN_DEBUG "\tuid %u\n",
444 le32_to_cpu(ino->uid));
445 printk(KERN_DEBUG "\tgid %u\n",
446 le32_to_cpu(ino->gid));
447 printk(KERN_DEBUG "\tmode %u\n",
448 le32_to_cpu(ino->mode));
449 printk(KERN_DEBUG "\tflags %#x\n",
450 le32_to_cpu(ino->flags));
451 printk(KERN_DEBUG "\txattr_cnt %u\n",
452 le32_to_cpu(ino->xattr_cnt));
453 printk(KERN_DEBUG "\txattr_size %u\n",
454 le32_to_cpu(ino->xattr_size));
455 printk(KERN_DEBUG "\txattr_names %u\n",
456 le32_to_cpu(ino->xattr_names));
457 printk(KERN_DEBUG "\tcompr_type %#x\n",
458 (int)le16_to_cpu(ino->compr_type));
459 printk(KERN_DEBUG "\tdata len %u\n",
460 le32_to_cpu(ino->data_len));
461 break;
462 }
463 case UBIFS_DENT_NODE:
464 case UBIFS_XENT_NODE:
465 {
466 const struct ubifs_dent_node *dent = node;
467 int nlen = le16_to_cpu(dent->nlen);
468
469 key_read(c, &dent->key, &key);
470 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
471 printk(KERN_DEBUG "\tinum %llu\n",
472 (unsigned long long)le64_to_cpu(dent->inum));
473 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
474 printk(KERN_DEBUG "\tnlen %d\n", nlen);
475 printk(KERN_DEBUG "\tname ");
476
477 if (nlen > UBIFS_MAX_NLEN)
478 printk(KERN_DEBUG "(bad name length, not printing, "
479 "bad or corrupted node)");
480 else {
481 for (i = 0; i < nlen && dent->name[i]; i++)
482 printk("%c", dent->name[i]);
483 }
484 printk("\n");
485
486 break;
487 }
488 case UBIFS_DATA_NODE:
489 {
490 const struct ubifs_data_node *dn = node;
491 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
492
493 key_read(c, &dn->key, &key);
494 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
495 printk(KERN_DEBUG "\tsize %u\n",
496 le32_to_cpu(dn->size));
497 printk(KERN_DEBUG "\tcompr_typ %d\n",
498 (int)le16_to_cpu(dn->compr_type));
499 printk(KERN_DEBUG "\tdata size %d\n",
500 dlen);
501 printk(KERN_DEBUG "\tdata:\n");
502 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
503 (void *)&dn->data, dlen, 0);
504 break;
505 }
506 case UBIFS_TRUN_NODE:
507 {
508 const struct ubifs_trun_node *trun = node;
509
510 printk(KERN_DEBUG "\tinum %u\n",
511 le32_to_cpu(trun->inum));
512 printk(KERN_DEBUG "\told_size %llu\n",
513 (unsigned long long)le64_to_cpu(trun->old_size));
514 printk(KERN_DEBUG "\tnew_size %llu\n",
515 (unsigned long long)le64_to_cpu(trun->new_size));
516 break;
517 }
518 case UBIFS_IDX_NODE:
519 {
520 const struct ubifs_idx_node *idx = node;
521
522 n = le16_to_cpu(idx->child_cnt);
523 printk(KERN_DEBUG "\tchild_cnt %d\n", n);
524 printk(KERN_DEBUG "\tlevel %d\n",
525 (int)le16_to_cpu(idx->level));
526 printk(KERN_DEBUG "\tBranches:\n");
527
528 for (i = 0; i < n && i < c->fanout - 1; i++) {
529 const struct ubifs_branch *br;
530
531 br = ubifs_idx_branch(c, idx, i);
532 key_read(c, &br->key, &key);
533 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
534 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
535 le32_to_cpu(br->len), DBGKEY(&key));
536 }
537 break;
538 }
539 case UBIFS_CS_NODE:
540 break;
541 case UBIFS_ORPH_NODE:
542 {
543 const struct ubifs_orph_node *orph = node;
544
545 printk(KERN_DEBUG "\tcommit number %llu\n",
546 (unsigned long long)
547 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
548 printk(KERN_DEBUG "\tlast node flag %llu\n",
549 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
550 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
551 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
552 for (i = 0; i < n; i++)
553 printk(KERN_DEBUG "\t ino %llu\n",
554 (unsigned long long)le64_to_cpu(orph->inos[i]));
555 break;
556 }
557 default:
558 printk(KERN_DEBUG "node type %d was not recognized\n",
559 (int)ch->node_type);
560 }
561 spin_unlock(&dbg_lock);
562 }
563
564 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
565 {
566 spin_lock(&dbg_lock);
567 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
568 req->new_ino, req->dirtied_ino);
569 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
570 req->new_ino_d, req->dirtied_ino_d);
571 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
572 req->new_page, req->dirtied_page);
573 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
574 req->new_dent, req->mod_dent);
575 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
576 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
577 req->data_growth, req->dd_growth);
578 spin_unlock(&dbg_lock);
579 }
580
581 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
582 {
583 spin_lock(&dbg_lock);
584 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
585 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
586 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
587 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
588 lst->total_dirty);
589 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
590 "total_dead %lld\n", lst->total_used, lst->total_dark,
591 lst->total_dead);
592 spin_unlock(&dbg_lock);
593 }
594
595 void dbg_dump_budg(struct ubifs_info *c)
596 {
597 int i;
598 struct rb_node *rb;
599 struct ubifs_bud *bud;
600 struct ubifs_gced_idx_leb *idx_gc;
601 long long available, outstanding, free;
602
603 ubifs_assert(spin_is_locked(&c->space_lock));
604 spin_lock(&dbg_lock);
605 printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
606 "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
607 c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
608 printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
609 "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
610 c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
611 c->freeable_cnt);
612 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
613 "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
614 c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
615 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
616 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
617 atomic_long_read(&c->dirty_zn_cnt),
618 atomic_long_read(&c->clean_zn_cnt));
619 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
620 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
621 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
622 c->gc_lnum, c->ihead_lnum);
623 for (i = 0; i < c->jhead_cnt; i++)
624 printk(KERN_DEBUG "\tjhead %d\t LEB %d\n",
625 c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum);
626 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
627 bud = rb_entry(rb, struct ubifs_bud, rb);
628 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
629 }
630 list_for_each_entry(bud, &c->old_buds, list)
631 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
632 list_for_each_entry(idx_gc, &c->idx_gc, list)
633 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
634 idx_gc->lnum, idx_gc->unmap);
635 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
636
637 /* Print budgeting predictions */
638 available = ubifs_calc_available(c, c->min_idx_lebs);
639 outstanding = c->budg_data_growth + c->budg_dd_growth;
640 if (available > outstanding)
641 free = ubifs_reported_space(c, available - outstanding);
642 else
643 free = 0;
644 printk(KERN_DEBUG "Budgeting predictions:\n");
645 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
646 available, outstanding, free);
647 spin_unlock(&dbg_lock);
648 }
649
650 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
651 {
652 printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), "
653 "flags %#x\n", lp->lnum, lp->free, lp->dirty,
654 c->leb_size - lp->free - lp->dirty, lp->flags);
655 }
656
657 void dbg_dump_lprops(struct ubifs_info *c)
658 {
659 int lnum, err;
660 struct ubifs_lprops lp;
661 struct ubifs_lp_stats lst;
662
663 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
664 current->pid);
665 ubifs_get_lp_stats(c, &lst);
666 dbg_dump_lstats(&lst);
667
668 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
669 err = ubifs_read_one_lp(c, lnum, &lp);
670 if (err)
671 ubifs_err("cannot read lprops for LEB %d", lnum);
672
673 dbg_dump_lprop(c, &lp);
674 }
675 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
676 current->pid);
677 }
678
679 void dbg_dump_lpt_info(struct ubifs_info *c)
680 {
681 int i;
682
683 spin_lock(&dbg_lock);
684 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
685 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
686 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
687 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
688 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
689 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
690 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
691 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
692 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
693 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
694 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
695 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
696 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
697 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
698 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
699 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
700 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
701 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
702 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
703 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
704 printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
705 c->nhead_lnum, c->nhead_offs);
706 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
707 if (c->big_lpt)
708 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
709 c->lsave_lnum, c->lsave_offs);
710 for (i = 0; i < c->lpt_lebs; i++)
711 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
712 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
713 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
714 spin_unlock(&dbg_lock);
715 }
716
717 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
718 {
719 struct ubifs_scan_leb *sleb;
720 struct ubifs_scan_node *snod;
721
722 if (dbg_failure_mode)
723 return;
724
725 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
726 current->pid, lnum);
727 sleb = ubifs_scan(c, lnum, 0, c->dbg->buf);
728 if (IS_ERR(sleb)) {
729 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
730 return;
731 }
732
733 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
734 sleb->nodes_cnt, sleb->endpt);
735
736 list_for_each_entry(snod, &sleb->nodes, list) {
737 cond_resched();
738 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
739 snod->offs, snod->len);
740 dbg_dump_node(c, snod->node);
741 }
742
743 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
744 current->pid, lnum);
745 ubifs_scan_destroy(sleb);
746 return;
747 }
748
749 void dbg_dump_znode(const struct ubifs_info *c,
750 const struct ubifs_znode *znode)
751 {
752 int n;
753 const struct ubifs_zbranch *zbr;
754
755 spin_lock(&dbg_lock);
756 if (znode->parent)
757 zbr = &znode->parent->zbranch[znode->iip];
758 else
759 zbr = &c->zroot;
760
761 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
762 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
763 zbr->len, znode->parent, znode->iip, znode->level,
764 znode->child_cnt, znode->flags);
765
766 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
767 spin_unlock(&dbg_lock);
768 return;
769 }
770
771 printk(KERN_DEBUG "zbranches:\n");
772 for (n = 0; n < znode->child_cnt; n++) {
773 zbr = &znode->zbranch[n];
774 if (znode->level > 0)
775 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
776 "%s\n", n, zbr->znode, zbr->lnum,
777 zbr->offs, zbr->len,
778 DBGKEY(&zbr->key));
779 else
780 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
781 "%s\n", n, zbr->znode, zbr->lnum,
782 zbr->offs, zbr->len,
783 DBGKEY(&zbr->key));
784 }
785 spin_unlock(&dbg_lock);
786 }
787
788 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
789 {
790 int i;
791
792 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
793 current->pid, cat, heap->cnt);
794 for (i = 0; i < heap->cnt; i++) {
795 struct ubifs_lprops *lprops = heap->arr[i];
796
797 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
798 "flags %d\n", i, lprops->lnum, lprops->hpos,
799 lprops->free, lprops->dirty, lprops->flags);
800 }
801 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
802 }
803
804 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
805 struct ubifs_nnode *parent, int iip)
806 {
807 int i;
808
809 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
810 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
811 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
812 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
813 pnode->flags, iip, pnode->level, pnode->num);
814 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
815 struct ubifs_lprops *lp = &pnode->lprops[i];
816
817 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
818 i, lp->free, lp->dirty, lp->flags, lp->lnum);
819 }
820 }
821
822 void dbg_dump_tnc(struct ubifs_info *c)
823 {
824 struct ubifs_znode *znode;
825 int level;
826
827 printk(KERN_DEBUG "\n");
828 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
829 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
830 level = znode->level;
831 printk(KERN_DEBUG "== Level %d ==\n", level);
832 while (znode) {
833 if (level != znode->level) {
834 level = znode->level;
835 printk(KERN_DEBUG "== Level %d ==\n", level);
836 }
837 dbg_dump_znode(c, znode);
838 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
839 }
840 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
841 }
842
843 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
844 void *priv)
845 {
846 dbg_dump_znode(c, znode);
847 return 0;
848 }
849
850 /**
851 * dbg_dump_index - dump the on-flash index.
852 * @c: UBIFS file-system description object
853 *
854 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
855 * which dumps only in-memory znodes and does not read znodes which from flash.
856 */
857 void dbg_dump_index(struct ubifs_info *c)
858 {
859 dbg_walk_index(c, NULL, dump_znode, NULL);
860 }
861
862 /**
863 * dbg_check_synced_i_size - check synchronized inode size.
864 * @inode: inode to check
865 *
866 * If inode is clean, synchronized inode size has to be equivalent to current
867 * inode size. This function has to be called only for locked inodes (@i_mutex
868 * has to be locked). Returns %0 if synchronized inode size if correct, and
869 * %-EINVAL if not.
870 */
871 int dbg_check_synced_i_size(struct inode *inode)
872 {
873 int err = 0;
874 struct ubifs_inode *ui = ubifs_inode(inode);
875
876 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
877 return 0;
878 if (!S_ISREG(inode->i_mode))
879 return 0;
880
881 mutex_lock(&ui->ui_mutex);
882 spin_lock(&ui->ui_lock);
883 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
884 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
885 "is clean", ui->ui_size, ui->synced_i_size);
886 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
887 inode->i_mode, i_size_read(inode));
888 dbg_dump_stack();
889 err = -EINVAL;
890 }
891 spin_unlock(&ui->ui_lock);
892 mutex_unlock(&ui->ui_mutex);
893 return err;
894 }
895
896 /*
897 * dbg_check_dir - check directory inode size and link count.
898 * @c: UBIFS file-system description object
899 * @dir: the directory to calculate size for
900 * @size: the result is returned here
901 *
902 * This function makes sure that directory size and link count are correct.
903 * Returns zero in case of success and a negative error code in case of
904 * failure.
905 *
906 * Note, it is good idea to make sure the @dir->i_mutex is locked before
907 * calling this function.
908 */
909 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
910 {
911 unsigned int nlink = 2;
912 union ubifs_key key;
913 struct ubifs_dent_node *dent, *pdent = NULL;
914 struct qstr nm = { .name = NULL };
915 loff_t size = UBIFS_INO_NODE_SZ;
916
917 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
918 return 0;
919
920 if (!S_ISDIR(dir->i_mode))
921 return 0;
922
923 lowest_dent_key(c, &key, dir->i_ino);
924 while (1) {
925 int err;
926
927 dent = ubifs_tnc_next_ent(c, &key, &nm);
928 if (IS_ERR(dent)) {
929 err = PTR_ERR(dent);
930 if (err == -ENOENT)
931 break;
932 return err;
933 }
934
935 nm.name = dent->name;
936 nm.len = le16_to_cpu(dent->nlen);
937 size += CALC_DENT_SIZE(nm.len);
938 if (dent->type == UBIFS_ITYPE_DIR)
939 nlink += 1;
940 kfree(pdent);
941 pdent = dent;
942 key_read(c, &dent->key, &key);
943 }
944 kfree(pdent);
945
946 if (i_size_read(dir) != size) {
947 ubifs_err("directory inode %lu has size %llu, "
948 "but calculated size is %llu", dir->i_ino,
949 (unsigned long long)i_size_read(dir),
950 (unsigned long long)size);
951 dump_stack();
952 return -EINVAL;
953 }
954 if (dir->i_nlink != nlink) {
955 ubifs_err("directory inode %lu has nlink %u, but calculated "
956 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
957 dump_stack();
958 return -EINVAL;
959 }
960
961 return 0;
962 }
963
964 /**
965 * dbg_check_key_order - make sure that colliding keys are properly ordered.
966 * @c: UBIFS file-system description object
967 * @zbr1: first zbranch
968 * @zbr2: following zbranch
969 *
970 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
971 * names of the direntries/xentries which are referred by the keys. This
972 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
973 * sure the name of direntry/xentry referred by @zbr1 is less than
974 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
975 * and a negative error code in case of failure.
976 */
977 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
978 struct ubifs_zbranch *zbr2)
979 {
980 int err, nlen1, nlen2, cmp;
981 struct ubifs_dent_node *dent1, *dent2;
982 union ubifs_key key;
983
984 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
985 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
986 if (!dent1)
987 return -ENOMEM;
988 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
989 if (!dent2) {
990 err = -ENOMEM;
991 goto out_free;
992 }
993
994 err = ubifs_tnc_read_node(c, zbr1, dent1);
995 if (err)
996 goto out_free;
997 err = ubifs_validate_entry(c, dent1);
998 if (err)
999 goto out_free;
1000
1001 err = ubifs_tnc_read_node(c, zbr2, dent2);
1002 if (err)
1003 goto out_free;
1004 err = ubifs_validate_entry(c, dent2);
1005 if (err)
1006 goto out_free;
1007
1008 /* Make sure node keys are the same as in zbranch */
1009 err = 1;
1010 key_read(c, &dent1->key, &key);
1011 if (keys_cmp(c, &zbr1->key, &key)) {
1012 ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1013 zbr1->offs, DBGKEY(&key));
1014 ubifs_err("but it should have key %s according to tnc",
1015 DBGKEY(&zbr1->key));
1016 dbg_dump_node(c, dent1);
1017 goto out_free;
1018 }
1019
1020 key_read(c, &dent2->key, &key);
1021 if (keys_cmp(c, &zbr2->key, &key)) {
1022 ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1023 zbr1->offs, DBGKEY(&key));
1024 ubifs_err("but it should have key %s according to tnc",
1025 DBGKEY(&zbr2->key));
1026 dbg_dump_node(c, dent2);
1027 goto out_free;
1028 }
1029
1030 nlen1 = le16_to_cpu(dent1->nlen);
1031 nlen2 = le16_to_cpu(dent2->nlen);
1032
1033 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1034 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1035 err = 0;
1036 goto out_free;
1037 }
1038 if (cmp == 0 && nlen1 == nlen2)
1039 ubifs_err("2 xent/dent nodes with the same name");
1040 else
1041 ubifs_err("bad order of colliding key %s",
1042 DBGKEY(&key));
1043
1044 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1045 dbg_dump_node(c, dent1);
1046 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1047 dbg_dump_node(c, dent2);
1048
1049 out_free:
1050 kfree(dent2);
1051 kfree(dent1);
1052 return err;
1053 }
1054
1055 /**
1056 * dbg_check_znode - check if znode is all right.
1057 * @c: UBIFS file-system description object
1058 * @zbr: zbranch which points to this znode
1059 *
1060 * This function makes sure that znode referred to by @zbr is all right.
1061 * Returns zero if it is, and %-EINVAL if it is not.
1062 */
1063 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1064 {
1065 struct ubifs_znode *znode = zbr->znode;
1066 struct ubifs_znode *zp = znode->parent;
1067 int n, err, cmp;
1068
1069 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1070 err = 1;
1071 goto out;
1072 }
1073 if (znode->level < 0) {
1074 err = 2;
1075 goto out;
1076 }
1077 if (znode->iip < 0 || znode->iip >= c->fanout) {
1078 err = 3;
1079 goto out;
1080 }
1081
1082 if (zbr->len == 0)
1083 /* Only dirty zbranch may have no on-flash nodes */
1084 if (!ubifs_zn_dirty(znode)) {
1085 err = 4;
1086 goto out;
1087 }
1088
1089 if (ubifs_zn_dirty(znode)) {
1090 /*
1091 * If znode is dirty, its parent has to be dirty as well. The
1092 * order of the operation is important, so we have to have
1093 * memory barriers.
1094 */
1095 smp_mb();
1096 if (zp && !ubifs_zn_dirty(zp)) {
1097 /*
1098 * The dirty flag is atomic and is cleared outside the
1099 * TNC mutex, so znode's dirty flag may now have
1100 * been cleared. The child is always cleared before the
1101 * parent, so we just need to check again.
1102 */
1103 smp_mb();
1104 if (ubifs_zn_dirty(znode)) {
1105 err = 5;
1106 goto out;
1107 }
1108 }
1109 }
1110
1111 if (zp) {
1112 const union ubifs_key *min, *max;
1113
1114 if (znode->level != zp->level - 1) {
1115 err = 6;
1116 goto out;
1117 }
1118
1119 /* Make sure the 'parent' pointer in our znode is correct */
1120 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1121 if (!err) {
1122 /* This zbranch does not exist in the parent */
1123 err = 7;
1124 goto out;
1125 }
1126
1127 if (znode->iip >= zp->child_cnt) {
1128 err = 8;
1129 goto out;
1130 }
1131
1132 if (znode->iip != n) {
1133 /* This may happen only in case of collisions */
1134 if (keys_cmp(c, &zp->zbranch[n].key,
1135 &zp->zbranch[znode->iip].key)) {
1136 err = 9;
1137 goto out;
1138 }
1139 n = znode->iip;
1140 }
1141
1142 /*
1143 * Make sure that the first key in our znode is greater than or
1144 * equal to the key in the pointing zbranch.
1145 */
1146 min = &zbr->key;
1147 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1148 if (cmp == 1) {
1149 err = 10;
1150 goto out;
1151 }
1152
1153 if (n + 1 < zp->child_cnt) {
1154 max = &zp->zbranch[n + 1].key;
1155
1156 /*
1157 * Make sure the last key in our znode is less or
1158 * equivalent than the the key in zbranch which goes
1159 * after our pointing zbranch.
1160 */
1161 cmp = keys_cmp(c, max,
1162 &znode->zbranch[znode->child_cnt - 1].key);
1163 if (cmp == -1) {
1164 err = 11;
1165 goto out;
1166 }
1167 }
1168 } else {
1169 /* This may only be root znode */
1170 if (zbr != &c->zroot) {
1171 err = 12;
1172 goto out;
1173 }
1174 }
1175
1176 /*
1177 * Make sure that next key is greater or equivalent then the previous
1178 * one.
1179 */
1180 for (n = 1; n < znode->child_cnt; n++) {
1181 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1182 &znode->zbranch[n].key);
1183 if (cmp > 0) {
1184 err = 13;
1185 goto out;
1186 }
1187 if (cmp == 0) {
1188 /* This can only be keys with colliding hash */
1189 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1190 err = 14;
1191 goto out;
1192 }
1193
1194 if (znode->level != 0 || c->replaying)
1195 continue;
1196
1197 /*
1198 * Colliding keys should follow binary order of
1199 * corresponding xentry/dentry names.
1200 */
1201 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1202 &znode->zbranch[n]);
1203 if (err < 0)
1204 return err;
1205 if (err) {
1206 err = 15;
1207 goto out;
1208 }
1209 }
1210 }
1211
1212 for (n = 0; n < znode->child_cnt; n++) {
1213 if (!znode->zbranch[n].znode &&
1214 (znode->zbranch[n].lnum == 0 ||
1215 znode->zbranch[n].len == 0)) {
1216 err = 16;
1217 goto out;
1218 }
1219
1220 if (znode->zbranch[n].lnum != 0 &&
1221 znode->zbranch[n].len == 0) {
1222 err = 17;
1223 goto out;
1224 }
1225
1226 if (znode->zbranch[n].lnum == 0 &&
1227 znode->zbranch[n].len != 0) {
1228 err = 18;
1229 goto out;
1230 }
1231
1232 if (znode->zbranch[n].lnum == 0 &&
1233 znode->zbranch[n].offs != 0) {
1234 err = 19;
1235 goto out;
1236 }
1237
1238 if (znode->level != 0 && znode->zbranch[n].znode)
1239 if (znode->zbranch[n].znode->parent != znode) {
1240 err = 20;
1241 goto out;
1242 }
1243 }
1244
1245 return 0;
1246
1247 out:
1248 ubifs_err("failed, error %d", err);
1249 ubifs_msg("dump of the znode");
1250 dbg_dump_znode(c, znode);
1251 if (zp) {
1252 ubifs_msg("dump of the parent znode");
1253 dbg_dump_znode(c, zp);
1254 }
1255 dump_stack();
1256 return -EINVAL;
1257 }
1258
1259 /**
1260 * dbg_check_tnc - check TNC tree.
1261 * @c: UBIFS file-system description object
1262 * @extra: do extra checks that are possible at start commit
1263 *
1264 * This function traverses whole TNC tree and checks every znode. Returns zero
1265 * if everything is all right and %-EINVAL if something is wrong with TNC.
1266 */
1267 int dbg_check_tnc(struct ubifs_info *c, int extra)
1268 {
1269 struct ubifs_znode *znode;
1270 long clean_cnt = 0, dirty_cnt = 0;
1271 int err, last;
1272
1273 if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1274 return 0;
1275
1276 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1277 if (!c->zroot.znode)
1278 return 0;
1279
1280 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1281 while (1) {
1282 struct ubifs_znode *prev;
1283 struct ubifs_zbranch *zbr;
1284
1285 if (!znode->parent)
1286 zbr = &c->zroot;
1287 else
1288 zbr = &znode->parent->zbranch[znode->iip];
1289
1290 err = dbg_check_znode(c, zbr);
1291 if (err)
1292 return err;
1293
1294 if (extra) {
1295 if (ubifs_zn_dirty(znode))
1296 dirty_cnt += 1;
1297 else
1298 clean_cnt += 1;
1299 }
1300
1301 prev = znode;
1302 znode = ubifs_tnc_postorder_next(znode);
1303 if (!znode)
1304 break;
1305
1306 /*
1307 * If the last key of this znode is equivalent to the first key
1308 * of the next znode (collision), then check order of the keys.
1309 */
1310 last = prev->child_cnt - 1;
1311 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1312 !keys_cmp(c, &prev->zbranch[last].key,
1313 &znode->zbranch[0].key)) {
1314 err = dbg_check_key_order(c, &prev->zbranch[last],
1315 &znode->zbranch[0]);
1316 if (err < 0)
1317 return err;
1318 if (err) {
1319 ubifs_msg("first znode");
1320 dbg_dump_znode(c, prev);
1321 ubifs_msg("second znode");
1322 dbg_dump_znode(c, znode);
1323 return -EINVAL;
1324 }
1325 }
1326 }
1327
1328 if (extra) {
1329 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1330 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1331 atomic_long_read(&c->clean_zn_cnt),
1332 clean_cnt);
1333 return -EINVAL;
1334 }
1335 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1336 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1337 atomic_long_read(&c->dirty_zn_cnt),
1338 dirty_cnt);
1339 return -EINVAL;
1340 }
1341 }
1342
1343 return 0;
1344 }
1345
1346 /**
1347 * dbg_walk_index - walk the on-flash index.
1348 * @c: UBIFS file-system description object
1349 * @leaf_cb: called for each leaf node
1350 * @znode_cb: called for each indexing node
1351 * @priv: private date which is passed to callbacks
1352 *
1353 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1354 * node and @znode_cb for each indexing node. Returns zero in case of success
1355 * and a negative error code in case of failure.
1356 *
1357 * It would be better if this function removed every znode it pulled to into
1358 * the TNC, so that the behavior more closely matched the non-debugging
1359 * behavior.
1360 */
1361 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1362 dbg_znode_callback znode_cb, void *priv)
1363 {
1364 int err;
1365 struct ubifs_zbranch *zbr;
1366 struct ubifs_znode *znode, *child;
1367
1368 mutex_lock(&c->tnc_mutex);
1369 /* If the root indexing node is not in TNC - pull it */
1370 if (!c->zroot.znode) {
1371 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1372 if (IS_ERR(c->zroot.znode)) {
1373 err = PTR_ERR(c->zroot.znode);
1374 c->zroot.znode = NULL;
1375 goto out_unlock;
1376 }
1377 }
1378
1379 /*
1380 * We are going to traverse the indexing tree in the postorder manner.
1381 * Go down and find the leftmost indexing node where we are going to
1382 * start from.
1383 */
1384 znode = c->zroot.znode;
1385 while (znode->level > 0) {
1386 zbr = &znode->zbranch[0];
1387 child = zbr->znode;
1388 if (!child) {
1389 child = ubifs_load_znode(c, zbr, znode, 0);
1390 if (IS_ERR(child)) {
1391 err = PTR_ERR(child);
1392 goto out_unlock;
1393 }
1394 zbr->znode = child;
1395 }
1396
1397 znode = child;
1398 }
1399
1400 /* Iterate over all indexing nodes */
1401 while (1) {
1402 int idx;
1403
1404 cond_resched();
1405
1406 if (znode_cb) {
1407 err = znode_cb(c, znode, priv);
1408 if (err) {
1409 ubifs_err("znode checking function returned "
1410 "error %d", err);
1411 dbg_dump_znode(c, znode);
1412 goto out_dump;
1413 }
1414 }
1415 if (leaf_cb && znode->level == 0) {
1416 for (idx = 0; idx < znode->child_cnt; idx++) {
1417 zbr = &znode->zbranch[idx];
1418 err = leaf_cb(c, zbr, priv);
1419 if (err) {
1420 ubifs_err("leaf checking function "
1421 "returned error %d, for leaf "
1422 "at LEB %d:%d",
1423 err, zbr->lnum, zbr->offs);
1424 goto out_dump;
1425 }
1426 }
1427 }
1428
1429 if (!znode->parent)
1430 break;
1431
1432 idx = znode->iip + 1;
1433 znode = znode->parent;
1434 if (idx < znode->child_cnt) {
1435 /* Switch to the next index in the parent */
1436 zbr = &znode->zbranch[idx];
1437 child = zbr->znode;
1438 if (!child) {
1439 child = ubifs_load_znode(c, zbr, znode, idx);
1440 if (IS_ERR(child)) {
1441 err = PTR_ERR(child);
1442 goto out_unlock;
1443 }
1444 zbr->znode = child;
1445 }
1446 znode = child;
1447 } else
1448 /*
1449 * This is the last child, switch to the parent and
1450 * continue.
1451 */
1452 continue;
1453
1454 /* Go to the lowest leftmost znode in the new sub-tree */
1455 while (znode->level > 0) {
1456 zbr = &znode->zbranch[0];
1457 child = zbr->znode;
1458 if (!child) {
1459 child = ubifs_load_znode(c, zbr, znode, 0);
1460 if (IS_ERR(child)) {
1461 err = PTR_ERR(child);
1462 goto out_unlock;
1463 }
1464 zbr->znode = child;
1465 }
1466 znode = child;
1467 }
1468 }
1469
1470 mutex_unlock(&c->tnc_mutex);
1471 return 0;
1472
1473 out_dump:
1474 if (znode->parent)
1475 zbr = &znode->parent->zbranch[znode->iip];
1476 else
1477 zbr = &c->zroot;
1478 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1479 dbg_dump_znode(c, znode);
1480 out_unlock:
1481 mutex_unlock(&c->tnc_mutex);
1482 return err;
1483 }
1484
1485 /**
1486 * add_size - add znode size to partially calculated index size.
1487 * @c: UBIFS file-system description object
1488 * @znode: znode to add size for
1489 * @priv: partially calculated index size
1490 *
1491 * This is a helper function for 'dbg_check_idx_size()' which is called for
1492 * every indexing node and adds its size to the 'long long' variable pointed to
1493 * by @priv.
1494 */
1495 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1496 {
1497 long long *idx_size = priv;
1498 int add;
1499
1500 add = ubifs_idx_node_sz(c, znode->child_cnt);
1501 add = ALIGN(add, 8);
1502 *idx_size += add;
1503 return 0;
1504 }
1505
1506 /**
1507 * dbg_check_idx_size - check index size.
1508 * @c: UBIFS file-system description object
1509 * @idx_size: size to check
1510 *
1511 * This function walks the UBIFS index, calculates its size and checks that the
1512 * size is equivalent to @idx_size. Returns zero in case of success and a
1513 * negative error code in case of failure.
1514 */
1515 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1516 {
1517 int err;
1518 long long calc = 0;
1519
1520 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1521 return 0;
1522
1523 err = dbg_walk_index(c, NULL, add_size, &calc);
1524 if (err) {
1525 ubifs_err("error %d while walking the index", err);
1526 return err;
1527 }
1528
1529 if (calc != idx_size) {
1530 ubifs_err("index size check failed: calculated size is %lld, "
1531 "should be %lld", calc, idx_size);
1532 dump_stack();
1533 return -EINVAL;
1534 }
1535
1536 return 0;
1537 }
1538
1539 /**
1540 * struct fsck_inode - information about an inode used when checking the file-system.
1541 * @rb: link in the RB-tree of inodes
1542 * @inum: inode number
1543 * @mode: inode type, permissions, etc
1544 * @nlink: inode link count
1545 * @xattr_cnt: count of extended attributes
1546 * @references: how many directory/xattr entries refer this inode (calculated
1547 * while walking the index)
1548 * @calc_cnt: for directory inode count of child directories
1549 * @size: inode size (read from on-flash inode)
1550 * @xattr_sz: summary size of all extended attributes (read from on-flash
1551 * inode)
1552 * @calc_sz: for directories calculated directory size
1553 * @calc_xcnt: count of extended attributes
1554 * @calc_xsz: calculated summary size of all extended attributes
1555 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1556 * inode (read from on-flash inode)
1557 * @calc_xnms: calculated sum of lengths of all extended attribute names
1558 */
1559 struct fsck_inode {
1560 struct rb_node rb;
1561 ino_t inum;
1562 umode_t mode;
1563 unsigned int nlink;
1564 unsigned int xattr_cnt;
1565 int references;
1566 int calc_cnt;
1567 long long size;
1568 unsigned int xattr_sz;
1569 long long calc_sz;
1570 long long calc_xcnt;
1571 long long calc_xsz;
1572 unsigned int xattr_nms;
1573 long long calc_xnms;
1574 };
1575
1576 /**
1577 * struct fsck_data - private FS checking information.
1578 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1579 */
1580 struct fsck_data {
1581 struct rb_root inodes;
1582 };
1583
1584 /**
1585 * add_inode - add inode information to RB-tree of inodes.
1586 * @c: UBIFS file-system description object
1587 * @fsckd: FS checking information
1588 * @ino: raw UBIFS inode to add
1589 *
1590 * This is a helper function for 'check_leaf()' which adds information about
1591 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1592 * case of success and a negative error code in case of failure.
1593 */
1594 static struct fsck_inode *add_inode(struct ubifs_info *c,
1595 struct fsck_data *fsckd,
1596 struct ubifs_ino_node *ino)
1597 {
1598 struct rb_node **p, *parent = NULL;
1599 struct fsck_inode *fscki;
1600 ino_t inum = key_inum_flash(c, &ino->key);
1601
1602 p = &fsckd->inodes.rb_node;
1603 while (*p) {
1604 parent = *p;
1605 fscki = rb_entry(parent, struct fsck_inode, rb);
1606 if (inum < fscki->inum)
1607 p = &(*p)->rb_left;
1608 else if (inum > fscki->inum)
1609 p = &(*p)->rb_right;
1610 else
1611 return fscki;
1612 }
1613
1614 if (inum > c->highest_inum) {
1615 ubifs_err("too high inode number, max. is %lu",
1616 (unsigned long)c->highest_inum);
1617 return ERR_PTR(-EINVAL);
1618 }
1619
1620 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1621 if (!fscki)
1622 return ERR_PTR(-ENOMEM);
1623
1624 fscki->inum = inum;
1625 fscki->nlink = le32_to_cpu(ino->nlink);
1626 fscki->size = le64_to_cpu(ino->size);
1627 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1628 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1629 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1630 fscki->mode = le32_to_cpu(ino->mode);
1631 if (S_ISDIR(fscki->mode)) {
1632 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1633 fscki->calc_cnt = 2;
1634 }
1635 rb_link_node(&fscki->rb, parent, p);
1636 rb_insert_color(&fscki->rb, &fsckd->inodes);
1637 return fscki;
1638 }
1639
1640 /**
1641 * search_inode - search inode in the RB-tree of inodes.
1642 * @fsckd: FS checking information
1643 * @inum: inode number to search
1644 *
1645 * This is a helper function for 'check_leaf()' which searches inode @inum in
1646 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1647 * the inode was not found.
1648 */
1649 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1650 {
1651 struct rb_node *p;
1652 struct fsck_inode *fscki;
1653
1654 p = fsckd->inodes.rb_node;
1655 while (p) {
1656 fscki = rb_entry(p, struct fsck_inode, rb);
1657 if (inum < fscki->inum)
1658 p = p->rb_left;
1659 else if (inum > fscki->inum)
1660 p = p->rb_right;
1661 else
1662 return fscki;
1663 }
1664 return NULL;
1665 }
1666
1667 /**
1668 * read_add_inode - read inode node and add it to RB-tree of inodes.
1669 * @c: UBIFS file-system description object
1670 * @fsckd: FS checking information
1671 * @inum: inode number to read
1672 *
1673 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1674 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1675 * information pointer in case of success and a negative error code in case of
1676 * failure.
1677 */
1678 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1679 struct fsck_data *fsckd, ino_t inum)
1680 {
1681 int n, err;
1682 union ubifs_key key;
1683 struct ubifs_znode *znode;
1684 struct ubifs_zbranch *zbr;
1685 struct ubifs_ino_node *ino;
1686 struct fsck_inode *fscki;
1687
1688 fscki = search_inode(fsckd, inum);
1689 if (fscki)
1690 return fscki;
1691
1692 ino_key_init(c, &key, inum);
1693 err = ubifs_lookup_level0(c, &key, &znode, &n);
1694 if (!err) {
1695 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1696 return ERR_PTR(-ENOENT);
1697 } else if (err < 0) {
1698 ubifs_err("error %d while looking up inode %lu",
1699 err, (unsigned long)inum);
1700 return ERR_PTR(err);
1701 }
1702
1703 zbr = &znode->zbranch[n];
1704 if (zbr->len < UBIFS_INO_NODE_SZ) {
1705 ubifs_err("bad node %lu node length %d",
1706 (unsigned long)inum, zbr->len);
1707 return ERR_PTR(-EINVAL);
1708 }
1709
1710 ino = kmalloc(zbr->len, GFP_NOFS);
1711 if (!ino)
1712 return ERR_PTR(-ENOMEM);
1713
1714 err = ubifs_tnc_read_node(c, zbr, ino);
1715 if (err) {
1716 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1717 zbr->lnum, zbr->offs, err);
1718 kfree(ino);
1719 return ERR_PTR(err);
1720 }
1721
1722 fscki = add_inode(c, fsckd, ino);
1723 kfree(ino);
1724 if (IS_ERR(fscki)) {
1725 ubifs_err("error %ld while adding inode %lu node",
1726 PTR_ERR(fscki), (unsigned long)inum);
1727 return fscki;
1728 }
1729
1730 return fscki;
1731 }
1732
1733 /**
1734 * check_leaf - check leaf node.
1735 * @c: UBIFS file-system description object
1736 * @zbr: zbranch of the leaf node to check
1737 * @priv: FS checking information
1738 *
1739 * This is a helper function for 'dbg_check_filesystem()' which is called for
1740 * every single leaf node while walking the indexing tree. It checks that the
1741 * leaf node referred from the indexing tree exists, has correct CRC, and does
1742 * some other basic validation. This function is also responsible for building
1743 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1744 * calculates reference count, size, etc for each inode in order to later
1745 * compare them to the information stored inside the inodes and detect possible
1746 * inconsistencies. Returns zero in case of success and a negative error code
1747 * in case of failure.
1748 */
1749 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1750 void *priv)
1751 {
1752 ino_t inum;
1753 void *node;
1754 struct ubifs_ch *ch;
1755 int err, type = key_type(c, &zbr->key);
1756 struct fsck_inode *fscki;
1757
1758 if (zbr->len < UBIFS_CH_SZ) {
1759 ubifs_err("bad leaf length %d (LEB %d:%d)",
1760 zbr->len, zbr->lnum, zbr->offs);
1761 return -EINVAL;
1762 }
1763
1764 node = kmalloc(zbr->len, GFP_NOFS);
1765 if (!node)
1766 return -ENOMEM;
1767
1768 err = ubifs_tnc_read_node(c, zbr, node);
1769 if (err) {
1770 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1771 zbr->lnum, zbr->offs, err);
1772 goto out_free;
1773 }
1774
1775 /* If this is an inode node, add it to RB-tree of inodes */
1776 if (type == UBIFS_INO_KEY) {
1777 fscki = add_inode(c, priv, node);
1778 if (IS_ERR(fscki)) {
1779 err = PTR_ERR(fscki);
1780 ubifs_err("error %d while adding inode node", err);
1781 goto out_dump;
1782 }
1783 goto out;
1784 }
1785
1786 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1787 type != UBIFS_DATA_KEY) {
1788 ubifs_err("unexpected node type %d at LEB %d:%d",
1789 type, zbr->lnum, zbr->offs);
1790 err = -EINVAL;
1791 goto out_free;
1792 }
1793
1794 ch = node;
1795 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1796 ubifs_err("too high sequence number, max. is %llu",
1797 c->max_sqnum);
1798 err = -EINVAL;
1799 goto out_dump;
1800 }
1801
1802 if (type == UBIFS_DATA_KEY) {
1803 long long blk_offs;
1804 struct ubifs_data_node *dn = node;
1805
1806 /*
1807 * Search the inode node this data node belongs to and insert
1808 * it to the RB-tree of inodes.
1809 */
1810 inum = key_inum_flash(c, &dn->key);
1811 fscki = read_add_inode(c, priv, inum);
1812 if (IS_ERR(fscki)) {
1813 err = PTR_ERR(fscki);
1814 ubifs_err("error %d while processing data node and "
1815 "trying to find inode node %lu",
1816 err, (unsigned long)inum);
1817 goto out_dump;
1818 }
1819
1820 /* Make sure the data node is within inode size */
1821 blk_offs = key_block_flash(c, &dn->key);
1822 blk_offs <<= UBIFS_BLOCK_SHIFT;
1823 blk_offs += le32_to_cpu(dn->size);
1824 if (blk_offs > fscki->size) {
1825 ubifs_err("data node at LEB %d:%d is not within inode "
1826 "size %lld", zbr->lnum, zbr->offs,
1827 fscki->size);
1828 err = -EINVAL;
1829 goto out_dump;
1830 }
1831 } else {
1832 int nlen;
1833 struct ubifs_dent_node *dent = node;
1834 struct fsck_inode *fscki1;
1835
1836 err = ubifs_validate_entry(c, dent);
1837 if (err)
1838 goto out_dump;
1839
1840 /*
1841 * Search the inode node this entry refers to and the parent
1842 * inode node and insert them to the RB-tree of inodes.
1843 */
1844 inum = le64_to_cpu(dent->inum);
1845 fscki = read_add_inode(c, priv, inum);
1846 if (IS_ERR(fscki)) {
1847 err = PTR_ERR(fscki);
1848 ubifs_err("error %d while processing entry node and "
1849 "trying to find inode node %lu",
1850 err, (unsigned long)inum);
1851 goto out_dump;
1852 }
1853
1854 /* Count how many direntries or xentries refers this inode */
1855 fscki->references += 1;
1856
1857 inum = key_inum_flash(c, &dent->key);
1858 fscki1 = read_add_inode(c, priv, inum);
1859 if (IS_ERR(fscki1)) {
1860 err = PTR_ERR(fscki);
1861 ubifs_err("error %d while processing entry node and "
1862 "trying to find parent inode node %lu",
1863 err, (unsigned long)inum);
1864 goto out_dump;
1865 }
1866
1867 nlen = le16_to_cpu(dent->nlen);
1868 if (type == UBIFS_XENT_KEY) {
1869 fscki1->calc_xcnt += 1;
1870 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
1871 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
1872 fscki1->calc_xnms += nlen;
1873 } else {
1874 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
1875 if (dent->type == UBIFS_ITYPE_DIR)
1876 fscki1->calc_cnt += 1;
1877 }
1878 }
1879
1880 out:
1881 kfree(node);
1882 return 0;
1883
1884 out_dump:
1885 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
1886 dbg_dump_node(c, node);
1887 out_free:
1888 kfree(node);
1889 return err;
1890 }
1891
1892 /**
1893 * free_inodes - free RB-tree of inodes.
1894 * @fsckd: FS checking information
1895 */
1896 static void free_inodes(struct fsck_data *fsckd)
1897 {
1898 struct rb_node *this = fsckd->inodes.rb_node;
1899 struct fsck_inode *fscki;
1900
1901 while (this) {
1902 if (this->rb_left)
1903 this = this->rb_left;
1904 else if (this->rb_right)
1905 this = this->rb_right;
1906 else {
1907 fscki = rb_entry(this, struct fsck_inode, rb);
1908 this = rb_parent(this);
1909 if (this) {
1910 if (this->rb_left == &fscki->rb)
1911 this->rb_left = NULL;
1912 else
1913 this->rb_right = NULL;
1914 }
1915 kfree(fscki);
1916 }
1917 }
1918 }
1919
1920 /**
1921 * check_inodes - checks all inodes.
1922 * @c: UBIFS file-system description object
1923 * @fsckd: FS checking information
1924 *
1925 * This is a helper function for 'dbg_check_filesystem()' which walks the
1926 * RB-tree of inodes after the index scan has been finished, and checks that
1927 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
1928 * %-EINVAL if not, and a negative error code in case of failure.
1929 */
1930 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
1931 {
1932 int n, err;
1933 union ubifs_key key;
1934 struct ubifs_znode *znode;
1935 struct ubifs_zbranch *zbr;
1936 struct ubifs_ino_node *ino;
1937 struct fsck_inode *fscki;
1938 struct rb_node *this = rb_first(&fsckd->inodes);
1939
1940 while (this) {
1941 fscki = rb_entry(this, struct fsck_inode, rb);
1942 this = rb_next(this);
1943
1944 if (S_ISDIR(fscki->mode)) {
1945 /*
1946 * Directories have to have exactly one reference (they
1947 * cannot have hardlinks), although root inode is an
1948 * exception.
1949 */
1950 if (fscki->inum != UBIFS_ROOT_INO &&
1951 fscki->references != 1) {
1952 ubifs_err("directory inode %lu has %d "
1953 "direntries which refer it, but "
1954 "should be 1",
1955 (unsigned long)fscki->inum,
1956 fscki->references);
1957 goto out_dump;
1958 }
1959 if (fscki->inum == UBIFS_ROOT_INO &&
1960 fscki->references != 0) {
1961 ubifs_err("root inode %lu has non-zero (%d) "
1962 "direntries which refer it",
1963 (unsigned long)fscki->inum,
1964 fscki->references);
1965 goto out_dump;
1966 }
1967 if (fscki->calc_sz != fscki->size) {
1968 ubifs_err("directory inode %lu size is %lld, "
1969 "but calculated size is %lld",
1970 (unsigned long)fscki->inum,
1971 fscki->size, fscki->calc_sz);
1972 goto out_dump;
1973 }
1974 if (fscki->calc_cnt != fscki->nlink) {
1975 ubifs_err("directory inode %lu nlink is %d, "
1976 "but calculated nlink is %d",
1977 (unsigned long)fscki->inum,
1978 fscki->nlink, fscki->calc_cnt);
1979 goto out_dump;
1980 }
1981 } else {
1982 if (fscki->references != fscki->nlink) {
1983 ubifs_err("inode %lu nlink is %d, but "
1984 "calculated nlink is %d",
1985 (unsigned long)fscki->inum,
1986 fscki->nlink, fscki->references);
1987 goto out_dump;
1988 }
1989 }
1990 if (fscki->xattr_sz != fscki->calc_xsz) {
1991 ubifs_err("inode %lu has xattr size %u, but "
1992 "calculated size is %lld",
1993 (unsigned long)fscki->inum, fscki->xattr_sz,
1994 fscki->calc_xsz);
1995 goto out_dump;
1996 }
1997 if (fscki->xattr_cnt != fscki->calc_xcnt) {
1998 ubifs_err("inode %lu has %u xattrs, but "
1999 "calculated count is %lld",
2000 (unsigned long)fscki->inum,
2001 fscki->xattr_cnt, fscki->calc_xcnt);
2002 goto out_dump;
2003 }
2004 if (fscki->xattr_nms != fscki->calc_xnms) {
2005 ubifs_err("inode %lu has xattr names' size %u, but "
2006 "calculated names' size is %lld",
2007 (unsigned long)fscki->inum, fscki->xattr_nms,
2008 fscki->calc_xnms);
2009 goto out_dump;
2010 }
2011 }
2012
2013 return 0;
2014
2015 out_dump:
2016 /* Read the bad inode and dump it */
2017 ino_key_init(c, &key, fscki->inum);
2018 err = ubifs_lookup_level0(c, &key, &znode, &n);
2019 if (!err) {
2020 ubifs_err("inode %lu not found in index",
2021 (unsigned long)fscki->inum);
2022 return -ENOENT;
2023 } else if (err < 0) {
2024 ubifs_err("error %d while looking up inode %lu",
2025 err, (unsigned long)fscki->inum);
2026 return err;
2027 }
2028
2029 zbr = &znode->zbranch[n];
2030 ino = kmalloc(zbr->len, GFP_NOFS);
2031 if (!ino)
2032 return -ENOMEM;
2033
2034 err = ubifs_tnc_read_node(c, zbr, ino);
2035 if (err) {
2036 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2037 zbr->lnum, zbr->offs, err);
2038 kfree(ino);
2039 return err;
2040 }
2041
2042 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2043 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2044 dbg_dump_node(c, ino);
2045 kfree(ino);
2046 return -EINVAL;
2047 }
2048
2049 /**
2050 * dbg_check_filesystem - check the file-system.
2051 * @c: UBIFS file-system description object
2052 *
2053 * This function checks the file system, namely:
2054 * o makes sure that all leaf nodes exist and their CRCs are correct;
2055 * o makes sure inode nlink, size, xattr size/count are correct (for all
2056 * inodes).
2057 *
2058 * The function reads whole indexing tree and all nodes, so it is pretty
2059 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2060 * not, and a negative error code in case of failure.
2061 */
2062 int dbg_check_filesystem(struct ubifs_info *c)
2063 {
2064 int err;
2065 struct fsck_data fsckd;
2066
2067 if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2068 return 0;
2069
2070 fsckd.inodes = RB_ROOT;
2071 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2072 if (err)
2073 goto out_free;
2074
2075 err = check_inodes(c, &fsckd);
2076 if (err)
2077 goto out_free;
2078
2079 free_inodes(&fsckd);
2080 return 0;
2081
2082 out_free:
2083 ubifs_err("file-system check failed with error %d", err);
2084 dump_stack();
2085 free_inodes(&fsckd);
2086 return err;
2087 }
2088
2089 static int invocation_cnt;
2090
2091 int dbg_force_in_the_gaps(void)
2092 {
2093 if (!dbg_force_in_the_gaps_enabled)
2094 return 0;
2095 /* Force in-the-gaps every 8th commit */
2096 return !((invocation_cnt++) & 0x7);
2097 }
2098
2099 /* Failure mode for recovery testing */
2100
2101 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2102
2103 struct failure_mode_info {
2104 struct list_head list;
2105 struct ubifs_info *c;
2106 };
2107
2108 static LIST_HEAD(fmi_list);
2109 static DEFINE_SPINLOCK(fmi_lock);
2110
2111 static unsigned int next;
2112
2113 static int simple_rand(void)
2114 {
2115 if (next == 0)
2116 next = current->pid;
2117 next = next * 1103515245 + 12345;
2118 return (next >> 16) & 32767;
2119 }
2120
2121 static void failure_mode_init(struct ubifs_info *c)
2122 {
2123 struct failure_mode_info *fmi;
2124
2125 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2126 if (!fmi) {
2127 ubifs_err("Failed to register failure mode - no memory");
2128 return;
2129 }
2130 fmi->c = c;
2131 spin_lock(&fmi_lock);
2132 list_add_tail(&fmi->list, &fmi_list);
2133 spin_unlock(&fmi_lock);
2134 }
2135
2136 static void failure_mode_exit(struct ubifs_info *c)
2137 {
2138 struct failure_mode_info *fmi, *tmp;
2139
2140 spin_lock(&fmi_lock);
2141 list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2142 if (fmi->c == c) {
2143 list_del(&fmi->list);
2144 kfree(fmi);
2145 }
2146 spin_unlock(&fmi_lock);
2147 }
2148
2149 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2150 {
2151 struct failure_mode_info *fmi;
2152
2153 spin_lock(&fmi_lock);
2154 list_for_each_entry(fmi, &fmi_list, list)
2155 if (fmi->c->ubi == desc) {
2156 struct ubifs_info *c = fmi->c;
2157
2158 spin_unlock(&fmi_lock);
2159 return c;
2160 }
2161 spin_unlock(&fmi_lock);
2162 return NULL;
2163 }
2164
2165 static int in_failure_mode(struct ubi_volume_desc *desc)
2166 {
2167 struct ubifs_info *c = dbg_find_info(desc);
2168
2169 if (c && dbg_failure_mode)
2170 return c->dbg->failure_mode;
2171 return 0;
2172 }
2173
2174 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2175 {
2176 struct ubifs_info *c = dbg_find_info(desc);
2177 struct ubifs_debug_info *d;
2178
2179 if (!c || !dbg_failure_mode)
2180 return 0;
2181 d = c->dbg;
2182 if (d->failure_mode)
2183 return 1;
2184 if (!d->fail_cnt) {
2185 /* First call - decide delay to failure */
2186 if (chance(1, 2)) {
2187 unsigned int delay = 1 << (simple_rand() >> 11);
2188
2189 if (chance(1, 2)) {
2190 d->fail_delay = 1;
2191 d->fail_timeout = jiffies +
2192 msecs_to_jiffies(delay);
2193 dbg_rcvry("failing after %ums", delay);
2194 } else {
2195 d->fail_delay = 2;
2196 d->fail_cnt_max = delay;
2197 dbg_rcvry("failing after %u calls", delay);
2198 }
2199 }
2200 d->fail_cnt += 1;
2201 }
2202 /* Determine if failure delay has expired */
2203 if (d->fail_delay == 1) {
2204 if (time_before(jiffies, d->fail_timeout))
2205 return 0;
2206 } else if (d->fail_delay == 2)
2207 if (d->fail_cnt++ < d->fail_cnt_max)
2208 return 0;
2209 if (lnum == UBIFS_SB_LNUM) {
2210 if (write) {
2211 if (chance(1, 2))
2212 return 0;
2213 } else if (chance(19, 20))
2214 return 0;
2215 dbg_rcvry("failing in super block LEB %d", lnum);
2216 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2217 if (chance(19, 20))
2218 return 0;
2219 dbg_rcvry("failing in master LEB %d", lnum);
2220 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2221 if (write) {
2222 if (chance(99, 100))
2223 return 0;
2224 } else if (chance(399, 400))
2225 return 0;
2226 dbg_rcvry("failing in log LEB %d", lnum);
2227 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2228 if (write) {
2229 if (chance(7, 8))
2230 return 0;
2231 } else if (chance(19, 20))
2232 return 0;
2233 dbg_rcvry("failing in LPT LEB %d", lnum);
2234 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2235 if (write) {
2236 if (chance(1, 2))
2237 return 0;
2238 } else if (chance(9, 10))
2239 return 0;
2240 dbg_rcvry("failing in orphan LEB %d", lnum);
2241 } else if (lnum == c->ihead_lnum) {
2242 if (chance(99, 100))
2243 return 0;
2244 dbg_rcvry("failing in index head LEB %d", lnum);
2245 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2246 if (chance(9, 10))
2247 return 0;
2248 dbg_rcvry("failing in GC head LEB %d", lnum);
2249 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2250 !ubifs_search_bud(c, lnum)) {
2251 if (chance(19, 20))
2252 return 0;
2253 dbg_rcvry("failing in non-bud LEB %d", lnum);
2254 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2255 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2256 if (chance(999, 1000))
2257 return 0;
2258 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2259 } else {
2260 if (chance(9999, 10000))
2261 return 0;
2262 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2263 }
2264 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2265 d->failure_mode = 1;
2266 dump_stack();
2267 return 1;
2268 }
2269
2270 static void cut_data(const void *buf, int len)
2271 {
2272 int flen, i;
2273 unsigned char *p = (void *)buf;
2274
2275 flen = (len * (long long)simple_rand()) >> 15;
2276 for (i = flen; i < len; i++)
2277 p[i] = 0xff;
2278 }
2279
2280 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2281 int len, int check)
2282 {
2283 if (in_failure_mode(desc))
2284 return -EIO;
2285 return ubi_leb_read(desc, lnum, buf, offset, len, check);
2286 }
2287
2288 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2289 int offset, int len, int dtype)
2290 {
2291 int err, failing;
2292
2293 if (in_failure_mode(desc))
2294 return -EIO;
2295 failing = do_fail(desc, lnum, 1);
2296 if (failing)
2297 cut_data(buf, len);
2298 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2299 if (err)
2300 return err;
2301 if (failing)
2302 return -EIO;
2303 return 0;
2304 }
2305
2306 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2307 int len, int dtype)
2308 {
2309 int err;
2310
2311 if (do_fail(desc, lnum, 1))
2312 return -EIO;
2313 err = ubi_leb_change(desc, lnum, buf, len, dtype);
2314 if (err)
2315 return err;
2316 if (do_fail(desc, lnum, 1))
2317 return -EIO;
2318 return 0;
2319 }
2320
2321 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2322 {
2323 int err;
2324
2325 if (do_fail(desc, lnum, 0))
2326 return -EIO;
2327 err = ubi_leb_erase(desc, lnum);
2328 if (err)
2329 return err;
2330 if (do_fail(desc, lnum, 0))
2331 return -EIO;
2332 return 0;
2333 }
2334
2335 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2336 {
2337 int err;
2338
2339 if (do_fail(desc, lnum, 0))
2340 return -EIO;
2341 err = ubi_leb_unmap(desc, lnum);
2342 if (err)
2343 return err;
2344 if (do_fail(desc, lnum, 0))
2345 return -EIO;
2346 return 0;
2347 }
2348
2349 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2350 {
2351 if (in_failure_mode(desc))
2352 return -EIO;
2353 return ubi_is_mapped(desc, lnum);
2354 }
2355
2356 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2357 {
2358 int err;
2359
2360 if (do_fail(desc, lnum, 0))
2361 return -EIO;
2362 err = ubi_leb_map(desc, lnum, dtype);
2363 if (err)
2364 return err;
2365 if (do_fail(desc, lnum, 0))
2366 return -EIO;
2367 return 0;
2368 }
2369
2370 /**
2371 * ubifs_debugging_init - initialize UBIFS debugging.
2372 * @c: UBIFS file-system description object
2373 *
2374 * This function initializes debugging-related data for the file system.
2375 * Returns zero in case of success and a negative error code in case of
2376 * failure.
2377 */
2378 int ubifs_debugging_init(struct ubifs_info *c)
2379 {
2380 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2381 if (!c->dbg)
2382 return -ENOMEM;
2383
2384 c->dbg->buf = vmalloc(c->leb_size);
2385 if (!c->dbg->buf)
2386 goto out;
2387
2388 failure_mode_init(c);
2389 return 0;
2390
2391 out:
2392 kfree(c->dbg);
2393 return -ENOMEM;
2394 }
2395
2396 /**
2397 * ubifs_debugging_exit - free debugging data.
2398 * @c: UBIFS file-system description object
2399 */
2400 void ubifs_debugging_exit(struct ubifs_info *c)
2401 {
2402 failure_mode_exit(c);
2403 vfree(c->dbg->buf);
2404 kfree(c->dbg);
2405 }
2406
2407 /*
2408 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2409 * contain the stuff specific to particular file-system mounts.
2410 */
2411 static struct dentry *debugfs_rootdir;
2412
2413 /**
2414 * dbg_debugfs_init - initialize debugfs file-system.
2415 *
2416 * UBIFS uses debugfs file-system to expose various debugging knobs to
2417 * user-space. This function creates "ubifs" directory in the debugfs
2418 * file-system. Returns zero in case of success and a negative error code in
2419 * case of failure.
2420 */
2421 int dbg_debugfs_init(void)
2422 {
2423 debugfs_rootdir = debugfs_create_dir("ubifs", NULL);
2424 if (IS_ERR(debugfs_rootdir)) {
2425 int err = PTR_ERR(debugfs_rootdir);
2426 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2427 "error %d\n", err);
2428 return err;
2429 }
2430
2431 return 0;
2432 }
2433
2434 /**
2435 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2436 */
2437 void dbg_debugfs_exit(void)
2438 {
2439 debugfs_remove(debugfs_rootdir);
2440 }
2441
2442 static int open_debugfs_file(struct inode *inode, struct file *file)
2443 {
2444 file->private_data = inode->i_private;
2445 return 0;
2446 }
2447
2448 static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2449 size_t count, loff_t *ppos)
2450 {
2451 struct ubifs_info *c = file->private_data;
2452 struct ubifs_debug_info *d = c->dbg;
2453
2454 if (file->f_path.dentry == d->dump_lprops)
2455 dbg_dump_lprops(c);
2456 else if (file->f_path.dentry == d->dump_budg) {
2457 spin_lock(&c->space_lock);
2458 dbg_dump_budg(c);
2459 spin_unlock(&c->space_lock);
2460 } else if (file->f_path.dentry == d->dump_tnc) {
2461 mutex_lock(&c->tnc_mutex);
2462 dbg_dump_tnc(c);
2463 mutex_unlock(&c->tnc_mutex);
2464 } else
2465 return -EINVAL;
2466
2467 *ppos += count;
2468 return count;
2469 }
2470
2471 static const struct file_operations debugfs_fops = {
2472 .open = open_debugfs_file,
2473 .write = write_debugfs_file,
2474 .owner = THIS_MODULE,
2475 };
2476
2477 /**
2478 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2479 * @c: UBIFS file-system description object
2480 *
2481 * This function creates all debugfs files for this instance of UBIFS. Returns
2482 * zero in case of success and a negative error code in case of failure.
2483 *
2484 * Note, the only reason we have not merged this function with the
2485 * 'ubifs_debugging_init()' function is because it is better to initialize
2486 * debugfs interfaces at the very end of the mount process, and remove them at
2487 * the very beginning of the mount process.
2488 */
2489 int dbg_debugfs_init_fs(struct ubifs_info *c)
2490 {
2491 int err;
2492 const char *fname;
2493 struct dentry *dent;
2494 struct ubifs_debug_info *d = c->dbg;
2495
2496 sprintf(d->debugfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2497 d->debugfs_dir = debugfs_create_dir(d->debugfs_dir_name,
2498 debugfs_rootdir);
2499 if (IS_ERR(d->debugfs_dir)) {
2500 err = PTR_ERR(d->debugfs_dir);
2501 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2502 d->debugfs_dir_name, err);
2503 goto out;
2504 }
2505
2506 fname = "dump_lprops";
2507 dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2508 &debugfs_fops);
2509 if (IS_ERR(dent))
2510 goto out_remove;
2511 d->dump_lprops = dent;
2512
2513 fname = "dump_budg";
2514 dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2515 &debugfs_fops);
2516 if (IS_ERR(dent))
2517 goto out_remove;
2518 d->dump_budg = dent;
2519
2520 fname = "dump_tnc";
2521 dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2522 &debugfs_fops);
2523 if (IS_ERR(dent))
2524 goto out_remove;
2525 d->dump_tnc = dent;
2526
2527 return 0;
2528
2529 out_remove:
2530 err = PTR_ERR(dent);
2531 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2532 fname, err);
2533 debugfs_remove_recursive(d->debugfs_dir);
2534 out:
2535 return err;
2536 }
2537
2538 /**
2539 * dbg_debugfs_exit_fs - remove all debugfs files.
2540 * @c: UBIFS file-system description object
2541 */
2542 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2543 {
2544 debugfs_remove_recursive(c->dbg->debugfs_dir);
2545 }
2546
2547 #endif /* CONFIG_UBIFS_FS_DEBUG */
This page took 0.130079 seconds and 5 git commands to generate.