Merge branches 'for-3.18/always-poll-quirk', 'for-3.18/logitech', 'for-3.18/picolcd...
[deliverable/linux.git] / fs / ubifs / super.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23 /*
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
27 */
28
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40
41 /*
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
44 */
45 #define UBIFS_KMALLOC_OK (128*1024)
46
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache *ubifs_inode_slab;
49
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 .scan_objects = ubifs_shrink_scan,
53 .count_objects = ubifs_shrink_count,
54 .seeks = DEFAULT_SEEKS,
55 };
56
57 /**
58 * validate_inode - validate inode.
59 * @c: UBIFS file-system description object
60 * @inode: the inode to validate
61 *
62 * This is a helper function for 'ubifs_iget()' which validates various fields
63 * of a newly built inode to make sure they contain sane values and prevent
64 * possible vulnerabilities. Returns zero if the inode is all right and
65 * a non-zero error code if not.
66 */
67 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
68 {
69 int err;
70 const struct ubifs_inode *ui = ubifs_inode(inode);
71
72 if (inode->i_size > c->max_inode_sz) {
73 ubifs_err("inode is too large (%lld)",
74 (long long)inode->i_size);
75 return 1;
76 }
77
78 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 ubifs_err("unknown compression type %d", ui->compr_type);
80 return 2;
81 }
82
83 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 return 3;
85
86 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 return 4;
88
89 if (ui->xattr && !S_ISREG(inode->i_mode))
90 return 5;
91
92 if (!ubifs_compr_present(ui->compr_type)) {
93 ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in",
94 inode->i_ino, ubifs_compr_name(ui->compr_type));
95 }
96
97 err = dbg_check_dir(c, inode);
98 return err;
99 }
100
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102 {
103 int err;
104 union ubifs_key key;
105 struct ubifs_ino_node *ino;
106 struct ubifs_info *c = sb->s_fs_info;
107 struct inode *inode;
108 struct ubifs_inode *ui;
109
110 dbg_gen("inode %lu", inum);
111
112 inode = iget_locked(sb, inum);
113 if (!inode)
114 return ERR_PTR(-ENOMEM);
115 if (!(inode->i_state & I_NEW))
116 return inode;
117 ui = ubifs_inode(inode);
118
119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 if (!ino) {
121 err = -ENOMEM;
122 goto out;
123 }
124
125 ino_key_init(c, &key, inode->i_ino);
126
127 err = ubifs_tnc_lookup(c, &key, ino);
128 if (err)
129 goto out_ino;
130
131 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
132 set_nlink(inode, le32_to_cpu(ino->nlink));
133 i_uid_write(inode, le32_to_cpu(ino->uid));
134 i_gid_write(inode, le32_to_cpu(ino->gid));
135 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
136 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
137 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
138 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
139 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
140 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
141 inode->i_mode = le32_to_cpu(ino->mode);
142 inode->i_size = le64_to_cpu(ino->size);
143
144 ui->data_len = le32_to_cpu(ino->data_len);
145 ui->flags = le32_to_cpu(ino->flags);
146 ui->compr_type = le16_to_cpu(ino->compr_type);
147 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
148 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
149 ui->xattr_size = le32_to_cpu(ino->xattr_size);
150 ui->xattr_names = le32_to_cpu(ino->xattr_names);
151 ui->synced_i_size = ui->ui_size = inode->i_size;
152
153 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
154
155 err = validate_inode(c, inode);
156 if (err)
157 goto out_invalid;
158
159 /* Disable read-ahead */
160 inode->i_mapping->backing_dev_info = &c->bdi;
161
162 switch (inode->i_mode & S_IFMT) {
163 case S_IFREG:
164 inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 inode->i_op = &ubifs_file_inode_operations;
166 inode->i_fop = &ubifs_file_operations;
167 if (ui->xattr) {
168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 if (!ui->data) {
170 err = -ENOMEM;
171 goto out_ino;
172 }
173 memcpy(ui->data, ino->data, ui->data_len);
174 ((char *)ui->data)[ui->data_len] = '\0';
175 } else if (ui->data_len != 0) {
176 err = 10;
177 goto out_invalid;
178 }
179 break;
180 case S_IFDIR:
181 inode->i_op = &ubifs_dir_inode_operations;
182 inode->i_fop = &ubifs_dir_operations;
183 if (ui->data_len != 0) {
184 err = 11;
185 goto out_invalid;
186 }
187 break;
188 case S_IFLNK:
189 inode->i_op = &ubifs_symlink_inode_operations;
190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 err = 12;
192 goto out_invalid;
193 }
194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 if (!ui->data) {
196 err = -ENOMEM;
197 goto out_ino;
198 }
199 memcpy(ui->data, ino->data, ui->data_len);
200 ((char *)ui->data)[ui->data_len] = '\0';
201 break;
202 case S_IFBLK:
203 case S_IFCHR:
204 {
205 dev_t rdev;
206 union ubifs_dev_desc *dev;
207
208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 if (!ui->data) {
210 err = -ENOMEM;
211 goto out_ino;
212 }
213
214 dev = (union ubifs_dev_desc *)ino->data;
215 if (ui->data_len == sizeof(dev->new))
216 rdev = new_decode_dev(le32_to_cpu(dev->new));
217 else if (ui->data_len == sizeof(dev->huge))
218 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 else {
220 err = 13;
221 goto out_invalid;
222 }
223 memcpy(ui->data, ino->data, ui->data_len);
224 inode->i_op = &ubifs_file_inode_operations;
225 init_special_inode(inode, inode->i_mode, rdev);
226 break;
227 }
228 case S_IFSOCK:
229 case S_IFIFO:
230 inode->i_op = &ubifs_file_inode_operations;
231 init_special_inode(inode, inode->i_mode, 0);
232 if (ui->data_len != 0) {
233 err = 14;
234 goto out_invalid;
235 }
236 break;
237 default:
238 err = 15;
239 goto out_invalid;
240 }
241
242 kfree(ino);
243 ubifs_set_inode_flags(inode);
244 unlock_new_inode(inode);
245 return inode;
246
247 out_invalid:
248 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
249 ubifs_dump_node(c, ino);
250 ubifs_dump_inode(c, inode);
251 err = -EINVAL;
252 out_ino:
253 kfree(ino);
254 out:
255 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
256 iget_failed(inode);
257 return ERR_PTR(err);
258 }
259
260 static struct inode *ubifs_alloc_inode(struct super_block *sb)
261 {
262 struct ubifs_inode *ui;
263
264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 if (!ui)
266 return NULL;
267
268 memset((void *)ui + sizeof(struct inode), 0,
269 sizeof(struct ubifs_inode) - sizeof(struct inode));
270 mutex_init(&ui->ui_mutex);
271 spin_lock_init(&ui->ui_lock);
272 return &ui->vfs_inode;
273 };
274
275 static void ubifs_i_callback(struct rcu_head *head)
276 {
277 struct inode *inode = container_of(head, struct inode, i_rcu);
278 struct ubifs_inode *ui = ubifs_inode(inode);
279 kmem_cache_free(ubifs_inode_slab, ui);
280 }
281
282 static void ubifs_destroy_inode(struct inode *inode)
283 {
284 struct ubifs_inode *ui = ubifs_inode(inode);
285
286 kfree(ui->data);
287 call_rcu(&inode->i_rcu, ubifs_i_callback);
288 }
289
290 /*
291 * Note, Linux write-back code calls this without 'i_mutex'.
292 */
293 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
294 {
295 int err = 0;
296 struct ubifs_info *c = inode->i_sb->s_fs_info;
297 struct ubifs_inode *ui = ubifs_inode(inode);
298
299 ubifs_assert(!ui->xattr);
300 if (is_bad_inode(inode))
301 return 0;
302
303 mutex_lock(&ui->ui_mutex);
304 /*
305 * Due to races between write-back forced by budgeting
306 * (see 'sync_some_inodes()') and background write-back, the inode may
307 * have already been synchronized, do not do this again. This might
308 * also happen if it was synchronized in an VFS operation, e.g.
309 * 'ubifs_link()'.
310 */
311 if (!ui->dirty) {
312 mutex_unlock(&ui->ui_mutex);
313 return 0;
314 }
315
316 /*
317 * As an optimization, do not write orphan inodes to the media just
318 * because this is not needed.
319 */
320 dbg_gen("inode %lu, mode %#x, nlink %u",
321 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
322 if (inode->i_nlink) {
323 err = ubifs_jnl_write_inode(c, inode);
324 if (err)
325 ubifs_err("can't write inode %lu, error %d",
326 inode->i_ino, err);
327 else
328 err = dbg_check_inode_size(c, inode, ui->ui_size);
329 }
330
331 ui->dirty = 0;
332 mutex_unlock(&ui->ui_mutex);
333 ubifs_release_dirty_inode_budget(c, ui);
334 return err;
335 }
336
337 static void ubifs_evict_inode(struct inode *inode)
338 {
339 int err;
340 struct ubifs_info *c = inode->i_sb->s_fs_info;
341 struct ubifs_inode *ui = ubifs_inode(inode);
342
343 if (ui->xattr)
344 /*
345 * Extended attribute inode deletions are fully handled in
346 * 'ubifs_removexattr()'. These inodes are special and have
347 * limited usage, so there is nothing to do here.
348 */
349 goto out;
350
351 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
352 ubifs_assert(!atomic_read(&inode->i_count));
353
354 truncate_inode_pages_final(&inode->i_data);
355
356 if (inode->i_nlink)
357 goto done;
358
359 if (is_bad_inode(inode))
360 goto out;
361
362 ui->ui_size = inode->i_size = 0;
363 err = ubifs_jnl_delete_inode(c, inode);
364 if (err)
365 /*
366 * Worst case we have a lost orphan inode wasting space, so a
367 * simple error message is OK here.
368 */
369 ubifs_err("can't delete inode %lu, error %d",
370 inode->i_ino, err);
371
372 out:
373 if (ui->dirty)
374 ubifs_release_dirty_inode_budget(c, ui);
375 else {
376 /* We've deleted something - clean the "no space" flags */
377 c->bi.nospace = c->bi.nospace_rp = 0;
378 smp_wmb();
379 }
380 done:
381 clear_inode(inode);
382 }
383
384 static void ubifs_dirty_inode(struct inode *inode, int flags)
385 {
386 struct ubifs_inode *ui = ubifs_inode(inode);
387
388 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
389 if (!ui->dirty) {
390 ui->dirty = 1;
391 dbg_gen("inode %lu", inode->i_ino);
392 }
393 }
394
395 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
396 {
397 struct ubifs_info *c = dentry->d_sb->s_fs_info;
398 unsigned long long free;
399 __le32 *uuid = (__le32 *)c->uuid;
400
401 free = ubifs_get_free_space(c);
402 dbg_gen("free space %lld bytes (%lld blocks)",
403 free, free >> UBIFS_BLOCK_SHIFT);
404
405 buf->f_type = UBIFS_SUPER_MAGIC;
406 buf->f_bsize = UBIFS_BLOCK_SIZE;
407 buf->f_blocks = c->block_cnt;
408 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
409 if (free > c->report_rp_size)
410 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
411 else
412 buf->f_bavail = 0;
413 buf->f_files = 0;
414 buf->f_ffree = 0;
415 buf->f_namelen = UBIFS_MAX_NLEN;
416 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
417 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
418 ubifs_assert(buf->f_bfree <= c->block_cnt);
419 return 0;
420 }
421
422 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
423 {
424 struct ubifs_info *c = root->d_sb->s_fs_info;
425
426 if (c->mount_opts.unmount_mode == 2)
427 seq_puts(s, ",fast_unmount");
428 else if (c->mount_opts.unmount_mode == 1)
429 seq_puts(s, ",norm_unmount");
430
431 if (c->mount_opts.bulk_read == 2)
432 seq_puts(s, ",bulk_read");
433 else if (c->mount_opts.bulk_read == 1)
434 seq_puts(s, ",no_bulk_read");
435
436 if (c->mount_opts.chk_data_crc == 2)
437 seq_puts(s, ",chk_data_crc");
438 else if (c->mount_opts.chk_data_crc == 1)
439 seq_puts(s, ",no_chk_data_crc");
440
441 if (c->mount_opts.override_compr) {
442 seq_printf(s, ",compr=%s",
443 ubifs_compr_name(c->mount_opts.compr_type));
444 }
445
446 return 0;
447 }
448
449 static int ubifs_sync_fs(struct super_block *sb, int wait)
450 {
451 int i, err;
452 struct ubifs_info *c = sb->s_fs_info;
453
454 /*
455 * Zero @wait is just an advisory thing to help the file system shove
456 * lots of data into the queues, and there will be the second
457 * '->sync_fs()' call, with non-zero @wait.
458 */
459 if (!wait)
460 return 0;
461
462 /*
463 * Synchronize write buffers, because 'ubifs_run_commit()' does not
464 * do this if it waits for an already running commit.
465 */
466 for (i = 0; i < c->jhead_cnt; i++) {
467 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
468 if (err)
469 return err;
470 }
471
472 /*
473 * Strictly speaking, it is not necessary to commit the journal here,
474 * synchronizing write-buffers would be enough. But committing makes
475 * UBIFS free space predictions much more accurate, so we want to let
476 * the user be able to get more accurate results of 'statfs()' after
477 * they synchronize the file system.
478 */
479 err = ubifs_run_commit(c);
480 if (err)
481 return err;
482
483 return ubi_sync(c->vi.ubi_num);
484 }
485
486 /**
487 * init_constants_early - initialize UBIFS constants.
488 * @c: UBIFS file-system description object
489 *
490 * This function initialize UBIFS constants which do not need the superblock to
491 * be read. It also checks that the UBI volume satisfies basic UBIFS
492 * requirements. Returns zero in case of success and a negative error code in
493 * case of failure.
494 */
495 static int init_constants_early(struct ubifs_info *c)
496 {
497 if (c->vi.corrupted) {
498 ubifs_warn("UBI volume is corrupted - read-only mode");
499 c->ro_media = 1;
500 }
501
502 if (c->di.ro_mode) {
503 ubifs_msg("read-only UBI device");
504 c->ro_media = 1;
505 }
506
507 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
508 ubifs_msg("static UBI volume - read-only mode");
509 c->ro_media = 1;
510 }
511
512 c->leb_cnt = c->vi.size;
513 c->leb_size = c->vi.usable_leb_size;
514 c->leb_start = c->di.leb_start;
515 c->half_leb_size = c->leb_size / 2;
516 c->min_io_size = c->di.min_io_size;
517 c->min_io_shift = fls(c->min_io_size) - 1;
518 c->max_write_size = c->di.max_write_size;
519 c->max_write_shift = fls(c->max_write_size) - 1;
520
521 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
522 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
523 c->leb_size, UBIFS_MIN_LEB_SZ);
524 return -EINVAL;
525 }
526
527 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
528 ubifs_err("too few LEBs (%d), min. is %d",
529 c->leb_cnt, UBIFS_MIN_LEB_CNT);
530 return -EINVAL;
531 }
532
533 if (!is_power_of_2(c->min_io_size)) {
534 ubifs_err("bad min. I/O size %d", c->min_io_size);
535 return -EINVAL;
536 }
537
538 /*
539 * Maximum write size has to be greater or equivalent to min. I/O
540 * size, and be multiple of min. I/O size.
541 */
542 if (c->max_write_size < c->min_io_size ||
543 c->max_write_size % c->min_io_size ||
544 !is_power_of_2(c->max_write_size)) {
545 ubifs_err("bad write buffer size %d for %d min. I/O unit",
546 c->max_write_size, c->min_io_size);
547 return -EINVAL;
548 }
549
550 /*
551 * UBIFS aligns all node to 8-byte boundary, so to make function in
552 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
553 * less than 8.
554 */
555 if (c->min_io_size < 8) {
556 c->min_io_size = 8;
557 c->min_io_shift = 3;
558 if (c->max_write_size < c->min_io_size) {
559 c->max_write_size = c->min_io_size;
560 c->max_write_shift = c->min_io_shift;
561 }
562 }
563
564 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
565 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
566
567 /*
568 * Initialize node length ranges which are mostly needed for node
569 * length validation.
570 */
571 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
572 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
573 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
574 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
575 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
576 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
577
578 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
579 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
580 c->ranges[UBIFS_ORPH_NODE].min_len =
581 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
582 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
583 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
584 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
585 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
586 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
587 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
588 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
589 /*
590 * Minimum indexing node size is amended later when superblock is
591 * read and the key length is known.
592 */
593 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
594 /*
595 * Maximum indexing node size is amended later when superblock is
596 * read and the fanout is known.
597 */
598 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
599
600 /*
601 * Initialize dead and dark LEB space watermarks. See gc.c for comments
602 * about these values.
603 */
604 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
605 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
606
607 /*
608 * Calculate how many bytes would be wasted at the end of LEB if it was
609 * fully filled with data nodes of maximum size. This is used in
610 * calculations when reporting free space.
611 */
612 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
613
614 /* Buffer size for bulk-reads */
615 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
616 if (c->max_bu_buf_len > c->leb_size)
617 c->max_bu_buf_len = c->leb_size;
618 return 0;
619 }
620
621 /**
622 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
623 * @c: UBIFS file-system description object
624 * @lnum: LEB the write-buffer was synchronized to
625 * @free: how many free bytes left in this LEB
626 * @pad: how many bytes were padded
627 *
628 * This is a callback function which is called by the I/O unit when the
629 * write-buffer is synchronized. We need this to correctly maintain space
630 * accounting in bud logical eraseblocks. This function returns zero in case of
631 * success and a negative error code in case of failure.
632 *
633 * This function actually belongs to the journal, but we keep it here because
634 * we want to keep it static.
635 */
636 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
637 {
638 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
639 }
640
641 /*
642 * init_constants_sb - initialize UBIFS constants.
643 * @c: UBIFS file-system description object
644 *
645 * This is a helper function which initializes various UBIFS constants after
646 * the superblock has been read. It also checks various UBIFS parameters and
647 * makes sure they are all right. Returns zero in case of success and a
648 * negative error code in case of failure.
649 */
650 static int init_constants_sb(struct ubifs_info *c)
651 {
652 int tmp, err;
653 long long tmp64;
654
655 c->main_bytes = (long long)c->main_lebs * c->leb_size;
656 c->max_znode_sz = sizeof(struct ubifs_znode) +
657 c->fanout * sizeof(struct ubifs_zbranch);
658
659 tmp = ubifs_idx_node_sz(c, 1);
660 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
661 c->min_idx_node_sz = ALIGN(tmp, 8);
662
663 tmp = ubifs_idx_node_sz(c, c->fanout);
664 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
665 c->max_idx_node_sz = ALIGN(tmp, 8);
666
667 /* Make sure LEB size is large enough to fit full commit */
668 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
669 tmp = ALIGN(tmp, c->min_io_size);
670 if (tmp > c->leb_size) {
671 ubifs_err("too small LEB size %d, at least %d needed",
672 c->leb_size, tmp);
673 return -EINVAL;
674 }
675
676 /*
677 * Make sure that the log is large enough to fit reference nodes for
678 * all buds plus one reserved LEB.
679 */
680 tmp64 = c->max_bud_bytes + c->leb_size - 1;
681 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
682 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
683 tmp /= c->leb_size;
684 tmp += 1;
685 if (c->log_lebs < tmp) {
686 ubifs_err("too small log %d LEBs, required min. %d LEBs",
687 c->log_lebs, tmp);
688 return -EINVAL;
689 }
690
691 /*
692 * When budgeting we assume worst-case scenarios when the pages are not
693 * be compressed and direntries are of the maximum size.
694 *
695 * Note, data, which may be stored in inodes is budgeted separately, so
696 * it is not included into 'c->bi.inode_budget'.
697 */
698 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
699 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
700 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
701
702 /*
703 * When the amount of flash space used by buds becomes
704 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
705 * The writers are unblocked when the commit is finished. To avoid
706 * writers to be blocked UBIFS initiates background commit in advance,
707 * when number of bud bytes becomes above the limit defined below.
708 */
709 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
710
711 /*
712 * Ensure minimum journal size. All the bytes in the journal heads are
713 * considered to be used, when calculating the current journal usage.
714 * Consequently, if the journal is too small, UBIFS will treat it as
715 * always full.
716 */
717 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
718 if (c->bg_bud_bytes < tmp64)
719 c->bg_bud_bytes = tmp64;
720 if (c->max_bud_bytes < tmp64 + c->leb_size)
721 c->max_bud_bytes = tmp64 + c->leb_size;
722
723 err = ubifs_calc_lpt_geom(c);
724 if (err)
725 return err;
726
727 /* Initialize effective LEB size used in budgeting calculations */
728 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
729 return 0;
730 }
731
732 /*
733 * init_constants_master - initialize UBIFS constants.
734 * @c: UBIFS file-system description object
735 *
736 * This is a helper function which initializes various UBIFS constants after
737 * the master node has been read. It also checks various UBIFS parameters and
738 * makes sure they are all right.
739 */
740 static void init_constants_master(struct ubifs_info *c)
741 {
742 long long tmp64;
743
744 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
745 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
746
747 /*
748 * Calculate total amount of FS blocks. This number is not used
749 * internally because it does not make much sense for UBIFS, but it is
750 * necessary to report something for the 'statfs()' call.
751 *
752 * Subtract the LEB reserved for GC, the LEB which is reserved for
753 * deletions, minimum LEBs for the index, and assume only one journal
754 * head is available.
755 */
756 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
757 tmp64 *= (long long)c->leb_size - c->leb_overhead;
758 tmp64 = ubifs_reported_space(c, tmp64);
759 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
760 }
761
762 /**
763 * take_gc_lnum - reserve GC LEB.
764 * @c: UBIFS file-system description object
765 *
766 * This function ensures that the LEB reserved for garbage collection is marked
767 * as "taken" in lprops. We also have to set free space to LEB size and dirty
768 * space to zero, because lprops may contain out-of-date information if the
769 * file-system was un-mounted before it has been committed. This function
770 * returns zero in case of success and a negative error code in case of
771 * failure.
772 */
773 static int take_gc_lnum(struct ubifs_info *c)
774 {
775 int err;
776
777 if (c->gc_lnum == -1) {
778 ubifs_err("no LEB for GC");
779 return -EINVAL;
780 }
781
782 /* And we have to tell lprops that this LEB is taken */
783 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
784 LPROPS_TAKEN, 0, 0);
785 return err;
786 }
787
788 /**
789 * alloc_wbufs - allocate write-buffers.
790 * @c: UBIFS file-system description object
791 *
792 * This helper function allocates and initializes UBIFS write-buffers. Returns
793 * zero in case of success and %-ENOMEM in case of failure.
794 */
795 static int alloc_wbufs(struct ubifs_info *c)
796 {
797 int i, err;
798
799 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
800 GFP_KERNEL);
801 if (!c->jheads)
802 return -ENOMEM;
803
804 /* Initialize journal heads */
805 for (i = 0; i < c->jhead_cnt; i++) {
806 INIT_LIST_HEAD(&c->jheads[i].buds_list);
807 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
808 if (err)
809 return err;
810
811 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
812 c->jheads[i].wbuf.jhead = i;
813 c->jheads[i].grouped = 1;
814 }
815
816 /*
817 * Garbage Collector head does not need to be synchronized by timer.
818 * Also GC head nodes are not grouped.
819 */
820 c->jheads[GCHD].wbuf.no_timer = 1;
821 c->jheads[GCHD].grouped = 0;
822
823 return 0;
824 }
825
826 /**
827 * free_wbufs - free write-buffers.
828 * @c: UBIFS file-system description object
829 */
830 static void free_wbufs(struct ubifs_info *c)
831 {
832 int i;
833
834 if (c->jheads) {
835 for (i = 0; i < c->jhead_cnt; i++) {
836 kfree(c->jheads[i].wbuf.buf);
837 kfree(c->jheads[i].wbuf.inodes);
838 }
839 kfree(c->jheads);
840 c->jheads = NULL;
841 }
842 }
843
844 /**
845 * free_orphans - free orphans.
846 * @c: UBIFS file-system description object
847 */
848 static void free_orphans(struct ubifs_info *c)
849 {
850 struct ubifs_orphan *orph;
851
852 while (c->orph_dnext) {
853 orph = c->orph_dnext;
854 c->orph_dnext = orph->dnext;
855 list_del(&orph->list);
856 kfree(orph);
857 }
858
859 while (!list_empty(&c->orph_list)) {
860 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
861 list_del(&orph->list);
862 kfree(orph);
863 ubifs_err("orphan list not empty at unmount");
864 }
865
866 vfree(c->orph_buf);
867 c->orph_buf = NULL;
868 }
869
870 /**
871 * free_buds - free per-bud objects.
872 * @c: UBIFS file-system description object
873 */
874 static void free_buds(struct ubifs_info *c)
875 {
876 struct ubifs_bud *bud, *n;
877
878 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
879 kfree(bud);
880 }
881
882 /**
883 * check_volume_empty - check if the UBI volume is empty.
884 * @c: UBIFS file-system description object
885 *
886 * This function checks if the UBIFS volume is empty by looking if its LEBs are
887 * mapped or not. The result of checking is stored in the @c->empty variable.
888 * Returns zero in case of success and a negative error code in case of
889 * failure.
890 */
891 static int check_volume_empty(struct ubifs_info *c)
892 {
893 int lnum, err;
894
895 c->empty = 1;
896 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
897 err = ubifs_is_mapped(c, lnum);
898 if (unlikely(err < 0))
899 return err;
900 if (err == 1) {
901 c->empty = 0;
902 break;
903 }
904
905 cond_resched();
906 }
907
908 return 0;
909 }
910
911 /*
912 * UBIFS mount options.
913 *
914 * Opt_fast_unmount: do not run a journal commit before un-mounting
915 * Opt_norm_unmount: run a journal commit before un-mounting
916 * Opt_bulk_read: enable bulk-reads
917 * Opt_no_bulk_read: disable bulk-reads
918 * Opt_chk_data_crc: check CRCs when reading data nodes
919 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
920 * Opt_override_compr: override default compressor
921 * Opt_err: just end of array marker
922 */
923 enum {
924 Opt_fast_unmount,
925 Opt_norm_unmount,
926 Opt_bulk_read,
927 Opt_no_bulk_read,
928 Opt_chk_data_crc,
929 Opt_no_chk_data_crc,
930 Opt_override_compr,
931 Opt_err,
932 };
933
934 static const match_table_t tokens = {
935 {Opt_fast_unmount, "fast_unmount"},
936 {Opt_norm_unmount, "norm_unmount"},
937 {Opt_bulk_read, "bulk_read"},
938 {Opt_no_bulk_read, "no_bulk_read"},
939 {Opt_chk_data_crc, "chk_data_crc"},
940 {Opt_no_chk_data_crc, "no_chk_data_crc"},
941 {Opt_override_compr, "compr=%s"},
942 {Opt_err, NULL},
943 };
944
945 /**
946 * parse_standard_option - parse a standard mount option.
947 * @option: the option to parse
948 *
949 * Normally, standard mount options like "sync" are passed to file-systems as
950 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
951 * be present in the options string. This function tries to deal with this
952 * situation and parse standard options. Returns 0 if the option was not
953 * recognized, and the corresponding integer flag if it was.
954 *
955 * UBIFS is only interested in the "sync" option, so do not check for anything
956 * else.
957 */
958 static int parse_standard_option(const char *option)
959 {
960 ubifs_msg("parse %s", option);
961 if (!strcmp(option, "sync"))
962 return MS_SYNCHRONOUS;
963 return 0;
964 }
965
966 /**
967 * ubifs_parse_options - parse mount parameters.
968 * @c: UBIFS file-system description object
969 * @options: parameters to parse
970 * @is_remount: non-zero if this is FS re-mount
971 *
972 * This function parses UBIFS mount options and returns zero in case success
973 * and a negative error code in case of failure.
974 */
975 static int ubifs_parse_options(struct ubifs_info *c, char *options,
976 int is_remount)
977 {
978 char *p;
979 substring_t args[MAX_OPT_ARGS];
980
981 if (!options)
982 return 0;
983
984 while ((p = strsep(&options, ","))) {
985 int token;
986
987 if (!*p)
988 continue;
989
990 token = match_token(p, tokens, args);
991 switch (token) {
992 /*
993 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
994 * We accept them in order to be backward-compatible. But this
995 * should be removed at some point.
996 */
997 case Opt_fast_unmount:
998 c->mount_opts.unmount_mode = 2;
999 break;
1000 case Opt_norm_unmount:
1001 c->mount_opts.unmount_mode = 1;
1002 break;
1003 case Opt_bulk_read:
1004 c->mount_opts.bulk_read = 2;
1005 c->bulk_read = 1;
1006 break;
1007 case Opt_no_bulk_read:
1008 c->mount_opts.bulk_read = 1;
1009 c->bulk_read = 0;
1010 break;
1011 case Opt_chk_data_crc:
1012 c->mount_opts.chk_data_crc = 2;
1013 c->no_chk_data_crc = 0;
1014 break;
1015 case Opt_no_chk_data_crc:
1016 c->mount_opts.chk_data_crc = 1;
1017 c->no_chk_data_crc = 1;
1018 break;
1019 case Opt_override_compr:
1020 {
1021 char *name = match_strdup(&args[0]);
1022
1023 if (!name)
1024 return -ENOMEM;
1025 if (!strcmp(name, "none"))
1026 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1027 else if (!strcmp(name, "lzo"))
1028 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1029 else if (!strcmp(name, "zlib"))
1030 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1031 else {
1032 ubifs_err("unknown compressor \"%s\"", name);
1033 kfree(name);
1034 return -EINVAL;
1035 }
1036 kfree(name);
1037 c->mount_opts.override_compr = 1;
1038 c->default_compr = c->mount_opts.compr_type;
1039 break;
1040 }
1041 default:
1042 {
1043 unsigned long flag;
1044 struct super_block *sb = c->vfs_sb;
1045
1046 flag = parse_standard_option(p);
1047 if (!flag) {
1048 ubifs_err("unrecognized mount option \"%s\" or missing value",
1049 p);
1050 return -EINVAL;
1051 }
1052 sb->s_flags |= flag;
1053 break;
1054 }
1055 }
1056 }
1057
1058 return 0;
1059 }
1060
1061 /**
1062 * destroy_journal - destroy journal data structures.
1063 * @c: UBIFS file-system description object
1064 *
1065 * This function destroys journal data structures including those that may have
1066 * been created by recovery functions.
1067 */
1068 static void destroy_journal(struct ubifs_info *c)
1069 {
1070 while (!list_empty(&c->unclean_leb_list)) {
1071 struct ubifs_unclean_leb *ucleb;
1072
1073 ucleb = list_entry(c->unclean_leb_list.next,
1074 struct ubifs_unclean_leb, list);
1075 list_del(&ucleb->list);
1076 kfree(ucleb);
1077 }
1078 while (!list_empty(&c->old_buds)) {
1079 struct ubifs_bud *bud;
1080
1081 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1082 list_del(&bud->list);
1083 kfree(bud);
1084 }
1085 ubifs_destroy_idx_gc(c);
1086 ubifs_destroy_size_tree(c);
1087 ubifs_tnc_close(c);
1088 free_buds(c);
1089 }
1090
1091 /**
1092 * bu_init - initialize bulk-read information.
1093 * @c: UBIFS file-system description object
1094 */
1095 static void bu_init(struct ubifs_info *c)
1096 {
1097 ubifs_assert(c->bulk_read == 1);
1098
1099 if (c->bu.buf)
1100 return; /* Already initialized */
1101
1102 again:
1103 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1104 if (!c->bu.buf) {
1105 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1106 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1107 goto again;
1108 }
1109
1110 /* Just disable bulk-read */
1111 ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it",
1112 c->max_bu_buf_len);
1113 c->mount_opts.bulk_read = 1;
1114 c->bulk_read = 0;
1115 return;
1116 }
1117 }
1118
1119 /**
1120 * check_free_space - check if there is enough free space to mount.
1121 * @c: UBIFS file-system description object
1122 *
1123 * This function makes sure UBIFS has enough free space to be mounted in
1124 * read/write mode. UBIFS must always have some free space to allow deletions.
1125 */
1126 static int check_free_space(struct ubifs_info *c)
1127 {
1128 ubifs_assert(c->dark_wm > 0);
1129 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1130 ubifs_err("insufficient free space to mount in R/W mode");
1131 ubifs_dump_budg(c, &c->bi);
1132 ubifs_dump_lprops(c);
1133 return -ENOSPC;
1134 }
1135 return 0;
1136 }
1137
1138 /**
1139 * mount_ubifs - mount UBIFS file-system.
1140 * @c: UBIFS file-system description object
1141 *
1142 * This function mounts UBIFS file system. Returns zero in case of success and
1143 * a negative error code in case of failure.
1144 */
1145 static int mount_ubifs(struct ubifs_info *c)
1146 {
1147 int err;
1148 long long x, y;
1149 size_t sz;
1150
1151 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1152 /* Suppress error messages while probing if MS_SILENT is set */
1153 c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1154
1155 err = init_constants_early(c);
1156 if (err)
1157 return err;
1158
1159 err = ubifs_debugging_init(c);
1160 if (err)
1161 return err;
1162
1163 err = check_volume_empty(c);
1164 if (err)
1165 goto out_free;
1166
1167 if (c->empty && (c->ro_mount || c->ro_media)) {
1168 /*
1169 * This UBI volume is empty, and read-only, or the file system
1170 * is mounted read-only - we cannot format it.
1171 */
1172 ubifs_err("can't format empty UBI volume: read-only %s",
1173 c->ro_media ? "UBI volume" : "mount");
1174 err = -EROFS;
1175 goto out_free;
1176 }
1177
1178 if (c->ro_media && !c->ro_mount) {
1179 ubifs_err("cannot mount read-write - read-only media");
1180 err = -EROFS;
1181 goto out_free;
1182 }
1183
1184 /*
1185 * The requirement for the buffer is that it should fit indexing B-tree
1186 * height amount of integers. We assume the height if the TNC tree will
1187 * never exceed 64.
1188 */
1189 err = -ENOMEM;
1190 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1191 if (!c->bottom_up_buf)
1192 goto out_free;
1193
1194 c->sbuf = vmalloc(c->leb_size);
1195 if (!c->sbuf)
1196 goto out_free;
1197
1198 if (!c->ro_mount) {
1199 c->ileb_buf = vmalloc(c->leb_size);
1200 if (!c->ileb_buf)
1201 goto out_free;
1202 }
1203
1204 if (c->bulk_read == 1)
1205 bu_init(c);
1206
1207 if (!c->ro_mount) {
1208 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1209 GFP_KERNEL);
1210 if (!c->write_reserve_buf)
1211 goto out_free;
1212 }
1213
1214 c->mounting = 1;
1215
1216 err = ubifs_read_superblock(c);
1217 if (err)
1218 goto out_free;
1219
1220 c->probing = 0;
1221
1222 /*
1223 * Make sure the compressor which is set as default in the superblock
1224 * or overridden by mount options is actually compiled in.
1225 */
1226 if (!ubifs_compr_present(c->default_compr)) {
1227 ubifs_err("'compressor \"%s\" is not compiled in",
1228 ubifs_compr_name(c->default_compr));
1229 err = -ENOTSUPP;
1230 goto out_free;
1231 }
1232
1233 err = init_constants_sb(c);
1234 if (err)
1235 goto out_free;
1236
1237 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1238 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1239 c->cbuf = kmalloc(sz, GFP_NOFS);
1240 if (!c->cbuf) {
1241 err = -ENOMEM;
1242 goto out_free;
1243 }
1244
1245 err = alloc_wbufs(c);
1246 if (err)
1247 goto out_cbuf;
1248
1249 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1250 if (!c->ro_mount) {
1251 /* Create background thread */
1252 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1253 if (IS_ERR(c->bgt)) {
1254 err = PTR_ERR(c->bgt);
1255 c->bgt = NULL;
1256 ubifs_err("cannot spawn \"%s\", error %d",
1257 c->bgt_name, err);
1258 goto out_wbufs;
1259 }
1260 wake_up_process(c->bgt);
1261 }
1262
1263 err = ubifs_read_master(c);
1264 if (err)
1265 goto out_master;
1266
1267 init_constants_master(c);
1268
1269 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1270 ubifs_msg("recovery needed");
1271 c->need_recovery = 1;
1272 }
1273
1274 if (c->need_recovery && !c->ro_mount) {
1275 err = ubifs_recover_inl_heads(c, c->sbuf);
1276 if (err)
1277 goto out_master;
1278 }
1279
1280 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1281 if (err)
1282 goto out_master;
1283
1284 if (!c->ro_mount && c->space_fixup) {
1285 err = ubifs_fixup_free_space(c);
1286 if (err)
1287 goto out_lpt;
1288 }
1289
1290 if (!c->ro_mount) {
1291 /*
1292 * Set the "dirty" flag so that if we reboot uncleanly we
1293 * will notice this immediately on the next mount.
1294 */
1295 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1296 err = ubifs_write_master(c);
1297 if (err)
1298 goto out_lpt;
1299 }
1300
1301 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1302 if (err)
1303 goto out_lpt;
1304
1305 err = ubifs_replay_journal(c);
1306 if (err)
1307 goto out_journal;
1308
1309 /* Calculate 'min_idx_lebs' after journal replay */
1310 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1311
1312 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1313 if (err)
1314 goto out_orphans;
1315
1316 if (!c->ro_mount) {
1317 int lnum;
1318
1319 err = check_free_space(c);
1320 if (err)
1321 goto out_orphans;
1322
1323 /* Check for enough log space */
1324 lnum = c->lhead_lnum + 1;
1325 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1326 lnum = UBIFS_LOG_LNUM;
1327 if (lnum == c->ltail_lnum) {
1328 err = ubifs_consolidate_log(c);
1329 if (err)
1330 goto out_orphans;
1331 }
1332
1333 if (c->need_recovery) {
1334 err = ubifs_recover_size(c);
1335 if (err)
1336 goto out_orphans;
1337 err = ubifs_rcvry_gc_commit(c);
1338 if (err)
1339 goto out_orphans;
1340 } else {
1341 err = take_gc_lnum(c);
1342 if (err)
1343 goto out_orphans;
1344
1345 /*
1346 * GC LEB may contain garbage if there was an unclean
1347 * reboot, and it should be un-mapped.
1348 */
1349 err = ubifs_leb_unmap(c, c->gc_lnum);
1350 if (err)
1351 goto out_orphans;
1352 }
1353
1354 err = dbg_check_lprops(c);
1355 if (err)
1356 goto out_orphans;
1357 } else if (c->need_recovery) {
1358 err = ubifs_recover_size(c);
1359 if (err)
1360 goto out_orphans;
1361 } else {
1362 /*
1363 * Even if we mount read-only, we have to set space in GC LEB
1364 * to proper value because this affects UBIFS free space
1365 * reporting. We do not want to have a situation when
1366 * re-mounting from R/O to R/W changes amount of free space.
1367 */
1368 err = take_gc_lnum(c);
1369 if (err)
1370 goto out_orphans;
1371 }
1372
1373 spin_lock(&ubifs_infos_lock);
1374 list_add_tail(&c->infos_list, &ubifs_infos);
1375 spin_unlock(&ubifs_infos_lock);
1376
1377 if (c->need_recovery) {
1378 if (c->ro_mount)
1379 ubifs_msg("recovery deferred");
1380 else {
1381 c->need_recovery = 0;
1382 ubifs_msg("recovery completed");
1383 /*
1384 * GC LEB has to be empty and taken at this point. But
1385 * the journal head LEBs may also be accounted as
1386 * "empty taken" if they are empty.
1387 */
1388 ubifs_assert(c->lst.taken_empty_lebs > 0);
1389 }
1390 } else
1391 ubifs_assert(c->lst.taken_empty_lebs > 0);
1392
1393 err = dbg_check_filesystem(c);
1394 if (err)
1395 goto out_infos;
1396
1397 err = dbg_debugfs_init_fs(c);
1398 if (err)
1399 goto out_infos;
1400
1401 c->mounting = 0;
1402
1403 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s",
1404 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1405 c->ro_mount ? ", R/O mode" : "");
1406 x = (long long)c->main_lebs * c->leb_size;
1407 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1408 ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1409 c->leb_size, c->leb_size >> 10, c->min_io_size,
1410 c->max_write_size);
1411 ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1412 x, x >> 20, c->main_lebs,
1413 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1414 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1415 c->report_rp_size, c->report_rp_size >> 10);
1416 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1417 c->fmt_version, c->ro_compat_version,
1418 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1419 c->big_lpt ? ", big LPT model" : ", small LPT model");
1420
1421 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr));
1422 dbg_gen("data journal heads: %d",
1423 c->jhead_cnt - NONDATA_JHEADS_CNT);
1424 dbg_gen("log LEBs: %d (%d - %d)",
1425 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1426 dbg_gen("LPT area LEBs: %d (%d - %d)",
1427 c->lpt_lebs, c->lpt_first, c->lpt_last);
1428 dbg_gen("orphan area LEBs: %d (%d - %d)",
1429 c->orph_lebs, c->orph_first, c->orph_last);
1430 dbg_gen("main area LEBs: %d (%d - %d)",
1431 c->main_lebs, c->main_first, c->leb_cnt - 1);
1432 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1433 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1434 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1435 c->bi.old_idx_sz >> 20);
1436 dbg_gen("key hash type: %d", c->key_hash_type);
1437 dbg_gen("tree fanout: %d", c->fanout);
1438 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1439 dbg_gen("max. znode size %d", c->max_znode_sz);
1440 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1441 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1442 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1443 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1444 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1445 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1446 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1447 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1448 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1449 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1450 dbg_gen("dead watermark: %d", c->dead_wm);
1451 dbg_gen("dark watermark: %d", c->dark_wm);
1452 dbg_gen("LEB overhead: %d", c->leb_overhead);
1453 x = (long long)c->main_lebs * c->dark_wm;
1454 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1455 x, x >> 10, x >> 20);
1456 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1457 c->max_bud_bytes, c->max_bud_bytes >> 10,
1458 c->max_bud_bytes >> 20);
1459 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1460 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1461 c->bg_bud_bytes >> 20);
1462 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1463 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1464 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1465 dbg_gen("commit number: %llu", c->cmt_no);
1466
1467 return 0;
1468
1469 out_infos:
1470 spin_lock(&ubifs_infos_lock);
1471 list_del(&c->infos_list);
1472 spin_unlock(&ubifs_infos_lock);
1473 out_orphans:
1474 free_orphans(c);
1475 out_journal:
1476 destroy_journal(c);
1477 out_lpt:
1478 ubifs_lpt_free(c, 0);
1479 out_master:
1480 kfree(c->mst_node);
1481 kfree(c->rcvrd_mst_node);
1482 if (c->bgt)
1483 kthread_stop(c->bgt);
1484 out_wbufs:
1485 free_wbufs(c);
1486 out_cbuf:
1487 kfree(c->cbuf);
1488 out_free:
1489 kfree(c->write_reserve_buf);
1490 kfree(c->bu.buf);
1491 vfree(c->ileb_buf);
1492 vfree(c->sbuf);
1493 kfree(c->bottom_up_buf);
1494 ubifs_debugging_exit(c);
1495 return err;
1496 }
1497
1498 /**
1499 * ubifs_umount - un-mount UBIFS file-system.
1500 * @c: UBIFS file-system description object
1501 *
1502 * Note, this function is called to free allocated resourced when un-mounting,
1503 * as well as free resources when an error occurred while we were half way
1504 * through mounting (error path cleanup function). So it has to make sure the
1505 * resource was actually allocated before freeing it.
1506 */
1507 static void ubifs_umount(struct ubifs_info *c)
1508 {
1509 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1510 c->vi.vol_id);
1511
1512 dbg_debugfs_exit_fs(c);
1513 spin_lock(&ubifs_infos_lock);
1514 list_del(&c->infos_list);
1515 spin_unlock(&ubifs_infos_lock);
1516
1517 if (c->bgt)
1518 kthread_stop(c->bgt);
1519
1520 destroy_journal(c);
1521 free_wbufs(c);
1522 free_orphans(c);
1523 ubifs_lpt_free(c, 0);
1524
1525 kfree(c->cbuf);
1526 kfree(c->rcvrd_mst_node);
1527 kfree(c->mst_node);
1528 kfree(c->write_reserve_buf);
1529 kfree(c->bu.buf);
1530 vfree(c->ileb_buf);
1531 vfree(c->sbuf);
1532 kfree(c->bottom_up_buf);
1533 ubifs_debugging_exit(c);
1534 }
1535
1536 /**
1537 * ubifs_remount_rw - re-mount in read-write mode.
1538 * @c: UBIFS file-system description object
1539 *
1540 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1541 * mode. This function allocates the needed resources and re-mounts UBIFS in
1542 * read-write mode.
1543 */
1544 static int ubifs_remount_rw(struct ubifs_info *c)
1545 {
1546 int err, lnum;
1547
1548 if (c->rw_incompat) {
1549 ubifs_err("the file-system is not R/W-compatible");
1550 ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1551 c->fmt_version, c->ro_compat_version,
1552 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1553 return -EROFS;
1554 }
1555
1556 mutex_lock(&c->umount_mutex);
1557 dbg_save_space_info(c);
1558 c->remounting_rw = 1;
1559 c->ro_mount = 0;
1560
1561 if (c->space_fixup) {
1562 err = ubifs_fixup_free_space(c);
1563 if (err)
1564 goto out;
1565 }
1566
1567 err = check_free_space(c);
1568 if (err)
1569 goto out;
1570
1571 if (c->old_leb_cnt != c->leb_cnt) {
1572 struct ubifs_sb_node *sup;
1573
1574 sup = ubifs_read_sb_node(c);
1575 if (IS_ERR(sup)) {
1576 err = PTR_ERR(sup);
1577 goto out;
1578 }
1579 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1580 err = ubifs_write_sb_node(c, sup);
1581 kfree(sup);
1582 if (err)
1583 goto out;
1584 }
1585
1586 if (c->need_recovery) {
1587 ubifs_msg("completing deferred recovery");
1588 err = ubifs_write_rcvrd_mst_node(c);
1589 if (err)
1590 goto out;
1591 err = ubifs_recover_size(c);
1592 if (err)
1593 goto out;
1594 err = ubifs_clean_lebs(c, c->sbuf);
1595 if (err)
1596 goto out;
1597 err = ubifs_recover_inl_heads(c, c->sbuf);
1598 if (err)
1599 goto out;
1600 } else {
1601 /* A readonly mount is not allowed to have orphans */
1602 ubifs_assert(c->tot_orphans == 0);
1603 err = ubifs_clear_orphans(c);
1604 if (err)
1605 goto out;
1606 }
1607
1608 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1609 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1610 err = ubifs_write_master(c);
1611 if (err)
1612 goto out;
1613 }
1614
1615 c->ileb_buf = vmalloc(c->leb_size);
1616 if (!c->ileb_buf) {
1617 err = -ENOMEM;
1618 goto out;
1619 }
1620
1621 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1622 if (!c->write_reserve_buf) {
1623 err = -ENOMEM;
1624 goto out;
1625 }
1626
1627 err = ubifs_lpt_init(c, 0, 1);
1628 if (err)
1629 goto out;
1630
1631 /* Create background thread */
1632 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1633 if (IS_ERR(c->bgt)) {
1634 err = PTR_ERR(c->bgt);
1635 c->bgt = NULL;
1636 ubifs_err("cannot spawn \"%s\", error %d",
1637 c->bgt_name, err);
1638 goto out;
1639 }
1640 wake_up_process(c->bgt);
1641
1642 c->orph_buf = vmalloc(c->leb_size);
1643 if (!c->orph_buf) {
1644 err = -ENOMEM;
1645 goto out;
1646 }
1647
1648 /* Check for enough log space */
1649 lnum = c->lhead_lnum + 1;
1650 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1651 lnum = UBIFS_LOG_LNUM;
1652 if (lnum == c->ltail_lnum) {
1653 err = ubifs_consolidate_log(c);
1654 if (err)
1655 goto out;
1656 }
1657
1658 if (c->need_recovery)
1659 err = ubifs_rcvry_gc_commit(c);
1660 else
1661 err = ubifs_leb_unmap(c, c->gc_lnum);
1662 if (err)
1663 goto out;
1664
1665 dbg_gen("re-mounted read-write");
1666 c->remounting_rw = 0;
1667
1668 if (c->need_recovery) {
1669 c->need_recovery = 0;
1670 ubifs_msg("deferred recovery completed");
1671 } else {
1672 /*
1673 * Do not run the debugging space check if the were doing
1674 * recovery, because when we saved the information we had the
1675 * file-system in a state where the TNC and lprops has been
1676 * modified in memory, but all the I/O operations (including a
1677 * commit) were deferred. So the file-system was in
1678 * "non-committed" state. Now the file-system is in committed
1679 * state, and of course the amount of free space will change
1680 * because, for example, the old index size was imprecise.
1681 */
1682 err = dbg_check_space_info(c);
1683 }
1684
1685 mutex_unlock(&c->umount_mutex);
1686 return err;
1687
1688 out:
1689 c->ro_mount = 1;
1690 vfree(c->orph_buf);
1691 c->orph_buf = NULL;
1692 if (c->bgt) {
1693 kthread_stop(c->bgt);
1694 c->bgt = NULL;
1695 }
1696 free_wbufs(c);
1697 kfree(c->write_reserve_buf);
1698 c->write_reserve_buf = NULL;
1699 vfree(c->ileb_buf);
1700 c->ileb_buf = NULL;
1701 ubifs_lpt_free(c, 1);
1702 c->remounting_rw = 0;
1703 mutex_unlock(&c->umount_mutex);
1704 return err;
1705 }
1706
1707 /**
1708 * ubifs_remount_ro - re-mount in read-only mode.
1709 * @c: UBIFS file-system description object
1710 *
1711 * We assume VFS has stopped writing. Possibly the background thread could be
1712 * running a commit, however kthread_stop will wait in that case.
1713 */
1714 static void ubifs_remount_ro(struct ubifs_info *c)
1715 {
1716 int i, err;
1717
1718 ubifs_assert(!c->need_recovery);
1719 ubifs_assert(!c->ro_mount);
1720
1721 mutex_lock(&c->umount_mutex);
1722 if (c->bgt) {
1723 kthread_stop(c->bgt);
1724 c->bgt = NULL;
1725 }
1726
1727 dbg_save_space_info(c);
1728
1729 for (i = 0; i < c->jhead_cnt; i++)
1730 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1731
1732 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1733 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1734 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1735 err = ubifs_write_master(c);
1736 if (err)
1737 ubifs_ro_mode(c, err);
1738
1739 vfree(c->orph_buf);
1740 c->orph_buf = NULL;
1741 kfree(c->write_reserve_buf);
1742 c->write_reserve_buf = NULL;
1743 vfree(c->ileb_buf);
1744 c->ileb_buf = NULL;
1745 ubifs_lpt_free(c, 1);
1746 c->ro_mount = 1;
1747 err = dbg_check_space_info(c);
1748 if (err)
1749 ubifs_ro_mode(c, err);
1750 mutex_unlock(&c->umount_mutex);
1751 }
1752
1753 static void ubifs_put_super(struct super_block *sb)
1754 {
1755 int i;
1756 struct ubifs_info *c = sb->s_fs_info;
1757
1758 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1759 c->vi.vol_id);
1760
1761 /*
1762 * The following asserts are only valid if there has not been a failure
1763 * of the media. For example, there will be dirty inodes if we failed
1764 * to write them back because of I/O errors.
1765 */
1766 if (!c->ro_error) {
1767 ubifs_assert(c->bi.idx_growth == 0);
1768 ubifs_assert(c->bi.dd_growth == 0);
1769 ubifs_assert(c->bi.data_growth == 0);
1770 }
1771
1772 /*
1773 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1774 * and file system un-mount. Namely, it prevents the shrinker from
1775 * picking this superblock for shrinking - it will be just skipped if
1776 * the mutex is locked.
1777 */
1778 mutex_lock(&c->umount_mutex);
1779 if (!c->ro_mount) {
1780 /*
1781 * First of all kill the background thread to make sure it does
1782 * not interfere with un-mounting and freeing resources.
1783 */
1784 if (c->bgt) {
1785 kthread_stop(c->bgt);
1786 c->bgt = NULL;
1787 }
1788
1789 /*
1790 * On fatal errors c->ro_error is set to 1, in which case we do
1791 * not write the master node.
1792 */
1793 if (!c->ro_error) {
1794 int err;
1795
1796 /* Synchronize write-buffers */
1797 for (i = 0; i < c->jhead_cnt; i++)
1798 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1799
1800 /*
1801 * We are being cleanly unmounted which means the
1802 * orphans were killed - indicate this in the master
1803 * node. Also save the reserved GC LEB number.
1804 */
1805 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1806 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1807 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1808 err = ubifs_write_master(c);
1809 if (err)
1810 /*
1811 * Recovery will attempt to fix the master area
1812 * next mount, so we just print a message and
1813 * continue to unmount normally.
1814 */
1815 ubifs_err("failed to write master node, error %d",
1816 err);
1817 } else {
1818 for (i = 0; i < c->jhead_cnt; i++)
1819 /* Make sure write-buffer timers are canceled */
1820 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1821 }
1822 }
1823
1824 ubifs_umount(c);
1825 bdi_destroy(&c->bdi);
1826 ubi_close_volume(c->ubi);
1827 mutex_unlock(&c->umount_mutex);
1828 }
1829
1830 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1831 {
1832 int err;
1833 struct ubifs_info *c = sb->s_fs_info;
1834
1835 sync_filesystem(sb);
1836 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1837
1838 err = ubifs_parse_options(c, data, 1);
1839 if (err) {
1840 ubifs_err("invalid or unknown remount parameter");
1841 return err;
1842 }
1843
1844 if (c->ro_mount && !(*flags & MS_RDONLY)) {
1845 if (c->ro_error) {
1846 ubifs_msg("cannot re-mount R/W due to prior errors");
1847 return -EROFS;
1848 }
1849 if (c->ro_media) {
1850 ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
1851 return -EROFS;
1852 }
1853 err = ubifs_remount_rw(c);
1854 if (err)
1855 return err;
1856 } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1857 if (c->ro_error) {
1858 ubifs_msg("cannot re-mount R/O due to prior errors");
1859 return -EROFS;
1860 }
1861 ubifs_remount_ro(c);
1862 }
1863
1864 if (c->bulk_read == 1)
1865 bu_init(c);
1866 else {
1867 dbg_gen("disable bulk-read");
1868 kfree(c->bu.buf);
1869 c->bu.buf = NULL;
1870 }
1871
1872 ubifs_assert(c->lst.taken_empty_lebs > 0);
1873 return 0;
1874 }
1875
1876 const struct super_operations ubifs_super_operations = {
1877 .alloc_inode = ubifs_alloc_inode,
1878 .destroy_inode = ubifs_destroy_inode,
1879 .put_super = ubifs_put_super,
1880 .write_inode = ubifs_write_inode,
1881 .evict_inode = ubifs_evict_inode,
1882 .statfs = ubifs_statfs,
1883 .dirty_inode = ubifs_dirty_inode,
1884 .remount_fs = ubifs_remount_fs,
1885 .show_options = ubifs_show_options,
1886 .sync_fs = ubifs_sync_fs,
1887 };
1888
1889 /**
1890 * open_ubi - parse UBI device name string and open the UBI device.
1891 * @name: UBI volume name
1892 * @mode: UBI volume open mode
1893 *
1894 * The primary method of mounting UBIFS is by specifying the UBI volume
1895 * character device node path. However, UBIFS may also be mounted withoug any
1896 * character device node using one of the following methods:
1897 *
1898 * o ubiX_Y - mount UBI device number X, volume Y;
1899 * o ubiY - mount UBI device number 0, volume Y;
1900 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1901 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1902 *
1903 * Alternative '!' separator may be used instead of ':' (because some shells
1904 * like busybox may interpret ':' as an NFS host name separator). This function
1905 * returns UBI volume description object in case of success and a negative
1906 * error code in case of failure.
1907 */
1908 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1909 {
1910 struct ubi_volume_desc *ubi;
1911 int dev, vol;
1912 char *endptr;
1913
1914 /* First, try to open using the device node path method */
1915 ubi = ubi_open_volume_path(name, mode);
1916 if (!IS_ERR(ubi))
1917 return ubi;
1918
1919 /* Try the "nodev" method */
1920 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1921 return ERR_PTR(-EINVAL);
1922
1923 /* ubi:NAME method */
1924 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1925 return ubi_open_volume_nm(0, name + 4, mode);
1926
1927 if (!isdigit(name[3]))
1928 return ERR_PTR(-EINVAL);
1929
1930 dev = simple_strtoul(name + 3, &endptr, 0);
1931
1932 /* ubiY method */
1933 if (*endptr == '\0')
1934 return ubi_open_volume(0, dev, mode);
1935
1936 /* ubiX_Y method */
1937 if (*endptr == '_' && isdigit(endptr[1])) {
1938 vol = simple_strtoul(endptr + 1, &endptr, 0);
1939 if (*endptr != '\0')
1940 return ERR_PTR(-EINVAL);
1941 return ubi_open_volume(dev, vol, mode);
1942 }
1943
1944 /* ubiX:NAME method */
1945 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1946 return ubi_open_volume_nm(dev, ++endptr, mode);
1947
1948 return ERR_PTR(-EINVAL);
1949 }
1950
1951 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1952 {
1953 struct ubifs_info *c;
1954
1955 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1956 if (c) {
1957 spin_lock_init(&c->cnt_lock);
1958 spin_lock_init(&c->cs_lock);
1959 spin_lock_init(&c->buds_lock);
1960 spin_lock_init(&c->space_lock);
1961 spin_lock_init(&c->orphan_lock);
1962 init_rwsem(&c->commit_sem);
1963 mutex_init(&c->lp_mutex);
1964 mutex_init(&c->tnc_mutex);
1965 mutex_init(&c->log_mutex);
1966 mutex_init(&c->umount_mutex);
1967 mutex_init(&c->bu_mutex);
1968 mutex_init(&c->write_reserve_mutex);
1969 init_waitqueue_head(&c->cmt_wq);
1970 c->buds = RB_ROOT;
1971 c->old_idx = RB_ROOT;
1972 c->size_tree = RB_ROOT;
1973 c->orph_tree = RB_ROOT;
1974 INIT_LIST_HEAD(&c->infos_list);
1975 INIT_LIST_HEAD(&c->idx_gc);
1976 INIT_LIST_HEAD(&c->replay_list);
1977 INIT_LIST_HEAD(&c->replay_buds);
1978 INIT_LIST_HEAD(&c->uncat_list);
1979 INIT_LIST_HEAD(&c->empty_list);
1980 INIT_LIST_HEAD(&c->freeable_list);
1981 INIT_LIST_HEAD(&c->frdi_idx_list);
1982 INIT_LIST_HEAD(&c->unclean_leb_list);
1983 INIT_LIST_HEAD(&c->old_buds);
1984 INIT_LIST_HEAD(&c->orph_list);
1985 INIT_LIST_HEAD(&c->orph_new);
1986 c->no_chk_data_crc = 1;
1987
1988 c->highest_inum = UBIFS_FIRST_INO;
1989 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1990
1991 ubi_get_volume_info(ubi, &c->vi);
1992 ubi_get_device_info(c->vi.ubi_num, &c->di);
1993 }
1994 return c;
1995 }
1996
1997 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1998 {
1999 struct ubifs_info *c = sb->s_fs_info;
2000 struct inode *root;
2001 int err;
2002
2003 c->vfs_sb = sb;
2004 /* Re-open the UBI device in read-write mode */
2005 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2006 if (IS_ERR(c->ubi)) {
2007 err = PTR_ERR(c->ubi);
2008 goto out;
2009 }
2010
2011 /*
2012 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2013 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2014 * which means the user would have to wait not just for their own I/O
2015 * but the read-ahead I/O as well i.e. completely pointless.
2016 *
2017 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2018 */
2019 c->bdi.name = "ubifs",
2020 c->bdi.capabilities = BDI_CAP_MAP_COPY;
2021 err = bdi_init(&c->bdi);
2022 if (err)
2023 goto out_close;
2024 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2025 c->vi.ubi_num, c->vi.vol_id);
2026 if (err)
2027 goto out_bdi;
2028
2029 err = ubifs_parse_options(c, data, 0);
2030 if (err)
2031 goto out_bdi;
2032
2033 sb->s_bdi = &c->bdi;
2034 sb->s_fs_info = c;
2035 sb->s_magic = UBIFS_SUPER_MAGIC;
2036 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2037 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2038 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2039 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2040 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2041 sb->s_op = &ubifs_super_operations;
2042
2043 mutex_lock(&c->umount_mutex);
2044 err = mount_ubifs(c);
2045 if (err) {
2046 ubifs_assert(err < 0);
2047 goto out_unlock;
2048 }
2049
2050 /* Read the root inode */
2051 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2052 if (IS_ERR(root)) {
2053 err = PTR_ERR(root);
2054 goto out_umount;
2055 }
2056
2057 sb->s_root = d_make_root(root);
2058 if (!sb->s_root) {
2059 err = -ENOMEM;
2060 goto out_umount;
2061 }
2062
2063 mutex_unlock(&c->umount_mutex);
2064 return 0;
2065
2066 out_umount:
2067 ubifs_umount(c);
2068 out_unlock:
2069 mutex_unlock(&c->umount_mutex);
2070 out_bdi:
2071 bdi_destroy(&c->bdi);
2072 out_close:
2073 ubi_close_volume(c->ubi);
2074 out:
2075 return err;
2076 }
2077
2078 static int sb_test(struct super_block *sb, void *data)
2079 {
2080 struct ubifs_info *c1 = data;
2081 struct ubifs_info *c = sb->s_fs_info;
2082
2083 return c->vi.cdev == c1->vi.cdev;
2084 }
2085
2086 static int sb_set(struct super_block *sb, void *data)
2087 {
2088 sb->s_fs_info = data;
2089 return set_anon_super(sb, NULL);
2090 }
2091
2092 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2093 const char *name, void *data)
2094 {
2095 struct ubi_volume_desc *ubi;
2096 struct ubifs_info *c;
2097 struct super_block *sb;
2098 int err;
2099
2100 dbg_gen("name %s, flags %#x", name, flags);
2101
2102 /*
2103 * Get UBI device number and volume ID. Mount it read-only so far
2104 * because this might be a new mount point, and UBI allows only one
2105 * read-write user at a time.
2106 */
2107 ubi = open_ubi(name, UBI_READONLY);
2108 if (IS_ERR(ubi)) {
2109 ubifs_err("cannot open \"%s\", error %d",
2110 name, (int)PTR_ERR(ubi));
2111 return ERR_CAST(ubi);
2112 }
2113
2114 c = alloc_ubifs_info(ubi);
2115 if (!c) {
2116 err = -ENOMEM;
2117 goto out_close;
2118 }
2119
2120 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2121
2122 sb = sget(fs_type, sb_test, sb_set, flags, c);
2123 if (IS_ERR(sb)) {
2124 err = PTR_ERR(sb);
2125 kfree(c);
2126 goto out_close;
2127 }
2128
2129 if (sb->s_root) {
2130 struct ubifs_info *c1 = sb->s_fs_info;
2131 kfree(c);
2132 /* A new mount point for already mounted UBIFS */
2133 dbg_gen("this ubi volume is already mounted");
2134 if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2135 err = -EBUSY;
2136 goto out_deact;
2137 }
2138 } else {
2139 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2140 if (err)
2141 goto out_deact;
2142 /* We do not support atime */
2143 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2144 }
2145
2146 /* 'fill_super()' opens ubi again so we must close it here */
2147 ubi_close_volume(ubi);
2148
2149 return dget(sb->s_root);
2150
2151 out_deact:
2152 deactivate_locked_super(sb);
2153 out_close:
2154 ubi_close_volume(ubi);
2155 return ERR_PTR(err);
2156 }
2157
2158 static void kill_ubifs_super(struct super_block *s)
2159 {
2160 struct ubifs_info *c = s->s_fs_info;
2161 kill_anon_super(s);
2162 kfree(c);
2163 }
2164
2165 static struct file_system_type ubifs_fs_type = {
2166 .name = "ubifs",
2167 .owner = THIS_MODULE,
2168 .mount = ubifs_mount,
2169 .kill_sb = kill_ubifs_super,
2170 };
2171 MODULE_ALIAS_FS("ubifs");
2172
2173 /*
2174 * Inode slab cache constructor.
2175 */
2176 static void inode_slab_ctor(void *obj)
2177 {
2178 struct ubifs_inode *ui = obj;
2179 inode_init_once(&ui->vfs_inode);
2180 }
2181
2182 static int __init ubifs_init(void)
2183 {
2184 int err;
2185
2186 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2187
2188 /* Make sure node sizes are 8-byte aligned */
2189 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2190 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2191 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2192 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2193 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2194 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2195 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2196 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2197 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2198 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2199 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2200
2201 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2202 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2203 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2204 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2205 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2206 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2207
2208 /* Check min. node size */
2209 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2210 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2211 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2212 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2213
2214 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2215 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2216 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2217 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2218
2219 /* Defined node sizes */
2220 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2221 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2222 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2223 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2224
2225 /*
2226 * We use 2 bit wide bit-fields to store compression type, which should
2227 * be amended if more compressors are added. The bit-fields are:
2228 * @compr_type in 'struct ubifs_inode', @default_compr in
2229 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2230 */
2231 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2232
2233 /*
2234 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2235 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2236 */
2237 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2238 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2239 (unsigned int)PAGE_CACHE_SIZE);
2240 return -EINVAL;
2241 }
2242
2243 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2244 sizeof(struct ubifs_inode), 0,
2245 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2246 &inode_slab_ctor);
2247 if (!ubifs_inode_slab)
2248 return -ENOMEM;
2249
2250 register_shrinker(&ubifs_shrinker_info);
2251
2252 err = ubifs_compressors_init();
2253 if (err)
2254 goto out_shrinker;
2255
2256 err = dbg_debugfs_init();
2257 if (err)
2258 goto out_compr;
2259
2260 err = register_filesystem(&ubifs_fs_type);
2261 if (err) {
2262 ubifs_err("cannot register file system, error %d", err);
2263 goto out_dbg;
2264 }
2265 return 0;
2266
2267 out_dbg:
2268 dbg_debugfs_exit();
2269 out_compr:
2270 ubifs_compressors_exit();
2271 out_shrinker:
2272 unregister_shrinker(&ubifs_shrinker_info);
2273 kmem_cache_destroy(ubifs_inode_slab);
2274 return err;
2275 }
2276 /* late_initcall to let compressors initialize first */
2277 late_initcall(ubifs_init);
2278
2279 static void __exit ubifs_exit(void)
2280 {
2281 ubifs_assert(list_empty(&ubifs_infos));
2282 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2283
2284 dbg_debugfs_exit();
2285 ubifs_compressors_exit();
2286 unregister_shrinker(&ubifs_shrinker_info);
2287
2288 /*
2289 * Make sure all delayed rcu free inodes are flushed before we
2290 * destroy cache.
2291 */
2292 rcu_barrier();
2293 kmem_cache_destroy(ubifs_inode_slab);
2294 unregister_filesystem(&ubifs_fs_type);
2295 }
2296 module_exit(ubifs_exit);
2297
2298 MODULE_LICENSE("GPL");
2299 MODULE_VERSION(__stringify(UBIFS_VERSION));
2300 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2301 MODULE_DESCRIPTION("UBIFS - UBI File System");
This page took 0.11977 seconds and 5 git commands to generate.