block: Do away with the notion of hardsect_size
[deliverable/linux.git] / fs / udf / super.c
1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/smp_lock.h>
52 #include <linux/buffer_head.h>
53 #include <linux/vfs.h>
54 #include <linux/vmalloc.h>
55 #include <linux/errno.h>
56 #include <linux/mount.h>
57 #include <linux/seq_file.h>
58 #include <linux/bitmap.h>
59 #include <linux/crc-itu-t.h>
60 #include <asm/byteorder.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67
68 #define VDS_POS_PRIMARY_VOL_DESC 0
69 #define VDS_POS_UNALLOC_SPACE_DESC 1
70 #define VDS_POS_LOGICAL_VOL_DESC 2
71 #define VDS_POS_PARTITION_DESC 3
72 #define VDS_POS_IMP_USE_VOL_DESC 4
73 #define VDS_POS_VOL_DESC_PTR 5
74 #define VDS_POS_TERMINATING_DESC 6
75 #define VDS_POS_LENGTH 7
76
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78
79 static char error_buf[1024];
80
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88 struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90 struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct vfsmount *);
96 static void udf_error(struct super_block *sb, const char *function,
97 const char *fmt, ...);
98
99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
100 {
101 struct logicalVolIntegrityDesc *lvid =
102 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
103 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
104 __u32 offset = number_of_partitions * 2 *
105 sizeof(uint32_t)/sizeof(uint8_t);
106 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
107 }
108
109 /* UDF filesystem type */
110 static int udf_get_sb(struct file_system_type *fs_type,
111 int flags, const char *dev_name, void *data,
112 struct vfsmount *mnt)
113 {
114 return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt);
115 }
116
117 static struct file_system_type udf_fstype = {
118 .owner = THIS_MODULE,
119 .name = "udf",
120 .get_sb = udf_get_sb,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
123 };
124
125 static struct kmem_cache *udf_inode_cachep;
126
127 static struct inode *udf_alloc_inode(struct super_block *sb)
128 {
129 struct udf_inode_info *ei;
130 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
131 if (!ei)
132 return NULL;
133
134 ei->i_unique = 0;
135 ei->i_lenExtents = 0;
136 ei->i_next_alloc_block = 0;
137 ei->i_next_alloc_goal = 0;
138 ei->i_strat4096 = 0;
139
140 return &ei->vfs_inode;
141 }
142
143 static void udf_destroy_inode(struct inode *inode)
144 {
145 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
146 }
147
148 static void init_once(void *foo)
149 {
150 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
151
152 ei->i_ext.i_data = NULL;
153 inode_init_once(&ei->vfs_inode);
154 }
155
156 static int init_inodecache(void)
157 {
158 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
159 sizeof(struct udf_inode_info),
160 0, (SLAB_RECLAIM_ACCOUNT |
161 SLAB_MEM_SPREAD),
162 init_once);
163 if (!udf_inode_cachep)
164 return -ENOMEM;
165 return 0;
166 }
167
168 static void destroy_inodecache(void)
169 {
170 kmem_cache_destroy(udf_inode_cachep);
171 }
172
173 /* Superblock operations */
174 static const struct super_operations udf_sb_ops = {
175 .alloc_inode = udf_alloc_inode,
176 .destroy_inode = udf_destroy_inode,
177 .write_inode = udf_write_inode,
178 .delete_inode = udf_delete_inode,
179 .clear_inode = udf_clear_inode,
180 .put_super = udf_put_super,
181 .sync_fs = udf_sync_fs,
182 .statfs = udf_statfs,
183 .remount_fs = udf_remount_fs,
184 .show_options = udf_show_options,
185 };
186
187 struct udf_options {
188 unsigned char novrs;
189 unsigned int blocksize;
190 unsigned int session;
191 unsigned int lastblock;
192 unsigned int anchor;
193 unsigned int volume;
194 unsigned short partition;
195 unsigned int fileset;
196 unsigned int rootdir;
197 unsigned int flags;
198 mode_t umask;
199 gid_t gid;
200 uid_t uid;
201 mode_t fmode;
202 mode_t dmode;
203 struct nls_table *nls_map;
204 };
205
206 static int __init init_udf_fs(void)
207 {
208 int err;
209
210 err = init_inodecache();
211 if (err)
212 goto out1;
213 err = register_filesystem(&udf_fstype);
214 if (err)
215 goto out;
216
217 return 0;
218
219 out:
220 destroy_inodecache();
221
222 out1:
223 return err;
224 }
225
226 static void __exit exit_udf_fs(void)
227 {
228 unregister_filesystem(&udf_fstype);
229 destroy_inodecache();
230 }
231
232 module_init(init_udf_fs)
233 module_exit(exit_udf_fs)
234
235 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
236 {
237 struct udf_sb_info *sbi = UDF_SB(sb);
238
239 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
240 GFP_KERNEL);
241 if (!sbi->s_partmaps) {
242 udf_error(sb, __func__,
243 "Unable to allocate space for %d partition maps",
244 count);
245 sbi->s_partitions = 0;
246 return -ENOMEM;
247 }
248
249 sbi->s_partitions = count;
250 return 0;
251 }
252
253 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt)
254 {
255 struct super_block *sb = mnt->mnt_sb;
256 struct udf_sb_info *sbi = UDF_SB(sb);
257
258 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
259 seq_puts(seq, ",nostrict");
260 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
261 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
262 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
263 seq_puts(seq, ",unhide");
264 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
265 seq_puts(seq, ",undelete");
266 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
267 seq_puts(seq, ",noadinicb");
268 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
269 seq_puts(seq, ",shortad");
270 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
271 seq_puts(seq, ",uid=forget");
272 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
273 seq_puts(seq, ",uid=ignore");
274 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
275 seq_puts(seq, ",gid=forget");
276 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
277 seq_puts(seq, ",gid=ignore");
278 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
279 seq_printf(seq, ",uid=%u", sbi->s_uid);
280 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
281 seq_printf(seq, ",gid=%u", sbi->s_gid);
282 if (sbi->s_umask != 0)
283 seq_printf(seq, ",umask=%o", sbi->s_umask);
284 if (sbi->s_fmode != UDF_INVALID_MODE)
285 seq_printf(seq, ",mode=%o", sbi->s_fmode);
286 if (sbi->s_dmode != UDF_INVALID_MODE)
287 seq_printf(seq, ",dmode=%o", sbi->s_dmode);
288 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
289 seq_printf(seq, ",session=%u", sbi->s_session);
290 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
291 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
292 if (sbi->s_anchor != 0)
293 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
294 /*
295 * volume, partition, fileset and rootdir seem to be ignored
296 * currently
297 */
298 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
299 seq_puts(seq, ",utf8");
300 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
301 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
302
303 return 0;
304 }
305
306 /*
307 * udf_parse_options
308 *
309 * PURPOSE
310 * Parse mount options.
311 *
312 * DESCRIPTION
313 * The following mount options are supported:
314 *
315 * gid= Set the default group.
316 * umask= Set the default umask.
317 * mode= Set the default file permissions.
318 * dmode= Set the default directory permissions.
319 * uid= Set the default user.
320 * bs= Set the block size.
321 * unhide Show otherwise hidden files.
322 * undelete Show deleted files in lists.
323 * adinicb Embed data in the inode (default)
324 * noadinicb Don't embed data in the inode
325 * shortad Use short ad's
326 * longad Use long ad's (default)
327 * nostrict Unset strict conformance
328 * iocharset= Set the NLS character set
329 *
330 * The remaining are for debugging and disaster recovery:
331 *
332 * novrs Skip volume sequence recognition
333 *
334 * The following expect a offset from 0.
335 *
336 * session= Set the CDROM session (default= last session)
337 * anchor= Override standard anchor location. (default= 256)
338 * volume= Override the VolumeDesc location. (unused)
339 * partition= Override the PartitionDesc location. (unused)
340 * lastblock= Set the last block of the filesystem/
341 *
342 * The following expect a offset from the partition root.
343 *
344 * fileset= Override the fileset block location. (unused)
345 * rootdir= Override the root directory location. (unused)
346 * WARNING: overriding the rootdir to a non-directory may
347 * yield highly unpredictable results.
348 *
349 * PRE-CONDITIONS
350 * options Pointer to mount options string.
351 * uopts Pointer to mount options variable.
352 *
353 * POST-CONDITIONS
354 * <return> 1 Mount options parsed okay.
355 * <return> 0 Error parsing mount options.
356 *
357 * HISTORY
358 * July 1, 1997 - Andrew E. Mileski
359 * Written, tested, and released.
360 */
361
362 enum {
363 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
364 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
365 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
366 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
367 Opt_rootdir, Opt_utf8, Opt_iocharset,
368 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
369 Opt_fmode, Opt_dmode
370 };
371
372 static const match_table_t tokens = {
373 {Opt_novrs, "novrs"},
374 {Opt_nostrict, "nostrict"},
375 {Opt_bs, "bs=%u"},
376 {Opt_unhide, "unhide"},
377 {Opt_undelete, "undelete"},
378 {Opt_noadinicb, "noadinicb"},
379 {Opt_adinicb, "adinicb"},
380 {Opt_shortad, "shortad"},
381 {Opt_longad, "longad"},
382 {Opt_uforget, "uid=forget"},
383 {Opt_uignore, "uid=ignore"},
384 {Opt_gforget, "gid=forget"},
385 {Opt_gignore, "gid=ignore"},
386 {Opt_gid, "gid=%u"},
387 {Opt_uid, "uid=%u"},
388 {Opt_umask, "umask=%o"},
389 {Opt_session, "session=%u"},
390 {Opt_lastblock, "lastblock=%u"},
391 {Opt_anchor, "anchor=%u"},
392 {Opt_volume, "volume=%u"},
393 {Opt_partition, "partition=%u"},
394 {Opt_fileset, "fileset=%u"},
395 {Opt_rootdir, "rootdir=%u"},
396 {Opt_utf8, "utf8"},
397 {Opt_iocharset, "iocharset=%s"},
398 {Opt_fmode, "mode=%o"},
399 {Opt_dmode, "dmode=%o"},
400 {Opt_err, NULL}
401 };
402
403 static int udf_parse_options(char *options, struct udf_options *uopt,
404 bool remount)
405 {
406 char *p;
407 int option;
408
409 uopt->novrs = 0;
410 uopt->partition = 0xFFFF;
411 uopt->session = 0xFFFFFFFF;
412 uopt->lastblock = 0;
413 uopt->anchor = 0;
414 uopt->volume = 0xFFFFFFFF;
415 uopt->rootdir = 0xFFFFFFFF;
416 uopt->fileset = 0xFFFFFFFF;
417 uopt->nls_map = NULL;
418
419 if (!options)
420 return 1;
421
422 while ((p = strsep(&options, ",")) != NULL) {
423 substring_t args[MAX_OPT_ARGS];
424 int token;
425 if (!*p)
426 continue;
427
428 token = match_token(p, tokens, args);
429 switch (token) {
430 case Opt_novrs:
431 uopt->novrs = 1;
432 break;
433 case Opt_bs:
434 if (match_int(&args[0], &option))
435 return 0;
436 uopt->blocksize = option;
437 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
438 break;
439 case Opt_unhide:
440 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
441 break;
442 case Opt_undelete:
443 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
444 break;
445 case Opt_noadinicb:
446 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
447 break;
448 case Opt_adinicb:
449 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
450 break;
451 case Opt_shortad:
452 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
453 break;
454 case Opt_longad:
455 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
456 break;
457 case Opt_gid:
458 if (match_int(args, &option))
459 return 0;
460 uopt->gid = option;
461 uopt->flags |= (1 << UDF_FLAG_GID_SET);
462 break;
463 case Opt_uid:
464 if (match_int(args, &option))
465 return 0;
466 uopt->uid = option;
467 uopt->flags |= (1 << UDF_FLAG_UID_SET);
468 break;
469 case Opt_umask:
470 if (match_octal(args, &option))
471 return 0;
472 uopt->umask = option;
473 break;
474 case Opt_nostrict:
475 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
476 break;
477 case Opt_session:
478 if (match_int(args, &option))
479 return 0;
480 uopt->session = option;
481 if (!remount)
482 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
483 break;
484 case Opt_lastblock:
485 if (match_int(args, &option))
486 return 0;
487 uopt->lastblock = option;
488 if (!remount)
489 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
490 break;
491 case Opt_anchor:
492 if (match_int(args, &option))
493 return 0;
494 uopt->anchor = option;
495 break;
496 case Opt_volume:
497 if (match_int(args, &option))
498 return 0;
499 uopt->volume = option;
500 break;
501 case Opt_partition:
502 if (match_int(args, &option))
503 return 0;
504 uopt->partition = option;
505 break;
506 case Opt_fileset:
507 if (match_int(args, &option))
508 return 0;
509 uopt->fileset = option;
510 break;
511 case Opt_rootdir:
512 if (match_int(args, &option))
513 return 0;
514 uopt->rootdir = option;
515 break;
516 case Opt_utf8:
517 uopt->flags |= (1 << UDF_FLAG_UTF8);
518 break;
519 #ifdef CONFIG_UDF_NLS
520 case Opt_iocharset:
521 uopt->nls_map = load_nls(args[0].from);
522 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
523 break;
524 #endif
525 case Opt_uignore:
526 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
527 break;
528 case Opt_uforget:
529 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
530 break;
531 case Opt_gignore:
532 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
533 break;
534 case Opt_gforget:
535 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
536 break;
537 case Opt_fmode:
538 if (match_octal(args, &option))
539 return 0;
540 uopt->fmode = option & 0777;
541 break;
542 case Opt_dmode:
543 if (match_octal(args, &option))
544 return 0;
545 uopt->dmode = option & 0777;
546 break;
547 default:
548 printk(KERN_ERR "udf: bad mount option \"%s\" "
549 "or missing value\n", p);
550 return 0;
551 }
552 }
553 return 1;
554 }
555
556 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
557 {
558 struct udf_options uopt;
559 struct udf_sb_info *sbi = UDF_SB(sb);
560
561 uopt.flags = sbi->s_flags;
562 uopt.uid = sbi->s_uid;
563 uopt.gid = sbi->s_gid;
564 uopt.umask = sbi->s_umask;
565 uopt.fmode = sbi->s_fmode;
566 uopt.dmode = sbi->s_dmode;
567
568 if (!udf_parse_options(options, &uopt, true))
569 return -EINVAL;
570
571 sbi->s_flags = uopt.flags;
572 sbi->s_uid = uopt.uid;
573 sbi->s_gid = uopt.gid;
574 sbi->s_umask = uopt.umask;
575 sbi->s_fmode = uopt.fmode;
576 sbi->s_dmode = uopt.dmode;
577
578 if (sbi->s_lvid_bh) {
579 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
580 if (write_rev > UDF_MAX_WRITE_VERSION)
581 *flags |= MS_RDONLY;
582 }
583
584 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
585 return 0;
586 if (*flags & MS_RDONLY)
587 udf_close_lvid(sb);
588 else
589 udf_open_lvid(sb);
590
591 return 0;
592 }
593
594 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
595 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
596 static loff_t udf_check_vsd(struct super_block *sb)
597 {
598 struct volStructDesc *vsd = NULL;
599 loff_t sector = 32768;
600 int sectorsize;
601 struct buffer_head *bh = NULL;
602 int nsr02 = 0;
603 int nsr03 = 0;
604 struct udf_sb_info *sbi;
605
606 sbi = UDF_SB(sb);
607 if (sb->s_blocksize < sizeof(struct volStructDesc))
608 sectorsize = sizeof(struct volStructDesc);
609 else
610 sectorsize = sb->s_blocksize;
611
612 sector += (sbi->s_session << sb->s_blocksize_bits);
613
614 udf_debug("Starting at sector %u (%ld byte sectors)\n",
615 (unsigned int)(sector >> sb->s_blocksize_bits),
616 sb->s_blocksize);
617 /* Process the sequence (if applicable) */
618 for (; !nsr02 && !nsr03; sector += sectorsize) {
619 /* Read a block */
620 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
621 if (!bh)
622 break;
623
624 /* Look for ISO descriptors */
625 vsd = (struct volStructDesc *)(bh->b_data +
626 (sector & (sb->s_blocksize - 1)));
627
628 if (vsd->stdIdent[0] == 0) {
629 brelse(bh);
630 break;
631 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
632 VSD_STD_ID_LEN)) {
633 switch (vsd->structType) {
634 case 0:
635 udf_debug("ISO9660 Boot Record found\n");
636 break;
637 case 1:
638 udf_debug("ISO9660 Primary Volume Descriptor "
639 "found\n");
640 break;
641 case 2:
642 udf_debug("ISO9660 Supplementary Volume "
643 "Descriptor found\n");
644 break;
645 case 3:
646 udf_debug("ISO9660 Volume Partition Descriptor "
647 "found\n");
648 break;
649 case 255:
650 udf_debug("ISO9660 Volume Descriptor Set "
651 "Terminator found\n");
652 break;
653 default:
654 udf_debug("ISO9660 VRS (%u) found\n",
655 vsd->structType);
656 break;
657 }
658 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
659 VSD_STD_ID_LEN))
660 ; /* nothing */
661 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
662 VSD_STD_ID_LEN)) {
663 brelse(bh);
664 break;
665 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
666 VSD_STD_ID_LEN))
667 nsr02 = sector;
668 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
669 VSD_STD_ID_LEN))
670 nsr03 = sector;
671 brelse(bh);
672 }
673
674 if (nsr03)
675 return nsr03;
676 else if (nsr02)
677 return nsr02;
678 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
679 return -1;
680 else
681 return 0;
682 }
683
684 static int udf_find_fileset(struct super_block *sb,
685 struct kernel_lb_addr *fileset,
686 struct kernel_lb_addr *root)
687 {
688 struct buffer_head *bh = NULL;
689 long lastblock;
690 uint16_t ident;
691 struct udf_sb_info *sbi;
692
693 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
694 fileset->partitionReferenceNum != 0xFFFF) {
695 bh = udf_read_ptagged(sb, fileset, 0, &ident);
696
697 if (!bh) {
698 return 1;
699 } else if (ident != TAG_IDENT_FSD) {
700 brelse(bh);
701 return 1;
702 }
703
704 }
705
706 sbi = UDF_SB(sb);
707 if (!bh) {
708 /* Search backwards through the partitions */
709 struct kernel_lb_addr newfileset;
710
711 /* --> cvg: FIXME - is it reasonable? */
712 return 1;
713
714 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
715 (newfileset.partitionReferenceNum != 0xFFFF &&
716 fileset->logicalBlockNum == 0xFFFFFFFF &&
717 fileset->partitionReferenceNum == 0xFFFF);
718 newfileset.partitionReferenceNum--) {
719 lastblock = sbi->s_partmaps
720 [newfileset.partitionReferenceNum]
721 .s_partition_len;
722 newfileset.logicalBlockNum = 0;
723
724 do {
725 bh = udf_read_ptagged(sb, &newfileset, 0,
726 &ident);
727 if (!bh) {
728 newfileset.logicalBlockNum++;
729 continue;
730 }
731
732 switch (ident) {
733 case TAG_IDENT_SBD:
734 {
735 struct spaceBitmapDesc *sp;
736 sp = (struct spaceBitmapDesc *)
737 bh->b_data;
738 newfileset.logicalBlockNum += 1 +
739 ((le32_to_cpu(sp->numOfBytes) +
740 sizeof(struct spaceBitmapDesc)
741 - 1) >> sb->s_blocksize_bits);
742 brelse(bh);
743 break;
744 }
745 case TAG_IDENT_FSD:
746 *fileset = newfileset;
747 break;
748 default:
749 newfileset.logicalBlockNum++;
750 brelse(bh);
751 bh = NULL;
752 break;
753 }
754 } while (newfileset.logicalBlockNum < lastblock &&
755 fileset->logicalBlockNum == 0xFFFFFFFF &&
756 fileset->partitionReferenceNum == 0xFFFF);
757 }
758 }
759
760 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
761 fileset->partitionReferenceNum != 0xFFFF) && bh) {
762 udf_debug("Fileset at block=%d, partition=%d\n",
763 fileset->logicalBlockNum,
764 fileset->partitionReferenceNum);
765
766 sbi->s_partition = fileset->partitionReferenceNum;
767 udf_load_fileset(sb, bh, root);
768 brelse(bh);
769 return 0;
770 }
771 return 1;
772 }
773
774 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
775 {
776 struct primaryVolDesc *pvoldesc;
777 struct ustr *instr, *outstr;
778 struct buffer_head *bh;
779 uint16_t ident;
780 int ret = 1;
781
782 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
783 if (!instr)
784 return 1;
785
786 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
787 if (!outstr)
788 goto out1;
789
790 bh = udf_read_tagged(sb, block, block, &ident);
791 if (!bh)
792 goto out2;
793
794 BUG_ON(ident != TAG_IDENT_PVD);
795
796 pvoldesc = (struct primaryVolDesc *)bh->b_data;
797
798 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
799 pvoldesc->recordingDateAndTime)) {
800 #ifdef UDFFS_DEBUG
801 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
802 udf_debug("recording time %04u/%02u/%02u"
803 " %02u:%02u (%x)\n",
804 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
805 ts->minute, le16_to_cpu(ts->typeAndTimezone));
806 #endif
807 }
808
809 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
810 if (udf_CS0toUTF8(outstr, instr)) {
811 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
812 outstr->u_len > 31 ? 31 : outstr->u_len);
813 udf_debug("volIdent[] = '%s'\n",
814 UDF_SB(sb)->s_volume_ident);
815 }
816
817 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
818 if (udf_CS0toUTF8(outstr, instr))
819 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
820
821 brelse(bh);
822 ret = 0;
823 out2:
824 kfree(outstr);
825 out1:
826 kfree(instr);
827 return ret;
828 }
829
830 static int udf_load_metadata_files(struct super_block *sb, int partition)
831 {
832 struct udf_sb_info *sbi = UDF_SB(sb);
833 struct udf_part_map *map;
834 struct udf_meta_data *mdata;
835 struct kernel_lb_addr addr;
836 int fe_error = 0;
837
838 map = &sbi->s_partmaps[partition];
839 mdata = &map->s_type_specific.s_metadata;
840
841 /* metadata address */
842 addr.logicalBlockNum = mdata->s_meta_file_loc;
843 addr.partitionReferenceNum = map->s_partition_num;
844
845 udf_debug("Metadata file location: block = %d part = %d\n",
846 addr.logicalBlockNum, addr.partitionReferenceNum);
847
848 mdata->s_metadata_fe = udf_iget(sb, &addr);
849
850 if (mdata->s_metadata_fe == NULL) {
851 udf_warning(sb, __func__, "metadata inode efe not found, "
852 "will try mirror inode.");
853 fe_error = 1;
854 } else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type !=
855 ICBTAG_FLAG_AD_SHORT) {
856 udf_warning(sb, __func__, "metadata inode efe does not have "
857 "short allocation descriptors!");
858 fe_error = 1;
859 iput(mdata->s_metadata_fe);
860 mdata->s_metadata_fe = NULL;
861 }
862
863 /* mirror file entry */
864 addr.logicalBlockNum = mdata->s_mirror_file_loc;
865 addr.partitionReferenceNum = map->s_partition_num;
866
867 udf_debug("Mirror metadata file location: block = %d part = %d\n",
868 addr.logicalBlockNum, addr.partitionReferenceNum);
869
870 mdata->s_mirror_fe = udf_iget(sb, &addr);
871
872 if (mdata->s_mirror_fe == NULL) {
873 if (fe_error) {
874 udf_error(sb, __func__, "mirror inode efe not found "
875 "and metadata inode is missing too, exiting...");
876 goto error_exit;
877 } else
878 udf_warning(sb, __func__, "mirror inode efe not found,"
879 " but metadata inode is OK");
880 } else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type !=
881 ICBTAG_FLAG_AD_SHORT) {
882 udf_warning(sb, __func__, "mirror inode efe does not have "
883 "short allocation descriptors!");
884 iput(mdata->s_mirror_fe);
885 mdata->s_mirror_fe = NULL;
886 if (fe_error)
887 goto error_exit;
888 }
889
890 /*
891 * bitmap file entry
892 * Note:
893 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
894 */
895 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
896 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
897 addr.partitionReferenceNum = map->s_partition_num;
898
899 udf_debug("Bitmap file location: block = %d part = %d\n",
900 addr.logicalBlockNum, addr.partitionReferenceNum);
901
902 mdata->s_bitmap_fe = udf_iget(sb, &addr);
903
904 if (mdata->s_bitmap_fe == NULL) {
905 if (sb->s_flags & MS_RDONLY)
906 udf_warning(sb, __func__, "bitmap inode efe "
907 "not found but it's ok since the disc"
908 " is mounted read-only");
909 else {
910 udf_error(sb, __func__, "bitmap inode efe not "
911 "found and attempted read-write mount");
912 goto error_exit;
913 }
914 }
915 }
916
917 udf_debug("udf_load_metadata_files Ok\n");
918
919 return 0;
920
921 error_exit:
922 return 1;
923 }
924
925 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
926 struct kernel_lb_addr *root)
927 {
928 struct fileSetDesc *fset;
929
930 fset = (struct fileSetDesc *)bh->b_data;
931
932 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
933
934 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
935
936 udf_debug("Rootdir at block=%d, partition=%d\n",
937 root->logicalBlockNum, root->partitionReferenceNum);
938 }
939
940 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
941 {
942 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
943 return DIV_ROUND_UP(map->s_partition_len +
944 (sizeof(struct spaceBitmapDesc) << 3),
945 sb->s_blocksize * 8);
946 }
947
948 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
949 {
950 struct udf_bitmap *bitmap;
951 int nr_groups;
952 int size;
953
954 nr_groups = udf_compute_nr_groups(sb, index);
955 size = sizeof(struct udf_bitmap) +
956 (sizeof(struct buffer_head *) * nr_groups);
957
958 if (size <= PAGE_SIZE)
959 bitmap = kmalloc(size, GFP_KERNEL);
960 else
961 bitmap = vmalloc(size); /* TODO: get rid of vmalloc */
962
963 if (bitmap == NULL) {
964 udf_error(sb, __func__,
965 "Unable to allocate space for bitmap "
966 "and %d buffer_head pointers", nr_groups);
967 return NULL;
968 }
969
970 memset(bitmap, 0x00, size);
971 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
972 bitmap->s_nr_groups = nr_groups;
973 return bitmap;
974 }
975
976 static int udf_fill_partdesc_info(struct super_block *sb,
977 struct partitionDesc *p, int p_index)
978 {
979 struct udf_part_map *map;
980 struct udf_sb_info *sbi = UDF_SB(sb);
981 struct partitionHeaderDesc *phd;
982
983 map = &sbi->s_partmaps[p_index];
984
985 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
986 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
987
988 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
989 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
990 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
991 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
992 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
993 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
994 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
995 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
996
997 udf_debug("Partition (%d type %x) starts at physical %d, "
998 "block length %d\n", p_index,
999 map->s_partition_type, map->s_partition_root,
1000 map->s_partition_len);
1001
1002 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1003 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1004 return 0;
1005
1006 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1007 if (phd->unallocSpaceTable.extLength) {
1008 struct kernel_lb_addr loc = {
1009 .logicalBlockNum = le32_to_cpu(
1010 phd->unallocSpaceTable.extPosition),
1011 .partitionReferenceNum = p_index,
1012 };
1013
1014 map->s_uspace.s_table = udf_iget(sb, &loc);
1015 if (!map->s_uspace.s_table) {
1016 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1017 p_index);
1018 return 1;
1019 }
1020 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1021 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1022 p_index, map->s_uspace.s_table->i_ino);
1023 }
1024
1025 if (phd->unallocSpaceBitmap.extLength) {
1026 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1027 if (!bitmap)
1028 return 1;
1029 map->s_uspace.s_bitmap = bitmap;
1030 bitmap->s_extLength = le32_to_cpu(
1031 phd->unallocSpaceBitmap.extLength);
1032 bitmap->s_extPosition = le32_to_cpu(
1033 phd->unallocSpaceBitmap.extPosition);
1034 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1035 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index,
1036 bitmap->s_extPosition);
1037 }
1038
1039 if (phd->partitionIntegrityTable.extLength)
1040 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1041
1042 if (phd->freedSpaceTable.extLength) {
1043 struct kernel_lb_addr loc = {
1044 .logicalBlockNum = le32_to_cpu(
1045 phd->freedSpaceTable.extPosition),
1046 .partitionReferenceNum = p_index,
1047 };
1048
1049 map->s_fspace.s_table = udf_iget(sb, &loc);
1050 if (!map->s_fspace.s_table) {
1051 udf_debug("cannot load freedSpaceTable (part %d)\n",
1052 p_index);
1053 return 1;
1054 }
1055
1056 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1057 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1058 p_index, map->s_fspace.s_table->i_ino);
1059 }
1060
1061 if (phd->freedSpaceBitmap.extLength) {
1062 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1063 if (!bitmap)
1064 return 1;
1065 map->s_fspace.s_bitmap = bitmap;
1066 bitmap->s_extLength = le32_to_cpu(
1067 phd->freedSpaceBitmap.extLength);
1068 bitmap->s_extPosition = le32_to_cpu(
1069 phd->freedSpaceBitmap.extPosition);
1070 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1071 udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index,
1072 bitmap->s_extPosition);
1073 }
1074 return 0;
1075 }
1076
1077 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1078 {
1079 struct udf_sb_info *sbi = UDF_SB(sb);
1080 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1081 struct kernel_lb_addr ino;
1082 struct buffer_head *bh = NULL;
1083 struct udf_inode_info *vati;
1084 uint32_t pos;
1085 struct virtualAllocationTable20 *vat20;
1086
1087 /* VAT file entry is in the last recorded block */
1088 ino.partitionReferenceNum = type1_index;
1089 ino.logicalBlockNum = sbi->s_last_block - map->s_partition_root;
1090 sbi->s_vat_inode = udf_iget(sb, &ino);
1091 if (!sbi->s_vat_inode)
1092 return 1;
1093
1094 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1095 map->s_type_specific.s_virtual.s_start_offset = 0;
1096 map->s_type_specific.s_virtual.s_num_entries =
1097 (sbi->s_vat_inode->i_size - 36) >> 2;
1098 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1099 vati = UDF_I(sbi->s_vat_inode);
1100 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1101 pos = udf_block_map(sbi->s_vat_inode, 0);
1102 bh = sb_bread(sb, pos);
1103 if (!bh)
1104 return 1;
1105 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1106 } else {
1107 vat20 = (struct virtualAllocationTable20 *)
1108 vati->i_ext.i_data;
1109 }
1110
1111 map->s_type_specific.s_virtual.s_start_offset =
1112 le16_to_cpu(vat20->lengthHeader);
1113 map->s_type_specific.s_virtual.s_num_entries =
1114 (sbi->s_vat_inode->i_size -
1115 map->s_type_specific.s_virtual.
1116 s_start_offset) >> 2;
1117 brelse(bh);
1118 }
1119 return 0;
1120 }
1121
1122 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1123 {
1124 struct buffer_head *bh;
1125 struct partitionDesc *p;
1126 struct udf_part_map *map;
1127 struct udf_sb_info *sbi = UDF_SB(sb);
1128 int i, type1_idx;
1129 uint16_t partitionNumber;
1130 uint16_t ident;
1131 int ret = 0;
1132
1133 bh = udf_read_tagged(sb, block, block, &ident);
1134 if (!bh)
1135 return 1;
1136 if (ident != TAG_IDENT_PD)
1137 goto out_bh;
1138
1139 p = (struct partitionDesc *)bh->b_data;
1140 partitionNumber = le16_to_cpu(p->partitionNumber);
1141
1142 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1143 for (i = 0; i < sbi->s_partitions; i++) {
1144 map = &sbi->s_partmaps[i];
1145 udf_debug("Searching map: (%d == %d)\n",
1146 map->s_partition_num, partitionNumber);
1147 if (map->s_partition_num == partitionNumber &&
1148 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1149 map->s_partition_type == UDF_SPARABLE_MAP15))
1150 break;
1151 }
1152
1153 if (i >= sbi->s_partitions) {
1154 udf_debug("Partition (%d) not found in partition map\n",
1155 partitionNumber);
1156 goto out_bh;
1157 }
1158
1159 ret = udf_fill_partdesc_info(sb, p, i);
1160
1161 /*
1162 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1163 * PHYSICAL partitions are already set up
1164 */
1165 type1_idx = i;
1166 for (i = 0; i < sbi->s_partitions; i++) {
1167 map = &sbi->s_partmaps[i];
1168
1169 if (map->s_partition_num == partitionNumber &&
1170 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1171 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1172 map->s_partition_type == UDF_METADATA_MAP25))
1173 break;
1174 }
1175
1176 if (i >= sbi->s_partitions)
1177 goto out_bh;
1178
1179 ret = udf_fill_partdesc_info(sb, p, i);
1180 if (ret)
1181 goto out_bh;
1182
1183 if (map->s_partition_type == UDF_METADATA_MAP25) {
1184 ret = udf_load_metadata_files(sb, i);
1185 if (ret) {
1186 printk(KERN_ERR "UDF-fs: error loading MetaData "
1187 "partition map %d\n", i);
1188 goto out_bh;
1189 }
1190 } else {
1191 ret = udf_load_vat(sb, i, type1_idx);
1192 if (ret)
1193 goto out_bh;
1194 /*
1195 * Mark filesystem read-only if we have a partition with
1196 * virtual map since we don't handle writing to it (we
1197 * overwrite blocks instead of relocating them).
1198 */
1199 sb->s_flags |= MS_RDONLY;
1200 printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only "
1201 "because writing to pseudooverwrite partition is "
1202 "not implemented.\n");
1203 }
1204 out_bh:
1205 /* In case loading failed, we handle cleanup in udf_fill_super */
1206 brelse(bh);
1207 return ret;
1208 }
1209
1210 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1211 struct kernel_lb_addr *fileset)
1212 {
1213 struct logicalVolDesc *lvd;
1214 int i, j, offset;
1215 uint8_t type;
1216 struct udf_sb_info *sbi = UDF_SB(sb);
1217 struct genericPartitionMap *gpm;
1218 uint16_t ident;
1219 struct buffer_head *bh;
1220 int ret = 0;
1221
1222 bh = udf_read_tagged(sb, block, block, &ident);
1223 if (!bh)
1224 return 1;
1225 BUG_ON(ident != TAG_IDENT_LVD);
1226 lvd = (struct logicalVolDesc *)bh->b_data;
1227
1228 i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1229 if (i != 0) {
1230 ret = i;
1231 goto out_bh;
1232 }
1233
1234 for (i = 0, offset = 0;
1235 i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1236 i++, offset += gpm->partitionMapLength) {
1237 struct udf_part_map *map = &sbi->s_partmaps[i];
1238 gpm = (struct genericPartitionMap *)
1239 &(lvd->partitionMaps[offset]);
1240 type = gpm->partitionMapType;
1241 if (type == 1) {
1242 struct genericPartitionMap1 *gpm1 =
1243 (struct genericPartitionMap1 *)gpm;
1244 map->s_partition_type = UDF_TYPE1_MAP15;
1245 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1246 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1247 map->s_partition_func = NULL;
1248 } else if (type == 2) {
1249 struct udfPartitionMap2 *upm2 =
1250 (struct udfPartitionMap2 *)gpm;
1251 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1252 strlen(UDF_ID_VIRTUAL))) {
1253 u16 suf =
1254 le16_to_cpu(((__le16 *)upm2->partIdent.
1255 identSuffix)[0]);
1256 if (suf < 0x0200) {
1257 map->s_partition_type =
1258 UDF_VIRTUAL_MAP15;
1259 map->s_partition_func =
1260 udf_get_pblock_virt15;
1261 } else {
1262 map->s_partition_type =
1263 UDF_VIRTUAL_MAP20;
1264 map->s_partition_func =
1265 udf_get_pblock_virt20;
1266 }
1267 } else if (!strncmp(upm2->partIdent.ident,
1268 UDF_ID_SPARABLE,
1269 strlen(UDF_ID_SPARABLE))) {
1270 uint32_t loc;
1271 struct sparingTable *st;
1272 struct sparablePartitionMap *spm =
1273 (struct sparablePartitionMap *)gpm;
1274
1275 map->s_partition_type = UDF_SPARABLE_MAP15;
1276 map->s_type_specific.s_sparing.s_packet_len =
1277 le16_to_cpu(spm->packetLength);
1278 for (j = 0; j < spm->numSparingTables; j++) {
1279 struct buffer_head *bh2;
1280
1281 loc = le32_to_cpu(
1282 spm->locSparingTable[j]);
1283 bh2 = udf_read_tagged(sb, loc, loc,
1284 &ident);
1285 map->s_type_specific.s_sparing.
1286 s_spar_map[j] = bh2;
1287
1288 if (bh2 == NULL)
1289 continue;
1290
1291 st = (struct sparingTable *)bh2->b_data;
1292 if (ident != 0 || strncmp(
1293 st->sparingIdent.ident,
1294 UDF_ID_SPARING,
1295 strlen(UDF_ID_SPARING))) {
1296 brelse(bh2);
1297 map->s_type_specific.s_sparing.
1298 s_spar_map[j] = NULL;
1299 }
1300 }
1301 map->s_partition_func = udf_get_pblock_spar15;
1302 } else if (!strncmp(upm2->partIdent.ident,
1303 UDF_ID_METADATA,
1304 strlen(UDF_ID_METADATA))) {
1305 struct udf_meta_data *mdata =
1306 &map->s_type_specific.s_metadata;
1307 struct metadataPartitionMap *mdm =
1308 (struct metadataPartitionMap *)
1309 &(lvd->partitionMaps[offset]);
1310 udf_debug("Parsing Logical vol part %d "
1311 "type %d id=%s\n", i, type,
1312 UDF_ID_METADATA);
1313
1314 map->s_partition_type = UDF_METADATA_MAP25;
1315 map->s_partition_func = udf_get_pblock_meta25;
1316
1317 mdata->s_meta_file_loc =
1318 le32_to_cpu(mdm->metadataFileLoc);
1319 mdata->s_mirror_file_loc =
1320 le32_to_cpu(mdm->metadataMirrorFileLoc);
1321 mdata->s_bitmap_file_loc =
1322 le32_to_cpu(mdm->metadataBitmapFileLoc);
1323 mdata->s_alloc_unit_size =
1324 le32_to_cpu(mdm->allocUnitSize);
1325 mdata->s_align_unit_size =
1326 le16_to_cpu(mdm->alignUnitSize);
1327 mdata->s_dup_md_flag =
1328 mdm->flags & 0x01;
1329
1330 udf_debug("Metadata Ident suffix=0x%x\n",
1331 (le16_to_cpu(
1332 ((__le16 *)
1333 mdm->partIdent.identSuffix)[0])));
1334 udf_debug("Metadata part num=%d\n",
1335 le16_to_cpu(mdm->partitionNum));
1336 udf_debug("Metadata part alloc unit size=%d\n",
1337 le32_to_cpu(mdm->allocUnitSize));
1338 udf_debug("Metadata file loc=%d\n",
1339 le32_to_cpu(mdm->metadataFileLoc));
1340 udf_debug("Mirror file loc=%d\n",
1341 le32_to_cpu(mdm->metadataMirrorFileLoc));
1342 udf_debug("Bitmap file loc=%d\n",
1343 le32_to_cpu(mdm->metadataBitmapFileLoc));
1344 udf_debug("Duplicate Flag: %d %d\n",
1345 mdata->s_dup_md_flag, mdm->flags);
1346 } else {
1347 udf_debug("Unknown ident: %s\n",
1348 upm2->partIdent.ident);
1349 continue;
1350 }
1351 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1352 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1353 }
1354 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1355 i, map->s_partition_num, type,
1356 map->s_volumeseqnum);
1357 }
1358
1359 if (fileset) {
1360 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1361
1362 *fileset = lelb_to_cpu(la->extLocation);
1363 udf_debug("FileSet found in LogicalVolDesc at block=%d, "
1364 "partition=%d\n", fileset->logicalBlockNum,
1365 fileset->partitionReferenceNum);
1366 }
1367 if (lvd->integritySeqExt.extLength)
1368 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1369
1370 out_bh:
1371 brelse(bh);
1372 return ret;
1373 }
1374
1375 /*
1376 * udf_load_logicalvolint
1377 *
1378 */
1379 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1380 {
1381 struct buffer_head *bh = NULL;
1382 uint16_t ident;
1383 struct udf_sb_info *sbi = UDF_SB(sb);
1384 struct logicalVolIntegrityDesc *lvid;
1385
1386 while (loc.extLength > 0 &&
1387 (bh = udf_read_tagged(sb, loc.extLocation,
1388 loc.extLocation, &ident)) &&
1389 ident == TAG_IDENT_LVID) {
1390 sbi->s_lvid_bh = bh;
1391 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1392
1393 if (lvid->nextIntegrityExt.extLength)
1394 udf_load_logicalvolint(sb,
1395 leea_to_cpu(lvid->nextIntegrityExt));
1396
1397 if (sbi->s_lvid_bh != bh)
1398 brelse(bh);
1399 loc.extLength -= sb->s_blocksize;
1400 loc.extLocation++;
1401 }
1402 if (sbi->s_lvid_bh != bh)
1403 brelse(bh);
1404 }
1405
1406 /*
1407 * udf_process_sequence
1408 *
1409 * PURPOSE
1410 * Process a main/reserve volume descriptor sequence.
1411 *
1412 * PRE-CONDITIONS
1413 * sb Pointer to _locked_ superblock.
1414 * block First block of first extent of the sequence.
1415 * lastblock Lastblock of first extent of the sequence.
1416 *
1417 * HISTORY
1418 * July 1, 1997 - Andrew E. Mileski
1419 * Written, tested, and released.
1420 */
1421 static noinline int udf_process_sequence(struct super_block *sb, long block,
1422 long lastblock, struct kernel_lb_addr *fileset)
1423 {
1424 struct buffer_head *bh = NULL;
1425 struct udf_vds_record vds[VDS_POS_LENGTH];
1426 struct udf_vds_record *curr;
1427 struct generic_desc *gd;
1428 struct volDescPtr *vdp;
1429 int done = 0;
1430 uint32_t vdsn;
1431 uint16_t ident;
1432 long next_s = 0, next_e = 0;
1433
1434 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1435
1436 /*
1437 * Read the main descriptor sequence and find which descriptors
1438 * are in it.
1439 */
1440 for (; (!done && block <= lastblock); block++) {
1441
1442 bh = udf_read_tagged(sb, block, block, &ident);
1443 if (!bh) {
1444 printk(KERN_ERR "udf: Block %Lu of volume descriptor "
1445 "sequence is corrupted or we could not read "
1446 "it.\n", (unsigned long long)block);
1447 return 1;
1448 }
1449
1450 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1451 gd = (struct generic_desc *)bh->b_data;
1452 vdsn = le32_to_cpu(gd->volDescSeqNum);
1453 switch (ident) {
1454 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1455 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1456 if (vdsn >= curr->volDescSeqNum) {
1457 curr->volDescSeqNum = vdsn;
1458 curr->block = block;
1459 }
1460 break;
1461 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1462 curr = &vds[VDS_POS_VOL_DESC_PTR];
1463 if (vdsn >= curr->volDescSeqNum) {
1464 curr->volDescSeqNum = vdsn;
1465 curr->block = block;
1466
1467 vdp = (struct volDescPtr *)bh->b_data;
1468 next_s = le32_to_cpu(
1469 vdp->nextVolDescSeqExt.extLocation);
1470 next_e = le32_to_cpu(
1471 vdp->nextVolDescSeqExt.extLength);
1472 next_e = next_e >> sb->s_blocksize_bits;
1473 next_e += next_s;
1474 }
1475 break;
1476 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1477 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1478 if (vdsn >= curr->volDescSeqNum) {
1479 curr->volDescSeqNum = vdsn;
1480 curr->block = block;
1481 }
1482 break;
1483 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1484 curr = &vds[VDS_POS_PARTITION_DESC];
1485 if (!curr->block)
1486 curr->block = block;
1487 break;
1488 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1489 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1490 if (vdsn >= curr->volDescSeqNum) {
1491 curr->volDescSeqNum = vdsn;
1492 curr->block = block;
1493 }
1494 break;
1495 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1496 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1497 if (vdsn >= curr->volDescSeqNum) {
1498 curr->volDescSeqNum = vdsn;
1499 curr->block = block;
1500 }
1501 break;
1502 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1503 vds[VDS_POS_TERMINATING_DESC].block = block;
1504 if (next_e) {
1505 block = next_s;
1506 lastblock = next_e;
1507 next_s = next_e = 0;
1508 } else
1509 done = 1;
1510 break;
1511 }
1512 brelse(bh);
1513 }
1514 /*
1515 * Now read interesting descriptors again and process them
1516 * in a suitable order
1517 */
1518 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1519 printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n");
1520 return 1;
1521 }
1522 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1523 return 1;
1524
1525 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1526 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1527 return 1;
1528
1529 if (vds[VDS_POS_PARTITION_DESC].block) {
1530 /*
1531 * We rescan the whole descriptor sequence to find
1532 * partition descriptor blocks and process them.
1533 */
1534 for (block = vds[VDS_POS_PARTITION_DESC].block;
1535 block < vds[VDS_POS_TERMINATING_DESC].block;
1536 block++)
1537 if (udf_load_partdesc(sb, block))
1538 return 1;
1539 }
1540
1541 return 0;
1542 }
1543
1544 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1545 struct kernel_lb_addr *fileset)
1546 {
1547 struct anchorVolDescPtr *anchor;
1548 long main_s, main_e, reserve_s, reserve_e;
1549 struct udf_sb_info *sbi;
1550
1551 sbi = UDF_SB(sb);
1552 anchor = (struct anchorVolDescPtr *)bh->b_data;
1553
1554 /* Locate the main sequence */
1555 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1556 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1557 main_e = main_e >> sb->s_blocksize_bits;
1558 main_e += main_s;
1559
1560 /* Locate the reserve sequence */
1561 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1562 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1563 reserve_e = reserve_e >> sb->s_blocksize_bits;
1564 reserve_e += reserve_s;
1565
1566 /* Process the main & reserve sequences */
1567 /* responsible for finding the PartitionDesc(s) */
1568 if (!udf_process_sequence(sb, main_s, main_e, fileset))
1569 return 1;
1570 return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1571 }
1572
1573 /*
1574 * Check whether there is an anchor block in the given block and
1575 * load Volume Descriptor Sequence if so.
1576 */
1577 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1578 struct kernel_lb_addr *fileset)
1579 {
1580 struct buffer_head *bh;
1581 uint16_t ident;
1582 int ret;
1583
1584 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1585 udf_fixed_to_variable(block) >=
1586 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1587 return 0;
1588
1589 bh = udf_read_tagged(sb, block, block, &ident);
1590 if (!bh)
1591 return 0;
1592 if (ident != TAG_IDENT_AVDP) {
1593 brelse(bh);
1594 return 0;
1595 }
1596 ret = udf_load_sequence(sb, bh, fileset);
1597 brelse(bh);
1598 return ret;
1599 }
1600
1601 /* Search for an anchor volume descriptor pointer */
1602 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1603 struct kernel_lb_addr *fileset)
1604 {
1605 sector_t last[6];
1606 int i;
1607 struct udf_sb_info *sbi = UDF_SB(sb);
1608 int last_count = 0;
1609
1610 /* First try user provided anchor */
1611 if (sbi->s_anchor) {
1612 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1613 return lastblock;
1614 }
1615 /*
1616 * according to spec, anchor is in either:
1617 * block 256
1618 * lastblock-256
1619 * lastblock
1620 * however, if the disc isn't closed, it could be 512.
1621 */
1622 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1623 return lastblock;
1624 /*
1625 * The trouble is which block is the last one. Drives often misreport
1626 * this so we try various possibilities.
1627 */
1628 last[last_count++] = lastblock;
1629 if (lastblock >= 1)
1630 last[last_count++] = lastblock - 1;
1631 last[last_count++] = lastblock + 1;
1632 if (lastblock >= 2)
1633 last[last_count++] = lastblock - 2;
1634 if (lastblock >= 150)
1635 last[last_count++] = lastblock - 150;
1636 if (lastblock >= 152)
1637 last[last_count++] = lastblock - 152;
1638
1639 for (i = 0; i < last_count; i++) {
1640 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1641 sb->s_blocksize_bits)
1642 continue;
1643 if (udf_check_anchor_block(sb, last[i], fileset))
1644 return last[i];
1645 if (last[i] < 256)
1646 continue;
1647 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1648 return last[i];
1649 }
1650
1651 /* Finally try block 512 in case media is open */
1652 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1653 return last[0];
1654 return 0;
1655 }
1656
1657 /*
1658 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1659 * area specified by it. The function expects sbi->s_lastblock to be the last
1660 * block on the media.
1661 *
1662 * Return 1 if ok, 0 if not found.
1663 *
1664 */
1665 static int udf_find_anchor(struct super_block *sb,
1666 struct kernel_lb_addr *fileset)
1667 {
1668 sector_t lastblock;
1669 struct udf_sb_info *sbi = UDF_SB(sb);
1670
1671 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1672 if (lastblock)
1673 goto out;
1674
1675 /* No anchor found? Try VARCONV conversion of block numbers */
1676 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1677 /* Firstly, we try to not convert number of the last block */
1678 lastblock = udf_scan_anchors(sb,
1679 udf_variable_to_fixed(sbi->s_last_block),
1680 fileset);
1681 if (lastblock)
1682 goto out;
1683
1684 /* Secondly, we try with converted number of the last block */
1685 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1686 if (!lastblock) {
1687 /* VARCONV didn't help. Clear it. */
1688 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1689 return 0;
1690 }
1691 out:
1692 sbi->s_last_block = lastblock;
1693 return 1;
1694 }
1695
1696 /*
1697 * Check Volume Structure Descriptor, find Anchor block and load Volume
1698 * Descriptor Sequence
1699 */
1700 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1701 int silent, struct kernel_lb_addr *fileset)
1702 {
1703 struct udf_sb_info *sbi = UDF_SB(sb);
1704 loff_t nsr_off;
1705
1706 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1707 if (!silent)
1708 printk(KERN_WARNING "UDF-fs: Bad block size\n");
1709 return 0;
1710 }
1711 sbi->s_last_block = uopt->lastblock;
1712 if (!uopt->novrs) {
1713 /* Check that it is NSR02 compliant */
1714 nsr_off = udf_check_vsd(sb);
1715 if (!nsr_off) {
1716 if (!silent)
1717 printk(KERN_WARNING "UDF-fs: No VRS found\n");
1718 return 0;
1719 }
1720 if (nsr_off == -1)
1721 udf_debug("Failed to read byte 32768. Assuming open "
1722 "disc. Skipping validity check\n");
1723 if (!sbi->s_last_block)
1724 sbi->s_last_block = udf_get_last_block(sb);
1725 } else {
1726 udf_debug("Validity check skipped because of novrs option\n");
1727 }
1728
1729 /* Look for anchor block and load Volume Descriptor Sequence */
1730 sbi->s_anchor = uopt->anchor;
1731 if (!udf_find_anchor(sb, fileset)) {
1732 if (!silent)
1733 printk(KERN_WARNING "UDF-fs: No anchor found\n");
1734 return 0;
1735 }
1736 return 1;
1737 }
1738
1739 static void udf_open_lvid(struct super_block *sb)
1740 {
1741 struct udf_sb_info *sbi = UDF_SB(sb);
1742 struct buffer_head *bh = sbi->s_lvid_bh;
1743 struct logicalVolIntegrityDesc *lvid;
1744 struct logicalVolIntegrityDescImpUse *lvidiu;
1745
1746 if (!bh)
1747 return;
1748 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1749 lvidiu = udf_sb_lvidiu(sbi);
1750
1751 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1752 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1753 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1754 CURRENT_TIME);
1755 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1756
1757 lvid->descTag.descCRC = cpu_to_le16(
1758 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1759 le16_to_cpu(lvid->descTag.descCRCLength)));
1760
1761 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1762 mark_buffer_dirty(bh);
1763 sbi->s_lvid_dirty = 0;
1764 }
1765
1766 static void udf_close_lvid(struct super_block *sb)
1767 {
1768 struct udf_sb_info *sbi = UDF_SB(sb);
1769 struct buffer_head *bh = sbi->s_lvid_bh;
1770 struct logicalVolIntegrityDesc *lvid;
1771 struct logicalVolIntegrityDescImpUse *lvidiu;
1772
1773 if (!bh)
1774 return;
1775
1776 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1777 lvidiu = udf_sb_lvidiu(sbi);
1778 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1779 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1780 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1781 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1782 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1783 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1784 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1785 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1786 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1787 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1788
1789 lvid->descTag.descCRC = cpu_to_le16(
1790 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1791 le16_to_cpu(lvid->descTag.descCRCLength)));
1792
1793 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1794 mark_buffer_dirty(bh);
1795 sbi->s_lvid_dirty = 0;
1796 }
1797
1798 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1799 {
1800 int i;
1801 int nr_groups = bitmap->s_nr_groups;
1802 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1803 nr_groups);
1804
1805 for (i = 0; i < nr_groups; i++)
1806 if (bitmap->s_block_bitmap[i])
1807 brelse(bitmap->s_block_bitmap[i]);
1808
1809 if (size <= PAGE_SIZE)
1810 kfree(bitmap);
1811 else
1812 vfree(bitmap);
1813 }
1814
1815 static void udf_free_partition(struct udf_part_map *map)
1816 {
1817 int i;
1818 struct udf_meta_data *mdata;
1819
1820 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1821 iput(map->s_uspace.s_table);
1822 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1823 iput(map->s_fspace.s_table);
1824 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1825 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1826 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1827 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1828 if (map->s_partition_type == UDF_SPARABLE_MAP15)
1829 for (i = 0; i < 4; i++)
1830 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1831 else if (map->s_partition_type == UDF_METADATA_MAP25) {
1832 mdata = &map->s_type_specific.s_metadata;
1833 iput(mdata->s_metadata_fe);
1834 mdata->s_metadata_fe = NULL;
1835
1836 iput(mdata->s_mirror_fe);
1837 mdata->s_mirror_fe = NULL;
1838
1839 iput(mdata->s_bitmap_fe);
1840 mdata->s_bitmap_fe = NULL;
1841 }
1842 }
1843
1844 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1845 {
1846 int i;
1847 int ret;
1848 struct inode *inode = NULL;
1849 struct udf_options uopt;
1850 struct kernel_lb_addr rootdir, fileset;
1851 struct udf_sb_info *sbi;
1852
1853 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1854 uopt.uid = -1;
1855 uopt.gid = -1;
1856 uopt.umask = 0;
1857 uopt.fmode = UDF_INVALID_MODE;
1858 uopt.dmode = UDF_INVALID_MODE;
1859
1860 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1861 if (!sbi)
1862 return -ENOMEM;
1863
1864 sb->s_fs_info = sbi;
1865
1866 mutex_init(&sbi->s_alloc_mutex);
1867
1868 if (!udf_parse_options((char *)options, &uopt, false))
1869 goto error_out;
1870
1871 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1872 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1873 udf_error(sb, "udf_read_super",
1874 "utf8 cannot be combined with iocharset\n");
1875 goto error_out;
1876 }
1877 #ifdef CONFIG_UDF_NLS
1878 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1879 uopt.nls_map = load_nls_default();
1880 if (!uopt.nls_map)
1881 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1882 else
1883 udf_debug("Using default NLS map\n");
1884 }
1885 #endif
1886 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1887 uopt.flags |= (1 << UDF_FLAG_UTF8);
1888
1889 fileset.logicalBlockNum = 0xFFFFFFFF;
1890 fileset.partitionReferenceNum = 0xFFFF;
1891
1892 sbi->s_flags = uopt.flags;
1893 sbi->s_uid = uopt.uid;
1894 sbi->s_gid = uopt.gid;
1895 sbi->s_umask = uopt.umask;
1896 sbi->s_fmode = uopt.fmode;
1897 sbi->s_dmode = uopt.dmode;
1898 sbi->s_nls_map = uopt.nls_map;
1899
1900 if (uopt.session == 0xFFFFFFFF)
1901 sbi->s_session = udf_get_last_session(sb);
1902 else
1903 sbi->s_session = uopt.session;
1904
1905 udf_debug("Multi-session=%d\n", sbi->s_session);
1906
1907 /* Fill in the rest of the superblock */
1908 sb->s_op = &udf_sb_ops;
1909 sb->s_export_op = &udf_export_ops;
1910 sb->dq_op = NULL;
1911 sb->s_dirt = 0;
1912 sb->s_magic = UDF_SUPER_MAGIC;
1913 sb->s_time_gran = 1000;
1914
1915 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1916 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1917 } else {
1918 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1919 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1920 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1921 if (!silent)
1922 printk(KERN_NOTICE
1923 "UDF-fs: Rescanning with blocksize "
1924 "%d\n", UDF_DEFAULT_BLOCKSIZE);
1925 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1926 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1927 }
1928 }
1929 if (!ret) {
1930 printk(KERN_WARNING "UDF-fs: No partition found (1)\n");
1931 goto error_out;
1932 }
1933
1934 udf_debug("Lastblock=%d\n", sbi->s_last_block);
1935
1936 if (sbi->s_lvid_bh) {
1937 struct logicalVolIntegrityDescImpUse *lvidiu =
1938 udf_sb_lvidiu(sbi);
1939 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
1940 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
1941 /* uint16_t maxUDFWriteRev =
1942 le16_to_cpu(lvidiu->maxUDFWriteRev); */
1943
1944 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
1945 printk(KERN_ERR "UDF-fs: minUDFReadRev=%x "
1946 "(max is %x)\n",
1947 le16_to_cpu(lvidiu->minUDFReadRev),
1948 UDF_MAX_READ_VERSION);
1949 goto error_out;
1950 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
1951 sb->s_flags |= MS_RDONLY;
1952
1953 sbi->s_udfrev = minUDFWriteRev;
1954
1955 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
1956 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
1957 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
1958 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
1959 }
1960
1961 if (!sbi->s_partitions) {
1962 printk(KERN_WARNING "UDF-fs: No partition found (2)\n");
1963 goto error_out;
1964 }
1965
1966 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
1967 UDF_PART_FLAG_READ_ONLY) {
1968 printk(KERN_NOTICE "UDF-fs: Partition marked readonly; "
1969 "forcing readonly mount\n");
1970 sb->s_flags |= MS_RDONLY;
1971 }
1972
1973 if (udf_find_fileset(sb, &fileset, &rootdir)) {
1974 printk(KERN_WARNING "UDF-fs: No fileset found\n");
1975 goto error_out;
1976 }
1977
1978 if (!silent) {
1979 struct timestamp ts;
1980 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
1981 udf_info("UDF: Mounting volume '%s', "
1982 "timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
1983 sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day,
1984 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
1985 }
1986 if (!(sb->s_flags & MS_RDONLY))
1987 udf_open_lvid(sb);
1988
1989 /* Assign the root inode */
1990 /* assign inodes by physical block number */
1991 /* perhaps it's not extensible enough, but for now ... */
1992 inode = udf_iget(sb, &rootdir);
1993 if (!inode) {
1994 printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, "
1995 "partition=%d\n",
1996 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
1997 goto error_out;
1998 }
1999
2000 /* Allocate a dentry for the root inode */
2001 sb->s_root = d_alloc_root(inode);
2002 if (!sb->s_root) {
2003 printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n");
2004 iput(inode);
2005 goto error_out;
2006 }
2007 sb->s_maxbytes = MAX_LFS_FILESIZE;
2008 return 0;
2009
2010 error_out:
2011 if (sbi->s_vat_inode)
2012 iput(sbi->s_vat_inode);
2013 if (sbi->s_partitions)
2014 for (i = 0; i < sbi->s_partitions; i++)
2015 udf_free_partition(&sbi->s_partmaps[i]);
2016 #ifdef CONFIG_UDF_NLS
2017 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2018 unload_nls(sbi->s_nls_map);
2019 #endif
2020 if (!(sb->s_flags & MS_RDONLY))
2021 udf_close_lvid(sb);
2022 brelse(sbi->s_lvid_bh);
2023
2024 kfree(sbi->s_partmaps);
2025 kfree(sbi);
2026 sb->s_fs_info = NULL;
2027
2028 return -EINVAL;
2029 }
2030
2031 static void udf_error(struct super_block *sb, const char *function,
2032 const char *fmt, ...)
2033 {
2034 va_list args;
2035
2036 if (!(sb->s_flags & MS_RDONLY)) {
2037 /* mark sb error */
2038 sb->s_dirt = 1;
2039 }
2040 va_start(args, fmt);
2041 vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2042 va_end(args);
2043 printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n",
2044 sb->s_id, function, error_buf);
2045 }
2046
2047 void udf_warning(struct super_block *sb, const char *function,
2048 const char *fmt, ...)
2049 {
2050 va_list args;
2051
2052 va_start(args, fmt);
2053 vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2054 va_end(args);
2055 printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n",
2056 sb->s_id, function, error_buf);
2057 }
2058
2059 static void udf_put_super(struct super_block *sb)
2060 {
2061 int i;
2062 struct udf_sb_info *sbi;
2063
2064 sbi = UDF_SB(sb);
2065 if (sbi->s_vat_inode)
2066 iput(sbi->s_vat_inode);
2067 if (sbi->s_partitions)
2068 for (i = 0; i < sbi->s_partitions; i++)
2069 udf_free_partition(&sbi->s_partmaps[i]);
2070 #ifdef CONFIG_UDF_NLS
2071 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2072 unload_nls(sbi->s_nls_map);
2073 #endif
2074 if (!(sb->s_flags & MS_RDONLY))
2075 udf_close_lvid(sb);
2076 brelse(sbi->s_lvid_bh);
2077 kfree(sbi->s_partmaps);
2078 kfree(sb->s_fs_info);
2079 sb->s_fs_info = NULL;
2080 }
2081
2082 static int udf_sync_fs(struct super_block *sb, int wait)
2083 {
2084 struct udf_sb_info *sbi = UDF_SB(sb);
2085
2086 mutex_lock(&sbi->s_alloc_mutex);
2087 if (sbi->s_lvid_dirty) {
2088 /*
2089 * Blockdevice will be synced later so we don't have to submit
2090 * the buffer for IO
2091 */
2092 mark_buffer_dirty(sbi->s_lvid_bh);
2093 sb->s_dirt = 0;
2094 sbi->s_lvid_dirty = 0;
2095 }
2096 mutex_unlock(&sbi->s_alloc_mutex);
2097
2098 return 0;
2099 }
2100
2101 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2102 {
2103 struct super_block *sb = dentry->d_sb;
2104 struct udf_sb_info *sbi = UDF_SB(sb);
2105 struct logicalVolIntegrityDescImpUse *lvidiu;
2106 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2107
2108 if (sbi->s_lvid_bh != NULL)
2109 lvidiu = udf_sb_lvidiu(sbi);
2110 else
2111 lvidiu = NULL;
2112
2113 buf->f_type = UDF_SUPER_MAGIC;
2114 buf->f_bsize = sb->s_blocksize;
2115 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2116 buf->f_bfree = udf_count_free(sb);
2117 buf->f_bavail = buf->f_bfree;
2118 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2119 le32_to_cpu(lvidiu->numDirs)) : 0)
2120 + buf->f_bfree;
2121 buf->f_ffree = buf->f_bfree;
2122 buf->f_namelen = UDF_NAME_LEN - 2;
2123 buf->f_fsid.val[0] = (u32)id;
2124 buf->f_fsid.val[1] = (u32)(id >> 32);
2125
2126 return 0;
2127 }
2128
2129 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2130 struct udf_bitmap *bitmap)
2131 {
2132 struct buffer_head *bh = NULL;
2133 unsigned int accum = 0;
2134 int index;
2135 int block = 0, newblock;
2136 struct kernel_lb_addr loc;
2137 uint32_t bytes;
2138 uint8_t *ptr;
2139 uint16_t ident;
2140 struct spaceBitmapDesc *bm;
2141
2142 lock_kernel();
2143
2144 loc.logicalBlockNum = bitmap->s_extPosition;
2145 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2146 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2147
2148 if (!bh) {
2149 printk(KERN_ERR "udf: udf_count_free failed\n");
2150 goto out;
2151 } else if (ident != TAG_IDENT_SBD) {
2152 brelse(bh);
2153 printk(KERN_ERR "udf: udf_count_free failed\n");
2154 goto out;
2155 }
2156
2157 bm = (struct spaceBitmapDesc *)bh->b_data;
2158 bytes = le32_to_cpu(bm->numOfBytes);
2159 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2160 ptr = (uint8_t *)bh->b_data;
2161
2162 while (bytes > 0) {
2163 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2164 accum += bitmap_weight((const unsigned long *)(ptr + index),
2165 cur_bytes * 8);
2166 bytes -= cur_bytes;
2167 if (bytes) {
2168 brelse(bh);
2169 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2170 bh = udf_tread(sb, newblock);
2171 if (!bh) {
2172 udf_debug("read failed\n");
2173 goto out;
2174 }
2175 index = 0;
2176 ptr = (uint8_t *)bh->b_data;
2177 }
2178 }
2179 brelse(bh);
2180
2181 out:
2182 unlock_kernel();
2183
2184 return accum;
2185 }
2186
2187 static unsigned int udf_count_free_table(struct super_block *sb,
2188 struct inode *table)
2189 {
2190 unsigned int accum = 0;
2191 uint32_t elen;
2192 struct kernel_lb_addr eloc;
2193 int8_t etype;
2194 struct extent_position epos;
2195
2196 lock_kernel();
2197
2198 epos.block = UDF_I(table)->i_location;
2199 epos.offset = sizeof(struct unallocSpaceEntry);
2200 epos.bh = NULL;
2201
2202 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2203 accum += (elen >> table->i_sb->s_blocksize_bits);
2204
2205 brelse(epos.bh);
2206
2207 unlock_kernel();
2208
2209 return accum;
2210 }
2211
2212 static unsigned int udf_count_free(struct super_block *sb)
2213 {
2214 unsigned int accum = 0;
2215 struct udf_sb_info *sbi;
2216 struct udf_part_map *map;
2217
2218 sbi = UDF_SB(sb);
2219 if (sbi->s_lvid_bh) {
2220 struct logicalVolIntegrityDesc *lvid =
2221 (struct logicalVolIntegrityDesc *)
2222 sbi->s_lvid_bh->b_data;
2223 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2224 accum = le32_to_cpu(
2225 lvid->freeSpaceTable[sbi->s_partition]);
2226 if (accum == 0xFFFFFFFF)
2227 accum = 0;
2228 }
2229 }
2230
2231 if (accum)
2232 return accum;
2233
2234 map = &sbi->s_partmaps[sbi->s_partition];
2235 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2236 accum += udf_count_free_bitmap(sb,
2237 map->s_uspace.s_bitmap);
2238 }
2239 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2240 accum += udf_count_free_bitmap(sb,
2241 map->s_fspace.s_bitmap);
2242 }
2243 if (accum)
2244 return accum;
2245
2246 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2247 accum += udf_count_free_table(sb,
2248 map->s_uspace.s_table);
2249 }
2250 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2251 accum += udf_count_free_table(sb,
2252 map->s_fspace.s_table);
2253 }
2254
2255 return accum;
2256 }
This page took 0.079363 seconds and 5 git commands to generate.