udf: Try anchor in block 256 first
[deliverable/linux.git] / fs / udf / super.c
1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/smp_lock.h>
52 #include <linux/buffer_head.h>
53 #include <linux/vfs.h>
54 #include <linux/vmalloc.h>
55 #include <linux/errno.h>
56 #include <linux/mount.h>
57 #include <linux/seq_file.h>
58 #include <linux/bitmap.h>
59 #include <linux/crc-itu-t.h>
60 #include <asm/byteorder.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67
68 #define VDS_POS_PRIMARY_VOL_DESC 0
69 #define VDS_POS_UNALLOC_SPACE_DESC 1
70 #define VDS_POS_LOGICAL_VOL_DESC 2
71 #define VDS_POS_PARTITION_DESC 3
72 #define VDS_POS_IMP_USE_VOL_DESC 4
73 #define VDS_POS_VOL_DESC_PTR 5
74 #define VDS_POS_TERMINATING_DESC 6
75 #define VDS_POS_LENGTH 7
76
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78
79 static char error_buf[1024];
80
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static void udf_write_super(struct super_block *);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88 struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90 struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct vfsmount *);
96 static void udf_error(struct super_block *sb, const char *function,
97 const char *fmt, ...);
98
99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
100 {
101 struct logicalVolIntegrityDesc *lvid =
102 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
103 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
104 __u32 offset = number_of_partitions * 2 *
105 sizeof(uint32_t)/sizeof(uint8_t);
106 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
107 }
108
109 /* UDF filesystem type */
110 static int udf_get_sb(struct file_system_type *fs_type,
111 int flags, const char *dev_name, void *data,
112 struct vfsmount *mnt)
113 {
114 return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt);
115 }
116
117 static struct file_system_type udf_fstype = {
118 .owner = THIS_MODULE,
119 .name = "udf",
120 .get_sb = udf_get_sb,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
123 };
124
125 static struct kmem_cache *udf_inode_cachep;
126
127 static struct inode *udf_alloc_inode(struct super_block *sb)
128 {
129 struct udf_inode_info *ei;
130 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
131 if (!ei)
132 return NULL;
133
134 ei->i_unique = 0;
135 ei->i_lenExtents = 0;
136 ei->i_next_alloc_block = 0;
137 ei->i_next_alloc_goal = 0;
138 ei->i_strat4096 = 0;
139
140 return &ei->vfs_inode;
141 }
142
143 static void udf_destroy_inode(struct inode *inode)
144 {
145 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
146 }
147
148 static void init_once(void *foo)
149 {
150 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
151
152 ei->i_ext.i_data = NULL;
153 inode_init_once(&ei->vfs_inode);
154 }
155
156 static int init_inodecache(void)
157 {
158 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
159 sizeof(struct udf_inode_info),
160 0, (SLAB_RECLAIM_ACCOUNT |
161 SLAB_MEM_SPREAD),
162 init_once);
163 if (!udf_inode_cachep)
164 return -ENOMEM;
165 return 0;
166 }
167
168 static void destroy_inodecache(void)
169 {
170 kmem_cache_destroy(udf_inode_cachep);
171 }
172
173 /* Superblock operations */
174 static const struct super_operations udf_sb_ops = {
175 .alloc_inode = udf_alloc_inode,
176 .destroy_inode = udf_destroy_inode,
177 .write_inode = udf_write_inode,
178 .delete_inode = udf_delete_inode,
179 .clear_inode = udf_clear_inode,
180 .put_super = udf_put_super,
181 .write_super = udf_write_super,
182 .statfs = udf_statfs,
183 .remount_fs = udf_remount_fs,
184 .show_options = udf_show_options,
185 };
186
187 struct udf_options {
188 unsigned char novrs;
189 unsigned int blocksize;
190 unsigned int session;
191 unsigned int lastblock;
192 unsigned int anchor;
193 unsigned int volume;
194 unsigned short partition;
195 unsigned int fileset;
196 unsigned int rootdir;
197 unsigned int flags;
198 mode_t umask;
199 gid_t gid;
200 uid_t uid;
201 mode_t fmode;
202 mode_t dmode;
203 struct nls_table *nls_map;
204 };
205
206 static int __init init_udf_fs(void)
207 {
208 int err;
209
210 err = init_inodecache();
211 if (err)
212 goto out1;
213 err = register_filesystem(&udf_fstype);
214 if (err)
215 goto out;
216
217 return 0;
218
219 out:
220 destroy_inodecache();
221
222 out1:
223 return err;
224 }
225
226 static void __exit exit_udf_fs(void)
227 {
228 unregister_filesystem(&udf_fstype);
229 destroy_inodecache();
230 }
231
232 module_init(init_udf_fs)
233 module_exit(exit_udf_fs)
234
235 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
236 {
237 struct udf_sb_info *sbi = UDF_SB(sb);
238
239 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
240 GFP_KERNEL);
241 if (!sbi->s_partmaps) {
242 udf_error(sb, __func__,
243 "Unable to allocate space for %d partition maps",
244 count);
245 sbi->s_partitions = 0;
246 return -ENOMEM;
247 }
248
249 sbi->s_partitions = count;
250 return 0;
251 }
252
253 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt)
254 {
255 struct super_block *sb = mnt->mnt_sb;
256 struct udf_sb_info *sbi = UDF_SB(sb);
257
258 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
259 seq_puts(seq, ",nostrict");
260 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
261 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
262 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
263 seq_puts(seq, ",unhide");
264 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
265 seq_puts(seq, ",undelete");
266 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
267 seq_puts(seq, ",noadinicb");
268 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
269 seq_puts(seq, ",shortad");
270 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
271 seq_puts(seq, ",uid=forget");
272 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
273 seq_puts(seq, ",uid=ignore");
274 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
275 seq_puts(seq, ",gid=forget");
276 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
277 seq_puts(seq, ",gid=ignore");
278 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
279 seq_printf(seq, ",uid=%u", sbi->s_uid);
280 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
281 seq_printf(seq, ",gid=%u", sbi->s_gid);
282 if (sbi->s_umask != 0)
283 seq_printf(seq, ",umask=%o", sbi->s_umask);
284 if (sbi->s_fmode != UDF_INVALID_MODE)
285 seq_printf(seq, ",mode=%o", sbi->s_fmode);
286 if (sbi->s_dmode != UDF_INVALID_MODE)
287 seq_printf(seq, ",dmode=%o", sbi->s_dmode);
288 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
289 seq_printf(seq, ",session=%u", sbi->s_session);
290 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
291 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
292 if (sbi->s_anchor != 0)
293 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
294 /*
295 * volume, partition, fileset and rootdir seem to be ignored
296 * currently
297 */
298 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
299 seq_puts(seq, ",utf8");
300 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
301 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
302
303 return 0;
304 }
305
306 /*
307 * udf_parse_options
308 *
309 * PURPOSE
310 * Parse mount options.
311 *
312 * DESCRIPTION
313 * The following mount options are supported:
314 *
315 * gid= Set the default group.
316 * umask= Set the default umask.
317 * mode= Set the default file permissions.
318 * dmode= Set the default directory permissions.
319 * uid= Set the default user.
320 * bs= Set the block size.
321 * unhide Show otherwise hidden files.
322 * undelete Show deleted files in lists.
323 * adinicb Embed data in the inode (default)
324 * noadinicb Don't embed data in the inode
325 * shortad Use short ad's
326 * longad Use long ad's (default)
327 * nostrict Unset strict conformance
328 * iocharset= Set the NLS character set
329 *
330 * The remaining are for debugging and disaster recovery:
331 *
332 * novrs Skip volume sequence recognition
333 *
334 * The following expect a offset from 0.
335 *
336 * session= Set the CDROM session (default= last session)
337 * anchor= Override standard anchor location. (default= 256)
338 * volume= Override the VolumeDesc location. (unused)
339 * partition= Override the PartitionDesc location. (unused)
340 * lastblock= Set the last block of the filesystem/
341 *
342 * The following expect a offset from the partition root.
343 *
344 * fileset= Override the fileset block location. (unused)
345 * rootdir= Override the root directory location. (unused)
346 * WARNING: overriding the rootdir to a non-directory may
347 * yield highly unpredictable results.
348 *
349 * PRE-CONDITIONS
350 * options Pointer to mount options string.
351 * uopts Pointer to mount options variable.
352 *
353 * POST-CONDITIONS
354 * <return> 1 Mount options parsed okay.
355 * <return> 0 Error parsing mount options.
356 *
357 * HISTORY
358 * July 1, 1997 - Andrew E. Mileski
359 * Written, tested, and released.
360 */
361
362 enum {
363 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
364 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
365 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
366 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
367 Opt_rootdir, Opt_utf8, Opt_iocharset,
368 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
369 Opt_fmode, Opt_dmode
370 };
371
372 static const match_table_t tokens = {
373 {Opt_novrs, "novrs"},
374 {Opt_nostrict, "nostrict"},
375 {Opt_bs, "bs=%u"},
376 {Opt_unhide, "unhide"},
377 {Opt_undelete, "undelete"},
378 {Opt_noadinicb, "noadinicb"},
379 {Opt_adinicb, "adinicb"},
380 {Opt_shortad, "shortad"},
381 {Opt_longad, "longad"},
382 {Opt_uforget, "uid=forget"},
383 {Opt_uignore, "uid=ignore"},
384 {Opt_gforget, "gid=forget"},
385 {Opt_gignore, "gid=ignore"},
386 {Opt_gid, "gid=%u"},
387 {Opt_uid, "uid=%u"},
388 {Opt_umask, "umask=%o"},
389 {Opt_session, "session=%u"},
390 {Opt_lastblock, "lastblock=%u"},
391 {Opt_anchor, "anchor=%u"},
392 {Opt_volume, "volume=%u"},
393 {Opt_partition, "partition=%u"},
394 {Opt_fileset, "fileset=%u"},
395 {Opt_rootdir, "rootdir=%u"},
396 {Opt_utf8, "utf8"},
397 {Opt_iocharset, "iocharset=%s"},
398 {Opt_fmode, "mode=%o"},
399 {Opt_dmode, "dmode=%o"},
400 {Opt_err, NULL}
401 };
402
403 static int udf_parse_options(char *options, struct udf_options *uopt,
404 bool remount)
405 {
406 char *p;
407 int option;
408
409 uopt->novrs = 0;
410 uopt->partition = 0xFFFF;
411 uopt->session = 0xFFFFFFFF;
412 uopt->lastblock = 0;
413 uopt->anchor = 0;
414 uopt->volume = 0xFFFFFFFF;
415 uopt->rootdir = 0xFFFFFFFF;
416 uopt->fileset = 0xFFFFFFFF;
417 uopt->nls_map = NULL;
418
419 if (!options)
420 return 1;
421
422 while ((p = strsep(&options, ",")) != NULL) {
423 substring_t args[MAX_OPT_ARGS];
424 int token;
425 if (!*p)
426 continue;
427
428 token = match_token(p, tokens, args);
429 switch (token) {
430 case Opt_novrs:
431 uopt->novrs = 1;
432 break;
433 case Opt_bs:
434 if (match_int(&args[0], &option))
435 return 0;
436 uopt->blocksize = option;
437 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
438 break;
439 case Opt_unhide:
440 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
441 break;
442 case Opt_undelete:
443 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
444 break;
445 case Opt_noadinicb:
446 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
447 break;
448 case Opt_adinicb:
449 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
450 break;
451 case Opt_shortad:
452 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
453 break;
454 case Opt_longad:
455 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
456 break;
457 case Opt_gid:
458 if (match_int(args, &option))
459 return 0;
460 uopt->gid = option;
461 uopt->flags |= (1 << UDF_FLAG_GID_SET);
462 break;
463 case Opt_uid:
464 if (match_int(args, &option))
465 return 0;
466 uopt->uid = option;
467 uopt->flags |= (1 << UDF_FLAG_UID_SET);
468 break;
469 case Opt_umask:
470 if (match_octal(args, &option))
471 return 0;
472 uopt->umask = option;
473 break;
474 case Opt_nostrict:
475 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
476 break;
477 case Opt_session:
478 if (match_int(args, &option))
479 return 0;
480 uopt->session = option;
481 if (!remount)
482 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
483 break;
484 case Opt_lastblock:
485 if (match_int(args, &option))
486 return 0;
487 uopt->lastblock = option;
488 if (!remount)
489 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
490 break;
491 case Opt_anchor:
492 if (match_int(args, &option))
493 return 0;
494 uopt->anchor = option;
495 break;
496 case Opt_volume:
497 if (match_int(args, &option))
498 return 0;
499 uopt->volume = option;
500 break;
501 case Opt_partition:
502 if (match_int(args, &option))
503 return 0;
504 uopt->partition = option;
505 break;
506 case Opt_fileset:
507 if (match_int(args, &option))
508 return 0;
509 uopt->fileset = option;
510 break;
511 case Opt_rootdir:
512 if (match_int(args, &option))
513 return 0;
514 uopt->rootdir = option;
515 break;
516 case Opt_utf8:
517 uopt->flags |= (1 << UDF_FLAG_UTF8);
518 break;
519 #ifdef CONFIG_UDF_NLS
520 case Opt_iocharset:
521 uopt->nls_map = load_nls(args[0].from);
522 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
523 break;
524 #endif
525 case Opt_uignore:
526 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
527 break;
528 case Opt_uforget:
529 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
530 break;
531 case Opt_gignore:
532 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
533 break;
534 case Opt_gforget:
535 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
536 break;
537 case Opt_fmode:
538 if (match_octal(args, &option))
539 return 0;
540 uopt->fmode = option & 0777;
541 break;
542 case Opt_dmode:
543 if (match_octal(args, &option))
544 return 0;
545 uopt->dmode = option & 0777;
546 break;
547 default:
548 printk(KERN_ERR "udf: bad mount option \"%s\" "
549 "or missing value\n", p);
550 return 0;
551 }
552 }
553 return 1;
554 }
555
556 static void udf_write_super(struct super_block *sb)
557 {
558 lock_kernel();
559
560 if (!(sb->s_flags & MS_RDONLY))
561 udf_open_lvid(sb);
562 sb->s_dirt = 0;
563
564 unlock_kernel();
565 }
566
567 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
568 {
569 struct udf_options uopt;
570 struct udf_sb_info *sbi = UDF_SB(sb);
571
572 uopt.flags = sbi->s_flags;
573 uopt.uid = sbi->s_uid;
574 uopt.gid = sbi->s_gid;
575 uopt.umask = sbi->s_umask;
576 uopt.fmode = sbi->s_fmode;
577 uopt.dmode = sbi->s_dmode;
578
579 if (!udf_parse_options(options, &uopt, true))
580 return -EINVAL;
581
582 sbi->s_flags = uopt.flags;
583 sbi->s_uid = uopt.uid;
584 sbi->s_gid = uopt.gid;
585 sbi->s_umask = uopt.umask;
586 sbi->s_fmode = uopt.fmode;
587 sbi->s_dmode = uopt.dmode;
588
589 if (sbi->s_lvid_bh) {
590 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
591 if (write_rev > UDF_MAX_WRITE_VERSION)
592 *flags |= MS_RDONLY;
593 }
594
595 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
596 return 0;
597 if (*flags & MS_RDONLY)
598 udf_close_lvid(sb);
599 else
600 udf_open_lvid(sb);
601
602 return 0;
603 }
604
605 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
606 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
607 static loff_t udf_check_vsd(struct super_block *sb)
608 {
609 struct volStructDesc *vsd = NULL;
610 loff_t sector = 32768;
611 int sectorsize;
612 struct buffer_head *bh = NULL;
613 int nsr02 = 0;
614 int nsr03 = 0;
615 struct udf_sb_info *sbi;
616
617 sbi = UDF_SB(sb);
618 if (sb->s_blocksize < sizeof(struct volStructDesc))
619 sectorsize = sizeof(struct volStructDesc);
620 else
621 sectorsize = sb->s_blocksize;
622
623 sector += (sbi->s_session << sb->s_blocksize_bits);
624
625 udf_debug("Starting at sector %u (%ld byte sectors)\n",
626 (unsigned int)(sector >> sb->s_blocksize_bits),
627 sb->s_blocksize);
628 /* Process the sequence (if applicable) */
629 for (; !nsr02 && !nsr03; sector += sectorsize) {
630 /* Read a block */
631 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
632 if (!bh)
633 break;
634
635 /* Look for ISO descriptors */
636 vsd = (struct volStructDesc *)(bh->b_data +
637 (sector & (sb->s_blocksize - 1)));
638
639 if (vsd->stdIdent[0] == 0) {
640 brelse(bh);
641 break;
642 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
643 VSD_STD_ID_LEN)) {
644 switch (vsd->structType) {
645 case 0:
646 udf_debug("ISO9660 Boot Record found\n");
647 break;
648 case 1:
649 udf_debug("ISO9660 Primary Volume Descriptor "
650 "found\n");
651 break;
652 case 2:
653 udf_debug("ISO9660 Supplementary Volume "
654 "Descriptor found\n");
655 break;
656 case 3:
657 udf_debug("ISO9660 Volume Partition Descriptor "
658 "found\n");
659 break;
660 case 255:
661 udf_debug("ISO9660 Volume Descriptor Set "
662 "Terminator found\n");
663 break;
664 default:
665 udf_debug("ISO9660 VRS (%u) found\n",
666 vsd->structType);
667 break;
668 }
669 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
670 VSD_STD_ID_LEN))
671 ; /* nothing */
672 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
673 VSD_STD_ID_LEN)) {
674 brelse(bh);
675 break;
676 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
677 VSD_STD_ID_LEN))
678 nsr02 = sector;
679 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
680 VSD_STD_ID_LEN))
681 nsr03 = sector;
682 brelse(bh);
683 }
684
685 if (nsr03)
686 return nsr03;
687 else if (nsr02)
688 return nsr02;
689 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
690 return -1;
691 else
692 return 0;
693 }
694
695 static int udf_find_fileset(struct super_block *sb,
696 struct kernel_lb_addr *fileset,
697 struct kernel_lb_addr *root)
698 {
699 struct buffer_head *bh = NULL;
700 long lastblock;
701 uint16_t ident;
702 struct udf_sb_info *sbi;
703
704 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
705 fileset->partitionReferenceNum != 0xFFFF) {
706 bh = udf_read_ptagged(sb, fileset, 0, &ident);
707
708 if (!bh) {
709 return 1;
710 } else if (ident != TAG_IDENT_FSD) {
711 brelse(bh);
712 return 1;
713 }
714
715 }
716
717 sbi = UDF_SB(sb);
718 if (!bh) {
719 /* Search backwards through the partitions */
720 struct kernel_lb_addr newfileset;
721
722 /* --> cvg: FIXME - is it reasonable? */
723 return 1;
724
725 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
726 (newfileset.partitionReferenceNum != 0xFFFF &&
727 fileset->logicalBlockNum == 0xFFFFFFFF &&
728 fileset->partitionReferenceNum == 0xFFFF);
729 newfileset.partitionReferenceNum--) {
730 lastblock = sbi->s_partmaps
731 [newfileset.partitionReferenceNum]
732 .s_partition_len;
733 newfileset.logicalBlockNum = 0;
734
735 do {
736 bh = udf_read_ptagged(sb, &newfileset, 0,
737 &ident);
738 if (!bh) {
739 newfileset.logicalBlockNum++;
740 continue;
741 }
742
743 switch (ident) {
744 case TAG_IDENT_SBD:
745 {
746 struct spaceBitmapDesc *sp;
747 sp = (struct spaceBitmapDesc *)
748 bh->b_data;
749 newfileset.logicalBlockNum += 1 +
750 ((le32_to_cpu(sp->numOfBytes) +
751 sizeof(struct spaceBitmapDesc)
752 - 1) >> sb->s_blocksize_bits);
753 brelse(bh);
754 break;
755 }
756 case TAG_IDENT_FSD:
757 *fileset = newfileset;
758 break;
759 default:
760 newfileset.logicalBlockNum++;
761 brelse(bh);
762 bh = NULL;
763 break;
764 }
765 } while (newfileset.logicalBlockNum < lastblock &&
766 fileset->logicalBlockNum == 0xFFFFFFFF &&
767 fileset->partitionReferenceNum == 0xFFFF);
768 }
769 }
770
771 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
772 fileset->partitionReferenceNum != 0xFFFF) && bh) {
773 udf_debug("Fileset at block=%d, partition=%d\n",
774 fileset->logicalBlockNum,
775 fileset->partitionReferenceNum);
776
777 sbi->s_partition = fileset->partitionReferenceNum;
778 udf_load_fileset(sb, bh, root);
779 brelse(bh);
780 return 0;
781 }
782 return 1;
783 }
784
785 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
786 {
787 struct primaryVolDesc *pvoldesc;
788 struct ustr *instr, *outstr;
789 struct buffer_head *bh;
790 uint16_t ident;
791 int ret = 1;
792
793 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
794 if (!instr)
795 return 1;
796
797 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
798 if (!outstr)
799 goto out1;
800
801 bh = udf_read_tagged(sb, block, block, &ident);
802 if (!bh)
803 goto out2;
804
805 BUG_ON(ident != TAG_IDENT_PVD);
806
807 pvoldesc = (struct primaryVolDesc *)bh->b_data;
808
809 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
810 pvoldesc->recordingDateAndTime)) {
811 #ifdef UDFFS_DEBUG
812 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
813 udf_debug("recording time %04u/%02u/%02u"
814 " %02u:%02u (%x)\n",
815 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
816 ts->minute, le16_to_cpu(ts->typeAndTimezone));
817 #endif
818 }
819
820 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
821 if (udf_CS0toUTF8(outstr, instr)) {
822 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
823 outstr->u_len > 31 ? 31 : outstr->u_len);
824 udf_debug("volIdent[] = '%s'\n",
825 UDF_SB(sb)->s_volume_ident);
826 }
827
828 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
829 if (udf_CS0toUTF8(outstr, instr))
830 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
831
832 brelse(bh);
833 ret = 0;
834 out2:
835 kfree(outstr);
836 out1:
837 kfree(instr);
838 return ret;
839 }
840
841 static int udf_load_metadata_files(struct super_block *sb, int partition)
842 {
843 struct udf_sb_info *sbi = UDF_SB(sb);
844 struct udf_part_map *map;
845 struct udf_meta_data *mdata;
846 struct kernel_lb_addr addr;
847 int fe_error = 0;
848
849 map = &sbi->s_partmaps[partition];
850 mdata = &map->s_type_specific.s_metadata;
851
852 /* metadata address */
853 addr.logicalBlockNum = mdata->s_meta_file_loc;
854 addr.partitionReferenceNum = map->s_partition_num;
855
856 udf_debug("Metadata file location: block = %d part = %d\n",
857 addr.logicalBlockNum, addr.partitionReferenceNum);
858
859 mdata->s_metadata_fe = udf_iget(sb, &addr);
860
861 if (mdata->s_metadata_fe == NULL) {
862 udf_warning(sb, __func__, "metadata inode efe not found, "
863 "will try mirror inode.");
864 fe_error = 1;
865 } else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type !=
866 ICBTAG_FLAG_AD_SHORT) {
867 udf_warning(sb, __func__, "metadata inode efe does not have "
868 "short allocation descriptors!");
869 fe_error = 1;
870 iput(mdata->s_metadata_fe);
871 mdata->s_metadata_fe = NULL;
872 }
873
874 /* mirror file entry */
875 addr.logicalBlockNum = mdata->s_mirror_file_loc;
876 addr.partitionReferenceNum = map->s_partition_num;
877
878 udf_debug("Mirror metadata file location: block = %d part = %d\n",
879 addr.logicalBlockNum, addr.partitionReferenceNum);
880
881 mdata->s_mirror_fe = udf_iget(sb, &addr);
882
883 if (mdata->s_mirror_fe == NULL) {
884 if (fe_error) {
885 udf_error(sb, __func__, "mirror inode efe not found "
886 "and metadata inode is missing too, exiting...");
887 goto error_exit;
888 } else
889 udf_warning(sb, __func__, "mirror inode efe not found,"
890 " but metadata inode is OK");
891 } else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type !=
892 ICBTAG_FLAG_AD_SHORT) {
893 udf_warning(sb, __func__, "mirror inode efe does not have "
894 "short allocation descriptors!");
895 iput(mdata->s_mirror_fe);
896 mdata->s_mirror_fe = NULL;
897 if (fe_error)
898 goto error_exit;
899 }
900
901 /*
902 * bitmap file entry
903 * Note:
904 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
905 */
906 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
907 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
908 addr.partitionReferenceNum = map->s_partition_num;
909
910 udf_debug("Bitmap file location: block = %d part = %d\n",
911 addr.logicalBlockNum, addr.partitionReferenceNum);
912
913 mdata->s_bitmap_fe = udf_iget(sb, &addr);
914
915 if (mdata->s_bitmap_fe == NULL) {
916 if (sb->s_flags & MS_RDONLY)
917 udf_warning(sb, __func__, "bitmap inode efe "
918 "not found but it's ok since the disc"
919 " is mounted read-only");
920 else {
921 udf_error(sb, __func__, "bitmap inode efe not "
922 "found and attempted read-write mount");
923 goto error_exit;
924 }
925 }
926 }
927
928 udf_debug("udf_load_metadata_files Ok\n");
929
930 return 0;
931
932 error_exit:
933 return 1;
934 }
935
936 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
937 struct kernel_lb_addr *root)
938 {
939 struct fileSetDesc *fset;
940
941 fset = (struct fileSetDesc *)bh->b_data;
942
943 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
944
945 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
946
947 udf_debug("Rootdir at block=%d, partition=%d\n",
948 root->logicalBlockNum, root->partitionReferenceNum);
949 }
950
951 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
952 {
953 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
954 return DIV_ROUND_UP(map->s_partition_len +
955 (sizeof(struct spaceBitmapDesc) << 3),
956 sb->s_blocksize * 8);
957 }
958
959 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
960 {
961 struct udf_bitmap *bitmap;
962 int nr_groups;
963 int size;
964
965 nr_groups = udf_compute_nr_groups(sb, index);
966 size = sizeof(struct udf_bitmap) +
967 (sizeof(struct buffer_head *) * nr_groups);
968
969 if (size <= PAGE_SIZE)
970 bitmap = kmalloc(size, GFP_KERNEL);
971 else
972 bitmap = vmalloc(size); /* TODO: get rid of vmalloc */
973
974 if (bitmap == NULL) {
975 udf_error(sb, __func__,
976 "Unable to allocate space for bitmap "
977 "and %d buffer_head pointers", nr_groups);
978 return NULL;
979 }
980
981 memset(bitmap, 0x00, size);
982 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
983 bitmap->s_nr_groups = nr_groups;
984 return bitmap;
985 }
986
987 static int udf_fill_partdesc_info(struct super_block *sb,
988 struct partitionDesc *p, int p_index)
989 {
990 struct udf_part_map *map;
991 struct udf_sb_info *sbi = UDF_SB(sb);
992 struct partitionHeaderDesc *phd;
993
994 map = &sbi->s_partmaps[p_index];
995
996 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
997 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
998
999 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1000 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1001 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1002 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1003 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1004 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1005 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1006 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1007
1008 udf_debug("Partition (%d type %x) starts at physical %d, "
1009 "block length %d\n", p_index,
1010 map->s_partition_type, map->s_partition_root,
1011 map->s_partition_len);
1012
1013 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1014 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1015 return 0;
1016
1017 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1018 if (phd->unallocSpaceTable.extLength) {
1019 struct kernel_lb_addr loc = {
1020 .logicalBlockNum = le32_to_cpu(
1021 phd->unallocSpaceTable.extPosition),
1022 .partitionReferenceNum = p_index,
1023 };
1024
1025 map->s_uspace.s_table = udf_iget(sb, &loc);
1026 if (!map->s_uspace.s_table) {
1027 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1028 p_index);
1029 return 1;
1030 }
1031 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1032 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1033 p_index, map->s_uspace.s_table->i_ino);
1034 }
1035
1036 if (phd->unallocSpaceBitmap.extLength) {
1037 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1038 if (!bitmap)
1039 return 1;
1040 map->s_uspace.s_bitmap = bitmap;
1041 bitmap->s_extLength = le32_to_cpu(
1042 phd->unallocSpaceBitmap.extLength);
1043 bitmap->s_extPosition = le32_to_cpu(
1044 phd->unallocSpaceBitmap.extPosition);
1045 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1046 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index,
1047 bitmap->s_extPosition);
1048 }
1049
1050 if (phd->partitionIntegrityTable.extLength)
1051 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1052
1053 if (phd->freedSpaceTable.extLength) {
1054 struct kernel_lb_addr loc = {
1055 .logicalBlockNum = le32_to_cpu(
1056 phd->freedSpaceTable.extPosition),
1057 .partitionReferenceNum = p_index,
1058 };
1059
1060 map->s_fspace.s_table = udf_iget(sb, &loc);
1061 if (!map->s_fspace.s_table) {
1062 udf_debug("cannot load freedSpaceTable (part %d)\n",
1063 p_index);
1064 return 1;
1065 }
1066
1067 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1068 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1069 p_index, map->s_fspace.s_table->i_ino);
1070 }
1071
1072 if (phd->freedSpaceBitmap.extLength) {
1073 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1074 if (!bitmap)
1075 return 1;
1076 map->s_fspace.s_bitmap = bitmap;
1077 bitmap->s_extLength = le32_to_cpu(
1078 phd->freedSpaceBitmap.extLength);
1079 bitmap->s_extPosition = le32_to_cpu(
1080 phd->freedSpaceBitmap.extPosition);
1081 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1082 udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index,
1083 bitmap->s_extPosition);
1084 }
1085 return 0;
1086 }
1087
1088 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1089 {
1090 struct udf_sb_info *sbi = UDF_SB(sb);
1091 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1092 struct kernel_lb_addr ino;
1093 struct buffer_head *bh = NULL;
1094 struct udf_inode_info *vati;
1095 uint32_t pos;
1096 struct virtualAllocationTable20 *vat20;
1097
1098 /* VAT file entry is in the last recorded block */
1099 ino.partitionReferenceNum = type1_index;
1100 ino.logicalBlockNum = sbi->s_last_block - map->s_partition_root;
1101 sbi->s_vat_inode = udf_iget(sb, &ino);
1102 if (!sbi->s_vat_inode)
1103 return 1;
1104
1105 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1106 map->s_type_specific.s_virtual.s_start_offset = 0;
1107 map->s_type_specific.s_virtual.s_num_entries =
1108 (sbi->s_vat_inode->i_size - 36) >> 2;
1109 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1110 vati = UDF_I(sbi->s_vat_inode);
1111 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1112 pos = udf_block_map(sbi->s_vat_inode, 0);
1113 bh = sb_bread(sb, pos);
1114 if (!bh)
1115 return 1;
1116 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1117 } else {
1118 vat20 = (struct virtualAllocationTable20 *)
1119 vati->i_ext.i_data;
1120 }
1121
1122 map->s_type_specific.s_virtual.s_start_offset =
1123 le16_to_cpu(vat20->lengthHeader);
1124 map->s_type_specific.s_virtual.s_num_entries =
1125 (sbi->s_vat_inode->i_size -
1126 map->s_type_specific.s_virtual.
1127 s_start_offset) >> 2;
1128 brelse(bh);
1129 }
1130 return 0;
1131 }
1132
1133 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1134 {
1135 struct buffer_head *bh;
1136 struct partitionDesc *p;
1137 struct udf_part_map *map;
1138 struct udf_sb_info *sbi = UDF_SB(sb);
1139 int i, type1_idx;
1140 uint16_t partitionNumber;
1141 uint16_t ident;
1142 int ret = 0;
1143
1144 bh = udf_read_tagged(sb, block, block, &ident);
1145 if (!bh)
1146 return 1;
1147 if (ident != TAG_IDENT_PD)
1148 goto out_bh;
1149
1150 p = (struct partitionDesc *)bh->b_data;
1151 partitionNumber = le16_to_cpu(p->partitionNumber);
1152
1153 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1154 for (i = 0; i < sbi->s_partitions; i++) {
1155 map = &sbi->s_partmaps[i];
1156 udf_debug("Searching map: (%d == %d)\n",
1157 map->s_partition_num, partitionNumber);
1158 if (map->s_partition_num == partitionNumber &&
1159 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1160 map->s_partition_type == UDF_SPARABLE_MAP15))
1161 break;
1162 }
1163
1164 if (i >= sbi->s_partitions) {
1165 udf_debug("Partition (%d) not found in partition map\n",
1166 partitionNumber);
1167 goto out_bh;
1168 }
1169
1170 ret = udf_fill_partdesc_info(sb, p, i);
1171
1172 /*
1173 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1174 * PHYSICAL partitions are already set up
1175 */
1176 type1_idx = i;
1177 for (i = 0; i < sbi->s_partitions; i++) {
1178 map = &sbi->s_partmaps[i];
1179
1180 if (map->s_partition_num == partitionNumber &&
1181 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1182 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1183 map->s_partition_type == UDF_METADATA_MAP25))
1184 break;
1185 }
1186
1187 if (i >= sbi->s_partitions)
1188 goto out_bh;
1189
1190 ret = udf_fill_partdesc_info(sb, p, i);
1191 if (ret)
1192 goto out_bh;
1193
1194 if (map->s_partition_type == UDF_METADATA_MAP25) {
1195 ret = udf_load_metadata_files(sb, i);
1196 if (ret) {
1197 printk(KERN_ERR "UDF-fs: error loading MetaData "
1198 "partition map %d\n", i);
1199 goto out_bh;
1200 }
1201 } else {
1202 ret = udf_load_vat(sb, i, type1_idx);
1203 if (ret)
1204 goto out_bh;
1205 /*
1206 * Mark filesystem read-only if we have a partition with
1207 * virtual map since we don't handle writing to it (we
1208 * overwrite blocks instead of relocating them).
1209 */
1210 sb->s_flags |= MS_RDONLY;
1211 printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only "
1212 "because writing to pseudooverwrite partition is "
1213 "not implemented.\n");
1214 }
1215 out_bh:
1216 /* In case loading failed, we handle cleanup in udf_fill_super */
1217 brelse(bh);
1218 return ret;
1219 }
1220
1221 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1222 struct kernel_lb_addr *fileset)
1223 {
1224 struct logicalVolDesc *lvd;
1225 int i, j, offset;
1226 uint8_t type;
1227 struct udf_sb_info *sbi = UDF_SB(sb);
1228 struct genericPartitionMap *gpm;
1229 uint16_t ident;
1230 struct buffer_head *bh;
1231 int ret = 0;
1232
1233 bh = udf_read_tagged(sb, block, block, &ident);
1234 if (!bh)
1235 return 1;
1236 BUG_ON(ident != TAG_IDENT_LVD);
1237 lvd = (struct logicalVolDesc *)bh->b_data;
1238
1239 i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1240 if (i != 0) {
1241 ret = i;
1242 goto out_bh;
1243 }
1244
1245 for (i = 0, offset = 0;
1246 i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1247 i++, offset += gpm->partitionMapLength) {
1248 struct udf_part_map *map = &sbi->s_partmaps[i];
1249 gpm = (struct genericPartitionMap *)
1250 &(lvd->partitionMaps[offset]);
1251 type = gpm->partitionMapType;
1252 if (type == 1) {
1253 struct genericPartitionMap1 *gpm1 =
1254 (struct genericPartitionMap1 *)gpm;
1255 map->s_partition_type = UDF_TYPE1_MAP15;
1256 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1257 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1258 map->s_partition_func = NULL;
1259 } else if (type == 2) {
1260 struct udfPartitionMap2 *upm2 =
1261 (struct udfPartitionMap2 *)gpm;
1262 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1263 strlen(UDF_ID_VIRTUAL))) {
1264 u16 suf =
1265 le16_to_cpu(((__le16 *)upm2->partIdent.
1266 identSuffix)[0]);
1267 if (suf < 0x0200) {
1268 map->s_partition_type =
1269 UDF_VIRTUAL_MAP15;
1270 map->s_partition_func =
1271 udf_get_pblock_virt15;
1272 } else {
1273 map->s_partition_type =
1274 UDF_VIRTUAL_MAP20;
1275 map->s_partition_func =
1276 udf_get_pblock_virt20;
1277 }
1278 } else if (!strncmp(upm2->partIdent.ident,
1279 UDF_ID_SPARABLE,
1280 strlen(UDF_ID_SPARABLE))) {
1281 uint32_t loc;
1282 struct sparingTable *st;
1283 struct sparablePartitionMap *spm =
1284 (struct sparablePartitionMap *)gpm;
1285
1286 map->s_partition_type = UDF_SPARABLE_MAP15;
1287 map->s_type_specific.s_sparing.s_packet_len =
1288 le16_to_cpu(spm->packetLength);
1289 for (j = 0; j < spm->numSparingTables; j++) {
1290 struct buffer_head *bh2;
1291
1292 loc = le32_to_cpu(
1293 spm->locSparingTable[j]);
1294 bh2 = udf_read_tagged(sb, loc, loc,
1295 &ident);
1296 map->s_type_specific.s_sparing.
1297 s_spar_map[j] = bh2;
1298
1299 if (bh2 == NULL)
1300 continue;
1301
1302 st = (struct sparingTable *)bh2->b_data;
1303 if (ident != 0 || strncmp(
1304 st->sparingIdent.ident,
1305 UDF_ID_SPARING,
1306 strlen(UDF_ID_SPARING))) {
1307 brelse(bh2);
1308 map->s_type_specific.s_sparing.
1309 s_spar_map[j] = NULL;
1310 }
1311 }
1312 map->s_partition_func = udf_get_pblock_spar15;
1313 } else if (!strncmp(upm2->partIdent.ident,
1314 UDF_ID_METADATA,
1315 strlen(UDF_ID_METADATA))) {
1316 struct udf_meta_data *mdata =
1317 &map->s_type_specific.s_metadata;
1318 struct metadataPartitionMap *mdm =
1319 (struct metadataPartitionMap *)
1320 &(lvd->partitionMaps[offset]);
1321 udf_debug("Parsing Logical vol part %d "
1322 "type %d id=%s\n", i, type,
1323 UDF_ID_METADATA);
1324
1325 map->s_partition_type = UDF_METADATA_MAP25;
1326 map->s_partition_func = udf_get_pblock_meta25;
1327
1328 mdata->s_meta_file_loc =
1329 le32_to_cpu(mdm->metadataFileLoc);
1330 mdata->s_mirror_file_loc =
1331 le32_to_cpu(mdm->metadataMirrorFileLoc);
1332 mdata->s_bitmap_file_loc =
1333 le32_to_cpu(mdm->metadataBitmapFileLoc);
1334 mdata->s_alloc_unit_size =
1335 le32_to_cpu(mdm->allocUnitSize);
1336 mdata->s_align_unit_size =
1337 le16_to_cpu(mdm->alignUnitSize);
1338 mdata->s_dup_md_flag =
1339 mdm->flags & 0x01;
1340
1341 udf_debug("Metadata Ident suffix=0x%x\n",
1342 (le16_to_cpu(
1343 ((__le16 *)
1344 mdm->partIdent.identSuffix)[0])));
1345 udf_debug("Metadata part num=%d\n",
1346 le16_to_cpu(mdm->partitionNum));
1347 udf_debug("Metadata part alloc unit size=%d\n",
1348 le32_to_cpu(mdm->allocUnitSize));
1349 udf_debug("Metadata file loc=%d\n",
1350 le32_to_cpu(mdm->metadataFileLoc));
1351 udf_debug("Mirror file loc=%d\n",
1352 le32_to_cpu(mdm->metadataMirrorFileLoc));
1353 udf_debug("Bitmap file loc=%d\n",
1354 le32_to_cpu(mdm->metadataBitmapFileLoc));
1355 udf_debug("Duplicate Flag: %d %d\n",
1356 mdata->s_dup_md_flag, mdm->flags);
1357 } else {
1358 udf_debug("Unknown ident: %s\n",
1359 upm2->partIdent.ident);
1360 continue;
1361 }
1362 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1363 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1364 }
1365 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1366 i, map->s_partition_num, type,
1367 map->s_volumeseqnum);
1368 }
1369
1370 if (fileset) {
1371 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1372
1373 *fileset = lelb_to_cpu(la->extLocation);
1374 udf_debug("FileSet found in LogicalVolDesc at block=%d, "
1375 "partition=%d\n", fileset->logicalBlockNum,
1376 fileset->partitionReferenceNum);
1377 }
1378 if (lvd->integritySeqExt.extLength)
1379 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1380
1381 out_bh:
1382 brelse(bh);
1383 return ret;
1384 }
1385
1386 /*
1387 * udf_load_logicalvolint
1388 *
1389 */
1390 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1391 {
1392 struct buffer_head *bh = NULL;
1393 uint16_t ident;
1394 struct udf_sb_info *sbi = UDF_SB(sb);
1395 struct logicalVolIntegrityDesc *lvid;
1396
1397 while (loc.extLength > 0 &&
1398 (bh = udf_read_tagged(sb, loc.extLocation,
1399 loc.extLocation, &ident)) &&
1400 ident == TAG_IDENT_LVID) {
1401 sbi->s_lvid_bh = bh;
1402 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1403
1404 if (lvid->nextIntegrityExt.extLength)
1405 udf_load_logicalvolint(sb,
1406 leea_to_cpu(lvid->nextIntegrityExt));
1407
1408 if (sbi->s_lvid_bh != bh)
1409 brelse(bh);
1410 loc.extLength -= sb->s_blocksize;
1411 loc.extLocation++;
1412 }
1413 if (sbi->s_lvid_bh != bh)
1414 brelse(bh);
1415 }
1416
1417 /*
1418 * udf_process_sequence
1419 *
1420 * PURPOSE
1421 * Process a main/reserve volume descriptor sequence.
1422 *
1423 * PRE-CONDITIONS
1424 * sb Pointer to _locked_ superblock.
1425 * block First block of first extent of the sequence.
1426 * lastblock Lastblock of first extent of the sequence.
1427 *
1428 * HISTORY
1429 * July 1, 1997 - Andrew E. Mileski
1430 * Written, tested, and released.
1431 */
1432 static noinline int udf_process_sequence(struct super_block *sb, long block,
1433 long lastblock, struct kernel_lb_addr *fileset)
1434 {
1435 struct buffer_head *bh = NULL;
1436 struct udf_vds_record vds[VDS_POS_LENGTH];
1437 struct udf_vds_record *curr;
1438 struct generic_desc *gd;
1439 struct volDescPtr *vdp;
1440 int done = 0;
1441 uint32_t vdsn;
1442 uint16_t ident;
1443 long next_s = 0, next_e = 0;
1444
1445 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1446
1447 /*
1448 * Read the main descriptor sequence and find which descriptors
1449 * are in it.
1450 */
1451 for (; (!done && block <= lastblock); block++) {
1452
1453 bh = udf_read_tagged(sb, block, block, &ident);
1454 if (!bh) {
1455 printk(KERN_ERR "udf: Block %Lu of volume descriptor "
1456 "sequence is corrupted or we could not read "
1457 "it.\n", (unsigned long long)block);
1458 return 1;
1459 }
1460
1461 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1462 gd = (struct generic_desc *)bh->b_data;
1463 vdsn = le32_to_cpu(gd->volDescSeqNum);
1464 switch (ident) {
1465 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1466 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1467 if (vdsn >= curr->volDescSeqNum) {
1468 curr->volDescSeqNum = vdsn;
1469 curr->block = block;
1470 }
1471 break;
1472 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1473 curr = &vds[VDS_POS_VOL_DESC_PTR];
1474 if (vdsn >= curr->volDescSeqNum) {
1475 curr->volDescSeqNum = vdsn;
1476 curr->block = block;
1477
1478 vdp = (struct volDescPtr *)bh->b_data;
1479 next_s = le32_to_cpu(
1480 vdp->nextVolDescSeqExt.extLocation);
1481 next_e = le32_to_cpu(
1482 vdp->nextVolDescSeqExt.extLength);
1483 next_e = next_e >> sb->s_blocksize_bits;
1484 next_e += next_s;
1485 }
1486 break;
1487 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1488 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1489 if (vdsn >= curr->volDescSeqNum) {
1490 curr->volDescSeqNum = vdsn;
1491 curr->block = block;
1492 }
1493 break;
1494 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1495 curr = &vds[VDS_POS_PARTITION_DESC];
1496 if (!curr->block)
1497 curr->block = block;
1498 break;
1499 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1500 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1501 if (vdsn >= curr->volDescSeqNum) {
1502 curr->volDescSeqNum = vdsn;
1503 curr->block = block;
1504 }
1505 break;
1506 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1507 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1508 if (vdsn >= curr->volDescSeqNum) {
1509 curr->volDescSeqNum = vdsn;
1510 curr->block = block;
1511 }
1512 break;
1513 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1514 vds[VDS_POS_TERMINATING_DESC].block = block;
1515 if (next_e) {
1516 block = next_s;
1517 lastblock = next_e;
1518 next_s = next_e = 0;
1519 } else
1520 done = 1;
1521 break;
1522 }
1523 brelse(bh);
1524 }
1525 /*
1526 * Now read interesting descriptors again and process them
1527 * in a suitable order
1528 */
1529 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1530 printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n");
1531 return 1;
1532 }
1533 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1534 return 1;
1535
1536 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1537 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1538 return 1;
1539
1540 if (vds[VDS_POS_PARTITION_DESC].block) {
1541 /*
1542 * We rescan the whole descriptor sequence to find
1543 * partition descriptor blocks and process them.
1544 */
1545 for (block = vds[VDS_POS_PARTITION_DESC].block;
1546 block < vds[VDS_POS_TERMINATING_DESC].block;
1547 block++)
1548 if (udf_load_partdesc(sb, block))
1549 return 1;
1550 }
1551
1552 return 0;
1553 }
1554
1555 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1556 struct kernel_lb_addr *fileset)
1557 {
1558 struct anchorVolDescPtr *anchor;
1559 long main_s, main_e, reserve_s, reserve_e;
1560 struct udf_sb_info *sbi;
1561
1562 sbi = UDF_SB(sb);
1563 anchor = (struct anchorVolDescPtr *)bh->b_data;
1564
1565 /* Locate the main sequence */
1566 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1567 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1568 main_e = main_e >> sb->s_blocksize_bits;
1569 main_e += main_s;
1570
1571 /* Locate the reserve sequence */
1572 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1573 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1574 reserve_e = reserve_e >> sb->s_blocksize_bits;
1575 reserve_e += reserve_s;
1576
1577 /* Process the main & reserve sequences */
1578 /* responsible for finding the PartitionDesc(s) */
1579 if (!udf_process_sequence(sb, main_s, main_e, fileset))
1580 return 1;
1581 return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1582 }
1583
1584 /*
1585 * Check whether there is an anchor block in the given block and
1586 * load Volume Descriptor Sequence if so.
1587 */
1588 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1589 struct kernel_lb_addr *fileset)
1590 {
1591 struct buffer_head *bh;
1592 uint16_t ident;
1593 int ret;
1594
1595 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1596 udf_fixed_to_variable(block) >=
1597 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1598 return 0;
1599
1600 bh = udf_read_tagged(sb, block, block, &ident);
1601 if (!bh)
1602 return 0;
1603 if (ident != TAG_IDENT_AVDP) {
1604 brelse(bh);
1605 return 0;
1606 }
1607 ret = udf_load_sequence(sb, bh, fileset);
1608 brelse(bh);
1609 return ret;
1610 }
1611
1612 /* Search for an anchor volume descriptor pointer */
1613 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1614 struct kernel_lb_addr *fileset)
1615 {
1616 sector_t last[6];
1617 int i;
1618 struct udf_sb_info *sbi = UDF_SB(sb);
1619 int last_count = 0;
1620
1621 /* First try user provided anchor */
1622 if (sbi->s_anchor) {
1623 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1624 return lastblock;
1625 }
1626 /*
1627 * according to spec, anchor is in either:
1628 * block 256
1629 * lastblock-256
1630 * lastblock
1631 * however, if the disc isn't closed, it could be 512.
1632 */
1633 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1634 return lastblock;
1635 /*
1636 * The trouble is which block is the last one. Drives often misreport
1637 * this so we try various possibilities.
1638 */
1639 last[last_count++] = lastblock;
1640 if (lastblock >= 1)
1641 last[last_count++] = lastblock - 1;
1642 last[last_count++] = lastblock + 1;
1643 if (lastblock >= 2)
1644 last[last_count++] = lastblock - 2;
1645 if (lastblock >= 150)
1646 last[last_count++] = lastblock - 150;
1647 if (lastblock >= 152)
1648 last[last_count++] = lastblock - 152;
1649
1650 for (i = 0; i < last_count; i++) {
1651 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1652 sb->s_blocksize_bits)
1653 continue;
1654 if (udf_check_anchor_block(sb, last[i], fileset))
1655 return last[i];
1656 if (last[i] < 256)
1657 continue;
1658 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1659 return last[i];
1660 }
1661
1662 /* Finally try block 512 in case media is open */
1663 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1664 return last[0];
1665 return 0;
1666 }
1667
1668 /*
1669 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1670 * area specified by it. The function expects sbi->s_lastblock to be the last
1671 * block on the media.
1672 *
1673 * Return 1 if ok, 0 if not found.
1674 *
1675 */
1676 static int udf_find_anchor(struct super_block *sb,
1677 struct kernel_lb_addr *fileset)
1678 {
1679 sector_t lastblock;
1680 struct udf_sb_info *sbi = UDF_SB(sb);
1681
1682 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1683 if (lastblock)
1684 goto out;
1685
1686 /* No anchor found? Try VARCONV conversion of block numbers */
1687 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1688 /* Firstly, we try to not convert number of the last block */
1689 lastblock = udf_scan_anchors(sb,
1690 udf_variable_to_fixed(sbi->s_last_block),
1691 fileset);
1692 if (lastblock)
1693 goto out;
1694
1695 /* Secondly, we try with converted number of the last block */
1696 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1697 if (!lastblock) {
1698 /* VARCONV didn't help. Clear it. */
1699 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1700 return 0;
1701 }
1702 out:
1703 sbi->s_last_block = lastblock;
1704 return 1;
1705 }
1706
1707 /*
1708 * Check Volume Structure Descriptor, find Anchor block and load Volume
1709 * Descriptor Sequence
1710 */
1711 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1712 int silent, struct kernel_lb_addr *fileset)
1713 {
1714 struct udf_sb_info *sbi = UDF_SB(sb);
1715 loff_t nsr_off;
1716
1717 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1718 if (!silent)
1719 printk(KERN_WARNING "UDF-fs: Bad block size\n");
1720 return 0;
1721 }
1722 sbi->s_last_block = uopt->lastblock;
1723 if (!uopt->novrs) {
1724 /* Check that it is NSR02 compliant */
1725 nsr_off = udf_check_vsd(sb);
1726 if (!nsr_off) {
1727 if (!silent)
1728 printk(KERN_WARNING "UDF-fs: No VRS found\n");
1729 return 0;
1730 }
1731 if (nsr_off == -1)
1732 udf_debug("Failed to read byte 32768. Assuming open "
1733 "disc. Skipping validity check\n");
1734 if (!sbi->s_last_block)
1735 sbi->s_last_block = udf_get_last_block(sb);
1736 } else {
1737 udf_debug("Validity check skipped because of novrs option\n");
1738 }
1739
1740 /* Look for anchor block and load Volume Descriptor Sequence */
1741 sbi->s_anchor = uopt->anchor;
1742 if (!udf_find_anchor(sb, fileset)) {
1743 if (!silent)
1744 printk(KERN_WARNING "UDF-fs: No anchor found\n");
1745 return 0;
1746 }
1747 return 1;
1748 }
1749
1750 static void udf_open_lvid(struct super_block *sb)
1751 {
1752 struct udf_sb_info *sbi = UDF_SB(sb);
1753 struct buffer_head *bh = sbi->s_lvid_bh;
1754 struct logicalVolIntegrityDesc *lvid;
1755 struct logicalVolIntegrityDescImpUse *lvidiu;
1756 if (!bh)
1757 return;
1758
1759 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1760 lvidiu = udf_sb_lvidiu(sbi);
1761
1762 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1763 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1764 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1765 CURRENT_TIME);
1766 lvid->integrityType = LVID_INTEGRITY_TYPE_OPEN;
1767
1768 lvid->descTag.descCRC = cpu_to_le16(
1769 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1770 le16_to_cpu(lvid->descTag.descCRCLength)));
1771
1772 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1773 mark_buffer_dirty(bh);
1774 }
1775
1776 static void udf_close_lvid(struct super_block *sb)
1777 {
1778 struct udf_sb_info *sbi = UDF_SB(sb);
1779 struct buffer_head *bh = sbi->s_lvid_bh;
1780 struct logicalVolIntegrityDesc *lvid;
1781 struct logicalVolIntegrityDescImpUse *lvidiu;
1782
1783 if (!bh)
1784 return;
1785
1786 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1787
1788 if (lvid->integrityType != LVID_INTEGRITY_TYPE_OPEN)
1789 return;
1790
1791 lvidiu = udf_sb_lvidiu(sbi);
1792 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1793 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1794 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1795 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1796 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1797 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1798 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1799 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1800 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1801 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1802
1803 lvid->descTag.descCRC = cpu_to_le16(
1804 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1805 le16_to_cpu(lvid->descTag.descCRCLength)));
1806
1807 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1808 mark_buffer_dirty(bh);
1809 }
1810
1811 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1812 {
1813 int i;
1814 int nr_groups = bitmap->s_nr_groups;
1815 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1816 nr_groups);
1817
1818 for (i = 0; i < nr_groups; i++)
1819 if (bitmap->s_block_bitmap[i])
1820 brelse(bitmap->s_block_bitmap[i]);
1821
1822 if (size <= PAGE_SIZE)
1823 kfree(bitmap);
1824 else
1825 vfree(bitmap);
1826 }
1827
1828 static void udf_free_partition(struct udf_part_map *map)
1829 {
1830 int i;
1831 struct udf_meta_data *mdata;
1832
1833 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1834 iput(map->s_uspace.s_table);
1835 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1836 iput(map->s_fspace.s_table);
1837 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1838 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1839 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1840 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1841 if (map->s_partition_type == UDF_SPARABLE_MAP15)
1842 for (i = 0; i < 4; i++)
1843 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1844 else if (map->s_partition_type == UDF_METADATA_MAP25) {
1845 mdata = &map->s_type_specific.s_metadata;
1846 iput(mdata->s_metadata_fe);
1847 mdata->s_metadata_fe = NULL;
1848
1849 iput(mdata->s_mirror_fe);
1850 mdata->s_mirror_fe = NULL;
1851
1852 iput(mdata->s_bitmap_fe);
1853 mdata->s_bitmap_fe = NULL;
1854 }
1855 }
1856
1857 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1858 {
1859 int i;
1860 int ret;
1861 struct inode *inode = NULL;
1862 struct udf_options uopt;
1863 struct kernel_lb_addr rootdir, fileset;
1864 struct udf_sb_info *sbi;
1865
1866 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1867 uopt.uid = -1;
1868 uopt.gid = -1;
1869 uopt.umask = 0;
1870 uopt.fmode = UDF_INVALID_MODE;
1871 uopt.dmode = UDF_INVALID_MODE;
1872
1873 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1874 if (!sbi)
1875 return -ENOMEM;
1876
1877 sb->s_fs_info = sbi;
1878
1879 mutex_init(&sbi->s_alloc_mutex);
1880
1881 if (!udf_parse_options((char *)options, &uopt, false))
1882 goto error_out;
1883
1884 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1885 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1886 udf_error(sb, "udf_read_super",
1887 "utf8 cannot be combined with iocharset\n");
1888 goto error_out;
1889 }
1890 #ifdef CONFIG_UDF_NLS
1891 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1892 uopt.nls_map = load_nls_default();
1893 if (!uopt.nls_map)
1894 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1895 else
1896 udf_debug("Using default NLS map\n");
1897 }
1898 #endif
1899 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1900 uopt.flags |= (1 << UDF_FLAG_UTF8);
1901
1902 fileset.logicalBlockNum = 0xFFFFFFFF;
1903 fileset.partitionReferenceNum = 0xFFFF;
1904
1905 sbi->s_flags = uopt.flags;
1906 sbi->s_uid = uopt.uid;
1907 sbi->s_gid = uopt.gid;
1908 sbi->s_umask = uopt.umask;
1909 sbi->s_fmode = uopt.fmode;
1910 sbi->s_dmode = uopt.dmode;
1911 sbi->s_nls_map = uopt.nls_map;
1912
1913 if (uopt.session == 0xFFFFFFFF)
1914 sbi->s_session = udf_get_last_session(sb);
1915 else
1916 sbi->s_session = uopt.session;
1917
1918 udf_debug("Multi-session=%d\n", sbi->s_session);
1919
1920 /* Fill in the rest of the superblock */
1921 sb->s_op = &udf_sb_ops;
1922 sb->s_export_op = &udf_export_ops;
1923 sb->dq_op = NULL;
1924 sb->s_dirt = 0;
1925 sb->s_magic = UDF_SUPER_MAGIC;
1926 sb->s_time_gran = 1000;
1927
1928 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1929 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1930 } else {
1931 uopt.blocksize = bdev_hardsect_size(sb->s_bdev);
1932 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1933 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1934 if (!silent)
1935 printk(KERN_NOTICE
1936 "UDF-fs: Rescanning with blocksize "
1937 "%d\n", UDF_DEFAULT_BLOCKSIZE);
1938 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1939 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1940 }
1941 }
1942 if (!ret) {
1943 printk(KERN_WARNING "UDF-fs: No partition found (1)\n");
1944 goto error_out;
1945 }
1946
1947 udf_debug("Lastblock=%d\n", sbi->s_last_block);
1948
1949 if (sbi->s_lvid_bh) {
1950 struct logicalVolIntegrityDescImpUse *lvidiu =
1951 udf_sb_lvidiu(sbi);
1952 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
1953 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
1954 /* uint16_t maxUDFWriteRev =
1955 le16_to_cpu(lvidiu->maxUDFWriteRev); */
1956
1957 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
1958 printk(KERN_ERR "UDF-fs: minUDFReadRev=%x "
1959 "(max is %x)\n",
1960 le16_to_cpu(lvidiu->minUDFReadRev),
1961 UDF_MAX_READ_VERSION);
1962 goto error_out;
1963 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
1964 sb->s_flags |= MS_RDONLY;
1965
1966 sbi->s_udfrev = minUDFWriteRev;
1967
1968 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
1969 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
1970 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
1971 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
1972 }
1973
1974 if (!sbi->s_partitions) {
1975 printk(KERN_WARNING "UDF-fs: No partition found (2)\n");
1976 goto error_out;
1977 }
1978
1979 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
1980 UDF_PART_FLAG_READ_ONLY) {
1981 printk(KERN_NOTICE "UDF-fs: Partition marked readonly; "
1982 "forcing readonly mount\n");
1983 sb->s_flags |= MS_RDONLY;
1984 }
1985
1986 if (udf_find_fileset(sb, &fileset, &rootdir)) {
1987 printk(KERN_WARNING "UDF-fs: No fileset found\n");
1988 goto error_out;
1989 }
1990
1991 if (!silent) {
1992 struct timestamp ts;
1993 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
1994 udf_info("UDF: Mounting volume '%s', "
1995 "timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
1996 sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day,
1997 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
1998 }
1999 if (!(sb->s_flags & MS_RDONLY))
2000 udf_open_lvid(sb);
2001
2002 /* Assign the root inode */
2003 /* assign inodes by physical block number */
2004 /* perhaps it's not extensible enough, but for now ... */
2005 inode = udf_iget(sb, &rootdir);
2006 if (!inode) {
2007 printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, "
2008 "partition=%d\n",
2009 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2010 goto error_out;
2011 }
2012
2013 /* Allocate a dentry for the root inode */
2014 sb->s_root = d_alloc_root(inode);
2015 if (!sb->s_root) {
2016 printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n");
2017 iput(inode);
2018 goto error_out;
2019 }
2020 sb->s_maxbytes = MAX_LFS_FILESIZE;
2021 return 0;
2022
2023 error_out:
2024 if (sbi->s_vat_inode)
2025 iput(sbi->s_vat_inode);
2026 if (sbi->s_partitions)
2027 for (i = 0; i < sbi->s_partitions; i++)
2028 udf_free_partition(&sbi->s_partmaps[i]);
2029 #ifdef CONFIG_UDF_NLS
2030 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2031 unload_nls(sbi->s_nls_map);
2032 #endif
2033 if (!(sb->s_flags & MS_RDONLY))
2034 udf_close_lvid(sb);
2035 brelse(sbi->s_lvid_bh);
2036
2037 kfree(sbi->s_partmaps);
2038 kfree(sbi);
2039 sb->s_fs_info = NULL;
2040
2041 return -EINVAL;
2042 }
2043
2044 static void udf_error(struct super_block *sb, const char *function,
2045 const char *fmt, ...)
2046 {
2047 va_list args;
2048
2049 if (!(sb->s_flags & MS_RDONLY)) {
2050 /* mark sb error */
2051 sb->s_dirt = 1;
2052 }
2053 va_start(args, fmt);
2054 vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2055 va_end(args);
2056 printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n",
2057 sb->s_id, function, error_buf);
2058 }
2059
2060 void udf_warning(struct super_block *sb, const char *function,
2061 const char *fmt, ...)
2062 {
2063 va_list args;
2064
2065 va_start(args, fmt);
2066 vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2067 va_end(args);
2068 printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n",
2069 sb->s_id, function, error_buf);
2070 }
2071
2072 static void udf_put_super(struct super_block *sb)
2073 {
2074 int i;
2075 struct udf_sb_info *sbi;
2076
2077 sbi = UDF_SB(sb);
2078 if (sbi->s_vat_inode)
2079 iput(sbi->s_vat_inode);
2080 if (sbi->s_partitions)
2081 for (i = 0; i < sbi->s_partitions; i++)
2082 udf_free_partition(&sbi->s_partmaps[i]);
2083 #ifdef CONFIG_UDF_NLS
2084 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2085 unload_nls(sbi->s_nls_map);
2086 #endif
2087 if (!(sb->s_flags & MS_RDONLY))
2088 udf_close_lvid(sb);
2089 brelse(sbi->s_lvid_bh);
2090 kfree(sbi->s_partmaps);
2091 kfree(sb->s_fs_info);
2092 sb->s_fs_info = NULL;
2093 }
2094
2095 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2096 {
2097 struct super_block *sb = dentry->d_sb;
2098 struct udf_sb_info *sbi = UDF_SB(sb);
2099 struct logicalVolIntegrityDescImpUse *lvidiu;
2100 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2101
2102 if (sbi->s_lvid_bh != NULL)
2103 lvidiu = udf_sb_lvidiu(sbi);
2104 else
2105 lvidiu = NULL;
2106
2107 buf->f_type = UDF_SUPER_MAGIC;
2108 buf->f_bsize = sb->s_blocksize;
2109 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2110 buf->f_bfree = udf_count_free(sb);
2111 buf->f_bavail = buf->f_bfree;
2112 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2113 le32_to_cpu(lvidiu->numDirs)) : 0)
2114 + buf->f_bfree;
2115 buf->f_ffree = buf->f_bfree;
2116 buf->f_namelen = UDF_NAME_LEN - 2;
2117 buf->f_fsid.val[0] = (u32)id;
2118 buf->f_fsid.val[1] = (u32)(id >> 32);
2119
2120 return 0;
2121 }
2122
2123 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2124 struct udf_bitmap *bitmap)
2125 {
2126 struct buffer_head *bh = NULL;
2127 unsigned int accum = 0;
2128 int index;
2129 int block = 0, newblock;
2130 struct kernel_lb_addr loc;
2131 uint32_t bytes;
2132 uint8_t *ptr;
2133 uint16_t ident;
2134 struct spaceBitmapDesc *bm;
2135
2136 lock_kernel();
2137
2138 loc.logicalBlockNum = bitmap->s_extPosition;
2139 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2140 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2141
2142 if (!bh) {
2143 printk(KERN_ERR "udf: udf_count_free failed\n");
2144 goto out;
2145 } else if (ident != TAG_IDENT_SBD) {
2146 brelse(bh);
2147 printk(KERN_ERR "udf: udf_count_free failed\n");
2148 goto out;
2149 }
2150
2151 bm = (struct spaceBitmapDesc *)bh->b_data;
2152 bytes = le32_to_cpu(bm->numOfBytes);
2153 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2154 ptr = (uint8_t *)bh->b_data;
2155
2156 while (bytes > 0) {
2157 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2158 accum += bitmap_weight((const unsigned long *)(ptr + index),
2159 cur_bytes * 8);
2160 bytes -= cur_bytes;
2161 if (bytes) {
2162 brelse(bh);
2163 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2164 bh = udf_tread(sb, newblock);
2165 if (!bh) {
2166 udf_debug("read failed\n");
2167 goto out;
2168 }
2169 index = 0;
2170 ptr = (uint8_t *)bh->b_data;
2171 }
2172 }
2173 brelse(bh);
2174
2175 out:
2176 unlock_kernel();
2177
2178 return accum;
2179 }
2180
2181 static unsigned int udf_count_free_table(struct super_block *sb,
2182 struct inode *table)
2183 {
2184 unsigned int accum = 0;
2185 uint32_t elen;
2186 struct kernel_lb_addr eloc;
2187 int8_t etype;
2188 struct extent_position epos;
2189
2190 lock_kernel();
2191
2192 epos.block = UDF_I(table)->i_location;
2193 epos.offset = sizeof(struct unallocSpaceEntry);
2194 epos.bh = NULL;
2195
2196 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2197 accum += (elen >> table->i_sb->s_blocksize_bits);
2198
2199 brelse(epos.bh);
2200
2201 unlock_kernel();
2202
2203 return accum;
2204 }
2205
2206 static unsigned int udf_count_free(struct super_block *sb)
2207 {
2208 unsigned int accum = 0;
2209 struct udf_sb_info *sbi;
2210 struct udf_part_map *map;
2211
2212 sbi = UDF_SB(sb);
2213 if (sbi->s_lvid_bh) {
2214 struct logicalVolIntegrityDesc *lvid =
2215 (struct logicalVolIntegrityDesc *)
2216 sbi->s_lvid_bh->b_data;
2217 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2218 accum = le32_to_cpu(
2219 lvid->freeSpaceTable[sbi->s_partition]);
2220 if (accum == 0xFFFFFFFF)
2221 accum = 0;
2222 }
2223 }
2224
2225 if (accum)
2226 return accum;
2227
2228 map = &sbi->s_partmaps[sbi->s_partition];
2229 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2230 accum += udf_count_free_bitmap(sb,
2231 map->s_uspace.s_bitmap);
2232 }
2233 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2234 accum += udf_count_free_bitmap(sb,
2235 map->s_fspace.s_bitmap);
2236 }
2237 if (accum)
2238 return accum;
2239
2240 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2241 accum += udf_count_free_table(sb,
2242 map->s_uspace.s_table);
2243 }
2244 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2245 accum += udf_count_free_table(sb,
2246 map->s_fspace.s_table);
2247 }
2248
2249 return accum;
2250 }
This page took 0.133144 seconds and 6 git commands to generate.