Merge tag 'docs-4.5' of git://git.lwn.net/linux
[deliverable/linux.git] / fs / xfs / libxfs / xfs_ialloc_btree.c
1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_inode.h"
27 #include "xfs_btree.h"
28 #include "xfs_ialloc.h"
29 #include "xfs_ialloc_btree.h"
30 #include "xfs_alloc.h"
31 #include "xfs_error.h"
32 #include "xfs_trace.h"
33 #include "xfs_cksum.h"
34 #include "xfs_trans.h"
35
36
37 STATIC int
38 xfs_inobt_get_minrecs(
39 struct xfs_btree_cur *cur,
40 int level)
41 {
42 return cur->bc_mp->m_inobt_mnr[level != 0];
43 }
44
45 STATIC struct xfs_btree_cur *
46 xfs_inobt_dup_cursor(
47 struct xfs_btree_cur *cur)
48 {
49 return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp,
50 cur->bc_private.a.agbp, cur->bc_private.a.agno,
51 cur->bc_btnum);
52 }
53
54 STATIC void
55 xfs_inobt_set_root(
56 struct xfs_btree_cur *cur,
57 union xfs_btree_ptr *nptr,
58 int inc) /* level change */
59 {
60 struct xfs_buf *agbp = cur->bc_private.a.agbp;
61 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
62
63 agi->agi_root = nptr->s;
64 be32_add_cpu(&agi->agi_level, inc);
65 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
66 }
67
68 STATIC void
69 xfs_finobt_set_root(
70 struct xfs_btree_cur *cur,
71 union xfs_btree_ptr *nptr,
72 int inc) /* level change */
73 {
74 struct xfs_buf *agbp = cur->bc_private.a.agbp;
75 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
76
77 agi->agi_free_root = nptr->s;
78 be32_add_cpu(&agi->agi_free_level, inc);
79 xfs_ialloc_log_agi(cur->bc_tp, agbp,
80 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
81 }
82
83 STATIC int
84 xfs_inobt_alloc_block(
85 struct xfs_btree_cur *cur,
86 union xfs_btree_ptr *start,
87 union xfs_btree_ptr *new,
88 int *stat)
89 {
90 xfs_alloc_arg_t args; /* block allocation args */
91 int error; /* error return value */
92 xfs_agblock_t sbno = be32_to_cpu(start->s);
93
94 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
95
96 memset(&args, 0, sizeof(args));
97 args.tp = cur->bc_tp;
98 args.mp = cur->bc_mp;
99 args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_private.a.agno, sbno);
100 args.minlen = 1;
101 args.maxlen = 1;
102 args.prod = 1;
103 args.type = XFS_ALLOCTYPE_NEAR_BNO;
104
105 error = xfs_alloc_vextent(&args);
106 if (error) {
107 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
108 return error;
109 }
110 if (args.fsbno == NULLFSBLOCK) {
111 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
112 *stat = 0;
113 return 0;
114 }
115 ASSERT(args.len == 1);
116 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
117
118 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
119 *stat = 1;
120 return 0;
121 }
122
123 STATIC int
124 xfs_inobt_free_block(
125 struct xfs_btree_cur *cur,
126 struct xfs_buf *bp)
127 {
128 xfs_fsblock_t fsbno;
129 int error;
130
131 fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp));
132 error = xfs_free_extent(cur->bc_tp, fsbno, 1);
133 if (error)
134 return error;
135
136 xfs_trans_binval(cur->bc_tp, bp);
137 return error;
138 }
139
140 STATIC int
141 xfs_inobt_get_maxrecs(
142 struct xfs_btree_cur *cur,
143 int level)
144 {
145 return cur->bc_mp->m_inobt_mxr[level != 0];
146 }
147
148 STATIC void
149 xfs_inobt_init_key_from_rec(
150 union xfs_btree_key *key,
151 union xfs_btree_rec *rec)
152 {
153 key->inobt.ir_startino = rec->inobt.ir_startino;
154 }
155
156 STATIC void
157 xfs_inobt_init_rec_from_key(
158 union xfs_btree_key *key,
159 union xfs_btree_rec *rec)
160 {
161 rec->inobt.ir_startino = key->inobt.ir_startino;
162 }
163
164 STATIC void
165 xfs_inobt_init_rec_from_cur(
166 struct xfs_btree_cur *cur,
167 union xfs_btree_rec *rec)
168 {
169 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
170 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
171 rec->inobt.ir_u.sp.ir_holemask =
172 cpu_to_be16(cur->bc_rec.i.ir_holemask);
173 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
174 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
175 } else {
176 /* ir_holemask/ir_count not supported on-disk */
177 rec->inobt.ir_u.f.ir_freecount =
178 cpu_to_be32(cur->bc_rec.i.ir_freecount);
179 }
180 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
181 }
182
183 /*
184 * initial value of ptr for lookup
185 */
186 STATIC void
187 xfs_inobt_init_ptr_from_cur(
188 struct xfs_btree_cur *cur,
189 union xfs_btree_ptr *ptr)
190 {
191 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
192
193 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
194
195 ptr->s = agi->agi_root;
196 }
197
198 STATIC void
199 xfs_finobt_init_ptr_from_cur(
200 struct xfs_btree_cur *cur,
201 union xfs_btree_ptr *ptr)
202 {
203 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
204
205 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
206 ptr->s = agi->agi_free_root;
207 }
208
209 STATIC __int64_t
210 xfs_inobt_key_diff(
211 struct xfs_btree_cur *cur,
212 union xfs_btree_key *key)
213 {
214 return (__int64_t)be32_to_cpu(key->inobt.ir_startino) -
215 cur->bc_rec.i.ir_startino;
216 }
217
218 static int
219 xfs_inobt_verify(
220 struct xfs_buf *bp)
221 {
222 struct xfs_mount *mp = bp->b_target->bt_mount;
223 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
224 unsigned int level;
225
226 /*
227 * During growfs operations, we can't verify the exact owner as the
228 * perag is not fully initialised and hence not attached to the buffer.
229 *
230 * Similarly, during log recovery we will have a perag structure
231 * attached, but the agi information will not yet have been initialised
232 * from the on disk AGI. We don't currently use any of this information,
233 * but beware of the landmine (i.e. need to check pag->pagi_init) if we
234 * ever do.
235 */
236 switch (block->bb_magic) {
237 case cpu_to_be32(XFS_IBT_CRC_MAGIC):
238 case cpu_to_be32(XFS_FIBT_CRC_MAGIC):
239 if (!xfs_btree_sblock_v5hdr_verify(bp))
240 return false;
241 /* fall through */
242 case cpu_to_be32(XFS_IBT_MAGIC):
243 case cpu_to_be32(XFS_FIBT_MAGIC):
244 break;
245 default:
246 return 0;
247 }
248
249 /* level verification */
250 level = be16_to_cpu(block->bb_level);
251 if (level >= mp->m_in_maxlevels)
252 return false;
253
254 return xfs_btree_sblock_verify(bp, mp->m_inobt_mxr[level != 0]);
255 }
256
257 static void
258 xfs_inobt_read_verify(
259 struct xfs_buf *bp)
260 {
261 if (!xfs_btree_sblock_verify_crc(bp))
262 xfs_buf_ioerror(bp, -EFSBADCRC);
263 else if (!xfs_inobt_verify(bp))
264 xfs_buf_ioerror(bp, -EFSCORRUPTED);
265
266 if (bp->b_error) {
267 trace_xfs_btree_corrupt(bp, _RET_IP_);
268 xfs_verifier_error(bp);
269 }
270 }
271
272 static void
273 xfs_inobt_write_verify(
274 struct xfs_buf *bp)
275 {
276 if (!xfs_inobt_verify(bp)) {
277 trace_xfs_btree_corrupt(bp, _RET_IP_);
278 xfs_buf_ioerror(bp, -EFSCORRUPTED);
279 xfs_verifier_error(bp);
280 return;
281 }
282 xfs_btree_sblock_calc_crc(bp);
283
284 }
285
286 const struct xfs_buf_ops xfs_inobt_buf_ops = {
287 .name = "xfs_inobt",
288 .verify_read = xfs_inobt_read_verify,
289 .verify_write = xfs_inobt_write_verify,
290 };
291
292 #if defined(DEBUG) || defined(XFS_WARN)
293 STATIC int
294 xfs_inobt_keys_inorder(
295 struct xfs_btree_cur *cur,
296 union xfs_btree_key *k1,
297 union xfs_btree_key *k2)
298 {
299 return be32_to_cpu(k1->inobt.ir_startino) <
300 be32_to_cpu(k2->inobt.ir_startino);
301 }
302
303 STATIC int
304 xfs_inobt_recs_inorder(
305 struct xfs_btree_cur *cur,
306 union xfs_btree_rec *r1,
307 union xfs_btree_rec *r2)
308 {
309 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
310 be32_to_cpu(r2->inobt.ir_startino);
311 }
312 #endif /* DEBUG */
313
314 static const struct xfs_btree_ops xfs_inobt_ops = {
315 .rec_len = sizeof(xfs_inobt_rec_t),
316 .key_len = sizeof(xfs_inobt_key_t),
317
318 .dup_cursor = xfs_inobt_dup_cursor,
319 .set_root = xfs_inobt_set_root,
320 .alloc_block = xfs_inobt_alloc_block,
321 .free_block = xfs_inobt_free_block,
322 .get_minrecs = xfs_inobt_get_minrecs,
323 .get_maxrecs = xfs_inobt_get_maxrecs,
324 .init_key_from_rec = xfs_inobt_init_key_from_rec,
325 .init_rec_from_key = xfs_inobt_init_rec_from_key,
326 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
327 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
328 .key_diff = xfs_inobt_key_diff,
329 .buf_ops = &xfs_inobt_buf_ops,
330 #if defined(DEBUG) || defined(XFS_WARN)
331 .keys_inorder = xfs_inobt_keys_inorder,
332 .recs_inorder = xfs_inobt_recs_inorder,
333 #endif
334 };
335
336 static const struct xfs_btree_ops xfs_finobt_ops = {
337 .rec_len = sizeof(xfs_inobt_rec_t),
338 .key_len = sizeof(xfs_inobt_key_t),
339
340 .dup_cursor = xfs_inobt_dup_cursor,
341 .set_root = xfs_finobt_set_root,
342 .alloc_block = xfs_inobt_alloc_block,
343 .free_block = xfs_inobt_free_block,
344 .get_minrecs = xfs_inobt_get_minrecs,
345 .get_maxrecs = xfs_inobt_get_maxrecs,
346 .init_key_from_rec = xfs_inobt_init_key_from_rec,
347 .init_rec_from_key = xfs_inobt_init_rec_from_key,
348 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
349 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
350 .key_diff = xfs_inobt_key_diff,
351 .buf_ops = &xfs_inobt_buf_ops,
352 #if defined(DEBUG) || defined(XFS_WARN)
353 .keys_inorder = xfs_inobt_keys_inorder,
354 .recs_inorder = xfs_inobt_recs_inorder,
355 #endif
356 };
357
358 /*
359 * Allocate a new inode btree cursor.
360 */
361 struct xfs_btree_cur * /* new inode btree cursor */
362 xfs_inobt_init_cursor(
363 struct xfs_mount *mp, /* file system mount point */
364 struct xfs_trans *tp, /* transaction pointer */
365 struct xfs_buf *agbp, /* buffer for agi structure */
366 xfs_agnumber_t agno, /* allocation group number */
367 xfs_btnum_t btnum) /* ialloc or free ino btree */
368 {
369 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
370 struct xfs_btree_cur *cur;
371
372 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_SLEEP);
373
374 cur->bc_tp = tp;
375 cur->bc_mp = mp;
376 cur->bc_btnum = btnum;
377 if (btnum == XFS_BTNUM_INO) {
378 cur->bc_nlevels = be32_to_cpu(agi->agi_level);
379 cur->bc_ops = &xfs_inobt_ops;
380 } else {
381 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
382 cur->bc_ops = &xfs_finobt_ops;
383 }
384
385 cur->bc_blocklog = mp->m_sb.sb_blocklog;
386
387 if (xfs_sb_version_hascrc(&mp->m_sb))
388 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
389
390 cur->bc_private.a.agbp = agbp;
391 cur->bc_private.a.agno = agno;
392
393 return cur;
394 }
395
396 /*
397 * Calculate number of records in an inobt btree block.
398 */
399 int
400 xfs_inobt_maxrecs(
401 struct xfs_mount *mp,
402 int blocklen,
403 int leaf)
404 {
405 blocklen -= XFS_INOBT_BLOCK_LEN(mp);
406
407 if (leaf)
408 return blocklen / sizeof(xfs_inobt_rec_t);
409 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
410 }
411
412 /*
413 * Convert the inode record holemask to an inode allocation bitmap. The inode
414 * allocation bitmap is inode granularity and specifies whether an inode is
415 * physically allocated on disk (not whether the inode is considered allocated
416 * or free by the fs).
417 *
418 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
419 */
420 uint64_t
421 xfs_inobt_irec_to_allocmask(
422 struct xfs_inobt_rec_incore *rec)
423 {
424 uint64_t bitmap = 0;
425 uint64_t inodespbit;
426 int nextbit;
427 uint allocbitmap;
428
429 /*
430 * The holemask has 16-bits for a 64 inode record. Therefore each
431 * holemask bit represents multiple inodes. Create a mask of bits to set
432 * in the allocmask for each holemask bit.
433 */
434 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
435
436 /*
437 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
438 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
439 * anything beyond the 16 holemask bits since this casts to a larger
440 * type.
441 */
442 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
443
444 /*
445 * allocbitmap is the inverted holemask so every set bit represents
446 * allocated inodes. To expand from 16-bit holemask granularity to
447 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
448 * bitmap for every holemask bit.
449 */
450 nextbit = xfs_next_bit(&allocbitmap, 1, 0);
451 while (nextbit != -1) {
452 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
453
454 bitmap |= (inodespbit <<
455 (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
456
457 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
458 }
459
460 return bitmap;
461 }
462
463 #if defined(DEBUG) || defined(XFS_WARN)
464 /*
465 * Verify that an in-core inode record has a valid inode count.
466 */
467 int
468 xfs_inobt_rec_check_count(
469 struct xfs_mount *mp,
470 struct xfs_inobt_rec_incore *rec)
471 {
472 int inocount = 0;
473 int nextbit = 0;
474 uint64_t allocbmap;
475 int wordsz;
476
477 wordsz = sizeof(allocbmap) / sizeof(unsigned int);
478 allocbmap = xfs_inobt_irec_to_allocmask(rec);
479
480 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
481 while (nextbit != -1) {
482 inocount++;
483 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
484 nextbit + 1);
485 }
486
487 if (inocount != rec->ir_count)
488 return -EFSCORRUPTED;
489
490 return 0;
491 }
492 #endif /* DEBUG */
This page took 0.165378 seconds and 5 git commands to generate.