44ac7a0e2926cacd7944c96263e5aadefbb0ae8a
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_trans.h"
25 #include "xfs_mount.h"
26 #include "xfs_bmap_btree.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_alloc.h"
30 #include "xfs_error.h"
31 #include "xfs_rw.h"
32 #include "xfs_iomap.h"
33 #include "xfs_vnodeops.h"
34 #include "xfs_trace.h"
35 #include "xfs_bmap.h"
36 #include <linux/gfp.h>
37 #include <linux/mpage.h>
38 #include <linux/pagevec.h>
39 #include <linux/writeback.h>
40
41 /*
42 * Types of I/O for bmap clustering and I/O completion tracking.
43 */
44 enum {
45 IO_READ, /* mapping for a read */
46 IO_DELAY, /* mapping covers delalloc region */
47 IO_UNWRITTEN, /* mapping covers allocated but uninitialized data */
48 IO_NEW /* just allocated */
49 };
50
51 /*
52 * Prime number of hash buckets since address is used as the key.
53 */
54 #define NVSYNC 37
55 #define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
56 static wait_queue_head_t xfs_ioend_wq[NVSYNC];
57
58 void __init
59 xfs_ioend_init(void)
60 {
61 int i;
62
63 for (i = 0; i < NVSYNC; i++)
64 init_waitqueue_head(&xfs_ioend_wq[i]);
65 }
66
67 void
68 xfs_ioend_wait(
69 xfs_inode_t *ip)
70 {
71 wait_queue_head_t *wq = to_ioend_wq(ip);
72
73 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
74 }
75
76 STATIC void
77 xfs_ioend_wake(
78 xfs_inode_t *ip)
79 {
80 if (atomic_dec_and_test(&ip->i_iocount))
81 wake_up(to_ioend_wq(ip));
82 }
83
84 void
85 xfs_count_page_state(
86 struct page *page,
87 int *delalloc,
88 int *unwritten)
89 {
90 struct buffer_head *bh, *head;
91
92 *delalloc = *unwritten = 0;
93
94 bh = head = page_buffers(page);
95 do {
96 if (buffer_unwritten(bh))
97 (*unwritten) = 1;
98 else if (buffer_delay(bh))
99 (*delalloc) = 1;
100 } while ((bh = bh->b_this_page) != head);
101 }
102
103 STATIC struct block_device *
104 xfs_find_bdev_for_inode(
105 struct inode *inode)
106 {
107 struct xfs_inode *ip = XFS_I(inode);
108 struct xfs_mount *mp = ip->i_mount;
109
110 if (XFS_IS_REALTIME_INODE(ip))
111 return mp->m_rtdev_targp->bt_bdev;
112 else
113 return mp->m_ddev_targp->bt_bdev;
114 }
115
116 /*
117 * We're now finished for good with this ioend structure.
118 * Update the page state via the associated buffer_heads,
119 * release holds on the inode and bio, and finally free
120 * up memory. Do not use the ioend after this.
121 */
122 STATIC void
123 xfs_destroy_ioend(
124 xfs_ioend_t *ioend)
125 {
126 struct buffer_head *bh, *next;
127 struct xfs_inode *ip = XFS_I(ioend->io_inode);
128
129 for (bh = ioend->io_buffer_head; bh; bh = next) {
130 next = bh->b_private;
131 bh->b_end_io(bh, !ioend->io_error);
132 }
133
134 /*
135 * Volume managers supporting multiple paths can send back ENODEV
136 * when the final path disappears. In this case continuing to fill
137 * the page cache with dirty data which cannot be written out is
138 * evil, so prevent that.
139 */
140 if (unlikely(ioend->io_error == -ENODEV)) {
141 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
142 __FILE__, __LINE__);
143 }
144
145 xfs_ioend_wake(ip);
146 mempool_free(ioend, xfs_ioend_pool);
147 }
148
149 /*
150 * If the end of the current ioend is beyond the current EOF,
151 * return the new EOF value, otherwise zero.
152 */
153 STATIC xfs_fsize_t
154 xfs_ioend_new_eof(
155 xfs_ioend_t *ioend)
156 {
157 xfs_inode_t *ip = XFS_I(ioend->io_inode);
158 xfs_fsize_t isize;
159 xfs_fsize_t bsize;
160
161 bsize = ioend->io_offset + ioend->io_size;
162 isize = MAX(ip->i_size, ip->i_new_size);
163 isize = MIN(isize, bsize);
164 return isize > ip->i_d.di_size ? isize : 0;
165 }
166
167 /*
168 * Update on-disk file size now that data has been written to disk. The
169 * current in-memory file size is i_size. If a write is beyond eof i_new_size
170 * will be the intended file size until i_size is updated. If this write does
171 * not extend all the way to the valid file size then restrict this update to
172 * the end of the write.
173 *
174 * This function does not block as blocking on the inode lock in IO completion
175 * can lead to IO completion order dependency deadlocks.. If it can't get the
176 * inode ilock it will return EAGAIN. Callers must handle this.
177 */
178 STATIC int
179 xfs_setfilesize(
180 xfs_ioend_t *ioend)
181 {
182 xfs_inode_t *ip = XFS_I(ioend->io_inode);
183 xfs_fsize_t isize;
184
185 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
186 ASSERT(ioend->io_type != IO_READ);
187
188 if (unlikely(ioend->io_error))
189 return 0;
190
191 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
192 return EAGAIN;
193
194 isize = xfs_ioend_new_eof(ioend);
195 if (isize) {
196 ip->i_d.di_size = isize;
197 xfs_mark_inode_dirty(ip);
198 }
199
200 xfs_iunlock(ip, XFS_ILOCK_EXCL);
201 return 0;
202 }
203
204 /*
205 * Schedule IO completion handling on a xfsdatad if this was
206 * the final hold on this ioend. If we are asked to wait,
207 * flush the workqueue.
208 */
209 STATIC void
210 xfs_finish_ioend(
211 xfs_ioend_t *ioend,
212 int wait)
213 {
214 if (atomic_dec_and_test(&ioend->io_remaining)) {
215 struct workqueue_struct *wq;
216
217 wq = (ioend->io_type == IO_UNWRITTEN) ?
218 xfsconvertd_workqueue : xfsdatad_workqueue;
219 queue_work(wq, &ioend->io_work);
220 if (wait)
221 flush_workqueue(wq);
222 }
223 }
224
225 /*
226 * IO write completion.
227 */
228 STATIC void
229 xfs_end_io(
230 struct work_struct *work)
231 {
232 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
233 struct xfs_inode *ip = XFS_I(ioend->io_inode);
234 int error = 0;
235
236 /*
237 * For unwritten extents we need to issue transactions to convert a
238 * range to normal written extens after the data I/O has finished.
239 */
240 if (ioend->io_type == IO_UNWRITTEN &&
241 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
242
243 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
244 ioend->io_size);
245 if (error)
246 ioend->io_error = error;
247 }
248
249 /*
250 * We might have to update the on-disk file size after extending
251 * writes.
252 */
253 if (ioend->io_type != IO_READ) {
254 error = xfs_setfilesize(ioend);
255 ASSERT(!error || error == EAGAIN);
256 }
257
258 /*
259 * If we didn't complete processing of the ioend, requeue it to the
260 * tail of the workqueue for another attempt later. Otherwise destroy
261 * it.
262 */
263 if (error == EAGAIN) {
264 atomic_inc(&ioend->io_remaining);
265 xfs_finish_ioend(ioend, 0);
266 /* ensure we don't spin on blocked ioends */
267 delay(1);
268 } else
269 xfs_destroy_ioend(ioend);
270 }
271
272 /*
273 * Allocate and initialise an IO completion structure.
274 * We need to track unwritten extent write completion here initially.
275 * We'll need to extend this for updating the ondisk inode size later
276 * (vs. incore size).
277 */
278 STATIC xfs_ioend_t *
279 xfs_alloc_ioend(
280 struct inode *inode,
281 unsigned int type)
282 {
283 xfs_ioend_t *ioend;
284
285 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
286
287 /*
288 * Set the count to 1 initially, which will prevent an I/O
289 * completion callback from happening before we have started
290 * all the I/O from calling the completion routine too early.
291 */
292 atomic_set(&ioend->io_remaining, 1);
293 ioend->io_error = 0;
294 ioend->io_list = NULL;
295 ioend->io_type = type;
296 ioend->io_inode = inode;
297 ioend->io_buffer_head = NULL;
298 ioend->io_buffer_tail = NULL;
299 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
300 ioend->io_offset = 0;
301 ioend->io_size = 0;
302
303 INIT_WORK(&ioend->io_work, xfs_end_io);
304 return ioend;
305 }
306
307 STATIC int
308 xfs_map_blocks(
309 struct inode *inode,
310 loff_t offset,
311 ssize_t count,
312 struct xfs_bmbt_irec *imap,
313 int flags)
314 {
315 int nmaps = 1;
316 int new = 0;
317
318 return -xfs_iomap(XFS_I(inode), offset, count, flags, imap, &nmaps, &new);
319 }
320
321 STATIC int
322 xfs_imap_valid(
323 struct inode *inode,
324 struct xfs_bmbt_irec *imap,
325 xfs_off_t offset)
326 {
327 offset >>= inode->i_blkbits;
328
329 return offset >= imap->br_startoff &&
330 offset < imap->br_startoff + imap->br_blockcount;
331 }
332
333 /*
334 * BIO completion handler for buffered IO.
335 */
336 STATIC void
337 xfs_end_bio(
338 struct bio *bio,
339 int error)
340 {
341 xfs_ioend_t *ioend = bio->bi_private;
342
343 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
344 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
345
346 /* Toss bio and pass work off to an xfsdatad thread */
347 bio->bi_private = NULL;
348 bio->bi_end_io = NULL;
349 bio_put(bio);
350
351 xfs_finish_ioend(ioend, 0);
352 }
353
354 STATIC void
355 xfs_submit_ioend_bio(
356 struct writeback_control *wbc,
357 xfs_ioend_t *ioend,
358 struct bio *bio)
359 {
360 atomic_inc(&ioend->io_remaining);
361 bio->bi_private = ioend;
362 bio->bi_end_io = xfs_end_bio;
363
364 /*
365 * If the I/O is beyond EOF we mark the inode dirty immediately
366 * but don't update the inode size until I/O completion.
367 */
368 if (xfs_ioend_new_eof(ioend))
369 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
370
371 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
372 WRITE_SYNC_PLUG : WRITE, bio);
373 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
374 bio_put(bio);
375 }
376
377 STATIC struct bio *
378 xfs_alloc_ioend_bio(
379 struct buffer_head *bh)
380 {
381 struct bio *bio;
382 int nvecs = bio_get_nr_vecs(bh->b_bdev);
383
384 do {
385 bio = bio_alloc(GFP_NOIO, nvecs);
386 nvecs >>= 1;
387 } while (!bio);
388
389 ASSERT(bio->bi_private == NULL);
390 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
391 bio->bi_bdev = bh->b_bdev;
392 bio_get(bio);
393 return bio;
394 }
395
396 STATIC void
397 xfs_start_buffer_writeback(
398 struct buffer_head *bh)
399 {
400 ASSERT(buffer_mapped(bh));
401 ASSERT(buffer_locked(bh));
402 ASSERT(!buffer_delay(bh));
403 ASSERT(!buffer_unwritten(bh));
404
405 mark_buffer_async_write(bh);
406 set_buffer_uptodate(bh);
407 clear_buffer_dirty(bh);
408 }
409
410 STATIC void
411 xfs_start_page_writeback(
412 struct page *page,
413 int clear_dirty,
414 int buffers)
415 {
416 ASSERT(PageLocked(page));
417 ASSERT(!PageWriteback(page));
418 if (clear_dirty)
419 clear_page_dirty_for_io(page);
420 set_page_writeback(page);
421 unlock_page(page);
422 /* If no buffers on the page are to be written, finish it here */
423 if (!buffers)
424 end_page_writeback(page);
425 }
426
427 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
428 {
429 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
430 }
431
432 /*
433 * Submit all of the bios for all of the ioends we have saved up, covering the
434 * initial writepage page and also any probed pages.
435 *
436 * Because we may have multiple ioends spanning a page, we need to start
437 * writeback on all the buffers before we submit them for I/O. If we mark the
438 * buffers as we got, then we can end up with a page that only has buffers
439 * marked async write and I/O complete on can occur before we mark the other
440 * buffers async write.
441 *
442 * The end result of this is that we trip a bug in end_page_writeback() because
443 * we call it twice for the one page as the code in end_buffer_async_write()
444 * assumes that all buffers on the page are started at the same time.
445 *
446 * The fix is two passes across the ioend list - one to start writeback on the
447 * buffer_heads, and then submit them for I/O on the second pass.
448 */
449 STATIC void
450 xfs_submit_ioend(
451 struct writeback_control *wbc,
452 xfs_ioend_t *ioend)
453 {
454 xfs_ioend_t *head = ioend;
455 xfs_ioend_t *next;
456 struct buffer_head *bh;
457 struct bio *bio;
458 sector_t lastblock = 0;
459
460 /* Pass 1 - start writeback */
461 do {
462 next = ioend->io_list;
463 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
464 xfs_start_buffer_writeback(bh);
465 }
466 } while ((ioend = next) != NULL);
467
468 /* Pass 2 - submit I/O */
469 ioend = head;
470 do {
471 next = ioend->io_list;
472 bio = NULL;
473
474 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
475
476 if (!bio) {
477 retry:
478 bio = xfs_alloc_ioend_bio(bh);
479 } else if (bh->b_blocknr != lastblock + 1) {
480 xfs_submit_ioend_bio(wbc, ioend, bio);
481 goto retry;
482 }
483
484 if (bio_add_buffer(bio, bh) != bh->b_size) {
485 xfs_submit_ioend_bio(wbc, ioend, bio);
486 goto retry;
487 }
488
489 lastblock = bh->b_blocknr;
490 }
491 if (bio)
492 xfs_submit_ioend_bio(wbc, ioend, bio);
493 xfs_finish_ioend(ioend, 0);
494 } while ((ioend = next) != NULL);
495 }
496
497 /*
498 * Cancel submission of all buffer_heads so far in this endio.
499 * Toss the endio too. Only ever called for the initial page
500 * in a writepage request, so only ever one page.
501 */
502 STATIC void
503 xfs_cancel_ioend(
504 xfs_ioend_t *ioend)
505 {
506 xfs_ioend_t *next;
507 struct buffer_head *bh, *next_bh;
508
509 do {
510 next = ioend->io_list;
511 bh = ioend->io_buffer_head;
512 do {
513 next_bh = bh->b_private;
514 clear_buffer_async_write(bh);
515 unlock_buffer(bh);
516 } while ((bh = next_bh) != NULL);
517
518 xfs_ioend_wake(XFS_I(ioend->io_inode));
519 mempool_free(ioend, xfs_ioend_pool);
520 } while ((ioend = next) != NULL);
521 }
522
523 /*
524 * Test to see if we've been building up a completion structure for
525 * earlier buffers -- if so, we try to append to this ioend if we
526 * can, otherwise we finish off any current ioend and start another.
527 * Return true if we've finished the given ioend.
528 */
529 STATIC void
530 xfs_add_to_ioend(
531 struct inode *inode,
532 struct buffer_head *bh,
533 xfs_off_t offset,
534 unsigned int type,
535 xfs_ioend_t **result,
536 int need_ioend)
537 {
538 xfs_ioend_t *ioend = *result;
539
540 if (!ioend || need_ioend || type != ioend->io_type) {
541 xfs_ioend_t *previous = *result;
542
543 ioend = xfs_alloc_ioend(inode, type);
544 ioend->io_offset = offset;
545 ioend->io_buffer_head = bh;
546 ioend->io_buffer_tail = bh;
547 if (previous)
548 previous->io_list = ioend;
549 *result = ioend;
550 } else {
551 ioend->io_buffer_tail->b_private = bh;
552 ioend->io_buffer_tail = bh;
553 }
554
555 bh->b_private = NULL;
556 ioend->io_size += bh->b_size;
557 }
558
559 STATIC void
560 xfs_map_buffer(
561 struct inode *inode,
562 struct buffer_head *bh,
563 struct xfs_bmbt_irec *imap,
564 xfs_off_t offset)
565 {
566 sector_t bn;
567 struct xfs_mount *m = XFS_I(inode)->i_mount;
568 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
569 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
570
571 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
572 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
573
574 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
575 ((offset - iomap_offset) >> inode->i_blkbits);
576
577 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
578
579 bh->b_blocknr = bn;
580 set_buffer_mapped(bh);
581 }
582
583 STATIC void
584 xfs_map_at_offset(
585 struct inode *inode,
586 struct buffer_head *bh,
587 struct xfs_bmbt_irec *imap,
588 xfs_off_t offset)
589 {
590 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
591 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
592
593 lock_buffer(bh);
594 xfs_map_buffer(inode, bh, imap, offset);
595 bh->b_bdev = xfs_find_bdev_for_inode(inode);
596 set_buffer_mapped(bh);
597 clear_buffer_delay(bh);
598 clear_buffer_unwritten(bh);
599 }
600
601 /*
602 * Look for a page at index that is suitable for clustering.
603 */
604 STATIC unsigned int
605 xfs_probe_page(
606 struct page *page,
607 unsigned int pg_offset)
608 {
609 struct buffer_head *bh, *head;
610 int ret = 0;
611
612 if (PageWriteback(page))
613 return 0;
614 if (!PageDirty(page))
615 return 0;
616 if (!page->mapping)
617 return 0;
618 if (!page_has_buffers(page))
619 return 0;
620
621 bh = head = page_buffers(page);
622 do {
623 if (!buffer_uptodate(bh))
624 break;
625 if (!buffer_mapped(bh))
626 break;
627 ret += bh->b_size;
628 if (ret >= pg_offset)
629 break;
630 } while ((bh = bh->b_this_page) != head);
631
632 return ret;
633 }
634
635 STATIC size_t
636 xfs_probe_cluster(
637 struct inode *inode,
638 struct page *startpage,
639 struct buffer_head *bh,
640 struct buffer_head *head)
641 {
642 struct pagevec pvec;
643 pgoff_t tindex, tlast, tloff;
644 size_t total = 0;
645 int done = 0, i;
646
647 /* First sum forwards in this page */
648 do {
649 if (!buffer_uptodate(bh) || !buffer_mapped(bh))
650 return total;
651 total += bh->b_size;
652 } while ((bh = bh->b_this_page) != head);
653
654 /* if we reached the end of the page, sum forwards in following pages */
655 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
656 tindex = startpage->index + 1;
657
658 /* Prune this back to avoid pathological behavior */
659 tloff = min(tlast, startpage->index + 64);
660
661 pagevec_init(&pvec, 0);
662 while (!done && tindex <= tloff) {
663 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
664
665 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
666 break;
667
668 for (i = 0; i < pagevec_count(&pvec); i++) {
669 struct page *page = pvec.pages[i];
670 size_t pg_offset, pg_len = 0;
671
672 if (tindex == tlast) {
673 pg_offset =
674 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
675 if (!pg_offset) {
676 done = 1;
677 break;
678 }
679 } else
680 pg_offset = PAGE_CACHE_SIZE;
681
682 if (page->index == tindex && trylock_page(page)) {
683 pg_len = xfs_probe_page(page, pg_offset);
684 unlock_page(page);
685 }
686
687 if (!pg_len) {
688 done = 1;
689 break;
690 }
691
692 total += pg_len;
693 tindex++;
694 }
695
696 pagevec_release(&pvec);
697 cond_resched();
698 }
699
700 return total;
701 }
702
703 /*
704 * Test if a given page is suitable for writing as part of an unwritten
705 * or delayed allocate extent.
706 */
707 STATIC int
708 xfs_is_delayed_page(
709 struct page *page,
710 unsigned int type)
711 {
712 if (PageWriteback(page))
713 return 0;
714
715 if (page->mapping && page_has_buffers(page)) {
716 struct buffer_head *bh, *head;
717 int acceptable = 0;
718
719 bh = head = page_buffers(page);
720 do {
721 if (buffer_unwritten(bh))
722 acceptable = (type == IO_UNWRITTEN);
723 else if (buffer_delay(bh))
724 acceptable = (type == IO_DELAY);
725 else if (buffer_dirty(bh) && buffer_mapped(bh))
726 acceptable = (type == IO_NEW);
727 else
728 break;
729 } while ((bh = bh->b_this_page) != head);
730
731 if (acceptable)
732 return 1;
733 }
734
735 return 0;
736 }
737
738 /*
739 * Allocate & map buffers for page given the extent map. Write it out.
740 * except for the original page of a writepage, this is called on
741 * delalloc/unwritten pages only, for the original page it is possible
742 * that the page has no mapping at all.
743 */
744 STATIC int
745 xfs_convert_page(
746 struct inode *inode,
747 struct page *page,
748 loff_t tindex,
749 struct xfs_bmbt_irec *imap,
750 xfs_ioend_t **ioendp,
751 struct writeback_control *wbc,
752 int all_bh)
753 {
754 struct buffer_head *bh, *head;
755 xfs_off_t end_offset;
756 unsigned long p_offset;
757 unsigned int type;
758 int len, page_dirty;
759 int count = 0, done = 0, uptodate = 1;
760 xfs_off_t offset = page_offset(page);
761
762 if (page->index != tindex)
763 goto fail;
764 if (!trylock_page(page))
765 goto fail;
766 if (PageWriteback(page))
767 goto fail_unlock_page;
768 if (page->mapping != inode->i_mapping)
769 goto fail_unlock_page;
770 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
771 goto fail_unlock_page;
772
773 /*
774 * page_dirty is initially a count of buffers on the page before
775 * EOF and is decremented as we move each into a cleanable state.
776 *
777 * Derivation:
778 *
779 * End offset is the highest offset that this page should represent.
780 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
781 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
782 * hence give us the correct page_dirty count. On any other page,
783 * it will be zero and in that case we need page_dirty to be the
784 * count of buffers on the page.
785 */
786 end_offset = min_t(unsigned long long,
787 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
788 i_size_read(inode));
789
790 len = 1 << inode->i_blkbits;
791 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
792 PAGE_CACHE_SIZE);
793 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
794 page_dirty = p_offset / len;
795
796 bh = head = page_buffers(page);
797 do {
798 if (offset >= end_offset)
799 break;
800 if (!buffer_uptodate(bh))
801 uptodate = 0;
802 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
803 done = 1;
804 continue;
805 }
806
807 if (buffer_unwritten(bh) || buffer_delay(bh)) {
808 if (buffer_unwritten(bh))
809 type = IO_UNWRITTEN;
810 else
811 type = IO_DELAY;
812
813 if (!xfs_imap_valid(inode, imap, offset)) {
814 done = 1;
815 continue;
816 }
817
818 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
819 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
820
821 xfs_map_at_offset(inode, bh, imap, offset);
822 xfs_add_to_ioend(inode, bh, offset, type,
823 ioendp, done);
824
825 page_dirty--;
826 count++;
827 } else {
828 type = IO_NEW;
829 if (buffer_mapped(bh) && all_bh) {
830 lock_buffer(bh);
831 xfs_add_to_ioend(inode, bh, offset,
832 type, ioendp, done);
833 count++;
834 page_dirty--;
835 } else {
836 done = 1;
837 }
838 }
839 } while (offset += len, (bh = bh->b_this_page) != head);
840
841 if (uptodate && bh == head)
842 SetPageUptodate(page);
843
844 if (count) {
845 wbc->nr_to_write--;
846 if (wbc->nr_to_write <= 0)
847 done = 1;
848 }
849 xfs_start_page_writeback(page, !page_dirty, count);
850
851 return done;
852 fail_unlock_page:
853 unlock_page(page);
854 fail:
855 return 1;
856 }
857
858 /*
859 * Convert & write out a cluster of pages in the same extent as defined
860 * by mp and following the start page.
861 */
862 STATIC void
863 xfs_cluster_write(
864 struct inode *inode,
865 pgoff_t tindex,
866 struct xfs_bmbt_irec *imap,
867 xfs_ioend_t **ioendp,
868 struct writeback_control *wbc,
869 int all_bh,
870 pgoff_t tlast)
871 {
872 struct pagevec pvec;
873 int done = 0, i;
874
875 pagevec_init(&pvec, 0);
876 while (!done && tindex <= tlast) {
877 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
878
879 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
880 break;
881
882 for (i = 0; i < pagevec_count(&pvec); i++) {
883 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
884 imap, ioendp, wbc, all_bh);
885 if (done)
886 break;
887 }
888
889 pagevec_release(&pvec);
890 cond_resched();
891 }
892 }
893
894 STATIC void
895 xfs_vm_invalidatepage(
896 struct page *page,
897 unsigned long offset)
898 {
899 trace_xfs_invalidatepage(page->mapping->host, page, offset);
900 block_invalidatepage(page, offset);
901 }
902
903 /*
904 * If the page has delalloc buffers on it, we need to punch them out before we
905 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
906 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
907 * is done on that same region - the delalloc extent is returned when none is
908 * supposed to be there.
909 *
910 * We prevent this by truncating away the delalloc regions on the page before
911 * invalidating it. Because they are delalloc, we can do this without needing a
912 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
913 * truncation without a transaction as there is no space left for block
914 * reservation (typically why we see a ENOSPC in writeback).
915 *
916 * This is not a performance critical path, so for now just do the punching a
917 * buffer head at a time.
918 */
919 STATIC void
920 xfs_aops_discard_page(
921 struct page *page)
922 {
923 struct inode *inode = page->mapping->host;
924 struct xfs_inode *ip = XFS_I(inode);
925 struct buffer_head *bh, *head;
926 loff_t offset = page_offset(page);
927 ssize_t len = 1 << inode->i_blkbits;
928
929 if (!xfs_is_delayed_page(page, IO_DELAY))
930 goto out_invalidate;
931
932 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
933 goto out_invalidate;
934
935 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
936 "page discard on page %p, inode 0x%llx, offset %llu.",
937 page, ip->i_ino, offset);
938
939 xfs_ilock(ip, XFS_ILOCK_EXCL);
940 bh = head = page_buffers(page);
941 do {
942 int done;
943 xfs_fileoff_t offset_fsb;
944 xfs_bmbt_irec_t imap;
945 int nimaps = 1;
946 int error;
947 xfs_fsblock_t firstblock;
948 xfs_bmap_free_t flist;
949
950 if (!buffer_delay(bh))
951 goto next_buffer;
952
953 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
954
955 /*
956 * Map the range first and check that it is a delalloc extent
957 * before trying to unmap the range. Otherwise we will be
958 * trying to remove a real extent (which requires a
959 * transaction) or a hole, which is probably a bad idea...
960 */
961 error = xfs_bmapi(NULL, ip, offset_fsb, 1,
962 XFS_BMAPI_ENTIRE, NULL, 0, &imap,
963 &nimaps, NULL);
964
965 if (error) {
966 /* something screwed, just bail */
967 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
968 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
969 "page discard failed delalloc mapping lookup.");
970 }
971 break;
972 }
973 if (!nimaps) {
974 /* nothing there */
975 goto next_buffer;
976 }
977 if (imap.br_startblock != DELAYSTARTBLOCK) {
978 /* been converted, ignore */
979 goto next_buffer;
980 }
981 WARN_ON(imap.br_blockcount == 0);
982
983 /*
984 * Note: while we initialise the firstblock/flist pair, they
985 * should never be used because blocks should never be
986 * allocated or freed for a delalloc extent and hence we need
987 * don't cancel or finish them after the xfs_bunmapi() call.
988 */
989 xfs_bmap_init(&flist, &firstblock);
990 error = xfs_bunmapi(NULL, ip, offset_fsb, 1, 0, 1, &firstblock,
991 &flist, &done);
992
993 ASSERT(!flist.xbf_count && !flist.xbf_first);
994 if (error) {
995 /* something screwed, just bail */
996 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
997 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
998 "page discard unable to remove delalloc mapping.");
999 }
1000 break;
1001 }
1002 next_buffer:
1003 offset += len;
1004
1005 } while ((bh = bh->b_this_page) != head);
1006
1007 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1008 out_invalidate:
1009 xfs_vm_invalidatepage(page, 0);
1010 return;
1011 }
1012
1013 /*
1014 * Write out a dirty page.
1015 *
1016 * For delalloc space on the page we need to allocate space and flush it.
1017 * For unwritten space on the page we need to start the conversion to
1018 * regular allocated space.
1019 * For any other dirty buffer heads on the page we should flush them.
1020 *
1021 * If we detect that a transaction would be required to flush the page, we
1022 * have to check the process flags first, if we are already in a transaction
1023 * or disk I/O during allocations is off, we need to fail the writepage and
1024 * redirty the page.
1025 */
1026 STATIC int
1027 xfs_vm_writepage(
1028 struct page *page,
1029 struct writeback_control *wbc)
1030 {
1031 struct inode *inode = page->mapping->host;
1032 int delalloc, unwritten;
1033 struct buffer_head *bh, *head;
1034 struct xfs_bmbt_irec imap;
1035 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1036 loff_t offset;
1037 unsigned int type;
1038 __uint64_t end_offset;
1039 pgoff_t end_index, last_index;
1040 ssize_t size, len;
1041 int flags, err, imap_valid = 0, uptodate = 1;
1042 int count = 0;
1043 int all_bh = 0;
1044
1045 trace_xfs_writepage(inode, page, 0);
1046
1047 ASSERT(page_has_buffers(page));
1048
1049 /*
1050 * Refuse to write the page out if we are called from reclaim context.
1051 *
1052 * This avoids stack overflows when called from deeply used stacks in
1053 * random callers for direct reclaim or memcg reclaim. We explicitly
1054 * allow reclaim from kswapd as the stack usage there is relatively low.
1055 *
1056 * This should really be done by the core VM, but until that happens
1057 * filesystems like XFS, btrfs and ext4 have to take care of this
1058 * by themselves.
1059 */
1060 if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)
1061 goto out_fail;
1062
1063 /*
1064 * We need a transaction if there are delalloc or unwritten buffers
1065 * on the page.
1066 *
1067 * If we need a transaction and the process flags say we are already
1068 * in a transaction, or no IO is allowed then mark the page dirty
1069 * again and leave the page as is.
1070 */
1071 xfs_count_page_state(page, &delalloc, &unwritten);
1072 if ((current->flags & PF_FSTRANS) && (delalloc || unwritten))
1073 goto out_fail;
1074
1075 /*
1076 * Delay hooking up buffer heads until we have
1077 * made our go/no-go decision.
1078 */
1079 if (!page_has_buffers(page))
1080 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1081
1082 /* Is this page beyond the end of the file? */
1083 offset = i_size_read(inode);
1084 end_index = offset >> PAGE_CACHE_SHIFT;
1085 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1086 if (page->index >= end_index) {
1087 if ((page->index >= end_index + 1) ||
1088 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
1089 unlock_page(page);
1090 return 0;
1091 }
1092 }
1093
1094 end_offset = min_t(unsigned long long,
1095 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
1096 offset);
1097 len = 1 << inode->i_blkbits;
1098
1099 bh = head = page_buffers(page);
1100 offset = page_offset(page);
1101 flags = BMAPI_READ;
1102 type = IO_NEW;
1103
1104 do {
1105 if (offset >= end_offset)
1106 break;
1107 if (!buffer_uptodate(bh))
1108 uptodate = 0;
1109
1110 /*
1111 * A hole may still be marked uptodate because discard_buffer
1112 * leaves the flag set.
1113 */
1114 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1115 ASSERT(!buffer_dirty(bh));
1116 imap_valid = 0;
1117 continue;
1118 }
1119
1120 if (imap_valid)
1121 imap_valid = xfs_imap_valid(inode, &imap, offset);
1122
1123 if (buffer_unwritten(bh) || buffer_delay(bh)) {
1124 int new_ioend = 0;
1125
1126 /*
1127 * Make sure we don't use a read-only iomap
1128 */
1129 if (flags == BMAPI_READ)
1130 imap_valid = 0;
1131
1132 if (buffer_unwritten(bh)) {
1133 type = IO_UNWRITTEN;
1134 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
1135 } else if (buffer_delay(bh)) {
1136 type = IO_DELAY;
1137 flags = BMAPI_ALLOCATE;
1138
1139 if (wbc->sync_mode == WB_SYNC_NONE &&
1140 wbc->nonblocking)
1141 flags |= BMAPI_TRYLOCK;
1142 }
1143
1144 if (!imap_valid) {
1145 /*
1146 * If we didn't have a valid mapping then we
1147 * need to ensure that we put the new mapping
1148 * in a new ioend structure. This needs to be
1149 * done to ensure that the ioends correctly
1150 * reflect the block mappings at io completion
1151 * for unwritten extent conversion.
1152 */
1153 new_ioend = 1;
1154 err = xfs_map_blocks(inode, offset, len,
1155 &imap, flags);
1156 if (err)
1157 goto error;
1158 imap_valid = xfs_imap_valid(inode, &imap,
1159 offset);
1160 }
1161 if (imap_valid) {
1162 xfs_map_at_offset(inode, bh, &imap, offset);
1163 xfs_add_to_ioend(inode, bh, offset, type,
1164 &ioend, new_ioend);
1165 count++;
1166 }
1167 } else if (buffer_uptodate(bh)) {
1168 /*
1169 * we got here because the buffer is already mapped.
1170 * That means it must already have extents allocated
1171 * underneath it. Map the extent by reading it.
1172 */
1173 if (!imap_valid || flags != BMAPI_READ) {
1174 flags = BMAPI_READ;
1175 size = xfs_probe_cluster(inode, page, bh, head);
1176 err = xfs_map_blocks(inode, offset, size,
1177 &imap, flags);
1178 if (err)
1179 goto error;
1180 imap_valid = xfs_imap_valid(inode, &imap,
1181 offset);
1182 }
1183
1184 /*
1185 * We set the type to IO_NEW in case we are doing a
1186 * small write at EOF that is extending the file but
1187 * without needing an allocation. We need to update the
1188 * file size on I/O completion in this case so it is
1189 * the same case as having just allocated a new extent
1190 * that we are writing into for the first time.
1191 */
1192 type = IO_NEW;
1193 if (trylock_buffer(bh)) {
1194 if (imap_valid)
1195 all_bh = 1;
1196 xfs_add_to_ioend(inode, bh, offset, type,
1197 &ioend, !imap_valid);
1198 count++;
1199 } else {
1200 imap_valid = 0;
1201 }
1202 } else if (PageUptodate(page)) {
1203 ASSERT(buffer_mapped(bh));
1204 imap_valid = 0;
1205 }
1206
1207 if (!iohead)
1208 iohead = ioend;
1209
1210 } while (offset += len, ((bh = bh->b_this_page) != head));
1211
1212 if (uptodate && bh == head)
1213 SetPageUptodate(page);
1214
1215 xfs_start_page_writeback(page, 1, count);
1216
1217 if (ioend && imap_valid) {
1218 xfs_off_t end_index;
1219
1220 end_index = imap.br_startoff + imap.br_blockcount;
1221
1222 /* to bytes */
1223 end_index <<= inode->i_blkbits;
1224
1225 /* to pages */
1226 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1227
1228 /* check against file size */
1229 if (end_index > last_index)
1230 end_index = last_index;
1231
1232 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1233 wbc, all_bh, end_index);
1234 }
1235
1236 if (iohead)
1237 xfs_submit_ioend(wbc, iohead);
1238
1239 return 0;
1240
1241 error:
1242 if (iohead)
1243 xfs_cancel_ioend(iohead);
1244
1245 xfs_aops_discard_page(page);
1246 ClearPageUptodate(page);
1247 unlock_page(page);
1248 return err;
1249
1250 out_fail:
1251 redirty_page_for_writepage(wbc, page);
1252 unlock_page(page);
1253 return 0;
1254 }
1255
1256 STATIC int
1257 xfs_vm_writepages(
1258 struct address_space *mapping,
1259 struct writeback_control *wbc)
1260 {
1261 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1262 return generic_writepages(mapping, wbc);
1263 }
1264
1265 /*
1266 * Called to move a page into cleanable state - and from there
1267 * to be released. The page should already be clean. We always
1268 * have buffer heads in this call.
1269 *
1270 * Returns 1 if the page is ok to release, 0 otherwise.
1271 */
1272 STATIC int
1273 xfs_vm_releasepage(
1274 struct page *page,
1275 gfp_t gfp_mask)
1276 {
1277 int delalloc, unwritten;
1278
1279 trace_xfs_releasepage(page->mapping->host, page, 0);
1280
1281 xfs_count_page_state(page, &delalloc, &unwritten);
1282
1283 if (WARN_ON(delalloc))
1284 return 0;
1285 if (WARN_ON(unwritten))
1286 return 0;
1287
1288 return try_to_free_buffers(page);
1289 }
1290
1291 STATIC int
1292 __xfs_get_blocks(
1293 struct inode *inode,
1294 sector_t iblock,
1295 struct buffer_head *bh_result,
1296 int create,
1297 int direct)
1298 {
1299 int flags = create ? BMAPI_WRITE : BMAPI_READ;
1300 struct xfs_bmbt_irec imap;
1301 xfs_off_t offset;
1302 ssize_t size;
1303 int nimap = 1;
1304 int new = 0;
1305 int error;
1306
1307 offset = (xfs_off_t)iblock << inode->i_blkbits;
1308 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1309 size = bh_result->b_size;
1310
1311 if (!create && direct && offset >= i_size_read(inode))
1312 return 0;
1313
1314 if (direct && create)
1315 flags |= BMAPI_DIRECT;
1316
1317 error = xfs_iomap(XFS_I(inode), offset, size, flags, &imap, &nimap,
1318 &new);
1319 if (error)
1320 return -error;
1321 if (nimap == 0)
1322 return 0;
1323
1324 if (imap.br_startblock != HOLESTARTBLOCK &&
1325 imap.br_startblock != DELAYSTARTBLOCK) {
1326 /*
1327 * For unwritten extents do not report a disk address on
1328 * the read case (treat as if we're reading into a hole).
1329 */
1330 if (create || !ISUNWRITTEN(&imap))
1331 xfs_map_buffer(inode, bh_result, &imap, offset);
1332 if (create && ISUNWRITTEN(&imap)) {
1333 if (direct)
1334 bh_result->b_private = inode;
1335 set_buffer_unwritten(bh_result);
1336 }
1337 }
1338
1339 /*
1340 * If this is a realtime file, data may be on a different device.
1341 * to that pointed to from the buffer_head b_bdev currently.
1342 */
1343 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1344
1345 /*
1346 * If we previously allocated a block out beyond eof and we are now
1347 * coming back to use it then we will need to flag it as new even if it
1348 * has a disk address.
1349 *
1350 * With sub-block writes into unwritten extents we also need to mark
1351 * the buffer as new so that the unwritten parts of the buffer gets
1352 * correctly zeroed.
1353 */
1354 if (create &&
1355 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1356 (offset >= i_size_read(inode)) ||
1357 (new || ISUNWRITTEN(&imap))))
1358 set_buffer_new(bh_result);
1359
1360 if (imap.br_startblock == DELAYSTARTBLOCK) {
1361 BUG_ON(direct);
1362 if (create) {
1363 set_buffer_uptodate(bh_result);
1364 set_buffer_mapped(bh_result);
1365 set_buffer_delay(bh_result);
1366 }
1367 }
1368
1369 /*
1370 * If this is O_DIRECT or the mpage code calling tell them how large
1371 * the mapping is, so that we can avoid repeated get_blocks calls.
1372 */
1373 if (direct || size > (1 << inode->i_blkbits)) {
1374 xfs_off_t mapping_size;
1375
1376 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1377 mapping_size <<= inode->i_blkbits;
1378
1379 ASSERT(mapping_size > 0);
1380 if (mapping_size > size)
1381 mapping_size = size;
1382 if (mapping_size > LONG_MAX)
1383 mapping_size = LONG_MAX;
1384
1385 bh_result->b_size = mapping_size;
1386 }
1387
1388 return 0;
1389 }
1390
1391 int
1392 xfs_get_blocks(
1393 struct inode *inode,
1394 sector_t iblock,
1395 struct buffer_head *bh_result,
1396 int create)
1397 {
1398 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1399 }
1400
1401 STATIC int
1402 xfs_get_blocks_direct(
1403 struct inode *inode,
1404 sector_t iblock,
1405 struct buffer_head *bh_result,
1406 int create)
1407 {
1408 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1409 }
1410
1411 STATIC void
1412 xfs_end_io_direct(
1413 struct kiocb *iocb,
1414 loff_t offset,
1415 ssize_t size,
1416 void *private)
1417 {
1418 xfs_ioend_t *ioend = iocb->private;
1419
1420 /*
1421 * Non-NULL private data means we need to issue a transaction to
1422 * convert a range from unwritten to written extents. This needs
1423 * to happen from process context but aio+dio I/O completion
1424 * happens from irq context so we need to defer it to a workqueue.
1425 * This is not necessary for synchronous direct I/O, but we do
1426 * it anyway to keep the code uniform and simpler.
1427 *
1428 * Well, if only it were that simple. Because synchronous direct I/O
1429 * requires extent conversion to occur *before* we return to userspace,
1430 * we have to wait for extent conversion to complete. Look at the
1431 * iocb that has been passed to us to determine if this is AIO or
1432 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1433 * workqueue and wait for it to complete.
1434 *
1435 * The core direct I/O code might be changed to always call the
1436 * completion handler in the future, in which case all this can
1437 * go away.
1438 */
1439 ioend->io_offset = offset;
1440 ioend->io_size = size;
1441 if (ioend->io_type == IO_READ) {
1442 xfs_finish_ioend(ioend, 0);
1443 } else if (private && size > 0) {
1444 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
1445 } else {
1446 /*
1447 * A direct I/O write ioend starts it's life in unwritten
1448 * state in case they map an unwritten extent. This write
1449 * didn't map an unwritten extent so switch it's completion
1450 * handler.
1451 */
1452 ioend->io_type = IO_NEW;
1453 xfs_finish_ioend(ioend, 0);
1454 }
1455
1456 /*
1457 * blockdev_direct_IO can return an error even after the I/O
1458 * completion handler was called. Thus we need to protect
1459 * against double-freeing.
1460 */
1461 iocb->private = NULL;
1462 }
1463
1464 STATIC ssize_t
1465 xfs_vm_direct_IO(
1466 int rw,
1467 struct kiocb *iocb,
1468 const struct iovec *iov,
1469 loff_t offset,
1470 unsigned long nr_segs)
1471 {
1472 struct file *file = iocb->ki_filp;
1473 struct inode *inode = file->f_mapping->host;
1474 struct block_device *bdev;
1475 ssize_t ret;
1476
1477 bdev = xfs_find_bdev_for_inode(inode);
1478
1479 iocb->private = xfs_alloc_ioend(inode, rw == WRITE ?
1480 IO_UNWRITTEN : IO_READ);
1481
1482 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, bdev, iov,
1483 offset, nr_segs,
1484 xfs_get_blocks_direct,
1485 xfs_end_io_direct);
1486
1487 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
1488 xfs_destroy_ioend(iocb->private);
1489 return ret;
1490 }
1491
1492 STATIC int
1493 xfs_vm_write_begin(
1494 struct file *file,
1495 struct address_space *mapping,
1496 loff_t pos,
1497 unsigned len,
1498 unsigned flags,
1499 struct page **pagep,
1500 void **fsdata)
1501 {
1502 *pagep = NULL;
1503 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1504 xfs_get_blocks);
1505 }
1506
1507 STATIC sector_t
1508 xfs_vm_bmap(
1509 struct address_space *mapping,
1510 sector_t block)
1511 {
1512 struct inode *inode = (struct inode *)mapping->host;
1513 struct xfs_inode *ip = XFS_I(inode);
1514
1515 trace_xfs_vm_bmap(XFS_I(inode));
1516 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1517 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1518 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1519 return generic_block_bmap(mapping, block, xfs_get_blocks);
1520 }
1521
1522 STATIC int
1523 xfs_vm_readpage(
1524 struct file *unused,
1525 struct page *page)
1526 {
1527 return mpage_readpage(page, xfs_get_blocks);
1528 }
1529
1530 STATIC int
1531 xfs_vm_readpages(
1532 struct file *unused,
1533 struct address_space *mapping,
1534 struct list_head *pages,
1535 unsigned nr_pages)
1536 {
1537 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1538 }
1539
1540 const struct address_space_operations xfs_address_space_operations = {
1541 .readpage = xfs_vm_readpage,
1542 .readpages = xfs_vm_readpages,
1543 .writepage = xfs_vm_writepage,
1544 .writepages = xfs_vm_writepages,
1545 .sync_page = block_sync_page,
1546 .releasepage = xfs_vm_releasepage,
1547 .invalidatepage = xfs_vm_invalidatepage,
1548 .write_begin = xfs_vm_write_begin,
1549 .write_end = generic_write_end,
1550 .bmap = xfs_vm_bmap,
1551 .direct_IO = xfs_vm_direct_IO,
1552 .migratepage = buffer_migrate_page,
1553 .is_partially_uptodate = block_is_partially_uptodate,
1554 .error_remove_page = generic_error_remove_page,
1555 };
This page took 0.103037 seconds and 4 git commands to generate.