a49dd8d4b06974c9a9b8b20ca19bc0663dfe0471
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 static kmem_zone_t *xfs_buf_zone;
38 STATIC int xfsbufd(void *);
39 STATIC int xfsbufd_wakeup(int, gfp_t);
40 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
41 static struct shrinker xfs_buf_shake = {
42 .shrink = xfsbufd_wakeup,
43 .seeks = DEFAULT_SEEKS,
44 };
45
46 static struct workqueue_struct *xfslogd_workqueue;
47 struct workqueue_struct *xfsdatad_workqueue;
48
49 #ifdef XFS_BUF_TRACE
50 void
51 xfs_buf_trace(
52 xfs_buf_t *bp,
53 char *id,
54 void *data,
55 void *ra)
56 {
57 ktrace_enter(xfs_buf_trace_buf,
58 bp, id,
59 (void *)(unsigned long)bp->b_flags,
60 (void *)(unsigned long)bp->b_hold.counter,
61 (void *)(unsigned long)bp->b_sema.count.counter,
62 (void *)current,
63 data, ra,
64 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
65 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
66 (void *)(unsigned long)bp->b_buffer_length,
67 NULL, NULL, NULL, NULL, NULL);
68 }
69 ktrace_t *xfs_buf_trace_buf;
70 #define XFS_BUF_TRACE_SIZE 4096
71 #define XB_TRACE(bp, id, data) \
72 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
73 #else
74 #define XB_TRACE(bp, id, data) do { } while (0)
75 #endif
76
77 #ifdef XFS_BUF_LOCK_TRACKING
78 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
79 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
80 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
81 #else
82 # define XB_SET_OWNER(bp) do { } while (0)
83 # define XB_CLEAR_OWNER(bp) do { } while (0)
84 # define XB_GET_OWNER(bp) do { } while (0)
85 #endif
86
87 #define xb_to_gfp(flags) \
88 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
89 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
90
91 #define xb_to_km(flags) \
92 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
93
94 #define xfs_buf_allocate(flags) \
95 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
96 #define xfs_buf_deallocate(bp) \
97 kmem_zone_free(xfs_buf_zone, (bp));
98
99 /*
100 * Page Region interfaces.
101 *
102 * For pages in filesystems where the blocksize is smaller than the
103 * pagesize, we use the page->private field (long) to hold a bitmap
104 * of uptodate regions within the page.
105 *
106 * Each such region is "bytes per page / bits per long" bytes long.
107 *
108 * NBPPR == number-of-bytes-per-page-region
109 * BTOPR == bytes-to-page-region (rounded up)
110 * BTOPRT == bytes-to-page-region-truncated (rounded down)
111 */
112 #if (BITS_PER_LONG == 32)
113 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
114 #elif (BITS_PER_LONG == 64)
115 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
116 #else
117 #error BITS_PER_LONG must be 32 or 64
118 #endif
119 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
120 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
121 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
122
123 STATIC unsigned long
124 page_region_mask(
125 size_t offset,
126 size_t length)
127 {
128 unsigned long mask;
129 int first, final;
130
131 first = BTOPR(offset);
132 final = BTOPRT(offset + length - 1);
133 first = min(first, final);
134
135 mask = ~0UL;
136 mask <<= BITS_PER_LONG - (final - first);
137 mask >>= BITS_PER_LONG - (final);
138
139 ASSERT(offset + length <= PAGE_CACHE_SIZE);
140 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
141
142 return mask;
143 }
144
145 STATIC_INLINE void
146 set_page_region(
147 struct page *page,
148 size_t offset,
149 size_t length)
150 {
151 set_page_private(page,
152 page_private(page) | page_region_mask(offset, length));
153 if (page_private(page) == ~0UL)
154 SetPageUptodate(page);
155 }
156
157 STATIC_INLINE int
158 test_page_region(
159 struct page *page,
160 size_t offset,
161 size_t length)
162 {
163 unsigned long mask = page_region_mask(offset, length);
164
165 return (mask && (page_private(page) & mask) == mask);
166 }
167
168 /*
169 * Mapping of multi-page buffers into contiguous virtual space
170 */
171
172 typedef struct a_list {
173 void *vm_addr;
174 struct a_list *next;
175 } a_list_t;
176
177 static a_list_t *as_free_head;
178 static int as_list_len;
179 static DEFINE_SPINLOCK(as_lock);
180
181 /*
182 * Try to batch vunmaps because they are costly.
183 */
184 STATIC void
185 free_address(
186 void *addr)
187 {
188 a_list_t *aentry;
189
190 #ifdef CONFIG_XEN
191 /*
192 * Xen needs to be able to make sure it can get an exclusive
193 * RO mapping of pages it wants to turn into a pagetable. If
194 * a newly allocated page is also still being vmap()ed by xfs,
195 * it will cause pagetable construction to fail. This is a
196 * quick workaround to always eagerly unmap pages so that Xen
197 * is happy.
198 */
199 vunmap(addr);
200 return;
201 #endif
202
203 aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
204 if (likely(aentry)) {
205 spin_lock(&as_lock);
206 aentry->next = as_free_head;
207 aentry->vm_addr = addr;
208 as_free_head = aentry;
209 as_list_len++;
210 spin_unlock(&as_lock);
211 } else {
212 vunmap(addr);
213 }
214 }
215
216 STATIC void
217 purge_addresses(void)
218 {
219 a_list_t *aentry, *old;
220
221 if (as_free_head == NULL)
222 return;
223
224 spin_lock(&as_lock);
225 aentry = as_free_head;
226 as_free_head = NULL;
227 as_list_len = 0;
228 spin_unlock(&as_lock);
229
230 while ((old = aentry) != NULL) {
231 vunmap(aentry->vm_addr);
232 aentry = aentry->next;
233 kfree(old);
234 }
235 }
236
237 /*
238 * Internal xfs_buf_t object manipulation
239 */
240
241 STATIC void
242 _xfs_buf_initialize(
243 xfs_buf_t *bp,
244 xfs_buftarg_t *target,
245 xfs_off_t range_base,
246 size_t range_length,
247 xfs_buf_flags_t flags)
248 {
249 /*
250 * We don't want certain flags to appear in b_flags.
251 */
252 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
253
254 memset(bp, 0, sizeof(xfs_buf_t));
255 atomic_set(&bp->b_hold, 1);
256 init_MUTEX_LOCKED(&bp->b_iodonesema);
257 INIT_LIST_HEAD(&bp->b_list);
258 INIT_LIST_HEAD(&bp->b_hash_list);
259 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
260 XB_SET_OWNER(bp);
261 bp->b_target = target;
262 bp->b_file_offset = range_base;
263 /*
264 * Set buffer_length and count_desired to the same value initially.
265 * I/O routines should use count_desired, which will be the same in
266 * most cases but may be reset (e.g. XFS recovery).
267 */
268 bp->b_buffer_length = bp->b_count_desired = range_length;
269 bp->b_flags = flags;
270 bp->b_bn = XFS_BUF_DADDR_NULL;
271 atomic_set(&bp->b_pin_count, 0);
272 init_waitqueue_head(&bp->b_waiters);
273
274 XFS_STATS_INC(xb_create);
275 XB_TRACE(bp, "initialize", target);
276 }
277
278 /*
279 * Allocate a page array capable of holding a specified number
280 * of pages, and point the page buf at it.
281 */
282 STATIC int
283 _xfs_buf_get_pages(
284 xfs_buf_t *bp,
285 int page_count,
286 xfs_buf_flags_t flags)
287 {
288 /* Make sure that we have a page list */
289 if (bp->b_pages == NULL) {
290 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
291 bp->b_page_count = page_count;
292 if (page_count <= XB_PAGES) {
293 bp->b_pages = bp->b_page_array;
294 } else {
295 bp->b_pages = kmem_alloc(sizeof(struct page *) *
296 page_count, xb_to_km(flags));
297 if (bp->b_pages == NULL)
298 return -ENOMEM;
299 }
300 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
301 }
302 return 0;
303 }
304
305 /*
306 * Frees b_pages if it was allocated.
307 */
308 STATIC void
309 _xfs_buf_free_pages(
310 xfs_buf_t *bp)
311 {
312 if (bp->b_pages != bp->b_page_array) {
313 kmem_free(bp->b_pages,
314 bp->b_page_count * sizeof(struct page *));
315 }
316 }
317
318 /*
319 * Releases the specified buffer.
320 *
321 * The modification state of any associated pages is left unchanged.
322 * The buffer most not be on any hash - use xfs_buf_rele instead for
323 * hashed and refcounted buffers
324 */
325 void
326 xfs_buf_free(
327 xfs_buf_t *bp)
328 {
329 XB_TRACE(bp, "free", 0);
330
331 ASSERT(list_empty(&bp->b_hash_list));
332
333 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
334 uint i;
335
336 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
337 free_address(bp->b_addr - bp->b_offset);
338
339 for (i = 0; i < bp->b_page_count; i++) {
340 struct page *page = bp->b_pages[i];
341
342 if (bp->b_flags & _XBF_PAGE_CACHE)
343 ASSERT(!PagePrivate(page));
344 page_cache_release(page);
345 }
346 _xfs_buf_free_pages(bp);
347 }
348
349 xfs_buf_deallocate(bp);
350 }
351
352 /*
353 * Finds all pages for buffer in question and builds it's page list.
354 */
355 STATIC int
356 _xfs_buf_lookup_pages(
357 xfs_buf_t *bp,
358 uint flags)
359 {
360 struct address_space *mapping = bp->b_target->bt_mapping;
361 size_t blocksize = bp->b_target->bt_bsize;
362 size_t size = bp->b_count_desired;
363 size_t nbytes, offset;
364 gfp_t gfp_mask = xb_to_gfp(flags);
365 unsigned short page_count, i;
366 pgoff_t first;
367 xfs_off_t end;
368 int error;
369
370 end = bp->b_file_offset + bp->b_buffer_length;
371 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
372
373 error = _xfs_buf_get_pages(bp, page_count, flags);
374 if (unlikely(error))
375 return error;
376 bp->b_flags |= _XBF_PAGE_CACHE;
377
378 offset = bp->b_offset;
379 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
380
381 for (i = 0; i < bp->b_page_count; i++) {
382 struct page *page;
383 uint retries = 0;
384
385 retry:
386 page = find_or_create_page(mapping, first + i, gfp_mask);
387 if (unlikely(page == NULL)) {
388 if (flags & XBF_READ_AHEAD) {
389 bp->b_page_count = i;
390 for (i = 0; i < bp->b_page_count; i++)
391 unlock_page(bp->b_pages[i]);
392 return -ENOMEM;
393 }
394
395 /*
396 * This could deadlock.
397 *
398 * But until all the XFS lowlevel code is revamped to
399 * handle buffer allocation failures we can't do much.
400 */
401 if (!(++retries % 100))
402 printk(KERN_ERR
403 "XFS: possible memory allocation "
404 "deadlock in %s (mode:0x%x)\n",
405 __FUNCTION__, gfp_mask);
406
407 XFS_STATS_INC(xb_page_retries);
408 xfsbufd_wakeup(0, gfp_mask);
409 congestion_wait(WRITE, HZ/50);
410 goto retry;
411 }
412
413 XFS_STATS_INC(xb_page_found);
414
415 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
416 size -= nbytes;
417
418 ASSERT(!PagePrivate(page));
419 if (!PageUptodate(page)) {
420 page_count--;
421 if (blocksize >= PAGE_CACHE_SIZE) {
422 if (flags & XBF_READ)
423 bp->b_locked = 1;
424 } else if (!PagePrivate(page)) {
425 if (test_page_region(page, offset, nbytes))
426 page_count++;
427 }
428 }
429
430 bp->b_pages[i] = page;
431 offset = 0;
432 }
433
434 if (!bp->b_locked) {
435 for (i = 0; i < bp->b_page_count; i++)
436 unlock_page(bp->b_pages[i]);
437 }
438
439 if (page_count == bp->b_page_count)
440 bp->b_flags |= XBF_DONE;
441
442 XB_TRACE(bp, "lookup_pages", (long)page_count);
443 return error;
444 }
445
446 /*
447 * Map buffer into kernel address-space if nessecary.
448 */
449 STATIC int
450 _xfs_buf_map_pages(
451 xfs_buf_t *bp,
452 uint flags)
453 {
454 /* A single page buffer is always mappable */
455 if (bp->b_page_count == 1) {
456 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
457 bp->b_flags |= XBF_MAPPED;
458 } else if (flags & XBF_MAPPED) {
459 if (as_list_len > 64)
460 purge_addresses();
461 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
462 VM_MAP, PAGE_KERNEL);
463 if (unlikely(bp->b_addr == NULL))
464 return -ENOMEM;
465 bp->b_addr += bp->b_offset;
466 bp->b_flags |= XBF_MAPPED;
467 }
468
469 return 0;
470 }
471
472 /*
473 * Finding and Reading Buffers
474 */
475
476 /*
477 * Look up, and creates if absent, a lockable buffer for
478 * a given range of an inode. The buffer is returned
479 * locked. If other overlapping buffers exist, they are
480 * released before the new buffer is created and locked,
481 * which may imply that this call will block until those buffers
482 * are unlocked. No I/O is implied by this call.
483 */
484 xfs_buf_t *
485 _xfs_buf_find(
486 xfs_buftarg_t *btp, /* block device target */
487 xfs_off_t ioff, /* starting offset of range */
488 size_t isize, /* length of range */
489 xfs_buf_flags_t flags,
490 xfs_buf_t *new_bp)
491 {
492 xfs_off_t range_base;
493 size_t range_length;
494 xfs_bufhash_t *hash;
495 xfs_buf_t *bp, *n;
496
497 range_base = (ioff << BBSHIFT);
498 range_length = (isize << BBSHIFT);
499
500 /* Check for IOs smaller than the sector size / not sector aligned */
501 ASSERT(!(range_length < (1 << btp->bt_sshift)));
502 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
503
504 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
505
506 spin_lock(&hash->bh_lock);
507
508 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
509 ASSERT(btp == bp->b_target);
510 if (bp->b_file_offset == range_base &&
511 bp->b_buffer_length == range_length) {
512 /*
513 * If we look at something, bring it to the
514 * front of the list for next time.
515 */
516 atomic_inc(&bp->b_hold);
517 list_move(&bp->b_hash_list, &hash->bh_list);
518 goto found;
519 }
520 }
521
522 /* No match found */
523 if (new_bp) {
524 _xfs_buf_initialize(new_bp, btp, range_base,
525 range_length, flags);
526 new_bp->b_hash = hash;
527 list_add(&new_bp->b_hash_list, &hash->bh_list);
528 } else {
529 XFS_STATS_INC(xb_miss_locked);
530 }
531
532 spin_unlock(&hash->bh_lock);
533 return new_bp;
534
535 found:
536 spin_unlock(&hash->bh_lock);
537
538 /* Attempt to get the semaphore without sleeping,
539 * if this does not work then we need to drop the
540 * spinlock and do a hard attempt on the semaphore.
541 */
542 if (down_trylock(&bp->b_sema)) {
543 if (!(flags & XBF_TRYLOCK)) {
544 /* wait for buffer ownership */
545 XB_TRACE(bp, "get_lock", 0);
546 xfs_buf_lock(bp);
547 XFS_STATS_INC(xb_get_locked_waited);
548 } else {
549 /* We asked for a trylock and failed, no need
550 * to look at file offset and length here, we
551 * know that this buffer at least overlaps our
552 * buffer and is locked, therefore our buffer
553 * either does not exist, or is this buffer.
554 */
555 xfs_buf_rele(bp);
556 XFS_STATS_INC(xb_busy_locked);
557 return NULL;
558 }
559 } else {
560 /* trylock worked */
561 XB_SET_OWNER(bp);
562 }
563
564 if (bp->b_flags & XBF_STALE) {
565 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
566 bp->b_flags &= XBF_MAPPED;
567 }
568 XB_TRACE(bp, "got_lock", 0);
569 XFS_STATS_INC(xb_get_locked);
570 return bp;
571 }
572
573 /*
574 * Assembles a buffer covering the specified range.
575 * Storage in memory for all portions of the buffer will be allocated,
576 * although backing storage may not be.
577 */
578 xfs_buf_t *
579 xfs_buf_get_flags(
580 xfs_buftarg_t *target,/* target for buffer */
581 xfs_off_t ioff, /* starting offset of range */
582 size_t isize, /* length of range */
583 xfs_buf_flags_t flags)
584 {
585 xfs_buf_t *bp, *new_bp;
586 int error = 0, i;
587
588 new_bp = xfs_buf_allocate(flags);
589 if (unlikely(!new_bp))
590 return NULL;
591
592 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
593 if (bp == new_bp) {
594 error = _xfs_buf_lookup_pages(bp, flags);
595 if (error)
596 goto no_buffer;
597 } else {
598 xfs_buf_deallocate(new_bp);
599 if (unlikely(bp == NULL))
600 return NULL;
601 }
602
603 for (i = 0; i < bp->b_page_count; i++)
604 mark_page_accessed(bp->b_pages[i]);
605
606 if (!(bp->b_flags & XBF_MAPPED)) {
607 error = _xfs_buf_map_pages(bp, flags);
608 if (unlikely(error)) {
609 printk(KERN_WARNING "%s: failed to map pages\n",
610 __FUNCTION__);
611 goto no_buffer;
612 }
613 }
614
615 XFS_STATS_INC(xb_get);
616
617 /*
618 * Always fill in the block number now, the mapped cases can do
619 * their own overlay of this later.
620 */
621 bp->b_bn = ioff;
622 bp->b_count_desired = bp->b_buffer_length;
623
624 XB_TRACE(bp, "get", (unsigned long)flags);
625 return bp;
626
627 no_buffer:
628 if (flags & (XBF_LOCK | XBF_TRYLOCK))
629 xfs_buf_unlock(bp);
630 xfs_buf_rele(bp);
631 return NULL;
632 }
633
634 xfs_buf_t *
635 xfs_buf_read_flags(
636 xfs_buftarg_t *target,
637 xfs_off_t ioff,
638 size_t isize,
639 xfs_buf_flags_t flags)
640 {
641 xfs_buf_t *bp;
642
643 flags |= XBF_READ;
644
645 bp = xfs_buf_get_flags(target, ioff, isize, flags);
646 if (bp) {
647 if (!XFS_BUF_ISDONE(bp)) {
648 XB_TRACE(bp, "read", (unsigned long)flags);
649 XFS_STATS_INC(xb_get_read);
650 xfs_buf_iostart(bp, flags);
651 } else if (flags & XBF_ASYNC) {
652 XB_TRACE(bp, "read_async", (unsigned long)flags);
653 /*
654 * Read ahead call which is already satisfied,
655 * drop the buffer
656 */
657 goto no_buffer;
658 } else {
659 XB_TRACE(bp, "read_done", (unsigned long)flags);
660 /* We do not want read in the flags */
661 bp->b_flags &= ~XBF_READ;
662 }
663 }
664
665 return bp;
666
667 no_buffer:
668 if (flags & (XBF_LOCK | XBF_TRYLOCK))
669 xfs_buf_unlock(bp);
670 xfs_buf_rele(bp);
671 return NULL;
672 }
673
674 /*
675 * If we are not low on memory then do the readahead in a deadlock
676 * safe manner.
677 */
678 void
679 xfs_buf_readahead(
680 xfs_buftarg_t *target,
681 xfs_off_t ioff,
682 size_t isize,
683 xfs_buf_flags_t flags)
684 {
685 struct backing_dev_info *bdi;
686
687 bdi = target->bt_mapping->backing_dev_info;
688 if (bdi_read_congested(bdi))
689 return;
690
691 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
692 xfs_buf_read_flags(target, ioff, isize, flags);
693 }
694
695 xfs_buf_t *
696 xfs_buf_get_empty(
697 size_t len,
698 xfs_buftarg_t *target)
699 {
700 xfs_buf_t *bp;
701
702 bp = xfs_buf_allocate(0);
703 if (bp)
704 _xfs_buf_initialize(bp, target, 0, len, 0);
705 return bp;
706 }
707
708 static inline struct page *
709 mem_to_page(
710 void *addr)
711 {
712 if (((unsigned long)addr < VMALLOC_START) ||
713 ((unsigned long)addr >= VMALLOC_END)) {
714 return virt_to_page(addr);
715 } else {
716 return vmalloc_to_page(addr);
717 }
718 }
719
720 int
721 xfs_buf_associate_memory(
722 xfs_buf_t *bp,
723 void *mem,
724 size_t len)
725 {
726 int rval;
727 int i = 0;
728 unsigned long pageaddr;
729 unsigned long offset;
730 size_t buflen;
731 int page_count;
732
733 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
734 offset = (unsigned long)mem - pageaddr;
735 buflen = PAGE_CACHE_ALIGN(len + offset);
736 page_count = buflen >> PAGE_CACHE_SHIFT;
737
738 /* Free any previous set of page pointers */
739 if (bp->b_pages)
740 _xfs_buf_free_pages(bp);
741
742 bp->b_pages = NULL;
743 bp->b_addr = mem;
744
745 rval = _xfs_buf_get_pages(bp, page_count, 0);
746 if (rval)
747 return rval;
748
749 bp->b_offset = offset;
750
751 for (i = 0; i < bp->b_page_count; i++) {
752 bp->b_pages[i] = mem_to_page((void *)pageaddr);
753 pageaddr += PAGE_CACHE_SIZE;
754 }
755 bp->b_locked = 0;
756
757 bp->b_count_desired = len;
758 bp->b_buffer_length = buflen;
759 bp->b_flags |= XBF_MAPPED;
760
761 return 0;
762 }
763
764 xfs_buf_t *
765 xfs_buf_get_noaddr(
766 size_t len,
767 xfs_buftarg_t *target)
768 {
769 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
770 int error, i;
771 xfs_buf_t *bp;
772
773 bp = xfs_buf_allocate(0);
774 if (unlikely(bp == NULL))
775 goto fail;
776 _xfs_buf_initialize(bp, target, 0, len, 0);
777
778 error = _xfs_buf_get_pages(bp, page_count, 0);
779 if (error)
780 goto fail_free_buf;
781
782 for (i = 0; i < page_count; i++) {
783 bp->b_pages[i] = alloc_page(GFP_KERNEL);
784 if (!bp->b_pages[i])
785 goto fail_free_mem;
786 }
787 bp->b_flags |= _XBF_PAGES;
788
789 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
790 if (unlikely(error)) {
791 printk(KERN_WARNING "%s: failed to map pages\n",
792 __FUNCTION__);
793 goto fail_free_mem;
794 }
795
796 xfs_buf_unlock(bp);
797
798 XB_TRACE(bp, "no_daddr", len);
799 return bp;
800
801 fail_free_mem:
802 while (--i >= 0)
803 __free_page(bp->b_pages[i]);
804 _xfs_buf_free_pages(bp);
805 fail_free_buf:
806 xfs_buf_deallocate(bp);
807 fail:
808 return NULL;
809 }
810
811 /*
812 * Increment reference count on buffer, to hold the buffer concurrently
813 * with another thread which may release (free) the buffer asynchronously.
814 * Must hold the buffer already to call this function.
815 */
816 void
817 xfs_buf_hold(
818 xfs_buf_t *bp)
819 {
820 atomic_inc(&bp->b_hold);
821 XB_TRACE(bp, "hold", 0);
822 }
823
824 /*
825 * Releases a hold on the specified buffer. If the
826 * the hold count is 1, calls xfs_buf_free.
827 */
828 void
829 xfs_buf_rele(
830 xfs_buf_t *bp)
831 {
832 xfs_bufhash_t *hash = bp->b_hash;
833
834 XB_TRACE(bp, "rele", bp->b_relse);
835
836 if (unlikely(!hash)) {
837 ASSERT(!bp->b_relse);
838 if (atomic_dec_and_test(&bp->b_hold))
839 xfs_buf_free(bp);
840 return;
841 }
842
843 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
844 if (bp->b_relse) {
845 atomic_inc(&bp->b_hold);
846 spin_unlock(&hash->bh_lock);
847 (*(bp->b_relse)) (bp);
848 } else if (bp->b_flags & XBF_FS_MANAGED) {
849 spin_unlock(&hash->bh_lock);
850 } else {
851 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
852 list_del_init(&bp->b_hash_list);
853 spin_unlock(&hash->bh_lock);
854 xfs_buf_free(bp);
855 }
856 } else {
857 /*
858 * Catch reference count leaks
859 */
860 ASSERT(atomic_read(&bp->b_hold) >= 0);
861 }
862 }
863
864
865 /*
866 * Mutual exclusion on buffers. Locking model:
867 *
868 * Buffers associated with inodes for which buffer locking
869 * is not enabled are not protected by semaphores, and are
870 * assumed to be exclusively owned by the caller. There is a
871 * spinlock in the buffer, used by the caller when concurrent
872 * access is possible.
873 */
874
875 /*
876 * Locks a buffer object, if it is not already locked.
877 * Note that this in no way locks the underlying pages, so it is only
878 * useful for synchronizing concurrent use of buffer objects, not for
879 * synchronizing independent access to the underlying pages.
880 */
881 int
882 xfs_buf_cond_lock(
883 xfs_buf_t *bp)
884 {
885 int locked;
886
887 locked = down_trylock(&bp->b_sema) == 0;
888 if (locked) {
889 XB_SET_OWNER(bp);
890 }
891 XB_TRACE(bp, "cond_lock", (long)locked);
892 return locked ? 0 : -EBUSY;
893 }
894
895 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
896 int
897 xfs_buf_lock_value(
898 xfs_buf_t *bp)
899 {
900 return atomic_read(&bp->b_sema.count);
901 }
902 #endif
903
904 /*
905 * Locks a buffer object.
906 * Note that this in no way locks the underlying pages, so it is only
907 * useful for synchronizing concurrent use of buffer objects, not for
908 * synchronizing independent access to the underlying pages.
909 */
910 void
911 xfs_buf_lock(
912 xfs_buf_t *bp)
913 {
914 XB_TRACE(bp, "lock", 0);
915 if (atomic_read(&bp->b_io_remaining))
916 blk_run_address_space(bp->b_target->bt_mapping);
917 down(&bp->b_sema);
918 XB_SET_OWNER(bp);
919 XB_TRACE(bp, "locked", 0);
920 }
921
922 /*
923 * Releases the lock on the buffer object.
924 * If the buffer is marked delwri but is not queued, do so before we
925 * unlock the buffer as we need to set flags correctly. We also need to
926 * take a reference for the delwri queue because the unlocker is going to
927 * drop their's and they don't know we just queued it.
928 */
929 void
930 xfs_buf_unlock(
931 xfs_buf_t *bp)
932 {
933 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
934 atomic_inc(&bp->b_hold);
935 bp->b_flags |= XBF_ASYNC;
936 xfs_buf_delwri_queue(bp, 0);
937 }
938
939 XB_CLEAR_OWNER(bp);
940 up(&bp->b_sema);
941 XB_TRACE(bp, "unlock", 0);
942 }
943
944
945 /*
946 * Pinning Buffer Storage in Memory
947 * Ensure that no attempt to force a buffer to disk will succeed.
948 */
949 void
950 xfs_buf_pin(
951 xfs_buf_t *bp)
952 {
953 atomic_inc(&bp->b_pin_count);
954 XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
955 }
956
957 void
958 xfs_buf_unpin(
959 xfs_buf_t *bp)
960 {
961 if (atomic_dec_and_test(&bp->b_pin_count))
962 wake_up_all(&bp->b_waiters);
963 XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
964 }
965
966 int
967 xfs_buf_ispin(
968 xfs_buf_t *bp)
969 {
970 return atomic_read(&bp->b_pin_count);
971 }
972
973 STATIC void
974 xfs_buf_wait_unpin(
975 xfs_buf_t *bp)
976 {
977 DECLARE_WAITQUEUE (wait, current);
978
979 if (atomic_read(&bp->b_pin_count) == 0)
980 return;
981
982 add_wait_queue(&bp->b_waiters, &wait);
983 for (;;) {
984 set_current_state(TASK_UNINTERRUPTIBLE);
985 if (atomic_read(&bp->b_pin_count) == 0)
986 break;
987 if (atomic_read(&bp->b_io_remaining))
988 blk_run_address_space(bp->b_target->bt_mapping);
989 schedule();
990 }
991 remove_wait_queue(&bp->b_waiters, &wait);
992 set_current_state(TASK_RUNNING);
993 }
994
995 /*
996 * Buffer Utility Routines
997 */
998
999 STATIC void
1000 xfs_buf_iodone_work(
1001 struct work_struct *work)
1002 {
1003 xfs_buf_t *bp =
1004 container_of(work, xfs_buf_t, b_iodone_work);
1005
1006 /*
1007 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
1008 * ordered flag and reissue them. Because we can't tell the higher
1009 * layers directly that they should not issue ordered I/O anymore, they
1010 * need to check if the ordered flag was cleared during I/O completion.
1011 */
1012 if ((bp->b_error == EOPNOTSUPP) &&
1013 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
1014 XB_TRACE(bp, "ordered_retry", bp->b_iodone);
1015 bp->b_flags &= ~XBF_ORDERED;
1016 xfs_buf_iorequest(bp);
1017 } else if (bp->b_iodone)
1018 (*(bp->b_iodone))(bp);
1019 else if (bp->b_flags & XBF_ASYNC)
1020 xfs_buf_relse(bp);
1021 }
1022
1023 void
1024 xfs_buf_ioend(
1025 xfs_buf_t *bp,
1026 int schedule)
1027 {
1028 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1029 if (bp->b_error == 0)
1030 bp->b_flags |= XBF_DONE;
1031
1032 XB_TRACE(bp, "iodone", bp->b_iodone);
1033
1034 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1035 if (schedule) {
1036 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1037 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1038 } else {
1039 xfs_buf_iodone_work(&bp->b_iodone_work);
1040 }
1041 } else {
1042 up(&bp->b_iodonesema);
1043 }
1044 }
1045
1046 void
1047 xfs_buf_ioerror(
1048 xfs_buf_t *bp,
1049 int error)
1050 {
1051 ASSERT(error >= 0 && error <= 0xffff);
1052 bp->b_error = (unsigned short)error;
1053 XB_TRACE(bp, "ioerror", (unsigned long)error);
1054 }
1055
1056 /*
1057 * Initiate I/O on a buffer, based on the flags supplied.
1058 * The b_iodone routine in the buffer supplied will only be called
1059 * when all of the subsidiary I/O requests, if any, have been completed.
1060 */
1061 int
1062 xfs_buf_iostart(
1063 xfs_buf_t *bp,
1064 xfs_buf_flags_t flags)
1065 {
1066 int status = 0;
1067
1068 XB_TRACE(bp, "iostart", (unsigned long)flags);
1069
1070 if (flags & XBF_DELWRI) {
1071 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1072 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1073 xfs_buf_delwri_queue(bp, 1);
1074 return status;
1075 }
1076
1077 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1078 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1079 bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1080 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1081
1082 BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1083
1084 /* For writes allow an alternate strategy routine to precede
1085 * the actual I/O request (which may not be issued at all in
1086 * a shutdown situation, for example).
1087 */
1088 status = (flags & XBF_WRITE) ?
1089 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1090
1091 /* Wait for I/O if we are not an async request.
1092 * Note: async I/O request completion will release the buffer,
1093 * and that can already be done by this point. So using the
1094 * buffer pointer from here on, after async I/O, is invalid.
1095 */
1096 if (!status && !(flags & XBF_ASYNC))
1097 status = xfs_buf_iowait(bp);
1098
1099 return status;
1100 }
1101
1102 STATIC_INLINE int
1103 _xfs_buf_iolocked(
1104 xfs_buf_t *bp)
1105 {
1106 ASSERT(bp->b_flags & (XBF_READ | XBF_WRITE));
1107 if (bp->b_flags & XBF_READ)
1108 return bp->b_locked;
1109 return 0;
1110 }
1111
1112 STATIC_INLINE void
1113 _xfs_buf_ioend(
1114 xfs_buf_t *bp,
1115 int schedule)
1116 {
1117 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1118 bp->b_locked = 0;
1119 xfs_buf_ioend(bp, schedule);
1120 }
1121 }
1122
1123 STATIC void
1124 xfs_buf_bio_end_io(
1125 struct bio *bio,
1126 int error)
1127 {
1128 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1129 unsigned int blocksize = bp->b_target->bt_bsize;
1130 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1131
1132 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1133 bp->b_error = EIO;
1134
1135 do {
1136 struct page *page = bvec->bv_page;
1137
1138 ASSERT(!PagePrivate(page));
1139 if (unlikely(bp->b_error)) {
1140 if (bp->b_flags & XBF_READ)
1141 ClearPageUptodate(page);
1142 } else if (blocksize >= PAGE_CACHE_SIZE) {
1143 SetPageUptodate(page);
1144 } else if (!PagePrivate(page) &&
1145 (bp->b_flags & _XBF_PAGE_CACHE)) {
1146 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1147 }
1148
1149 if (--bvec >= bio->bi_io_vec)
1150 prefetchw(&bvec->bv_page->flags);
1151
1152 if (_xfs_buf_iolocked(bp)) {
1153 unlock_page(page);
1154 }
1155 } while (bvec >= bio->bi_io_vec);
1156
1157 _xfs_buf_ioend(bp, 1);
1158 bio_put(bio);
1159 }
1160
1161 STATIC void
1162 _xfs_buf_ioapply(
1163 xfs_buf_t *bp)
1164 {
1165 int i, rw, map_i, total_nr_pages, nr_pages;
1166 struct bio *bio;
1167 int offset = bp->b_offset;
1168 int size = bp->b_count_desired;
1169 sector_t sector = bp->b_bn;
1170 unsigned int blocksize = bp->b_target->bt_bsize;
1171 int locking = _xfs_buf_iolocked(bp);
1172
1173 total_nr_pages = bp->b_page_count;
1174 map_i = 0;
1175
1176 if (bp->b_flags & XBF_ORDERED) {
1177 ASSERT(!(bp->b_flags & XBF_READ));
1178 rw = WRITE_BARRIER;
1179 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1180 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1181 bp->b_flags &= ~_XBF_RUN_QUEUES;
1182 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1183 } else {
1184 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1185 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1186 }
1187
1188 /* Special code path for reading a sub page size buffer in --
1189 * we populate up the whole page, and hence the other metadata
1190 * in the same page. This optimization is only valid when the
1191 * filesystem block size is not smaller than the page size.
1192 */
1193 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1194 (bp->b_flags & XBF_READ) && locking &&
1195 (blocksize >= PAGE_CACHE_SIZE)) {
1196 bio = bio_alloc(GFP_NOIO, 1);
1197
1198 bio->bi_bdev = bp->b_target->bt_bdev;
1199 bio->bi_sector = sector - (offset >> BBSHIFT);
1200 bio->bi_end_io = xfs_buf_bio_end_io;
1201 bio->bi_private = bp;
1202
1203 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1204 size = 0;
1205
1206 atomic_inc(&bp->b_io_remaining);
1207
1208 goto submit_io;
1209 }
1210
1211 /* Lock down the pages which we need to for the request */
1212 if (locking && (bp->b_flags & XBF_WRITE) && (bp->b_locked == 0)) {
1213 for (i = 0; size; i++) {
1214 int nbytes = PAGE_CACHE_SIZE - offset;
1215 struct page *page = bp->b_pages[i];
1216
1217 if (nbytes > size)
1218 nbytes = size;
1219
1220 lock_page(page);
1221
1222 size -= nbytes;
1223 offset = 0;
1224 }
1225 offset = bp->b_offset;
1226 size = bp->b_count_desired;
1227 }
1228
1229 next_chunk:
1230 atomic_inc(&bp->b_io_remaining);
1231 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1232 if (nr_pages > total_nr_pages)
1233 nr_pages = total_nr_pages;
1234
1235 bio = bio_alloc(GFP_NOIO, nr_pages);
1236 bio->bi_bdev = bp->b_target->bt_bdev;
1237 bio->bi_sector = sector;
1238 bio->bi_end_io = xfs_buf_bio_end_io;
1239 bio->bi_private = bp;
1240
1241 for (; size && nr_pages; nr_pages--, map_i++) {
1242 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1243
1244 if (nbytes > size)
1245 nbytes = size;
1246
1247 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1248 if (rbytes < nbytes)
1249 break;
1250
1251 offset = 0;
1252 sector += nbytes >> BBSHIFT;
1253 size -= nbytes;
1254 total_nr_pages--;
1255 }
1256
1257 submit_io:
1258 if (likely(bio->bi_size)) {
1259 submit_bio(rw, bio);
1260 if (size)
1261 goto next_chunk;
1262 } else {
1263 bio_put(bio);
1264 xfs_buf_ioerror(bp, EIO);
1265 }
1266 }
1267
1268 int
1269 xfs_buf_iorequest(
1270 xfs_buf_t *bp)
1271 {
1272 XB_TRACE(bp, "iorequest", 0);
1273
1274 if (bp->b_flags & XBF_DELWRI) {
1275 xfs_buf_delwri_queue(bp, 1);
1276 return 0;
1277 }
1278
1279 if (bp->b_flags & XBF_WRITE) {
1280 xfs_buf_wait_unpin(bp);
1281 }
1282
1283 xfs_buf_hold(bp);
1284
1285 /* Set the count to 1 initially, this will stop an I/O
1286 * completion callout which happens before we have started
1287 * all the I/O from calling xfs_buf_ioend too early.
1288 */
1289 atomic_set(&bp->b_io_remaining, 1);
1290 _xfs_buf_ioapply(bp);
1291 _xfs_buf_ioend(bp, 0);
1292
1293 xfs_buf_rele(bp);
1294 return 0;
1295 }
1296
1297 /*
1298 * Waits for I/O to complete on the buffer supplied.
1299 * It returns immediately if no I/O is pending.
1300 * It returns the I/O error code, if any, or 0 if there was no error.
1301 */
1302 int
1303 xfs_buf_iowait(
1304 xfs_buf_t *bp)
1305 {
1306 XB_TRACE(bp, "iowait", 0);
1307 if (atomic_read(&bp->b_io_remaining))
1308 blk_run_address_space(bp->b_target->bt_mapping);
1309 down(&bp->b_iodonesema);
1310 XB_TRACE(bp, "iowaited", (long)bp->b_error);
1311 return bp->b_error;
1312 }
1313
1314 xfs_caddr_t
1315 xfs_buf_offset(
1316 xfs_buf_t *bp,
1317 size_t offset)
1318 {
1319 struct page *page;
1320
1321 if (bp->b_flags & XBF_MAPPED)
1322 return XFS_BUF_PTR(bp) + offset;
1323
1324 offset += bp->b_offset;
1325 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1326 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1327 }
1328
1329 /*
1330 * Move data into or out of a buffer.
1331 */
1332 void
1333 xfs_buf_iomove(
1334 xfs_buf_t *bp, /* buffer to process */
1335 size_t boff, /* starting buffer offset */
1336 size_t bsize, /* length to copy */
1337 caddr_t data, /* data address */
1338 xfs_buf_rw_t mode) /* read/write/zero flag */
1339 {
1340 size_t bend, cpoff, csize;
1341 struct page *page;
1342
1343 bend = boff + bsize;
1344 while (boff < bend) {
1345 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1346 cpoff = xfs_buf_poff(boff + bp->b_offset);
1347 csize = min_t(size_t,
1348 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1349
1350 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1351
1352 switch (mode) {
1353 case XBRW_ZERO:
1354 memset(page_address(page) + cpoff, 0, csize);
1355 break;
1356 case XBRW_READ:
1357 memcpy(data, page_address(page) + cpoff, csize);
1358 break;
1359 case XBRW_WRITE:
1360 memcpy(page_address(page) + cpoff, data, csize);
1361 }
1362
1363 boff += csize;
1364 data += csize;
1365 }
1366 }
1367
1368 /*
1369 * Handling of buffer targets (buftargs).
1370 */
1371
1372 /*
1373 * Wait for any bufs with callbacks that have been submitted but
1374 * have not yet returned... walk the hash list for the target.
1375 */
1376 void
1377 xfs_wait_buftarg(
1378 xfs_buftarg_t *btp)
1379 {
1380 xfs_buf_t *bp, *n;
1381 xfs_bufhash_t *hash;
1382 uint i;
1383
1384 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1385 hash = &btp->bt_hash[i];
1386 again:
1387 spin_lock(&hash->bh_lock);
1388 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1389 ASSERT(btp == bp->b_target);
1390 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1391 spin_unlock(&hash->bh_lock);
1392 /*
1393 * Catch superblock reference count leaks
1394 * immediately
1395 */
1396 BUG_ON(bp->b_bn == 0);
1397 delay(100);
1398 goto again;
1399 }
1400 }
1401 spin_unlock(&hash->bh_lock);
1402 }
1403 }
1404
1405 /*
1406 * Allocate buffer hash table for a given target.
1407 * For devices containing metadata (i.e. not the log/realtime devices)
1408 * we need to allocate a much larger hash table.
1409 */
1410 STATIC void
1411 xfs_alloc_bufhash(
1412 xfs_buftarg_t *btp,
1413 int external)
1414 {
1415 unsigned int i;
1416
1417 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1418 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1419 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1420 sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1421 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1422 spin_lock_init(&btp->bt_hash[i].bh_lock);
1423 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1424 }
1425 }
1426
1427 STATIC void
1428 xfs_free_bufhash(
1429 xfs_buftarg_t *btp)
1430 {
1431 kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1432 btp->bt_hash = NULL;
1433 }
1434
1435 /*
1436 * buftarg list for delwrite queue processing
1437 */
1438 static LIST_HEAD(xfs_buftarg_list);
1439 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1440
1441 STATIC void
1442 xfs_register_buftarg(
1443 xfs_buftarg_t *btp)
1444 {
1445 spin_lock(&xfs_buftarg_lock);
1446 list_add(&btp->bt_list, &xfs_buftarg_list);
1447 spin_unlock(&xfs_buftarg_lock);
1448 }
1449
1450 STATIC void
1451 xfs_unregister_buftarg(
1452 xfs_buftarg_t *btp)
1453 {
1454 spin_lock(&xfs_buftarg_lock);
1455 list_del(&btp->bt_list);
1456 spin_unlock(&xfs_buftarg_lock);
1457 }
1458
1459 void
1460 xfs_free_buftarg(
1461 xfs_buftarg_t *btp,
1462 int external)
1463 {
1464 xfs_flush_buftarg(btp, 1);
1465 xfs_blkdev_issue_flush(btp);
1466 if (external)
1467 xfs_blkdev_put(btp->bt_bdev);
1468 xfs_free_bufhash(btp);
1469 iput(btp->bt_mapping->host);
1470
1471 /* Unregister the buftarg first so that we don't get a
1472 * wakeup finding a non-existent task
1473 */
1474 xfs_unregister_buftarg(btp);
1475 kthread_stop(btp->bt_task);
1476
1477 kmem_free(btp, sizeof(*btp));
1478 }
1479
1480 STATIC int
1481 xfs_setsize_buftarg_flags(
1482 xfs_buftarg_t *btp,
1483 unsigned int blocksize,
1484 unsigned int sectorsize,
1485 int verbose)
1486 {
1487 btp->bt_bsize = blocksize;
1488 btp->bt_sshift = ffs(sectorsize) - 1;
1489 btp->bt_smask = sectorsize - 1;
1490
1491 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1492 printk(KERN_WARNING
1493 "XFS: Cannot set_blocksize to %u on device %s\n",
1494 sectorsize, XFS_BUFTARG_NAME(btp));
1495 return EINVAL;
1496 }
1497
1498 if (verbose &&
1499 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1500 printk(KERN_WARNING
1501 "XFS: %u byte sectors in use on device %s. "
1502 "This is suboptimal; %u or greater is ideal.\n",
1503 sectorsize, XFS_BUFTARG_NAME(btp),
1504 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1505 }
1506
1507 return 0;
1508 }
1509
1510 /*
1511 * When allocating the initial buffer target we have not yet
1512 * read in the superblock, so don't know what sized sectors
1513 * are being used is at this early stage. Play safe.
1514 */
1515 STATIC int
1516 xfs_setsize_buftarg_early(
1517 xfs_buftarg_t *btp,
1518 struct block_device *bdev)
1519 {
1520 return xfs_setsize_buftarg_flags(btp,
1521 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1522 }
1523
1524 int
1525 xfs_setsize_buftarg(
1526 xfs_buftarg_t *btp,
1527 unsigned int blocksize,
1528 unsigned int sectorsize)
1529 {
1530 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1531 }
1532
1533 STATIC int
1534 xfs_mapping_buftarg(
1535 xfs_buftarg_t *btp,
1536 struct block_device *bdev)
1537 {
1538 struct backing_dev_info *bdi;
1539 struct inode *inode;
1540 struct address_space *mapping;
1541 static const struct address_space_operations mapping_aops = {
1542 .sync_page = block_sync_page,
1543 .migratepage = fail_migrate_page,
1544 };
1545
1546 inode = new_inode(bdev->bd_inode->i_sb);
1547 if (!inode) {
1548 printk(KERN_WARNING
1549 "XFS: Cannot allocate mapping inode for device %s\n",
1550 XFS_BUFTARG_NAME(btp));
1551 return ENOMEM;
1552 }
1553 inode->i_mode = S_IFBLK;
1554 inode->i_bdev = bdev;
1555 inode->i_rdev = bdev->bd_dev;
1556 bdi = blk_get_backing_dev_info(bdev);
1557 if (!bdi)
1558 bdi = &default_backing_dev_info;
1559 mapping = &inode->i_data;
1560 mapping->a_ops = &mapping_aops;
1561 mapping->backing_dev_info = bdi;
1562 mapping_set_gfp_mask(mapping, GFP_NOFS);
1563 btp->bt_mapping = mapping;
1564 return 0;
1565 }
1566
1567 STATIC int
1568 xfs_alloc_delwrite_queue(
1569 xfs_buftarg_t *btp)
1570 {
1571 int error = 0;
1572
1573 INIT_LIST_HEAD(&btp->bt_list);
1574 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1575 spinlock_init(&btp->bt_delwrite_lock, "delwri_lock");
1576 btp->bt_flags = 0;
1577 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1578 if (IS_ERR(btp->bt_task)) {
1579 error = PTR_ERR(btp->bt_task);
1580 goto out_error;
1581 }
1582 xfs_register_buftarg(btp);
1583 out_error:
1584 return error;
1585 }
1586
1587 xfs_buftarg_t *
1588 xfs_alloc_buftarg(
1589 struct block_device *bdev,
1590 int external)
1591 {
1592 xfs_buftarg_t *btp;
1593
1594 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1595
1596 btp->bt_dev = bdev->bd_dev;
1597 btp->bt_bdev = bdev;
1598 if (xfs_setsize_buftarg_early(btp, bdev))
1599 goto error;
1600 if (xfs_mapping_buftarg(btp, bdev))
1601 goto error;
1602 if (xfs_alloc_delwrite_queue(btp))
1603 goto error;
1604 xfs_alloc_bufhash(btp, external);
1605 return btp;
1606
1607 error:
1608 kmem_free(btp, sizeof(*btp));
1609 return NULL;
1610 }
1611
1612
1613 /*
1614 * Delayed write buffer handling
1615 */
1616 STATIC void
1617 xfs_buf_delwri_queue(
1618 xfs_buf_t *bp,
1619 int unlock)
1620 {
1621 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1622 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1623
1624 XB_TRACE(bp, "delwri_q", (long)unlock);
1625 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1626
1627 spin_lock(dwlk);
1628 /* If already in the queue, dequeue and place at tail */
1629 if (!list_empty(&bp->b_list)) {
1630 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1631 if (unlock)
1632 atomic_dec(&bp->b_hold);
1633 list_del(&bp->b_list);
1634 }
1635
1636 bp->b_flags |= _XBF_DELWRI_Q;
1637 list_add_tail(&bp->b_list, dwq);
1638 bp->b_queuetime = jiffies;
1639 spin_unlock(dwlk);
1640
1641 if (unlock)
1642 xfs_buf_unlock(bp);
1643 }
1644
1645 void
1646 xfs_buf_delwri_dequeue(
1647 xfs_buf_t *bp)
1648 {
1649 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1650 int dequeued = 0;
1651
1652 spin_lock(dwlk);
1653 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1654 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1655 list_del_init(&bp->b_list);
1656 dequeued = 1;
1657 }
1658 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1659 spin_unlock(dwlk);
1660
1661 if (dequeued)
1662 xfs_buf_rele(bp);
1663
1664 XB_TRACE(bp, "delwri_dq", (long)dequeued);
1665 }
1666
1667 STATIC void
1668 xfs_buf_runall_queues(
1669 struct workqueue_struct *queue)
1670 {
1671 flush_workqueue(queue);
1672 }
1673
1674 STATIC int
1675 xfsbufd_wakeup(
1676 int priority,
1677 gfp_t mask)
1678 {
1679 xfs_buftarg_t *btp;
1680
1681 spin_lock(&xfs_buftarg_lock);
1682 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1683 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1684 continue;
1685 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1686 wake_up_process(btp->bt_task);
1687 }
1688 spin_unlock(&xfs_buftarg_lock);
1689 return 0;
1690 }
1691
1692 /*
1693 * Move as many buffers as specified to the supplied list
1694 * idicating if we skipped any buffers to prevent deadlocks.
1695 */
1696 STATIC int
1697 xfs_buf_delwri_split(
1698 xfs_buftarg_t *target,
1699 struct list_head *list,
1700 unsigned long age)
1701 {
1702 xfs_buf_t *bp, *n;
1703 struct list_head *dwq = &target->bt_delwrite_queue;
1704 spinlock_t *dwlk = &target->bt_delwrite_lock;
1705 int skipped = 0;
1706 int force;
1707
1708 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1709 INIT_LIST_HEAD(list);
1710 spin_lock(dwlk);
1711 list_for_each_entry_safe(bp, n, dwq, b_list) {
1712 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1713 ASSERT(bp->b_flags & XBF_DELWRI);
1714
1715 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1716 if (!force &&
1717 time_before(jiffies, bp->b_queuetime + age)) {
1718 xfs_buf_unlock(bp);
1719 break;
1720 }
1721
1722 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1723 _XBF_RUN_QUEUES);
1724 bp->b_flags |= XBF_WRITE;
1725 list_move_tail(&bp->b_list, list);
1726 } else
1727 skipped++;
1728 }
1729 spin_unlock(dwlk);
1730
1731 return skipped;
1732
1733 }
1734
1735 STATIC int
1736 xfsbufd(
1737 void *data)
1738 {
1739 struct list_head tmp;
1740 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1741 int count;
1742 xfs_buf_t *bp;
1743
1744 current->flags |= PF_MEMALLOC;
1745
1746 set_freezable();
1747
1748 do {
1749 if (unlikely(freezing(current))) {
1750 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1751 refrigerator();
1752 } else {
1753 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1754 }
1755
1756 schedule_timeout_interruptible(
1757 xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1758
1759 xfs_buf_delwri_split(target, &tmp,
1760 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1761
1762 count = 0;
1763 while (!list_empty(&tmp)) {
1764 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1765 ASSERT(target == bp->b_target);
1766
1767 list_del_init(&bp->b_list);
1768 xfs_buf_iostrategy(bp);
1769 count++;
1770 }
1771
1772 if (as_list_len > 0)
1773 purge_addresses();
1774 if (count)
1775 blk_run_address_space(target->bt_mapping);
1776
1777 } while (!kthread_should_stop());
1778
1779 return 0;
1780 }
1781
1782 /*
1783 * Go through all incore buffers, and release buffers if they belong to
1784 * the given device. This is used in filesystem error handling to
1785 * preserve the consistency of its metadata.
1786 */
1787 int
1788 xfs_flush_buftarg(
1789 xfs_buftarg_t *target,
1790 int wait)
1791 {
1792 struct list_head tmp;
1793 xfs_buf_t *bp, *n;
1794 int pincount = 0;
1795
1796 xfs_buf_runall_queues(xfsdatad_workqueue);
1797 xfs_buf_runall_queues(xfslogd_workqueue);
1798
1799 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1800 pincount = xfs_buf_delwri_split(target, &tmp, 0);
1801
1802 /*
1803 * Dropped the delayed write list lock, now walk the temporary list
1804 */
1805 list_for_each_entry_safe(bp, n, &tmp, b_list) {
1806 ASSERT(target == bp->b_target);
1807 if (wait)
1808 bp->b_flags &= ~XBF_ASYNC;
1809 else
1810 list_del_init(&bp->b_list);
1811
1812 xfs_buf_iostrategy(bp);
1813 }
1814
1815 if (wait)
1816 blk_run_address_space(target->bt_mapping);
1817
1818 /*
1819 * Remaining list items must be flushed before returning
1820 */
1821 while (!list_empty(&tmp)) {
1822 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1823
1824 list_del_init(&bp->b_list);
1825 xfs_iowait(bp);
1826 xfs_buf_relse(bp);
1827 }
1828
1829 return pincount;
1830 }
1831
1832 int __init
1833 xfs_buf_init(void)
1834 {
1835 #ifdef XFS_BUF_TRACE
1836 xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
1837 #endif
1838
1839 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1840 KM_ZONE_HWALIGN, NULL);
1841 if (!xfs_buf_zone)
1842 goto out_free_trace_buf;
1843
1844 xfslogd_workqueue = create_workqueue("xfslogd");
1845 if (!xfslogd_workqueue)
1846 goto out_free_buf_zone;
1847
1848 xfsdatad_workqueue = create_workqueue("xfsdatad");
1849 if (!xfsdatad_workqueue)
1850 goto out_destroy_xfslogd_workqueue;
1851
1852 register_shrinker(&xfs_buf_shake);
1853 return 0;
1854
1855 out_destroy_xfslogd_workqueue:
1856 destroy_workqueue(xfslogd_workqueue);
1857 out_free_buf_zone:
1858 kmem_zone_destroy(xfs_buf_zone);
1859 out_free_trace_buf:
1860 #ifdef XFS_BUF_TRACE
1861 ktrace_free(xfs_buf_trace_buf);
1862 #endif
1863 return -ENOMEM;
1864 }
1865
1866 void
1867 xfs_buf_terminate(void)
1868 {
1869 unregister_shrinker(&xfs_buf_shake);
1870 destroy_workqueue(xfsdatad_workqueue);
1871 destroy_workqueue(xfslogd_workqueue);
1872 kmem_zone_destroy(xfs_buf_zone);
1873 #ifdef XFS_BUF_TRACE
1874 ktrace_free(xfs_buf_trace_buf);
1875 #endif
1876 }
1877
1878 #ifdef CONFIG_KDB_MODULES
1879 struct list_head *
1880 xfs_get_buftarg_list(void)
1881 {
1882 return &xfs_buftarg_list;
1883 }
1884 #endif
This page took 0.07091 seconds and 4 git commands to generate.