Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jlbec...
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
48
49 static struct workqueue_struct *xfslogd_workqueue;
50 struct workqueue_struct *xfsdatad_workqueue;
51 struct workqueue_struct *xfsconvertd_workqueue;
52
53 #ifdef XFS_BUF_LOCK_TRACKING
54 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
55 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
56 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
57 #else
58 # define XB_SET_OWNER(bp) do { } while (0)
59 # define XB_CLEAR_OWNER(bp) do { } while (0)
60 # define XB_GET_OWNER(bp) do { } while (0)
61 #endif
62
63 #define xb_to_gfp(flags) \
64 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
65 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
66
67 #define xb_to_km(flags) \
68 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
69
70 #define xfs_buf_allocate(flags) \
71 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
72 #define xfs_buf_deallocate(bp) \
73 kmem_zone_free(xfs_buf_zone, (bp));
74
75 static inline int
76 xfs_buf_is_vmapped(
77 struct xfs_buf *bp)
78 {
79 /*
80 * Return true if the buffer is vmapped.
81 *
82 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
83 * code is clever enough to know it doesn't have to map a single page,
84 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
85 */
86 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
87 }
88
89 static inline int
90 xfs_buf_vmap_len(
91 struct xfs_buf *bp)
92 {
93 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
94 }
95
96 /*
97 * Page Region interfaces.
98 *
99 * For pages in filesystems where the blocksize is smaller than the
100 * pagesize, we use the page->private field (long) to hold a bitmap
101 * of uptodate regions within the page.
102 *
103 * Each such region is "bytes per page / bits per long" bytes long.
104 *
105 * NBPPR == number-of-bytes-per-page-region
106 * BTOPR == bytes-to-page-region (rounded up)
107 * BTOPRT == bytes-to-page-region-truncated (rounded down)
108 */
109 #if (BITS_PER_LONG == 32)
110 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
111 #elif (BITS_PER_LONG == 64)
112 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
113 #else
114 #error BITS_PER_LONG must be 32 or 64
115 #endif
116 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
117 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
118 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
119
120 STATIC unsigned long
121 page_region_mask(
122 size_t offset,
123 size_t length)
124 {
125 unsigned long mask;
126 int first, final;
127
128 first = BTOPR(offset);
129 final = BTOPRT(offset + length - 1);
130 first = min(first, final);
131
132 mask = ~0UL;
133 mask <<= BITS_PER_LONG - (final - first);
134 mask >>= BITS_PER_LONG - (final);
135
136 ASSERT(offset + length <= PAGE_CACHE_SIZE);
137 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
138
139 return mask;
140 }
141
142 STATIC void
143 set_page_region(
144 struct page *page,
145 size_t offset,
146 size_t length)
147 {
148 set_page_private(page,
149 page_private(page) | page_region_mask(offset, length));
150 if (page_private(page) == ~0UL)
151 SetPageUptodate(page);
152 }
153
154 STATIC int
155 test_page_region(
156 struct page *page,
157 size_t offset,
158 size_t length)
159 {
160 unsigned long mask = page_region_mask(offset, length);
161
162 return (mask && (page_private(page) & mask) == mask);
163 }
164
165 /*
166 * xfs_buf_lru_add - add a buffer to the LRU.
167 *
168 * The LRU takes a new reference to the buffer so that it will only be freed
169 * once the shrinker takes the buffer off the LRU.
170 */
171 STATIC void
172 xfs_buf_lru_add(
173 struct xfs_buf *bp)
174 {
175 struct xfs_buftarg *btp = bp->b_target;
176
177 spin_lock(&btp->bt_lru_lock);
178 if (list_empty(&bp->b_lru)) {
179 atomic_inc(&bp->b_hold);
180 list_add_tail(&bp->b_lru, &btp->bt_lru);
181 btp->bt_lru_nr++;
182 }
183 spin_unlock(&btp->bt_lru_lock);
184 }
185
186 /*
187 * xfs_buf_lru_del - remove a buffer from the LRU
188 *
189 * The unlocked check is safe here because it only occurs when there are not
190 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
191 * to optimise the shrinker removing the buffer from the LRU and calling
192 * xfs_buf_free(). i.e. it removes an unneccessary round trip on the
193 * bt_lru_lock.
194 */
195 STATIC void
196 xfs_buf_lru_del(
197 struct xfs_buf *bp)
198 {
199 struct xfs_buftarg *btp = bp->b_target;
200
201 if (list_empty(&bp->b_lru))
202 return;
203
204 spin_lock(&btp->bt_lru_lock);
205 if (!list_empty(&bp->b_lru)) {
206 list_del_init(&bp->b_lru);
207 btp->bt_lru_nr--;
208 }
209 spin_unlock(&btp->bt_lru_lock);
210 }
211
212 /*
213 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
214 * b_lru_ref count so that the buffer is freed immediately when the buffer
215 * reference count falls to zero. If the buffer is already on the LRU, we need
216 * to remove the reference that LRU holds on the buffer.
217 *
218 * This prevents build-up of stale buffers on the LRU.
219 */
220 void
221 xfs_buf_stale(
222 struct xfs_buf *bp)
223 {
224 bp->b_flags |= XBF_STALE;
225 atomic_set(&(bp)->b_lru_ref, 0);
226 if (!list_empty(&bp->b_lru)) {
227 struct xfs_buftarg *btp = bp->b_target;
228
229 spin_lock(&btp->bt_lru_lock);
230 if (!list_empty(&bp->b_lru)) {
231 list_del_init(&bp->b_lru);
232 btp->bt_lru_nr--;
233 atomic_dec(&bp->b_hold);
234 }
235 spin_unlock(&btp->bt_lru_lock);
236 }
237 ASSERT(atomic_read(&bp->b_hold) >= 1);
238 }
239
240 STATIC void
241 _xfs_buf_initialize(
242 xfs_buf_t *bp,
243 xfs_buftarg_t *target,
244 xfs_off_t range_base,
245 size_t range_length,
246 xfs_buf_flags_t flags)
247 {
248 /*
249 * We don't want certain flags to appear in b_flags.
250 */
251 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
252
253 memset(bp, 0, sizeof(xfs_buf_t));
254 atomic_set(&bp->b_hold, 1);
255 atomic_set(&bp->b_lru_ref, 1);
256 init_completion(&bp->b_iowait);
257 INIT_LIST_HEAD(&bp->b_lru);
258 INIT_LIST_HEAD(&bp->b_list);
259 RB_CLEAR_NODE(&bp->b_rbnode);
260 sema_init(&bp->b_sema, 0); /* held, no waiters */
261 XB_SET_OWNER(bp);
262 bp->b_target = target;
263 bp->b_file_offset = range_base;
264 /*
265 * Set buffer_length and count_desired to the same value initially.
266 * I/O routines should use count_desired, which will be the same in
267 * most cases but may be reset (e.g. XFS recovery).
268 */
269 bp->b_buffer_length = bp->b_count_desired = range_length;
270 bp->b_flags = flags;
271 bp->b_bn = XFS_BUF_DADDR_NULL;
272 atomic_set(&bp->b_pin_count, 0);
273 init_waitqueue_head(&bp->b_waiters);
274
275 XFS_STATS_INC(xb_create);
276
277 trace_xfs_buf_init(bp, _RET_IP_);
278 }
279
280 /*
281 * Allocate a page array capable of holding a specified number
282 * of pages, and point the page buf at it.
283 */
284 STATIC int
285 _xfs_buf_get_pages(
286 xfs_buf_t *bp,
287 int page_count,
288 xfs_buf_flags_t flags)
289 {
290 /* Make sure that we have a page list */
291 if (bp->b_pages == NULL) {
292 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
293 bp->b_page_count = page_count;
294 if (page_count <= XB_PAGES) {
295 bp->b_pages = bp->b_page_array;
296 } else {
297 bp->b_pages = kmem_alloc(sizeof(struct page *) *
298 page_count, xb_to_km(flags));
299 if (bp->b_pages == NULL)
300 return -ENOMEM;
301 }
302 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
303 }
304 return 0;
305 }
306
307 /*
308 * Frees b_pages if it was allocated.
309 */
310 STATIC void
311 _xfs_buf_free_pages(
312 xfs_buf_t *bp)
313 {
314 if (bp->b_pages != bp->b_page_array) {
315 kmem_free(bp->b_pages);
316 bp->b_pages = NULL;
317 }
318 }
319
320 /*
321 * Releases the specified buffer.
322 *
323 * The modification state of any associated pages is left unchanged.
324 * The buffer most not be on any hash - use xfs_buf_rele instead for
325 * hashed and refcounted buffers
326 */
327 void
328 xfs_buf_free(
329 xfs_buf_t *bp)
330 {
331 trace_xfs_buf_free(bp, _RET_IP_);
332
333 ASSERT(list_empty(&bp->b_lru));
334
335 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
336 uint i;
337
338 if (xfs_buf_is_vmapped(bp))
339 vm_unmap_ram(bp->b_addr - bp->b_offset,
340 bp->b_page_count);
341
342 for (i = 0; i < bp->b_page_count; i++) {
343 struct page *page = bp->b_pages[i];
344
345 if (bp->b_flags & _XBF_PAGE_CACHE)
346 ASSERT(!PagePrivate(page));
347 page_cache_release(page);
348 }
349 }
350 _xfs_buf_free_pages(bp);
351 xfs_buf_deallocate(bp);
352 }
353
354 /*
355 * Finds all pages for buffer in question and builds it's page list.
356 */
357 STATIC int
358 _xfs_buf_lookup_pages(
359 xfs_buf_t *bp,
360 uint flags)
361 {
362 struct address_space *mapping = bp->b_target->bt_mapping;
363 size_t blocksize = bp->b_target->bt_bsize;
364 size_t size = bp->b_count_desired;
365 size_t nbytes, offset;
366 gfp_t gfp_mask = xb_to_gfp(flags);
367 unsigned short page_count, i;
368 pgoff_t first;
369 xfs_off_t end;
370 int error;
371
372 end = bp->b_file_offset + bp->b_buffer_length;
373 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
374
375 error = _xfs_buf_get_pages(bp, page_count, flags);
376 if (unlikely(error))
377 return error;
378 bp->b_flags |= _XBF_PAGE_CACHE;
379
380 offset = bp->b_offset;
381 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
382
383 for (i = 0; i < bp->b_page_count; i++) {
384 struct page *page;
385 uint retries = 0;
386
387 retry:
388 page = find_or_create_page(mapping, first + i, gfp_mask);
389 if (unlikely(page == NULL)) {
390 if (flags & XBF_READ_AHEAD) {
391 bp->b_page_count = i;
392 for (i = 0; i < bp->b_page_count; i++)
393 unlock_page(bp->b_pages[i]);
394 return -ENOMEM;
395 }
396
397 /*
398 * This could deadlock.
399 *
400 * But until all the XFS lowlevel code is revamped to
401 * handle buffer allocation failures we can't do much.
402 */
403 if (!(++retries % 100))
404 xfs_err(NULL,
405 "possible memory allocation deadlock in %s (mode:0x%x)",
406 __func__, gfp_mask);
407
408 XFS_STATS_INC(xb_page_retries);
409 congestion_wait(BLK_RW_ASYNC, HZ/50);
410 goto retry;
411 }
412
413 XFS_STATS_INC(xb_page_found);
414
415 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
416 size -= nbytes;
417
418 ASSERT(!PagePrivate(page));
419 if (!PageUptodate(page)) {
420 page_count--;
421 if (blocksize >= PAGE_CACHE_SIZE) {
422 if (flags & XBF_READ)
423 bp->b_flags |= _XBF_PAGE_LOCKED;
424 } else if (!PagePrivate(page)) {
425 if (test_page_region(page, offset, nbytes))
426 page_count++;
427 }
428 }
429
430 bp->b_pages[i] = page;
431 offset = 0;
432 }
433
434 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
435 for (i = 0; i < bp->b_page_count; i++)
436 unlock_page(bp->b_pages[i]);
437 }
438
439 if (page_count == bp->b_page_count)
440 bp->b_flags |= XBF_DONE;
441
442 return error;
443 }
444
445 /*
446 * Map buffer into kernel address-space if nessecary.
447 */
448 STATIC int
449 _xfs_buf_map_pages(
450 xfs_buf_t *bp,
451 uint flags)
452 {
453 /* A single page buffer is always mappable */
454 if (bp->b_page_count == 1) {
455 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
456 bp->b_flags |= XBF_MAPPED;
457 } else if (flags & XBF_MAPPED) {
458 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
459 -1, PAGE_KERNEL);
460 if (unlikely(bp->b_addr == NULL))
461 return -ENOMEM;
462 bp->b_addr += bp->b_offset;
463 bp->b_flags |= XBF_MAPPED;
464 }
465
466 return 0;
467 }
468
469 /*
470 * Finding and Reading Buffers
471 */
472
473 /*
474 * Look up, and creates if absent, a lockable buffer for
475 * a given range of an inode. The buffer is returned
476 * locked. If other overlapping buffers exist, they are
477 * released before the new buffer is created and locked,
478 * which may imply that this call will block until those buffers
479 * are unlocked. No I/O is implied by this call.
480 */
481 xfs_buf_t *
482 _xfs_buf_find(
483 xfs_buftarg_t *btp, /* block device target */
484 xfs_off_t ioff, /* starting offset of range */
485 size_t isize, /* length of range */
486 xfs_buf_flags_t flags,
487 xfs_buf_t *new_bp)
488 {
489 xfs_off_t range_base;
490 size_t range_length;
491 struct xfs_perag *pag;
492 struct rb_node **rbp;
493 struct rb_node *parent;
494 xfs_buf_t *bp;
495
496 range_base = (ioff << BBSHIFT);
497 range_length = (isize << BBSHIFT);
498
499 /* Check for IOs smaller than the sector size / not sector aligned */
500 ASSERT(!(range_length < (1 << btp->bt_sshift)));
501 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
502
503 /* get tree root */
504 pag = xfs_perag_get(btp->bt_mount,
505 xfs_daddr_to_agno(btp->bt_mount, ioff));
506
507 /* walk tree */
508 spin_lock(&pag->pag_buf_lock);
509 rbp = &pag->pag_buf_tree.rb_node;
510 parent = NULL;
511 bp = NULL;
512 while (*rbp) {
513 parent = *rbp;
514 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
515
516 if (range_base < bp->b_file_offset)
517 rbp = &(*rbp)->rb_left;
518 else if (range_base > bp->b_file_offset)
519 rbp = &(*rbp)->rb_right;
520 else {
521 /*
522 * found a block offset match. If the range doesn't
523 * match, the only way this is allowed is if the buffer
524 * in the cache is stale and the transaction that made
525 * it stale has not yet committed. i.e. we are
526 * reallocating a busy extent. Skip this buffer and
527 * continue searching to the right for an exact match.
528 */
529 if (bp->b_buffer_length != range_length) {
530 ASSERT(bp->b_flags & XBF_STALE);
531 rbp = &(*rbp)->rb_right;
532 continue;
533 }
534 atomic_inc(&bp->b_hold);
535 goto found;
536 }
537 }
538
539 /* No match found */
540 if (new_bp) {
541 _xfs_buf_initialize(new_bp, btp, range_base,
542 range_length, flags);
543 rb_link_node(&new_bp->b_rbnode, parent, rbp);
544 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
545 /* the buffer keeps the perag reference until it is freed */
546 new_bp->b_pag = pag;
547 spin_unlock(&pag->pag_buf_lock);
548 } else {
549 XFS_STATS_INC(xb_miss_locked);
550 spin_unlock(&pag->pag_buf_lock);
551 xfs_perag_put(pag);
552 }
553 return new_bp;
554
555 found:
556 spin_unlock(&pag->pag_buf_lock);
557 xfs_perag_put(pag);
558
559 if (xfs_buf_cond_lock(bp)) {
560 /* failed, so wait for the lock if requested. */
561 if (!(flags & XBF_TRYLOCK)) {
562 xfs_buf_lock(bp);
563 XFS_STATS_INC(xb_get_locked_waited);
564 } else {
565 xfs_buf_rele(bp);
566 XFS_STATS_INC(xb_busy_locked);
567 return NULL;
568 }
569 }
570
571 if (bp->b_flags & XBF_STALE) {
572 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
573 bp->b_flags &= XBF_MAPPED;
574 }
575
576 trace_xfs_buf_find(bp, flags, _RET_IP_);
577 XFS_STATS_INC(xb_get_locked);
578 return bp;
579 }
580
581 /*
582 * Assembles a buffer covering the specified range.
583 * Storage in memory for all portions of the buffer will be allocated,
584 * although backing storage may not be.
585 */
586 xfs_buf_t *
587 xfs_buf_get(
588 xfs_buftarg_t *target,/* target for buffer */
589 xfs_off_t ioff, /* starting offset of range */
590 size_t isize, /* length of range */
591 xfs_buf_flags_t flags)
592 {
593 xfs_buf_t *bp, *new_bp;
594 int error = 0, i;
595
596 new_bp = xfs_buf_allocate(flags);
597 if (unlikely(!new_bp))
598 return NULL;
599
600 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
601 if (bp == new_bp) {
602 error = _xfs_buf_lookup_pages(bp, flags);
603 if (error)
604 goto no_buffer;
605 } else {
606 xfs_buf_deallocate(new_bp);
607 if (unlikely(bp == NULL))
608 return NULL;
609 }
610
611 for (i = 0; i < bp->b_page_count; i++)
612 mark_page_accessed(bp->b_pages[i]);
613
614 if (!(bp->b_flags & XBF_MAPPED)) {
615 error = _xfs_buf_map_pages(bp, flags);
616 if (unlikely(error)) {
617 xfs_warn(target->bt_mount,
618 "%s: failed to map pages\n", __func__);
619 goto no_buffer;
620 }
621 }
622
623 XFS_STATS_INC(xb_get);
624
625 /*
626 * Always fill in the block number now, the mapped cases can do
627 * their own overlay of this later.
628 */
629 bp->b_bn = ioff;
630 bp->b_count_desired = bp->b_buffer_length;
631
632 trace_xfs_buf_get(bp, flags, _RET_IP_);
633 return bp;
634
635 no_buffer:
636 if (flags & (XBF_LOCK | XBF_TRYLOCK))
637 xfs_buf_unlock(bp);
638 xfs_buf_rele(bp);
639 return NULL;
640 }
641
642 STATIC int
643 _xfs_buf_read(
644 xfs_buf_t *bp,
645 xfs_buf_flags_t flags)
646 {
647 int status;
648
649 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
650 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
651
652 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
653 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
654 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
655 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
656
657 status = xfs_buf_iorequest(bp);
658 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
659 return status;
660 return xfs_buf_iowait(bp);
661 }
662
663 xfs_buf_t *
664 xfs_buf_read(
665 xfs_buftarg_t *target,
666 xfs_off_t ioff,
667 size_t isize,
668 xfs_buf_flags_t flags)
669 {
670 xfs_buf_t *bp;
671
672 flags |= XBF_READ;
673
674 bp = xfs_buf_get(target, ioff, isize, flags);
675 if (bp) {
676 trace_xfs_buf_read(bp, flags, _RET_IP_);
677
678 if (!XFS_BUF_ISDONE(bp)) {
679 XFS_STATS_INC(xb_get_read);
680 _xfs_buf_read(bp, flags);
681 } else if (flags & XBF_ASYNC) {
682 /*
683 * Read ahead call which is already satisfied,
684 * drop the buffer
685 */
686 goto no_buffer;
687 } else {
688 /* We do not want read in the flags */
689 bp->b_flags &= ~XBF_READ;
690 }
691 }
692
693 return bp;
694
695 no_buffer:
696 if (flags & (XBF_LOCK | XBF_TRYLOCK))
697 xfs_buf_unlock(bp);
698 xfs_buf_rele(bp);
699 return NULL;
700 }
701
702 /*
703 * If we are not low on memory then do the readahead in a deadlock
704 * safe manner.
705 */
706 void
707 xfs_buf_readahead(
708 xfs_buftarg_t *target,
709 xfs_off_t ioff,
710 size_t isize)
711 {
712 struct backing_dev_info *bdi;
713
714 bdi = target->bt_mapping->backing_dev_info;
715 if (bdi_read_congested(bdi))
716 return;
717
718 xfs_buf_read(target, ioff, isize,
719 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
720 }
721
722 /*
723 * Read an uncached buffer from disk. Allocates and returns a locked
724 * buffer containing the disk contents or nothing.
725 */
726 struct xfs_buf *
727 xfs_buf_read_uncached(
728 struct xfs_mount *mp,
729 struct xfs_buftarg *target,
730 xfs_daddr_t daddr,
731 size_t length,
732 int flags)
733 {
734 xfs_buf_t *bp;
735 int error;
736
737 bp = xfs_buf_get_uncached(target, length, flags);
738 if (!bp)
739 return NULL;
740
741 /* set up the buffer for a read IO */
742 xfs_buf_lock(bp);
743 XFS_BUF_SET_ADDR(bp, daddr);
744 XFS_BUF_READ(bp);
745 XFS_BUF_BUSY(bp);
746
747 xfsbdstrat(mp, bp);
748 error = xfs_buf_iowait(bp);
749 if (error || bp->b_error) {
750 xfs_buf_relse(bp);
751 return NULL;
752 }
753 return bp;
754 }
755
756 xfs_buf_t *
757 xfs_buf_get_empty(
758 size_t len,
759 xfs_buftarg_t *target)
760 {
761 xfs_buf_t *bp;
762
763 bp = xfs_buf_allocate(0);
764 if (bp)
765 _xfs_buf_initialize(bp, target, 0, len, 0);
766 return bp;
767 }
768
769 static inline struct page *
770 mem_to_page(
771 void *addr)
772 {
773 if ((!is_vmalloc_addr(addr))) {
774 return virt_to_page(addr);
775 } else {
776 return vmalloc_to_page(addr);
777 }
778 }
779
780 int
781 xfs_buf_associate_memory(
782 xfs_buf_t *bp,
783 void *mem,
784 size_t len)
785 {
786 int rval;
787 int i = 0;
788 unsigned long pageaddr;
789 unsigned long offset;
790 size_t buflen;
791 int page_count;
792
793 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
794 offset = (unsigned long)mem - pageaddr;
795 buflen = PAGE_CACHE_ALIGN(len + offset);
796 page_count = buflen >> PAGE_CACHE_SHIFT;
797
798 /* Free any previous set of page pointers */
799 if (bp->b_pages)
800 _xfs_buf_free_pages(bp);
801
802 bp->b_pages = NULL;
803 bp->b_addr = mem;
804
805 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
806 if (rval)
807 return rval;
808
809 bp->b_offset = offset;
810
811 for (i = 0; i < bp->b_page_count; i++) {
812 bp->b_pages[i] = mem_to_page((void *)pageaddr);
813 pageaddr += PAGE_CACHE_SIZE;
814 }
815
816 bp->b_count_desired = len;
817 bp->b_buffer_length = buflen;
818 bp->b_flags |= XBF_MAPPED;
819 bp->b_flags &= ~_XBF_PAGE_LOCKED;
820
821 return 0;
822 }
823
824 xfs_buf_t *
825 xfs_buf_get_uncached(
826 struct xfs_buftarg *target,
827 size_t len,
828 int flags)
829 {
830 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
831 int error, i;
832 xfs_buf_t *bp;
833
834 bp = xfs_buf_allocate(0);
835 if (unlikely(bp == NULL))
836 goto fail;
837 _xfs_buf_initialize(bp, target, 0, len, 0);
838
839 error = _xfs_buf_get_pages(bp, page_count, 0);
840 if (error)
841 goto fail_free_buf;
842
843 for (i = 0; i < page_count; i++) {
844 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
845 if (!bp->b_pages[i])
846 goto fail_free_mem;
847 }
848 bp->b_flags |= _XBF_PAGES;
849
850 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
851 if (unlikely(error)) {
852 xfs_warn(target->bt_mount,
853 "%s: failed to map pages\n", __func__);
854 goto fail_free_mem;
855 }
856
857 xfs_buf_unlock(bp);
858
859 trace_xfs_buf_get_uncached(bp, _RET_IP_);
860 return bp;
861
862 fail_free_mem:
863 while (--i >= 0)
864 __free_page(bp->b_pages[i]);
865 _xfs_buf_free_pages(bp);
866 fail_free_buf:
867 xfs_buf_deallocate(bp);
868 fail:
869 return NULL;
870 }
871
872 /*
873 * Increment reference count on buffer, to hold the buffer concurrently
874 * with another thread which may release (free) the buffer asynchronously.
875 * Must hold the buffer already to call this function.
876 */
877 void
878 xfs_buf_hold(
879 xfs_buf_t *bp)
880 {
881 trace_xfs_buf_hold(bp, _RET_IP_);
882 atomic_inc(&bp->b_hold);
883 }
884
885 /*
886 * Releases a hold on the specified buffer. If the
887 * the hold count is 1, calls xfs_buf_free.
888 */
889 void
890 xfs_buf_rele(
891 xfs_buf_t *bp)
892 {
893 struct xfs_perag *pag = bp->b_pag;
894
895 trace_xfs_buf_rele(bp, _RET_IP_);
896
897 if (!pag) {
898 ASSERT(list_empty(&bp->b_lru));
899 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
900 if (atomic_dec_and_test(&bp->b_hold))
901 xfs_buf_free(bp);
902 return;
903 }
904
905 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
906
907 ASSERT(atomic_read(&bp->b_hold) > 0);
908 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
909 if (!(bp->b_flags & XBF_STALE) &&
910 atomic_read(&bp->b_lru_ref)) {
911 xfs_buf_lru_add(bp);
912 spin_unlock(&pag->pag_buf_lock);
913 } else {
914 xfs_buf_lru_del(bp);
915 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
916 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
917 spin_unlock(&pag->pag_buf_lock);
918 xfs_perag_put(pag);
919 xfs_buf_free(bp);
920 }
921 }
922 }
923
924
925 /*
926 * Mutual exclusion on buffers. Locking model:
927 *
928 * Buffers associated with inodes for which buffer locking
929 * is not enabled are not protected by semaphores, and are
930 * assumed to be exclusively owned by the caller. There is a
931 * spinlock in the buffer, used by the caller when concurrent
932 * access is possible.
933 */
934
935 /*
936 * Locks a buffer object, if it is not already locked. Note that this in
937 * no way locks the underlying pages, so it is only useful for
938 * synchronizing concurrent use of buffer objects, not for synchronizing
939 * independent access to the underlying pages.
940 *
941 * If we come across a stale, pinned, locked buffer, we know that we are
942 * being asked to lock a buffer that has been reallocated. Because it is
943 * pinned, we know that the log has not been pushed to disk and hence it
944 * will still be locked. Rather than continuing to have trylock attempts
945 * fail until someone else pushes the log, push it ourselves before
946 * returning. This means that the xfsaild will not get stuck trying
947 * to push on stale inode buffers.
948 */
949 int
950 xfs_buf_cond_lock(
951 xfs_buf_t *bp)
952 {
953 int locked;
954
955 locked = down_trylock(&bp->b_sema) == 0;
956 if (locked)
957 XB_SET_OWNER(bp);
958 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
959 xfs_log_force(bp->b_target->bt_mount, 0);
960
961 trace_xfs_buf_cond_lock(bp, _RET_IP_);
962 return locked ? 0 : -EBUSY;
963 }
964
965 int
966 xfs_buf_lock_value(
967 xfs_buf_t *bp)
968 {
969 return bp->b_sema.count;
970 }
971
972 /*
973 * Locks a buffer object.
974 * Note that this in no way locks the underlying pages, so it is only
975 * useful for synchronizing concurrent use of buffer objects, not for
976 * synchronizing independent access to the underlying pages.
977 *
978 * If we come across a stale, pinned, locked buffer, we know that we
979 * are being asked to lock a buffer that has been reallocated. Because
980 * it is pinned, we know that the log has not been pushed to disk and
981 * hence it will still be locked. Rather than sleeping until someone
982 * else pushes the log, push it ourselves before trying to get the lock.
983 */
984 void
985 xfs_buf_lock(
986 xfs_buf_t *bp)
987 {
988 trace_xfs_buf_lock(bp, _RET_IP_);
989
990 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
991 xfs_log_force(bp->b_target->bt_mount, 0);
992 if (atomic_read(&bp->b_io_remaining))
993 blk_flush_plug(current);
994 down(&bp->b_sema);
995 XB_SET_OWNER(bp);
996
997 trace_xfs_buf_lock_done(bp, _RET_IP_);
998 }
999
1000 /*
1001 * Releases the lock on the buffer object.
1002 * If the buffer is marked delwri but is not queued, do so before we
1003 * unlock the buffer as we need to set flags correctly. We also need to
1004 * take a reference for the delwri queue because the unlocker is going to
1005 * drop their's and they don't know we just queued it.
1006 */
1007 void
1008 xfs_buf_unlock(
1009 xfs_buf_t *bp)
1010 {
1011 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
1012 atomic_inc(&bp->b_hold);
1013 bp->b_flags |= XBF_ASYNC;
1014 xfs_buf_delwri_queue(bp, 0);
1015 }
1016
1017 XB_CLEAR_OWNER(bp);
1018 up(&bp->b_sema);
1019
1020 trace_xfs_buf_unlock(bp, _RET_IP_);
1021 }
1022
1023 STATIC void
1024 xfs_buf_wait_unpin(
1025 xfs_buf_t *bp)
1026 {
1027 DECLARE_WAITQUEUE (wait, current);
1028
1029 if (atomic_read(&bp->b_pin_count) == 0)
1030 return;
1031
1032 add_wait_queue(&bp->b_waiters, &wait);
1033 for (;;) {
1034 set_current_state(TASK_UNINTERRUPTIBLE);
1035 if (atomic_read(&bp->b_pin_count) == 0)
1036 break;
1037 io_schedule();
1038 }
1039 remove_wait_queue(&bp->b_waiters, &wait);
1040 set_current_state(TASK_RUNNING);
1041 }
1042
1043 /*
1044 * Buffer Utility Routines
1045 */
1046
1047 STATIC void
1048 xfs_buf_iodone_work(
1049 struct work_struct *work)
1050 {
1051 xfs_buf_t *bp =
1052 container_of(work, xfs_buf_t, b_iodone_work);
1053
1054 if (bp->b_iodone)
1055 (*(bp->b_iodone))(bp);
1056 else if (bp->b_flags & XBF_ASYNC)
1057 xfs_buf_relse(bp);
1058 }
1059
1060 void
1061 xfs_buf_ioend(
1062 xfs_buf_t *bp,
1063 int schedule)
1064 {
1065 trace_xfs_buf_iodone(bp, _RET_IP_);
1066
1067 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1068 if (bp->b_error == 0)
1069 bp->b_flags |= XBF_DONE;
1070
1071 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1072 if (schedule) {
1073 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1074 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1075 } else {
1076 xfs_buf_iodone_work(&bp->b_iodone_work);
1077 }
1078 } else {
1079 complete(&bp->b_iowait);
1080 }
1081 }
1082
1083 void
1084 xfs_buf_ioerror(
1085 xfs_buf_t *bp,
1086 int error)
1087 {
1088 ASSERT(error >= 0 && error <= 0xffff);
1089 bp->b_error = (unsigned short)error;
1090 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1091 }
1092
1093 int
1094 xfs_bwrite(
1095 struct xfs_mount *mp,
1096 struct xfs_buf *bp)
1097 {
1098 int error;
1099
1100 bp->b_flags |= XBF_WRITE;
1101 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1102
1103 xfs_buf_delwri_dequeue(bp);
1104 xfs_bdstrat_cb(bp);
1105
1106 error = xfs_buf_iowait(bp);
1107 if (error)
1108 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1109 xfs_buf_relse(bp);
1110 return error;
1111 }
1112
1113 void
1114 xfs_bdwrite(
1115 void *mp,
1116 struct xfs_buf *bp)
1117 {
1118 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1119
1120 bp->b_flags &= ~XBF_READ;
1121 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1122
1123 xfs_buf_delwri_queue(bp, 1);
1124 }
1125
1126 /*
1127 * Called when we want to stop a buffer from getting written or read.
1128 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1129 * so that the proper iodone callbacks get called.
1130 */
1131 STATIC int
1132 xfs_bioerror(
1133 xfs_buf_t *bp)
1134 {
1135 #ifdef XFSERRORDEBUG
1136 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1137 #endif
1138
1139 /*
1140 * No need to wait until the buffer is unpinned, we aren't flushing it.
1141 */
1142 XFS_BUF_ERROR(bp, EIO);
1143
1144 /*
1145 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1146 */
1147 XFS_BUF_UNREAD(bp);
1148 XFS_BUF_UNDELAYWRITE(bp);
1149 XFS_BUF_UNDONE(bp);
1150 XFS_BUF_STALE(bp);
1151
1152 xfs_buf_ioend(bp, 0);
1153
1154 return EIO;
1155 }
1156
1157 /*
1158 * Same as xfs_bioerror, except that we are releasing the buffer
1159 * here ourselves, and avoiding the xfs_buf_ioend call.
1160 * This is meant for userdata errors; metadata bufs come with
1161 * iodone functions attached, so that we can track down errors.
1162 */
1163 STATIC int
1164 xfs_bioerror_relse(
1165 struct xfs_buf *bp)
1166 {
1167 int64_t fl = XFS_BUF_BFLAGS(bp);
1168 /*
1169 * No need to wait until the buffer is unpinned.
1170 * We aren't flushing it.
1171 *
1172 * chunkhold expects B_DONE to be set, whether
1173 * we actually finish the I/O or not. We don't want to
1174 * change that interface.
1175 */
1176 XFS_BUF_UNREAD(bp);
1177 XFS_BUF_UNDELAYWRITE(bp);
1178 XFS_BUF_DONE(bp);
1179 XFS_BUF_STALE(bp);
1180 XFS_BUF_CLR_IODONE_FUNC(bp);
1181 if (!(fl & XBF_ASYNC)) {
1182 /*
1183 * Mark b_error and B_ERROR _both_.
1184 * Lot's of chunkcache code assumes that.
1185 * There's no reason to mark error for
1186 * ASYNC buffers.
1187 */
1188 XFS_BUF_ERROR(bp, EIO);
1189 XFS_BUF_FINISH_IOWAIT(bp);
1190 } else {
1191 xfs_buf_relse(bp);
1192 }
1193
1194 return EIO;
1195 }
1196
1197
1198 /*
1199 * All xfs metadata buffers except log state machine buffers
1200 * get this attached as their b_bdstrat callback function.
1201 * This is so that we can catch a buffer
1202 * after prematurely unpinning it to forcibly shutdown the filesystem.
1203 */
1204 int
1205 xfs_bdstrat_cb(
1206 struct xfs_buf *bp)
1207 {
1208 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1209 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1210 /*
1211 * Metadata write that didn't get logged but
1212 * written delayed anyway. These aren't associated
1213 * with a transaction, and can be ignored.
1214 */
1215 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1216 return xfs_bioerror_relse(bp);
1217 else
1218 return xfs_bioerror(bp);
1219 }
1220
1221 xfs_buf_iorequest(bp);
1222 return 0;
1223 }
1224
1225 /*
1226 * Wrapper around bdstrat so that we can stop data from going to disk in case
1227 * we are shutting down the filesystem. Typically user data goes thru this
1228 * path; one of the exceptions is the superblock.
1229 */
1230 void
1231 xfsbdstrat(
1232 struct xfs_mount *mp,
1233 struct xfs_buf *bp)
1234 {
1235 if (XFS_FORCED_SHUTDOWN(mp)) {
1236 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1237 xfs_bioerror_relse(bp);
1238 return;
1239 }
1240
1241 xfs_buf_iorequest(bp);
1242 }
1243
1244 STATIC void
1245 _xfs_buf_ioend(
1246 xfs_buf_t *bp,
1247 int schedule)
1248 {
1249 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1250 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1251 xfs_buf_ioend(bp, schedule);
1252 }
1253 }
1254
1255 STATIC void
1256 xfs_buf_bio_end_io(
1257 struct bio *bio,
1258 int error)
1259 {
1260 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1261 unsigned int blocksize = bp->b_target->bt_bsize;
1262 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1263
1264 xfs_buf_ioerror(bp, -error);
1265
1266 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1267 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1268
1269 do {
1270 struct page *page = bvec->bv_page;
1271
1272 ASSERT(!PagePrivate(page));
1273 if (unlikely(bp->b_error)) {
1274 if (bp->b_flags & XBF_READ)
1275 ClearPageUptodate(page);
1276 } else if (blocksize >= PAGE_CACHE_SIZE) {
1277 SetPageUptodate(page);
1278 } else if (!PagePrivate(page) &&
1279 (bp->b_flags & _XBF_PAGE_CACHE)) {
1280 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1281 }
1282
1283 if (--bvec >= bio->bi_io_vec)
1284 prefetchw(&bvec->bv_page->flags);
1285
1286 if (bp->b_flags & _XBF_PAGE_LOCKED)
1287 unlock_page(page);
1288 } while (bvec >= bio->bi_io_vec);
1289
1290 _xfs_buf_ioend(bp, 1);
1291 bio_put(bio);
1292 }
1293
1294 STATIC void
1295 _xfs_buf_ioapply(
1296 xfs_buf_t *bp)
1297 {
1298 int rw, map_i, total_nr_pages, nr_pages;
1299 struct bio *bio;
1300 int offset = bp->b_offset;
1301 int size = bp->b_count_desired;
1302 sector_t sector = bp->b_bn;
1303 unsigned int blocksize = bp->b_target->bt_bsize;
1304
1305 total_nr_pages = bp->b_page_count;
1306 map_i = 0;
1307
1308 if (bp->b_flags & XBF_ORDERED) {
1309 ASSERT(!(bp->b_flags & XBF_READ));
1310 rw = WRITE_FLUSH_FUA;
1311 } else if (bp->b_flags & XBF_LOG_BUFFER) {
1312 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1313 bp->b_flags &= ~_XBF_RUN_QUEUES;
1314 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1315 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1316 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1317 bp->b_flags &= ~_XBF_RUN_QUEUES;
1318 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1319 } else {
1320 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1321 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1322 }
1323
1324 /* Special code path for reading a sub page size buffer in --
1325 * we populate up the whole page, and hence the other metadata
1326 * in the same page. This optimization is only valid when the
1327 * filesystem block size is not smaller than the page size.
1328 */
1329 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1330 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1331 (XBF_READ|_XBF_PAGE_LOCKED)) &&
1332 (blocksize >= PAGE_CACHE_SIZE)) {
1333 bio = bio_alloc(GFP_NOIO, 1);
1334
1335 bio->bi_bdev = bp->b_target->bt_bdev;
1336 bio->bi_sector = sector - (offset >> BBSHIFT);
1337 bio->bi_end_io = xfs_buf_bio_end_io;
1338 bio->bi_private = bp;
1339
1340 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1341 size = 0;
1342
1343 atomic_inc(&bp->b_io_remaining);
1344
1345 goto submit_io;
1346 }
1347
1348 next_chunk:
1349 atomic_inc(&bp->b_io_remaining);
1350 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1351 if (nr_pages > total_nr_pages)
1352 nr_pages = total_nr_pages;
1353
1354 bio = bio_alloc(GFP_NOIO, nr_pages);
1355 bio->bi_bdev = bp->b_target->bt_bdev;
1356 bio->bi_sector = sector;
1357 bio->bi_end_io = xfs_buf_bio_end_io;
1358 bio->bi_private = bp;
1359
1360 for (; size && nr_pages; nr_pages--, map_i++) {
1361 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1362
1363 if (nbytes > size)
1364 nbytes = size;
1365
1366 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1367 if (rbytes < nbytes)
1368 break;
1369
1370 offset = 0;
1371 sector += nbytes >> BBSHIFT;
1372 size -= nbytes;
1373 total_nr_pages--;
1374 }
1375
1376 submit_io:
1377 if (likely(bio->bi_size)) {
1378 if (xfs_buf_is_vmapped(bp)) {
1379 flush_kernel_vmap_range(bp->b_addr,
1380 xfs_buf_vmap_len(bp));
1381 }
1382 submit_bio(rw, bio);
1383 if (size)
1384 goto next_chunk;
1385 } else {
1386 /*
1387 * if we get here, no pages were added to the bio. However,
1388 * we can't just error out here - if the pages are locked then
1389 * we have to unlock them otherwise we can hang on a later
1390 * access to the page.
1391 */
1392 xfs_buf_ioerror(bp, EIO);
1393 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1394 int i;
1395 for (i = 0; i < bp->b_page_count; i++)
1396 unlock_page(bp->b_pages[i]);
1397 }
1398 bio_put(bio);
1399 }
1400 }
1401
1402 int
1403 xfs_buf_iorequest(
1404 xfs_buf_t *bp)
1405 {
1406 trace_xfs_buf_iorequest(bp, _RET_IP_);
1407
1408 if (bp->b_flags & XBF_DELWRI) {
1409 xfs_buf_delwri_queue(bp, 1);
1410 return 0;
1411 }
1412
1413 if (bp->b_flags & XBF_WRITE) {
1414 xfs_buf_wait_unpin(bp);
1415 }
1416
1417 xfs_buf_hold(bp);
1418
1419 /* Set the count to 1 initially, this will stop an I/O
1420 * completion callout which happens before we have started
1421 * all the I/O from calling xfs_buf_ioend too early.
1422 */
1423 atomic_set(&bp->b_io_remaining, 1);
1424 _xfs_buf_ioapply(bp);
1425 _xfs_buf_ioend(bp, 0);
1426
1427 xfs_buf_rele(bp);
1428 return 0;
1429 }
1430
1431 /*
1432 * Waits for I/O to complete on the buffer supplied.
1433 * It returns immediately if no I/O is pending.
1434 * It returns the I/O error code, if any, or 0 if there was no error.
1435 */
1436 int
1437 xfs_buf_iowait(
1438 xfs_buf_t *bp)
1439 {
1440 trace_xfs_buf_iowait(bp, _RET_IP_);
1441
1442 if (atomic_read(&bp->b_io_remaining))
1443 blk_flush_plug(current);
1444 wait_for_completion(&bp->b_iowait);
1445
1446 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1447 return bp->b_error;
1448 }
1449
1450 xfs_caddr_t
1451 xfs_buf_offset(
1452 xfs_buf_t *bp,
1453 size_t offset)
1454 {
1455 struct page *page;
1456
1457 if (bp->b_flags & XBF_MAPPED)
1458 return XFS_BUF_PTR(bp) + offset;
1459
1460 offset += bp->b_offset;
1461 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1462 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1463 }
1464
1465 /*
1466 * Move data into or out of a buffer.
1467 */
1468 void
1469 xfs_buf_iomove(
1470 xfs_buf_t *bp, /* buffer to process */
1471 size_t boff, /* starting buffer offset */
1472 size_t bsize, /* length to copy */
1473 void *data, /* data address */
1474 xfs_buf_rw_t mode) /* read/write/zero flag */
1475 {
1476 size_t bend, cpoff, csize;
1477 struct page *page;
1478
1479 bend = boff + bsize;
1480 while (boff < bend) {
1481 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1482 cpoff = xfs_buf_poff(boff + bp->b_offset);
1483 csize = min_t(size_t,
1484 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1485
1486 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1487
1488 switch (mode) {
1489 case XBRW_ZERO:
1490 memset(page_address(page) + cpoff, 0, csize);
1491 break;
1492 case XBRW_READ:
1493 memcpy(data, page_address(page) + cpoff, csize);
1494 break;
1495 case XBRW_WRITE:
1496 memcpy(page_address(page) + cpoff, data, csize);
1497 }
1498
1499 boff += csize;
1500 data += csize;
1501 }
1502 }
1503
1504 /*
1505 * Handling of buffer targets (buftargs).
1506 */
1507
1508 /*
1509 * Wait for any bufs with callbacks that have been submitted but have not yet
1510 * returned. These buffers will have an elevated hold count, so wait on those
1511 * while freeing all the buffers only held by the LRU.
1512 */
1513 void
1514 xfs_wait_buftarg(
1515 struct xfs_buftarg *btp)
1516 {
1517 struct xfs_buf *bp;
1518
1519 restart:
1520 spin_lock(&btp->bt_lru_lock);
1521 while (!list_empty(&btp->bt_lru)) {
1522 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1523 if (atomic_read(&bp->b_hold) > 1) {
1524 spin_unlock(&btp->bt_lru_lock);
1525 delay(100);
1526 goto restart;
1527 }
1528 /*
1529 * clear the LRU reference count so the bufer doesn't get
1530 * ignored in xfs_buf_rele().
1531 */
1532 atomic_set(&bp->b_lru_ref, 0);
1533 spin_unlock(&btp->bt_lru_lock);
1534 xfs_buf_rele(bp);
1535 spin_lock(&btp->bt_lru_lock);
1536 }
1537 spin_unlock(&btp->bt_lru_lock);
1538 }
1539
1540 int
1541 xfs_buftarg_shrink(
1542 struct shrinker *shrink,
1543 int nr_to_scan,
1544 gfp_t mask)
1545 {
1546 struct xfs_buftarg *btp = container_of(shrink,
1547 struct xfs_buftarg, bt_shrinker);
1548 struct xfs_buf *bp;
1549 LIST_HEAD(dispose);
1550
1551 if (!nr_to_scan)
1552 return btp->bt_lru_nr;
1553
1554 spin_lock(&btp->bt_lru_lock);
1555 while (!list_empty(&btp->bt_lru)) {
1556 if (nr_to_scan-- <= 0)
1557 break;
1558
1559 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1560
1561 /*
1562 * Decrement the b_lru_ref count unless the value is already
1563 * zero. If the value is already zero, we need to reclaim the
1564 * buffer, otherwise it gets another trip through the LRU.
1565 */
1566 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1567 list_move_tail(&bp->b_lru, &btp->bt_lru);
1568 continue;
1569 }
1570
1571 /*
1572 * remove the buffer from the LRU now to avoid needing another
1573 * lock round trip inside xfs_buf_rele().
1574 */
1575 list_move(&bp->b_lru, &dispose);
1576 btp->bt_lru_nr--;
1577 }
1578 spin_unlock(&btp->bt_lru_lock);
1579
1580 while (!list_empty(&dispose)) {
1581 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1582 list_del_init(&bp->b_lru);
1583 xfs_buf_rele(bp);
1584 }
1585
1586 return btp->bt_lru_nr;
1587 }
1588
1589 void
1590 xfs_free_buftarg(
1591 struct xfs_mount *mp,
1592 struct xfs_buftarg *btp)
1593 {
1594 unregister_shrinker(&btp->bt_shrinker);
1595
1596 xfs_flush_buftarg(btp, 1);
1597 if (mp->m_flags & XFS_MOUNT_BARRIER)
1598 xfs_blkdev_issue_flush(btp);
1599 iput(btp->bt_mapping->host);
1600
1601 kthread_stop(btp->bt_task);
1602 kmem_free(btp);
1603 }
1604
1605 STATIC int
1606 xfs_setsize_buftarg_flags(
1607 xfs_buftarg_t *btp,
1608 unsigned int blocksize,
1609 unsigned int sectorsize,
1610 int verbose)
1611 {
1612 btp->bt_bsize = blocksize;
1613 btp->bt_sshift = ffs(sectorsize) - 1;
1614 btp->bt_smask = sectorsize - 1;
1615
1616 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1617 xfs_warn(btp->bt_mount,
1618 "Cannot set_blocksize to %u on device %s\n",
1619 sectorsize, XFS_BUFTARG_NAME(btp));
1620 return EINVAL;
1621 }
1622
1623 if (verbose &&
1624 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1625 printk(KERN_WARNING
1626 "XFS: %u byte sectors in use on device %s. "
1627 "This is suboptimal; %u or greater is ideal.\n",
1628 sectorsize, XFS_BUFTARG_NAME(btp),
1629 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1630 }
1631
1632 return 0;
1633 }
1634
1635 /*
1636 * When allocating the initial buffer target we have not yet
1637 * read in the superblock, so don't know what sized sectors
1638 * are being used is at this early stage. Play safe.
1639 */
1640 STATIC int
1641 xfs_setsize_buftarg_early(
1642 xfs_buftarg_t *btp,
1643 struct block_device *bdev)
1644 {
1645 return xfs_setsize_buftarg_flags(btp,
1646 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1647 }
1648
1649 int
1650 xfs_setsize_buftarg(
1651 xfs_buftarg_t *btp,
1652 unsigned int blocksize,
1653 unsigned int sectorsize)
1654 {
1655 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1656 }
1657
1658 STATIC int
1659 xfs_mapping_buftarg(
1660 xfs_buftarg_t *btp,
1661 struct block_device *bdev)
1662 {
1663 struct backing_dev_info *bdi;
1664 struct inode *inode;
1665 struct address_space *mapping;
1666 static const struct address_space_operations mapping_aops = {
1667 .migratepage = fail_migrate_page,
1668 };
1669
1670 inode = new_inode(bdev->bd_inode->i_sb);
1671 if (!inode) {
1672 printk(KERN_WARNING
1673 "XFS: Cannot allocate mapping inode for device %s\n",
1674 XFS_BUFTARG_NAME(btp));
1675 return ENOMEM;
1676 }
1677 inode->i_ino = get_next_ino();
1678 inode->i_mode = S_IFBLK;
1679 inode->i_bdev = bdev;
1680 inode->i_rdev = bdev->bd_dev;
1681 bdi = blk_get_backing_dev_info(bdev);
1682 if (!bdi)
1683 bdi = &default_backing_dev_info;
1684 mapping = &inode->i_data;
1685 mapping->a_ops = &mapping_aops;
1686 mapping->backing_dev_info = bdi;
1687 mapping_set_gfp_mask(mapping, GFP_NOFS);
1688 btp->bt_mapping = mapping;
1689 return 0;
1690 }
1691
1692 STATIC int
1693 xfs_alloc_delwrite_queue(
1694 xfs_buftarg_t *btp,
1695 const char *fsname)
1696 {
1697 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1698 spin_lock_init(&btp->bt_delwrite_lock);
1699 btp->bt_flags = 0;
1700 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1701 if (IS_ERR(btp->bt_task))
1702 return PTR_ERR(btp->bt_task);
1703 return 0;
1704 }
1705
1706 xfs_buftarg_t *
1707 xfs_alloc_buftarg(
1708 struct xfs_mount *mp,
1709 struct block_device *bdev,
1710 int external,
1711 const char *fsname)
1712 {
1713 xfs_buftarg_t *btp;
1714
1715 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1716
1717 btp->bt_mount = mp;
1718 btp->bt_dev = bdev->bd_dev;
1719 btp->bt_bdev = bdev;
1720 INIT_LIST_HEAD(&btp->bt_lru);
1721 spin_lock_init(&btp->bt_lru_lock);
1722 if (xfs_setsize_buftarg_early(btp, bdev))
1723 goto error;
1724 if (xfs_mapping_buftarg(btp, bdev))
1725 goto error;
1726 if (xfs_alloc_delwrite_queue(btp, fsname))
1727 goto error;
1728 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1729 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1730 register_shrinker(&btp->bt_shrinker);
1731 return btp;
1732
1733 error:
1734 kmem_free(btp);
1735 return NULL;
1736 }
1737
1738
1739 /*
1740 * Delayed write buffer handling
1741 */
1742 STATIC void
1743 xfs_buf_delwri_queue(
1744 xfs_buf_t *bp,
1745 int unlock)
1746 {
1747 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1748 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1749
1750 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1751
1752 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1753
1754 spin_lock(dwlk);
1755 /* If already in the queue, dequeue and place at tail */
1756 if (!list_empty(&bp->b_list)) {
1757 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1758 if (unlock)
1759 atomic_dec(&bp->b_hold);
1760 list_del(&bp->b_list);
1761 }
1762
1763 if (list_empty(dwq)) {
1764 /* start xfsbufd as it is about to have something to do */
1765 wake_up_process(bp->b_target->bt_task);
1766 }
1767
1768 bp->b_flags |= _XBF_DELWRI_Q;
1769 list_add_tail(&bp->b_list, dwq);
1770 bp->b_queuetime = jiffies;
1771 spin_unlock(dwlk);
1772
1773 if (unlock)
1774 xfs_buf_unlock(bp);
1775 }
1776
1777 void
1778 xfs_buf_delwri_dequeue(
1779 xfs_buf_t *bp)
1780 {
1781 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1782 int dequeued = 0;
1783
1784 spin_lock(dwlk);
1785 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1786 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1787 list_del_init(&bp->b_list);
1788 dequeued = 1;
1789 }
1790 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1791 spin_unlock(dwlk);
1792
1793 if (dequeued)
1794 xfs_buf_rele(bp);
1795
1796 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1797 }
1798
1799 /*
1800 * If a delwri buffer needs to be pushed before it has aged out, then promote
1801 * it to the head of the delwri queue so that it will be flushed on the next
1802 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1803 * than the age currently needed to flush the buffer. Hence the next time the
1804 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1805 */
1806 void
1807 xfs_buf_delwri_promote(
1808 struct xfs_buf *bp)
1809 {
1810 struct xfs_buftarg *btp = bp->b_target;
1811 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1812
1813 ASSERT(bp->b_flags & XBF_DELWRI);
1814 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1815
1816 /*
1817 * Check the buffer age before locking the delayed write queue as we
1818 * don't need to promote buffers that are already past the flush age.
1819 */
1820 if (bp->b_queuetime < jiffies - age)
1821 return;
1822 bp->b_queuetime = jiffies - age;
1823 spin_lock(&btp->bt_delwrite_lock);
1824 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1825 spin_unlock(&btp->bt_delwrite_lock);
1826 }
1827
1828 STATIC void
1829 xfs_buf_runall_queues(
1830 struct workqueue_struct *queue)
1831 {
1832 flush_workqueue(queue);
1833 }
1834
1835 /*
1836 * Move as many buffers as specified to the supplied list
1837 * idicating if we skipped any buffers to prevent deadlocks.
1838 */
1839 STATIC int
1840 xfs_buf_delwri_split(
1841 xfs_buftarg_t *target,
1842 struct list_head *list,
1843 unsigned long age)
1844 {
1845 xfs_buf_t *bp, *n;
1846 struct list_head *dwq = &target->bt_delwrite_queue;
1847 spinlock_t *dwlk = &target->bt_delwrite_lock;
1848 int skipped = 0;
1849 int force;
1850
1851 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1852 INIT_LIST_HEAD(list);
1853 spin_lock(dwlk);
1854 list_for_each_entry_safe(bp, n, dwq, b_list) {
1855 ASSERT(bp->b_flags & XBF_DELWRI);
1856
1857 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1858 if (!force &&
1859 time_before(jiffies, bp->b_queuetime + age)) {
1860 xfs_buf_unlock(bp);
1861 break;
1862 }
1863
1864 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1865 _XBF_RUN_QUEUES);
1866 bp->b_flags |= XBF_WRITE;
1867 list_move_tail(&bp->b_list, list);
1868 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1869 } else
1870 skipped++;
1871 }
1872 spin_unlock(dwlk);
1873
1874 return skipped;
1875
1876 }
1877
1878 /*
1879 * Compare function is more complex than it needs to be because
1880 * the return value is only 32 bits and we are doing comparisons
1881 * on 64 bit values
1882 */
1883 static int
1884 xfs_buf_cmp(
1885 void *priv,
1886 struct list_head *a,
1887 struct list_head *b)
1888 {
1889 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1890 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1891 xfs_daddr_t diff;
1892
1893 diff = ap->b_bn - bp->b_bn;
1894 if (diff < 0)
1895 return -1;
1896 if (diff > 0)
1897 return 1;
1898 return 0;
1899 }
1900
1901 void
1902 xfs_buf_delwri_sort(
1903 xfs_buftarg_t *target,
1904 struct list_head *list)
1905 {
1906 list_sort(NULL, list, xfs_buf_cmp);
1907 }
1908
1909 STATIC int
1910 xfsbufd(
1911 void *data)
1912 {
1913 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1914
1915 current->flags |= PF_MEMALLOC;
1916
1917 set_freezable();
1918
1919 do {
1920 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1921 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1922 int count = 0;
1923 struct list_head tmp;
1924
1925 if (unlikely(freezing(current))) {
1926 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1927 refrigerator();
1928 } else {
1929 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1930 }
1931
1932 /* sleep for a long time if there is nothing to do. */
1933 if (list_empty(&target->bt_delwrite_queue))
1934 tout = MAX_SCHEDULE_TIMEOUT;
1935 schedule_timeout_interruptible(tout);
1936
1937 xfs_buf_delwri_split(target, &tmp, age);
1938 list_sort(NULL, &tmp, xfs_buf_cmp);
1939 while (!list_empty(&tmp)) {
1940 struct xfs_buf *bp;
1941 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1942 list_del_init(&bp->b_list);
1943 xfs_bdstrat_cb(bp);
1944 count++;
1945 }
1946 if (count)
1947 blk_flush_plug(current);
1948
1949 } while (!kthread_should_stop());
1950
1951 return 0;
1952 }
1953
1954 /*
1955 * Go through all incore buffers, and release buffers if they belong to
1956 * the given device. This is used in filesystem error handling to
1957 * preserve the consistency of its metadata.
1958 */
1959 int
1960 xfs_flush_buftarg(
1961 xfs_buftarg_t *target,
1962 int wait)
1963 {
1964 xfs_buf_t *bp;
1965 int pincount = 0;
1966 LIST_HEAD(tmp_list);
1967 LIST_HEAD(wait_list);
1968
1969 xfs_buf_runall_queues(xfsconvertd_workqueue);
1970 xfs_buf_runall_queues(xfsdatad_workqueue);
1971 xfs_buf_runall_queues(xfslogd_workqueue);
1972
1973 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1974 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1975
1976 /*
1977 * Dropped the delayed write list lock, now walk the temporary list.
1978 * All I/O is issued async and then if we need to wait for completion
1979 * we do that after issuing all the IO.
1980 */
1981 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1982 while (!list_empty(&tmp_list)) {
1983 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1984 ASSERT(target == bp->b_target);
1985 list_del_init(&bp->b_list);
1986 if (wait) {
1987 bp->b_flags &= ~XBF_ASYNC;
1988 list_add(&bp->b_list, &wait_list);
1989 }
1990 xfs_bdstrat_cb(bp);
1991 }
1992
1993 if (wait) {
1994 /* Expedite and wait for IO to complete. */
1995 blk_flush_plug(current);
1996 while (!list_empty(&wait_list)) {
1997 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1998
1999 list_del_init(&bp->b_list);
2000 xfs_buf_iowait(bp);
2001 xfs_buf_relse(bp);
2002 }
2003 }
2004
2005 return pincount;
2006 }
2007
2008 int __init
2009 xfs_buf_init(void)
2010 {
2011 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2012 KM_ZONE_HWALIGN, NULL);
2013 if (!xfs_buf_zone)
2014 goto out;
2015
2016 xfslogd_workqueue = alloc_workqueue("xfslogd",
2017 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
2018 if (!xfslogd_workqueue)
2019 goto out_free_buf_zone;
2020
2021 xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
2022 if (!xfsdatad_workqueue)
2023 goto out_destroy_xfslogd_workqueue;
2024
2025 xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
2026 WQ_MEM_RECLAIM, 1);
2027 if (!xfsconvertd_workqueue)
2028 goto out_destroy_xfsdatad_workqueue;
2029
2030 return 0;
2031
2032 out_destroy_xfsdatad_workqueue:
2033 destroy_workqueue(xfsdatad_workqueue);
2034 out_destroy_xfslogd_workqueue:
2035 destroy_workqueue(xfslogd_workqueue);
2036 out_free_buf_zone:
2037 kmem_zone_destroy(xfs_buf_zone);
2038 out:
2039 return -ENOMEM;
2040 }
2041
2042 void
2043 xfs_buf_terminate(void)
2044 {
2045 destroy_workqueue(xfsconvertd_workqueue);
2046 destroy_workqueue(xfsdatad_workqueue);
2047 destroy_workqueue(xfslogd_workqueue);
2048 kmem_zone_destroy(xfs_buf_zone);
2049 }
2050
2051 #ifdef CONFIG_KDB_MODULES
2052 struct list_head *
2053 xfs_get_buftarg_list(void)
2054 {
2055 return &xfs_buftarg_list;
2056 }
2057 #endif
This page took 0.073196 seconds and 6 git commands to generate.