Merge tag 'iwlwifi-next-for-kalle-2015-01-22' of https://git.kernel.org/pub/scm/linux...
[deliverable/linux.git] / fs / xfs / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/aio.h>
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
39
40 void
41 xfs_count_page_state(
42 struct page *page,
43 int *delalloc,
44 int *unwritten)
45 {
46 struct buffer_head *bh, *head;
47
48 *delalloc = *unwritten = 0;
49
50 bh = head = page_buffers(page);
51 do {
52 if (buffer_unwritten(bh))
53 (*unwritten) = 1;
54 else if (buffer_delay(bh))
55 (*delalloc) = 1;
56 } while ((bh = bh->b_this_page) != head);
57 }
58
59 STATIC struct block_device *
60 xfs_find_bdev_for_inode(
61 struct inode *inode)
62 {
63 struct xfs_inode *ip = XFS_I(inode);
64 struct xfs_mount *mp = ip->i_mount;
65
66 if (XFS_IS_REALTIME_INODE(ip))
67 return mp->m_rtdev_targp->bt_bdev;
68 else
69 return mp->m_ddev_targp->bt_bdev;
70 }
71
72 /*
73 * We're now finished for good with this ioend structure.
74 * Update the page state via the associated buffer_heads,
75 * release holds on the inode and bio, and finally free
76 * up memory. Do not use the ioend after this.
77 */
78 STATIC void
79 xfs_destroy_ioend(
80 xfs_ioend_t *ioend)
81 {
82 struct buffer_head *bh, *next;
83
84 for (bh = ioend->io_buffer_head; bh; bh = next) {
85 next = bh->b_private;
86 bh->b_end_io(bh, !ioend->io_error);
87 }
88
89 mempool_free(ioend, xfs_ioend_pool);
90 }
91
92 /*
93 * Fast and loose check if this write could update the on-disk inode size.
94 */
95 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
96 {
97 return ioend->io_offset + ioend->io_size >
98 XFS_I(ioend->io_inode)->i_d.di_size;
99 }
100
101 STATIC int
102 xfs_setfilesize_trans_alloc(
103 struct xfs_ioend *ioend)
104 {
105 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
106 struct xfs_trans *tp;
107 int error;
108
109 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
110
111 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
112 if (error) {
113 xfs_trans_cancel(tp, 0);
114 return error;
115 }
116
117 ioend->io_append_trans = tp;
118
119 /*
120 * We may pass freeze protection with a transaction. So tell lockdep
121 * we released it.
122 */
123 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
124 1, _THIS_IP_);
125 /*
126 * We hand off the transaction to the completion thread now, so
127 * clear the flag here.
128 */
129 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
130 return 0;
131 }
132
133 /*
134 * Update on-disk file size now that data has been written to disk.
135 */
136 STATIC int
137 xfs_setfilesize(
138 struct xfs_ioend *ioend)
139 {
140 struct xfs_inode *ip = XFS_I(ioend->io_inode);
141 struct xfs_trans *tp = ioend->io_append_trans;
142 xfs_fsize_t isize;
143
144 /*
145 * The transaction may have been allocated in the I/O submission thread,
146 * thus we need to mark ourselves as beeing in a transaction manually.
147 * Similarly for freeze protection.
148 */
149 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
150 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
151 0, 1, _THIS_IP_);
152
153 xfs_ilock(ip, XFS_ILOCK_EXCL);
154 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
155 if (!isize) {
156 xfs_iunlock(ip, XFS_ILOCK_EXCL);
157 xfs_trans_cancel(tp, 0);
158 return 0;
159 }
160
161 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
162
163 ip->i_d.di_size = isize;
164 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
165 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
166
167 return xfs_trans_commit(tp, 0);
168 }
169
170 /*
171 * Schedule IO completion handling on the final put of an ioend.
172 *
173 * If there is no work to do we might as well call it a day and free the
174 * ioend right now.
175 */
176 STATIC void
177 xfs_finish_ioend(
178 struct xfs_ioend *ioend)
179 {
180 if (atomic_dec_and_test(&ioend->io_remaining)) {
181 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
182
183 if (ioend->io_type == XFS_IO_UNWRITTEN)
184 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
185 else if (ioend->io_append_trans ||
186 (ioend->io_isdirect && xfs_ioend_is_append(ioend)))
187 queue_work(mp->m_data_workqueue, &ioend->io_work);
188 else
189 xfs_destroy_ioend(ioend);
190 }
191 }
192
193 /*
194 * IO write completion.
195 */
196 STATIC void
197 xfs_end_io(
198 struct work_struct *work)
199 {
200 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
201 struct xfs_inode *ip = XFS_I(ioend->io_inode);
202 int error = 0;
203
204 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
205 ioend->io_error = -EIO;
206 goto done;
207 }
208 if (ioend->io_error)
209 goto done;
210
211 /*
212 * For unwritten extents we need to issue transactions to convert a
213 * range to normal written extens after the data I/O has finished.
214 */
215 if (ioend->io_type == XFS_IO_UNWRITTEN) {
216 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
217 ioend->io_size);
218 } else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) {
219 /*
220 * For direct I/O we do not know if we need to allocate blocks
221 * or not so we can't preallocate an append transaction as that
222 * results in nested reservations and log space deadlocks. Hence
223 * allocate the transaction here. While this is sub-optimal and
224 * can block IO completion for some time, we're stuck with doing
225 * it this way until we can pass the ioend to the direct IO
226 * allocation callbacks and avoid nesting that way.
227 */
228 error = xfs_setfilesize_trans_alloc(ioend);
229 if (error)
230 goto done;
231 error = xfs_setfilesize(ioend);
232 } else if (ioend->io_append_trans) {
233 error = xfs_setfilesize(ioend);
234 } else {
235 ASSERT(!xfs_ioend_is_append(ioend));
236 }
237
238 done:
239 if (error)
240 ioend->io_error = error;
241 xfs_destroy_ioend(ioend);
242 }
243
244 /*
245 * Call IO completion handling in caller context on the final put of an ioend.
246 */
247 STATIC void
248 xfs_finish_ioend_sync(
249 struct xfs_ioend *ioend)
250 {
251 if (atomic_dec_and_test(&ioend->io_remaining))
252 xfs_end_io(&ioend->io_work);
253 }
254
255 /*
256 * Allocate and initialise an IO completion structure.
257 * We need to track unwritten extent write completion here initially.
258 * We'll need to extend this for updating the ondisk inode size later
259 * (vs. incore size).
260 */
261 STATIC xfs_ioend_t *
262 xfs_alloc_ioend(
263 struct inode *inode,
264 unsigned int type)
265 {
266 xfs_ioend_t *ioend;
267
268 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
269
270 /*
271 * Set the count to 1 initially, which will prevent an I/O
272 * completion callback from happening before we have started
273 * all the I/O from calling the completion routine too early.
274 */
275 atomic_set(&ioend->io_remaining, 1);
276 ioend->io_isdirect = 0;
277 ioend->io_error = 0;
278 ioend->io_list = NULL;
279 ioend->io_type = type;
280 ioend->io_inode = inode;
281 ioend->io_buffer_head = NULL;
282 ioend->io_buffer_tail = NULL;
283 ioend->io_offset = 0;
284 ioend->io_size = 0;
285 ioend->io_append_trans = NULL;
286
287 INIT_WORK(&ioend->io_work, xfs_end_io);
288 return ioend;
289 }
290
291 STATIC int
292 xfs_map_blocks(
293 struct inode *inode,
294 loff_t offset,
295 struct xfs_bmbt_irec *imap,
296 int type,
297 int nonblocking)
298 {
299 struct xfs_inode *ip = XFS_I(inode);
300 struct xfs_mount *mp = ip->i_mount;
301 ssize_t count = 1 << inode->i_blkbits;
302 xfs_fileoff_t offset_fsb, end_fsb;
303 int error = 0;
304 int bmapi_flags = XFS_BMAPI_ENTIRE;
305 int nimaps = 1;
306
307 if (XFS_FORCED_SHUTDOWN(mp))
308 return -EIO;
309
310 if (type == XFS_IO_UNWRITTEN)
311 bmapi_flags |= XFS_BMAPI_IGSTATE;
312
313 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
314 if (nonblocking)
315 return -EAGAIN;
316 xfs_ilock(ip, XFS_ILOCK_SHARED);
317 }
318
319 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
320 (ip->i_df.if_flags & XFS_IFEXTENTS));
321 ASSERT(offset <= mp->m_super->s_maxbytes);
322
323 if (offset + count > mp->m_super->s_maxbytes)
324 count = mp->m_super->s_maxbytes - offset;
325 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
326 offset_fsb = XFS_B_TO_FSBT(mp, offset);
327 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
328 imap, &nimaps, bmapi_flags);
329 xfs_iunlock(ip, XFS_ILOCK_SHARED);
330
331 if (error)
332 return error;
333
334 if (type == XFS_IO_DELALLOC &&
335 (!nimaps || isnullstartblock(imap->br_startblock))) {
336 error = xfs_iomap_write_allocate(ip, offset, imap);
337 if (!error)
338 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
339 return error;
340 }
341
342 #ifdef DEBUG
343 if (type == XFS_IO_UNWRITTEN) {
344 ASSERT(nimaps);
345 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
346 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
347 }
348 #endif
349 if (nimaps)
350 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
351 return 0;
352 }
353
354 STATIC int
355 xfs_imap_valid(
356 struct inode *inode,
357 struct xfs_bmbt_irec *imap,
358 xfs_off_t offset)
359 {
360 offset >>= inode->i_blkbits;
361
362 return offset >= imap->br_startoff &&
363 offset < imap->br_startoff + imap->br_blockcount;
364 }
365
366 /*
367 * BIO completion handler for buffered IO.
368 */
369 STATIC void
370 xfs_end_bio(
371 struct bio *bio,
372 int error)
373 {
374 xfs_ioend_t *ioend = bio->bi_private;
375
376 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
377 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
378
379 /* Toss bio and pass work off to an xfsdatad thread */
380 bio->bi_private = NULL;
381 bio->bi_end_io = NULL;
382 bio_put(bio);
383
384 xfs_finish_ioend(ioend);
385 }
386
387 STATIC void
388 xfs_submit_ioend_bio(
389 struct writeback_control *wbc,
390 xfs_ioend_t *ioend,
391 struct bio *bio)
392 {
393 atomic_inc(&ioend->io_remaining);
394 bio->bi_private = ioend;
395 bio->bi_end_io = xfs_end_bio;
396 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
397 }
398
399 STATIC struct bio *
400 xfs_alloc_ioend_bio(
401 struct buffer_head *bh)
402 {
403 int nvecs = bio_get_nr_vecs(bh->b_bdev);
404 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
405
406 ASSERT(bio->bi_private == NULL);
407 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
408 bio->bi_bdev = bh->b_bdev;
409 return bio;
410 }
411
412 STATIC void
413 xfs_start_buffer_writeback(
414 struct buffer_head *bh)
415 {
416 ASSERT(buffer_mapped(bh));
417 ASSERT(buffer_locked(bh));
418 ASSERT(!buffer_delay(bh));
419 ASSERT(!buffer_unwritten(bh));
420
421 mark_buffer_async_write(bh);
422 set_buffer_uptodate(bh);
423 clear_buffer_dirty(bh);
424 }
425
426 STATIC void
427 xfs_start_page_writeback(
428 struct page *page,
429 int clear_dirty,
430 int buffers)
431 {
432 ASSERT(PageLocked(page));
433 ASSERT(!PageWriteback(page));
434
435 /*
436 * if the page was not fully cleaned, we need to ensure that the higher
437 * layers come back to it correctly. That means we need to keep the page
438 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
439 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
440 * write this page in this writeback sweep will be made.
441 */
442 if (clear_dirty) {
443 clear_page_dirty_for_io(page);
444 set_page_writeback(page);
445 } else
446 set_page_writeback_keepwrite(page);
447
448 unlock_page(page);
449
450 /* If no buffers on the page are to be written, finish it here */
451 if (!buffers)
452 end_page_writeback(page);
453 }
454
455 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
456 {
457 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
458 }
459
460 /*
461 * Submit all of the bios for all of the ioends we have saved up, covering the
462 * initial writepage page and also any probed pages.
463 *
464 * Because we may have multiple ioends spanning a page, we need to start
465 * writeback on all the buffers before we submit them for I/O. If we mark the
466 * buffers as we got, then we can end up with a page that only has buffers
467 * marked async write and I/O complete on can occur before we mark the other
468 * buffers async write.
469 *
470 * The end result of this is that we trip a bug in end_page_writeback() because
471 * we call it twice for the one page as the code in end_buffer_async_write()
472 * assumes that all buffers on the page are started at the same time.
473 *
474 * The fix is two passes across the ioend list - one to start writeback on the
475 * buffer_heads, and then submit them for I/O on the second pass.
476 *
477 * If @fail is non-zero, it means that we have a situation where some part of
478 * the submission process has failed after we have marked paged for writeback
479 * and unlocked them. In this situation, we need to fail the ioend chain rather
480 * than submit it to IO. This typically only happens on a filesystem shutdown.
481 */
482 STATIC void
483 xfs_submit_ioend(
484 struct writeback_control *wbc,
485 xfs_ioend_t *ioend,
486 int fail)
487 {
488 xfs_ioend_t *head = ioend;
489 xfs_ioend_t *next;
490 struct buffer_head *bh;
491 struct bio *bio;
492 sector_t lastblock = 0;
493
494 /* Pass 1 - start writeback */
495 do {
496 next = ioend->io_list;
497 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
498 xfs_start_buffer_writeback(bh);
499 } while ((ioend = next) != NULL);
500
501 /* Pass 2 - submit I/O */
502 ioend = head;
503 do {
504 next = ioend->io_list;
505 bio = NULL;
506
507 /*
508 * If we are failing the IO now, just mark the ioend with an
509 * error and finish it. This will run IO completion immediately
510 * as there is only one reference to the ioend at this point in
511 * time.
512 */
513 if (fail) {
514 ioend->io_error = fail;
515 xfs_finish_ioend(ioend);
516 continue;
517 }
518
519 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
520
521 if (!bio) {
522 retry:
523 bio = xfs_alloc_ioend_bio(bh);
524 } else if (bh->b_blocknr != lastblock + 1) {
525 xfs_submit_ioend_bio(wbc, ioend, bio);
526 goto retry;
527 }
528
529 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
530 xfs_submit_ioend_bio(wbc, ioend, bio);
531 goto retry;
532 }
533
534 lastblock = bh->b_blocknr;
535 }
536 if (bio)
537 xfs_submit_ioend_bio(wbc, ioend, bio);
538 xfs_finish_ioend(ioend);
539 } while ((ioend = next) != NULL);
540 }
541
542 /*
543 * Cancel submission of all buffer_heads so far in this endio.
544 * Toss the endio too. Only ever called for the initial page
545 * in a writepage request, so only ever one page.
546 */
547 STATIC void
548 xfs_cancel_ioend(
549 xfs_ioend_t *ioend)
550 {
551 xfs_ioend_t *next;
552 struct buffer_head *bh, *next_bh;
553
554 do {
555 next = ioend->io_list;
556 bh = ioend->io_buffer_head;
557 do {
558 next_bh = bh->b_private;
559 clear_buffer_async_write(bh);
560 /*
561 * The unwritten flag is cleared when added to the
562 * ioend. We're not submitting for I/O so mark the
563 * buffer unwritten again for next time around.
564 */
565 if (ioend->io_type == XFS_IO_UNWRITTEN)
566 set_buffer_unwritten(bh);
567 unlock_buffer(bh);
568 } while ((bh = next_bh) != NULL);
569
570 mempool_free(ioend, xfs_ioend_pool);
571 } while ((ioend = next) != NULL);
572 }
573
574 /*
575 * Test to see if we've been building up a completion structure for
576 * earlier buffers -- if so, we try to append to this ioend if we
577 * can, otherwise we finish off any current ioend and start another.
578 * Return true if we've finished the given ioend.
579 */
580 STATIC void
581 xfs_add_to_ioend(
582 struct inode *inode,
583 struct buffer_head *bh,
584 xfs_off_t offset,
585 unsigned int type,
586 xfs_ioend_t **result,
587 int need_ioend)
588 {
589 xfs_ioend_t *ioend = *result;
590
591 if (!ioend || need_ioend || type != ioend->io_type) {
592 xfs_ioend_t *previous = *result;
593
594 ioend = xfs_alloc_ioend(inode, type);
595 ioend->io_offset = offset;
596 ioend->io_buffer_head = bh;
597 ioend->io_buffer_tail = bh;
598 if (previous)
599 previous->io_list = ioend;
600 *result = ioend;
601 } else {
602 ioend->io_buffer_tail->b_private = bh;
603 ioend->io_buffer_tail = bh;
604 }
605
606 bh->b_private = NULL;
607 ioend->io_size += bh->b_size;
608 }
609
610 STATIC void
611 xfs_map_buffer(
612 struct inode *inode,
613 struct buffer_head *bh,
614 struct xfs_bmbt_irec *imap,
615 xfs_off_t offset)
616 {
617 sector_t bn;
618 struct xfs_mount *m = XFS_I(inode)->i_mount;
619 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
620 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
621
622 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
623 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
624
625 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
626 ((offset - iomap_offset) >> inode->i_blkbits);
627
628 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
629
630 bh->b_blocknr = bn;
631 set_buffer_mapped(bh);
632 }
633
634 STATIC void
635 xfs_map_at_offset(
636 struct inode *inode,
637 struct buffer_head *bh,
638 struct xfs_bmbt_irec *imap,
639 xfs_off_t offset)
640 {
641 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
642 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
643
644 xfs_map_buffer(inode, bh, imap, offset);
645 set_buffer_mapped(bh);
646 clear_buffer_delay(bh);
647 clear_buffer_unwritten(bh);
648 }
649
650 /*
651 * Test if a given page contains at least one buffer of a given @type.
652 * If @check_all_buffers is true, then we walk all the buffers in the page to
653 * try to find one of the type passed in. If it is not set, then the caller only
654 * needs to check the first buffer on the page for a match.
655 */
656 STATIC bool
657 xfs_check_page_type(
658 struct page *page,
659 unsigned int type,
660 bool check_all_buffers)
661 {
662 struct buffer_head *bh;
663 struct buffer_head *head;
664
665 if (PageWriteback(page))
666 return false;
667 if (!page->mapping)
668 return false;
669 if (!page_has_buffers(page))
670 return false;
671
672 bh = head = page_buffers(page);
673 do {
674 if (buffer_unwritten(bh)) {
675 if (type == XFS_IO_UNWRITTEN)
676 return true;
677 } else if (buffer_delay(bh)) {
678 if (type == XFS_IO_DELALLOC)
679 return true;
680 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
681 if (type == XFS_IO_OVERWRITE)
682 return true;
683 }
684
685 /* If we are only checking the first buffer, we are done now. */
686 if (!check_all_buffers)
687 break;
688 } while ((bh = bh->b_this_page) != head);
689
690 return false;
691 }
692
693 /*
694 * Allocate & map buffers for page given the extent map. Write it out.
695 * except for the original page of a writepage, this is called on
696 * delalloc/unwritten pages only, for the original page it is possible
697 * that the page has no mapping at all.
698 */
699 STATIC int
700 xfs_convert_page(
701 struct inode *inode,
702 struct page *page,
703 loff_t tindex,
704 struct xfs_bmbt_irec *imap,
705 xfs_ioend_t **ioendp,
706 struct writeback_control *wbc)
707 {
708 struct buffer_head *bh, *head;
709 xfs_off_t end_offset;
710 unsigned long p_offset;
711 unsigned int type;
712 int len, page_dirty;
713 int count = 0, done = 0, uptodate = 1;
714 xfs_off_t offset = page_offset(page);
715
716 if (page->index != tindex)
717 goto fail;
718 if (!trylock_page(page))
719 goto fail;
720 if (PageWriteback(page))
721 goto fail_unlock_page;
722 if (page->mapping != inode->i_mapping)
723 goto fail_unlock_page;
724 if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
725 goto fail_unlock_page;
726
727 /*
728 * page_dirty is initially a count of buffers on the page before
729 * EOF and is decremented as we move each into a cleanable state.
730 *
731 * Derivation:
732 *
733 * End offset is the highest offset that this page should represent.
734 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
735 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
736 * hence give us the correct page_dirty count. On any other page,
737 * it will be zero and in that case we need page_dirty to be the
738 * count of buffers on the page.
739 */
740 end_offset = min_t(unsigned long long,
741 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
742 i_size_read(inode));
743
744 /*
745 * If the current map does not span the entire page we are about to try
746 * to write, then give up. The only way we can write a page that spans
747 * multiple mappings in a single writeback iteration is via the
748 * xfs_vm_writepage() function. Data integrity writeback requires the
749 * entire page to be written in a single attempt, otherwise the part of
750 * the page we don't write here doesn't get written as part of the data
751 * integrity sync.
752 *
753 * For normal writeback, we also don't attempt to write partial pages
754 * here as it simply means that write_cache_pages() will see it under
755 * writeback and ignore the page until some point in the future, at
756 * which time this will be the only page in the file that needs
757 * writeback. Hence for more optimal IO patterns, we should always
758 * avoid partial page writeback due to multiple mappings on a page here.
759 */
760 if (!xfs_imap_valid(inode, imap, end_offset))
761 goto fail_unlock_page;
762
763 len = 1 << inode->i_blkbits;
764 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
765 PAGE_CACHE_SIZE);
766 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
767 page_dirty = p_offset / len;
768
769 /*
770 * The moment we find a buffer that doesn't match our current type
771 * specification or can't be written, abort the loop and start
772 * writeback. As per the above xfs_imap_valid() check, only
773 * xfs_vm_writepage() can handle partial page writeback fully - we are
774 * limited here to the buffers that are contiguous with the current
775 * ioend, and hence a buffer we can't write breaks that contiguity and
776 * we have to defer the rest of the IO to xfs_vm_writepage().
777 */
778 bh = head = page_buffers(page);
779 do {
780 if (offset >= end_offset)
781 break;
782 if (!buffer_uptodate(bh))
783 uptodate = 0;
784 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
785 done = 1;
786 break;
787 }
788
789 if (buffer_unwritten(bh) || buffer_delay(bh) ||
790 buffer_mapped(bh)) {
791 if (buffer_unwritten(bh))
792 type = XFS_IO_UNWRITTEN;
793 else if (buffer_delay(bh))
794 type = XFS_IO_DELALLOC;
795 else
796 type = XFS_IO_OVERWRITE;
797
798 /*
799 * imap should always be valid because of the above
800 * partial page end_offset check on the imap.
801 */
802 ASSERT(xfs_imap_valid(inode, imap, offset));
803
804 lock_buffer(bh);
805 if (type != XFS_IO_OVERWRITE)
806 xfs_map_at_offset(inode, bh, imap, offset);
807 xfs_add_to_ioend(inode, bh, offset, type,
808 ioendp, done);
809
810 page_dirty--;
811 count++;
812 } else {
813 done = 1;
814 break;
815 }
816 } while (offset += len, (bh = bh->b_this_page) != head);
817
818 if (uptodate && bh == head)
819 SetPageUptodate(page);
820
821 if (count) {
822 if (--wbc->nr_to_write <= 0 &&
823 wbc->sync_mode == WB_SYNC_NONE)
824 done = 1;
825 }
826 xfs_start_page_writeback(page, !page_dirty, count);
827
828 return done;
829 fail_unlock_page:
830 unlock_page(page);
831 fail:
832 return 1;
833 }
834
835 /*
836 * Convert & write out a cluster of pages in the same extent as defined
837 * by mp and following the start page.
838 */
839 STATIC void
840 xfs_cluster_write(
841 struct inode *inode,
842 pgoff_t tindex,
843 struct xfs_bmbt_irec *imap,
844 xfs_ioend_t **ioendp,
845 struct writeback_control *wbc,
846 pgoff_t tlast)
847 {
848 struct pagevec pvec;
849 int done = 0, i;
850
851 pagevec_init(&pvec, 0);
852 while (!done && tindex <= tlast) {
853 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
854
855 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
856 break;
857
858 for (i = 0; i < pagevec_count(&pvec); i++) {
859 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
860 imap, ioendp, wbc);
861 if (done)
862 break;
863 }
864
865 pagevec_release(&pvec);
866 cond_resched();
867 }
868 }
869
870 STATIC void
871 xfs_vm_invalidatepage(
872 struct page *page,
873 unsigned int offset,
874 unsigned int length)
875 {
876 trace_xfs_invalidatepage(page->mapping->host, page, offset,
877 length);
878 block_invalidatepage(page, offset, length);
879 }
880
881 /*
882 * If the page has delalloc buffers on it, we need to punch them out before we
883 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
884 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
885 * is done on that same region - the delalloc extent is returned when none is
886 * supposed to be there.
887 *
888 * We prevent this by truncating away the delalloc regions on the page before
889 * invalidating it. Because they are delalloc, we can do this without needing a
890 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
891 * truncation without a transaction as there is no space left for block
892 * reservation (typically why we see a ENOSPC in writeback).
893 *
894 * This is not a performance critical path, so for now just do the punching a
895 * buffer head at a time.
896 */
897 STATIC void
898 xfs_aops_discard_page(
899 struct page *page)
900 {
901 struct inode *inode = page->mapping->host;
902 struct xfs_inode *ip = XFS_I(inode);
903 struct buffer_head *bh, *head;
904 loff_t offset = page_offset(page);
905
906 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
907 goto out_invalidate;
908
909 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
910 goto out_invalidate;
911
912 xfs_alert(ip->i_mount,
913 "page discard on page %p, inode 0x%llx, offset %llu.",
914 page, ip->i_ino, offset);
915
916 xfs_ilock(ip, XFS_ILOCK_EXCL);
917 bh = head = page_buffers(page);
918 do {
919 int error;
920 xfs_fileoff_t start_fsb;
921
922 if (!buffer_delay(bh))
923 goto next_buffer;
924
925 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
926 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
927 if (error) {
928 /* something screwed, just bail */
929 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
930 xfs_alert(ip->i_mount,
931 "page discard unable to remove delalloc mapping.");
932 }
933 break;
934 }
935 next_buffer:
936 offset += 1 << inode->i_blkbits;
937
938 } while ((bh = bh->b_this_page) != head);
939
940 xfs_iunlock(ip, XFS_ILOCK_EXCL);
941 out_invalidate:
942 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
943 return;
944 }
945
946 /*
947 * Write out a dirty page.
948 *
949 * For delalloc space on the page we need to allocate space and flush it.
950 * For unwritten space on the page we need to start the conversion to
951 * regular allocated space.
952 * For any other dirty buffer heads on the page we should flush them.
953 */
954 STATIC int
955 xfs_vm_writepage(
956 struct page *page,
957 struct writeback_control *wbc)
958 {
959 struct inode *inode = page->mapping->host;
960 struct buffer_head *bh, *head;
961 struct xfs_bmbt_irec imap;
962 xfs_ioend_t *ioend = NULL, *iohead = NULL;
963 loff_t offset;
964 unsigned int type;
965 __uint64_t end_offset;
966 pgoff_t end_index, last_index;
967 ssize_t len;
968 int err, imap_valid = 0, uptodate = 1;
969 int count = 0;
970 int nonblocking = 0;
971
972 trace_xfs_writepage(inode, page, 0, 0);
973
974 ASSERT(page_has_buffers(page));
975
976 /*
977 * Refuse to write the page out if we are called from reclaim context.
978 *
979 * This avoids stack overflows when called from deeply used stacks in
980 * random callers for direct reclaim or memcg reclaim. We explicitly
981 * allow reclaim from kswapd as the stack usage there is relatively low.
982 *
983 * This should never happen except in the case of a VM regression so
984 * warn about it.
985 */
986 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
987 PF_MEMALLOC))
988 goto redirty;
989
990 /*
991 * Given that we do not allow direct reclaim to call us, we should
992 * never be called while in a filesystem transaction.
993 */
994 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
995 goto redirty;
996
997 /* Is this page beyond the end of the file? */
998 offset = i_size_read(inode);
999 end_index = offset >> PAGE_CACHE_SHIFT;
1000 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1001
1002 /*
1003 * The page index is less than the end_index, adjust the end_offset
1004 * to the highest offset that this page should represent.
1005 * -----------------------------------------------------
1006 * | file mapping | <EOF> |
1007 * -----------------------------------------------------
1008 * | Page ... | Page N-2 | Page N-1 | Page N | |
1009 * ^--------------------------------^----------|--------
1010 * | desired writeback range | see else |
1011 * ---------------------------------^------------------|
1012 */
1013 if (page->index < end_index)
1014 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
1015 else {
1016 /*
1017 * Check whether the page to write out is beyond or straddles
1018 * i_size or not.
1019 * -------------------------------------------------------
1020 * | file mapping | <EOF> |
1021 * -------------------------------------------------------
1022 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1023 * ^--------------------------------^-----------|---------
1024 * | | Straddles |
1025 * ---------------------------------^-----------|--------|
1026 */
1027 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1028
1029 /*
1030 * Skip the page if it is fully outside i_size, e.g. due to a
1031 * truncate operation that is in progress. We must redirty the
1032 * page so that reclaim stops reclaiming it. Otherwise
1033 * xfs_vm_releasepage() is called on it and gets confused.
1034 *
1035 * Note that the end_index is unsigned long, it would overflow
1036 * if the given offset is greater than 16TB on 32-bit system
1037 * and if we do check the page is fully outside i_size or not
1038 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1039 * will be evaluated to 0. Hence this page will be redirtied
1040 * and be written out repeatedly which would result in an
1041 * infinite loop, the user program that perform this operation
1042 * will hang. Instead, we can verify this situation by checking
1043 * if the page to write is totally beyond the i_size or if it's
1044 * offset is just equal to the EOF.
1045 */
1046 if (page->index > end_index ||
1047 (page->index == end_index && offset_into_page == 0))
1048 goto redirty;
1049
1050 /*
1051 * The page straddles i_size. It must be zeroed out on each
1052 * and every writepage invocation because it may be mmapped.
1053 * "A file is mapped in multiples of the page size. For a file
1054 * that is not a multiple of the page size, the remaining
1055 * memory is zeroed when mapped, and writes to that region are
1056 * not written out to the file."
1057 */
1058 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1059
1060 /* Adjust the end_offset to the end of file */
1061 end_offset = offset;
1062 }
1063
1064 len = 1 << inode->i_blkbits;
1065
1066 bh = head = page_buffers(page);
1067 offset = page_offset(page);
1068 type = XFS_IO_OVERWRITE;
1069
1070 if (wbc->sync_mode == WB_SYNC_NONE)
1071 nonblocking = 1;
1072
1073 do {
1074 int new_ioend = 0;
1075
1076 if (offset >= end_offset)
1077 break;
1078 if (!buffer_uptodate(bh))
1079 uptodate = 0;
1080
1081 /*
1082 * set_page_dirty dirties all buffers in a page, independent
1083 * of their state. The dirty state however is entirely
1084 * meaningless for holes (!mapped && uptodate), so skip
1085 * buffers covering holes here.
1086 */
1087 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1088 imap_valid = 0;
1089 continue;
1090 }
1091
1092 if (buffer_unwritten(bh)) {
1093 if (type != XFS_IO_UNWRITTEN) {
1094 type = XFS_IO_UNWRITTEN;
1095 imap_valid = 0;
1096 }
1097 } else if (buffer_delay(bh)) {
1098 if (type != XFS_IO_DELALLOC) {
1099 type = XFS_IO_DELALLOC;
1100 imap_valid = 0;
1101 }
1102 } else if (buffer_uptodate(bh)) {
1103 if (type != XFS_IO_OVERWRITE) {
1104 type = XFS_IO_OVERWRITE;
1105 imap_valid = 0;
1106 }
1107 } else {
1108 if (PageUptodate(page))
1109 ASSERT(buffer_mapped(bh));
1110 /*
1111 * This buffer is not uptodate and will not be
1112 * written to disk. Ensure that we will put any
1113 * subsequent writeable buffers into a new
1114 * ioend.
1115 */
1116 imap_valid = 0;
1117 continue;
1118 }
1119
1120 if (imap_valid)
1121 imap_valid = xfs_imap_valid(inode, &imap, offset);
1122 if (!imap_valid) {
1123 /*
1124 * If we didn't have a valid mapping then we need to
1125 * put the new mapping into a separate ioend structure.
1126 * This ensures non-contiguous extents always have
1127 * separate ioends, which is particularly important
1128 * for unwritten extent conversion at I/O completion
1129 * time.
1130 */
1131 new_ioend = 1;
1132 err = xfs_map_blocks(inode, offset, &imap, type,
1133 nonblocking);
1134 if (err)
1135 goto error;
1136 imap_valid = xfs_imap_valid(inode, &imap, offset);
1137 }
1138 if (imap_valid) {
1139 lock_buffer(bh);
1140 if (type != XFS_IO_OVERWRITE)
1141 xfs_map_at_offset(inode, bh, &imap, offset);
1142 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1143 new_ioend);
1144 count++;
1145 }
1146
1147 if (!iohead)
1148 iohead = ioend;
1149
1150 } while (offset += len, ((bh = bh->b_this_page) != head));
1151
1152 if (uptodate && bh == head)
1153 SetPageUptodate(page);
1154
1155 xfs_start_page_writeback(page, 1, count);
1156
1157 /* if there is no IO to be submitted for this page, we are done */
1158 if (!ioend)
1159 return 0;
1160
1161 ASSERT(iohead);
1162
1163 /*
1164 * Any errors from this point onwards need tobe reported through the IO
1165 * completion path as we have marked the initial page as under writeback
1166 * and unlocked it.
1167 */
1168 if (imap_valid) {
1169 xfs_off_t end_index;
1170
1171 end_index = imap.br_startoff + imap.br_blockcount;
1172
1173 /* to bytes */
1174 end_index <<= inode->i_blkbits;
1175
1176 /* to pages */
1177 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1178
1179 /* check against file size */
1180 if (end_index > last_index)
1181 end_index = last_index;
1182
1183 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1184 wbc, end_index);
1185 }
1186
1187
1188 /*
1189 * Reserve log space if we might write beyond the on-disk inode size.
1190 */
1191 err = 0;
1192 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1193 err = xfs_setfilesize_trans_alloc(ioend);
1194
1195 xfs_submit_ioend(wbc, iohead, err);
1196
1197 return 0;
1198
1199 error:
1200 if (iohead)
1201 xfs_cancel_ioend(iohead);
1202
1203 if (err == -EAGAIN)
1204 goto redirty;
1205
1206 xfs_aops_discard_page(page);
1207 ClearPageUptodate(page);
1208 unlock_page(page);
1209 return err;
1210
1211 redirty:
1212 redirty_page_for_writepage(wbc, page);
1213 unlock_page(page);
1214 return 0;
1215 }
1216
1217 STATIC int
1218 xfs_vm_writepages(
1219 struct address_space *mapping,
1220 struct writeback_control *wbc)
1221 {
1222 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1223 return generic_writepages(mapping, wbc);
1224 }
1225
1226 /*
1227 * Called to move a page into cleanable state - and from there
1228 * to be released. The page should already be clean. We always
1229 * have buffer heads in this call.
1230 *
1231 * Returns 1 if the page is ok to release, 0 otherwise.
1232 */
1233 STATIC int
1234 xfs_vm_releasepage(
1235 struct page *page,
1236 gfp_t gfp_mask)
1237 {
1238 int delalloc, unwritten;
1239
1240 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1241
1242 xfs_count_page_state(page, &delalloc, &unwritten);
1243
1244 if (WARN_ON_ONCE(delalloc))
1245 return 0;
1246 if (WARN_ON_ONCE(unwritten))
1247 return 0;
1248
1249 return try_to_free_buffers(page);
1250 }
1251
1252 STATIC int
1253 __xfs_get_blocks(
1254 struct inode *inode,
1255 sector_t iblock,
1256 struct buffer_head *bh_result,
1257 int create,
1258 int direct)
1259 {
1260 struct xfs_inode *ip = XFS_I(inode);
1261 struct xfs_mount *mp = ip->i_mount;
1262 xfs_fileoff_t offset_fsb, end_fsb;
1263 int error = 0;
1264 int lockmode = 0;
1265 struct xfs_bmbt_irec imap;
1266 int nimaps = 1;
1267 xfs_off_t offset;
1268 ssize_t size;
1269 int new = 0;
1270
1271 if (XFS_FORCED_SHUTDOWN(mp))
1272 return -EIO;
1273
1274 offset = (xfs_off_t)iblock << inode->i_blkbits;
1275 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1276 size = bh_result->b_size;
1277
1278 if (!create && direct && offset >= i_size_read(inode))
1279 return 0;
1280
1281 /*
1282 * Direct I/O is usually done on preallocated files, so try getting
1283 * a block mapping without an exclusive lock first. For buffered
1284 * writes we already have the exclusive iolock anyway, so avoiding
1285 * a lock roundtrip here by taking the ilock exclusive from the
1286 * beginning is a useful micro optimization.
1287 */
1288 if (create && !direct) {
1289 lockmode = XFS_ILOCK_EXCL;
1290 xfs_ilock(ip, lockmode);
1291 } else {
1292 lockmode = xfs_ilock_data_map_shared(ip);
1293 }
1294
1295 ASSERT(offset <= mp->m_super->s_maxbytes);
1296 if (offset + size > mp->m_super->s_maxbytes)
1297 size = mp->m_super->s_maxbytes - offset;
1298 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1299 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1300
1301 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1302 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1303 if (error)
1304 goto out_unlock;
1305
1306 if (create &&
1307 (!nimaps ||
1308 (imap.br_startblock == HOLESTARTBLOCK ||
1309 imap.br_startblock == DELAYSTARTBLOCK))) {
1310 if (direct || xfs_get_extsz_hint(ip)) {
1311 /*
1312 * Drop the ilock in preparation for starting the block
1313 * allocation transaction. It will be retaken
1314 * exclusively inside xfs_iomap_write_direct for the
1315 * actual allocation.
1316 */
1317 xfs_iunlock(ip, lockmode);
1318 error = xfs_iomap_write_direct(ip, offset, size,
1319 &imap, nimaps);
1320 if (error)
1321 return error;
1322 new = 1;
1323 } else {
1324 /*
1325 * Delalloc reservations do not require a transaction,
1326 * we can go on without dropping the lock here. If we
1327 * are allocating a new delalloc block, make sure that
1328 * we set the new flag so that we mark the buffer new so
1329 * that we know that it is newly allocated if the write
1330 * fails.
1331 */
1332 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1333 new = 1;
1334 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1335 if (error)
1336 goto out_unlock;
1337
1338 xfs_iunlock(ip, lockmode);
1339 }
1340
1341 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1342 } else if (nimaps) {
1343 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1344 xfs_iunlock(ip, lockmode);
1345 } else {
1346 trace_xfs_get_blocks_notfound(ip, offset, size);
1347 goto out_unlock;
1348 }
1349
1350 if (imap.br_startblock != HOLESTARTBLOCK &&
1351 imap.br_startblock != DELAYSTARTBLOCK) {
1352 /*
1353 * For unwritten extents do not report a disk address on
1354 * the read case (treat as if we're reading into a hole).
1355 */
1356 if (create || !ISUNWRITTEN(&imap))
1357 xfs_map_buffer(inode, bh_result, &imap, offset);
1358 if (create && ISUNWRITTEN(&imap)) {
1359 if (direct) {
1360 bh_result->b_private = inode;
1361 set_buffer_defer_completion(bh_result);
1362 }
1363 set_buffer_unwritten(bh_result);
1364 }
1365 }
1366
1367 /*
1368 * If this is a realtime file, data may be on a different device.
1369 * to that pointed to from the buffer_head b_bdev currently.
1370 */
1371 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1372
1373 /*
1374 * If we previously allocated a block out beyond eof and we are now
1375 * coming back to use it then we will need to flag it as new even if it
1376 * has a disk address.
1377 *
1378 * With sub-block writes into unwritten extents we also need to mark
1379 * the buffer as new so that the unwritten parts of the buffer gets
1380 * correctly zeroed.
1381 */
1382 if (create &&
1383 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1384 (offset >= i_size_read(inode)) ||
1385 (new || ISUNWRITTEN(&imap))))
1386 set_buffer_new(bh_result);
1387
1388 if (imap.br_startblock == DELAYSTARTBLOCK) {
1389 BUG_ON(direct);
1390 if (create) {
1391 set_buffer_uptodate(bh_result);
1392 set_buffer_mapped(bh_result);
1393 set_buffer_delay(bh_result);
1394 }
1395 }
1396
1397 /*
1398 * If this is O_DIRECT or the mpage code calling tell them how large
1399 * the mapping is, so that we can avoid repeated get_blocks calls.
1400 *
1401 * If the mapping spans EOF, then we have to break the mapping up as the
1402 * mapping for blocks beyond EOF must be marked new so that sub block
1403 * regions can be correctly zeroed. We can't do this for mappings within
1404 * EOF unless the mapping was just allocated or is unwritten, otherwise
1405 * the callers would overwrite existing data with zeros. Hence we have
1406 * to split the mapping into a range up to and including EOF, and a
1407 * second mapping for beyond EOF.
1408 */
1409 if (direct || size > (1 << inode->i_blkbits)) {
1410 xfs_off_t mapping_size;
1411
1412 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1413 mapping_size <<= inode->i_blkbits;
1414
1415 ASSERT(mapping_size > 0);
1416 if (mapping_size > size)
1417 mapping_size = size;
1418 if (offset < i_size_read(inode) &&
1419 offset + mapping_size >= i_size_read(inode)) {
1420 /* limit mapping to block that spans EOF */
1421 mapping_size = roundup_64(i_size_read(inode) - offset,
1422 1 << inode->i_blkbits);
1423 }
1424 if (mapping_size > LONG_MAX)
1425 mapping_size = LONG_MAX;
1426
1427 bh_result->b_size = mapping_size;
1428 }
1429
1430 return 0;
1431
1432 out_unlock:
1433 xfs_iunlock(ip, lockmode);
1434 return error;
1435 }
1436
1437 int
1438 xfs_get_blocks(
1439 struct inode *inode,
1440 sector_t iblock,
1441 struct buffer_head *bh_result,
1442 int create)
1443 {
1444 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1445 }
1446
1447 STATIC int
1448 xfs_get_blocks_direct(
1449 struct inode *inode,
1450 sector_t iblock,
1451 struct buffer_head *bh_result,
1452 int create)
1453 {
1454 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1455 }
1456
1457 /*
1458 * Complete a direct I/O write request.
1459 *
1460 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1461 * need to issue a transaction to convert the range from unwritten to written
1462 * extents. In case this is regular synchronous I/O we just call xfs_end_io
1463 * to do this and we are done. But in case this was a successful AIO
1464 * request this handler is called from interrupt context, from which we
1465 * can't start transactions. In that case offload the I/O completion to
1466 * the workqueues we also use for buffered I/O completion.
1467 */
1468 STATIC void
1469 xfs_end_io_direct_write(
1470 struct kiocb *iocb,
1471 loff_t offset,
1472 ssize_t size,
1473 void *private)
1474 {
1475 struct xfs_ioend *ioend = iocb->private;
1476
1477 /*
1478 * While the generic direct I/O code updates the inode size, it does
1479 * so only after the end_io handler is called, which means our
1480 * end_io handler thinks the on-disk size is outside the in-core
1481 * size. To prevent this just update it a little bit earlier here.
1482 */
1483 if (offset + size > i_size_read(ioend->io_inode))
1484 i_size_write(ioend->io_inode, offset + size);
1485
1486 /*
1487 * blockdev_direct_IO can return an error even after the I/O
1488 * completion handler was called. Thus we need to protect
1489 * against double-freeing.
1490 */
1491 iocb->private = NULL;
1492
1493 ioend->io_offset = offset;
1494 ioend->io_size = size;
1495 if (private && size > 0)
1496 ioend->io_type = XFS_IO_UNWRITTEN;
1497
1498 xfs_finish_ioend_sync(ioend);
1499 }
1500
1501 STATIC ssize_t
1502 xfs_vm_direct_IO(
1503 int rw,
1504 struct kiocb *iocb,
1505 struct iov_iter *iter,
1506 loff_t offset)
1507 {
1508 struct inode *inode = iocb->ki_filp->f_mapping->host;
1509 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
1510 struct xfs_ioend *ioend = NULL;
1511 ssize_t ret;
1512
1513 if (rw & WRITE) {
1514 size_t size = iov_iter_count(iter);
1515
1516 /*
1517 * We cannot preallocate a size update transaction here as we
1518 * don't know whether allocation is necessary or not. Hence we
1519 * can only tell IO completion that one is necessary if we are
1520 * not doing unwritten extent conversion.
1521 */
1522 iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
1523 if (offset + size > XFS_I(inode)->i_d.di_size)
1524 ioend->io_isdirect = 1;
1525
1526 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iter,
1527 offset, xfs_get_blocks_direct,
1528 xfs_end_io_direct_write, NULL,
1529 DIO_ASYNC_EXTEND);
1530 if (ret != -EIOCBQUEUED && iocb->private)
1531 goto out_destroy_ioend;
1532 } else {
1533 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iter,
1534 offset, xfs_get_blocks_direct,
1535 NULL, NULL, 0);
1536 }
1537
1538 return ret;
1539
1540 out_destroy_ioend:
1541 xfs_destroy_ioend(ioend);
1542 return ret;
1543 }
1544
1545 /*
1546 * Punch out the delalloc blocks we have already allocated.
1547 *
1548 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1549 * as the page is still locked at this point.
1550 */
1551 STATIC void
1552 xfs_vm_kill_delalloc_range(
1553 struct inode *inode,
1554 loff_t start,
1555 loff_t end)
1556 {
1557 struct xfs_inode *ip = XFS_I(inode);
1558 xfs_fileoff_t start_fsb;
1559 xfs_fileoff_t end_fsb;
1560 int error;
1561
1562 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1563 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1564 if (end_fsb <= start_fsb)
1565 return;
1566
1567 xfs_ilock(ip, XFS_ILOCK_EXCL);
1568 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1569 end_fsb - start_fsb);
1570 if (error) {
1571 /* something screwed, just bail */
1572 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1573 xfs_alert(ip->i_mount,
1574 "xfs_vm_write_failed: unable to clean up ino %lld",
1575 ip->i_ino);
1576 }
1577 }
1578 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1579 }
1580
1581 STATIC void
1582 xfs_vm_write_failed(
1583 struct inode *inode,
1584 struct page *page,
1585 loff_t pos,
1586 unsigned len)
1587 {
1588 loff_t block_offset;
1589 loff_t block_start;
1590 loff_t block_end;
1591 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1592 loff_t to = from + len;
1593 struct buffer_head *bh, *head;
1594
1595 /*
1596 * The request pos offset might be 32 or 64 bit, this is all fine
1597 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1598 * platform, the high 32-bit will be masked off if we evaluate the
1599 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1600 * 0xfffff000 as an unsigned long, hence the result is incorrect
1601 * which could cause the following ASSERT failed in most cases.
1602 * In order to avoid this, we can evaluate the block_offset of the
1603 * start of the page by using shifts rather than masks the mismatch
1604 * problem.
1605 */
1606 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1607
1608 ASSERT(block_offset + from == pos);
1609
1610 head = page_buffers(page);
1611 block_start = 0;
1612 for (bh = head; bh != head || !block_start;
1613 bh = bh->b_this_page, block_start = block_end,
1614 block_offset += bh->b_size) {
1615 block_end = block_start + bh->b_size;
1616
1617 /* skip buffers before the write */
1618 if (block_end <= from)
1619 continue;
1620
1621 /* if the buffer is after the write, we're done */
1622 if (block_start >= to)
1623 break;
1624
1625 if (!buffer_delay(bh))
1626 continue;
1627
1628 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1629 continue;
1630
1631 xfs_vm_kill_delalloc_range(inode, block_offset,
1632 block_offset + bh->b_size);
1633
1634 /*
1635 * This buffer does not contain data anymore. make sure anyone
1636 * who finds it knows that for certain.
1637 */
1638 clear_buffer_delay(bh);
1639 clear_buffer_uptodate(bh);
1640 clear_buffer_mapped(bh);
1641 clear_buffer_new(bh);
1642 clear_buffer_dirty(bh);
1643 }
1644
1645 }
1646
1647 /*
1648 * This used to call block_write_begin(), but it unlocks and releases the page
1649 * on error, and we need that page to be able to punch stale delalloc blocks out
1650 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1651 * the appropriate point.
1652 */
1653 STATIC int
1654 xfs_vm_write_begin(
1655 struct file *file,
1656 struct address_space *mapping,
1657 loff_t pos,
1658 unsigned len,
1659 unsigned flags,
1660 struct page **pagep,
1661 void **fsdata)
1662 {
1663 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1664 struct page *page;
1665 int status;
1666
1667 ASSERT(len <= PAGE_CACHE_SIZE);
1668
1669 page = grab_cache_page_write_begin(mapping, index, flags);
1670 if (!page)
1671 return -ENOMEM;
1672
1673 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1674 if (unlikely(status)) {
1675 struct inode *inode = mapping->host;
1676 size_t isize = i_size_read(inode);
1677
1678 xfs_vm_write_failed(inode, page, pos, len);
1679 unlock_page(page);
1680
1681 /*
1682 * If the write is beyond EOF, we only want to kill blocks
1683 * allocated in this write, not blocks that were previously
1684 * written successfully.
1685 */
1686 if (pos + len > isize) {
1687 ssize_t start = max_t(ssize_t, pos, isize);
1688
1689 truncate_pagecache_range(inode, start, pos + len);
1690 }
1691
1692 page_cache_release(page);
1693 page = NULL;
1694 }
1695
1696 *pagep = page;
1697 return status;
1698 }
1699
1700 /*
1701 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1702 * this specific write because they will never be written. Previous writes
1703 * beyond EOF where block allocation succeeded do not need to be trashed, so
1704 * only new blocks from this write should be trashed. For blocks within
1705 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1706 * written with all the other valid data.
1707 */
1708 STATIC int
1709 xfs_vm_write_end(
1710 struct file *file,
1711 struct address_space *mapping,
1712 loff_t pos,
1713 unsigned len,
1714 unsigned copied,
1715 struct page *page,
1716 void *fsdata)
1717 {
1718 int ret;
1719
1720 ASSERT(len <= PAGE_CACHE_SIZE);
1721
1722 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1723 if (unlikely(ret < len)) {
1724 struct inode *inode = mapping->host;
1725 size_t isize = i_size_read(inode);
1726 loff_t to = pos + len;
1727
1728 if (to > isize) {
1729 /* only kill blocks in this write beyond EOF */
1730 if (pos > isize)
1731 isize = pos;
1732 xfs_vm_kill_delalloc_range(inode, isize, to);
1733 truncate_pagecache_range(inode, isize, to);
1734 }
1735 }
1736 return ret;
1737 }
1738
1739 STATIC sector_t
1740 xfs_vm_bmap(
1741 struct address_space *mapping,
1742 sector_t block)
1743 {
1744 struct inode *inode = (struct inode *)mapping->host;
1745 struct xfs_inode *ip = XFS_I(inode);
1746
1747 trace_xfs_vm_bmap(XFS_I(inode));
1748 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1749 filemap_write_and_wait(mapping);
1750 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1751 return generic_block_bmap(mapping, block, xfs_get_blocks);
1752 }
1753
1754 STATIC int
1755 xfs_vm_readpage(
1756 struct file *unused,
1757 struct page *page)
1758 {
1759 return mpage_readpage(page, xfs_get_blocks);
1760 }
1761
1762 STATIC int
1763 xfs_vm_readpages(
1764 struct file *unused,
1765 struct address_space *mapping,
1766 struct list_head *pages,
1767 unsigned nr_pages)
1768 {
1769 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1770 }
1771
1772 /*
1773 * This is basically a copy of __set_page_dirty_buffers() with one
1774 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1775 * dirty, we'll never be able to clean them because we don't write buffers
1776 * beyond EOF, and that means we can't invalidate pages that span EOF
1777 * that have been marked dirty. Further, the dirty state can leak into
1778 * the file interior if the file is extended, resulting in all sorts of
1779 * bad things happening as the state does not match the underlying data.
1780 *
1781 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1782 * this only exist because of bufferheads and how the generic code manages them.
1783 */
1784 STATIC int
1785 xfs_vm_set_page_dirty(
1786 struct page *page)
1787 {
1788 struct address_space *mapping = page->mapping;
1789 struct inode *inode = mapping->host;
1790 loff_t end_offset;
1791 loff_t offset;
1792 int newly_dirty;
1793
1794 if (unlikely(!mapping))
1795 return !TestSetPageDirty(page);
1796
1797 end_offset = i_size_read(inode);
1798 offset = page_offset(page);
1799
1800 spin_lock(&mapping->private_lock);
1801 if (page_has_buffers(page)) {
1802 struct buffer_head *head = page_buffers(page);
1803 struct buffer_head *bh = head;
1804
1805 do {
1806 if (offset < end_offset)
1807 set_buffer_dirty(bh);
1808 bh = bh->b_this_page;
1809 offset += 1 << inode->i_blkbits;
1810 } while (bh != head);
1811 }
1812 newly_dirty = !TestSetPageDirty(page);
1813 spin_unlock(&mapping->private_lock);
1814
1815 if (newly_dirty) {
1816 /* sigh - __set_page_dirty() is static, so copy it here, too */
1817 unsigned long flags;
1818
1819 spin_lock_irqsave(&mapping->tree_lock, flags);
1820 if (page->mapping) { /* Race with truncate? */
1821 WARN_ON_ONCE(!PageUptodate(page));
1822 account_page_dirtied(page, mapping);
1823 radix_tree_tag_set(&mapping->page_tree,
1824 page_index(page), PAGECACHE_TAG_DIRTY);
1825 }
1826 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1827 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1828 }
1829 return newly_dirty;
1830 }
1831
1832 const struct address_space_operations xfs_address_space_operations = {
1833 .readpage = xfs_vm_readpage,
1834 .readpages = xfs_vm_readpages,
1835 .writepage = xfs_vm_writepage,
1836 .writepages = xfs_vm_writepages,
1837 .set_page_dirty = xfs_vm_set_page_dirty,
1838 .releasepage = xfs_vm_releasepage,
1839 .invalidatepage = xfs_vm_invalidatepage,
1840 .write_begin = xfs_vm_write_begin,
1841 .write_end = xfs_vm_write_end,
1842 .bmap = xfs_vm_bmap,
1843 .direct_IO = xfs_vm_direct_IO,
1844 .migratepage = buffer_migrate_page,
1845 .is_partially_uptodate = block_is_partially_uptodate,
1846 .error_remove_page = generic_error_remove_page,
1847 };
This page took 0.067673 seconds and 5 git commands to generate.