Merge tag 'metag-for-v4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/jhogan...
[deliverable/linux.git] / fs / xfs / xfs_bmap_util.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * Copyright (c) 2012 Red Hat, Inc.
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_shared.h"
22 #include "xfs_format.h"
23 #include "xfs_log_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_bit.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_trans.h"
31 #include "xfs_extfree_item.h"
32 #include "xfs_alloc.h"
33 #include "xfs_bmap.h"
34 #include "xfs_bmap_util.h"
35 #include "xfs_bmap_btree.h"
36 #include "xfs_rtalloc.h"
37 #include "xfs_error.h"
38 #include "xfs_quota.h"
39 #include "xfs_trans_space.h"
40 #include "xfs_trace.h"
41 #include "xfs_icache.h"
42 #include "xfs_log.h"
43
44 /* Kernel only BMAP related definitions and functions */
45
46 /*
47 * Convert the given file system block to a disk block. We have to treat it
48 * differently based on whether the file is a real time file or not, because the
49 * bmap code does.
50 */
51 xfs_daddr_t
52 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb)
53 {
54 return (XFS_IS_REALTIME_INODE(ip) ? \
55 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \
56 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb)));
57 }
58
59 /*
60 * Routine to zero an extent on disk allocated to the specific inode.
61 *
62 * The VFS functions take a linearised filesystem block offset, so we have to
63 * convert the sparse xfs fsb to the right format first.
64 * VFS types are real funky, too.
65 */
66 int
67 xfs_zero_extent(
68 struct xfs_inode *ip,
69 xfs_fsblock_t start_fsb,
70 xfs_off_t count_fsb)
71 {
72 struct xfs_mount *mp = ip->i_mount;
73 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb);
74 sector_t block = XFS_BB_TO_FSBT(mp, sector);
75
76 return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)),
77 block << (mp->m_super->s_blocksize_bits - 9),
78 count_fsb << (mp->m_super->s_blocksize_bits - 9),
79 GFP_NOFS, true);
80 }
81
82 /* Sort bmap items by AG. */
83 static int
84 xfs_bmap_free_list_cmp(
85 void *priv,
86 struct list_head *a,
87 struct list_head *b)
88 {
89 struct xfs_mount *mp = priv;
90 struct xfs_bmap_free_item *ra;
91 struct xfs_bmap_free_item *rb;
92
93 ra = container_of(a, struct xfs_bmap_free_item, xbfi_list);
94 rb = container_of(b, struct xfs_bmap_free_item, xbfi_list);
95 return XFS_FSB_TO_AGNO(mp, ra->xbfi_startblock) -
96 XFS_FSB_TO_AGNO(mp, rb->xbfi_startblock);
97 }
98
99 /*
100 * Routine to be called at transaction's end by xfs_bmapi, xfs_bunmapi
101 * caller. Frees all the extents that need freeing, which must be done
102 * last due to locking considerations. We never free any extents in
103 * the first transaction.
104 *
105 * If an inode *ip is provided, rejoin it to the transaction if
106 * the transaction was committed.
107 */
108 int /* error */
109 xfs_bmap_finish(
110 struct xfs_trans **tp, /* transaction pointer addr */
111 struct xfs_bmap_free *flist, /* i/o: list extents to free */
112 struct xfs_inode *ip)
113 {
114 struct xfs_efd_log_item *efd; /* extent free data */
115 struct xfs_efi_log_item *efi; /* extent free intention */
116 int error; /* error return value */
117 int committed;/* xact committed or not */
118 struct xfs_bmap_free_item *free; /* free extent item */
119
120 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
121 if (flist->xbf_count == 0)
122 return 0;
123
124 list_sort((*tp)->t_mountp, &flist->xbf_flist, xfs_bmap_free_list_cmp);
125
126 efi = xfs_trans_get_efi(*tp, flist->xbf_count);
127 list_for_each_entry(free, &flist->xbf_flist, xbfi_list)
128 xfs_trans_log_efi_extent(*tp, efi, free->xbfi_startblock,
129 free->xbfi_blockcount);
130
131 error = __xfs_trans_roll(tp, ip, &committed);
132 if (error) {
133 /*
134 * If the transaction was committed, drop the EFD reference
135 * since we're bailing out of here. The other reference is
136 * dropped when the EFI hits the AIL.
137 *
138 * If the transaction was not committed, the EFI is freed by the
139 * EFI item unlock handler on abort. Also, we have a new
140 * transaction so we should return committed=1 even though we're
141 * returning an error.
142 */
143 if (committed) {
144 xfs_efi_release(efi);
145 xfs_force_shutdown((*tp)->t_mountp,
146 SHUTDOWN_META_IO_ERROR);
147 }
148 return error;
149 }
150
151 /*
152 * Get an EFD and free each extent in the list, logging to the EFD in
153 * the process. The remaining bmap free list is cleaned up by the caller
154 * on error.
155 */
156 efd = xfs_trans_get_efd(*tp, efi, flist->xbf_count);
157 while (!list_empty(&flist->xbf_flist)) {
158 free = list_first_entry(&flist->xbf_flist,
159 struct xfs_bmap_free_item, xbfi_list);
160 error = xfs_trans_free_extent(*tp, efd, free->xbfi_startblock,
161 free->xbfi_blockcount);
162 if (error)
163 return error;
164
165 xfs_bmap_del_free(flist, free);
166 }
167
168 return 0;
169 }
170
171 int
172 xfs_bmap_rtalloc(
173 struct xfs_bmalloca *ap) /* bmap alloc argument struct */
174 {
175 xfs_alloctype_t atype = 0; /* type for allocation routines */
176 int error; /* error return value */
177 xfs_mount_t *mp; /* mount point structure */
178 xfs_extlen_t prod = 0; /* product factor for allocators */
179 xfs_extlen_t ralen = 0; /* realtime allocation length */
180 xfs_extlen_t align; /* minimum allocation alignment */
181 xfs_rtblock_t rtb;
182
183 mp = ap->ip->i_mount;
184 align = xfs_get_extsz_hint(ap->ip);
185 prod = align / mp->m_sb.sb_rextsize;
186 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev,
187 align, 1, ap->eof, 0,
188 ap->conv, &ap->offset, &ap->length);
189 if (error)
190 return error;
191 ASSERT(ap->length);
192 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0);
193
194 /*
195 * If the offset & length are not perfectly aligned
196 * then kill prod, it will just get us in trouble.
197 */
198 if (do_mod(ap->offset, align) || ap->length % align)
199 prod = 1;
200 /*
201 * Set ralen to be the actual requested length in rtextents.
202 */
203 ralen = ap->length / mp->m_sb.sb_rextsize;
204 /*
205 * If the old value was close enough to MAXEXTLEN that
206 * we rounded up to it, cut it back so it's valid again.
207 * Note that if it's a really large request (bigger than
208 * MAXEXTLEN), we don't hear about that number, and can't
209 * adjust the starting point to match it.
210 */
211 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN)
212 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize;
213
214 /*
215 * Lock out modifications to both the RT bitmap and summary inodes
216 */
217 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL);
218 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL);
219 xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL);
220 xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL);
221
222 /*
223 * If it's an allocation to an empty file at offset 0,
224 * pick an extent that will space things out in the rt area.
225 */
226 if (ap->eof && ap->offset == 0) {
227 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */
228
229 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx);
230 if (error)
231 return error;
232 ap->blkno = rtx * mp->m_sb.sb_rextsize;
233 } else {
234 ap->blkno = 0;
235 }
236
237 xfs_bmap_adjacent(ap);
238
239 /*
240 * Realtime allocation, done through xfs_rtallocate_extent.
241 */
242 atype = ap->blkno == 0 ? XFS_ALLOCTYPE_ANY_AG : XFS_ALLOCTYPE_NEAR_BNO;
243 do_div(ap->blkno, mp->m_sb.sb_rextsize);
244 rtb = ap->blkno;
245 ap->length = ralen;
246 if ((error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length,
247 &ralen, atype, ap->wasdel, prod, &rtb)))
248 return error;
249 if (rtb == NULLFSBLOCK && prod > 1 &&
250 (error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1,
251 ap->length, &ralen, atype,
252 ap->wasdel, 1, &rtb)))
253 return error;
254 ap->blkno = rtb;
255 if (ap->blkno != NULLFSBLOCK) {
256 ap->blkno *= mp->m_sb.sb_rextsize;
257 ralen *= mp->m_sb.sb_rextsize;
258 ap->length = ralen;
259 ap->ip->i_d.di_nblocks += ralen;
260 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE);
261 if (ap->wasdel)
262 ap->ip->i_delayed_blks -= ralen;
263 /*
264 * Adjust the disk quota also. This was reserved
265 * earlier.
266 */
267 xfs_trans_mod_dquot_byino(ap->tp, ap->ip,
268 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT :
269 XFS_TRANS_DQ_RTBCOUNT, (long) ralen);
270
271 /* Zero the extent if we were asked to do so */
272 if (ap->userdata & XFS_ALLOC_USERDATA_ZERO) {
273 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length);
274 if (error)
275 return error;
276 }
277 } else {
278 ap->length = 0;
279 }
280 return 0;
281 }
282
283 /*
284 * Check if the endoff is outside the last extent. If so the caller will grow
285 * the allocation to a stripe unit boundary. All offsets are considered outside
286 * the end of file for an empty fork, so 1 is returned in *eof in that case.
287 */
288 int
289 xfs_bmap_eof(
290 struct xfs_inode *ip,
291 xfs_fileoff_t endoff,
292 int whichfork,
293 int *eof)
294 {
295 struct xfs_bmbt_irec rec;
296 int error;
297
298 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof);
299 if (error || *eof)
300 return error;
301
302 *eof = endoff >= rec.br_startoff + rec.br_blockcount;
303 return 0;
304 }
305
306 /*
307 * Extent tree block counting routines.
308 */
309
310 /*
311 * Count leaf blocks given a range of extent records.
312 */
313 STATIC void
314 xfs_bmap_count_leaves(
315 xfs_ifork_t *ifp,
316 xfs_extnum_t idx,
317 int numrecs,
318 int *count)
319 {
320 int b;
321
322 for (b = 0; b < numrecs; b++) {
323 xfs_bmbt_rec_host_t *frp = xfs_iext_get_ext(ifp, idx + b);
324 *count += xfs_bmbt_get_blockcount(frp);
325 }
326 }
327
328 /*
329 * Count leaf blocks given a range of extent records originally
330 * in btree format.
331 */
332 STATIC void
333 xfs_bmap_disk_count_leaves(
334 struct xfs_mount *mp,
335 struct xfs_btree_block *block,
336 int numrecs,
337 int *count)
338 {
339 int b;
340 xfs_bmbt_rec_t *frp;
341
342 for (b = 1; b <= numrecs; b++) {
343 frp = XFS_BMBT_REC_ADDR(mp, block, b);
344 *count += xfs_bmbt_disk_get_blockcount(frp);
345 }
346 }
347
348 /*
349 * Recursively walks each level of a btree
350 * to count total fsblocks in use.
351 */
352 STATIC int /* error */
353 xfs_bmap_count_tree(
354 xfs_mount_t *mp, /* file system mount point */
355 xfs_trans_t *tp, /* transaction pointer */
356 xfs_ifork_t *ifp, /* inode fork pointer */
357 xfs_fsblock_t blockno, /* file system block number */
358 int levelin, /* level in btree */
359 int *count) /* Count of blocks */
360 {
361 int error;
362 xfs_buf_t *bp, *nbp;
363 int level = levelin;
364 __be64 *pp;
365 xfs_fsblock_t bno = blockno;
366 xfs_fsblock_t nextbno;
367 struct xfs_btree_block *block, *nextblock;
368 int numrecs;
369
370 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF,
371 &xfs_bmbt_buf_ops);
372 if (error)
373 return error;
374 *count += 1;
375 block = XFS_BUF_TO_BLOCK(bp);
376
377 if (--level) {
378 /* Not at node above leaves, count this level of nodes */
379 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
380 while (nextbno != NULLFSBLOCK) {
381 error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp,
382 XFS_BMAP_BTREE_REF,
383 &xfs_bmbt_buf_ops);
384 if (error)
385 return error;
386 *count += 1;
387 nextblock = XFS_BUF_TO_BLOCK(nbp);
388 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib);
389 xfs_trans_brelse(tp, nbp);
390 }
391
392 /* Dive to the next level */
393 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]);
394 bno = be64_to_cpu(*pp);
395 if (unlikely((error =
396 xfs_bmap_count_tree(mp, tp, ifp, bno, level, count)) < 0)) {
397 xfs_trans_brelse(tp, bp);
398 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)",
399 XFS_ERRLEVEL_LOW, mp);
400 return -EFSCORRUPTED;
401 }
402 xfs_trans_brelse(tp, bp);
403 } else {
404 /* count all level 1 nodes and their leaves */
405 for (;;) {
406 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
407 numrecs = be16_to_cpu(block->bb_numrecs);
408 xfs_bmap_disk_count_leaves(mp, block, numrecs, count);
409 xfs_trans_brelse(tp, bp);
410 if (nextbno == NULLFSBLOCK)
411 break;
412 bno = nextbno;
413 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp,
414 XFS_BMAP_BTREE_REF,
415 &xfs_bmbt_buf_ops);
416 if (error)
417 return error;
418 *count += 1;
419 block = XFS_BUF_TO_BLOCK(bp);
420 }
421 }
422 return 0;
423 }
424
425 /*
426 * Count fsblocks of the given fork.
427 */
428 static int /* error */
429 xfs_bmap_count_blocks(
430 xfs_trans_t *tp, /* transaction pointer */
431 xfs_inode_t *ip, /* incore inode */
432 int whichfork, /* data or attr fork */
433 int *count) /* out: count of blocks */
434 {
435 struct xfs_btree_block *block; /* current btree block */
436 xfs_fsblock_t bno; /* block # of "block" */
437 xfs_ifork_t *ifp; /* fork structure */
438 int level; /* btree level, for checking */
439 xfs_mount_t *mp; /* file system mount structure */
440 __be64 *pp; /* pointer to block address */
441
442 bno = NULLFSBLOCK;
443 mp = ip->i_mount;
444 ifp = XFS_IFORK_PTR(ip, whichfork);
445 if ( XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_EXTENTS ) {
446 xfs_bmap_count_leaves(ifp, 0,
447 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t),
448 count);
449 return 0;
450 }
451
452 /*
453 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out.
454 */
455 block = ifp->if_broot;
456 level = be16_to_cpu(block->bb_level);
457 ASSERT(level > 0);
458 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes);
459 bno = be64_to_cpu(*pp);
460 ASSERT(bno != NULLFSBLOCK);
461 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount);
462 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks);
463
464 if (unlikely(xfs_bmap_count_tree(mp, tp, ifp, bno, level, count) < 0)) {
465 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", XFS_ERRLEVEL_LOW,
466 mp);
467 return -EFSCORRUPTED;
468 }
469
470 return 0;
471 }
472
473 /*
474 * returns 1 for success, 0 if we failed to map the extent.
475 */
476 STATIC int
477 xfs_getbmapx_fix_eof_hole(
478 xfs_inode_t *ip, /* xfs incore inode pointer */
479 struct getbmapx *out, /* output structure */
480 int prealloced, /* this is a file with
481 * preallocated data space */
482 __int64_t end, /* last block requested */
483 xfs_fsblock_t startblock)
484 {
485 __int64_t fixlen;
486 xfs_mount_t *mp; /* file system mount point */
487 xfs_ifork_t *ifp; /* inode fork pointer */
488 xfs_extnum_t lastx; /* last extent pointer */
489 xfs_fileoff_t fileblock;
490
491 if (startblock == HOLESTARTBLOCK) {
492 mp = ip->i_mount;
493 out->bmv_block = -1;
494 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip)));
495 fixlen -= out->bmv_offset;
496 if (prealloced && out->bmv_offset + out->bmv_length == end) {
497 /* Came to hole at EOF. Trim it. */
498 if (fixlen <= 0)
499 return 0;
500 out->bmv_length = fixlen;
501 }
502 } else {
503 if (startblock == DELAYSTARTBLOCK)
504 out->bmv_block = -2;
505 else
506 out->bmv_block = xfs_fsb_to_db(ip, startblock);
507 fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset);
508 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
509 if (xfs_iext_bno_to_ext(ifp, fileblock, &lastx) &&
510 (lastx == (ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t))-1))
511 out->bmv_oflags |= BMV_OF_LAST;
512 }
513
514 return 1;
515 }
516
517 /*
518 * Get inode's extents as described in bmv, and format for output.
519 * Calls formatter to fill the user's buffer until all extents
520 * are mapped, until the passed-in bmv->bmv_count slots have
521 * been filled, or until the formatter short-circuits the loop,
522 * if it is tracking filled-in extents on its own.
523 */
524 int /* error code */
525 xfs_getbmap(
526 xfs_inode_t *ip,
527 struct getbmapx *bmv, /* user bmap structure */
528 xfs_bmap_format_t formatter, /* format to user */
529 void *arg) /* formatter arg */
530 {
531 __int64_t bmvend; /* last block requested */
532 int error = 0; /* return value */
533 __int64_t fixlen; /* length for -1 case */
534 int i; /* extent number */
535 int lock; /* lock state */
536 xfs_bmbt_irec_t *map; /* buffer for user's data */
537 xfs_mount_t *mp; /* file system mount point */
538 int nex; /* # of user extents can do */
539 int nexleft; /* # of user extents left */
540 int subnex; /* # of bmapi's can do */
541 int nmap; /* number of map entries */
542 struct getbmapx *out; /* output structure */
543 int whichfork; /* data or attr fork */
544 int prealloced; /* this is a file with
545 * preallocated data space */
546 int iflags; /* interface flags */
547 int bmapi_flags; /* flags for xfs_bmapi */
548 int cur_ext = 0;
549
550 mp = ip->i_mount;
551 iflags = bmv->bmv_iflags;
552 whichfork = iflags & BMV_IF_ATTRFORK ? XFS_ATTR_FORK : XFS_DATA_FORK;
553
554 if (whichfork == XFS_ATTR_FORK) {
555 if (XFS_IFORK_Q(ip)) {
556 if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS &&
557 ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE &&
558 ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)
559 return -EINVAL;
560 } else if (unlikely(
561 ip->i_d.di_aformat != 0 &&
562 ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) {
563 XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW,
564 ip->i_mount);
565 return -EFSCORRUPTED;
566 }
567
568 prealloced = 0;
569 fixlen = 1LL << 32;
570 } else {
571 if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS &&
572 ip->i_d.di_format != XFS_DINODE_FMT_BTREE &&
573 ip->i_d.di_format != XFS_DINODE_FMT_LOCAL)
574 return -EINVAL;
575
576 if (xfs_get_extsz_hint(ip) ||
577 ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){
578 prealloced = 1;
579 fixlen = mp->m_super->s_maxbytes;
580 } else {
581 prealloced = 0;
582 fixlen = XFS_ISIZE(ip);
583 }
584 }
585
586 if (bmv->bmv_length == -1) {
587 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen));
588 bmv->bmv_length =
589 max_t(__int64_t, fixlen - bmv->bmv_offset, 0);
590 } else if (bmv->bmv_length == 0) {
591 bmv->bmv_entries = 0;
592 return 0;
593 } else if (bmv->bmv_length < 0) {
594 return -EINVAL;
595 }
596
597 nex = bmv->bmv_count - 1;
598 if (nex <= 0)
599 return -EINVAL;
600 bmvend = bmv->bmv_offset + bmv->bmv_length;
601
602
603 if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx))
604 return -ENOMEM;
605 out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0);
606 if (!out)
607 return -ENOMEM;
608
609 xfs_ilock(ip, XFS_IOLOCK_SHARED);
610 if (whichfork == XFS_DATA_FORK) {
611 if (!(iflags & BMV_IF_DELALLOC) &&
612 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) {
613 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
614 if (error)
615 goto out_unlock_iolock;
616
617 /*
618 * Even after flushing the inode, there can still be
619 * delalloc blocks on the inode beyond EOF due to
620 * speculative preallocation. These are not removed
621 * until the release function is called or the inode
622 * is inactivated. Hence we cannot assert here that
623 * ip->i_delayed_blks == 0.
624 */
625 }
626
627 lock = xfs_ilock_data_map_shared(ip);
628 } else {
629 lock = xfs_ilock_attr_map_shared(ip);
630 }
631
632 /*
633 * Don't let nex be bigger than the number of extents
634 * we can have assuming alternating holes and real extents.
635 */
636 if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1)
637 nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1;
638
639 bmapi_flags = xfs_bmapi_aflag(whichfork);
640 if (!(iflags & BMV_IF_PREALLOC))
641 bmapi_flags |= XFS_BMAPI_IGSTATE;
642
643 /*
644 * Allocate enough space to handle "subnex" maps at a time.
645 */
646 error = -ENOMEM;
647 subnex = 16;
648 map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS);
649 if (!map)
650 goto out_unlock_ilock;
651
652 bmv->bmv_entries = 0;
653
654 if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 &&
655 (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) {
656 error = 0;
657 goto out_free_map;
658 }
659
660 nexleft = nex;
661
662 do {
663 nmap = (nexleft > subnex) ? subnex : nexleft;
664 error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset),
665 XFS_BB_TO_FSB(mp, bmv->bmv_length),
666 map, &nmap, bmapi_flags);
667 if (error)
668 goto out_free_map;
669 ASSERT(nmap <= subnex);
670
671 for (i = 0; i < nmap && nexleft && bmv->bmv_length; i++) {
672 out[cur_ext].bmv_oflags = 0;
673 if (map[i].br_state == XFS_EXT_UNWRITTEN)
674 out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC;
675 else if (map[i].br_startblock == DELAYSTARTBLOCK)
676 out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC;
677 out[cur_ext].bmv_offset =
678 XFS_FSB_TO_BB(mp, map[i].br_startoff);
679 out[cur_ext].bmv_length =
680 XFS_FSB_TO_BB(mp, map[i].br_blockcount);
681 out[cur_ext].bmv_unused1 = 0;
682 out[cur_ext].bmv_unused2 = 0;
683
684 /*
685 * delayed allocation extents that start beyond EOF can
686 * occur due to speculative EOF allocation when the
687 * delalloc extent is larger than the largest freespace
688 * extent at conversion time. These extents cannot be
689 * converted by data writeback, so can exist here even
690 * if we are not supposed to be finding delalloc
691 * extents.
692 */
693 if (map[i].br_startblock == DELAYSTARTBLOCK &&
694 map[i].br_startoff <= XFS_B_TO_FSB(mp, XFS_ISIZE(ip)))
695 ASSERT((iflags & BMV_IF_DELALLOC) != 0);
696
697 if (map[i].br_startblock == HOLESTARTBLOCK &&
698 whichfork == XFS_ATTR_FORK) {
699 /* came to the end of attribute fork */
700 out[cur_ext].bmv_oflags |= BMV_OF_LAST;
701 goto out_free_map;
702 }
703
704 if (!xfs_getbmapx_fix_eof_hole(ip, &out[cur_ext],
705 prealloced, bmvend,
706 map[i].br_startblock))
707 goto out_free_map;
708
709 bmv->bmv_offset =
710 out[cur_ext].bmv_offset +
711 out[cur_ext].bmv_length;
712 bmv->bmv_length =
713 max_t(__int64_t, 0, bmvend - bmv->bmv_offset);
714
715 /*
716 * In case we don't want to return the hole,
717 * don't increase cur_ext so that we can reuse
718 * it in the next loop.
719 */
720 if ((iflags & BMV_IF_NO_HOLES) &&
721 map[i].br_startblock == HOLESTARTBLOCK) {
722 memset(&out[cur_ext], 0, sizeof(out[cur_ext]));
723 continue;
724 }
725
726 nexleft--;
727 bmv->bmv_entries++;
728 cur_ext++;
729 }
730 } while (nmap && nexleft && bmv->bmv_length);
731
732 out_free_map:
733 kmem_free(map);
734 out_unlock_ilock:
735 xfs_iunlock(ip, lock);
736 out_unlock_iolock:
737 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
738
739 for (i = 0; i < cur_ext; i++) {
740 int full = 0; /* user array is full */
741
742 /* format results & advance arg */
743 error = formatter(&arg, &out[i], &full);
744 if (error || full)
745 break;
746 }
747
748 kmem_free(out);
749 return error;
750 }
751
752 /*
753 * dead simple method of punching delalyed allocation blocks from a range in
754 * the inode. Walks a block at a time so will be slow, but is only executed in
755 * rare error cases so the overhead is not critical. This will always punch out
756 * both the start and end blocks, even if the ranges only partially overlap
757 * them, so it is up to the caller to ensure that partial blocks are not
758 * passed in.
759 */
760 int
761 xfs_bmap_punch_delalloc_range(
762 struct xfs_inode *ip,
763 xfs_fileoff_t start_fsb,
764 xfs_fileoff_t length)
765 {
766 xfs_fileoff_t remaining = length;
767 int error = 0;
768
769 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
770
771 do {
772 int done;
773 xfs_bmbt_irec_t imap;
774 int nimaps = 1;
775 xfs_fsblock_t firstblock;
776 xfs_bmap_free_t flist;
777
778 /*
779 * Map the range first and check that it is a delalloc extent
780 * before trying to unmap the range. Otherwise we will be
781 * trying to remove a real extent (which requires a
782 * transaction) or a hole, which is probably a bad idea...
783 */
784 error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps,
785 XFS_BMAPI_ENTIRE);
786
787 if (error) {
788 /* something screwed, just bail */
789 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
790 xfs_alert(ip->i_mount,
791 "Failed delalloc mapping lookup ino %lld fsb %lld.",
792 ip->i_ino, start_fsb);
793 }
794 break;
795 }
796 if (!nimaps) {
797 /* nothing there */
798 goto next_block;
799 }
800 if (imap.br_startblock != DELAYSTARTBLOCK) {
801 /* been converted, ignore */
802 goto next_block;
803 }
804 WARN_ON(imap.br_blockcount == 0);
805
806 /*
807 * Note: while we initialise the firstblock/flist pair, they
808 * should never be used because blocks should never be
809 * allocated or freed for a delalloc extent and hence we need
810 * don't cancel or finish them after the xfs_bunmapi() call.
811 */
812 xfs_bmap_init(&flist, &firstblock);
813 error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock,
814 &flist, &done);
815 if (error)
816 break;
817
818 ASSERT(!flist.xbf_count && list_empty(&flist.xbf_flist));
819 next_block:
820 start_fsb++;
821 remaining--;
822 } while(remaining > 0);
823
824 return error;
825 }
826
827 /*
828 * Test whether it is appropriate to check an inode for and free post EOF
829 * blocks. The 'force' parameter determines whether we should also consider
830 * regular files that are marked preallocated or append-only.
831 */
832 bool
833 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
834 {
835 /* prealloc/delalloc exists only on regular files */
836 if (!S_ISREG(VFS_I(ip)->i_mode))
837 return false;
838
839 /*
840 * Zero sized files with no cached pages and delalloc blocks will not
841 * have speculative prealloc/delalloc blocks to remove.
842 */
843 if (VFS_I(ip)->i_size == 0 &&
844 VFS_I(ip)->i_mapping->nrpages == 0 &&
845 ip->i_delayed_blks == 0)
846 return false;
847
848 /* If we haven't read in the extent list, then don't do it now. */
849 if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
850 return false;
851
852 /*
853 * Do not free real preallocated or append-only files unless the file
854 * has delalloc blocks and we are forced to remove them.
855 */
856 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
857 if (!force || ip->i_delayed_blks == 0)
858 return false;
859
860 return true;
861 }
862
863 /*
864 * This is called by xfs_inactive to free any blocks beyond eof
865 * when the link count isn't zero and by xfs_dm_punch_hole() when
866 * punching a hole to EOF.
867 */
868 int
869 xfs_free_eofblocks(
870 xfs_mount_t *mp,
871 xfs_inode_t *ip,
872 bool need_iolock)
873 {
874 xfs_trans_t *tp;
875 int error;
876 xfs_fileoff_t end_fsb;
877 xfs_fileoff_t last_fsb;
878 xfs_filblks_t map_len;
879 int nimaps;
880 xfs_bmbt_irec_t imap;
881
882 /*
883 * Figure out if there are any blocks beyond the end
884 * of the file. If not, then there is nothing to do.
885 */
886 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip));
887 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
888 if (last_fsb <= end_fsb)
889 return 0;
890 map_len = last_fsb - end_fsb;
891
892 nimaps = 1;
893 xfs_ilock(ip, XFS_ILOCK_SHARED);
894 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0);
895 xfs_iunlock(ip, XFS_ILOCK_SHARED);
896
897 if (!error && (nimaps != 0) &&
898 (imap.br_startblock != HOLESTARTBLOCK ||
899 ip->i_delayed_blks)) {
900 /*
901 * Attach the dquots to the inode up front.
902 */
903 error = xfs_qm_dqattach(ip, 0);
904 if (error)
905 return error;
906
907 /*
908 * There are blocks after the end of file.
909 * Free them up now by truncating the file to
910 * its current size.
911 */
912 if (need_iolock) {
913 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
914 return -EAGAIN;
915 }
916
917 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0,
918 &tp);
919 if (error) {
920 ASSERT(XFS_FORCED_SHUTDOWN(mp));
921 if (need_iolock)
922 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
923 return error;
924 }
925
926 xfs_ilock(ip, XFS_ILOCK_EXCL);
927 xfs_trans_ijoin(tp, ip, 0);
928
929 /*
930 * Do not update the on-disk file size. If we update the
931 * on-disk file size and then the system crashes before the
932 * contents of the file are flushed to disk then the files
933 * may be full of holes (ie NULL files bug).
934 */
935 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK,
936 XFS_ISIZE(ip));
937 if (error) {
938 /*
939 * If we get an error at this point we simply don't
940 * bother truncating the file.
941 */
942 xfs_trans_cancel(tp);
943 } else {
944 error = xfs_trans_commit(tp);
945 if (!error)
946 xfs_inode_clear_eofblocks_tag(ip);
947 }
948
949 xfs_iunlock(ip, XFS_ILOCK_EXCL);
950 if (need_iolock)
951 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
952 }
953 return error;
954 }
955
956 int
957 xfs_alloc_file_space(
958 struct xfs_inode *ip,
959 xfs_off_t offset,
960 xfs_off_t len,
961 int alloc_type)
962 {
963 xfs_mount_t *mp = ip->i_mount;
964 xfs_off_t count;
965 xfs_filblks_t allocated_fsb;
966 xfs_filblks_t allocatesize_fsb;
967 xfs_extlen_t extsz, temp;
968 xfs_fileoff_t startoffset_fsb;
969 xfs_fsblock_t firstfsb;
970 int nimaps;
971 int quota_flag;
972 int rt;
973 xfs_trans_t *tp;
974 xfs_bmbt_irec_t imaps[1], *imapp;
975 xfs_bmap_free_t free_list;
976 uint qblocks, resblks, resrtextents;
977 int error;
978
979 trace_xfs_alloc_file_space(ip);
980
981 if (XFS_FORCED_SHUTDOWN(mp))
982 return -EIO;
983
984 error = xfs_qm_dqattach(ip, 0);
985 if (error)
986 return error;
987
988 if (len <= 0)
989 return -EINVAL;
990
991 rt = XFS_IS_REALTIME_INODE(ip);
992 extsz = xfs_get_extsz_hint(ip);
993
994 count = len;
995 imapp = &imaps[0];
996 nimaps = 1;
997 startoffset_fsb = XFS_B_TO_FSBT(mp, offset);
998 allocatesize_fsb = XFS_B_TO_FSB(mp, count);
999
1000 /*
1001 * Allocate file space until done or until there is an error
1002 */
1003 while (allocatesize_fsb && !error) {
1004 xfs_fileoff_t s, e;
1005
1006 /*
1007 * Determine space reservations for data/realtime.
1008 */
1009 if (unlikely(extsz)) {
1010 s = startoffset_fsb;
1011 do_div(s, extsz);
1012 s *= extsz;
1013 e = startoffset_fsb + allocatesize_fsb;
1014 if ((temp = do_mod(startoffset_fsb, extsz)))
1015 e += temp;
1016 if ((temp = do_mod(e, extsz)))
1017 e += extsz - temp;
1018 } else {
1019 s = 0;
1020 e = allocatesize_fsb;
1021 }
1022
1023 /*
1024 * The transaction reservation is limited to a 32-bit block
1025 * count, hence we need to limit the number of blocks we are
1026 * trying to reserve to avoid an overflow. We can't allocate
1027 * more than @nimaps extents, and an extent is limited on disk
1028 * to MAXEXTLEN (21 bits), so use that to enforce the limit.
1029 */
1030 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps));
1031 if (unlikely(rt)) {
1032 resrtextents = qblocks = resblks;
1033 resrtextents /= mp->m_sb.sb_rextsize;
1034 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1035 quota_flag = XFS_QMOPT_RES_RTBLKS;
1036 } else {
1037 resrtextents = 0;
1038 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks);
1039 quota_flag = XFS_QMOPT_RES_REGBLKS;
1040 }
1041
1042 /*
1043 * Allocate and setup the transaction.
1044 */
1045 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks,
1046 resrtextents, 0, &tp);
1047
1048 /*
1049 * Check for running out of space
1050 */
1051 if (error) {
1052 /*
1053 * Free the transaction structure.
1054 */
1055 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1056 break;
1057 }
1058 xfs_ilock(ip, XFS_ILOCK_EXCL);
1059 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks,
1060 0, quota_flag);
1061 if (error)
1062 goto error1;
1063
1064 xfs_trans_ijoin(tp, ip, 0);
1065
1066 xfs_bmap_init(&free_list, &firstfsb);
1067 error = xfs_bmapi_write(tp, ip, startoffset_fsb,
1068 allocatesize_fsb, alloc_type, &firstfsb,
1069 resblks, imapp, &nimaps, &free_list);
1070 if (error)
1071 goto error0;
1072
1073 /*
1074 * Complete the transaction
1075 */
1076 error = xfs_bmap_finish(&tp, &free_list, NULL);
1077 if (error)
1078 goto error0;
1079
1080 error = xfs_trans_commit(tp);
1081 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1082 if (error)
1083 break;
1084
1085 allocated_fsb = imapp->br_blockcount;
1086
1087 if (nimaps == 0) {
1088 error = -ENOSPC;
1089 break;
1090 }
1091
1092 startoffset_fsb += allocated_fsb;
1093 allocatesize_fsb -= allocated_fsb;
1094 }
1095
1096 return error;
1097
1098 error0: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */
1099 xfs_bmap_cancel(&free_list);
1100 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
1101
1102 error1: /* Just cancel transaction */
1103 xfs_trans_cancel(tp);
1104 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1105 return error;
1106 }
1107
1108 static int
1109 xfs_unmap_extent(
1110 struct xfs_inode *ip,
1111 xfs_fileoff_t startoffset_fsb,
1112 xfs_filblks_t len_fsb,
1113 int *done)
1114 {
1115 struct xfs_mount *mp = ip->i_mount;
1116 struct xfs_trans *tp;
1117 struct xfs_bmap_free free_list;
1118 xfs_fsblock_t firstfsb;
1119 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1120 int error;
1121
1122 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1123 if (error) {
1124 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1125 return error;
1126 }
1127
1128 xfs_ilock(ip, XFS_ILOCK_EXCL);
1129 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot,
1130 ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS);
1131 if (error)
1132 goto out_trans_cancel;
1133
1134 xfs_trans_ijoin(tp, ip, 0);
1135
1136 xfs_bmap_init(&free_list, &firstfsb);
1137 error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, &firstfsb,
1138 &free_list, done);
1139 if (error)
1140 goto out_bmap_cancel;
1141
1142 error = xfs_bmap_finish(&tp, &free_list, NULL);
1143 if (error)
1144 goto out_bmap_cancel;
1145
1146 error = xfs_trans_commit(tp);
1147 out_unlock:
1148 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1149 return error;
1150
1151 out_bmap_cancel:
1152 xfs_bmap_cancel(&free_list);
1153 out_trans_cancel:
1154 xfs_trans_cancel(tp);
1155 goto out_unlock;
1156 }
1157
1158 static int
1159 xfs_adjust_extent_unmap_boundaries(
1160 struct xfs_inode *ip,
1161 xfs_fileoff_t *startoffset_fsb,
1162 xfs_fileoff_t *endoffset_fsb)
1163 {
1164 struct xfs_mount *mp = ip->i_mount;
1165 struct xfs_bmbt_irec imap;
1166 int nimap, error;
1167 xfs_extlen_t mod = 0;
1168
1169 nimap = 1;
1170 error = xfs_bmapi_read(ip, *startoffset_fsb, 1, &imap, &nimap, 0);
1171 if (error)
1172 return error;
1173
1174 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1175 xfs_daddr_t block;
1176
1177 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1178 block = imap.br_startblock;
1179 mod = do_div(block, mp->m_sb.sb_rextsize);
1180 if (mod)
1181 *startoffset_fsb += mp->m_sb.sb_rextsize - mod;
1182 }
1183
1184 nimap = 1;
1185 error = xfs_bmapi_read(ip, *endoffset_fsb - 1, 1, &imap, &nimap, 0);
1186 if (error)
1187 return error;
1188
1189 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1190 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1191 mod++;
1192 if (mod && mod != mp->m_sb.sb_rextsize)
1193 *endoffset_fsb -= mod;
1194 }
1195
1196 return 0;
1197 }
1198
1199 static int
1200 xfs_flush_unmap_range(
1201 struct xfs_inode *ip,
1202 xfs_off_t offset,
1203 xfs_off_t len)
1204 {
1205 struct xfs_mount *mp = ip->i_mount;
1206 struct inode *inode = VFS_I(ip);
1207 xfs_off_t rounding, start, end;
1208 int error;
1209
1210 /* wait for the completion of any pending DIOs */
1211 inode_dio_wait(inode);
1212
1213 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE);
1214 start = round_down(offset, rounding);
1215 end = round_up(offset + len, rounding) - 1;
1216
1217 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
1218 if (error)
1219 return error;
1220 truncate_pagecache_range(inode, start, end);
1221 return 0;
1222 }
1223
1224 int
1225 xfs_free_file_space(
1226 struct xfs_inode *ip,
1227 xfs_off_t offset,
1228 xfs_off_t len)
1229 {
1230 struct xfs_mount *mp = ip->i_mount;
1231 xfs_fileoff_t startoffset_fsb;
1232 xfs_fileoff_t endoffset_fsb;
1233 int done = 0, error;
1234
1235 trace_xfs_free_file_space(ip);
1236
1237 error = xfs_qm_dqattach(ip, 0);
1238 if (error)
1239 return error;
1240
1241 if (len <= 0) /* if nothing being freed */
1242 return 0;
1243
1244 error = xfs_flush_unmap_range(ip, offset, len);
1245 if (error)
1246 return error;
1247
1248 startoffset_fsb = XFS_B_TO_FSB(mp, offset);
1249 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
1250
1251 /*
1252 * Need to zero the stuff we're not freeing, on disk. If it's a RT file
1253 * and we can't use unwritten extents then we actually need to ensure
1254 * to zero the whole extent, otherwise we just need to take of block
1255 * boundaries, and xfs_bunmapi will handle the rest.
1256 */
1257 if (XFS_IS_REALTIME_INODE(ip) &&
1258 !xfs_sb_version_hasextflgbit(&mp->m_sb)) {
1259 error = xfs_adjust_extent_unmap_boundaries(ip, &startoffset_fsb,
1260 &endoffset_fsb);
1261 if (error)
1262 return error;
1263 }
1264
1265 if (endoffset_fsb > startoffset_fsb) {
1266 while (!done) {
1267 error = xfs_unmap_extent(ip, startoffset_fsb,
1268 endoffset_fsb - startoffset_fsb, &done);
1269 if (error)
1270 return error;
1271 }
1272 }
1273
1274 /*
1275 * Now that we've unmap all full blocks we'll have to zero out any
1276 * partial block at the beginning and/or end. xfs_zero_range is
1277 * smart enough to skip any holes, including those we just created.
1278 */
1279 return xfs_zero_range(ip, offset, len, NULL);
1280 }
1281
1282 /*
1283 * Preallocate and zero a range of a file. This mechanism has the allocation
1284 * semantics of fallocate and in addition converts data in the range to zeroes.
1285 */
1286 int
1287 xfs_zero_file_space(
1288 struct xfs_inode *ip,
1289 xfs_off_t offset,
1290 xfs_off_t len)
1291 {
1292 struct xfs_mount *mp = ip->i_mount;
1293 uint blksize;
1294 int error;
1295
1296 trace_xfs_zero_file_space(ip);
1297
1298 blksize = 1 << mp->m_sb.sb_blocklog;
1299
1300 /*
1301 * Punch a hole and prealloc the range. We use hole punch rather than
1302 * unwritten extent conversion for two reasons:
1303 *
1304 * 1.) Hole punch handles partial block zeroing for us.
1305 *
1306 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued
1307 * by virtue of the hole punch.
1308 */
1309 error = xfs_free_file_space(ip, offset, len);
1310 if (error)
1311 goto out;
1312
1313 error = xfs_alloc_file_space(ip, round_down(offset, blksize),
1314 round_up(offset + len, blksize) -
1315 round_down(offset, blksize),
1316 XFS_BMAPI_PREALLOC);
1317 out:
1318 return error;
1319
1320 }
1321
1322 /*
1323 * @next_fsb will keep track of the extent currently undergoing shift.
1324 * @stop_fsb will keep track of the extent at which we have to stop.
1325 * If we are shifting left, we will start with block (offset + len) and
1326 * shift each extent till last extent.
1327 * If we are shifting right, we will start with last extent inside file space
1328 * and continue until we reach the block corresponding to offset.
1329 */
1330 static int
1331 xfs_shift_file_space(
1332 struct xfs_inode *ip,
1333 xfs_off_t offset,
1334 xfs_off_t len,
1335 enum shift_direction direction)
1336 {
1337 int done = 0;
1338 struct xfs_mount *mp = ip->i_mount;
1339 struct xfs_trans *tp;
1340 int error;
1341 struct xfs_bmap_free free_list;
1342 xfs_fsblock_t first_block;
1343 xfs_fileoff_t stop_fsb;
1344 xfs_fileoff_t next_fsb;
1345 xfs_fileoff_t shift_fsb;
1346
1347 ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT);
1348
1349 if (direction == SHIFT_LEFT) {
1350 next_fsb = XFS_B_TO_FSB(mp, offset + len);
1351 stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size);
1352 } else {
1353 /*
1354 * If right shift, delegate the work of initialization of
1355 * next_fsb to xfs_bmap_shift_extent as it has ilock held.
1356 */
1357 next_fsb = NULLFSBLOCK;
1358 stop_fsb = XFS_B_TO_FSB(mp, offset);
1359 }
1360
1361 shift_fsb = XFS_B_TO_FSB(mp, len);
1362
1363 /*
1364 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation
1365 * into the accessible region of the file.
1366 */
1367 if (xfs_can_free_eofblocks(ip, true)) {
1368 error = xfs_free_eofblocks(mp, ip, false);
1369 if (error)
1370 return error;
1371 }
1372
1373 /*
1374 * Writeback and invalidate cache for the remainder of the file as we're
1375 * about to shift down every extent from offset to EOF.
1376 */
1377 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
1378 offset, -1);
1379 if (error)
1380 return error;
1381 error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
1382 offset >> PAGE_SHIFT, -1);
1383 if (error)
1384 return error;
1385
1386 /*
1387 * The extent shiting code works on extent granularity. So, if
1388 * stop_fsb is not the starting block of extent, we need to split
1389 * the extent at stop_fsb.
1390 */
1391 if (direction == SHIFT_RIGHT) {
1392 error = xfs_bmap_split_extent(ip, stop_fsb);
1393 if (error)
1394 return error;
1395 }
1396
1397 while (!error && !done) {
1398 /*
1399 * We would need to reserve permanent block for transaction.
1400 * This will come into picture when after shifting extent into
1401 * hole we found that adjacent extents can be merged which
1402 * may lead to freeing of a block during record update.
1403 */
1404 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write,
1405 XFS_DIOSTRAT_SPACE_RES(mp, 0), 0, 0, &tp);
1406 if (error)
1407 break;
1408
1409 xfs_ilock(ip, XFS_ILOCK_EXCL);
1410 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot,
1411 ip->i_gdquot, ip->i_pdquot,
1412 XFS_DIOSTRAT_SPACE_RES(mp, 0), 0,
1413 XFS_QMOPT_RES_REGBLKS);
1414 if (error)
1415 goto out_trans_cancel;
1416
1417 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1418
1419 xfs_bmap_init(&free_list, &first_block);
1420
1421 /*
1422 * We are using the write transaction in which max 2 bmbt
1423 * updates are allowed
1424 */
1425 error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb,
1426 &done, stop_fsb, &first_block, &free_list,
1427 direction, XFS_BMAP_MAX_SHIFT_EXTENTS);
1428 if (error)
1429 goto out_bmap_cancel;
1430
1431 error = xfs_bmap_finish(&tp, &free_list, NULL);
1432 if (error)
1433 goto out_bmap_cancel;
1434
1435 error = xfs_trans_commit(tp);
1436 }
1437
1438 return error;
1439
1440 out_bmap_cancel:
1441 xfs_bmap_cancel(&free_list);
1442 out_trans_cancel:
1443 xfs_trans_cancel(tp);
1444 return error;
1445 }
1446
1447 /*
1448 * xfs_collapse_file_space()
1449 * This routine frees disk space and shift extent for the given file.
1450 * The first thing we do is to free data blocks in the specified range
1451 * by calling xfs_free_file_space(). It would also sync dirty data
1452 * and invalidate page cache over the region on which collapse range
1453 * is working. And Shift extent records to the left to cover a hole.
1454 * RETURNS:
1455 * 0 on success
1456 * errno on error
1457 *
1458 */
1459 int
1460 xfs_collapse_file_space(
1461 struct xfs_inode *ip,
1462 xfs_off_t offset,
1463 xfs_off_t len)
1464 {
1465 int error;
1466
1467 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1468 trace_xfs_collapse_file_space(ip);
1469
1470 error = xfs_free_file_space(ip, offset, len);
1471 if (error)
1472 return error;
1473
1474 return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT);
1475 }
1476
1477 /*
1478 * xfs_insert_file_space()
1479 * This routine create hole space by shifting extents for the given file.
1480 * The first thing we do is to sync dirty data and invalidate page cache
1481 * over the region on which insert range is working. And split an extent
1482 * to two extents at given offset by calling xfs_bmap_split_extent.
1483 * And shift all extent records which are laying between [offset,
1484 * last allocated extent] to the right to reserve hole range.
1485 * RETURNS:
1486 * 0 on success
1487 * errno on error
1488 */
1489 int
1490 xfs_insert_file_space(
1491 struct xfs_inode *ip,
1492 loff_t offset,
1493 loff_t len)
1494 {
1495 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1496 trace_xfs_insert_file_space(ip);
1497
1498 return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT);
1499 }
1500
1501 /*
1502 * We need to check that the format of the data fork in the temporary inode is
1503 * valid for the target inode before doing the swap. This is not a problem with
1504 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized
1505 * data fork depending on the space the attribute fork is taking so we can get
1506 * invalid formats on the target inode.
1507 *
1508 * E.g. target has space for 7 extents in extent format, temp inode only has
1509 * space for 6. If we defragment down to 7 extents, then the tmp format is a
1510 * btree, but when swapped it needs to be in extent format. Hence we can't just
1511 * blindly swap data forks on attr2 filesystems.
1512 *
1513 * Note that we check the swap in both directions so that we don't end up with
1514 * a corrupt temporary inode, either.
1515 *
1516 * Note that fixing the way xfs_fsr sets up the attribute fork in the source
1517 * inode will prevent this situation from occurring, so all we do here is
1518 * reject and log the attempt. basically we are putting the responsibility on
1519 * userspace to get this right.
1520 */
1521 static int
1522 xfs_swap_extents_check_format(
1523 xfs_inode_t *ip, /* target inode */
1524 xfs_inode_t *tip) /* tmp inode */
1525 {
1526
1527 /* Should never get a local format */
1528 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL ||
1529 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL)
1530 return -EINVAL;
1531
1532 /*
1533 * if the target inode has less extents that then temporary inode then
1534 * why did userspace call us?
1535 */
1536 if (ip->i_d.di_nextents < tip->i_d.di_nextents)
1537 return -EINVAL;
1538
1539 /*
1540 * if the target inode is in extent form and the temp inode is in btree
1541 * form then we will end up with the target inode in the wrong format
1542 * as we already know there are less extents in the temp inode.
1543 */
1544 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1545 tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1546 return -EINVAL;
1547
1548 /* Check temp in extent form to max in target */
1549 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1550 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) >
1551 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1552 return -EINVAL;
1553
1554 /* Check target in extent form to max in temp */
1555 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1556 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) >
1557 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1558 return -EINVAL;
1559
1560 /*
1561 * If we are in a btree format, check that the temp root block will fit
1562 * in the target and that it has enough extents to be in btree format
1563 * in the target.
1564 *
1565 * Note that we have to be careful to allow btree->extent conversions
1566 * (a common defrag case) which will occur when the temp inode is in
1567 * extent format...
1568 */
1569 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1570 if (XFS_IFORK_BOFF(ip) &&
1571 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip))
1572 return -EINVAL;
1573 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <=
1574 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1575 return -EINVAL;
1576 }
1577
1578 /* Reciprocal target->temp btree format checks */
1579 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1580 if (XFS_IFORK_BOFF(tip) &&
1581 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip))
1582 return -EINVAL;
1583 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <=
1584 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1585 return -EINVAL;
1586 }
1587
1588 return 0;
1589 }
1590
1591 static int
1592 xfs_swap_extent_flush(
1593 struct xfs_inode *ip)
1594 {
1595 int error;
1596
1597 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1598 if (error)
1599 return error;
1600 truncate_pagecache_range(VFS_I(ip), 0, -1);
1601
1602 /* Verify O_DIRECT for ftmp */
1603 if (VFS_I(ip)->i_mapping->nrpages)
1604 return -EINVAL;
1605 return 0;
1606 }
1607
1608 int
1609 xfs_swap_extents(
1610 xfs_inode_t *ip, /* target inode */
1611 xfs_inode_t *tip, /* tmp inode */
1612 xfs_swapext_t *sxp)
1613 {
1614 xfs_mount_t *mp = ip->i_mount;
1615 xfs_trans_t *tp;
1616 xfs_bstat_t *sbp = &sxp->sx_stat;
1617 xfs_ifork_t *tempifp, *ifp, *tifp;
1618 int src_log_flags, target_log_flags;
1619 int error = 0;
1620 int aforkblks = 0;
1621 int taforkblks = 0;
1622 __uint64_t tmp;
1623 int lock_flags;
1624
1625 tempifp = kmem_alloc(sizeof(xfs_ifork_t), KM_MAYFAIL);
1626 if (!tempifp) {
1627 error = -ENOMEM;
1628 goto out;
1629 }
1630
1631 /*
1632 * Lock the inodes against other IO, page faults and truncate to
1633 * begin with. Then we can ensure the inodes are flushed and have no
1634 * page cache safely. Once we have done this we can take the ilocks and
1635 * do the rest of the checks.
1636 */
1637 lock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1638 xfs_lock_two_inodes(ip, tip, XFS_IOLOCK_EXCL);
1639 xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL);
1640
1641 /* Verify that both files have the same format */
1642 if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) {
1643 error = -EINVAL;
1644 goto out_unlock;
1645 }
1646
1647 /* Verify both files are either real-time or non-realtime */
1648 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) {
1649 error = -EINVAL;
1650 goto out_unlock;
1651 }
1652
1653 error = xfs_swap_extent_flush(ip);
1654 if (error)
1655 goto out_unlock;
1656 error = xfs_swap_extent_flush(tip);
1657 if (error)
1658 goto out_unlock;
1659
1660 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1661 if (error)
1662 goto out_unlock;
1663
1664 /*
1665 * Lock and join the inodes to the tansaction so that transaction commit
1666 * or cancel will unlock the inodes from this point onwards.
1667 */
1668 xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL);
1669 lock_flags |= XFS_ILOCK_EXCL;
1670 xfs_trans_ijoin(tp, ip, lock_flags);
1671 xfs_trans_ijoin(tp, tip, lock_flags);
1672
1673
1674 /* Verify all data are being swapped */
1675 if (sxp->sx_offset != 0 ||
1676 sxp->sx_length != ip->i_d.di_size ||
1677 sxp->sx_length != tip->i_d.di_size) {
1678 error = -EFAULT;
1679 goto out_trans_cancel;
1680 }
1681
1682 trace_xfs_swap_extent_before(ip, 0);
1683 trace_xfs_swap_extent_before(tip, 1);
1684
1685 /* check inode formats now that data is flushed */
1686 error = xfs_swap_extents_check_format(ip, tip);
1687 if (error) {
1688 xfs_notice(mp,
1689 "%s: inode 0x%llx format is incompatible for exchanging.",
1690 __func__, ip->i_ino);
1691 goto out_trans_cancel;
1692 }
1693
1694 /*
1695 * Compare the current change & modify times with that
1696 * passed in. If they differ, we abort this swap.
1697 * This is the mechanism used to ensure the calling
1698 * process that the file was not changed out from
1699 * under it.
1700 */
1701 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) ||
1702 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) ||
1703 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) ||
1704 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) {
1705 error = -EBUSY;
1706 goto out_trans_cancel;
1707 }
1708 /*
1709 * Count the number of extended attribute blocks
1710 */
1711 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) &&
1712 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1713 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &aforkblks);
1714 if (error)
1715 goto out_trans_cancel;
1716 }
1717 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) &&
1718 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1719 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK,
1720 &taforkblks);
1721 if (error)
1722 goto out_trans_cancel;
1723 }
1724
1725 /*
1726 * Before we've swapped the forks, lets set the owners of the forks
1727 * appropriately. We have to do this as we are demand paging the btree
1728 * buffers, and so the validation done on read will expect the owner
1729 * field to be correctly set. Once we change the owners, we can swap the
1730 * inode forks.
1731 *
1732 * Note the trickiness in setting the log flags - we set the owner log
1733 * flag on the opposite inode (i.e. the inode we are setting the new
1734 * owner to be) because once we swap the forks and log that, log
1735 * recovery is going to see the fork as owned by the swapped inode,
1736 * not the pre-swapped inodes.
1737 */
1738 src_log_flags = XFS_ILOG_CORE;
1739 target_log_flags = XFS_ILOG_CORE;
1740 if (ip->i_d.di_version == 3 &&
1741 ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1742 target_log_flags |= XFS_ILOG_DOWNER;
1743 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK,
1744 tip->i_ino, NULL);
1745 if (error)
1746 goto out_trans_cancel;
1747 }
1748
1749 if (tip->i_d.di_version == 3 &&
1750 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1751 src_log_flags |= XFS_ILOG_DOWNER;
1752 error = xfs_bmbt_change_owner(tp, tip, XFS_DATA_FORK,
1753 ip->i_ino, NULL);
1754 if (error)
1755 goto out_trans_cancel;
1756 }
1757
1758 /*
1759 * Swap the data forks of the inodes
1760 */
1761 ifp = &ip->i_df;
1762 tifp = &tip->i_df;
1763 *tempifp = *ifp; /* struct copy */
1764 *ifp = *tifp; /* struct copy */
1765 *tifp = *tempifp; /* struct copy */
1766
1767 /*
1768 * Fix the on-disk inode values
1769 */
1770 tmp = (__uint64_t)ip->i_d.di_nblocks;
1771 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks;
1772 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks;
1773
1774 tmp = (__uint64_t) ip->i_d.di_nextents;
1775 ip->i_d.di_nextents = tip->i_d.di_nextents;
1776 tip->i_d.di_nextents = tmp;
1777
1778 tmp = (__uint64_t) ip->i_d.di_format;
1779 ip->i_d.di_format = tip->i_d.di_format;
1780 tip->i_d.di_format = tmp;
1781
1782 /*
1783 * The extents in the source inode could still contain speculative
1784 * preallocation beyond EOF (e.g. the file is open but not modified
1785 * while defrag is in progress). In that case, we need to copy over the
1786 * number of delalloc blocks the data fork in the source inode is
1787 * tracking beyond EOF so that when the fork is truncated away when the
1788 * temporary inode is unlinked we don't underrun the i_delayed_blks
1789 * counter on that inode.
1790 */
1791 ASSERT(tip->i_delayed_blks == 0);
1792 tip->i_delayed_blks = ip->i_delayed_blks;
1793 ip->i_delayed_blks = 0;
1794
1795 switch (ip->i_d.di_format) {
1796 case XFS_DINODE_FMT_EXTENTS:
1797 /* If the extents fit in the inode, fix the
1798 * pointer. Otherwise it's already NULL or
1799 * pointing to the extent.
1800 */
1801 if (ip->i_d.di_nextents <= XFS_INLINE_EXTS) {
1802 ifp->if_u1.if_extents =
1803 ifp->if_u2.if_inline_ext;
1804 }
1805 src_log_flags |= XFS_ILOG_DEXT;
1806 break;
1807 case XFS_DINODE_FMT_BTREE:
1808 ASSERT(ip->i_d.di_version < 3 ||
1809 (src_log_flags & XFS_ILOG_DOWNER));
1810 src_log_flags |= XFS_ILOG_DBROOT;
1811 break;
1812 }
1813
1814 switch (tip->i_d.di_format) {
1815 case XFS_DINODE_FMT_EXTENTS:
1816 /* If the extents fit in the inode, fix the
1817 * pointer. Otherwise it's already NULL or
1818 * pointing to the extent.
1819 */
1820 if (tip->i_d.di_nextents <= XFS_INLINE_EXTS) {
1821 tifp->if_u1.if_extents =
1822 tifp->if_u2.if_inline_ext;
1823 }
1824 target_log_flags |= XFS_ILOG_DEXT;
1825 break;
1826 case XFS_DINODE_FMT_BTREE:
1827 target_log_flags |= XFS_ILOG_DBROOT;
1828 ASSERT(tip->i_d.di_version < 3 ||
1829 (target_log_flags & XFS_ILOG_DOWNER));
1830 break;
1831 }
1832
1833 xfs_trans_log_inode(tp, ip, src_log_flags);
1834 xfs_trans_log_inode(tp, tip, target_log_flags);
1835
1836 /*
1837 * If this is a synchronous mount, make sure that the
1838 * transaction goes to disk before returning to the user.
1839 */
1840 if (mp->m_flags & XFS_MOUNT_WSYNC)
1841 xfs_trans_set_sync(tp);
1842
1843 error = xfs_trans_commit(tp);
1844
1845 trace_xfs_swap_extent_after(ip, 0);
1846 trace_xfs_swap_extent_after(tip, 1);
1847 out:
1848 kmem_free(tempifp);
1849 return error;
1850
1851 out_unlock:
1852 xfs_iunlock(ip, lock_flags);
1853 xfs_iunlock(tip, lock_flags);
1854 goto out;
1855
1856 out_trans_cancel:
1857 xfs_trans_cancel(tp);
1858 goto out;
1859 }
This page took 0.066148 seconds and 6 git commands to generate.