xfs: move more delwri setup into xfs_buf_delwri_queue
[deliverable/linux.git] / fs / xfs / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_sb.h"
38 #include "xfs_inum.h"
39 #include "xfs_log.h"
40 #include "xfs_ag.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43
44 static kmem_zone_t *xfs_buf_zone;
45 STATIC int xfsbufd(void *);
46 STATIC void xfs_buf_delwri_queue(xfs_buf_t *);
47
48 static struct workqueue_struct *xfslogd_workqueue;
49 struct workqueue_struct *xfsdatad_workqueue;
50 struct workqueue_struct *xfsconvertd_workqueue;
51
52 #ifdef XFS_BUF_LOCK_TRACKING
53 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
54 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
55 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
56 #else
57 # define XB_SET_OWNER(bp) do { } while (0)
58 # define XB_CLEAR_OWNER(bp) do { } while (0)
59 # define XB_GET_OWNER(bp) do { } while (0)
60 #endif
61
62 #define xb_to_gfp(flags) \
63 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
64 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
65
66 #define xb_to_km(flags) \
67 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
68
69 #define xfs_buf_allocate(flags) \
70 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
71 #define xfs_buf_deallocate(bp) \
72 kmem_zone_free(xfs_buf_zone, (bp));
73
74 static inline int
75 xfs_buf_is_vmapped(
76 struct xfs_buf *bp)
77 {
78 /*
79 * Return true if the buffer is vmapped.
80 *
81 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
82 * code is clever enough to know it doesn't have to map a single page,
83 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
84 */
85 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
86 }
87
88 static inline int
89 xfs_buf_vmap_len(
90 struct xfs_buf *bp)
91 {
92 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
93 }
94
95 /*
96 * xfs_buf_lru_add - add a buffer to the LRU.
97 *
98 * The LRU takes a new reference to the buffer so that it will only be freed
99 * once the shrinker takes the buffer off the LRU.
100 */
101 STATIC void
102 xfs_buf_lru_add(
103 struct xfs_buf *bp)
104 {
105 struct xfs_buftarg *btp = bp->b_target;
106
107 spin_lock(&btp->bt_lru_lock);
108 if (list_empty(&bp->b_lru)) {
109 atomic_inc(&bp->b_hold);
110 list_add_tail(&bp->b_lru, &btp->bt_lru);
111 btp->bt_lru_nr++;
112 }
113 spin_unlock(&btp->bt_lru_lock);
114 }
115
116 /*
117 * xfs_buf_lru_del - remove a buffer from the LRU
118 *
119 * The unlocked check is safe here because it only occurs when there are not
120 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
121 * to optimise the shrinker removing the buffer from the LRU and calling
122 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
123 * bt_lru_lock.
124 */
125 STATIC void
126 xfs_buf_lru_del(
127 struct xfs_buf *bp)
128 {
129 struct xfs_buftarg *btp = bp->b_target;
130
131 if (list_empty(&bp->b_lru))
132 return;
133
134 spin_lock(&btp->bt_lru_lock);
135 if (!list_empty(&bp->b_lru)) {
136 list_del_init(&bp->b_lru);
137 btp->bt_lru_nr--;
138 }
139 spin_unlock(&btp->bt_lru_lock);
140 }
141
142 /*
143 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144 * b_lru_ref count so that the buffer is freed immediately when the buffer
145 * reference count falls to zero. If the buffer is already on the LRU, we need
146 * to remove the reference that LRU holds on the buffer.
147 *
148 * This prevents build-up of stale buffers on the LRU.
149 */
150 void
151 xfs_buf_stale(
152 struct xfs_buf *bp)
153 {
154 bp->b_flags |= XBF_STALE;
155 atomic_set(&(bp)->b_lru_ref, 0);
156 if (!list_empty(&bp->b_lru)) {
157 struct xfs_buftarg *btp = bp->b_target;
158
159 spin_lock(&btp->bt_lru_lock);
160 if (!list_empty(&bp->b_lru)) {
161 list_del_init(&bp->b_lru);
162 btp->bt_lru_nr--;
163 atomic_dec(&bp->b_hold);
164 }
165 spin_unlock(&btp->bt_lru_lock);
166 }
167 ASSERT(atomic_read(&bp->b_hold) >= 1);
168 }
169
170 STATIC void
171 _xfs_buf_initialize(
172 xfs_buf_t *bp,
173 xfs_buftarg_t *target,
174 xfs_off_t range_base,
175 size_t range_length,
176 xfs_buf_flags_t flags)
177 {
178 /*
179 * We don't want certain flags to appear in b_flags.
180 */
181 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
182
183 memset(bp, 0, sizeof(xfs_buf_t));
184 atomic_set(&bp->b_hold, 1);
185 atomic_set(&bp->b_lru_ref, 1);
186 init_completion(&bp->b_iowait);
187 INIT_LIST_HEAD(&bp->b_lru);
188 INIT_LIST_HEAD(&bp->b_list);
189 RB_CLEAR_NODE(&bp->b_rbnode);
190 sema_init(&bp->b_sema, 0); /* held, no waiters */
191 XB_SET_OWNER(bp);
192 bp->b_target = target;
193 bp->b_file_offset = range_base;
194 /*
195 * Set buffer_length and count_desired to the same value initially.
196 * I/O routines should use count_desired, which will be the same in
197 * most cases but may be reset (e.g. XFS recovery).
198 */
199 bp->b_buffer_length = bp->b_count_desired = range_length;
200 bp->b_flags = flags;
201 bp->b_bn = XFS_BUF_DADDR_NULL;
202 atomic_set(&bp->b_pin_count, 0);
203 init_waitqueue_head(&bp->b_waiters);
204
205 XFS_STATS_INC(xb_create);
206
207 trace_xfs_buf_init(bp, _RET_IP_);
208 }
209
210 /*
211 * Allocate a page array capable of holding a specified number
212 * of pages, and point the page buf at it.
213 */
214 STATIC int
215 _xfs_buf_get_pages(
216 xfs_buf_t *bp,
217 int page_count,
218 xfs_buf_flags_t flags)
219 {
220 /* Make sure that we have a page list */
221 if (bp->b_pages == NULL) {
222 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
223 bp->b_page_count = page_count;
224 if (page_count <= XB_PAGES) {
225 bp->b_pages = bp->b_page_array;
226 } else {
227 bp->b_pages = kmem_alloc(sizeof(struct page *) *
228 page_count, xb_to_km(flags));
229 if (bp->b_pages == NULL)
230 return -ENOMEM;
231 }
232 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
233 }
234 return 0;
235 }
236
237 /*
238 * Frees b_pages if it was allocated.
239 */
240 STATIC void
241 _xfs_buf_free_pages(
242 xfs_buf_t *bp)
243 {
244 if (bp->b_pages != bp->b_page_array) {
245 kmem_free(bp->b_pages);
246 bp->b_pages = NULL;
247 }
248 }
249
250 /*
251 * Releases the specified buffer.
252 *
253 * The modification state of any associated pages is left unchanged.
254 * The buffer most not be on any hash - use xfs_buf_rele instead for
255 * hashed and refcounted buffers
256 */
257 void
258 xfs_buf_free(
259 xfs_buf_t *bp)
260 {
261 trace_xfs_buf_free(bp, _RET_IP_);
262
263 ASSERT(list_empty(&bp->b_lru));
264
265 if (bp->b_flags & _XBF_PAGES) {
266 uint i;
267
268 if (xfs_buf_is_vmapped(bp))
269 vm_unmap_ram(bp->b_addr - bp->b_offset,
270 bp->b_page_count);
271
272 for (i = 0; i < bp->b_page_count; i++) {
273 struct page *page = bp->b_pages[i];
274
275 __free_page(page);
276 }
277 } else if (bp->b_flags & _XBF_KMEM)
278 kmem_free(bp->b_addr);
279 _xfs_buf_free_pages(bp);
280 xfs_buf_deallocate(bp);
281 }
282
283 /*
284 * Allocates all the pages for buffer in question and builds it's page list.
285 */
286 STATIC int
287 xfs_buf_allocate_memory(
288 xfs_buf_t *bp,
289 uint flags)
290 {
291 size_t size = bp->b_count_desired;
292 size_t nbytes, offset;
293 gfp_t gfp_mask = xb_to_gfp(flags);
294 unsigned short page_count, i;
295 xfs_off_t end;
296 int error;
297
298 /*
299 * for buffers that are contained within a single page, just allocate
300 * the memory from the heap - there's no need for the complexity of
301 * page arrays to keep allocation down to order 0.
302 */
303 if (bp->b_buffer_length < PAGE_SIZE) {
304 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
305 if (!bp->b_addr) {
306 /* low memory - use alloc_page loop instead */
307 goto use_alloc_page;
308 }
309
310 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
311 PAGE_MASK) !=
312 ((unsigned long)bp->b_addr & PAGE_MASK)) {
313 /* b_addr spans two pages - use alloc_page instead */
314 kmem_free(bp->b_addr);
315 bp->b_addr = NULL;
316 goto use_alloc_page;
317 }
318 bp->b_offset = offset_in_page(bp->b_addr);
319 bp->b_pages = bp->b_page_array;
320 bp->b_pages[0] = virt_to_page(bp->b_addr);
321 bp->b_page_count = 1;
322 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
323 return 0;
324 }
325
326 use_alloc_page:
327 end = bp->b_file_offset + bp->b_buffer_length;
328 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
329 error = _xfs_buf_get_pages(bp, page_count, flags);
330 if (unlikely(error))
331 return error;
332
333 offset = bp->b_offset;
334 bp->b_flags |= _XBF_PAGES;
335
336 for (i = 0; i < bp->b_page_count; i++) {
337 struct page *page;
338 uint retries = 0;
339 retry:
340 page = alloc_page(gfp_mask);
341 if (unlikely(page == NULL)) {
342 if (flags & XBF_READ_AHEAD) {
343 bp->b_page_count = i;
344 error = ENOMEM;
345 goto out_free_pages;
346 }
347
348 /*
349 * This could deadlock.
350 *
351 * But until all the XFS lowlevel code is revamped to
352 * handle buffer allocation failures we can't do much.
353 */
354 if (!(++retries % 100))
355 xfs_err(NULL,
356 "possible memory allocation deadlock in %s (mode:0x%x)",
357 __func__, gfp_mask);
358
359 XFS_STATS_INC(xb_page_retries);
360 congestion_wait(BLK_RW_ASYNC, HZ/50);
361 goto retry;
362 }
363
364 XFS_STATS_INC(xb_page_found);
365
366 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
367 size -= nbytes;
368 bp->b_pages[i] = page;
369 offset = 0;
370 }
371 return 0;
372
373 out_free_pages:
374 for (i = 0; i < bp->b_page_count; i++)
375 __free_page(bp->b_pages[i]);
376 return error;
377 }
378
379 /*
380 * Map buffer into kernel address-space if necessary.
381 */
382 STATIC int
383 _xfs_buf_map_pages(
384 xfs_buf_t *bp,
385 uint flags)
386 {
387 ASSERT(bp->b_flags & _XBF_PAGES);
388 if (bp->b_page_count == 1) {
389 /* A single page buffer is always mappable */
390 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
391 bp->b_flags |= XBF_MAPPED;
392 } else if (flags & XBF_MAPPED) {
393 int retried = 0;
394
395 do {
396 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
397 -1, PAGE_KERNEL);
398 if (bp->b_addr)
399 break;
400 vm_unmap_aliases();
401 } while (retried++ <= 1);
402
403 if (!bp->b_addr)
404 return -ENOMEM;
405 bp->b_addr += bp->b_offset;
406 bp->b_flags |= XBF_MAPPED;
407 }
408
409 return 0;
410 }
411
412 /*
413 * Finding and Reading Buffers
414 */
415
416 /*
417 * Look up, and creates if absent, a lockable buffer for
418 * a given range of an inode. The buffer is returned
419 * locked. If other overlapping buffers exist, they are
420 * released before the new buffer is created and locked,
421 * which may imply that this call will block until those buffers
422 * are unlocked. No I/O is implied by this call.
423 */
424 xfs_buf_t *
425 _xfs_buf_find(
426 xfs_buftarg_t *btp, /* block device target */
427 xfs_off_t ioff, /* starting offset of range */
428 size_t isize, /* length of range */
429 xfs_buf_flags_t flags,
430 xfs_buf_t *new_bp)
431 {
432 xfs_off_t range_base;
433 size_t range_length;
434 struct xfs_perag *pag;
435 struct rb_node **rbp;
436 struct rb_node *parent;
437 xfs_buf_t *bp;
438
439 range_base = (ioff << BBSHIFT);
440 range_length = (isize << BBSHIFT);
441
442 /* Check for IOs smaller than the sector size / not sector aligned */
443 ASSERT(!(range_length < (1 << btp->bt_sshift)));
444 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
445
446 /* get tree root */
447 pag = xfs_perag_get(btp->bt_mount,
448 xfs_daddr_to_agno(btp->bt_mount, ioff));
449
450 /* walk tree */
451 spin_lock(&pag->pag_buf_lock);
452 rbp = &pag->pag_buf_tree.rb_node;
453 parent = NULL;
454 bp = NULL;
455 while (*rbp) {
456 parent = *rbp;
457 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
458
459 if (range_base < bp->b_file_offset)
460 rbp = &(*rbp)->rb_left;
461 else if (range_base > bp->b_file_offset)
462 rbp = &(*rbp)->rb_right;
463 else {
464 /*
465 * found a block offset match. If the range doesn't
466 * match, the only way this is allowed is if the buffer
467 * in the cache is stale and the transaction that made
468 * it stale has not yet committed. i.e. we are
469 * reallocating a busy extent. Skip this buffer and
470 * continue searching to the right for an exact match.
471 */
472 if (bp->b_buffer_length != range_length) {
473 ASSERT(bp->b_flags & XBF_STALE);
474 rbp = &(*rbp)->rb_right;
475 continue;
476 }
477 atomic_inc(&bp->b_hold);
478 goto found;
479 }
480 }
481
482 /* No match found */
483 if (new_bp) {
484 _xfs_buf_initialize(new_bp, btp, range_base,
485 range_length, flags);
486 rb_link_node(&new_bp->b_rbnode, parent, rbp);
487 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
488 /* the buffer keeps the perag reference until it is freed */
489 new_bp->b_pag = pag;
490 spin_unlock(&pag->pag_buf_lock);
491 } else {
492 XFS_STATS_INC(xb_miss_locked);
493 spin_unlock(&pag->pag_buf_lock);
494 xfs_perag_put(pag);
495 }
496 return new_bp;
497
498 found:
499 spin_unlock(&pag->pag_buf_lock);
500 xfs_perag_put(pag);
501
502 if (!xfs_buf_trylock(bp)) {
503 if (flags & XBF_TRYLOCK) {
504 xfs_buf_rele(bp);
505 XFS_STATS_INC(xb_busy_locked);
506 return NULL;
507 }
508 xfs_buf_lock(bp);
509 XFS_STATS_INC(xb_get_locked_waited);
510 }
511
512 /*
513 * if the buffer is stale, clear all the external state associated with
514 * it. We need to keep flags such as how we allocated the buffer memory
515 * intact here.
516 */
517 if (bp->b_flags & XBF_STALE) {
518 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
519 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
520 }
521
522 trace_xfs_buf_find(bp, flags, _RET_IP_);
523 XFS_STATS_INC(xb_get_locked);
524 return bp;
525 }
526
527 /*
528 * Assembles a buffer covering the specified range.
529 * Storage in memory for all portions of the buffer will be allocated,
530 * although backing storage may not be.
531 */
532 xfs_buf_t *
533 xfs_buf_get(
534 xfs_buftarg_t *target,/* target for buffer */
535 xfs_off_t ioff, /* starting offset of range */
536 size_t isize, /* length of range */
537 xfs_buf_flags_t flags)
538 {
539 xfs_buf_t *bp, *new_bp;
540 int error = 0;
541
542 new_bp = xfs_buf_allocate(flags);
543 if (unlikely(!new_bp))
544 return NULL;
545
546 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
547 if (bp == new_bp) {
548 error = xfs_buf_allocate_memory(bp, flags);
549 if (error)
550 goto no_buffer;
551 } else {
552 xfs_buf_deallocate(new_bp);
553 if (unlikely(bp == NULL))
554 return NULL;
555 }
556
557 if (!(bp->b_flags & XBF_MAPPED)) {
558 error = _xfs_buf_map_pages(bp, flags);
559 if (unlikely(error)) {
560 xfs_warn(target->bt_mount,
561 "%s: failed to map pages\n", __func__);
562 goto no_buffer;
563 }
564 }
565
566 XFS_STATS_INC(xb_get);
567
568 /*
569 * Always fill in the block number now, the mapped cases can do
570 * their own overlay of this later.
571 */
572 bp->b_bn = ioff;
573 bp->b_count_desired = bp->b_buffer_length;
574
575 trace_xfs_buf_get(bp, flags, _RET_IP_);
576 return bp;
577
578 no_buffer:
579 if (flags & (XBF_LOCK | XBF_TRYLOCK))
580 xfs_buf_unlock(bp);
581 xfs_buf_rele(bp);
582 return NULL;
583 }
584
585 STATIC int
586 _xfs_buf_read(
587 xfs_buf_t *bp,
588 xfs_buf_flags_t flags)
589 {
590 int status;
591
592 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
593 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
594
595 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD);
596 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
597
598 status = xfs_buf_iorequest(bp);
599 if (status || bp->b_error || (flags & XBF_ASYNC))
600 return status;
601 return xfs_buf_iowait(bp);
602 }
603
604 xfs_buf_t *
605 xfs_buf_read(
606 xfs_buftarg_t *target,
607 xfs_off_t ioff,
608 size_t isize,
609 xfs_buf_flags_t flags)
610 {
611 xfs_buf_t *bp;
612
613 flags |= XBF_READ;
614
615 bp = xfs_buf_get(target, ioff, isize, flags);
616 if (bp) {
617 trace_xfs_buf_read(bp, flags, _RET_IP_);
618
619 if (!XFS_BUF_ISDONE(bp)) {
620 XFS_STATS_INC(xb_get_read);
621 _xfs_buf_read(bp, flags);
622 } else if (flags & XBF_ASYNC) {
623 /*
624 * Read ahead call which is already satisfied,
625 * drop the buffer
626 */
627 goto no_buffer;
628 } else {
629 /* We do not want read in the flags */
630 bp->b_flags &= ~XBF_READ;
631 }
632 }
633
634 return bp;
635
636 no_buffer:
637 if (flags & (XBF_LOCK | XBF_TRYLOCK))
638 xfs_buf_unlock(bp);
639 xfs_buf_rele(bp);
640 return NULL;
641 }
642
643 /*
644 * If we are not low on memory then do the readahead in a deadlock
645 * safe manner.
646 */
647 void
648 xfs_buf_readahead(
649 xfs_buftarg_t *target,
650 xfs_off_t ioff,
651 size_t isize)
652 {
653 if (bdi_read_congested(target->bt_bdi))
654 return;
655
656 xfs_buf_read(target, ioff, isize,
657 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
658 }
659
660 /*
661 * Read an uncached buffer from disk. Allocates and returns a locked
662 * buffer containing the disk contents or nothing.
663 */
664 struct xfs_buf *
665 xfs_buf_read_uncached(
666 struct xfs_mount *mp,
667 struct xfs_buftarg *target,
668 xfs_daddr_t daddr,
669 size_t length,
670 int flags)
671 {
672 xfs_buf_t *bp;
673 int error;
674
675 bp = xfs_buf_get_uncached(target, length, flags);
676 if (!bp)
677 return NULL;
678
679 /* set up the buffer for a read IO */
680 XFS_BUF_SET_ADDR(bp, daddr);
681 XFS_BUF_READ(bp);
682
683 xfsbdstrat(mp, bp);
684 error = xfs_buf_iowait(bp);
685 if (error || bp->b_error) {
686 xfs_buf_relse(bp);
687 return NULL;
688 }
689 return bp;
690 }
691
692 xfs_buf_t *
693 xfs_buf_get_empty(
694 size_t len,
695 xfs_buftarg_t *target)
696 {
697 xfs_buf_t *bp;
698
699 bp = xfs_buf_allocate(0);
700 if (bp)
701 _xfs_buf_initialize(bp, target, 0, len, 0);
702 return bp;
703 }
704
705 /*
706 * Return a buffer allocated as an empty buffer and associated to external
707 * memory via xfs_buf_associate_memory() back to it's empty state.
708 */
709 void
710 xfs_buf_set_empty(
711 struct xfs_buf *bp,
712 size_t len)
713 {
714 if (bp->b_pages)
715 _xfs_buf_free_pages(bp);
716
717 bp->b_pages = NULL;
718 bp->b_page_count = 0;
719 bp->b_addr = NULL;
720 bp->b_file_offset = 0;
721 bp->b_buffer_length = bp->b_count_desired = len;
722 bp->b_bn = XFS_BUF_DADDR_NULL;
723 bp->b_flags &= ~XBF_MAPPED;
724 }
725
726 static inline struct page *
727 mem_to_page(
728 void *addr)
729 {
730 if ((!is_vmalloc_addr(addr))) {
731 return virt_to_page(addr);
732 } else {
733 return vmalloc_to_page(addr);
734 }
735 }
736
737 int
738 xfs_buf_associate_memory(
739 xfs_buf_t *bp,
740 void *mem,
741 size_t len)
742 {
743 int rval;
744 int i = 0;
745 unsigned long pageaddr;
746 unsigned long offset;
747 size_t buflen;
748 int page_count;
749
750 pageaddr = (unsigned long)mem & PAGE_MASK;
751 offset = (unsigned long)mem - pageaddr;
752 buflen = PAGE_ALIGN(len + offset);
753 page_count = buflen >> PAGE_SHIFT;
754
755 /* Free any previous set of page pointers */
756 if (bp->b_pages)
757 _xfs_buf_free_pages(bp);
758
759 bp->b_pages = NULL;
760 bp->b_addr = mem;
761
762 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
763 if (rval)
764 return rval;
765
766 bp->b_offset = offset;
767
768 for (i = 0; i < bp->b_page_count; i++) {
769 bp->b_pages[i] = mem_to_page((void *)pageaddr);
770 pageaddr += PAGE_SIZE;
771 }
772
773 bp->b_count_desired = len;
774 bp->b_buffer_length = buflen;
775 bp->b_flags |= XBF_MAPPED;
776
777 return 0;
778 }
779
780 xfs_buf_t *
781 xfs_buf_get_uncached(
782 struct xfs_buftarg *target,
783 size_t len,
784 int flags)
785 {
786 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
787 int error, i;
788 xfs_buf_t *bp;
789
790 bp = xfs_buf_allocate(0);
791 if (unlikely(bp == NULL))
792 goto fail;
793 _xfs_buf_initialize(bp, target, 0, len, 0);
794
795 error = _xfs_buf_get_pages(bp, page_count, 0);
796 if (error)
797 goto fail_free_buf;
798
799 for (i = 0; i < page_count; i++) {
800 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
801 if (!bp->b_pages[i])
802 goto fail_free_mem;
803 }
804 bp->b_flags |= _XBF_PAGES;
805
806 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
807 if (unlikely(error)) {
808 xfs_warn(target->bt_mount,
809 "%s: failed to map pages\n", __func__);
810 goto fail_free_mem;
811 }
812
813 trace_xfs_buf_get_uncached(bp, _RET_IP_);
814 return bp;
815
816 fail_free_mem:
817 while (--i >= 0)
818 __free_page(bp->b_pages[i]);
819 _xfs_buf_free_pages(bp);
820 fail_free_buf:
821 xfs_buf_deallocate(bp);
822 fail:
823 return NULL;
824 }
825
826 /*
827 * Increment reference count on buffer, to hold the buffer concurrently
828 * with another thread which may release (free) the buffer asynchronously.
829 * Must hold the buffer already to call this function.
830 */
831 void
832 xfs_buf_hold(
833 xfs_buf_t *bp)
834 {
835 trace_xfs_buf_hold(bp, _RET_IP_);
836 atomic_inc(&bp->b_hold);
837 }
838
839 /*
840 * Releases a hold on the specified buffer. If the
841 * the hold count is 1, calls xfs_buf_free.
842 */
843 void
844 xfs_buf_rele(
845 xfs_buf_t *bp)
846 {
847 struct xfs_perag *pag = bp->b_pag;
848
849 trace_xfs_buf_rele(bp, _RET_IP_);
850
851 if (!pag) {
852 ASSERT(list_empty(&bp->b_lru));
853 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
854 if (atomic_dec_and_test(&bp->b_hold))
855 xfs_buf_free(bp);
856 return;
857 }
858
859 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
860
861 ASSERT(atomic_read(&bp->b_hold) > 0);
862 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
863 if (!(bp->b_flags & XBF_STALE) &&
864 atomic_read(&bp->b_lru_ref)) {
865 xfs_buf_lru_add(bp);
866 spin_unlock(&pag->pag_buf_lock);
867 } else {
868 xfs_buf_lru_del(bp);
869 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
870 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
871 spin_unlock(&pag->pag_buf_lock);
872 xfs_perag_put(pag);
873 xfs_buf_free(bp);
874 }
875 }
876 }
877
878
879 /*
880 * Lock a buffer object, if it is not already locked.
881 *
882 * If we come across a stale, pinned, locked buffer, we know that we are
883 * being asked to lock a buffer that has been reallocated. Because it is
884 * pinned, we know that the log has not been pushed to disk and hence it
885 * will still be locked. Rather than continuing to have trylock attempts
886 * fail until someone else pushes the log, push it ourselves before
887 * returning. This means that the xfsaild will not get stuck trying
888 * to push on stale inode buffers.
889 */
890 int
891 xfs_buf_trylock(
892 struct xfs_buf *bp)
893 {
894 int locked;
895
896 locked = down_trylock(&bp->b_sema) == 0;
897 if (locked)
898 XB_SET_OWNER(bp);
899 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
900 xfs_log_force(bp->b_target->bt_mount, 0);
901
902 trace_xfs_buf_trylock(bp, _RET_IP_);
903 return locked;
904 }
905
906 /*
907 * Lock a buffer object.
908 *
909 * If we come across a stale, pinned, locked buffer, we know that we
910 * are being asked to lock a buffer that has been reallocated. Because
911 * it is pinned, we know that the log has not been pushed to disk and
912 * hence it will still be locked. Rather than sleeping until someone
913 * else pushes the log, push it ourselves before trying to get the lock.
914 */
915 void
916 xfs_buf_lock(
917 struct xfs_buf *bp)
918 {
919 trace_xfs_buf_lock(bp, _RET_IP_);
920
921 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
922 xfs_log_force(bp->b_target->bt_mount, 0);
923 down(&bp->b_sema);
924 XB_SET_OWNER(bp);
925
926 trace_xfs_buf_lock_done(bp, _RET_IP_);
927 }
928
929 /*
930 * Releases the lock on the buffer object.
931 * If the buffer is marked delwri but is not queued, do so before we
932 * unlock the buffer as we need to set flags correctly. We also need to
933 * take a reference for the delwri queue because the unlocker is going to
934 * drop their's and they don't know we just queued it.
935 */
936 void
937 xfs_buf_unlock(
938 struct xfs_buf *bp)
939 {
940 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI)
941 xfs_buf_delwri_queue(bp);
942
943 XB_CLEAR_OWNER(bp);
944 up(&bp->b_sema);
945
946 trace_xfs_buf_unlock(bp, _RET_IP_);
947 }
948
949 STATIC void
950 xfs_buf_wait_unpin(
951 xfs_buf_t *bp)
952 {
953 DECLARE_WAITQUEUE (wait, current);
954
955 if (atomic_read(&bp->b_pin_count) == 0)
956 return;
957
958 add_wait_queue(&bp->b_waiters, &wait);
959 for (;;) {
960 set_current_state(TASK_UNINTERRUPTIBLE);
961 if (atomic_read(&bp->b_pin_count) == 0)
962 break;
963 io_schedule();
964 }
965 remove_wait_queue(&bp->b_waiters, &wait);
966 set_current_state(TASK_RUNNING);
967 }
968
969 /*
970 * Buffer Utility Routines
971 */
972
973 STATIC void
974 xfs_buf_iodone_work(
975 struct work_struct *work)
976 {
977 xfs_buf_t *bp =
978 container_of(work, xfs_buf_t, b_iodone_work);
979
980 if (bp->b_iodone)
981 (*(bp->b_iodone))(bp);
982 else if (bp->b_flags & XBF_ASYNC)
983 xfs_buf_relse(bp);
984 }
985
986 void
987 xfs_buf_ioend(
988 xfs_buf_t *bp,
989 int schedule)
990 {
991 trace_xfs_buf_iodone(bp, _RET_IP_);
992
993 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
994 if (bp->b_error == 0)
995 bp->b_flags |= XBF_DONE;
996
997 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
998 if (schedule) {
999 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1000 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1001 } else {
1002 xfs_buf_iodone_work(&bp->b_iodone_work);
1003 }
1004 } else {
1005 complete(&bp->b_iowait);
1006 }
1007 }
1008
1009 void
1010 xfs_buf_ioerror(
1011 xfs_buf_t *bp,
1012 int error)
1013 {
1014 ASSERT(error >= 0 && error <= 0xffff);
1015 bp->b_error = (unsigned short)error;
1016 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1017 }
1018
1019 int
1020 xfs_bwrite(
1021 struct xfs_mount *mp,
1022 struct xfs_buf *bp)
1023 {
1024 int error;
1025
1026 bp->b_flags |= XBF_WRITE;
1027 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1028
1029 xfs_buf_delwri_dequeue(bp);
1030 xfs_bdstrat_cb(bp);
1031
1032 error = xfs_buf_iowait(bp);
1033 if (error)
1034 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1035 xfs_buf_relse(bp);
1036 return error;
1037 }
1038
1039 void
1040 xfs_bdwrite(
1041 void *mp,
1042 struct xfs_buf *bp)
1043 {
1044 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1045
1046 xfs_buf_delwri_queue(bp);
1047 xfs_buf_relse(bp);
1048 }
1049
1050 /*
1051 * Called when we want to stop a buffer from getting written or read.
1052 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1053 * so that the proper iodone callbacks get called.
1054 */
1055 STATIC int
1056 xfs_bioerror(
1057 xfs_buf_t *bp)
1058 {
1059 #ifdef XFSERRORDEBUG
1060 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1061 #endif
1062
1063 /*
1064 * No need to wait until the buffer is unpinned, we aren't flushing it.
1065 */
1066 xfs_buf_ioerror(bp, EIO);
1067
1068 /*
1069 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1070 */
1071 XFS_BUF_UNREAD(bp);
1072 XFS_BUF_UNDELAYWRITE(bp);
1073 XFS_BUF_UNDONE(bp);
1074 XFS_BUF_STALE(bp);
1075
1076 xfs_buf_ioend(bp, 0);
1077
1078 return EIO;
1079 }
1080
1081 /*
1082 * Same as xfs_bioerror, except that we are releasing the buffer
1083 * here ourselves, and avoiding the xfs_buf_ioend call.
1084 * This is meant for userdata errors; metadata bufs come with
1085 * iodone functions attached, so that we can track down errors.
1086 */
1087 STATIC int
1088 xfs_bioerror_relse(
1089 struct xfs_buf *bp)
1090 {
1091 int64_t fl = bp->b_flags;
1092 /*
1093 * No need to wait until the buffer is unpinned.
1094 * We aren't flushing it.
1095 *
1096 * chunkhold expects B_DONE to be set, whether
1097 * we actually finish the I/O or not. We don't want to
1098 * change that interface.
1099 */
1100 XFS_BUF_UNREAD(bp);
1101 XFS_BUF_UNDELAYWRITE(bp);
1102 XFS_BUF_DONE(bp);
1103 XFS_BUF_STALE(bp);
1104 bp->b_iodone = NULL;
1105 if (!(fl & XBF_ASYNC)) {
1106 /*
1107 * Mark b_error and B_ERROR _both_.
1108 * Lot's of chunkcache code assumes that.
1109 * There's no reason to mark error for
1110 * ASYNC buffers.
1111 */
1112 xfs_buf_ioerror(bp, EIO);
1113 XFS_BUF_FINISH_IOWAIT(bp);
1114 } else {
1115 xfs_buf_relse(bp);
1116 }
1117
1118 return EIO;
1119 }
1120
1121
1122 /*
1123 * All xfs metadata buffers except log state machine buffers
1124 * get this attached as their b_bdstrat callback function.
1125 * This is so that we can catch a buffer
1126 * after prematurely unpinning it to forcibly shutdown the filesystem.
1127 */
1128 int
1129 xfs_bdstrat_cb(
1130 struct xfs_buf *bp)
1131 {
1132 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1133 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1134 /*
1135 * Metadata write that didn't get logged but
1136 * written delayed anyway. These aren't associated
1137 * with a transaction, and can be ignored.
1138 */
1139 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1140 return xfs_bioerror_relse(bp);
1141 else
1142 return xfs_bioerror(bp);
1143 }
1144
1145 xfs_buf_iorequest(bp);
1146 return 0;
1147 }
1148
1149 /*
1150 * Wrapper around bdstrat so that we can stop data from going to disk in case
1151 * we are shutting down the filesystem. Typically user data goes thru this
1152 * path; one of the exceptions is the superblock.
1153 */
1154 void
1155 xfsbdstrat(
1156 struct xfs_mount *mp,
1157 struct xfs_buf *bp)
1158 {
1159 if (XFS_FORCED_SHUTDOWN(mp)) {
1160 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1161 xfs_bioerror_relse(bp);
1162 return;
1163 }
1164
1165 xfs_buf_iorequest(bp);
1166 }
1167
1168 STATIC void
1169 _xfs_buf_ioend(
1170 xfs_buf_t *bp,
1171 int schedule)
1172 {
1173 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1174 xfs_buf_ioend(bp, schedule);
1175 }
1176
1177 STATIC void
1178 xfs_buf_bio_end_io(
1179 struct bio *bio,
1180 int error)
1181 {
1182 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1183
1184 xfs_buf_ioerror(bp, -error);
1185
1186 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1187 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1188
1189 _xfs_buf_ioend(bp, 1);
1190 bio_put(bio);
1191 }
1192
1193 STATIC void
1194 _xfs_buf_ioapply(
1195 xfs_buf_t *bp)
1196 {
1197 int rw, map_i, total_nr_pages, nr_pages;
1198 struct bio *bio;
1199 int offset = bp->b_offset;
1200 int size = bp->b_count_desired;
1201 sector_t sector = bp->b_bn;
1202
1203 total_nr_pages = bp->b_page_count;
1204 map_i = 0;
1205
1206 if (bp->b_flags & XBF_WRITE) {
1207 if (bp->b_flags & XBF_SYNCIO)
1208 rw = WRITE_SYNC;
1209 else
1210 rw = WRITE;
1211 if (bp->b_flags & XBF_FUA)
1212 rw |= REQ_FUA;
1213 if (bp->b_flags & XBF_FLUSH)
1214 rw |= REQ_FLUSH;
1215 } else if (bp->b_flags & XBF_READ_AHEAD) {
1216 rw = READA;
1217 } else {
1218 rw = READ;
1219 }
1220
1221 /* we only use the buffer cache for meta-data */
1222 rw |= REQ_META;
1223
1224 next_chunk:
1225 atomic_inc(&bp->b_io_remaining);
1226 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1227 if (nr_pages > total_nr_pages)
1228 nr_pages = total_nr_pages;
1229
1230 bio = bio_alloc(GFP_NOIO, nr_pages);
1231 bio->bi_bdev = bp->b_target->bt_bdev;
1232 bio->bi_sector = sector;
1233 bio->bi_end_io = xfs_buf_bio_end_io;
1234 bio->bi_private = bp;
1235
1236
1237 for (; size && nr_pages; nr_pages--, map_i++) {
1238 int rbytes, nbytes = PAGE_SIZE - offset;
1239
1240 if (nbytes > size)
1241 nbytes = size;
1242
1243 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1244 if (rbytes < nbytes)
1245 break;
1246
1247 offset = 0;
1248 sector += nbytes >> BBSHIFT;
1249 size -= nbytes;
1250 total_nr_pages--;
1251 }
1252
1253 if (likely(bio->bi_size)) {
1254 if (xfs_buf_is_vmapped(bp)) {
1255 flush_kernel_vmap_range(bp->b_addr,
1256 xfs_buf_vmap_len(bp));
1257 }
1258 submit_bio(rw, bio);
1259 if (size)
1260 goto next_chunk;
1261 } else {
1262 xfs_buf_ioerror(bp, EIO);
1263 bio_put(bio);
1264 }
1265 }
1266
1267 int
1268 xfs_buf_iorequest(
1269 xfs_buf_t *bp)
1270 {
1271 trace_xfs_buf_iorequest(bp, _RET_IP_);
1272
1273 ASSERT(!(bp->b_flags & XBF_DELWRI));
1274
1275 if (bp->b_flags & XBF_WRITE)
1276 xfs_buf_wait_unpin(bp);
1277 xfs_buf_hold(bp);
1278
1279 /* Set the count to 1 initially, this will stop an I/O
1280 * completion callout which happens before we have started
1281 * all the I/O from calling xfs_buf_ioend too early.
1282 */
1283 atomic_set(&bp->b_io_remaining, 1);
1284 _xfs_buf_ioapply(bp);
1285 _xfs_buf_ioend(bp, 0);
1286
1287 xfs_buf_rele(bp);
1288 return 0;
1289 }
1290
1291 /*
1292 * Waits for I/O to complete on the buffer supplied.
1293 * It returns immediately if no I/O is pending.
1294 * It returns the I/O error code, if any, or 0 if there was no error.
1295 */
1296 int
1297 xfs_buf_iowait(
1298 xfs_buf_t *bp)
1299 {
1300 trace_xfs_buf_iowait(bp, _RET_IP_);
1301
1302 wait_for_completion(&bp->b_iowait);
1303
1304 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1305 return bp->b_error;
1306 }
1307
1308 xfs_caddr_t
1309 xfs_buf_offset(
1310 xfs_buf_t *bp,
1311 size_t offset)
1312 {
1313 struct page *page;
1314
1315 if (bp->b_flags & XBF_MAPPED)
1316 return bp->b_addr + offset;
1317
1318 offset += bp->b_offset;
1319 page = bp->b_pages[offset >> PAGE_SHIFT];
1320 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1321 }
1322
1323 /*
1324 * Move data into or out of a buffer.
1325 */
1326 void
1327 xfs_buf_iomove(
1328 xfs_buf_t *bp, /* buffer to process */
1329 size_t boff, /* starting buffer offset */
1330 size_t bsize, /* length to copy */
1331 void *data, /* data address */
1332 xfs_buf_rw_t mode) /* read/write/zero flag */
1333 {
1334 size_t bend, cpoff, csize;
1335 struct page *page;
1336
1337 bend = boff + bsize;
1338 while (boff < bend) {
1339 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1340 cpoff = xfs_buf_poff(boff + bp->b_offset);
1341 csize = min_t(size_t,
1342 PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1343
1344 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1345
1346 switch (mode) {
1347 case XBRW_ZERO:
1348 memset(page_address(page) + cpoff, 0, csize);
1349 break;
1350 case XBRW_READ:
1351 memcpy(data, page_address(page) + cpoff, csize);
1352 break;
1353 case XBRW_WRITE:
1354 memcpy(page_address(page) + cpoff, data, csize);
1355 }
1356
1357 boff += csize;
1358 data += csize;
1359 }
1360 }
1361
1362 /*
1363 * Handling of buffer targets (buftargs).
1364 */
1365
1366 /*
1367 * Wait for any bufs with callbacks that have been submitted but have not yet
1368 * returned. These buffers will have an elevated hold count, so wait on those
1369 * while freeing all the buffers only held by the LRU.
1370 */
1371 void
1372 xfs_wait_buftarg(
1373 struct xfs_buftarg *btp)
1374 {
1375 struct xfs_buf *bp;
1376
1377 restart:
1378 spin_lock(&btp->bt_lru_lock);
1379 while (!list_empty(&btp->bt_lru)) {
1380 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1381 if (atomic_read(&bp->b_hold) > 1) {
1382 spin_unlock(&btp->bt_lru_lock);
1383 delay(100);
1384 goto restart;
1385 }
1386 /*
1387 * clear the LRU reference count so the bufer doesn't get
1388 * ignored in xfs_buf_rele().
1389 */
1390 atomic_set(&bp->b_lru_ref, 0);
1391 spin_unlock(&btp->bt_lru_lock);
1392 xfs_buf_rele(bp);
1393 spin_lock(&btp->bt_lru_lock);
1394 }
1395 spin_unlock(&btp->bt_lru_lock);
1396 }
1397
1398 int
1399 xfs_buftarg_shrink(
1400 struct shrinker *shrink,
1401 struct shrink_control *sc)
1402 {
1403 struct xfs_buftarg *btp = container_of(shrink,
1404 struct xfs_buftarg, bt_shrinker);
1405 struct xfs_buf *bp;
1406 int nr_to_scan = sc->nr_to_scan;
1407 LIST_HEAD(dispose);
1408
1409 if (!nr_to_scan)
1410 return btp->bt_lru_nr;
1411
1412 spin_lock(&btp->bt_lru_lock);
1413 while (!list_empty(&btp->bt_lru)) {
1414 if (nr_to_scan-- <= 0)
1415 break;
1416
1417 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1418
1419 /*
1420 * Decrement the b_lru_ref count unless the value is already
1421 * zero. If the value is already zero, we need to reclaim the
1422 * buffer, otherwise it gets another trip through the LRU.
1423 */
1424 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1425 list_move_tail(&bp->b_lru, &btp->bt_lru);
1426 continue;
1427 }
1428
1429 /*
1430 * remove the buffer from the LRU now to avoid needing another
1431 * lock round trip inside xfs_buf_rele().
1432 */
1433 list_move(&bp->b_lru, &dispose);
1434 btp->bt_lru_nr--;
1435 }
1436 spin_unlock(&btp->bt_lru_lock);
1437
1438 while (!list_empty(&dispose)) {
1439 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1440 list_del_init(&bp->b_lru);
1441 xfs_buf_rele(bp);
1442 }
1443
1444 return btp->bt_lru_nr;
1445 }
1446
1447 void
1448 xfs_free_buftarg(
1449 struct xfs_mount *mp,
1450 struct xfs_buftarg *btp)
1451 {
1452 unregister_shrinker(&btp->bt_shrinker);
1453
1454 xfs_flush_buftarg(btp, 1);
1455 if (mp->m_flags & XFS_MOUNT_BARRIER)
1456 xfs_blkdev_issue_flush(btp);
1457
1458 kthread_stop(btp->bt_task);
1459 kmem_free(btp);
1460 }
1461
1462 STATIC int
1463 xfs_setsize_buftarg_flags(
1464 xfs_buftarg_t *btp,
1465 unsigned int blocksize,
1466 unsigned int sectorsize,
1467 int verbose)
1468 {
1469 btp->bt_bsize = blocksize;
1470 btp->bt_sshift = ffs(sectorsize) - 1;
1471 btp->bt_smask = sectorsize - 1;
1472
1473 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1474 xfs_warn(btp->bt_mount,
1475 "Cannot set_blocksize to %u on device %s\n",
1476 sectorsize, xfs_buf_target_name(btp));
1477 return EINVAL;
1478 }
1479
1480 return 0;
1481 }
1482
1483 /*
1484 * When allocating the initial buffer target we have not yet
1485 * read in the superblock, so don't know what sized sectors
1486 * are being used is at this early stage. Play safe.
1487 */
1488 STATIC int
1489 xfs_setsize_buftarg_early(
1490 xfs_buftarg_t *btp,
1491 struct block_device *bdev)
1492 {
1493 return xfs_setsize_buftarg_flags(btp,
1494 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1495 }
1496
1497 int
1498 xfs_setsize_buftarg(
1499 xfs_buftarg_t *btp,
1500 unsigned int blocksize,
1501 unsigned int sectorsize)
1502 {
1503 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1504 }
1505
1506 STATIC int
1507 xfs_alloc_delwrite_queue(
1508 xfs_buftarg_t *btp,
1509 const char *fsname)
1510 {
1511 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1512 spin_lock_init(&btp->bt_delwrite_lock);
1513 btp->bt_flags = 0;
1514 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1515 if (IS_ERR(btp->bt_task))
1516 return PTR_ERR(btp->bt_task);
1517 return 0;
1518 }
1519
1520 xfs_buftarg_t *
1521 xfs_alloc_buftarg(
1522 struct xfs_mount *mp,
1523 struct block_device *bdev,
1524 int external,
1525 const char *fsname)
1526 {
1527 xfs_buftarg_t *btp;
1528
1529 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1530
1531 btp->bt_mount = mp;
1532 btp->bt_dev = bdev->bd_dev;
1533 btp->bt_bdev = bdev;
1534 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1535 if (!btp->bt_bdi)
1536 goto error;
1537
1538 INIT_LIST_HEAD(&btp->bt_lru);
1539 spin_lock_init(&btp->bt_lru_lock);
1540 if (xfs_setsize_buftarg_early(btp, bdev))
1541 goto error;
1542 if (xfs_alloc_delwrite_queue(btp, fsname))
1543 goto error;
1544 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1545 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1546 register_shrinker(&btp->bt_shrinker);
1547 return btp;
1548
1549 error:
1550 kmem_free(btp);
1551 return NULL;
1552 }
1553
1554
1555 /*
1556 * Delayed write buffer handling
1557 */
1558 STATIC void
1559 xfs_buf_delwri_queue(
1560 xfs_buf_t *bp)
1561 {
1562 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1563 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1564
1565 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1566
1567 ASSERT(!(bp->b_flags & XBF_READ));
1568
1569 spin_lock(dwlk);
1570 if (!list_empty(&bp->b_list)) {
1571 /* if already in the queue, move it to the tail */
1572 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1573 list_move_tail(&bp->b_list, dwq);
1574 } else {
1575 /* start xfsbufd as it is about to have something to do */
1576 if (list_empty(dwq))
1577 wake_up_process(bp->b_target->bt_task);
1578
1579 atomic_inc(&bp->b_hold);
1580 bp->b_flags |= XBF_DELWRI | _XBF_DELWRI_Q | XBF_ASYNC;
1581 list_add_tail(&bp->b_list, dwq);
1582 }
1583 bp->b_queuetime = jiffies;
1584 spin_unlock(dwlk);
1585 }
1586
1587 void
1588 xfs_buf_delwri_dequeue(
1589 xfs_buf_t *bp)
1590 {
1591 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1592 int dequeued = 0;
1593
1594 spin_lock(dwlk);
1595 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1596 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1597 list_del_init(&bp->b_list);
1598 dequeued = 1;
1599 }
1600 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1601 spin_unlock(dwlk);
1602
1603 if (dequeued)
1604 xfs_buf_rele(bp);
1605
1606 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1607 }
1608
1609 /*
1610 * If a delwri buffer needs to be pushed before it has aged out, then promote
1611 * it to the head of the delwri queue so that it will be flushed on the next
1612 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1613 * than the age currently needed to flush the buffer. Hence the next time the
1614 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1615 */
1616 void
1617 xfs_buf_delwri_promote(
1618 struct xfs_buf *bp)
1619 {
1620 struct xfs_buftarg *btp = bp->b_target;
1621 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1622
1623 ASSERT(bp->b_flags & XBF_DELWRI);
1624 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1625
1626 /*
1627 * Check the buffer age before locking the delayed write queue as we
1628 * don't need to promote buffers that are already past the flush age.
1629 */
1630 if (bp->b_queuetime < jiffies - age)
1631 return;
1632 bp->b_queuetime = jiffies - age;
1633 spin_lock(&btp->bt_delwrite_lock);
1634 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1635 spin_unlock(&btp->bt_delwrite_lock);
1636 }
1637
1638 STATIC void
1639 xfs_buf_runall_queues(
1640 struct workqueue_struct *queue)
1641 {
1642 flush_workqueue(queue);
1643 }
1644
1645 /*
1646 * Move as many buffers as specified to the supplied list
1647 * idicating if we skipped any buffers to prevent deadlocks.
1648 */
1649 STATIC int
1650 xfs_buf_delwri_split(
1651 xfs_buftarg_t *target,
1652 struct list_head *list,
1653 unsigned long age)
1654 {
1655 xfs_buf_t *bp, *n;
1656 struct list_head *dwq = &target->bt_delwrite_queue;
1657 spinlock_t *dwlk = &target->bt_delwrite_lock;
1658 int skipped = 0;
1659 int force;
1660
1661 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1662 INIT_LIST_HEAD(list);
1663 spin_lock(dwlk);
1664 list_for_each_entry_safe(bp, n, dwq, b_list) {
1665 ASSERT(bp->b_flags & XBF_DELWRI);
1666
1667 if (!xfs_buf_ispinned(bp) && xfs_buf_trylock(bp)) {
1668 if (!force &&
1669 time_before(jiffies, bp->b_queuetime + age)) {
1670 xfs_buf_unlock(bp);
1671 break;
1672 }
1673
1674 bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q);
1675 bp->b_flags |= XBF_WRITE;
1676 list_move_tail(&bp->b_list, list);
1677 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1678 } else
1679 skipped++;
1680 }
1681 spin_unlock(dwlk);
1682
1683 return skipped;
1684
1685 }
1686
1687 /*
1688 * Compare function is more complex than it needs to be because
1689 * the return value is only 32 bits and we are doing comparisons
1690 * on 64 bit values
1691 */
1692 static int
1693 xfs_buf_cmp(
1694 void *priv,
1695 struct list_head *a,
1696 struct list_head *b)
1697 {
1698 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1699 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1700 xfs_daddr_t diff;
1701
1702 diff = ap->b_bn - bp->b_bn;
1703 if (diff < 0)
1704 return -1;
1705 if (diff > 0)
1706 return 1;
1707 return 0;
1708 }
1709
1710 STATIC int
1711 xfsbufd(
1712 void *data)
1713 {
1714 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1715
1716 current->flags |= PF_MEMALLOC;
1717
1718 set_freezable();
1719
1720 do {
1721 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1722 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1723 struct list_head tmp;
1724 struct blk_plug plug;
1725
1726 if (unlikely(freezing(current))) {
1727 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1728 refrigerator();
1729 } else {
1730 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1731 }
1732
1733 /* sleep for a long time if there is nothing to do. */
1734 if (list_empty(&target->bt_delwrite_queue))
1735 tout = MAX_SCHEDULE_TIMEOUT;
1736 schedule_timeout_interruptible(tout);
1737
1738 xfs_buf_delwri_split(target, &tmp, age);
1739 list_sort(NULL, &tmp, xfs_buf_cmp);
1740
1741 blk_start_plug(&plug);
1742 while (!list_empty(&tmp)) {
1743 struct xfs_buf *bp;
1744 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1745 list_del_init(&bp->b_list);
1746 xfs_bdstrat_cb(bp);
1747 }
1748 blk_finish_plug(&plug);
1749 } while (!kthread_should_stop());
1750
1751 return 0;
1752 }
1753
1754 /*
1755 * Go through all incore buffers, and release buffers if they belong to
1756 * the given device. This is used in filesystem error handling to
1757 * preserve the consistency of its metadata.
1758 */
1759 int
1760 xfs_flush_buftarg(
1761 xfs_buftarg_t *target,
1762 int wait)
1763 {
1764 xfs_buf_t *bp;
1765 int pincount = 0;
1766 LIST_HEAD(tmp_list);
1767 LIST_HEAD(wait_list);
1768 struct blk_plug plug;
1769
1770 xfs_buf_runall_queues(xfsconvertd_workqueue);
1771 xfs_buf_runall_queues(xfsdatad_workqueue);
1772 xfs_buf_runall_queues(xfslogd_workqueue);
1773
1774 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1775 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1776
1777 /*
1778 * Dropped the delayed write list lock, now walk the temporary list.
1779 * All I/O is issued async and then if we need to wait for completion
1780 * we do that after issuing all the IO.
1781 */
1782 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1783
1784 blk_start_plug(&plug);
1785 while (!list_empty(&tmp_list)) {
1786 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1787 ASSERT(target == bp->b_target);
1788 list_del_init(&bp->b_list);
1789 if (wait) {
1790 bp->b_flags &= ~XBF_ASYNC;
1791 list_add(&bp->b_list, &wait_list);
1792 }
1793 xfs_bdstrat_cb(bp);
1794 }
1795 blk_finish_plug(&plug);
1796
1797 if (wait) {
1798 /* Wait for IO to complete. */
1799 while (!list_empty(&wait_list)) {
1800 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1801
1802 list_del_init(&bp->b_list);
1803 xfs_buf_iowait(bp);
1804 xfs_buf_relse(bp);
1805 }
1806 }
1807
1808 return pincount;
1809 }
1810
1811 int __init
1812 xfs_buf_init(void)
1813 {
1814 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1815 KM_ZONE_HWALIGN, NULL);
1816 if (!xfs_buf_zone)
1817 goto out;
1818
1819 xfslogd_workqueue = alloc_workqueue("xfslogd",
1820 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1821 if (!xfslogd_workqueue)
1822 goto out_free_buf_zone;
1823
1824 xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
1825 if (!xfsdatad_workqueue)
1826 goto out_destroy_xfslogd_workqueue;
1827
1828 xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1829 WQ_MEM_RECLAIM, 1);
1830 if (!xfsconvertd_workqueue)
1831 goto out_destroy_xfsdatad_workqueue;
1832
1833 return 0;
1834
1835 out_destroy_xfsdatad_workqueue:
1836 destroy_workqueue(xfsdatad_workqueue);
1837 out_destroy_xfslogd_workqueue:
1838 destroy_workqueue(xfslogd_workqueue);
1839 out_free_buf_zone:
1840 kmem_zone_destroy(xfs_buf_zone);
1841 out:
1842 return -ENOMEM;
1843 }
1844
1845 void
1846 xfs_buf_terminate(void)
1847 {
1848 destroy_workqueue(xfsconvertd_workqueue);
1849 destroy_workqueue(xfsdatad_workqueue);
1850 destroy_workqueue(xfslogd_workqueue);
1851 kmem_zone_destroy(xfs_buf_zone);
1852 }
1853
1854 #ifdef CONFIG_KDB_MODULES
1855 struct list_head *
1856 xfs_get_buftarg_list(void)
1857 {
1858 return &xfs_buftarg_list;
1859 }
1860 #endif
This page took 0.090733 seconds and 5 git commands to generate.