xfs: move xfsagino_t to xfs_types.h
[deliverable/linux.git] / fs / xfs / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_sb.h"
38 #include "xfs_log.h"
39 #include "xfs_ag.h"
40 #include "xfs_mount.h"
41 #include "xfs_trace.h"
42
43 static kmem_zone_t *xfs_buf_zone;
44
45 static struct workqueue_struct *xfslogd_workqueue;
46
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
55 #endif
56
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59
60
61 static inline int
62 xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64 {
65 /*
66 * Return true if the buffer is vmapped.
67 *
68 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
69 * code is clever enough to know it doesn't have to map a single page,
70 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
71 */
72 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
73 }
74
75 static inline int
76 xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78 {
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81
82 /*
83 * xfs_buf_lru_add - add a buffer to the LRU.
84 *
85 * The LRU takes a new reference to the buffer so that it will only be freed
86 * once the shrinker takes the buffer off the LRU.
87 */
88 STATIC void
89 xfs_buf_lru_add(
90 struct xfs_buf *bp)
91 {
92 struct xfs_buftarg *btp = bp->b_target;
93
94 spin_lock(&btp->bt_lru_lock);
95 if (list_empty(&bp->b_lru)) {
96 atomic_inc(&bp->b_hold);
97 list_add_tail(&bp->b_lru, &btp->bt_lru);
98 btp->bt_lru_nr++;
99 }
100 spin_unlock(&btp->bt_lru_lock);
101 }
102
103 /*
104 * xfs_buf_lru_del - remove a buffer from the LRU
105 *
106 * The unlocked check is safe here because it only occurs when there are not
107 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
108 * to optimise the shrinker removing the buffer from the LRU and calling
109 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
110 * bt_lru_lock.
111 */
112 STATIC void
113 xfs_buf_lru_del(
114 struct xfs_buf *bp)
115 {
116 struct xfs_buftarg *btp = bp->b_target;
117
118 if (list_empty(&bp->b_lru))
119 return;
120
121 spin_lock(&btp->bt_lru_lock);
122 if (!list_empty(&bp->b_lru)) {
123 list_del_init(&bp->b_lru);
124 btp->bt_lru_nr--;
125 }
126 spin_unlock(&btp->bt_lru_lock);
127 }
128
129 /*
130 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
131 * b_lru_ref count so that the buffer is freed immediately when the buffer
132 * reference count falls to zero. If the buffer is already on the LRU, we need
133 * to remove the reference that LRU holds on the buffer.
134 *
135 * This prevents build-up of stale buffers on the LRU.
136 */
137 void
138 xfs_buf_stale(
139 struct xfs_buf *bp)
140 {
141 ASSERT(xfs_buf_islocked(bp));
142
143 bp->b_flags |= XBF_STALE;
144
145 /*
146 * Clear the delwri status so that a delwri queue walker will not
147 * flush this buffer to disk now that it is stale. The delwri queue has
148 * a reference to the buffer, so this is safe to do.
149 */
150 bp->b_flags &= ~_XBF_DELWRI_Q;
151
152 atomic_set(&(bp)->b_lru_ref, 0);
153 if (!list_empty(&bp->b_lru)) {
154 struct xfs_buftarg *btp = bp->b_target;
155
156 spin_lock(&btp->bt_lru_lock);
157 if (!list_empty(&bp->b_lru)) {
158 list_del_init(&bp->b_lru);
159 btp->bt_lru_nr--;
160 atomic_dec(&bp->b_hold);
161 }
162 spin_unlock(&btp->bt_lru_lock);
163 }
164 ASSERT(atomic_read(&bp->b_hold) >= 1);
165 }
166
167 struct xfs_buf *
168 xfs_buf_alloc(
169 struct xfs_buftarg *target,
170 xfs_daddr_t blkno,
171 size_t numblks,
172 xfs_buf_flags_t flags)
173 {
174 struct xfs_buf *bp;
175
176 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
177 if (unlikely(!bp))
178 return NULL;
179
180 /*
181 * We don't want certain flags to appear in b_flags.
182 */
183 flags &= ~(XBF_MAPPED|XBF_READ_AHEAD);
184
185 atomic_set(&bp->b_hold, 1);
186 atomic_set(&bp->b_lru_ref, 1);
187 init_completion(&bp->b_iowait);
188 INIT_LIST_HEAD(&bp->b_lru);
189 INIT_LIST_HEAD(&bp->b_list);
190 RB_CLEAR_NODE(&bp->b_rbnode);
191 sema_init(&bp->b_sema, 0); /* held, no waiters */
192 XB_SET_OWNER(bp);
193 bp->b_target = target;
194
195 /*
196 * Set length and io_length to the same value initially.
197 * I/O routines should use io_length, which will be the same in
198 * most cases but may be reset (e.g. XFS recovery).
199 */
200 bp->b_length = numblks;
201 bp->b_io_length = numblks;
202 bp->b_flags = flags;
203
204 /*
205 * We do not set the block number here in the buffer because we have not
206 * finished initialising the buffer. We insert the buffer into the cache
207 * in this state, so this ensures that we are unable to do IO on a
208 * buffer that hasn't been fully initialised.
209 */
210 bp->b_bn = XFS_BUF_DADDR_NULL;
211 atomic_set(&bp->b_pin_count, 0);
212 init_waitqueue_head(&bp->b_waiters);
213
214 XFS_STATS_INC(xb_create);
215 trace_xfs_buf_init(bp, _RET_IP_);
216
217 return bp;
218 }
219
220 /*
221 * Allocate a page array capable of holding a specified number
222 * of pages, and point the page buf at it.
223 */
224 STATIC int
225 _xfs_buf_get_pages(
226 xfs_buf_t *bp,
227 int page_count,
228 xfs_buf_flags_t flags)
229 {
230 /* Make sure that we have a page list */
231 if (bp->b_pages == NULL) {
232 bp->b_page_count = page_count;
233 if (page_count <= XB_PAGES) {
234 bp->b_pages = bp->b_page_array;
235 } else {
236 bp->b_pages = kmem_alloc(sizeof(struct page *) *
237 page_count, KM_NOFS);
238 if (bp->b_pages == NULL)
239 return -ENOMEM;
240 }
241 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
242 }
243 return 0;
244 }
245
246 /*
247 * Frees b_pages if it was allocated.
248 */
249 STATIC void
250 _xfs_buf_free_pages(
251 xfs_buf_t *bp)
252 {
253 if (bp->b_pages != bp->b_page_array) {
254 kmem_free(bp->b_pages);
255 bp->b_pages = NULL;
256 }
257 }
258
259 /*
260 * Releases the specified buffer.
261 *
262 * The modification state of any associated pages is left unchanged.
263 * The buffer most not be on any hash - use xfs_buf_rele instead for
264 * hashed and refcounted buffers
265 */
266 void
267 xfs_buf_free(
268 xfs_buf_t *bp)
269 {
270 trace_xfs_buf_free(bp, _RET_IP_);
271
272 ASSERT(list_empty(&bp->b_lru));
273
274 if (bp->b_flags & _XBF_PAGES) {
275 uint i;
276
277 if (xfs_buf_is_vmapped(bp))
278 vm_unmap_ram(bp->b_addr - bp->b_offset,
279 bp->b_page_count);
280
281 for (i = 0; i < bp->b_page_count; i++) {
282 struct page *page = bp->b_pages[i];
283
284 __free_page(page);
285 }
286 } else if (bp->b_flags & _XBF_KMEM)
287 kmem_free(bp->b_addr);
288 _xfs_buf_free_pages(bp);
289 kmem_zone_free(xfs_buf_zone, bp);
290 }
291
292 /*
293 * Allocates all the pages for buffer in question and builds it's page list.
294 */
295 STATIC int
296 xfs_buf_allocate_memory(
297 xfs_buf_t *bp,
298 uint flags)
299 {
300 size_t size;
301 size_t nbytes, offset;
302 gfp_t gfp_mask = xb_to_gfp(flags);
303 unsigned short page_count, i;
304 xfs_off_t start, end;
305 int error;
306
307 /*
308 * for buffers that are contained within a single page, just allocate
309 * the memory from the heap - there's no need for the complexity of
310 * page arrays to keep allocation down to order 0.
311 */
312 size = BBTOB(bp->b_length);
313 if (size < PAGE_SIZE) {
314 bp->b_addr = kmem_alloc(size, KM_NOFS);
315 if (!bp->b_addr) {
316 /* low memory - use alloc_page loop instead */
317 goto use_alloc_page;
318 }
319
320 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
321 ((unsigned long)bp->b_addr & PAGE_MASK)) {
322 /* b_addr spans two pages - use alloc_page instead */
323 kmem_free(bp->b_addr);
324 bp->b_addr = NULL;
325 goto use_alloc_page;
326 }
327 bp->b_offset = offset_in_page(bp->b_addr);
328 bp->b_pages = bp->b_page_array;
329 bp->b_pages[0] = virt_to_page(bp->b_addr);
330 bp->b_page_count = 1;
331 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
332 return 0;
333 }
334
335 use_alloc_page:
336 start = BBTOB(bp->b_bn) >> PAGE_SHIFT;
337 end = (BBTOB(bp->b_bn + bp->b_length) + PAGE_SIZE - 1) >> PAGE_SHIFT;
338 page_count = end - start;
339 error = _xfs_buf_get_pages(bp, page_count, flags);
340 if (unlikely(error))
341 return error;
342
343 offset = bp->b_offset;
344 bp->b_flags |= _XBF_PAGES;
345
346 for (i = 0; i < bp->b_page_count; i++) {
347 struct page *page;
348 uint retries = 0;
349 retry:
350 page = alloc_page(gfp_mask);
351 if (unlikely(page == NULL)) {
352 if (flags & XBF_READ_AHEAD) {
353 bp->b_page_count = i;
354 error = ENOMEM;
355 goto out_free_pages;
356 }
357
358 /*
359 * This could deadlock.
360 *
361 * But until all the XFS lowlevel code is revamped to
362 * handle buffer allocation failures we can't do much.
363 */
364 if (!(++retries % 100))
365 xfs_err(NULL,
366 "possible memory allocation deadlock in %s (mode:0x%x)",
367 __func__, gfp_mask);
368
369 XFS_STATS_INC(xb_page_retries);
370 congestion_wait(BLK_RW_ASYNC, HZ/50);
371 goto retry;
372 }
373
374 XFS_STATS_INC(xb_page_found);
375
376 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
377 size -= nbytes;
378 bp->b_pages[i] = page;
379 offset = 0;
380 }
381 return 0;
382
383 out_free_pages:
384 for (i = 0; i < bp->b_page_count; i++)
385 __free_page(bp->b_pages[i]);
386 return error;
387 }
388
389 /*
390 * Map buffer into kernel address-space if necessary.
391 */
392 STATIC int
393 _xfs_buf_map_pages(
394 xfs_buf_t *bp,
395 uint flags)
396 {
397 ASSERT(bp->b_flags & _XBF_PAGES);
398 if (bp->b_page_count == 1) {
399 /* A single page buffer is always mappable */
400 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
401 bp->b_flags |= XBF_MAPPED;
402 } else if (flags & XBF_MAPPED) {
403 int retried = 0;
404
405 do {
406 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
407 -1, PAGE_KERNEL);
408 if (bp->b_addr)
409 break;
410 vm_unmap_aliases();
411 } while (retried++ <= 1);
412
413 if (!bp->b_addr)
414 return -ENOMEM;
415 bp->b_addr += bp->b_offset;
416 bp->b_flags |= XBF_MAPPED;
417 }
418
419 return 0;
420 }
421
422 /*
423 * Finding and Reading Buffers
424 */
425
426 /*
427 * Look up, and creates if absent, a lockable buffer for
428 * a given range of an inode. The buffer is returned
429 * locked. No I/O is implied by this call.
430 */
431 xfs_buf_t *
432 _xfs_buf_find(
433 struct xfs_buftarg *btp,
434 xfs_daddr_t blkno,
435 size_t numblks,
436 xfs_buf_flags_t flags,
437 xfs_buf_t *new_bp)
438 {
439 size_t numbytes;
440 struct xfs_perag *pag;
441 struct rb_node **rbp;
442 struct rb_node *parent;
443 xfs_buf_t *bp;
444
445 numbytes = BBTOB(numblks);
446
447 /* Check for IOs smaller than the sector size / not sector aligned */
448 ASSERT(!(numbytes < (1 << btp->bt_sshift)));
449 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
450
451 /* get tree root */
452 pag = xfs_perag_get(btp->bt_mount,
453 xfs_daddr_to_agno(btp->bt_mount, blkno));
454
455 /* walk tree */
456 spin_lock(&pag->pag_buf_lock);
457 rbp = &pag->pag_buf_tree.rb_node;
458 parent = NULL;
459 bp = NULL;
460 while (*rbp) {
461 parent = *rbp;
462 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
463
464 if (blkno < bp->b_bn)
465 rbp = &(*rbp)->rb_left;
466 else if (blkno > bp->b_bn)
467 rbp = &(*rbp)->rb_right;
468 else {
469 /*
470 * found a block number match. If the range doesn't
471 * match, the only way this is allowed is if the buffer
472 * in the cache is stale and the transaction that made
473 * it stale has not yet committed. i.e. we are
474 * reallocating a busy extent. Skip this buffer and
475 * continue searching to the right for an exact match.
476 */
477 if (bp->b_length != numblks) {
478 ASSERT(bp->b_flags & XBF_STALE);
479 rbp = &(*rbp)->rb_right;
480 continue;
481 }
482 atomic_inc(&bp->b_hold);
483 goto found;
484 }
485 }
486
487 /* No match found */
488 if (new_bp) {
489 rb_link_node(&new_bp->b_rbnode, parent, rbp);
490 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
491 /* the buffer keeps the perag reference until it is freed */
492 new_bp->b_pag = pag;
493 spin_unlock(&pag->pag_buf_lock);
494 } else {
495 XFS_STATS_INC(xb_miss_locked);
496 spin_unlock(&pag->pag_buf_lock);
497 xfs_perag_put(pag);
498 }
499 return new_bp;
500
501 found:
502 spin_unlock(&pag->pag_buf_lock);
503 xfs_perag_put(pag);
504
505 if (!xfs_buf_trylock(bp)) {
506 if (flags & XBF_TRYLOCK) {
507 xfs_buf_rele(bp);
508 XFS_STATS_INC(xb_busy_locked);
509 return NULL;
510 }
511 xfs_buf_lock(bp);
512 XFS_STATS_INC(xb_get_locked_waited);
513 }
514
515 /*
516 * if the buffer is stale, clear all the external state associated with
517 * it. We need to keep flags such as how we allocated the buffer memory
518 * intact here.
519 */
520 if (bp->b_flags & XBF_STALE) {
521 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
522 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
523 }
524
525 trace_xfs_buf_find(bp, flags, _RET_IP_);
526 XFS_STATS_INC(xb_get_locked);
527 return bp;
528 }
529
530 /*
531 * Assembles a buffer covering the specified range. The code is optimised for
532 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
533 * more hits than misses.
534 */
535 struct xfs_buf *
536 xfs_buf_get(
537 xfs_buftarg_t *target,
538 xfs_daddr_t blkno,
539 size_t numblks,
540 xfs_buf_flags_t flags)
541 {
542 struct xfs_buf *bp;
543 struct xfs_buf *new_bp;
544 int error = 0;
545
546 bp = _xfs_buf_find(target, blkno, numblks, flags, NULL);
547 if (likely(bp))
548 goto found;
549
550 new_bp = xfs_buf_alloc(target, blkno, numblks, flags);
551 if (unlikely(!new_bp))
552 return NULL;
553
554 error = xfs_buf_allocate_memory(new_bp, flags);
555 if (error) {
556 kmem_zone_free(xfs_buf_zone, new_bp);
557 return NULL;
558 }
559
560 bp = _xfs_buf_find(target, blkno, numblks, flags, new_bp);
561 if (!bp) {
562 xfs_buf_free(new_bp);
563 return NULL;
564 }
565
566 if (bp != new_bp)
567 xfs_buf_free(new_bp);
568
569 /*
570 * Now we have a workable buffer, fill in the block number so
571 * that we can do IO on it.
572 */
573 bp->b_bn = blkno;
574 bp->b_io_length = bp->b_length;
575
576 found:
577 if (!(bp->b_flags & XBF_MAPPED)) {
578 error = _xfs_buf_map_pages(bp, flags);
579 if (unlikely(error)) {
580 xfs_warn(target->bt_mount,
581 "%s: failed to map pages\n", __func__);
582 xfs_buf_relse(bp);
583 return NULL;
584 }
585 }
586
587 XFS_STATS_INC(xb_get);
588 trace_xfs_buf_get(bp, flags, _RET_IP_);
589 return bp;
590 }
591
592 STATIC int
593 _xfs_buf_read(
594 xfs_buf_t *bp,
595 xfs_buf_flags_t flags)
596 {
597 ASSERT(!(flags & XBF_WRITE));
598 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
599
600 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
601 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
602
603 xfs_buf_iorequest(bp);
604 if (flags & XBF_ASYNC)
605 return 0;
606 return xfs_buf_iowait(bp);
607 }
608
609 xfs_buf_t *
610 xfs_buf_read(
611 xfs_buftarg_t *target,
612 xfs_daddr_t blkno,
613 size_t numblks,
614 xfs_buf_flags_t flags)
615 {
616 xfs_buf_t *bp;
617
618 flags |= XBF_READ;
619
620 bp = xfs_buf_get(target, blkno, numblks, flags);
621 if (bp) {
622 trace_xfs_buf_read(bp, flags, _RET_IP_);
623
624 if (!XFS_BUF_ISDONE(bp)) {
625 XFS_STATS_INC(xb_get_read);
626 _xfs_buf_read(bp, flags);
627 } else if (flags & XBF_ASYNC) {
628 /*
629 * Read ahead call which is already satisfied,
630 * drop the buffer
631 */
632 xfs_buf_relse(bp);
633 return NULL;
634 } else {
635 /* We do not want read in the flags */
636 bp->b_flags &= ~XBF_READ;
637 }
638 }
639
640 return bp;
641 }
642
643 /*
644 * If we are not low on memory then do the readahead in a deadlock
645 * safe manner.
646 */
647 void
648 xfs_buf_readahead(
649 xfs_buftarg_t *target,
650 xfs_daddr_t blkno,
651 size_t numblks)
652 {
653 if (bdi_read_congested(target->bt_bdi))
654 return;
655
656 xfs_buf_read(target, blkno, numblks,
657 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
658 }
659
660 /*
661 * Read an uncached buffer from disk. Allocates and returns a locked
662 * buffer containing the disk contents or nothing.
663 */
664 struct xfs_buf *
665 xfs_buf_read_uncached(
666 struct xfs_buftarg *target,
667 xfs_daddr_t daddr,
668 size_t numblks,
669 int flags)
670 {
671 xfs_buf_t *bp;
672 int error;
673
674 bp = xfs_buf_get_uncached(target, numblks, flags);
675 if (!bp)
676 return NULL;
677
678 /* set up the buffer for a read IO */
679 XFS_BUF_SET_ADDR(bp, daddr);
680 XFS_BUF_READ(bp);
681
682 xfsbdstrat(target->bt_mount, bp);
683 error = xfs_buf_iowait(bp);
684 if (error) {
685 xfs_buf_relse(bp);
686 return NULL;
687 }
688 return bp;
689 }
690
691 /*
692 * Return a buffer allocated as an empty buffer and associated to external
693 * memory via xfs_buf_associate_memory() back to it's empty state.
694 */
695 void
696 xfs_buf_set_empty(
697 struct xfs_buf *bp,
698 size_t numblks)
699 {
700 if (bp->b_pages)
701 _xfs_buf_free_pages(bp);
702
703 bp->b_pages = NULL;
704 bp->b_page_count = 0;
705 bp->b_addr = NULL;
706 bp->b_length = numblks;
707 bp->b_io_length = numblks;
708 bp->b_bn = XFS_BUF_DADDR_NULL;
709 bp->b_flags &= ~XBF_MAPPED;
710 }
711
712 static inline struct page *
713 mem_to_page(
714 void *addr)
715 {
716 if ((!is_vmalloc_addr(addr))) {
717 return virt_to_page(addr);
718 } else {
719 return vmalloc_to_page(addr);
720 }
721 }
722
723 int
724 xfs_buf_associate_memory(
725 xfs_buf_t *bp,
726 void *mem,
727 size_t len)
728 {
729 int rval;
730 int i = 0;
731 unsigned long pageaddr;
732 unsigned long offset;
733 size_t buflen;
734 int page_count;
735
736 pageaddr = (unsigned long)mem & PAGE_MASK;
737 offset = (unsigned long)mem - pageaddr;
738 buflen = PAGE_ALIGN(len + offset);
739 page_count = buflen >> PAGE_SHIFT;
740
741 /* Free any previous set of page pointers */
742 if (bp->b_pages)
743 _xfs_buf_free_pages(bp);
744
745 bp->b_pages = NULL;
746 bp->b_addr = mem;
747
748 rval = _xfs_buf_get_pages(bp, page_count, 0);
749 if (rval)
750 return rval;
751
752 bp->b_offset = offset;
753
754 for (i = 0; i < bp->b_page_count; i++) {
755 bp->b_pages[i] = mem_to_page((void *)pageaddr);
756 pageaddr += PAGE_SIZE;
757 }
758
759 bp->b_io_length = BTOBB(len);
760 bp->b_length = BTOBB(buflen);
761 bp->b_flags |= XBF_MAPPED;
762
763 return 0;
764 }
765
766 xfs_buf_t *
767 xfs_buf_get_uncached(
768 struct xfs_buftarg *target,
769 size_t numblks,
770 int flags)
771 {
772 unsigned long page_count;
773 int error, i;
774 xfs_buf_t *bp;
775
776 bp = xfs_buf_alloc(target, 0, numblks, 0);
777 if (unlikely(bp == NULL))
778 goto fail;
779
780 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
781 error = _xfs_buf_get_pages(bp, page_count, 0);
782 if (error)
783 goto fail_free_buf;
784
785 for (i = 0; i < page_count; i++) {
786 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
787 if (!bp->b_pages[i])
788 goto fail_free_mem;
789 }
790 bp->b_flags |= _XBF_PAGES;
791
792 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
793 if (unlikely(error)) {
794 xfs_warn(target->bt_mount,
795 "%s: failed to map pages\n", __func__);
796 goto fail_free_mem;
797 }
798
799 trace_xfs_buf_get_uncached(bp, _RET_IP_);
800 return bp;
801
802 fail_free_mem:
803 while (--i >= 0)
804 __free_page(bp->b_pages[i]);
805 _xfs_buf_free_pages(bp);
806 fail_free_buf:
807 kmem_zone_free(xfs_buf_zone, bp);
808 fail:
809 return NULL;
810 }
811
812 /*
813 * Increment reference count on buffer, to hold the buffer concurrently
814 * with another thread which may release (free) the buffer asynchronously.
815 * Must hold the buffer already to call this function.
816 */
817 void
818 xfs_buf_hold(
819 xfs_buf_t *bp)
820 {
821 trace_xfs_buf_hold(bp, _RET_IP_);
822 atomic_inc(&bp->b_hold);
823 }
824
825 /*
826 * Releases a hold on the specified buffer. If the
827 * the hold count is 1, calls xfs_buf_free.
828 */
829 void
830 xfs_buf_rele(
831 xfs_buf_t *bp)
832 {
833 struct xfs_perag *pag = bp->b_pag;
834
835 trace_xfs_buf_rele(bp, _RET_IP_);
836
837 if (!pag) {
838 ASSERT(list_empty(&bp->b_lru));
839 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
840 if (atomic_dec_and_test(&bp->b_hold))
841 xfs_buf_free(bp);
842 return;
843 }
844
845 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
846
847 ASSERT(atomic_read(&bp->b_hold) > 0);
848 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
849 if (!(bp->b_flags & XBF_STALE) &&
850 atomic_read(&bp->b_lru_ref)) {
851 xfs_buf_lru_add(bp);
852 spin_unlock(&pag->pag_buf_lock);
853 } else {
854 xfs_buf_lru_del(bp);
855 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
856 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
857 spin_unlock(&pag->pag_buf_lock);
858 xfs_perag_put(pag);
859 xfs_buf_free(bp);
860 }
861 }
862 }
863
864
865 /*
866 * Lock a buffer object, if it is not already locked.
867 *
868 * If we come across a stale, pinned, locked buffer, we know that we are
869 * being asked to lock a buffer that has been reallocated. Because it is
870 * pinned, we know that the log has not been pushed to disk and hence it
871 * will still be locked. Rather than continuing to have trylock attempts
872 * fail until someone else pushes the log, push it ourselves before
873 * returning. This means that the xfsaild will not get stuck trying
874 * to push on stale inode buffers.
875 */
876 int
877 xfs_buf_trylock(
878 struct xfs_buf *bp)
879 {
880 int locked;
881
882 locked = down_trylock(&bp->b_sema) == 0;
883 if (locked)
884 XB_SET_OWNER(bp);
885 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
886 xfs_log_force(bp->b_target->bt_mount, 0);
887
888 trace_xfs_buf_trylock(bp, _RET_IP_);
889 return locked;
890 }
891
892 /*
893 * Lock a buffer object.
894 *
895 * If we come across a stale, pinned, locked buffer, we know that we
896 * are being asked to lock a buffer that has been reallocated. Because
897 * it is pinned, we know that the log has not been pushed to disk and
898 * hence it will still be locked. Rather than sleeping until someone
899 * else pushes the log, push it ourselves before trying to get the lock.
900 */
901 void
902 xfs_buf_lock(
903 struct xfs_buf *bp)
904 {
905 trace_xfs_buf_lock(bp, _RET_IP_);
906
907 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
908 xfs_log_force(bp->b_target->bt_mount, 0);
909 down(&bp->b_sema);
910 XB_SET_OWNER(bp);
911
912 trace_xfs_buf_lock_done(bp, _RET_IP_);
913 }
914
915 void
916 xfs_buf_unlock(
917 struct xfs_buf *bp)
918 {
919 XB_CLEAR_OWNER(bp);
920 up(&bp->b_sema);
921
922 trace_xfs_buf_unlock(bp, _RET_IP_);
923 }
924
925 STATIC void
926 xfs_buf_wait_unpin(
927 xfs_buf_t *bp)
928 {
929 DECLARE_WAITQUEUE (wait, current);
930
931 if (atomic_read(&bp->b_pin_count) == 0)
932 return;
933
934 add_wait_queue(&bp->b_waiters, &wait);
935 for (;;) {
936 set_current_state(TASK_UNINTERRUPTIBLE);
937 if (atomic_read(&bp->b_pin_count) == 0)
938 break;
939 io_schedule();
940 }
941 remove_wait_queue(&bp->b_waiters, &wait);
942 set_current_state(TASK_RUNNING);
943 }
944
945 /*
946 * Buffer Utility Routines
947 */
948
949 STATIC void
950 xfs_buf_iodone_work(
951 struct work_struct *work)
952 {
953 xfs_buf_t *bp =
954 container_of(work, xfs_buf_t, b_iodone_work);
955
956 if (bp->b_iodone)
957 (*(bp->b_iodone))(bp);
958 else if (bp->b_flags & XBF_ASYNC)
959 xfs_buf_relse(bp);
960 }
961
962 void
963 xfs_buf_ioend(
964 xfs_buf_t *bp,
965 int schedule)
966 {
967 trace_xfs_buf_iodone(bp, _RET_IP_);
968
969 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
970 if (bp->b_error == 0)
971 bp->b_flags |= XBF_DONE;
972
973 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
974 if (schedule) {
975 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
976 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
977 } else {
978 xfs_buf_iodone_work(&bp->b_iodone_work);
979 }
980 } else {
981 complete(&bp->b_iowait);
982 }
983 }
984
985 void
986 xfs_buf_ioerror(
987 xfs_buf_t *bp,
988 int error)
989 {
990 ASSERT(error >= 0 && error <= 0xffff);
991 bp->b_error = (unsigned short)error;
992 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
993 }
994
995 void
996 xfs_buf_ioerror_alert(
997 struct xfs_buf *bp,
998 const char *func)
999 {
1000 xfs_alert(bp->b_target->bt_mount,
1001 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1002 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
1003 }
1004
1005 int
1006 xfs_bwrite(
1007 struct xfs_buf *bp)
1008 {
1009 int error;
1010
1011 ASSERT(xfs_buf_islocked(bp));
1012
1013 bp->b_flags |= XBF_WRITE;
1014 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1015
1016 xfs_bdstrat_cb(bp);
1017
1018 error = xfs_buf_iowait(bp);
1019 if (error) {
1020 xfs_force_shutdown(bp->b_target->bt_mount,
1021 SHUTDOWN_META_IO_ERROR);
1022 }
1023 return error;
1024 }
1025
1026 /*
1027 * Called when we want to stop a buffer from getting written or read.
1028 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1029 * so that the proper iodone callbacks get called.
1030 */
1031 STATIC int
1032 xfs_bioerror(
1033 xfs_buf_t *bp)
1034 {
1035 #ifdef XFSERRORDEBUG
1036 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1037 #endif
1038
1039 /*
1040 * No need to wait until the buffer is unpinned, we aren't flushing it.
1041 */
1042 xfs_buf_ioerror(bp, EIO);
1043
1044 /*
1045 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1046 */
1047 XFS_BUF_UNREAD(bp);
1048 XFS_BUF_UNDONE(bp);
1049 xfs_buf_stale(bp);
1050
1051 xfs_buf_ioend(bp, 0);
1052
1053 return EIO;
1054 }
1055
1056 /*
1057 * Same as xfs_bioerror, except that we are releasing the buffer
1058 * here ourselves, and avoiding the xfs_buf_ioend call.
1059 * This is meant for userdata errors; metadata bufs come with
1060 * iodone functions attached, so that we can track down errors.
1061 */
1062 STATIC int
1063 xfs_bioerror_relse(
1064 struct xfs_buf *bp)
1065 {
1066 int64_t fl = bp->b_flags;
1067 /*
1068 * No need to wait until the buffer is unpinned.
1069 * We aren't flushing it.
1070 *
1071 * chunkhold expects B_DONE to be set, whether
1072 * we actually finish the I/O or not. We don't want to
1073 * change that interface.
1074 */
1075 XFS_BUF_UNREAD(bp);
1076 XFS_BUF_DONE(bp);
1077 xfs_buf_stale(bp);
1078 bp->b_iodone = NULL;
1079 if (!(fl & XBF_ASYNC)) {
1080 /*
1081 * Mark b_error and B_ERROR _both_.
1082 * Lot's of chunkcache code assumes that.
1083 * There's no reason to mark error for
1084 * ASYNC buffers.
1085 */
1086 xfs_buf_ioerror(bp, EIO);
1087 complete(&bp->b_iowait);
1088 } else {
1089 xfs_buf_relse(bp);
1090 }
1091
1092 return EIO;
1093 }
1094
1095
1096 /*
1097 * All xfs metadata buffers except log state machine buffers
1098 * get this attached as their b_bdstrat callback function.
1099 * This is so that we can catch a buffer
1100 * after prematurely unpinning it to forcibly shutdown the filesystem.
1101 */
1102 int
1103 xfs_bdstrat_cb(
1104 struct xfs_buf *bp)
1105 {
1106 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1107 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1108 /*
1109 * Metadata write that didn't get logged but
1110 * written delayed anyway. These aren't associated
1111 * with a transaction, and can be ignored.
1112 */
1113 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1114 return xfs_bioerror_relse(bp);
1115 else
1116 return xfs_bioerror(bp);
1117 }
1118
1119 xfs_buf_iorequest(bp);
1120 return 0;
1121 }
1122
1123 /*
1124 * Wrapper around bdstrat so that we can stop data from going to disk in case
1125 * we are shutting down the filesystem. Typically user data goes thru this
1126 * path; one of the exceptions is the superblock.
1127 */
1128 void
1129 xfsbdstrat(
1130 struct xfs_mount *mp,
1131 struct xfs_buf *bp)
1132 {
1133 if (XFS_FORCED_SHUTDOWN(mp)) {
1134 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1135 xfs_bioerror_relse(bp);
1136 return;
1137 }
1138
1139 xfs_buf_iorequest(bp);
1140 }
1141
1142 STATIC void
1143 _xfs_buf_ioend(
1144 xfs_buf_t *bp,
1145 int schedule)
1146 {
1147 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1148 xfs_buf_ioend(bp, schedule);
1149 }
1150
1151 STATIC void
1152 xfs_buf_bio_end_io(
1153 struct bio *bio,
1154 int error)
1155 {
1156 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1157
1158 xfs_buf_ioerror(bp, -error);
1159
1160 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1161 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1162
1163 _xfs_buf_ioend(bp, 1);
1164 bio_put(bio);
1165 }
1166
1167 STATIC void
1168 _xfs_buf_ioapply(
1169 xfs_buf_t *bp)
1170 {
1171 int rw, map_i, total_nr_pages, nr_pages;
1172 struct bio *bio;
1173 int offset = bp->b_offset;
1174 int size = BBTOB(bp->b_io_length);
1175 sector_t sector = bp->b_bn;
1176
1177 total_nr_pages = bp->b_page_count;
1178 map_i = 0;
1179
1180 if (bp->b_flags & XBF_WRITE) {
1181 if (bp->b_flags & XBF_SYNCIO)
1182 rw = WRITE_SYNC;
1183 else
1184 rw = WRITE;
1185 if (bp->b_flags & XBF_FUA)
1186 rw |= REQ_FUA;
1187 if (bp->b_flags & XBF_FLUSH)
1188 rw |= REQ_FLUSH;
1189 } else if (bp->b_flags & XBF_READ_AHEAD) {
1190 rw = READA;
1191 } else {
1192 rw = READ;
1193 }
1194
1195 /* we only use the buffer cache for meta-data */
1196 rw |= REQ_META;
1197
1198 next_chunk:
1199 atomic_inc(&bp->b_io_remaining);
1200 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1201 if (nr_pages > total_nr_pages)
1202 nr_pages = total_nr_pages;
1203
1204 bio = bio_alloc(GFP_NOIO, nr_pages);
1205 bio->bi_bdev = bp->b_target->bt_bdev;
1206 bio->bi_sector = sector;
1207 bio->bi_end_io = xfs_buf_bio_end_io;
1208 bio->bi_private = bp;
1209
1210
1211 for (; size && nr_pages; nr_pages--, map_i++) {
1212 int rbytes, nbytes = PAGE_SIZE - offset;
1213
1214 if (nbytes > size)
1215 nbytes = size;
1216
1217 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1218 if (rbytes < nbytes)
1219 break;
1220
1221 offset = 0;
1222 sector += BTOBB(nbytes);
1223 size -= nbytes;
1224 total_nr_pages--;
1225 }
1226
1227 if (likely(bio->bi_size)) {
1228 if (xfs_buf_is_vmapped(bp)) {
1229 flush_kernel_vmap_range(bp->b_addr,
1230 xfs_buf_vmap_len(bp));
1231 }
1232 submit_bio(rw, bio);
1233 if (size)
1234 goto next_chunk;
1235 } else {
1236 xfs_buf_ioerror(bp, EIO);
1237 bio_put(bio);
1238 }
1239 }
1240
1241 void
1242 xfs_buf_iorequest(
1243 xfs_buf_t *bp)
1244 {
1245 trace_xfs_buf_iorequest(bp, _RET_IP_);
1246
1247 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1248
1249 if (bp->b_flags & XBF_WRITE)
1250 xfs_buf_wait_unpin(bp);
1251 xfs_buf_hold(bp);
1252
1253 /* Set the count to 1 initially, this will stop an I/O
1254 * completion callout which happens before we have started
1255 * all the I/O from calling xfs_buf_ioend too early.
1256 */
1257 atomic_set(&bp->b_io_remaining, 1);
1258 _xfs_buf_ioapply(bp);
1259 _xfs_buf_ioend(bp, 0);
1260
1261 xfs_buf_rele(bp);
1262 }
1263
1264 /*
1265 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1266 * no I/O is pending or there is already a pending error on the buffer. It
1267 * returns the I/O error code, if any, or 0 if there was no error.
1268 */
1269 int
1270 xfs_buf_iowait(
1271 xfs_buf_t *bp)
1272 {
1273 trace_xfs_buf_iowait(bp, _RET_IP_);
1274
1275 if (!bp->b_error)
1276 wait_for_completion(&bp->b_iowait);
1277
1278 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1279 return bp->b_error;
1280 }
1281
1282 xfs_caddr_t
1283 xfs_buf_offset(
1284 xfs_buf_t *bp,
1285 size_t offset)
1286 {
1287 struct page *page;
1288
1289 if (bp->b_flags & XBF_MAPPED)
1290 return bp->b_addr + offset;
1291
1292 offset += bp->b_offset;
1293 page = bp->b_pages[offset >> PAGE_SHIFT];
1294 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1295 }
1296
1297 /*
1298 * Move data into or out of a buffer.
1299 */
1300 void
1301 xfs_buf_iomove(
1302 xfs_buf_t *bp, /* buffer to process */
1303 size_t boff, /* starting buffer offset */
1304 size_t bsize, /* length to copy */
1305 void *data, /* data address */
1306 xfs_buf_rw_t mode) /* read/write/zero flag */
1307 {
1308 size_t bend;
1309
1310 bend = boff + bsize;
1311 while (boff < bend) {
1312 struct page *page;
1313 int page_index, page_offset, csize;
1314
1315 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1316 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1317 page = bp->b_pages[page_index];
1318 csize = min_t(size_t, PAGE_SIZE - page_offset,
1319 BBTOB(bp->b_io_length) - boff);
1320
1321 ASSERT((csize + page_offset) <= PAGE_SIZE);
1322
1323 switch (mode) {
1324 case XBRW_ZERO:
1325 memset(page_address(page) + page_offset, 0, csize);
1326 break;
1327 case XBRW_READ:
1328 memcpy(data, page_address(page) + page_offset, csize);
1329 break;
1330 case XBRW_WRITE:
1331 memcpy(page_address(page) + page_offset, data, csize);
1332 }
1333
1334 boff += csize;
1335 data += csize;
1336 }
1337 }
1338
1339 /*
1340 * Handling of buffer targets (buftargs).
1341 */
1342
1343 /*
1344 * Wait for any bufs with callbacks that have been submitted but have not yet
1345 * returned. These buffers will have an elevated hold count, so wait on those
1346 * while freeing all the buffers only held by the LRU.
1347 */
1348 void
1349 xfs_wait_buftarg(
1350 struct xfs_buftarg *btp)
1351 {
1352 struct xfs_buf *bp;
1353
1354 restart:
1355 spin_lock(&btp->bt_lru_lock);
1356 while (!list_empty(&btp->bt_lru)) {
1357 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1358 if (atomic_read(&bp->b_hold) > 1) {
1359 spin_unlock(&btp->bt_lru_lock);
1360 delay(100);
1361 goto restart;
1362 }
1363 /*
1364 * clear the LRU reference count so the buffer doesn't get
1365 * ignored in xfs_buf_rele().
1366 */
1367 atomic_set(&bp->b_lru_ref, 0);
1368 spin_unlock(&btp->bt_lru_lock);
1369 xfs_buf_rele(bp);
1370 spin_lock(&btp->bt_lru_lock);
1371 }
1372 spin_unlock(&btp->bt_lru_lock);
1373 }
1374
1375 int
1376 xfs_buftarg_shrink(
1377 struct shrinker *shrink,
1378 struct shrink_control *sc)
1379 {
1380 struct xfs_buftarg *btp = container_of(shrink,
1381 struct xfs_buftarg, bt_shrinker);
1382 struct xfs_buf *bp;
1383 int nr_to_scan = sc->nr_to_scan;
1384 LIST_HEAD(dispose);
1385
1386 if (!nr_to_scan)
1387 return btp->bt_lru_nr;
1388
1389 spin_lock(&btp->bt_lru_lock);
1390 while (!list_empty(&btp->bt_lru)) {
1391 if (nr_to_scan-- <= 0)
1392 break;
1393
1394 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1395
1396 /*
1397 * Decrement the b_lru_ref count unless the value is already
1398 * zero. If the value is already zero, we need to reclaim the
1399 * buffer, otherwise it gets another trip through the LRU.
1400 */
1401 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1402 list_move_tail(&bp->b_lru, &btp->bt_lru);
1403 continue;
1404 }
1405
1406 /*
1407 * remove the buffer from the LRU now to avoid needing another
1408 * lock round trip inside xfs_buf_rele().
1409 */
1410 list_move(&bp->b_lru, &dispose);
1411 btp->bt_lru_nr--;
1412 }
1413 spin_unlock(&btp->bt_lru_lock);
1414
1415 while (!list_empty(&dispose)) {
1416 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1417 list_del_init(&bp->b_lru);
1418 xfs_buf_rele(bp);
1419 }
1420
1421 return btp->bt_lru_nr;
1422 }
1423
1424 void
1425 xfs_free_buftarg(
1426 struct xfs_mount *mp,
1427 struct xfs_buftarg *btp)
1428 {
1429 unregister_shrinker(&btp->bt_shrinker);
1430
1431 if (mp->m_flags & XFS_MOUNT_BARRIER)
1432 xfs_blkdev_issue_flush(btp);
1433
1434 kmem_free(btp);
1435 }
1436
1437 STATIC int
1438 xfs_setsize_buftarg_flags(
1439 xfs_buftarg_t *btp,
1440 unsigned int blocksize,
1441 unsigned int sectorsize,
1442 int verbose)
1443 {
1444 btp->bt_bsize = blocksize;
1445 btp->bt_sshift = ffs(sectorsize) - 1;
1446 btp->bt_smask = sectorsize - 1;
1447
1448 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1449 char name[BDEVNAME_SIZE];
1450
1451 bdevname(btp->bt_bdev, name);
1452
1453 xfs_warn(btp->bt_mount,
1454 "Cannot set_blocksize to %u on device %s\n",
1455 sectorsize, name);
1456 return EINVAL;
1457 }
1458
1459 return 0;
1460 }
1461
1462 /*
1463 * When allocating the initial buffer target we have not yet
1464 * read in the superblock, so don't know what sized sectors
1465 * are being used is at this early stage. Play safe.
1466 */
1467 STATIC int
1468 xfs_setsize_buftarg_early(
1469 xfs_buftarg_t *btp,
1470 struct block_device *bdev)
1471 {
1472 return xfs_setsize_buftarg_flags(btp,
1473 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1474 }
1475
1476 int
1477 xfs_setsize_buftarg(
1478 xfs_buftarg_t *btp,
1479 unsigned int blocksize,
1480 unsigned int sectorsize)
1481 {
1482 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1483 }
1484
1485 xfs_buftarg_t *
1486 xfs_alloc_buftarg(
1487 struct xfs_mount *mp,
1488 struct block_device *bdev,
1489 int external,
1490 const char *fsname)
1491 {
1492 xfs_buftarg_t *btp;
1493
1494 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1495
1496 btp->bt_mount = mp;
1497 btp->bt_dev = bdev->bd_dev;
1498 btp->bt_bdev = bdev;
1499 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1500 if (!btp->bt_bdi)
1501 goto error;
1502
1503 INIT_LIST_HEAD(&btp->bt_lru);
1504 spin_lock_init(&btp->bt_lru_lock);
1505 if (xfs_setsize_buftarg_early(btp, bdev))
1506 goto error;
1507 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1508 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1509 register_shrinker(&btp->bt_shrinker);
1510 return btp;
1511
1512 error:
1513 kmem_free(btp);
1514 return NULL;
1515 }
1516
1517 /*
1518 * Add a buffer to the delayed write list.
1519 *
1520 * This queues a buffer for writeout if it hasn't already been. Note that
1521 * neither this routine nor the buffer list submission functions perform
1522 * any internal synchronization. It is expected that the lists are thread-local
1523 * to the callers.
1524 *
1525 * Returns true if we queued up the buffer, or false if it already had
1526 * been on the buffer list.
1527 */
1528 bool
1529 xfs_buf_delwri_queue(
1530 struct xfs_buf *bp,
1531 struct list_head *list)
1532 {
1533 ASSERT(xfs_buf_islocked(bp));
1534 ASSERT(!(bp->b_flags & XBF_READ));
1535
1536 /*
1537 * If the buffer is already marked delwri it already is queued up
1538 * by someone else for imediate writeout. Just ignore it in that
1539 * case.
1540 */
1541 if (bp->b_flags & _XBF_DELWRI_Q) {
1542 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1543 return false;
1544 }
1545
1546 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1547
1548 /*
1549 * If a buffer gets written out synchronously or marked stale while it
1550 * is on a delwri list we lazily remove it. To do this, the other party
1551 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1552 * It remains referenced and on the list. In a rare corner case it
1553 * might get readded to a delwri list after the synchronous writeout, in
1554 * which case we need just need to re-add the flag here.
1555 */
1556 bp->b_flags |= _XBF_DELWRI_Q;
1557 if (list_empty(&bp->b_list)) {
1558 atomic_inc(&bp->b_hold);
1559 list_add_tail(&bp->b_list, list);
1560 }
1561
1562 return true;
1563 }
1564
1565 /*
1566 * Compare function is more complex than it needs to be because
1567 * the return value is only 32 bits and we are doing comparisons
1568 * on 64 bit values
1569 */
1570 static int
1571 xfs_buf_cmp(
1572 void *priv,
1573 struct list_head *a,
1574 struct list_head *b)
1575 {
1576 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1577 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1578 xfs_daddr_t diff;
1579
1580 diff = ap->b_bn - bp->b_bn;
1581 if (diff < 0)
1582 return -1;
1583 if (diff > 0)
1584 return 1;
1585 return 0;
1586 }
1587
1588 static int
1589 __xfs_buf_delwri_submit(
1590 struct list_head *buffer_list,
1591 struct list_head *io_list,
1592 bool wait)
1593 {
1594 struct blk_plug plug;
1595 struct xfs_buf *bp, *n;
1596 int pinned = 0;
1597
1598 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1599 if (!wait) {
1600 if (xfs_buf_ispinned(bp)) {
1601 pinned++;
1602 continue;
1603 }
1604 if (!xfs_buf_trylock(bp))
1605 continue;
1606 } else {
1607 xfs_buf_lock(bp);
1608 }
1609
1610 /*
1611 * Someone else might have written the buffer synchronously or
1612 * marked it stale in the meantime. In that case only the
1613 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1614 * reference and remove it from the list here.
1615 */
1616 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1617 list_del_init(&bp->b_list);
1618 xfs_buf_relse(bp);
1619 continue;
1620 }
1621
1622 list_move_tail(&bp->b_list, io_list);
1623 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1624 }
1625
1626 list_sort(NULL, io_list, xfs_buf_cmp);
1627
1628 blk_start_plug(&plug);
1629 list_for_each_entry_safe(bp, n, io_list, b_list) {
1630 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1631 bp->b_flags |= XBF_WRITE;
1632
1633 if (!wait) {
1634 bp->b_flags |= XBF_ASYNC;
1635 list_del_init(&bp->b_list);
1636 }
1637 xfs_bdstrat_cb(bp);
1638 }
1639 blk_finish_plug(&plug);
1640
1641 return pinned;
1642 }
1643
1644 /*
1645 * Write out a buffer list asynchronously.
1646 *
1647 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1648 * out and not wait for I/O completion on any of the buffers. This interface
1649 * is only safely useable for callers that can track I/O completion by higher
1650 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1651 * function.
1652 */
1653 int
1654 xfs_buf_delwri_submit_nowait(
1655 struct list_head *buffer_list)
1656 {
1657 LIST_HEAD (io_list);
1658 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1659 }
1660
1661 /*
1662 * Write out a buffer list synchronously.
1663 *
1664 * This will take the @buffer_list, write all buffers out and wait for I/O
1665 * completion on all of the buffers. @buffer_list is consumed by the function,
1666 * so callers must have some other way of tracking buffers if they require such
1667 * functionality.
1668 */
1669 int
1670 xfs_buf_delwri_submit(
1671 struct list_head *buffer_list)
1672 {
1673 LIST_HEAD (io_list);
1674 int error = 0, error2;
1675 struct xfs_buf *bp;
1676
1677 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1678
1679 /* Wait for IO to complete. */
1680 while (!list_empty(&io_list)) {
1681 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1682
1683 list_del_init(&bp->b_list);
1684 error2 = xfs_buf_iowait(bp);
1685 xfs_buf_relse(bp);
1686 if (!error)
1687 error = error2;
1688 }
1689
1690 return error;
1691 }
1692
1693 int __init
1694 xfs_buf_init(void)
1695 {
1696 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1697 KM_ZONE_HWALIGN, NULL);
1698 if (!xfs_buf_zone)
1699 goto out;
1700
1701 xfslogd_workqueue = alloc_workqueue("xfslogd",
1702 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1703 if (!xfslogd_workqueue)
1704 goto out_free_buf_zone;
1705
1706 return 0;
1707
1708 out_free_buf_zone:
1709 kmem_zone_destroy(xfs_buf_zone);
1710 out:
1711 return -ENOMEM;
1712 }
1713
1714 void
1715 xfs_buf_terminate(void)
1716 {
1717 destroy_workqueue(xfslogd_workqueue);
1718 kmem_zone_destroy(xfs_buf_zone);
1719 }
This page took 0.066758 seconds and 5 git commands to generate.