Merge remote-tracking branch 'file-locks/linux-next'
[deliverable/linux.git] / fs / xfs / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
40 #include "xfs_sb.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
55 #endif
56
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59
60
61 static inline int
62 xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64 {
65 /*
66 * Return true if the buffer is vmapped.
67 *
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
71 */
72 return bp->b_addr && bp->b_page_count > 1;
73 }
74
75 static inline int
76 xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78 {
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81
82 /*
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
89 * in-flight buffers.
90 *
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
94 */
95 static inline void
96 xfs_buf_ioacct_inc(
97 struct xfs_buf *bp)
98 {
99 if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT))
100 return;
101
102 ASSERT(bp->b_flags & XBF_ASYNC);
103 bp->b_flags |= _XBF_IN_FLIGHT;
104 percpu_counter_inc(&bp->b_target->bt_io_count);
105 }
106
107 /*
108 * Clear the in-flight state on a buffer about to be released to the LRU or
109 * freed and unaccount from the buftarg.
110 */
111 static inline void
112 xfs_buf_ioacct_dec(
113 struct xfs_buf *bp)
114 {
115 if (!(bp->b_flags & _XBF_IN_FLIGHT))
116 return;
117
118 bp->b_flags &= ~_XBF_IN_FLIGHT;
119 percpu_counter_dec(&bp->b_target->bt_io_count);
120 }
121
122 /*
123 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
124 * b_lru_ref count so that the buffer is freed immediately when the buffer
125 * reference count falls to zero. If the buffer is already on the LRU, we need
126 * to remove the reference that LRU holds on the buffer.
127 *
128 * This prevents build-up of stale buffers on the LRU.
129 */
130 void
131 xfs_buf_stale(
132 struct xfs_buf *bp)
133 {
134 ASSERT(xfs_buf_islocked(bp));
135
136 bp->b_flags |= XBF_STALE;
137
138 /*
139 * Clear the delwri status so that a delwri queue walker will not
140 * flush this buffer to disk now that it is stale. The delwri queue has
141 * a reference to the buffer, so this is safe to do.
142 */
143 bp->b_flags &= ~_XBF_DELWRI_Q;
144
145 /*
146 * Once the buffer is marked stale and unlocked, a subsequent lookup
147 * could reset b_flags. There is no guarantee that the buffer is
148 * unaccounted (released to LRU) before that occurs. Drop in-flight
149 * status now to preserve accounting consistency.
150 */
151 xfs_buf_ioacct_dec(bp);
152
153 spin_lock(&bp->b_lock);
154 atomic_set(&bp->b_lru_ref, 0);
155 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
156 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
157 atomic_dec(&bp->b_hold);
158
159 ASSERT(atomic_read(&bp->b_hold) >= 1);
160 spin_unlock(&bp->b_lock);
161 }
162
163 static int
164 xfs_buf_get_maps(
165 struct xfs_buf *bp,
166 int map_count)
167 {
168 ASSERT(bp->b_maps == NULL);
169 bp->b_map_count = map_count;
170
171 if (map_count == 1) {
172 bp->b_maps = &bp->__b_map;
173 return 0;
174 }
175
176 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
177 KM_NOFS);
178 if (!bp->b_maps)
179 return -ENOMEM;
180 return 0;
181 }
182
183 /*
184 * Frees b_pages if it was allocated.
185 */
186 static void
187 xfs_buf_free_maps(
188 struct xfs_buf *bp)
189 {
190 if (bp->b_maps != &bp->__b_map) {
191 kmem_free(bp->b_maps);
192 bp->b_maps = NULL;
193 }
194 }
195
196 struct xfs_buf *
197 _xfs_buf_alloc(
198 struct xfs_buftarg *target,
199 struct xfs_buf_map *map,
200 int nmaps,
201 xfs_buf_flags_t flags)
202 {
203 struct xfs_buf *bp;
204 int error;
205 int i;
206
207 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
208 if (unlikely(!bp))
209 return NULL;
210
211 /*
212 * We don't want certain flags to appear in b_flags unless they are
213 * specifically set by later operations on the buffer.
214 */
215 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
216
217 atomic_set(&bp->b_hold, 1);
218 atomic_set(&bp->b_lru_ref, 1);
219 init_completion(&bp->b_iowait);
220 INIT_LIST_HEAD(&bp->b_lru);
221 INIT_LIST_HEAD(&bp->b_list);
222 RB_CLEAR_NODE(&bp->b_rbnode);
223 sema_init(&bp->b_sema, 0); /* held, no waiters */
224 spin_lock_init(&bp->b_lock);
225 XB_SET_OWNER(bp);
226 bp->b_target = target;
227 bp->b_flags = flags;
228
229 /*
230 * Set length and io_length to the same value initially.
231 * I/O routines should use io_length, which will be the same in
232 * most cases but may be reset (e.g. XFS recovery).
233 */
234 error = xfs_buf_get_maps(bp, nmaps);
235 if (error) {
236 kmem_zone_free(xfs_buf_zone, bp);
237 return NULL;
238 }
239
240 bp->b_bn = map[0].bm_bn;
241 bp->b_length = 0;
242 for (i = 0; i < nmaps; i++) {
243 bp->b_maps[i].bm_bn = map[i].bm_bn;
244 bp->b_maps[i].bm_len = map[i].bm_len;
245 bp->b_length += map[i].bm_len;
246 }
247 bp->b_io_length = bp->b_length;
248
249 atomic_set(&bp->b_pin_count, 0);
250 init_waitqueue_head(&bp->b_waiters);
251
252 XFS_STATS_INC(target->bt_mount, xb_create);
253 trace_xfs_buf_init(bp, _RET_IP_);
254
255 return bp;
256 }
257
258 /*
259 * Allocate a page array capable of holding a specified number
260 * of pages, and point the page buf at it.
261 */
262 STATIC int
263 _xfs_buf_get_pages(
264 xfs_buf_t *bp,
265 int page_count)
266 {
267 /* Make sure that we have a page list */
268 if (bp->b_pages == NULL) {
269 bp->b_page_count = page_count;
270 if (page_count <= XB_PAGES) {
271 bp->b_pages = bp->b_page_array;
272 } else {
273 bp->b_pages = kmem_alloc(sizeof(struct page *) *
274 page_count, KM_NOFS);
275 if (bp->b_pages == NULL)
276 return -ENOMEM;
277 }
278 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
279 }
280 return 0;
281 }
282
283 /*
284 * Frees b_pages if it was allocated.
285 */
286 STATIC void
287 _xfs_buf_free_pages(
288 xfs_buf_t *bp)
289 {
290 if (bp->b_pages != bp->b_page_array) {
291 kmem_free(bp->b_pages);
292 bp->b_pages = NULL;
293 }
294 }
295
296 /*
297 * Releases the specified buffer.
298 *
299 * The modification state of any associated pages is left unchanged.
300 * The buffer must not be on any hash - use xfs_buf_rele instead for
301 * hashed and refcounted buffers
302 */
303 void
304 xfs_buf_free(
305 xfs_buf_t *bp)
306 {
307 trace_xfs_buf_free(bp, _RET_IP_);
308
309 ASSERT(list_empty(&bp->b_lru));
310
311 if (bp->b_flags & _XBF_PAGES) {
312 uint i;
313
314 if (xfs_buf_is_vmapped(bp))
315 vm_unmap_ram(bp->b_addr - bp->b_offset,
316 bp->b_page_count);
317
318 for (i = 0; i < bp->b_page_count; i++) {
319 struct page *page = bp->b_pages[i];
320
321 __free_page(page);
322 }
323 } else if (bp->b_flags & _XBF_KMEM)
324 kmem_free(bp->b_addr);
325 _xfs_buf_free_pages(bp);
326 xfs_buf_free_maps(bp);
327 kmem_zone_free(xfs_buf_zone, bp);
328 }
329
330 /*
331 * Allocates all the pages for buffer in question and builds it's page list.
332 */
333 STATIC int
334 xfs_buf_allocate_memory(
335 xfs_buf_t *bp,
336 uint flags)
337 {
338 size_t size;
339 size_t nbytes, offset;
340 gfp_t gfp_mask = xb_to_gfp(flags);
341 unsigned short page_count, i;
342 xfs_off_t start, end;
343 int error;
344
345 /*
346 * for buffers that are contained within a single page, just allocate
347 * the memory from the heap - there's no need for the complexity of
348 * page arrays to keep allocation down to order 0.
349 */
350 size = BBTOB(bp->b_length);
351 if (size < PAGE_SIZE) {
352 bp->b_addr = kmem_alloc(size, KM_NOFS);
353 if (!bp->b_addr) {
354 /* low memory - use alloc_page loop instead */
355 goto use_alloc_page;
356 }
357
358 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
359 ((unsigned long)bp->b_addr & PAGE_MASK)) {
360 /* b_addr spans two pages - use alloc_page instead */
361 kmem_free(bp->b_addr);
362 bp->b_addr = NULL;
363 goto use_alloc_page;
364 }
365 bp->b_offset = offset_in_page(bp->b_addr);
366 bp->b_pages = bp->b_page_array;
367 bp->b_pages[0] = virt_to_page(bp->b_addr);
368 bp->b_page_count = 1;
369 bp->b_flags |= _XBF_KMEM;
370 return 0;
371 }
372
373 use_alloc_page:
374 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
375 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
376 >> PAGE_SHIFT;
377 page_count = end - start;
378 error = _xfs_buf_get_pages(bp, page_count);
379 if (unlikely(error))
380 return error;
381
382 offset = bp->b_offset;
383 bp->b_flags |= _XBF_PAGES;
384
385 for (i = 0; i < bp->b_page_count; i++) {
386 struct page *page;
387 uint retries = 0;
388 retry:
389 page = alloc_page(gfp_mask);
390 if (unlikely(page == NULL)) {
391 if (flags & XBF_READ_AHEAD) {
392 bp->b_page_count = i;
393 error = -ENOMEM;
394 goto out_free_pages;
395 }
396
397 /*
398 * This could deadlock.
399 *
400 * But until all the XFS lowlevel code is revamped to
401 * handle buffer allocation failures we can't do much.
402 */
403 if (!(++retries % 100))
404 xfs_err(NULL,
405 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
406 current->comm, current->pid,
407 __func__, gfp_mask);
408
409 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
410 congestion_wait(BLK_RW_ASYNC, HZ/50);
411 goto retry;
412 }
413
414 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
415
416 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
417 size -= nbytes;
418 bp->b_pages[i] = page;
419 offset = 0;
420 }
421 return 0;
422
423 out_free_pages:
424 for (i = 0; i < bp->b_page_count; i++)
425 __free_page(bp->b_pages[i]);
426 return error;
427 }
428
429 /*
430 * Map buffer into kernel address-space if necessary.
431 */
432 STATIC int
433 _xfs_buf_map_pages(
434 xfs_buf_t *bp,
435 uint flags)
436 {
437 ASSERT(bp->b_flags & _XBF_PAGES);
438 if (bp->b_page_count == 1) {
439 /* A single page buffer is always mappable */
440 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
441 } else if (flags & XBF_UNMAPPED) {
442 bp->b_addr = NULL;
443 } else {
444 int retried = 0;
445 unsigned noio_flag;
446
447 /*
448 * vm_map_ram() will allocate auxillary structures (e.g.
449 * pagetables) with GFP_KERNEL, yet we are likely to be under
450 * GFP_NOFS context here. Hence we need to tell memory reclaim
451 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
452 * memory reclaim re-entering the filesystem here and
453 * potentially deadlocking.
454 */
455 noio_flag = memalloc_noio_save();
456 do {
457 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
458 -1, PAGE_KERNEL);
459 if (bp->b_addr)
460 break;
461 vm_unmap_aliases();
462 } while (retried++ <= 1);
463 memalloc_noio_restore(noio_flag);
464
465 if (!bp->b_addr)
466 return -ENOMEM;
467 bp->b_addr += bp->b_offset;
468 }
469
470 return 0;
471 }
472
473 /*
474 * Finding and Reading Buffers
475 */
476
477 /*
478 * Look up, and creates if absent, a lockable buffer for
479 * a given range of an inode. The buffer is returned
480 * locked. No I/O is implied by this call.
481 */
482 xfs_buf_t *
483 _xfs_buf_find(
484 struct xfs_buftarg *btp,
485 struct xfs_buf_map *map,
486 int nmaps,
487 xfs_buf_flags_t flags,
488 xfs_buf_t *new_bp)
489 {
490 struct xfs_perag *pag;
491 struct rb_node **rbp;
492 struct rb_node *parent;
493 xfs_buf_t *bp;
494 xfs_daddr_t blkno = map[0].bm_bn;
495 xfs_daddr_t eofs;
496 int numblks = 0;
497 int i;
498
499 for (i = 0; i < nmaps; i++)
500 numblks += map[i].bm_len;
501
502 /* Check for IOs smaller than the sector size / not sector aligned */
503 ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize));
504 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
505
506 /*
507 * Corrupted block numbers can get through to here, unfortunately, so we
508 * have to check that the buffer falls within the filesystem bounds.
509 */
510 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
511 if (blkno < 0 || blkno >= eofs) {
512 /*
513 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
514 * but none of the higher level infrastructure supports
515 * returning a specific error on buffer lookup failures.
516 */
517 xfs_alert(btp->bt_mount,
518 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
519 __func__, blkno, eofs);
520 WARN_ON(1);
521 return NULL;
522 }
523
524 /* get tree root */
525 pag = xfs_perag_get(btp->bt_mount,
526 xfs_daddr_to_agno(btp->bt_mount, blkno));
527
528 /* walk tree */
529 spin_lock(&pag->pag_buf_lock);
530 rbp = &pag->pag_buf_tree.rb_node;
531 parent = NULL;
532 bp = NULL;
533 while (*rbp) {
534 parent = *rbp;
535 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
536
537 if (blkno < bp->b_bn)
538 rbp = &(*rbp)->rb_left;
539 else if (blkno > bp->b_bn)
540 rbp = &(*rbp)->rb_right;
541 else {
542 /*
543 * found a block number match. If the range doesn't
544 * match, the only way this is allowed is if the buffer
545 * in the cache is stale and the transaction that made
546 * it stale has not yet committed. i.e. we are
547 * reallocating a busy extent. Skip this buffer and
548 * continue searching to the right for an exact match.
549 */
550 if (bp->b_length != numblks) {
551 ASSERT(bp->b_flags & XBF_STALE);
552 rbp = &(*rbp)->rb_right;
553 continue;
554 }
555 atomic_inc(&bp->b_hold);
556 goto found;
557 }
558 }
559
560 /* No match found */
561 if (new_bp) {
562 rb_link_node(&new_bp->b_rbnode, parent, rbp);
563 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
564 /* the buffer keeps the perag reference until it is freed */
565 new_bp->b_pag = pag;
566 spin_unlock(&pag->pag_buf_lock);
567 } else {
568 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
569 spin_unlock(&pag->pag_buf_lock);
570 xfs_perag_put(pag);
571 }
572 return new_bp;
573
574 found:
575 spin_unlock(&pag->pag_buf_lock);
576 xfs_perag_put(pag);
577
578 if (!xfs_buf_trylock(bp)) {
579 if (flags & XBF_TRYLOCK) {
580 xfs_buf_rele(bp);
581 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
582 return NULL;
583 }
584 xfs_buf_lock(bp);
585 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
586 }
587
588 /*
589 * if the buffer is stale, clear all the external state associated with
590 * it. We need to keep flags such as how we allocated the buffer memory
591 * intact here.
592 */
593 if (bp->b_flags & XBF_STALE) {
594 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
595 ASSERT(bp->b_iodone == NULL);
596 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
597 bp->b_ops = NULL;
598 }
599
600 trace_xfs_buf_find(bp, flags, _RET_IP_);
601 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
602 return bp;
603 }
604
605 /*
606 * Assembles a buffer covering the specified range. The code is optimised for
607 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
608 * more hits than misses.
609 */
610 struct xfs_buf *
611 xfs_buf_get_map(
612 struct xfs_buftarg *target,
613 struct xfs_buf_map *map,
614 int nmaps,
615 xfs_buf_flags_t flags)
616 {
617 struct xfs_buf *bp;
618 struct xfs_buf *new_bp;
619 int error = 0;
620
621 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
622 if (likely(bp))
623 goto found;
624
625 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
626 if (unlikely(!new_bp))
627 return NULL;
628
629 error = xfs_buf_allocate_memory(new_bp, flags);
630 if (error) {
631 xfs_buf_free(new_bp);
632 return NULL;
633 }
634
635 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
636 if (!bp) {
637 xfs_buf_free(new_bp);
638 return NULL;
639 }
640
641 if (bp != new_bp)
642 xfs_buf_free(new_bp);
643
644 found:
645 if (!bp->b_addr) {
646 error = _xfs_buf_map_pages(bp, flags);
647 if (unlikely(error)) {
648 xfs_warn(target->bt_mount,
649 "%s: failed to map pagesn", __func__);
650 xfs_buf_relse(bp);
651 return NULL;
652 }
653 }
654
655 /*
656 * Clear b_error if this is a lookup from a caller that doesn't expect
657 * valid data to be found in the buffer.
658 */
659 if (!(flags & XBF_READ))
660 xfs_buf_ioerror(bp, 0);
661
662 XFS_STATS_INC(target->bt_mount, xb_get);
663 trace_xfs_buf_get(bp, flags, _RET_IP_);
664 return bp;
665 }
666
667 STATIC int
668 _xfs_buf_read(
669 xfs_buf_t *bp,
670 xfs_buf_flags_t flags)
671 {
672 ASSERT(!(flags & XBF_WRITE));
673 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
674
675 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
676 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
677
678 if (flags & XBF_ASYNC) {
679 xfs_buf_submit(bp);
680 return 0;
681 }
682 return xfs_buf_submit_wait(bp);
683 }
684
685 xfs_buf_t *
686 xfs_buf_read_map(
687 struct xfs_buftarg *target,
688 struct xfs_buf_map *map,
689 int nmaps,
690 xfs_buf_flags_t flags,
691 const struct xfs_buf_ops *ops)
692 {
693 struct xfs_buf *bp;
694
695 flags |= XBF_READ;
696
697 bp = xfs_buf_get_map(target, map, nmaps, flags);
698 if (bp) {
699 trace_xfs_buf_read(bp, flags, _RET_IP_);
700
701 if (!(bp->b_flags & XBF_DONE)) {
702 XFS_STATS_INC(target->bt_mount, xb_get_read);
703 bp->b_ops = ops;
704 _xfs_buf_read(bp, flags);
705 } else if (flags & XBF_ASYNC) {
706 /*
707 * Read ahead call which is already satisfied,
708 * drop the buffer
709 */
710 xfs_buf_relse(bp);
711 return NULL;
712 } else {
713 /* We do not want read in the flags */
714 bp->b_flags &= ~XBF_READ;
715 }
716 }
717
718 return bp;
719 }
720
721 /*
722 * If we are not low on memory then do the readahead in a deadlock
723 * safe manner.
724 */
725 void
726 xfs_buf_readahead_map(
727 struct xfs_buftarg *target,
728 struct xfs_buf_map *map,
729 int nmaps,
730 const struct xfs_buf_ops *ops)
731 {
732 if (bdi_read_congested(target->bt_bdi))
733 return;
734
735 xfs_buf_read_map(target, map, nmaps,
736 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
737 }
738
739 /*
740 * Read an uncached buffer from disk. Allocates and returns a locked
741 * buffer containing the disk contents or nothing.
742 */
743 int
744 xfs_buf_read_uncached(
745 struct xfs_buftarg *target,
746 xfs_daddr_t daddr,
747 size_t numblks,
748 int flags,
749 struct xfs_buf **bpp,
750 const struct xfs_buf_ops *ops)
751 {
752 struct xfs_buf *bp;
753
754 *bpp = NULL;
755
756 bp = xfs_buf_get_uncached(target, numblks, flags);
757 if (!bp)
758 return -ENOMEM;
759
760 /* set up the buffer for a read IO */
761 ASSERT(bp->b_map_count == 1);
762 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
763 bp->b_maps[0].bm_bn = daddr;
764 bp->b_flags |= XBF_READ;
765 bp->b_ops = ops;
766
767 xfs_buf_submit_wait(bp);
768 if (bp->b_error) {
769 int error = bp->b_error;
770 xfs_buf_relse(bp);
771 return error;
772 }
773
774 *bpp = bp;
775 return 0;
776 }
777
778 /*
779 * Return a buffer allocated as an empty buffer and associated to external
780 * memory via xfs_buf_associate_memory() back to it's empty state.
781 */
782 void
783 xfs_buf_set_empty(
784 struct xfs_buf *bp,
785 size_t numblks)
786 {
787 if (bp->b_pages)
788 _xfs_buf_free_pages(bp);
789
790 bp->b_pages = NULL;
791 bp->b_page_count = 0;
792 bp->b_addr = NULL;
793 bp->b_length = numblks;
794 bp->b_io_length = numblks;
795
796 ASSERT(bp->b_map_count == 1);
797 bp->b_bn = XFS_BUF_DADDR_NULL;
798 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
799 bp->b_maps[0].bm_len = bp->b_length;
800 }
801
802 static inline struct page *
803 mem_to_page(
804 void *addr)
805 {
806 if ((!is_vmalloc_addr(addr))) {
807 return virt_to_page(addr);
808 } else {
809 return vmalloc_to_page(addr);
810 }
811 }
812
813 int
814 xfs_buf_associate_memory(
815 xfs_buf_t *bp,
816 void *mem,
817 size_t len)
818 {
819 int rval;
820 int i = 0;
821 unsigned long pageaddr;
822 unsigned long offset;
823 size_t buflen;
824 int page_count;
825
826 pageaddr = (unsigned long)mem & PAGE_MASK;
827 offset = (unsigned long)mem - pageaddr;
828 buflen = PAGE_ALIGN(len + offset);
829 page_count = buflen >> PAGE_SHIFT;
830
831 /* Free any previous set of page pointers */
832 if (bp->b_pages)
833 _xfs_buf_free_pages(bp);
834
835 bp->b_pages = NULL;
836 bp->b_addr = mem;
837
838 rval = _xfs_buf_get_pages(bp, page_count);
839 if (rval)
840 return rval;
841
842 bp->b_offset = offset;
843
844 for (i = 0; i < bp->b_page_count; i++) {
845 bp->b_pages[i] = mem_to_page((void *)pageaddr);
846 pageaddr += PAGE_SIZE;
847 }
848
849 bp->b_io_length = BTOBB(len);
850 bp->b_length = BTOBB(buflen);
851
852 return 0;
853 }
854
855 xfs_buf_t *
856 xfs_buf_get_uncached(
857 struct xfs_buftarg *target,
858 size_t numblks,
859 int flags)
860 {
861 unsigned long page_count;
862 int error, i;
863 struct xfs_buf *bp;
864 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
865
866 /* flags might contain irrelevant bits, pass only what we care about */
867 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
868 if (unlikely(bp == NULL))
869 goto fail;
870
871 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
872 error = _xfs_buf_get_pages(bp, page_count);
873 if (error)
874 goto fail_free_buf;
875
876 for (i = 0; i < page_count; i++) {
877 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
878 if (!bp->b_pages[i])
879 goto fail_free_mem;
880 }
881 bp->b_flags |= _XBF_PAGES;
882
883 error = _xfs_buf_map_pages(bp, 0);
884 if (unlikely(error)) {
885 xfs_warn(target->bt_mount,
886 "%s: failed to map pages", __func__);
887 goto fail_free_mem;
888 }
889
890 trace_xfs_buf_get_uncached(bp, _RET_IP_);
891 return bp;
892
893 fail_free_mem:
894 while (--i >= 0)
895 __free_page(bp->b_pages[i]);
896 _xfs_buf_free_pages(bp);
897 fail_free_buf:
898 xfs_buf_free_maps(bp);
899 kmem_zone_free(xfs_buf_zone, bp);
900 fail:
901 return NULL;
902 }
903
904 /*
905 * Increment reference count on buffer, to hold the buffer concurrently
906 * with another thread which may release (free) the buffer asynchronously.
907 * Must hold the buffer already to call this function.
908 */
909 void
910 xfs_buf_hold(
911 xfs_buf_t *bp)
912 {
913 trace_xfs_buf_hold(bp, _RET_IP_);
914 atomic_inc(&bp->b_hold);
915 }
916
917 /*
918 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
919 * placed on LRU or freed (depending on b_lru_ref).
920 */
921 void
922 xfs_buf_rele(
923 xfs_buf_t *bp)
924 {
925 struct xfs_perag *pag = bp->b_pag;
926 bool release;
927 bool freebuf = false;
928
929 trace_xfs_buf_rele(bp, _RET_IP_);
930
931 if (!pag) {
932 ASSERT(list_empty(&bp->b_lru));
933 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
934 if (atomic_dec_and_test(&bp->b_hold)) {
935 xfs_buf_ioacct_dec(bp);
936 xfs_buf_free(bp);
937 }
938 return;
939 }
940
941 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
942
943 ASSERT(atomic_read(&bp->b_hold) > 0);
944
945 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
946 spin_lock(&bp->b_lock);
947 if (!release) {
948 /*
949 * Drop the in-flight state if the buffer is already on the LRU
950 * and it holds the only reference. This is racy because we
951 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
952 * ensures the decrement occurs only once per-buf.
953 */
954 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
955 xfs_buf_ioacct_dec(bp);
956 goto out_unlock;
957 }
958
959 /* the last reference has been dropped ... */
960 xfs_buf_ioacct_dec(bp);
961 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
962 /*
963 * If the buffer is added to the LRU take a new reference to the
964 * buffer for the LRU and clear the (now stale) dispose list
965 * state flag
966 */
967 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
968 bp->b_state &= ~XFS_BSTATE_DISPOSE;
969 atomic_inc(&bp->b_hold);
970 }
971 spin_unlock(&pag->pag_buf_lock);
972 } else {
973 /*
974 * most of the time buffers will already be removed from the
975 * LRU, so optimise that case by checking for the
976 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
977 * was on was the disposal list
978 */
979 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
980 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
981 } else {
982 ASSERT(list_empty(&bp->b_lru));
983 }
984
985 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
986 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
987 spin_unlock(&pag->pag_buf_lock);
988 xfs_perag_put(pag);
989 freebuf = true;
990 }
991
992 out_unlock:
993 spin_unlock(&bp->b_lock);
994
995 if (freebuf)
996 xfs_buf_free(bp);
997 }
998
999
1000 /*
1001 * Lock a buffer object, if it is not already locked.
1002 *
1003 * If we come across a stale, pinned, locked buffer, we know that we are
1004 * being asked to lock a buffer that has been reallocated. Because it is
1005 * pinned, we know that the log has not been pushed to disk and hence it
1006 * will still be locked. Rather than continuing to have trylock attempts
1007 * fail until someone else pushes the log, push it ourselves before
1008 * returning. This means that the xfsaild will not get stuck trying
1009 * to push on stale inode buffers.
1010 */
1011 int
1012 xfs_buf_trylock(
1013 struct xfs_buf *bp)
1014 {
1015 int locked;
1016
1017 locked = down_trylock(&bp->b_sema) == 0;
1018 if (locked) {
1019 XB_SET_OWNER(bp);
1020 trace_xfs_buf_trylock(bp, _RET_IP_);
1021 } else {
1022 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1023 }
1024 return locked;
1025 }
1026
1027 /*
1028 * Lock a buffer object.
1029 *
1030 * If we come across a stale, pinned, locked buffer, we know that we
1031 * are being asked to lock a buffer that has been reallocated. Because
1032 * it is pinned, we know that the log has not been pushed to disk and
1033 * hence it will still be locked. Rather than sleeping until someone
1034 * else pushes the log, push it ourselves before trying to get the lock.
1035 */
1036 void
1037 xfs_buf_lock(
1038 struct xfs_buf *bp)
1039 {
1040 trace_xfs_buf_lock(bp, _RET_IP_);
1041
1042 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1043 xfs_log_force(bp->b_target->bt_mount, 0);
1044 down(&bp->b_sema);
1045 XB_SET_OWNER(bp);
1046
1047 trace_xfs_buf_lock_done(bp, _RET_IP_);
1048 }
1049
1050 void
1051 xfs_buf_unlock(
1052 struct xfs_buf *bp)
1053 {
1054 XB_CLEAR_OWNER(bp);
1055 up(&bp->b_sema);
1056
1057 trace_xfs_buf_unlock(bp, _RET_IP_);
1058 }
1059
1060 STATIC void
1061 xfs_buf_wait_unpin(
1062 xfs_buf_t *bp)
1063 {
1064 DECLARE_WAITQUEUE (wait, current);
1065
1066 if (atomic_read(&bp->b_pin_count) == 0)
1067 return;
1068
1069 add_wait_queue(&bp->b_waiters, &wait);
1070 for (;;) {
1071 set_current_state(TASK_UNINTERRUPTIBLE);
1072 if (atomic_read(&bp->b_pin_count) == 0)
1073 break;
1074 io_schedule();
1075 }
1076 remove_wait_queue(&bp->b_waiters, &wait);
1077 set_current_state(TASK_RUNNING);
1078 }
1079
1080 /*
1081 * Buffer Utility Routines
1082 */
1083
1084 void
1085 xfs_buf_ioend(
1086 struct xfs_buf *bp)
1087 {
1088 bool read = bp->b_flags & XBF_READ;
1089
1090 trace_xfs_buf_iodone(bp, _RET_IP_);
1091
1092 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1093
1094 /*
1095 * Pull in IO completion errors now. We are guaranteed to be running
1096 * single threaded, so we don't need the lock to read b_io_error.
1097 */
1098 if (!bp->b_error && bp->b_io_error)
1099 xfs_buf_ioerror(bp, bp->b_io_error);
1100
1101 /* Only validate buffers that were read without errors */
1102 if (read && !bp->b_error && bp->b_ops) {
1103 ASSERT(!bp->b_iodone);
1104 bp->b_ops->verify_read(bp);
1105 }
1106
1107 if (!bp->b_error)
1108 bp->b_flags |= XBF_DONE;
1109
1110 if (bp->b_iodone)
1111 (*(bp->b_iodone))(bp);
1112 else if (bp->b_flags & XBF_ASYNC)
1113 xfs_buf_relse(bp);
1114 else
1115 complete(&bp->b_iowait);
1116 }
1117
1118 static void
1119 xfs_buf_ioend_work(
1120 struct work_struct *work)
1121 {
1122 struct xfs_buf *bp =
1123 container_of(work, xfs_buf_t, b_ioend_work);
1124
1125 xfs_buf_ioend(bp);
1126 }
1127
1128 static void
1129 xfs_buf_ioend_async(
1130 struct xfs_buf *bp)
1131 {
1132 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1133 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1134 }
1135
1136 void
1137 xfs_buf_ioerror(
1138 xfs_buf_t *bp,
1139 int error)
1140 {
1141 ASSERT(error <= 0 && error >= -1000);
1142 bp->b_error = error;
1143 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1144 }
1145
1146 void
1147 xfs_buf_ioerror_alert(
1148 struct xfs_buf *bp,
1149 const char *func)
1150 {
1151 xfs_alert(bp->b_target->bt_mount,
1152 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1153 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1154 }
1155
1156 int
1157 xfs_bwrite(
1158 struct xfs_buf *bp)
1159 {
1160 int error;
1161
1162 ASSERT(xfs_buf_islocked(bp));
1163
1164 bp->b_flags |= XBF_WRITE;
1165 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1166 XBF_WRITE_FAIL | XBF_DONE);
1167
1168 error = xfs_buf_submit_wait(bp);
1169 if (error) {
1170 xfs_force_shutdown(bp->b_target->bt_mount,
1171 SHUTDOWN_META_IO_ERROR);
1172 }
1173 return error;
1174 }
1175
1176 static void
1177 xfs_buf_bio_end_io(
1178 struct bio *bio)
1179 {
1180 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1181
1182 /*
1183 * don't overwrite existing errors - otherwise we can lose errors on
1184 * buffers that require multiple bios to complete.
1185 */
1186 if (bio->bi_error)
1187 cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1188
1189 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1190 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1191
1192 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1193 xfs_buf_ioend_async(bp);
1194 bio_put(bio);
1195 }
1196
1197 static void
1198 xfs_buf_ioapply_map(
1199 struct xfs_buf *bp,
1200 int map,
1201 int *buf_offset,
1202 int *count,
1203 int op,
1204 int op_flags)
1205 {
1206 int page_index;
1207 int total_nr_pages = bp->b_page_count;
1208 int nr_pages;
1209 struct bio *bio;
1210 sector_t sector = bp->b_maps[map].bm_bn;
1211 int size;
1212 int offset;
1213
1214 total_nr_pages = bp->b_page_count;
1215
1216 /* skip the pages in the buffer before the start offset */
1217 page_index = 0;
1218 offset = *buf_offset;
1219 while (offset >= PAGE_SIZE) {
1220 page_index++;
1221 offset -= PAGE_SIZE;
1222 }
1223
1224 /*
1225 * Limit the IO size to the length of the current vector, and update the
1226 * remaining IO count for the next time around.
1227 */
1228 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1229 *count -= size;
1230 *buf_offset += size;
1231
1232 next_chunk:
1233 atomic_inc(&bp->b_io_remaining);
1234 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1235
1236 bio = bio_alloc(GFP_NOIO, nr_pages);
1237 bio->bi_bdev = bp->b_target->bt_bdev;
1238 bio->bi_iter.bi_sector = sector;
1239 bio->bi_end_io = xfs_buf_bio_end_io;
1240 bio->bi_private = bp;
1241 bio_set_op_attrs(bio, op, op_flags);
1242
1243 for (; size && nr_pages; nr_pages--, page_index++) {
1244 int rbytes, nbytes = PAGE_SIZE - offset;
1245
1246 if (nbytes > size)
1247 nbytes = size;
1248
1249 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1250 offset);
1251 if (rbytes < nbytes)
1252 break;
1253
1254 offset = 0;
1255 sector += BTOBB(nbytes);
1256 size -= nbytes;
1257 total_nr_pages--;
1258 }
1259
1260 if (likely(bio->bi_iter.bi_size)) {
1261 if (xfs_buf_is_vmapped(bp)) {
1262 flush_kernel_vmap_range(bp->b_addr,
1263 xfs_buf_vmap_len(bp));
1264 }
1265 submit_bio(bio);
1266 if (size)
1267 goto next_chunk;
1268 } else {
1269 /*
1270 * This is guaranteed not to be the last io reference count
1271 * because the caller (xfs_buf_submit) holds a count itself.
1272 */
1273 atomic_dec(&bp->b_io_remaining);
1274 xfs_buf_ioerror(bp, -EIO);
1275 bio_put(bio);
1276 }
1277
1278 }
1279
1280 STATIC void
1281 _xfs_buf_ioapply(
1282 struct xfs_buf *bp)
1283 {
1284 struct blk_plug plug;
1285 int op;
1286 int op_flags = 0;
1287 int offset;
1288 int size;
1289 int i;
1290
1291 /*
1292 * Make sure we capture only current IO errors rather than stale errors
1293 * left over from previous use of the buffer (e.g. failed readahead).
1294 */
1295 bp->b_error = 0;
1296
1297 /*
1298 * Initialize the I/O completion workqueue if we haven't yet or the
1299 * submitter has not opted to specify a custom one.
1300 */
1301 if (!bp->b_ioend_wq)
1302 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1303
1304 if (bp->b_flags & XBF_WRITE) {
1305 op = REQ_OP_WRITE;
1306 if (bp->b_flags & XBF_SYNCIO)
1307 op_flags = WRITE_SYNC;
1308 if (bp->b_flags & XBF_FUA)
1309 op_flags |= REQ_FUA;
1310 if (bp->b_flags & XBF_FLUSH)
1311 op_flags |= REQ_PREFLUSH;
1312
1313 /*
1314 * Run the write verifier callback function if it exists. If
1315 * this function fails it will mark the buffer with an error and
1316 * the IO should not be dispatched.
1317 */
1318 if (bp->b_ops) {
1319 bp->b_ops->verify_write(bp);
1320 if (bp->b_error) {
1321 xfs_force_shutdown(bp->b_target->bt_mount,
1322 SHUTDOWN_CORRUPT_INCORE);
1323 return;
1324 }
1325 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1326 struct xfs_mount *mp = bp->b_target->bt_mount;
1327
1328 /*
1329 * non-crc filesystems don't attach verifiers during
1330 * log recovery, so don't warn for such filesystems.
1331 */
1332 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1333 xfs_warn(mp,
1334 "%s: no ops on block 0x%llx/0x%x",
1335 __func__, bp->b_bn, bp->b_length);
1336 xfs_hex_dump(bp->b_addr, 64);
1337 dump_stack();
1338 }
1339 }
1340 } else if (bp->b_flags & XBF_READ_AHEAD) {
1341 op = REQ_OP_READ;
1342 op_flags = REQ_RAHEAD;
1343 } else {
1344 op = REQ_OP_READ;
1345 }
1346
1347 /* we only use the buffer cache for meta-data */
1348 op_flags |= REQ_META;
1349
1350 /*
1351 * Walk all the vectors issuing IO on them. Set up the initial offset
1352 * into the buffer and the desired IO size before we start -
1353 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1354 * subsequent call.
1355 */
1356 offset = bp->b_offset;
1357 size = BBTOB(bp->b_io_length);
1358 blk_start_plug(&plug);
1359 for (i = 0; i < bp->b_map_count; i++) {
1360 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1361 if (bp->b_error)
1362 break;
1363 if (size <= 0)
1364 break; /* all done */
1365 }
1366 blk_finish_plug(&plug);
1367 }
1368
1369 /*
1370 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1371 * the current reference to the IO. It is not safe to reference the buffer after
1372 * a call to this function unless the caller holds an additional reference
1373 * itself.
1374 */
1375 void
1376 xfs_buf_submit(
1377 struct xfs_buf *bp)
1378 {
1379 trace_xfs_buf_submit(bp, _RET_IP_);
1380
1381 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1382 ASSERT(bp->b_flags & XBF_ASYNC);
1383
1384 /* on shutdown we stale and complete the buffer immediately */
1385 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1386 xfs_buf_ioerror(bp, -EIO);
1387 bp->b_flags &= ~XBF_DONE;
1388 xfs_buf_stale(bp);
1389 xfs_buf_ioend(bp);
1390 return;
1391 }
1392
1393 if (bp->b_flags & XBF_WRITE)
1394 xfs_buf_wait_unpin(bp);
1395
1396 /* clear the internal error state to avoid spurious errors */
1397 bp->b_io_error = 0;
1398
1399 /*
1400 * The caller's reference is released during I/O completion.
1401 * This occurs some time after the last b_io_remaining reference is
1402 * released, so after we drop our Io reference we have to have some
1403 * other reference to ensure the buffer doesn't go away from underneath
1404 * us. Take a direct reference to ensure we have safe access to the
1405 * buffer until we are finished with it.
1406 */
1407 xfs_buf_hold(bp);
1408
1409 /*
1410 * Set the count to 1 initially, this will stop an I/O completion
1411 * callout which happens before we have started all the I/O from calling
1412 * xfs_buf_ioend too early.
1413 */
1414 atomic_set(&bp->b_io_remaining, 1);
1415 xfs_buf_ioacct_inc(bp);
1416 _xfs_buf_ioapply(bp);
1417
1418 /*
1419 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1420 * reference we took above. If we drop it to zero, run completion so
1421 * that we don't return to the caller with completion still pending.
1422 */
1423 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1424 if (bp->b_error)
1425 xfs_buf_ioend(bp);
1426 else
1427 xfs_buf_ioend_async(bp);
1428 }
1429
1430 xfs_buf_rele(bp);
1431 /* Note: it is not safe to reference bp now we've dropped our ref */
1432 }
1433
1434 /*
1435 * Synchronous buffer IO submission path, read or write.
1436 */
1437 int
1438 xfs_buf_submit_wait(
1439 struct xfs_buf *bp)
1440 {
1441 int error;
1442
1443 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1444
1445 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1446
1447 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1448 xfs_buf_ioerror(bp, -EIO);
1449 xfs_buf_stale(bp);
1450 bp->b_flags &= ~XBF_DONE;
1451 return -EIO;
1452 }
1453
1454 if (bp->b_flags & XBF_WRITE)
1455 xfs_buf_wait_unpin(bp);
1456
1457 /* clear the internal error state to avoid spurious errors */
1458 bp->b_io_error = 0;
1459
1460 /*
1461 * For synchronous IO, the IO does not inherit the submitters reference
1462 * count, nor the buffer lock. Hence we cannot release the reference we
1463 * are about to take until we've waited for all IO completion to occur,
1464 * including any xfs_buf_ioend_async() work that may be pending.
1465 */
1466 xfs_buf_hold(bp);
1467
1468 /*
1469 * Set the count to 1 initially, this will stop an I/O completion
1470 * callout which happens before we have started all the I/O from calling
1471 * xfs_buf_ioend too early.
1472 */
1473 atomic_set(&bp->b_io_remaining, 1);
1474 _xfs_buf_ioapply(bp);
1475
1476 /*
1477 * make sure we run completion synchronously if it raced with us and is
1478 * already complete.
1479 */
1480 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1481 xfs_buf_ioend(bp);
1482
1483 /* wait for completion before gathering the error from the buffer */
1484 trace_xfs_buf_iowait(bp, _RET_IP_);
1485 wait_for_completion(&bp->b_iowait);
1486 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1487 error = bp->b_error;
1488
1489 /*
1490 * all done now, we can release the hold that keeps the buffer
1491 * referenced for the entire IO.
1492 */
1493 xfs_buf_rele(bp);
1494 return error;
1495 }
1496
1497 void *
1498 xfs_buf_offset(
1499 struct xfs_buf *bp,
1500 size_t offset)
1501 {
1502 struct page *page;
1503
1504 if (bp->b_addr)
1505 return bp->b_addr + offset;
1506
1507 offset += bp->b_offset;
1508 page = bp->b_pages[offset >> PAGE_SHIFT];
1509 return page_address(page) + (offset & (PAGE_SIZE-1));
1510 }
1511
1512 /*
1513 * Move data into or out of a buffer.
1514 */
1515 void
1516 xfs_buf_iomove(
1517 xfs_buf_t *bp, /* buffer to process */
1518 size_t boff, /* starting buffer offset */
1519 size_t bsize, /* length to copy */
1520 void *data, /* data address */
1521 xfs_buf_rw_t mode) /* read/write/zero flag */
1522 {
1523 size_t bend;
1524
1525 bend = boff + bsize;
1526 while (boff < bend) {
1527 struct page *page;
1528 int page_index, page_offset, csize;
1529
1530 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1531 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1532 page = bp->b_pages[page_index];
1533 csize = min_t(size_t, PAGE_SIZE - page_offset,
1534 BBTOB(bp->b_io_length) - boff);
1535
1536 ASSERT((csize + page_offset) <= PAGE_SIZE);
1537
1538 switch (mode) {
1539 case XBRW_ZERO:
1540 memset(page_address(page) + page_offset, 0, csize);
1541 break;
1542 case XBRW_READ:
1543 memcpy(data, page_address(page) + page_offset, csize);
1544 break;
1545 case XBRW_WRITE:
1546 memcpy(page_address(page) + page_offset, data, csize);
1547 }
1548
1549 boff += csize;
1550 data += csize;
1551 }
1552 }
1553
1554 /*
1555 * Handling of buffer targets (buftargs).
1556 */
1557
1558 /*
1559 * Wait for any bufs with callbacks that have been submitted but have not yet
1560 * returned. These buffers will have an elevated hold count, so wait on those
1561 * while freeing all the buffers only held by the LRU.
1562 */
1563 static enum lru_status
1564 xfs_buftarg_wait_rele(
1565 struct list_head *item,
1566 struct list_lru_one *lru,
1567 spinlock_t *lru_lock,
1568 void *arg)
1569
1570 {
1571 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1572 struct list_head *dispose = arg;
1573
1574 if (atomic_read(&bp->b_hold) > 1) {
1575 /* need to wait, so skip it this pass */
1576 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1577 return LRU_SKIP;
1578 }
1579 if (!spin_trylock(&bp->b_lock))
1580 return LRU_SKIP;
1581
1582 /*
1583 * clear the LRU reference count so the buffer doesn't get
1584 * ignored in xfs_buf_rele().
1585 */
1586 atomic_set(&bp->b_lru_ref, 0);
1587 bp->b_state |= XFS_BSTATE_DISPOSE;
1588 list_lru_isolate_move(lru, item, dispose);
1589 spin_unlock(&bp->b_lock);
1590 return LRU_REMOVED;
1591 }
1592
1593 void
1594 xfs_wait_buftarg(
1595 struct xfs_buftarg *btp)
1596 {
1597 LIST_HEAD(dispose);
1598 int loop = 0;
1599
1600 /*
1601 * First wait on the buftarg I/O count for all in-flight buffers to be
1602 * released. This is critical as new buffers do not make the LRU until
1603 * they are released.
1604 *
1605 * Next, flush the buffer workqueue to ensure all completion processing
1606 * has finished. Just waiting on buffer locks is not sufficient for
1607 * async IO as the reference count held over IO is not released until
1608 * after the buffer lock is dropped. Hence we need to ensure here that
1609 * all reference counts have been dropped before we start walking the
1610 * LRU list.
1611 */
1612 while (percpu_counter_sum(&btp->bt_io_count))
1613 delay(100);
1614 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1615
1616 /* loop until there is nothing left on the lru list. */
1617 while (list_lru_count(&btp->bt_lru)) {
1618 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1619 &dispose, LONG_MAX);
1620
1621 while (!list_empty(&dispose)) {
1622 struct xfs_buf *bp;
1623 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1624 list_del_init(&bp->b_lru);
1625 if (bp->b_flags & XBF_WRITE_FAIL) {
1626 xfs_alert(btp->bt_mount,
1627 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1628 (long long)bp->b_bn);
1629 xfs_alert(btp->bt_mount,
1630 "Please run xfs_repair to determine the extent of the problem.");
1631 }
1632 xfs_buf_rele(bp);
1633 }
1634 if (loop++ != 0)
1635 delay(100);
1636 }
1637 }
1638
1639 static enum lru_status
1640 xfs_buftarg_isolate(
1641 struct list_head *item,
1642 struct list_lru_one *lru,
1643 spinlock_t *lru_lock,
1644 void *arg)
1645 {
1646 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1647 struct list_head *dispose = arg;
1648
1649 /*
1650 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1651 * If we fail to get the lock, just skip it.
1652 */
1653 if (!spin_trylock(&bp->b_lock))
1654 return LRU_SKIP;
1655 /*
1656 * Decrement the b_lru_ref count unless the value is already
1657 * zero. If the value is already zero, we need to reclaim the
1658 * buffer, otherwise it gets another trip through the LRU.
1659 */
1660 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1661 spin_unlock(&bp->b_lock);
1662 return LRU_ROTATE;
1663 }
1664
1665 bp->b_state |= XFS_BSTATE_DISPOSE;
1666 list_lru_isolate_move(lru, item, dispose);
1667 spin_unlock(&bp->b_lock);
1668 return LRU_REMOVED;
1669 }
1670
1671 static unsigned long
1672 xfs_buftarg_shrink_scan(
1673 struct shrinker *shrink,
1674 struct shrink_control *sc)
1675 {
1676 struct xfs_buftarg *btp = container_of(shrink,
1677 struct xfs_buftarg, bt_shrinker);
1678 LIST_HEAD(dispose);
1679 unsigned long freed;
1680
1681 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1682 xfs_buftarg_isolate, &dispose);
1683
1684 while (!list_empty(&dispose)) {
1685 struct xfs_buf *bp;
1686 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1687 list_del_init(&bp->b_lru);
1688 xfs_buf_rele(bp);
1689 }
1690
1691 return freed;
1692 }
1693
1694 static unsigned long
1695 xfs_buftarg_shrink_count(
1696 struct shrinker *shrink,
1697 struct shrink_control *sc)
1698 {
1699 struct xfs_buftarg *btp = container_of(shrink,
1700 struct xfs_buftarg, bt_shrinker);
1701 return list_lru_shrink_count(&btp->bt_lru, sc);
1702 }
1703
1704 void
1705 xfs_free_buftarg(
1706 struct xfs_mount *mp,
1707 struct xfs_buftarg *btp)
1708 {
1709 unregister_shrinker(&btp->bt_shrinker);
1710 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1711 percpu_counter_destroy(&btp->bt_io_count);
1712 list_lru_destroy(&btp->bt_lru);
1713
1714 if (mp->m_flags & XFS_MOUNT_BARRIER)
1715 xfs_blkdev_issue_flush(btp);
1716
1717 kmem_free(btp);
1718 }
1719
1720 int
1721 xfs_setsize_buftarg(
1722 xfs_buftarg_t *btp,
1723 unsigned int sectorsize)
1724 {
1725 /* Set up metadata sector size info */
1726 btp->bt_meta_sectorsize = sectorsize;
1727 btp->bt_meta_sectormask = sectorsize - 1;
1728
1729 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1730 xfs_warn(btp->bt_mount,
1731 "Cannot set_blocksize to %u on device %pg",
1732 sectorsize, btp->bt_bdev);
1733 return -EINVAL;
1734 }
1735
1736 /* Set up device logical sector size mask */
1737 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1738 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1739
1740 return 0;
1741 }
1742
1743 /*
1744 * When allocating the initial buffer target we have not yet
1745 * read in the superblock, so don't know what sized sectors
1746 * are being used at this early stage. Play safe.
1747 */
1748 STATIC int
1749 xfs_setsize_buftarg_early(
1750 xfs_buftarg_t *btp,
1751 struct block_device *bdev)
1752 {
1753 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1754 }
1755
1756 xfs_buftarg_t *
1757 xfs_alloc_buftarg(
1758 struct xfs_mount *mp,
1759 struct block_device *bdev)
1760 {
1761 xfs_buftarg_t *btp;
1762
1763 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1764
1765 btp->bt_mount = mp;
1766 btp->bt_dev = bdev->bd_dev;
1767 btp->bt_bdev = bdev;
1768 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1769
1770 if (xfs_setsize_buftarg_early(btp, bdev))
1771 goto error;
1772
1773 if (list_lru_init(&btp->bt_lru))
1774 goto error;
1775
1776 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1777 goto error;
1778
1779 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1780 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1781 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1782 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1783 register_shrinker(&btp->bt_shrinker);
1784 return btp;
1785
1786 error:
1787 kmem_free(btp);
1788 return NULL;
1789 }
1790
1791 /*
1792 * Add a buffer to the delayed write list.
1793 *
1794 * This queues a buffer for writeout if it hasn't already been. Note that
1795 * neither this routine nor the buffer list submission functions perform
1796 * any internal synchronization. It is expected that the lists are thread-local
1797 * to the callers.
1798 *
1799 * Returns true if we queued up the buffer, or false if it already had
1800 * been on the buffer list.
1801 */
1802 bool
1803 xfs_buf_delwri_queue(
1804 struct xfs_buf *bp,
1805 struct list_head *list)
1806 {
1807 ASSERT(xfs_buf_islocked(bp));
1808 ASSERT(!(bp->b_flags & XBF_READ));
1809
1810 /*
1811 * If the buffer is already marked delwri it already is queued up
1812 * by someone else for imediate writeout. Just ignore it in that
1813 * case.
1814 */
1815 if (bp->b_flags & _XBF_DELWRI_Q) {
1816 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1817 return false;
1818 }
1819
1820 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1821
1822 /*
1823 * If a buffer gets written out synchronously or marked stale while it
1824 * is on a delwri list we lazily remove it. To do this, the other party
1825 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1826 * It remains referenced and on the list. In a rare corner case it
1827 * might get readded to a delwri list after the synchronous writeout, in
1828 * which case we need just need to re-add the flag here.
1829 */
1830 bp->b_flags |= _XBF_DELWRI_Q;
1831 if (list_empty(&bp->b_list)) {
1832 atomic_inc(&bp->b_hold);
1833 list_add_tail(&bp->b_list, list);
1834 }
1835
1836 return true;
1837 }
1838
1839 /*
1840 * Compare function is more complex than it needs to be because
1841 * the return value is only 32 bits and we are doing comparisons
1842 * on 64 bit values
1843 */
1844 static int
1845 xfs_buf_cmp(
1846 void *priv,
1847 struct list_head *a,
1848 struct list_head *b)
1849 {
1850 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1851 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1852 xfs_daddr_t diff;
1853
1854 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1855 if (diff < 0)
1856 return -1;
1857 if (diff > 0)
1858 return 1;
1859 return 0;
1860 }
1861
1862 /*
1863 * submit buffers for write.
1864 *
1865 * When we have a large buffer list, we do not want to hold all the buffers
1866 * locked while we block on the request queue waiting for IO dispatch. To avoid
1867 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1868 * the lock hold times for lists which may contain thousands of objects.
1869 *
1870 * To do this, we sort the buffer list before we walk the list to lock and
1871 * submit buffers, and we plug and unplug around each group of buffers we
1872 * submit.
1873 */
1874 static int
1875 xfs_buf_delwri_submit_buffers(
1876 struct list_head *buffer_list,
1877 struct list_head *wait_list)
1878 {
1879 struct xfs_buf *bp, *n;
1880 LIST_HEAD (submit_list);
1881 int pinned = 0;
1882 struct blk_plug plug;
1883
1884 list_sort(NULL, buffer_list, xfs_buf_cmp);
1885
1886 blk_start_plug(&plug);
1887 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1888 if (!wait_list) {
1889 if (xfs_buf_ispinned(bp)) {
1890 pinned++;
1891 continue;
1892 }
1893 if (!xfs_buf_trylock(bp))
1894 continue;
1895 } else {
1896 xfs_buf_lock(bp);
1897 }
1898
1899 /*
1900 * Someone else might have written the buffer synchronously or
1901 * marked it stale in the meantime. In that case only the
1902 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1903 * reference and remove it from the list here.
1904 */
1905 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1906 list_del_init(&bp->b_list);
1907 xfs_buf_relse(bp);
1908 continue;
1909 }
1910
1911 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1912
1913 /*
1914 * We do all IO submission async. This means if we need
1915 * to wait for IO completion we need to take an extra
1916 * reference so the buffer is still valid on the other
1917 * side. We need to move the buffer onto the io_list
1918 * at this point so the caller can still access it.
1919 */
1920 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1921 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1922 if (wait_list) {
1923 xfs_buf_hold(bp);
1924 list_move_tail(&bp->b_list, wait_list);
1925 } else
1926 list_del_init(&bp->b_list);
1927
1928 xfs_buf_submit(bp);
1929 }
1930 blk_finish_plug(&plug);
1931
1932 return pinned;
1933 }
1934
1935 /*
1936 * Write out a buffer list asynchronously.
1937 *
1938 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1939 * out and not wait for I/O completion on any of the buffers. This interface
1940 * is only safely useable for callers that can track I/O completion by higher
1941 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1942 * function.
1943 */
1944 int
1945 xfs_buf_delwri_submit_nowait(
1946 struct list_head *buffer_list)
1947 {
1948 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1949 }
1950
1951 /*
1952 * Write out a buffer list synchronously.
1953 *
1954 * This will take the @buffer_list, write all buffers out and wait for I/O
1955 * completion on all of the buffers. @buffer_list is consumed by the function,
1956 * so callers must have some other way of tracking buffers if they require such
1957 * functionality.
1958 */
1959 int
1960 xfs_buf_delwri_submit(
1961 struct list_head *buffer_list)
1962 {
1963 LIST_HEAD (wait_list);
1964 int error = 0, error2;
1965 struct xfs_buf *bp;
1966
1967 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1968
1969 /* Wait for IO to complete. */
1970 while (!list_empty(&wait_list)) {
1971 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1972
1973 list_del_init(&bp->b_list);
1974
1975 /* locking the buffer will wait for async IO completion. */
1976 xfs_buf_lock(bp);
1977 error2 = bp->b_error;
1978 xfs_buf_relse(bp);
1979 if (!error)
1980 error = error2;
1981 }
1982
1983 return error;
1984 }
1985
1986 int __init
1987 xfs_buf_init(void)
1988 {
1989 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1990 KM_ZONE_HWALIGN, NULL);
1991 if (!xfs_buf_zone)
1992 goto out;
1993
1994 return 0;
1995
1996 out:
1997 return -ENOMEM;
1998 }
1999
2000 void
2001 xfs_buf_terminate(void)
2002 {
2003 kmem_zone_destroy(xfs_buf_zone);
2004 }
This page took 0.070401 seconds and 6 git commands to generate.