xfs: refactor xfs_buf_item_format_segment
[deliverable/linux.git] / fs / xfs / xfs_buf_item.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_log_format.h"
21 #include "xfs_trans_resv.h"
22 #include "xfs_bit.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_trans.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 #include "xfs_log.h"
32
33
34 kmem_zone_t *xfs_buf_item_zone;
35
36 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
37 {
38 return container_of(lip, struct xfs_buf_log_item, bli_item);
39 }
40
41 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
42
43 static inline int
44 xfs_buf_log_format_size(
45 struct xfs_buf_log_format *blfp)
46 {
47 return offsetof(struct xfs_buf_log_format, blf_data_map) +
48 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
49 }
50
51 /*
52 * This returns the number of log iovecs needed to log the
53 * given buf log item.
54 *
55 * It calculates this as 1 iovec for the buf log format structure
56 * and 1 for each stretch of non-contiguous chunks to be logged.
57 * Contiguous chunks are logged in a single iovec.
58 *
59 * If the XFS_BLI_STALE flag has been set, then log nothing.
60 */
61 STATIC void
62 xfs_buf_item_size_segment(
63 struct xfs_buf_log_item *bip,
64 struct xfs_buf_log_format *blfp,
65 int *nvecs,
66 int *nbytes)
67 {
68 struct xfs_buf *bp = bip->bli_buf;
69 int next_bit;
70 int last_bit;
71
72 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
73 if (last_bit == -1)
74 return;
75
76 /*
77 * initial count for a dirty buffer is 2 vectors - the format structure
78 * and the first dirty region.
79 */
80 *nvecs += 2;
81 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
82
83 while (last_bit != -1) {
84 /*
85 * This takes the bit number to start looking from and
86 * returns the next set bit from there. It returns -1
87 * if there are no more bits set or the start bit is
88 * beyond the end of the bitmap.
89 */
90 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
91 last_bit + 1);
92 /*
93 * If we run out of bits, leave the loop,
94 * else if we find a new set of bits bump the number of vecs,
95 * else keep scanning the current set of bits.
96 */
97 if (next_bit == -1) {
98 break;
99 } else if (next_bit != last_bit + 1) {
100 last_bit = next_bit;
101 (*nvecs)++;
102 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
103 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
104 XFS_BLF_CHUNK)) {
105 last_bit = next_bit;
106 (*nvecs)++;
107 } else {
108 last_bit++;
109 }
110 *nbytes += XFS_BLF_CHUNK;
111 }
112 }
113
114 /*
115 * This returns the number of log iovecs needed to log the given buf log item.
116 *
117 * It calculates this as 1 iovec for the buf log format structure and 1 for each
118 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
119 * in a single iovec.
120 *
121 * Discontiguous buffers need a format structure per region that that is being
122 * logged. This makes the changes in the buffer appear to log recovery as though
123 * they came from separate buffers, just like would occur if multiple buffers
124 * were used instead of a single discontiguous buffer. This enables
125 * discontiguous buffers to be in-memory constructs, completely transparent to
126 * what ends up on disk.
127 *
128 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
129 * format structures.
130 */
131 STATIC void
132 xfs_buf_item_size(
133 struct xfs_log_item *lip,
134 int *nvecs,
135 int *nbytes)
136 {
137 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
138 int i;
139
140 ASSERT(atomic_read(&bip->bli_refcount) > 0);
141 if (bip->bli_flags & XFS_BLI_STALE) {
142 /*
143 * The buffer is stale, so all we need to log
144 * is the buf log format structure with the
145 * cancel flag in it.
146 */
147 trace_xfs_buf_item_size_stale(bip);
148 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
149 *nvecs += bip->bli_format_count;
150 for (i = 0; i < bip->bli_format_count; i++) {
151 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
152 }
153 return;
154 }
155
156 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
157
158 if (bip->bli_flags & XFS_BLI_ORDERED) {
159 /*
160 * The buffer has been logged just to order it.
161 * It is not being included in the transaction
162 * commit, so no vectors are used at all.
163 */
164 trace_xfs_buf_item_size_ordered(bip);
165 *nvecs = XFS_LOG_VEC_ORDERED;
166 return;
167 }
168
169 /*
170 * the vector count is based on the number of buffer vectors we have
171 * dirty bits in. This will only be greater than one when we have a
172 * compound buffer with more than one segment dirty. Hence for compound
173 * buffers we need to track which segment the dirty bits correspond to,
174 * and when we move from one segment to the next increment the vector
175 * count for the extra buf log format structure that will need to be
176 * written.
177 */
178 for (i = 0; i < bip->bli_format_count; i++) {
179 xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
180 nvecs, nbytes);
181 }
182 trace_xfs_buf_item_size(bip);
183 }
184
185 static inline struct xfs_log_iovec *
186 xfs_buf_item_copy_iovec(
187 struct xfs_log_iovec *vecp,
188 struct xfs_buf *bp,
189 uint offset,
190 int first_bit,
191 uint nbits)
192 {
193 offset += first_bit * XFS_BLF_CHUNK;
194
195 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
196 vecp->i_addr = xfs_buf_offset(bp, offset);
197 vecp->i_len = nbits * XFS_BLF_CHUNK;
198 return vecp + 1;
199 }
200
201 static inline bool
202 xfs_buf_item_straddle(
203 struct xfs_buf *bp,
204 uint offset,
205 int next_bit,
206 int last_bit)
207 {
208 return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
209 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
210 XFS_BLF_CHUNK);
211 }
212
213 static struct xfs_log_iovec *
214 xfs_buf_item_format_segment(
215 struct xfs_buf_log_item *bip,
216 struct xfs_log_iovec *vecp,
217 uint offset,
218 struct xfs_buf_log_format *blfp)
219 {
220 struct xfs_buf *bp = bip->bli_buf;
221 uint base_size;
222 uint nvecs;
223 int first_bit;
224 int last_bit;
225 int next_bit;
226 uint nbits;
227
228 /* copy the flags across from the base format item */
229 blfp->blf_flags = bip->__bli_format.blf_flags;
230
231 /*
232 * Base size is the actual size of the ondisk structure - it reflects
233 * the actual size of the dirty bitmap rather than the size of the in
234 * memory structure.
235 */
236 base_size = xfs_buf_log_format_size(blfp);
237
238 nvecs = 0;
239 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
240 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
241 /*
242 * If the map is not be dirty in the transaction, mark
243 * the size as zero and do not advance the vector pointer.
244 */
245 goto out;
246 }
247
248 vecp->i_addr = blfp;
249 vecp->i_len = base_size;
250 vecp->i_type = XLOG_REG_TYPE_BFORMAT;
251 vecp++;
252 nvecs = 1;
253
254 if (bip->bli_flags & XFS_BLI_STALE) {
255 /*
256 * The buffer is stale, so all we need to log
257 * is the buf log format structure with the
258 * cancel flag in it.
259 */
260 trace_xfs_buf_item_format_stale(bip);
261 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
262 goto out;
263 }
264
265
266 /*
267 * Fill in an iovec for each set of contiguous chunks.
268 */
269 last_bit = first_bit;
270 nbits = 1;
271 for (;;) {
272 /*
273 * This takes the bit number to start looking from and
274 * returns the next set bit from there. It returns -1
275 * if there are no more bits set or the start bit is
276 * beyond the end of the bitmap.
277 */
278 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
279 (uint)last_bit + 1);
280 /*
281 * If we run out of bits fill in the last iovec and get out of
282 * the loop. Else if we start a new set of bits then fill in
283 * the iovec for the series we were looking at and start
284 * counting the bits in the new one. Else we're still in the
285 * same set of bits so just keep counting and scanning.
286 */
287 if (next_bit == -1) {
288 xfs_buf_item_copy_iovec(vecp, bp, offset,
289 first_bit, nbits);
290 nvecs++;
291 break;
292 } else if (next_bit != last_bit + 1 ||
293 xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
294 vecp = xfs_buf_item_copy_iovec(vecp, bp, offset,
295 first_bit, nbits);
296 nvecs++;
297 first_bit = next_bit;
298 last_bit = next_bit;
299 nbits = 1;
300 } else {
301 last_bit++;
302 nbits++;
303 }
304 }
305 out:
306 blfp->blf_size = nvecs;
307 return vecp;
308 }
309
310 /*
311 * This is called to fill in the vector of log iovecs for the
312 * given log buf item. It fills the first entry with a buf log
313 * format structure, and the rest point to contiguous chunks
314 * within the buffer.
315 */
316 STATIC void
317 xfs_buf_item_format(
318 struct xfs_log_item *lip,
319 struct xfs_log_iovec *vecp)
320 {
321 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
322 struct xfs_buf *bp = bip->bli_buf;
323 uint offset = 0;
324 int i;
325
326 ASSERT(atomic_read(&bip->bli_refcount) > 0);
327 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
328 (bip->bli_flags & XFS_BLI_STALE));
329
330 /*
331 * If it is an inode buffer, transfer the in-memory state to the
332 * format flags and clear the in-memory state.
333 *
334 * For buffer based inode allocation, we do not transfer
335 * this state if the inode buffer allocation has not yet been committed
336 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
337 * correct replay of the inode allocation.
338 *
339 * For icreate item based inode allocation, the buffers aren't written
340 * to the journal during allocation, and hence we should always tag the
341 * buffer as an inode buffer so that the correct unlinked list replay
342 * occurs during recovery.
343 */
344 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
345 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
346 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
347 xfs_log_item_in_current_chkpt(lip)))
348 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
349 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
350 }
351
352 if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) ==
353 XFS_BLI_ORDERED) {
354 /*
355 * The buffer has been logged just to order it. It is not being
356 * included in the transaction commit, so don't format it.
357 */
358 trace_xfs_buf_item_format_ordered(bip);
359 return;
360 }
361
362 for (i = 0; i < bip->bli_format_count; i++) {
363 vecp = xfs_buf_item_format_segment(bip, vecp, offset,
364 &bip->bli_formats[i]);
365 offset += bp->b_maps[i].bm_len;
366 }
367
368 /*
369 * Check to make sure everything is consistent.
370 */
371 trace_xfs_buf_item_format(bip);
372 }
373
374 /*
375 * This is called to pin the buffer associated with the buf log item in memory
376 * so it cannot be written out.
377 *
378 * We also always take a reference to the buffer log item here so that the bli
379 * is held while the item is pinned in memory. This means that we can
380 * unconditionally drop the reference count a transaction holds when the
381 * transaction is completed.
382 */
383 STATIC void
384 xfs_buf_item_pin(
385 struct xfs_log_item *lip)
386 {
387 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
388
389 ASSERT(atomic_read(&bip->bli_refcount) > 0);
390 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
391 (bip->bli_flags & XFS_BLI_ORDERED) ||
392 (bip->bli_flags & XFS_BLI_STALE));
393
394 trace_xfs_buf_item_pin(bip);
395
396 atomic_inc(&bip->bli_refcount);
397 atomic_inc(&bip->bli_buf->b_pin_count);
398 }
399
400 /*
401 * This is called to unpin the buffer associated with the buf log
402 * item which was previously pinned with a call to xfs_buf_item_pin().
403 *
404 * Also drop the reference to the buf item for the current transaction.
405 * If the XFS_BLI_STALE flag is set and we are the last reference,
406 * then free up the buf log item and unlock the buffer.
407 *
408 * If the remove flag is set we are called from uncommit in the
409 * forced-shutdown path. If that is true and the reference count on
410 * the log item is going to drop to zero we need to free the item's
411 * descriptor in the transaction.
412 */
413 STATIC void
414 xfs_buf_item_unpin(
415 struct xfs_log_item *lip,
416 int remove)
417 {
418 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
419 xfs_buf_t *bp = bip->bli_buf;
420 struct xfs_ail *ailp = lip->li_ailp;
421 int stale = bip->bli_flags & XFS_BLI_STALE;
422 int freed;
423
424 ASSERT(bp->b_fspriv == bip);
425 ASSERT(atomic_read(&bip->bli_refcount) > 0);
426
427 trace_xfs_buf_item_unpin(bip);
428
429 freed = atomic_dec_and_test(&bip->bli_refcount);
430
431 if (atomic_dec_and_test(&bp->b_pin_count))
432 wake_up_all(&bp->b_waiters);
433
434 if (freed && stale) {
435 ASSERT(bip->bli_flags & XFS_BLI_STALE);
436 ASSERT(xfs_buf_islocked(bp));
437 ASSERT(XFS_BUF_ISSTALE(bp));
438 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
439
440 trace_xfs_buf_item_unpin_stale(bip);
441
442 if (remove) {
443 /*
444 * If we are in a transaction context, we have to
445 * remove the log item from the transaction as we are
446 * about to release our reference to the buffer. If we
447 * don't, the unlock that occurs later in
448 * xfs_trans_uncommit() will try to reference the
449 * buffer which we no longer have a hold on.
450 */
451 if (lip->li_desc)
452 xfs_trans_del_item(lip);
453
454 /*
455 * Since the transaction no longer refers to the buffer,
456 * the buffer should no longer refer to the transaction.
457 */
458 bp->b_transp = NULL;
459 }
460
461 /*
462 * If we get called here because of an IO error, we may
463 * or may not have the item on the AIL. xfs_trans_ail_delete()
464 * will take care of that situation.
465 * xfs_trans_ail_delete() drops the AIL lock.
466 */
467 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
468 xfs_buf_do_callbacks(bp);
469 bp->b_fspriv = NULL;
470 bp->b_iodone = NULL;
471 } else {
472 spin_lock(&ailp->xa_lock);
473 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
474 xfs_buf_item_relse(bp);
475 ASSERT(bp->b_fspriv == NULL);
476 }
477 xfs_buf_relse(bp);
478 } else if (freed && remove) {
479 /*
480 * There are currently two references to the buffer - the active
481 * LRU reference and the buf log item. What we are about to do
482 * here - simulate a failed IO completion - requires 3
483 * references.
484 *
485 * The LRU reference is removed by the xfs_buf_stale() call. The
486 * buf item reference is removed by the xfs_buf_iodone()
487 * callback that is run by xfs_buf_do_callbacks() during ioend
488 * processing (via the bp->b_iodone callback), and then finally
489 * the ioend processing will drop the IO reference if the buffer
490 * is marked XBF_ASYNC.
491 *
492 * Hence we need to take an additional reference here so that IO
493 * completion processing doesn't free the buffer prematurely.
494 */
495 xfs_buf_lock(bp);
496 xfs_buf_hold(bp);
497 bp->b_flags |= XBF_ASYNC;
498 xfs_buf_ioerror(bp, EIO);
499 XFS_BUF_UNDONE(bp);
500 xfs_buf_stale(bp);
501 xfs_buf_ioend(bp, 0);
502 }
503 }
504
505 STATIC uint
506 xfs_buf_item_push(
507 struct xfs_log_item *lip,
508 struct list_head *buffer_list)
509 {
510 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
511 struct xfs_buf *bp = bip->bli_buf;
512 uint rval = XFS_ITEM_SUCCESS;
513
514 if (xfs_buf_ispinned(bp))
515 return XFS_ITEM_PINNED;
516 if (!xfs_buf_trylock(bp)) {
517 /*
518 * If we have just raced with a buffer being pinned and it has
519 * been marked stale, we could end up stalling until someone else
520 * issues a log force to unpin the stale buffer. Check for the
521 * race condition here so xfsaild recognizes the buffer is pinned
522 * and queues a log force to move it along.
523 */
524 if (xfs_buf_ispinned(bp))
525 return XFS_ITEM_PINNED;
526 return XFS_ITEM_LOCKED;
527 }
528
529 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
530
531 trace_xfs_buf_item_push(bip);
532
533 if (!xfs_buf_delwri_queue(bp, buffer_list))
534 rval = XFS_ITEM_FLUSHING;
535 xfs_buf_unlock(bp);
536 return rval;
537 }
538
539 /*
540 * Release the buffer associated with the buf log item. If there is no dirty
541 * logged data associated with the buffer recorded in the buf log item, then
542 * free the buf log item and remove the reference to it in the buffer.
543 *
544 * This call ignores the recursion count. It is only called when the buffer
545 * should REALLY be unlocked, regardless of the recursion count.
546 *
547 * We unconditionally drop the transaction's reference to the log item. If the
548 * item was logged, then another reference was taken when it was pinned, so we
549 * can safely drop the transaction reference now. This also allows us to avoid
550 * potential races with the unpin code freeing the bli by not referencing the
551 * bli after we've dropped the reference count.
552 *
553 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
554 * if necessary but do not unlock the buffer. This is for support of
555 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
556 * free the item.
557 */
558 STATIC void
559 xfs_buf_item_unlock(
560 struct xfs_log_item *lip)
561 {
562 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
563 struct xfs_buf *bp = bip->bli_buf;
564 bool clean;
565 bool aborted;
566 int flags;
567
568 /* Clear the buffer's association with this transaction. */
569 bp->b_transp = NULL;
570
571 /*
572 * If this is a transaction abort, don't return early. Instead, allow
573 * the brelse to happen. Normally it would be done for stale
574 * (cancelled) buffers at unpin time, but we'll never go through the
575 * pin/unpin cycle if we abort inside commit.
576 */
577 aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false;
578 /*
579 * Before possibly freeing the buf item, copy the per-transaction state
580 * so we can reference it safely later after clearing it from the
581 * buffer log item.
582 */
583 flags = bip->bli_flags;
584 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
585
586 /*
587 * If the buf item is marked stale, then don't do anything. We'll
588 * unlock the buffer and free the buf item when the buffer is unpinned
589 * for the last time.
590 */
591 if (flags & XFS_BLI_STALE) {
592 trace_xfs_buf_item_unlock_stale(bip);
593 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
594 if (!aborted) {
595 atomic_dec(&bip->bli_refcount);
596 return;
597 }
598 }
599
600 trace_xfs_buf_item_unlock(bip);
601
602 /*
603 * If the buf item isn't tracking any data, free it, otherwise drop the
604 * reference we hold to it. If we are aborting the transaction, this may
605 * be the only reference to the buf item, so we free it anyway
606 * regardless of whether it is dirty or not. A dirty abort implies a
607 * shutdown, anyway.
608 *
609 * Ordered buffers are dirty but may have no recorded changes, so ensure
610 * we only release clean items here.
611 */
612 clean = (flags & XFS_BLI_DIRTY) ? false : true;
613 if (clean) {
614 int i;
615 for (i = 0; i < bip->bli_format_count; i++) {
616 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
617 bip->bli_formats[i].blf_map_size)) {
618 clean = false;
619 break;
620 }
621 }
622 }
623
624 /*
625 * Clean buffers, by definition, cannot be in the AIL. However, aborted
626 * buffers may be dirty and hence in the AIL. Therefore if we are
627 * aborting a buffer and we've just taken the last refernce away, we
628 * have to check if it is in the AIL before freeing it. We need to free
629 * it in this case, because an aborted transaction has already shut the
630 * filesystem down and this is the last chance we will have to do so.
631 */
632 if (atomic_dec_and_test(&bip->bli_refcount)) {
633 if (clean)
634 xfs_buf_item_relse(bp);
635 else if (aborted) {
636 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
637 if (lip->li_flags & XFS_LI_IN_AIL) {
638 spin_lock(&lip->li_ailp->xa_lock);
639 xfs_trans_ail_delete(lip->li_ailp, lip,
640 SHUTDOWN_LOG_IO_ERROR);
641 }
642 xfs_buf_item_relse(bp);
643 }
644 }
645
646 if (!(flags & XFS_BLI_HOLD))
647 xfs_buf_relse(bp);
648 }
649
650 /*
651 * This is called to find out where the oldest active copy of the
652 * buf log item in the on disk log resides now that the last log
653 * write of it completed at the given lsn.
654 * We always re-log all the dirty data in a buffer, so usually the
655 * latest copy in the on disk log is the only one that matters. For
656 * those cases we simply return the given lsn.
657 *
658 * The one exception to this is for buffers full of newly allocated
659 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
660 * flag set, indicating that only the di_next_unlinked fields from the
661 * inodes in the buffers will be replayed during recovery. If the
662 * original newly allocated inode images have not yet been flushed
663 * when the buffer is so relogged, then we need to make sure that we
664 * keep the old images in the 'active' portion of the log. We do this
665 * by returning the original lsn of that transaction here rather than
666 * the current one.
667 */
668 STATIC xfs_lsn_t
669 xfs_buf_item_committed(
670 struct xfs_log_item *lip,
671 xfs_lsn_t lsn)
672 {
673 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
674
675 trace_xfs_buf_item_committed(bip);
676
677 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
678 return lip->li_lsn;
679 return lsn;
680 }
681
682 STATIC void
683 xfs_buf_item_committing(
684 struct xfs_log_item *lip,
685 xfs_lsn_t commit_lsn)
686 {
687 }
688
689 /*
690 * This is the ops vector shared by all buf log items.
691 */
692 static const struct xfs_item_ops xfs_buf_item_ops = {
693 .iop_size = xfs_buf_item_size,
694 .iop_format = xfs_buf_item_format,
695 .iop_pin = xfs_buf_item_pin,
696 .iop_unpin = xfs_buf_item_unpin,
697 .iop_unlock = xfs_buf_item_unlock,
698 .iop_committed = xfs_buf_item_committed,
699 .iop_push = xfs_buf_item_push,
700 .iop_committing = xfs_buf_item_committing
701 };
702
703 STATIC int
704 xfs_buf_item_get_format(
705 struct xfs_buf_log_item *bip,
706 int count)
707 {
708 ASSERT(bip->bli_formats == NULL);
709 bip->bli_format_count = count;
710
711 if (count == 1) {
712 bip->bli_formats = &bip->__bli_format;
713 return 0;
714 }
715
716 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
717 KM_SLEEP);
718 if (!bip->bli_formats)
719 return ENOMEM;
720 return 0;
721 }
722
723 STATIC void
724 xfs_buf_item_free_format(
725 struct xfs_buf_log_item *bip)
726 {
727 if (bip->bli_formats != &bip->__bli_format) {
728 kmem_free(bip->bli_formats);
729 bip->bli_formats = NULL;
730 }
731 }
732
733 /*
734 * Allocate a new buf log item to go with the given buffer.
735 * Set the buffer's b_fsprivate field to point to the new
736 * buf log item. If there are other item's attached to the
737 * buffer (see xfs_buf_attach_iodone() below), then put the
738 * buf log item at the front.
739 */
740 void
741 xfs_buf_item_init(
742 xfs_buf_t *bp,
743 xfs_mount_t *mp)
744 {
745 xfs_log_item_t *lip = bp->b_fspriv;
746 xfs_buf_log_item_t *bip;
747 int chunks;
748 int map_size;
749 int error;
750 int i;
751
752 /*
753 * Check to see if there is already a buf log item for
754 * this buffer. If there is, it is guaranteed to be
755 * the first. If we do already have one, there is
756 * nothing to do here so return.
757 */
758 ASSERT(bp->b_target->bt_mount == mp);
759 if (lip != NULL && lip->li_type == XFS_LI_BUF)
760 return;
761
762 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
763 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
764 bip->bli_buf = bp;
765 xfs_buf_hold(bp);
766
767 /*
768 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
769 * can be divided into. Make sure not to truncate any pieces.
770 * map_size is the size of the bitmap needed to describe the
771 * chunks of the buffer.
772 *
773 * Discontiguous buffer support follows the layout of the underlying
774 * buffer. This makes the implementation as simple as possible.
775 */
776 error = xfs_buf_item_get_format(bip, bp->b_map_count);
777 ASSERT(error == 0);
778
779 for (i = 0; i < bip->bli_format_count; i++) {
780 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
781 XFS_BLF_CHUNK);
782 map_size = DIV_ROUND_UP(chunks, NBWORD);
783
784 bip->bli_formats[i].blf_type = XFS_LI_BUF;
785 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
786 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
787 bip->bli_formats[i].blf_map_size = map_size;
788 }
789
790 #ifdef XFS_TRANS_DEBUG
791 /*
792 * Allocate the arrays for tracking what needs to be logged
793 * and what our callers request to be logged. bli_orig
794 * holds a copy of the original, clean buffer for comparison
795 * against, and bli_logged keeps a 1 bit flag per byte in
796 * the buffer to indicate which bytes the callers have asked
797 * to have logged.
798 */
799 bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
800 memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
801 bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
802 #endif
803
804 /*
805 * Put the buf item into the list of items attached to the
806 * buffer at the front.
807 */
808 if (bp->b_fspriv)
809 bip->bli_item.li_bio_list = bp->b_fspriv;
810 bp->b_fspriv = bip;
811 }
812
813
814 /*
815 * Mark bytes first through last inclusive as dirty in the buf
816 * item's bitmap.
817 */
818 static void
819 xfs_buf_item_log_segment(
820 struct xfs_buf_log_item *bip,
821 uint first,
822 uint last,
823 uint *map)
824 {
825 uint first_bit;
826 uint last_bit;
827 uint bits_to_set;
828 uint bits_set;
829 uint word_num;
830 uint *wordp;
831 uint bit;
832 uint end_bit;
833 uint mask;
834
835 /*
836 * Convert byte offsets to bit numbers.
837 */
838 first_bit = first >> XFS_BLF_SHIFT;
839 last_bit = last >> XFS_BLF_SHIFT;
840
841 /*
842 * Calculate the total number of bits to be set.
843 */
844 bits_to_set = last_bit - first_bit + 1;
845
846 /*
847 * Get a pointer to the first word in the bitmap
848 * to set a bit in.
849 */
850 word_num = first_bit >> BIT_TO_WORD_SHIFT;
851 wordp = &map[word_num];
852
853 /*
854 * Calculate the starting bit in the first word.
855 */
856 bit = first_bit & (uint)(NBWORD - 1);
857
858 /*
859 * First set any bits in the first word of our range.
860 * If it starts at bit 0 of the word, it will be
861 * set below rather than here. That is what the variable
862 * bit tells us. The variable bits_set tracks the number
863 * of bits that have been set so far. End_bit is the number
864 * of the last bit to be set in this word plus one.
865 */
866 if (bit) {
867 end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
868 mask = ((1 << (end_bit - bit)) - 1) << bit;
869 *wordp |= mask;
870 wordp++;
871 bits_set = end_bit - bit;
872 } else {
873 bits_set = 0;
874 }
875
876 /*
877 * Now set bits a whole word at a time that are between
878 * first_bit and last_bit.
879 */
880 while ((bits_to_set - bits_set) >= NBWORD) {
881 *wordp |= 0xffffffff;
882 bits_set += NBWORD;
883 wordp++;
884 }
885
886 /*
887 * Finally, set any bits left to be set in one last partial word.
888 */
889 end_bit = bits_to_set - bits_set;
890 if (end_bit) {
891 mask = (1 << end_bit) - 1;
892 *wordp |= mask;
893 }
894 }
895
896 /*
897 * Mark bytes first through last inclusive as dirty in the buf
898 * item's bitmap.
899 */
900 void
901 xfs_buf_item_log(
902 xfs_buf_log_item_t *bip,
903 uint first,
904 uint last)
905 {
906 int i;
907 uint start;
908 uint end;
909 struct xfs_buf *bp = bip->bli_buf;
910
911 /*
912 * walk each buffer segment and mark them dirty appropriately.
913 */
914 start = 0;
915 for (i = 0; i < bip->bli_format_count; i++) {
916 if (start > last)
917 break;
918 end = start + BBTOB(bp->b_maps[i].bm_len);
919 if (first > end) {
920 start += BBTOB(bp->b_maps[i].bm_len);
921 continue;
922 }
923 if (first < start)
924 first = start;
925 if (end > last)
926 end = last;
927
928 xfs_buf_item_log_segment(bip, first, end,
929 &bip->bli_formats[i].blf_data_map[0]);
930
931 start += bp->b_maps[i].bm_len;
932 }
933 }
934
935
936 /*
937 * Return 1 if the buffer has been logged or ordered in a transaction (at any
938 * point, not just the current transaction) and 0 if not.
939 */
940 uint
941 xfs_buf_item_dirty(
942 xfs_buf_log_item_t *bip)
943 {
944 return (bip->bli_flags & XFS_BLI_DIRTY);
945 }
946
947 STATIC void
948 xfs_buf_item_free(
949 xfs_buf_log_item_t *bip)
950 {
951 #ifdef XFS_TRANS_DEBUG
952 kmem_free(bip->bli_orig);
953 kmem_free(bip->bli_logged);
954 #endif /* XFS_TRANS_DEBUG */
955
956 xfs_buf_item_free_format(bip);
957 kmem_zone_free(xfs_buf_item_zone, bip);
958 }
959
960 /*
961 * This is called when the buf log item is no longer needed. It should
962 * free the buf log item associated with the given buffer and clear
963 * the buffer's pointer to the buf log item. If there are no more
964 * items in the list, clear the b_iodone field of the buffer (see
965 * xfs_buf_attach_iodone() below).
966 */
967 void
968 xfs_buf_item_relse(
969 xfs_buf_t *bp)
970 {
971 xfs_buf_log_item_t *bip = bp->b_fspriv;
972
973 trace_xfs_buf_item_relse(bp, _RET_IP_);
974 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
975
976 bp->b_fspriv = bip->bli_item.li_bio_list;
977 if (bp->b_fspriv == NULL)
978 bp->b_iodone = NULL;
979
980 xfs_buf_rele(bp);
981 xfs_buf_item_free(bip);
982 }
983
984
985 /*
986 * Add the given log item with its callback to the list of callbacks
987 * to be called when the buffer's I/O completes. If it is not set
988 * already, set the buffer's b_iodone() routine to be
989 * xfs_buf_iodone_callbacks() and link the log item into the list of
990 * items rooted at b_fsprivate. Items are always added as the second
991 * entry in the list if there is a first, because the buf item code
992 * assumes that the buf log item is first.
993 */
994 void
995 xfs_buf_attach_iodone(
996 xfs_buf_t *bp,
997 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
998 xfs_log_item_t *lip)
999 {
1000 xfs_log_item_t *head_lip;
1001
1002 ASSERT(xfs_buf_islocked(bp));
1003
1004 lip->li_cb = cb;
1005 head_lip = bp->b_fspriv;
1006 if (head_lip) {
1007 lip->li_bio_list = head_lip->li_bio_list;
1008 head_lip->li_bio_list = lip;
1009 } else {
1010 bp->b_fspriv = lip;
1011 }
1012
1013 ASSERT(bp->b_iodone == NULL ||
1014 bp->b_iodone == xfs_buf_iodone_callbacks);
1015 bp->b_iodone = xfs_buf_iodone_callbacks;
1016 }
1017
1018 /*
1019 * We can have many callbacks on a buffer. Running the callbacks individually
1020 * can cause a lot of contention on the AIL lock, so we allow for a single
1021 * callback to be able to scan the remaining lip->li_bio_list for other items
1022 * of the same type and callback to be processed in the first call.
1023 *
1024 * As a result, the loop walking the callback list below will also modify the
1025 * list. it removes the first item from the list and then runs the callback.
1026 * The loop then restarts from the new head of the list. This allows the
1027 * callback to scan and modify the list attached to the buffer and we don't
1028 * have to care about maintaining a next item pointer.
1029 */
1030 STATIC void
1031 xfs_buf_do_callbacks(
1032 struct xfs_buf *bp)
1033 {
1034 struct xfs_log_item *lip;
1035
1036 while ((lip = bp->b_fspriv) != NULL) {
1037 bp->b_fspriv = lip->li_bio_list;
1038 ASSERT(lip->li_cb != NULL);
1039 /*
1040 * Clear the next pointer so we don't have any
1041 * confusion if the item is added to another buf.
1042 * Don't touch the log item after calling its
1043 * callback, because it could have freed itself.
1044 */
1045 lip->li_bio_list = NULL;
1046 lip->li_cb(bp, lip);
1047 }
1048 }
1049
1050 /*
1051 * This is the iodone() function for buffers which have had callbacks
1052 * attached to them by xfs_buf_attach_iodone(). It should remove each
1053 * log item from the buffer's list and call the callback of each in turn.
1054 * When done, the buffer's fsprivate field is set to NULL and the buffer
1055 * is unlocked with a call to iodone().
1056 */
1057 void
1058 xfs_buf_iodone_callbacks(
1059 struct xfs_buf *bp)
1060 {
1061 struct xfs_log_item *lip = bp->b_fspriv;
1062 struct xfs_mount *mp = lip->li_mountp;
1063 static ulong lasttime;
1064 static xfs_buftarg_t *lasttarg;
1065
1066 if (likely(!xfs_buf_geterror(bp)))
1067 goto do_callbacks;
1068
1069 /*
1070 * If we've already decided to shutdown the filesystem because of
1071 * I/O errors, there's no point in giving this a retry.
1072 */
1073 if (XFS_FORCED_SHUTDOWN(mp)) {
1074 xfs_buf_stale(bp);
1075 XFS_BUF_DONE(bp);
1076 trace_xfs_buf_item_iodone(bp, _RET_IP_);
1077 goto do_callbacks;
1078 }
1079
1080 if (bp->b_target != lasttarg ||
1081 time_after(jiffies, (lasttime + 5*HZ))) {
1082 lasttime = jiffies;
1083 xfs_buf_ioerror_alert(bp, __func__);
1084 }
1085 lasttarg = bp->b_target;
1086
1087 /*
1088 * If the write was asynchronous then no one will be looking for the
1089 * error. Clear the error state and write the buffer out again.
1090 *
1091 * XXX: This helps against transient write errors, but we need to find
1092 * a way to shut the filesystem down if the writes keep failing.
1093 *
1094 * In practice we'll shut the filesystem down soon as non-transient
1095 * erorrs tend to affect the whole device and a failing log write
1096 * will make us give up. But we really ought to do better here.
1097 */
1098 if (XFS_BUF_ISASYNC(bp)) {
1099 ASSERT(bp->b_iodone != NULL);
1100
1101 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1102
1103 xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
1104
1105 if (!XFS_BUF_ISSTALE(bp)) {
1106 bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
1107 xfs_buf_iorequest(bp);
1108 } else {
1109 xfs_buf_relse(bp);
1110 }
1111
1112 return;
1113 }
1114
1115 /*
1116 * If the write of the buffer was synchronous, we want to make
1117 * sure to return the error to the caller of xfs_bwrite().
1118 */
1119 xfs_buf_stale(bp);
1120 XFS_BUF_DONE(bp);
1121
1122 trace_xfs_buf_error_relse(bp, _RET_IP_);
1123
1124 do_callbacks:
1125 xfs_buf_do_callbacks(bp);
1126 bp->b_fspriv = NULL;
1127 bp->b_iodone = NULL;
1128 xfs_buf_ioend(bp, 0);
1129 }
1130
1131 /*
1132 * This is the iodone() function for buffers which have been
1133 * logged. It is called when they are eventually flushed out.
1134 * It should remove the buf item from the AIL, and free the buf item.
1135 * It is called by xfs_buf_iodone_callbacks() above which will take
1136 * care of cleaning up the buffer itself.
1137 */
1138 void
1139 xfs_buf_iodone(
1140 struct xfs_buf *bp,
1141 struct xfs_log_item *lip)
1142 {
1143 struct xfs_ail *ailp = lip->li_ailp;
1144
1145 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1146
1147 xfs_buf_rele(bp);
1148
1149 /*
1150 * If we are forcibly shutting down, this may well be
1151 * off the AIL already. That's because we simulate the
1152 * log-committed callbacks to unpin these buffers. Or we may never
1153 * have put this item on AIL because of the transaction was
1154 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1155 *
1156 * Either way, AIL is useless if we're forcing a shutdown.
1157 */
1158 spin_lock(&ailp->xa_lock);
1159 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1160 xfs_buf_item_free(BUF_ITEM(lip));
1161 }
This page took 0.075329 seconds and 5 git commands to generate.