Merge branch 'x86/apic' into x86/core
[deliverable/linux.git] / fs / xfs / xfs_extfree_item.c
1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dmapi.h"
28 #include "xfs_mount.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_extfree_item.h"
31
32
33 kmem_zone_t *xfs_efi_zone;
34 kmem_zone_t *xfs_efd_zone;
35
36 STATIC void xfs_efi_item_unlock(xfs_efi_log_item_t *);
37
38 void
39 xfs_efi_item_free(xfs_efi_log_item_t *efip)
40 {
41 int nexts = efip->efi_format.efi_nextents;
42
43 if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
44 kmem_free(efip);
45 } else {
46 kmem_zone_free(xfs_efi_zone, efip);
47 }
48 }
49
50 /*
51 * This returns the number of iovecs needed to log the given efi item.
52 * We only need 1 iovec for an efi item. It just logs the efi_log_format
53 * structure.
54 */
55 /*ARGSUSED*/
56 STATIC uint
57 xfs_efi_item_size(xfs_efi_log_item_t *efip)
58 {
59 return 1;
60 }
61
62 /*
63 * This is called to fill in the vector of log iovecs for the
64 * given efi log item. We use only 1 iovec, and we point that
65 * at the efi_log_format structure embedded in the efi item.
66 * It is at this point that we assert that all of the extent
67 * slots in the efi item have been filled.
68 */
69 STATIC void
70 xfs_efi_item_format(xfs_efi_log_item_t *efip,
71 xfs_log_iovec_t *log_vector)
72 {
73 uint size;
74
75 ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents);
76
77 efip->efi_format.efi_type = XFS_LI_EFI;
78
79 size = sizeof(xfs_efi_log_format_t);
80 size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
81 efip->efi_format.efi_size = 1;
82
83 log_vector->i_addr = (xfs_caddr_t)&(efip->efi_format);
84 log_vector->i_len = size;
85 XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFI_FORMAT);
86 ASSERT(size >= sizeof(xfs_efi_log_format_t));
87 }
88
89
90 /*
91 * Pinning has no meaning for an efi item, so just return.
92 */
93 /*ARGSUSED*/
94 STATIC void
95 xfs_efi_item_pin(xfs_efi_log_item_t *efip)
96 {
97 return;
98 }
99
100
101 /*
102 * While EFIs cannot really be pinned, the unpin operation is the
103 * last place at which the EFI is manipulated during a transaction.
104 * Here we coordinate with xfs_efi_cancel() to determine who gets to
105 * free the EFI.
106 */
107 /*ARGSUSED*/
108 STATIC void
109 xfs_efi_item_unpin(xfs_efi_log_item_t *efip, int stale)
110 {
111 xfs_mount_t *mp;
112
113 mp = efip->efi_item.li_mountp;
114 spin_lock(&mp->m_ail_lock);
115 if (efip->efi_flags & XFS_EFI_CANCELED) {
116 /*
117 * xfs_trans_delete_ail() drops the AIL lock.
118 */
119 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip);
120 xfs_efi_item_free(efip);
121 } else {
122 efip->efi_flags |= XFS_EFI_COMMITTED;
123 spin_unlock(&mp->m_ail_lock);
124 }
125 }
126
127 /*
128 * like unpin only we have to also clear the xaction descriptor
129 * pointing the log item if we free the item. This routine duplicates
130 * unpin because efi_flags is protected by the AIL lock. Freeing
131 * the descriptor and then calling unpin would force us to drop the AIL
132 * lock which would open up a race condition.
133 */
134 STATIC void
135 xfs_efi_item_unpin_remove(xfs_efi_log_item_t *efip, xfs_trans_t *tp)
136 {
137 xfs_mount_t *mp;
138 xfs_log_item_desc_t *lidp;
139
140 mp = efip->efi_item.li_mountp;
141 spin_lock(&mp->m_ail_lock);
142 if (efip->efi_flags & XFS_EFI_CANCELED) {
143 /*
144 * free the xaction descriptor pointing to this item
145 */
146 lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) efip);
147 xfs_trans_free_item(tp, lidp);
148 /*
149 * pull the item off the AIL.
150 * xfs_trans_delete_ail() drops the AIL lock.
151 */
152 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip);
153 xfs_efi_item_free(efip);
154 } else {
155 efip->efi_flags |= XFS_EFI_COMMITTED;
156 spin_unlock(&mp->m_ail_lock);
157 }
158 }
159
160 /*
161 * Efi items have no locking or pushing. However, since EFIs are
162 * pulled from the AIL when their corresponding EFDs are committed
163 * to disk, their situation is very similar to being pinned. Return
164 * XFS_ITEM_PINNED so that the caller will eventually flush the log.
165 * This should help in getting the EFI out of the AIL.
166 */
167 /*ARGSUSED*/
168 STATIC uint
169 xfs_efi_item_trylock(xfs_efi_log_item_t *efip)
170 {
171 return XFS_ITEM_PINNED;
172 }
173
174 /*
175 * Efi items have no locking, so just return.
176 */
177 /*ARGSUSED*/
178 STATIC void
179 xfs_efi_item_unlock(xfs_efi_log_item_t *efip)
180 {
181 if (efip->efi_item.li_flags & XFS_LI_ABORTED)
182 xfs_efi_item_free(efip);
183 return;
184 }
185
186 /*
187 * The EFI is logged only once and cannot be moved in the log, so
188 * simply return the lsn at which it's been logged. The canceled
189 * flag is not paid any attention here. Checking for that is delayed
190 * until the EFI is unpinned.
191 */
192 /*ARGSUSED*/
193 STATIC xfs_lsn_t
194 xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
195 {
196 return lsn;
197 }
198
199 /*
200 * There isn't much you can do to push on an efi item. It is simply
201 * stuck waiting for all of its corresponding efd items to be
202 * committed to disk.
203 */
204 /*ARGSUSED*/
205 STATIC void
206 xfs_efi_item_push(xfs_efi_log_item_t *efip)
207 {
208 return;
209 }
210
211 /*
212 * The EFI dependency tracking op doesn't do squat. It can't because
213 * it doesn't know where the free extent is coming from. The dependency
214 * tracking has to be handled by the "enclosing" metadata object. For
215 * example, for inodes, the inode is locked throughout the extent freeing
216 * so the dependency should be recorded there.
217 */
218 /*ARGSUSED*/
219 STATIC void
220 xfs_efi_item_committing(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
221 {
222 return;
223 }
224
225 /*
226 * This is the ops vector shared by all efi log items.
227 */
228 static struct xfs_item_ops xfs_efi_item_ops = {
229 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efi_item_size,
230 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
231 xfs_efi_item_format,
232 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efi_item_pin,
233 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efi_item_unpin,
234 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *))
235 xfs_efi_item_unpin_remove,
236 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efi_item_trylock,
237 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efi_item_unlock,
238 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
239 xfs_efi_item_committed,
240 .iop_push = (void(*)(xfs_log_item_t*))xfs_efi_item_push,
241 .iop_pushbuf = NULL,
242 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
243 xfs_efi_item_committing
244 };
245
246
247 /*
248 * Allocate and initialize an efi item with the given number of extents.
249 */
250 xfs_efi_log_item_t *
251 xfs_efi_init(xfs_mount_t *mp,
252 uint nextents)
253
254 {
255 xfs_efi_log_item_t *efip;
256 uint size;
257
258 ASSERT(nextents > 0);
259 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
260 size = (uint)(sizeof(xfs_efi_log_item_t) +
261 ((nextents - 1) * sizeof(xfs_extent_t)));
262 efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP);
263 } else {
264 efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone,
265 KM_SLEEP);
266 }
267
268 efip->efi_item.li_type = XFS_LI_EFI;
269 efip->efi_item.li_ops = &xfs_efi_item_ops;
270 efip->efi_item.li_mountp = mp;
271 efip->efi_format.efi_nextents = nextents;
272 efip->efi_format.efi_id = (__psint_t)(void*)efip;
273
274 return (efip);
275 }
276
277 /*
278 * Copy an EFI format buffer from the given buf, and into the destination
279 * EFI format structure.
280 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
281 * one of which will be the native format for this kernel.
282 * It will handle the conversion of formats if necessary.
283 */
284 int
285 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
286 {
287 xfs_efi_log_format_t *src_efi_fmt = (xfs_efi_log_format_t *)buf->i_addr;
288 uint i;
289 uint len = sizeof(xfs_efi_log_format_t) +
290 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
291 uint len32 = sizeof(xfs_efi_log_format_32_t) +
292 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
293 uint len64 = sizeof(xfs_efi_log_format_64_t) +
294 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
295
296 if (buf->i_len == len) {
297 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
298 return 0;
299 } else if (buf->i_len == len32) {
300 xfs_efi_log_format_32_t *src_efi_fmt_32 =
301 (xfs_efi_log_format_32_t *)buf->i_addr;
302
303 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
304 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
305 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
306 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
307 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
308 dst_efi_fmt->efi_extents[i].ext_start =
309 src_efi_fmt_32->efi_extents[i].ext_start;
310 dst_efi_fmt->efi_extents[i].ext_len =
311 src_efi_fmt_32->efi_extents[i].ext_len;
312 }
313 return 0;
314 } else if (buf->i_len == len64) {
315 xfs_efi_log_format_64_t *src_efi_fmt_64 =
316 (xfs_efi_log_format_64_t *)buf->i_addr;
317
318 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
319 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
320 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
321 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
322 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
323 dst_efi_fmt->efi_extents[i].ext_start =
324 src_efi_fmt_64->efi_extents[i].ext_start;
325 dst_efi_fmt->efi_extents[i].ext_len =
326 src_efi_fmt_64->efi_extents[i].ext_len;
327 }
328 return 0;
329 }
330 return EFSCORRUPTED;
331 }
332
333 /*
334 * This is called by the efd item code below to release references to
335 * the given efi item. Each efd calls this with the number of
336 * extents that it has logged, and when the sum of these reaches
337 * the total number of extents logged by this efi item we can free
338 * the efi item.
339 *
340 * Freeing the efi item requires that we remove it from the AIL.
341 * We'll use the AIL lock to protect our counters as well as
342 * the removal from the AIL.
343 */
344 void
345 xfs_efi_release(xfs_efi_log_item_t *efip,
346 uint nextents)
347 {
348 xfs_mount_t *mp;
349 int extents_left;
350
351 mp = efip->efi_item.li_mountp;
352 ASSERT(efip->efi_next_extent > 0);
353 ASSERT(efip->efi_flags & XFS_EFI_COMMITTED);
354
355 spin_lock(&mp->m_ail_lock);
356 ASSERT(efip->efi_next_extent >= nextents);
357 efip->efi_next_extent -= nextents;
358 extents_left = efip->efi_next_extent;
359 if (extents_left == 0) {
360 /*
361 * xfs_trans_delete_ail() drops the AIL lock.
362 */
363 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip);
364 xfs_efi_item_free(efip);
365 } else {
366 spin_unlock(&mp->m_ail_lock);
367 }
368 }
369
370 STATIC void
371 xfs_efd_item_free(xfs_efd_log_item_t *efdp)
372 {
373 int nexts = efdp->efd_format.efd_nextents;
374
375 if (nexts > XFS_EFD_MAX_FAST_EXTENTS) {
376 kmem_free(efdp);
377 } else {
378 kmem_zone_free(xfs_efd_zone, efdp);
379 }
380 }
381
382 /*
383 * This returns the number of iovecs needed to log the given efd item.
384 * We only need 1 iovec for an efd item. It just logs the efd_log_format
385 * structure.
386 */
387 /*ARGSUSED*/
388 STATIC uint
389 xfs_efd_item_size(xfs_efd_log_item_t *efdp)
390 {
391 return 1;
392 }
393
394 /*
395 * This is called to fill in the vector of log iovecs for the
396 * given efd log item. We use only 1 iovec, and we point that
397 * at the efd_log_format structure embedded in the efd item.
398 * It is at this point that we assert that all of the extent
399 * slots in the efd item have been filled.
400 */
401 STATIC void
402 xfs_efd_item_format(xfs_efd_log_item_t *efdp,
403 xfs_log_iovec_t *log_vector)
404 {
405 uint size;
406
407 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
408
409 efdp->efd_format.efd_type = XFS_LI_EFD;
410
411 size = sizeof(xfs_efd_log_format_t);
412 size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
413 efdp->efd_format.efd_size = 1;
414
415 log_vector->i_addr = (xfs_caddr_t)&(efdp->efd_format);
416 log_vector->i_len = size;
417 XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFD_FORMAT);
418 ASSERT(size >= sizeof(xfs_efd_log_format_t));
419 }
420
421
422 /*
423 * Pinning has no meaning for an efd item, so just return.
424 */
425 /*ARGSUSED*/
426 STATIC void
427 xfs_efd_item_pin(xfs_efd_log_item_t *efdp)
428 {
429 return;
430 }
431
432
433 /*
434 * Since pinning has no meaning for an efd item, unpinning does
435 * not either.
436 */
437 /*ARGSUSED*/
438 STATIC void
439 xfs_efd_item_unpin(xfs_efd_log_item_t *efdp, int stale)
440 {
441 return;
442 }
443
444 /*ARGSUSED*/
445 STATIC void
446 xfs_efd_item_unpin_remove(xfs_efd_log_item_t *efdp, xfs_trans_t *tp)
447 {
448 return;
449 }
450
451 /*
452 * Efd items have no locking, so just return success.
453 */
454 /*ARGSUSED*/
455 STATIC uint
456 xfs_efd_item_trylock(xfs_efd_log_item_t *efdp)
457 {
458 return XFS_ITEM_LOCKED;
459 }
460
461 /*
462 * Efd items have no locking or pushing, so return failure
463 * so that the caller doesn't bother with us.
464 */
465 /*ARGSUSED*/
466 STATIC void
467 xfs_efd_item_unlock(xfs_efd_log_item_t *efdp)
468 {
469 if (efdp->efd_item.li_flags & XFS_LI_ABORTED)
470 xfs_efd_item_free(efdp);
471 return;
472 }
473
474 /*
475 * When the efd item is committed to disk, all we need to do
476 * is delete our reference to our partner efi item and then
477 * free ourselves. Since we're freeing ourselves we must
478 * return -1 to keep the transaction code from further referencing
479 * this item.
480 */
481 /*ARGSUSED*/
482 STATIC xfs_lsn_t
483 xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn)
484 {
485 /*
486 * If we got a log I/O error, it's always the case that the LR with the
487 * EFI got unpinned and freed before the EFD got aborted.
488 */
489 if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0)
490 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
491
492 xfs_efd_item_free(efdp);
493 return (xfs_lsn_t)-1;
494 }
495
496 /*
497 * There isn't much you can do to push on an efd item. It is simply
498 * stuck waiting for the log to be flushed to disk.
499 */
500 /*ARGSUSED*/
501 STATIC void
502 xfs_efd_item_push(xfs_efd_log_item_t *efdp)
503 {
504 return;
505 }
506
507 /*
508 * The EFD dependency tracking op doesn't do squat. It can't because
509 * it doesn't know where the free extent is coming from. The dependency
510 * tracking has to be handled by the "enclosing" metadata object. For
511 * example, for inodes, the inode is locked throughout the extent freeing
512 * so the dependency should be recorded there.
513 */
514 /*ARGSUSED*/
515 STATIC void
516 xfs_efd_item_committing(xfs_efd_log_item_t *efip, xfs_lsn_t lsn)
517 {
518 return;
519 }
520
521 /*
522 * This is the ops vector shared by all efd log items.
523 */
524 static struct xfs_item_ops xfs_efd_item_ops = {
525 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efd_item_size,
526 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
527 xfs_efd_item_format,
528 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efd_item_pin,
529 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efd_item_unpin,
530 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
531 xfs_efd_item_unpin_remove,
532 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efd_item_trylock,
533 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efd_item_unlock,
534 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
535 xfs_efd_item_committed,
536 .iop_push = (void(*)(xfs_log_item_t*))xfs_efd_item_push,
537 .iop_pushbuf = NULL,
538 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
539 xfs_efd_item_committing
540 };
541
542
543 /*
544 * Allocate and initialize an efd item with the given number of extents.
545 */
546 xfs_efd_log_item_t *
547 xfs_efd_init(xfs_mount_t *mp,
548 xfs_efi_log_item_t *efip,
549 uint nextents)
550
551 {
552 xfs_efd_log_item_t *efdp;
553 uint size;
554
555 ASSERT(nextents > 0);
556 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
557 size = (uint)(sizeof(xfs_efd_log_item_t) +
558 ((nextents - 1) * sizeof(xfs_extent_t)));
559 efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP);
560 } else {
561 efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone,
562 KM_SLEEP);
563 }
564
565 efdp->efd_item.li_type = XFS_LI_EFD;
566 efdp->efd_item.li_ops = &xfs_efd_item_ops;
567 efdp->efd_item.li_mountp = mp;
568 efdp->efd_efip = efip;
569 efdp->efd_format.efd_nextents = nextents;
570 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
571
572 return (efdp);
573 }
This page took 0.042248 seconds and 6 git commands to generate.