Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[deliverable/linux.git] / fs / xfs / xfs_file.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44 #include <linux/backing-dev.h>
45
46 static const struct vm_operations_struct xfs_file_vm_ops;
47
48 /*
49 * Locking primitives for read and write IO paths to ensure we consistently use
50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
51 */
52 static inline void
53 xfs_rw_ilock(
54 struct xfs_inode *ip,
55 int type)
56 {
57 if (type & XFS_IOLOCK_EXCL)
58 mutex_lock(&VFS_I(ip)->i_mutex);
59 xfs_ilock(ip, type);
60 }
61
62 static inline void
63 xfs_rw_iunlock(
64 struct xfs_inode *ip,
65 int type)
66 {
67 xfs_iunlock(ip, type);
68 if (type & XFS_IOLOCK_EXCL)
69 mutex_unlock(&VFS_I(ip)->i_mutex);
70 }
71
72 static inline void
73 xfs_rw_ilock_demote(
74 struct xfs_inode *ip,
75 int type)
76 {
77 xfs_ilock_demote(ip, type);
78 if (type & XFS_IOLOCK_EXCL)
79 mutex_unlock(&VFS_I(ip)->i_mutex);
80 }
81
82 /*
83 * xfs_iozero clears the specified range supplied via the page cache (except in
84 * the DAX case). Writes through the page cache will allocate blocks over holes,
85 * though the callers usually map the holes first and avoid them. If a block is
86 * not completely zeroed, then it will be read from disk before being partially
87 * zeroed.
88 *
89 * In the DAX case, we can just directly write to the underlying pages. This
90 * will not allocate blocks, but will avoid holes and unwritten extents and so
91 * not do unnecessary work.
92 */
93 int
94 xfs_iozero(
95 struct xfs_inode *ip, /* inode */
96 loff_t pos, /* offset in file */
97 size_t count) /* size of data to zero */
98 {
99 struct page *page;
100 struct address_space *mapping;
101 int status = 0;
102
103
104 mapping = VFS_I(ip)->i_mapping;
105 do {
106 unsigned offset, bytes;
107 void *fsdata;
108
109 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
110 bytes = PAGE_CACHE_SIZE - offset;
111 if (bytes > count)
112 bytes = count;
113
114 if (IS_DAX(VFS_I(ip))) {
115 status = dax_zero_page_range(VFS_I(ip), pos, bytes,
116 xfs_get_blocks_direct);
117 if (status)
118 break;
119 } else {
120 status = pagecache_write_begin(NULL, mapping, pos, bytes,
121 AOP_FLAG_UNINTERRUPTIBLE,
122 &page, &fsdata);
123 if (status)
124 break;
125
126 zero_user(page, offset, bytes);
127
128 status = pagecache_write_end(NULL, mapping, pos, bytes,
129 bytes, page, fsdata);
130 WARN_ON(status <= 0); /* can't return less than zero! */
131 status = 0;
132 }
133 pos += bytes;
134 count -= bytes;
135 } while (count);
136
137 return status;
138 }
139
140 int
141 xfs_update_prealloc_flags(
142 struct xfs_inode *ip,
143 enum xfs_prealloc_flags flags)
144 {
145 struct xfs_trans *tp;
146 int error;
147
148 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
149 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
150 if (error) {
151 xfs_trans_cancel(tp);
152 return error;
153 }
154
155 xfs_ilock(ip, XFS_ILOCK_EXCL);
156 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
157
158 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
159 ip->i_d.di_mode &= ~S_ISUID;
160 if (ip->i_d.di_mode & S_IXGRP)
161 ip->i_d.di_mode &= ~S_ISGID;
162 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
163 }
164
165 if (flags & XFS_PREALLOC_SET)
166 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
167 if (flags & XFS_PREALLOC_CLEAR)
168 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
169
170 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
171 if (flags & XFS_PREALLOC_SYNC)
172 xfs_trans_set_sync(tp);
173 return xfs_trans_commit(tp);
174 }
175
176 /*
177 * Fsync operations on directories are much simpler than on regular files,
178 * as there is no file data to flush, and thus also no need for explicit
179 * cache flush operations, and there are no non-transaction metadata updates
180 * on directories either.
181 */
182 STATIC int
183 xfs_dir_fsync(
184 struct file *file,
185 loff_t start,
186 loff_t end,
187 int datasync)
188 {
189 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
190 struct xfs_mount *mp = ip->i_mount;
191 xfs_lsn_t lsn = 0;
192
193 trace_xfs_dir_fsync(ip);
194
195 xfs_ilock(ip, XFS_ILOCK_SHARED);
196 if (xfs_ipincount(ip))
197 lsn = ip->i_itemp->ili_last_lsn;
198 xfs_iunlock(ip, XFS_ILOCK_SHARED);
199
200 if (!lsn)
201 return 0;
202 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
203 }
204
205 STATIC int
206 xfs_file_fsync(
207 struct file *file,
208 loff_t start,
209 loff_t end,
210 int datasync)
211 {
212 struct inode *inode = file->f_mapping->host;
213 struct xfs_inode *ip = XFS_I(inode);
214 struct xfs_mount *mp = ip->i_mount;
215 int error = 0;
216 int log_flushed = 0;
217 xfs_lsn_t lsn = 0;
218
219 trace_xfs_file_fsync(ip);
220
221 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
222 if (error)
223 return error;
224
225 if (XFS_FORCED_SHUTDOWN(mp))
226 return -EIO;
227
228 xfs_iflags_clear(ip, XFS_ITRUNCATED);
229
230 if (mp->m_flags & XFS_MOUNT_BARRIER) {
231 /*
232 * If we have an RT and/or log subvolume we need to make sure
233 * to flush the write cache the device used for file data
234 * first. This is to ensure newly written file data make
235 * it to disk before logging the new inode size in case of
236 * an extending write.
237 */
238 if (XFS_IS_REALTIME_INODE(ip))
239 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
240 else if (mp->m_logdev_targp != mp->m_ddev_targp)
241 xfs_blkdev_issue_flush(mp->m_ddev_targp);
242 }
243
244 /*
245 * All metadata updates are logged, which means that we just have
246 * to flush the log up to the latest LSN that touched the inode.
247 */
248 xfs_ilock(ip, XFS_ILOCK_SHARED);
249 if (xfs_ipincount(ip)) {
250 if (!datasync ||
251 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
252 lsn = ip->i_itemp->ili_last_lsn;
253 }
254 xfs_iunlock(ip, XFS_ILOCK_SHARED);
255
256 if (lsn)
257 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
258
259 /*
260 * If we only have a single device, and the log force about was
261 * a no-op we might have to flush the data device cache here.
262 * This can only happen for fdatasync/O_DSYNC if we were overwriting
263 * an already allocated file and thus do not have any metadata to
264 * commit.
265 */
266 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
267 mp->m_logdev_targp == mp->m_ddev_targp &&
268 !XFS_IS_REALTIME_INODE(ip) &&
269 !log_flushed)
270 xfs_blkdev_issue_flush(mp->m_ddev_targp);
271
272 return error;
273 }
274
275 STATIC ssize_t
276 xfs_file_read_iter(
277 struct kiocb *iocb,
278 struct iov_iter *to)
279 {
280 struct file *file = iocb->ki_filp;
281 struct inode *inode = file->f_mapping->host;
282 struct xfs_inode *ip = XFS_I(inode);
283 struct xfs_mount *mp = ip->i_mount;
284 size_t size = iov_iter_count(to);
285 ssize_t ret = 0;
286 int ioflags = 0;
287 xfs_fsize_t n;
288 loff_t pos = iocb->ki_pos;
289
290 XFS_STATS_INC(xs_read_calls);
291
292 if (unlikely(iocb->ki_flags & IOCB_DIRECT))
293 ioflags |= XFS_IO_ISDIRECT;
294 if (file->f_mode & FMODE_NOCMTIME)
295 ioflags |= XFS_IO_INVIS;
296
297 if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) {
298 xfs_buftarg_t *target =
299 XFS_IS_REALTIME_INODE(ip) ?
300 mp->m_rtdev_targp : mp->m_ddev_targp;
301 /* DIO must be aligned to device logical sector size */
302 if ((pos | size) & target->bt_logical_sectormask) {
303 if (pos == i_size_read(inode))
304 return 0;
305 return -EINVAL;
306 }
307 }
308
309 n = mp->m_super->s_maxbytes - pos;
310 if (n <= 0 || size == 0)
311 return 0;
312
313 if (n < size)
314 size = n;
315
316 if (XFS_FORCED_SHUTDOWN(mp))
317 return -EIO;
318
319 /*
320 * Locking is a bit tricky here. If we take an exclusive lock for direct
321 * IO, we effectively serialise all new concurrent read IO to this file
322 * and block it behind IO that is currently in progress because IO in
323 * progress holds the IO lock shared. We only need to hold the lock
324 * exclusive to blow away the page cache, so only take lock exclusively
325 * if the page cache needs invalidation. This allows the normal direct
326 * IO case of no page cache pages to proceeed concurrently without
327 * serialisation.
328 */
329 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
330 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
331 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
332 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
333
334 /*
335 * The generic dio code only flushes the range of the particular
336 * I/O. Because we take an exclusive lock here, this whole
337 * sequence is considerably more expensive for us. This has a
338 * noticeable performance impact for any file with cached pages,
339 * even when outside of the range of the particular I/O.
340 *
341 * Hence, amortize the cost of the lock against a full file
342 * flush and reduce the chances of repeated iolock cycles going
343 * forward.
344 */
345 if (inode->i_mapping->nrpages) {
346 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
347 if (ret) {
348 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
349 return ret;
350 }
351
352 /*
353 * Invalidate whole pages. This can return an error if
354 * we fail to invalidate a page, but this should never
355 * happen on XFS. Warn if it does fail.
356 */
357 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
358 WARN_ON_ONCE(ret);
359 ret = 0;
360 }
361 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
362 }
363
364 trace_xfs_file_read(ip, size, pos, ioflags);
365
366 ret = generic_file_read_iter(iocb, to);
367 if (ret > 0)
368 XFS_STATS_ADD(xs_read_bytes, ret);
369
370 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
371 return ret;
372 }
373
374 STATIC ssize_t
375 xfs_file_splice_read(
376 struct file *infilp,
377 loff_t *ppos,
378 struct pipe_inode_info *pipe,
379 size_t count,
380 unsigned int flags)
381 {
382 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
383 int ioflags = 0;
384 ssize_t ret;
385
386 XFS_STATS_INC(xs_read_calls);
387
388 if (infilp->f_mode & FMODE_NOCMTIME)
389 ioflags |= XFS_IO_INVIS;
390
391 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
392 return -EIO;
393
394 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
395
396 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
397
398 /* for dax, we need to avoid the page cache */
399 if (IS_DAX(VFS_I(ip)))
400 ret = default_file_splice_read(infilp, ppos, pipe, count, flags);
401 else
402 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
403 if (ret > 0)
404 XFS_STATS_ADD(xs_read_bytes, ret);
405
406 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
407 return ret;
408 }
409
410 /*
411 * This routine is called to handle zeroing any space in the last block of the
412 * file that is beyond the EOF. We do this since the size is being increased
413 * without writing anything to that block and we don't want to read the
414 * garbage on the disk.
415 */
416 STATIC int /* error (positive) */
417 xfs_zero_last_block(
418 struct xfs_inode *ip,
419 xfs_fsize_t offset,
420 xfs_fsize_t isize,
421 bool *did_zeroing)
422 {
423 struct xfs_mount *mp = ip->i_mount;
424 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
425 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
426 int zero_len;
427 int nimaps = 1;
428 int error = 0;
429 struct xfs_bmbt_irec imap;
430
431 xfs_ilock(ip, XFS_ILOCK_EXCL);
432 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
433 xfs_iunlock(ip, XFS_ILOCK_EXCL);
434 if (error)
435 return error;
436
437 ASSERT(nimaps > 0);
438
439 /*
440 * If the block underlying isize is just a hole, then there
441 * is nothing to zero.
442 */
443 if (imap.br_startblock == HOLESTARTBLOCK)
444 return 0;
445
446 zero_len = mp->m_sb.sb_blocksize - zero_offset;
447 if (isize + zero_len > offset)
448 zero_len = offset - isize;
449 *did_zeroing = true;
450 return xfs_iozero(ip, isize, zero_len);
451 }
452
453 /*
454 * Zero any on disk space between the current EOF and the new, larger EOF.
455 *
456 * This handles the normal case of zeroing the remainder of the last block in
457 * the file and the unusual case of zeroing blocks out beyond the size of the
458 * file. This second case only happens with fixed size extents and when the
459 * system crashes before the inode size was updated but after blocks were
460 * allocated.
461 *
462 * Expects the iolock to be held exclusive, and will take the ilock internally.
463 */
464 int /* error (positive) */
465 xfs_zero_eof(
466 struct xfs_inode *ip,
467 xfs_off_t offset, /* starting I/O offset */
468 xfs_fsize_t isize, /* current inode size */
469 bool *did_zeroing)
470 {
471 struct xfs_mount *mp = ip->i_mount;
472 xfs_fileoff_t start_zero_fsb;
473 xfs_fileoff_t end_zero_fsb;
474 xfs_fileoff_t zero_count_fsb;
475 xfs_fileoff_t last_fsb;
476 xfs_fileoff_t zero_off;
477 xfs_fsize_t zero_len;
478 int nimaps;
479 int error = 0;
480 struct xfs_bmbt_irec imap;
481
482 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
483 ASSERT(offset > isize);
484
485 /*
486 * First handle zeroing the block on which isize resides.
487 *
488 * We only zero a part of that block so it is handled specially.
489 */
490 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
491 error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
492 if (error)
493 return error;
494 }
495
496 /*
497 * Calculate the range between the new size and the old where blocks
498 * needing to be zeroed may exist.
499 *
500 * To get the block where the last byte in the file currently resides,
501 * we need to subtract one from the size and truncate back to a block
502 * boundary. We subtract 1 in case the size is exactly on a block
503 * boundary.
504 */
505 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
506 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
507 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
508 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
509 if (last_fsb == end_zero_fsb) {
510 /*
511 * The size was only incremented on its last block.
512 * We took care of that above, so just return.
513 */
514 return 0;
515 }
516
517 ASSERT(start_zero_fsb <= end_zero_fsb);
518 while (start_zero_fsb <= end_zero_fsb) {
519 nimaps = 1;
520 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
521
522 xfs_ilock(ip, XFS_ILOCK_EXCL);
523 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
524 &imap, &nimaps, 0);
525 xfs_iunlock(ip, XFS_ILOCK_EXCL);
526 if (error)
527 return error;
528
529 ASSERT(nimaps > 0);
530
531 if (imap.br_state == XFS_EXT_UNWRITTEN ||
532 imap.br_startblock == HOLESTARTBLOCK) {
533 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
534 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
535 continue;
536 }
537
538 /*
539 * There are blocks we need to zero.
540 */
541 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
542 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
543
544 if ((zero_off + zero_len) > offset)
545 zero_len = offset - zero_off;
546
547 error = xfs_iozero(ip, zero_off, zero_len);
548 if (error)
549 return error;
550
551 *did_zeroing = true;
552 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
553 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
554 }
555
556 return 0;
557 }
558
559 /*
560 * Common pre-write limit and setup checks.
561 *
562 * Called with the iolocked held either shared and exclusive according to
563 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
564 * if called for a direct write beyond i_size.
565 */
566 STATIC ssize_t
567 xfs_file_aio_write_checks(
568 struct kiocb *iocb,
569 struct iov_iter *from,
570 int *iolock)
571 {
572 struct file *file = iocb->ki_filp;
573 struct inode *inode = file->f_mapping->host;
574 struct xfs_inode *ip = XFS_I(inode);
575 ssize_t error = 0;
576 size_t count = iov_iter_count(from);
577
578 restart:
579 error = generic_write_checks(iocb, from);
580 if (error <= 0)
581 return error;
582
583 error = xfs_break_layouts(inode, iolock, true);
584 if (error)
585 return error;
586
587 /* For changing security info in file_remove_privs() we need i_mutex */
588 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
589 xfs_rw_iunlock(ip, *iolock);
590 *iolock = XFS_IOLOCK_EXCL;
591 xfs_rw_ilock(ip, *iolock);
592 goto restart;
593 }
594 /*
595 * If the offset is beyond the size of the file, we need to zero any
596 * blocks that fall between the existing EOF and the start of this
597 * write. If zeroing is needed and we are currently holding the
598 * iolock shared, we need to update it to exclusive which implies
599 * having to redo all checks before.
600 *
601 * We need to serialise against EOF updates that occur in IO
602 * completions here. We want to make sure that nobody is changing the
603 * size while we do this check until we have placed an IO barrier (i.e.
604 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
605 * The spinlock effectively forms a memory barrier once we have the
606 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
607 * and hence be able to correctly determine if we need to run zeroing.
608 */
609 spin_lock(&ip->i_flags_lock);
610 if (iocb->ki_pos > i_size_read(inode)) {
611 bool zero = false;
612
613 spin_unlock(&ip->i_flags_lock);
614 if (*iolock == XFS_IOLOCK_SHARED) {
615 xfs_rw_iunlock(ip, *iolock);
616 *iolock = XFS_IOLOCK_EXCL;
617 xfs_rw_ilock(ip, *iolock);
618 iov_iter_reexpand(from, count);
619
620 /*
621 * We now have an IO submission barrier in place, but
622 * AIO can do EOF updates during IO completion and hence
623 * we now need to wait for all of them to drain. Non-AIO
624 * DIO will have drained before we are given the
625 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
626 * no-op.
627 */
628 inode_dio_wait(inode);
629 goto restart;
630 }
631 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
632 if (error)
633 return error;
634 } else
635 spin_unlock(&ip->i_flags_lock);
636
637 /*
638 * Updating the timestamps will grab the ilock again from
639 * xfs_fs_dirty_inode, so we have to call it after dropping the
640 * lock above. Eventually we should look into a way to avoid
641 * the pointless lock roundtrip.
642 */
643 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
644 error = file_update_time(file);
645 if (error)
646 return error;
647 }
648
649 /*
650 * If we're writing the file then make sure to clear the setuid and
651 * setgid bits if the process is not being run by root. This keeps
652 * people from modifying setuid and setgid binaries.
653 */
654 if (!IS_NOSEC(inode))
655 return file_remove_privs(file);
656 return 0;
657 }
658
659 /*
660 * xfs_file_dio_aio_write - handle direct IO writes
661 *
662 * Lock the inode appropriately to prepare for and issue a direct IO write.
663 * By separating it from the buffered write path we remove all the tricky to
664 * follow locking changes and looping.
665 *
666 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
667 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
668 * pages are flushed out.
669 *
670 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
671 * allowing them to be done in parallel with reads and other direct IO writes.
672 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
673 * needs to do sub-block zeroing and that requires serialisation against other
674 * direct IOs to the same block. In this case we need to serialise the
675 * submission of the unaligned IOs so that we don't get racing block zeroing in
676 * the dio layer. To avoid the problem with aio, we also need to wait for
677 * outstanding IOs to complete so that unwritten extent conversion is completed
678 * before we try to map the overlapping block. This is currently implemented by
679 * hitting it with a big hammer (i.e. inode_dio_wait()).
680 *
681 * Returns with locks held indicated by @iolock and errors indicated by
682 * negative return values.
683 */
684 STATIC ssize_t
685 xfs_file_dio_aio_write(
686 struct kiocb *iocb,
687 struct iov_iter *from)
688 {
689 struct file *file = iocb->ki_filp;
690 struct address_space *mapping = file->f_mapping;
691 struct inode *inode = mapping->host;
692 struct xfs_inode *ip = XFS_I(inode);
693 struct xfs_mount *mp = ip->i_mount;
694 ssize_t ret = 0;
695 int unaligned_io = 0;
696 int iolock;
697 size_t count = iov_iter_count(from);
698 loff_t pos = iocb->ki_pos;
699 loff_t end;
700 struct iov_iter data;
701 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
702 mp->m_rtdev_targp : mp->m_ddev_targp;
703
704 /* DIO must be aligned to device logical sector size */
705 if (!IS_DAX(inode) && ((pos | count) & target->bt_logical_sectormask))
706 return -EINVAL;
707
708 /* "unaligned" here means not aligned to a filesystem block */
709 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
710 unaligned_io = 1;
711
712 /*
713 * We don't need to take an exclusive lock unless there page cache needs
714 * to be invalidated or unaligned IO is being executed. We don't need to
715 * consider the EOF extension case here because
716 * xfs_file_aio_write_checks() will relock the inode as necessary for
717 * EOF zeroing cases and fill out the new inode size as appropriate.
718 */
719 if (unaligned_io || mapping->nrpages)
720 iolock = XFS_IOLOCK_EXCL;
721 else
722 iolock = XFS_IOLOCK_SHARED;
723 xfs_rw_ilock(ip, iolock);
724
725 /*
726 * Recheck if there are cached pages that need invalidate after we got
727 * the iolock to protect against other threads adding new pages while
728 * we were waiting for the iolock.
729 */
730 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
731 xfs_rw_iunlock(ip, iolock);
732 iolock = XFS_IOLOCK_EXCL;
733 xfs_rw_ilock(ip, iolock);
734 }
735
736 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
737 if (ret)
738 goto out;
739 count = iov_iter_count(from);
740 pos = iocb->ki_pos;
741 end = pos + count - 1;
742
743 /*
744 * See xfs_file_read_iter() for why we do a full-file flush here.
745 */
746 if (mapping->nrpages) {
747 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
748 if (ret)
749 goto out;
750 /*
751 * Invalidate whole pages. This can return an error if we fail
752 * to invalidate a page, but this should never happen on XFS.
753 * Warn if it does fail.
754 */
755 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
756 WARN_ON_ONCE(ret);
757 ret = 0;
758 }
759
760 /*
761 * If we are doing unaligned IO, wait for all other IO to drain,
762 * otherwise demote the lock if we had to flush cached pages
763 */
764 if (unaligned_io)
765 inode_dio_wait(inode);
766 else if (iolock == XFS_IOLOCK_EXCL) {
767 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
768 iolock = XFS_IOLOCK_SHARED;
769 }
770
771 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
772
773 data = *from;
774 ret = mapping->a_ops->direct_IO(iocb, &data, pos);
775
776 /* see generic_file_direct_write() for why this is necessary */
777 if (mapping->nrpages) {
778 invalidate_inode_pages2_range(mapping,
779 pos >> PAGE_CACHE_SHIFT,
780 end >> PAGE_CACHE_SHIFT);
781 }
782
783 if (ret > 0) {
784 pos += ret;
785 iov_iter_advance(from, ret);
786 iocb->ki_pos = pos;
787 }
788 out:
789 xfs_rw_iunlock(ip, iolock);
790
791 /*
792 * No fallback to buffered IO on errors for XFS. DAX can result in
793 * partial writes, but direct IO will either complete fully or fail.
794 */
795 ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip)));
796 return ret;
797 }
798
799 STATIC ssize_t
800 xfs_file_buffered_aio_write(
801 struct kiocb *iocb,
802 struct iov_iter *from)
803 {
804 struct file *file = iocb->ki_filp;
805 struct address_space *mapping = file->f_mapping;
806 struct inode *inode = mapping->host;
807 struct xfs_inode *ip = XFS_I(inode);
808 ssize_t ret;
809 int enospc = 0;
810 int iolock = XFS_IOLOCK_EXCL;
811
812 xfs_rw_ilock(ip, iolock);
813
814 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
815 if (ret)
816 goto out;
817
818 /* We can write back this queue in page reclaim */
819 current->backing_dev_info = inode_to_bdi(inode);
820
821 write_retry:
822 trace_xfs_file_buffered_write(ip, iov_iter_count(from),
823 iocb->ki_pos, 0);
824 ret = generic_perform_write(file, from, iocb->ki_pos);
825 if (likely(ret >= 0))
826 iocb->ki_pos += ret;
827
828 /*
829 * If we hit a space limit, try to free up some lingering preallocated
830 * space before returning an error. In the case of ENOSPC, first try to
831 * write back all dirty inodes to free up some of the excess reserved
832 * metadata space. This reduces the chances that the eofblocks scan
833 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
834 * also behaves as a filter to prevent too many eofblocks scans from
835 * running at the same time.
836 */
837 if (ret == -EDQUOT && !enospc) {
838 enospc = xfs_inode_free_quota_eofblocks(ip);
839 if (enospc)
840 goto write_retry;
841 } else if (ret == -ENOSPC && !enospc) {
842 struct xfs_eofblocks eofb = {0};
843
844 enospc = 1;
845 xfs_flush_inodes(ip->i_mount);
846 eofb.eof_scan_owner = ip->i_ino; /* for locking */
847 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
848 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
849 goto write_retry;
850 }
851
852 current->backing_dev_info = NULL;
853 out:
854 xfs_rw_iunlock(ip, iolock);
855 return ret;
856 }
857
858 STATIC ssize_t
859 xfs_file_write_iter(
860 struct kiocb *iocb,
861 struct iov_iter *from)
862 {
863 struct file *file = iocb->ki_filp;
864 struct address_space *mapping = file->f_mapping;
865 struct inode *inode = mapping->host;
866 struct xfs_inode *ip = XFS_I(inode);
867 ssize_t ret;
868 size_t ocount = iov_iter_count(from);
869
870 XFS_STATS_INC(xs_write_calls);
871
872 if (ocount == 0)
873 return 0;
874
875 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
876 return -EIO;
877
878 if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode))
879 ret = xfs_file_dio_aio_write(iocb, from);
880 else
881 ret = xfs_file_buffered_aio_write(iocb, from);
882
883 if (ret > 0) {
884 ssize_t err;
885
886 XFS_STATS_ADD(xs_write_bytes, ret);
887
888 /* Handle various SYNC-type writes */
889 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
890 if (err < 0)
891 ret = err;
892 }
893 return ret;
894 }
895
896 #define XFS_FALLOC_FL_SUPPORTED \
897 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
898 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
899 FALLOC_FL_INSERT_RANGE)
900
901 STATIC long
902 xfs_file_fallocate(
903 struct file *file,
904 int mode,
905 loff_t offset,
906 loff_t len)
907 {
908 struct inode *inode = file_inode(file);
909 struct xfs_inode *ip = XFS_I(inode);
910 long error;
911 enum xfs_prealloc_flags flags = 0;
912 uint iolock = XFS_IOLOCK_EXCL;
913 loff_t new_size = 0;
914 bool do_file_insert = 0;
915
916 if (!S_ISREG(inode->i_mode))
917 return -EINVAL;
918 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
919 return -EOPNOTSUPP;
920
921 xfs_ilock(ip, iolock);
922 error = xfs_break_layouts(inode, &iolock, false);
923 if (error)
924 goto out_unlock;
925
926 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
927 iolock |= XFS_MMAPLOCK_EXCL;
928
929 if (mode & FALLOC_FL_PUNCH_HOLE) {
930 error = xfs_free_file_space(ip, offset, len);
931 if (error)
932 goto out_unlock;
933 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
934 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
935
936 if (offset & blksize_mask || len & blksize_mask) {
937 error = -EINVAL;
938 goto out_unlock;
939 }
940
941 /*
942 * There is no need to overlap collapse range with EOF,
943 * in which case it is effectively a truncate operation
944 */
945 if (offset + len >= i_size_read(inode)) {
946 error = -EINVAL;
947 goto out_unlock;
948 }
949
950 new_size = i_size_read(inode) - len;
951
952 error = xfs_collapse_file_space(ip, offset, len);
953 if (error)
954 goto out_unlock;
955 } else if (mode & FALLOC_FL_INSERT_RANGE) {
956 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
957
958 new_size = i_size_read(inode) + len;
959 if (offset & blksize_mask || len & blksize_mask) {
960 error = -EINVAL;
961 goto out_unlock;
962 }
963
964 /* check the new inode size does not wrap through zero */
965 if (new_size > inode->i_sb->s_maxbytes) {
966 error = -EFBIG;
967 goto out_unlock;
968 }
969
970 /* Offset should be less than i_size */
971 if (offset >= i_size_read(inode)) {
972 error = -EINVAL;
973 goto out_unlock;
974 }
975 do_file_insert = 1;
976 } else {
977 flags |= XFS_PREALLOC_SET;
978
979 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
980 offset + len > i_size_read(inode)) {
981 new_size = offset + len;
982 error = inode_newsize_ok(inode, new_size);
983 if (error)
984 goto out_unlock;
985 }
986
987 if (mode & FALLOC_FL_ZERO_RANGE)
988 error = xfs_zero_file_space(ip, offset, len);
989 else
990 error = xfs_alloc_file_space(ip, offset, len,
991 XFS_BMAPI_PREALLOC);
992 if (error)
993 goto out_unlock;
994 }
995
996 if (file->f_flags & O_DSYNC)
997 flags |= XFS_PREALLOC_SYNC;
998
999 error = xfs_update_prealloc_flags(ip, flags);
1000 if (error)
1001 goto out_unlock;
1002
1003 /* Change file size if needed */
1004 if (new_size) {
1005 struct iattr iattr;
1006
1007 iattr.ia_valid = ATTR_SIZE;
1008 iattr.ia_size = new_size;
1009 error = xfs_setattr_size(ip, &iattr);
1010 if (error)
1011 goto out_unlock;
1012 }
1013
1014 /*
1015 * Perform hole insertion now that the file size has been
1016 * updated so that if we crash during the operation we don't
1017 * leave shifted extents past EOF and hence losing access to
1018 * the data that is contained within them.
1019 */
1020 if (do_file_insert)
1021 error = xfs_insert_file_space(ip, offset, len);
1022
1023 out_unlock:
1024 xfs_iunlock(ip, iolock);
1025 return error;
1026 }
1027
1028
1029 STATIC int
1030 xfs_file_open(
1031 struct inode *inode,
1032 struct file *file)
1033 {
1034 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1035 return -EFBIG;
1036 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1037 return -EIO;
1038 return 0;
1039 }
1040
1041 STATIC int
1042 xfs_dir_open(
1043 struct inode *inode,
1044 struct file *file)
1045 {
1046 struct xfs_inode *ip = XFS_I(inode);
1047 int mode;
1048 int error;
1049
1050 error = xfs_file_open(inode, file);
1051 if (error)
1052 return error;
1053
1054 /*
1055 * If there are any blocks, read-ahead block 0 as we're almost
1056 * certain to have the next operation be a read there.
1057 */
1058 mode = xfs_ilock_data_map_shared(ip);
1059 if (ip->i_d.di_nextents > 0)
1060 xfs_dir3_data_readahead(ip, 0, -1);
1061 xfs_iunlock(ip, mode);
1062 return 0;
1063 }
1064
1065 STATIC int
1066 xfs_file_release(
1067 struct inode *inode,
1068 struct file *filp)
1069 {
1070 return xfs_release(XFS_I(inode));
1071 }
1072
1073 STATIC int
1074 xfs_file_readdir(
1075 struct file *file,
1076 struct dir_context *ctx)
1077 {
1078 struct inode *inode = file_inode(file);
1079 xfs_inode_t *ip = XFS_I(inode);
1080 size_t bufsize;
1081
1082 /*
1083 * The Linux API doesn't pass down the total size of the buffer
1084 * we read into down to the filesystem. With the filldir concept
1085 * it's not needed for correct information, but the XFS dir2 leaf
1086 * code wants an estimate of the buffer size to calculate it's
1087 * readahead window and size the buffers used for mapping to
1088 * physical blocks.
1089 *
1090 * Try to give it an estimate that's good enough, maybe at some
1091 * point we can change the ->readdir prototype to include the
1092 * buffer size. For now we use the current glibc buffer size.
1093 */
1094 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1095
1096 return xfs_readdir(ip, ctx, bufsize);
1097 }
1098
1099 /*
1100 * This type is designed to indicate the type of offset we would like
1101 * to search from page cache for xfs_seek_hole_data().
1102 */
1103 enum {
1104 HOLE_OFF = 0,
1105 DATA_OFF,
1106 };
1107
1108 /*
1109 * Lookup the desired type of offset from the given page.
1110 *
1111 * On success, return true and the offset argument will point to the
1112 * start of the region that was found. Otherwise this function will
1113 * return false and keep the offset argument unchanged.
1114 */
1115 STATIC bool
1116 xfs_lookup_buffer_offset(
1117 struct page *page,
1118 loff_t *offset,
1119 unsigned int type)
1120 {
1121 loff_t lastoff = page_offset(page);
1122 bool found = false;
1123 struct buffer_head *bh, *head;
1124
1125 bh = head = page_buffers(page);
1126 do {
1127 /*
1128 * Unwritten extents that have data in the page
1129 * cache covering them can be identified by the
1130 * BH_Unwritten state flag. Pages with multiple
1131 * buffers might have a mix of holes, data and
1132 * unwritten extents - any buffer with valid
1133 * data in it should have BH_Uptodate flag set
1134 * on it.
1135 */
1136 if (buffer_unwritten(bh) ||
1137 buffer_uptodate(bh)) {
1138 if (type == DATA_OFF)
1139 found = true;
1140 } else {
1141 if (type == HOLE_OFF)
1142 found = true;
1143 }
1144
1145 if (found) {
1146 *offset = lastoff;
1147 break;
1148 }
1149 lastoff += bh->b_size;
1150 } while ((bh = bh->b_this_page) != head);
1151
1152 return found;
1153 }
1154
1155 /*
1156 * This routine is called to find out and return a data or hole offset
1157 * from the page cache for unwritten extents according to the desired
1158 * type for xfs_seek_hole_data().
1159 *
1160 * The argument offset is used to tell where we start to search from the
1161 * page cache. Map is used to figure out the end points of the range to
1162 * lookup pages.
1163 *
1164 * Return true if the desired type of offset was found, and the argument
1165 * offset is filled with that address. Otherwise, return false and keep
1166 * offset unchanged.
1167 */
1168 STATIC bool
1169 xfs_find_get_desired_pgoff(
1170 struct inode *inode,
1171 struct xfs_bmbt_irec *map,
1172 unsigned int type,
1173 loff_t *offset)
1174 {
1175 struct xfs_inode *ip = XFS_I(inode);
1176 struct xfs_mount *mp = ip->i_mount;
1177 struct pagevec pvec;
1178 pgoff_t index;
1179 pgoff_t end;
1180 loff_t endoff;
1181 loff_t startoff = *offset;
1182 loff_t lastoff = startoff;
1183 bool found = false;
1184
1185 pagevec_init(&pvec, 0);
1186
1187 index = startoff >> PAGE_CACHE_SHIFT;
1188 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1189 end = endoff >> PAGE_CACHE_SHIFT;
1190 do {
1191 int want;
1192 unsigned nr_pages;
1193 unsigned int i;
1194
1195 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1196 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1197 want);
1198 /*
1199 * No page mapped into given range. If we are searching holes
1200 * and if this is the first time we got into the loop, it means
1201 * that the given offset is landed in a hole, return it.
1202 *
1203 * If we have already stepped through some block buffers to find
1204 * holes but they all contains data. In this case, the last
1205 * offset is already updated and pointed to the end of the last
1206 * mapped page, if it does not reach the endpoint to search,
1207 * that means there should be a hole between them.
1208 */
1209 if (nr_pages == 0) {
1210 /* Data search found nothing */
1211 if (type == DATA_OFF)
1212 break;
1213
1214 ASSERT(type == HOLE_OFF);
1215 if (lastoff == startoff || lastoff < endoff) {
1216 found = true;
1217 *offset = lastoff;
1218 }
1219 break;
1220 }
1221
1222 /*
1223 * At lease we found one page. If this is the first time we
1224 * step into the loop, and if the first page index offset is
1225 * greater than the given search offset, a hole was found.
1226 */
1227 if (type == HOLE_OFF && lastoff == startoff &&
1228 lastoff < page_offset(pvec.pages[0])) {
1229 found = true;
1230 break;
1231 }
1232
1233 for (i = 0; i < nr_pages; i++) {
1234 struct page *page = pvec.pages[i];
1235 loff_t b_offset;
1236
1237 /*
1238 * At this point, the page may be truncated or
1239 * invalidated (changing page->mapping to NULL),
1240 * or even swizzled back from swapper_space to tmpfs
1241 * file mapping. However, page->index will not change
1242 * because we have a reference on the page.
1243 *
1244 * Searching done if the page index is out of range.
1245 * If the current offset is not reaches the end of
1246 * the specified search range, there should be a hole
1247 * between them.
1248 */
1249 if (page->index > end) {
1250 if (type == HOLE_OFF && lastoff < endoff) {
1251 *offset = lastoff;
1252 found = true;
1253 }
1254 goto out;
1255 }
1256
1257 lock_page(page);
1258 /*
1259 * Page truncated or invalidated(page->mapping == NULL).
1260 * We can freely skip it and proceed to check the next
1261 * page.
1262 */
1263 if (unlikely(page->mapping != inode->i_mapping)) {
1264 unlock_page(page);
1265 continue;
1266 }
1267
1268 if (!page_has_buffers(page)) {
1269 unlock_page(page);
1270 continue;
1271 }
1272
1273 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1274 if (found) {
1275 /*
1276 * The found offset may be less than the start
1277 * point to search if this is the first time to
1278 * come here.
1279 */
1280 *offset = max_t(loff_t, startoff, b_offset);
1281 unlock_page(page);
1282 goto out;
1283 }
1284
1285 /*
1286 * We either searching data but nothing was found, or
1287 * searching hole but found a data buffer. In either
1288 * case, probably the next page contains the desired
1289 * things, update the last offset to it so.
1290 */
1291 lastoff = page_offset(page) + PAGE_SIZE;
1292 unlock_page(page);
1293 }
1294
1295 /*
1296 * The number of returned pages less than our desired, search
1297 * done. In this case, nothing was found for searching data,
1298 * but we found a hole behind the last offset.
1299 */
1300 if (nr_pages < want) {
1301 if (type == HOLE_OFF) {
1302 *offset = lastoff;
1303 found = true;
1304 }
1305 break;
1306 }
1307
1308 index = pvec.pages[i - 1]->index + 1;
1309 pagevec_release(&pvec);
1310 } while (index <= end);
1311
1312 out:
1313 pagevec_release(&pvec);
1314 return found;
1315 }
1316
1317 STATIC loff_t
1318 xfs_seek_hole_data(
1319 struct file *file,
1320 loff_t start,
1321 int whence)
1322 {
1323 struct inode *inode = file->f_mapping->host;
1324 struct xfs_inode *ip = XFS_I(inode);
1325 struct xfs_mount *mp = ip->i_mount;
1326 loff_t uninitialized_var(offset);
1327 xfs_fsize_t isize;
1328 xfs_fileoff_t fsbno;
1329 xfs_filblks_t end;
1330 uint lock;
1331 int error;
1332
1333 if (XFS_FORCED_SHUTDOWN(mp))
1334 return -EIO;
1335
1336 lock = xfs_ilock_data_map_shared(ip);
1337
1338 isize = i_size_read(inode);
1339 if (start >= isize) {
1340 error = -ENXIO;
1341 goto out_unlock;
1342 }
1343
1344 /*
1345 * Try to read extents from the first block indicated
1346 * by fsbno to the end block of the file.
1347 */
1348 fsbno = XFS_B_TO_FSBT(mp, start);
1349 end = XFS_B_TO_FSB(mp, isize);
1350
1351 for (;;) {
1352 struct xfs_bmbt_irec map[2];
1353 int nmap = 2;
1354 unsigned int i;
1355
1356 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1357 XFS_BMAPI_ENTIRE);
1358 if (error)
1359 goto out_unlock;
1360
1361 /* No extents at given offset, must be beyond EOF */
1362 if (nmap == 0) {
1363 error = -ENXIO;
1364 goto out_unlock;
1365 }
1366
1367 for (i = 0; i < nmap; i++) {
1368 offset = max_t(loff_t, start,
1369 XFS_FSB_TO_B(mp, map[i].br_startoff));
1370
1371 /* Landed in the hole we wanted? */
1372 if (whence == SEEK_HOLE &&
1373 map[i].br_startblock == HOLESTARTBLOCK)
1374 goto out;
1375
1376 /* Landed in the data extent we wanted? */
1377 if (whence == SEEK_DATA &&
1378 (map[i].br_startblock == DELAYSTARTBLOCK ||
1379 (map[i].br_state == XFS_EXT_NORM &&
1380 !isnullstartblock(map[i].br_startblock))))
1381 goto out;
1382
1383 /*
1384 * Landed in an unwritten extent, try to search
1385 * for hole or data from page cache.
1386 */
1387 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1388 if (xfs_find_get_desired_pgoff(inode, &map[i],
1389 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1390 &offset))
1391 goto out;
1392 }
1393 }
1394
1395 /*
1396 * We only received one extent out of the two requested. This
1397 * means we've hit EOF and didn't find what we are looking for.
1398 */
1399 if (nmap == 1) {
1400 /*
1401 * If we were looking for a hole, set offset to
1402 * the end of the file (i.e., there is an implicit
1403 * hole at the end of any file).
1404 */
1405 if (whence == SEEK_HOLE) {
1406 offset = isize;
1407 break;
1408 }
1409 /*
1410 * If we were looking for data, it's nowhere to be found
1411 */
1412 ASSERT(whence == SEEK_DATA);
1413 error = -ENXIO;
1414 goto out_unlock;
1415 }
1416
1417 ASSERT(i > 1);
1418
1419 /*
1420 * Nothing was found, proceed to the next round of search
1421 * if the next reading offset is not at or beyond EOF.
1422 */
1423 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1424 start = XFS_FSB_TO_B(mp, fsbno);
1425 if (start >= isize) {
1426 if (whence == SEEK_HOLE) {
1427 offset = isize;
1428 break;
1429 }
1430 ASSERT(whence == SEEK_DATA);
1431 error = -ENXIO;
1432 goto out_unlock;
1433 }
1434 }
1435
1436 out:
1437 /*
1438 * If at this point we have found the hole we wanted, the returned
1439 * offset may be bigger than the file size as it may be aligned to
1440 * page boundary for unwritten extents. We need to deal with this
1441 * situation in particular.
1442 */
1443 if (whence == SEEK_HOLE)
1444 offset = min_t(loff_t, offset, isize);
1445 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1446
1447 out_unlock:
1448 xfs_iunlock(ip, lock);
1449
1450 if (error)
1451 return error;
1452 return offset;
1453 }
1454
1455 STATIC loff_t
1456 xfs_file_llseek(
1457 struct file *file,
1458 loff_t offset,
1459 int whence)
1460 {
1461 switch (whence) {
1462 case SEEK_END:
1463 case SEEK_CUR:
1464 case SEEK_SET:
1465 return generic_file_llseek(file, offset, whence);
1466 case SEEK_HOLE:
1467 case SEEK_DATA:
1468 return xfs_seek_hole_data(file, offset, whence);
1469 default:
1470 return -EINVAL;
1471 }
1472 }
1473
1474 /*
1475 * Locking for serialisation of IO during page faults. This results in a lock
1476 * ordering of:
1477 *
1478 * mmap_sem (MM)
1479 * sb_start_pagefault(vfs, freeze)
1480 * i_mmap_lock (XFS - truncate serialisation)
1481 * page_lock (MM)
1482 * i_lock (XFS - extent map serialisation)
1483 */
1484
1485 /*
1486 * mmap()d file has taken write protection fault and is being made writable. We
1487 * can set the page state up correctly for a writable page, which means we can
1488 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1489 * mapping.
1490 */
1491 STATIC int
1492 xfs_filemap_page_mkwrite(
1493 struct vm_area_struct *vma,
1494 struct vm_fault *vmf)
1495 {
1496 struct inode *inode = file_inode(vma->vm_file);
1497 int ret;
1498
1499 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1500
1501 sb_start_pagefault(inode->i_sb);
1502 file_update_time(vma->vm_file);
1503 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1504
1505 if (IS_DAX(inode)) {
1506 ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_direct,
1507 xfs_end_io_dax_write);
1508 } else {
1509 ret = __block_page_mkwrite(vma, vmf, xfs_get_blocks);
1510 ret = block_page_mkwrite_return(ret);
1511 }
1512
1513 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1514 sb_end_pagefault(inode->i_sb);
1515
1516 return ret;
1517 }
1518
1519 STATIC int
1520 xfs_filemap_fault(
1521 struct vm_area_struct *vma,
1522 struct vm_fault *vmf)
1523 {
1524 struct inode *inode = file_inode(vma->vm_file);
1525 int ret;
1526
1527 trace_xfs_filemap_fault(XFS_I(inode));
1528
1529 /* DAX can shortcut the normal fault path on write faults! */
1530 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1531 return xfs_filemap_page_mkwrite(vma, vmf);
1532
1533 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1534 if (IS_DAX(inode)) {
1535 /*
1536 * we do not want to trigger unwritten extent conversion on read
1537 * faults - that is unnecessary overhead and would also require
1538 * changes to xfs_get_blocks_direct() to map unwritten extent
1539 * ioend for conversion on read-only mappings.
1540 */
1541 ret = __dax_fault(vma, vmf, xfs_get_blocks_direct, NULL);
1542 } else
1543 ret = filemap_fault(vma, vmf);
1544 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1545
1546 return ret;
1547 }
1548
1549 STATIC int
1550 xfs_filemap_pmd_fault(
1551 struct vm_area_struct *vma,
1552 unsigned long addr,
1553 pmd_t *pmd,
1554 unsigned int flags)
1555 {
1556 struct inode *inode = file_inode(vma->vm_file);
1557 struct xfs_inode *ip = XFS_I(inode);
1558 int ret;
1559
1560 if (!IS_DAX(inode))
1561 return VM_FAULT_FALLBACK;
1562
1563 trace_xfs_filemap_pmd_fault(ip);
1564
1565 sb_start_pagefault(inode->i_sb);
1566 file_update_time(vma->vm_file);
1567 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1568 ret = __dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_direct,
1569 xfs_end_io_dax_write);
1570 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1571 sb_end_pagefault(inode->i_sb);
1572
1573 return ret;
1574 }
1575
1576 static const struct vm_operations_struct xfs_file_vm_ops = {
1577 .fault = xfs_filemap_fault,
1578 .pmd_fault = xfs_filemap_pmd_fault,
1579 .map_pages = filemap_map_pages,
1580 .page_mkwrite = xfs_filemap_page_mkwrite,
1581 };
1582
1583 STATIC int
1584 xfs_file_mmap(
1585 struct file *filp,
1586 struct vm_area_struct *vma)
1587 {
1588 file_accessed(filp);
1589 vma->vm_ops = &xfs_file_vm_ops;
1590 if (IS_DAX(file_inode(filp)))
1591 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1592 return 0;
1593 }
1594
1595 const struct file_operations xfs_file_operations = {
1596 .llseek = xfs_file_llseek,
1597 .read_iter = xfs_file_read_iter,
1598 .write_iter = xfs_file_write_iter,
1599 .splice_read = xfs_file_splice_read,
1600 .splice_write = iter_file_splice_write,
1601 .unlocked_ioctl = xfs_file_ioctl,
1602 #ifdef CONFIG_COMPAT
1603 .compat_ioctl = xfs_file_compat_ioctl,
1604 #endif
1605 .mmap = xfs_file_mmap,
1606 .open = xfs_file_open,
1607 .release = xfs_file_release,
1608 .fsync = xfs_file_fsync,
1609 .fallocate = xfs_file_fallocate,
1610 };
1611
1612 const struct file_operations xfs_dir_file_operations = {
1613 .open = xfs_dir_open,
1614 .read = generic_read_dir,
1615 .iterate = xfs_file_readdir,
1616 .llseek = generic_file_llseek,
1617 .unlocked_ioctl = xfs_file_ioctl,
1618 #ifdef CONFIG_COMPAT
1619 .compat_ioctl = xfs_file_compat_ioctl,
1620 #endif
1621 .fsync = xfs_dir_fsync,
1622 };
This page took 0.064506 seconds and 6 git commands to generate.