Merge tag 'backlight-for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / fs / xfs / xfs_file.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44 #include <linux/backing-dev.h>
45
46 static const struct vm_operations_struct xfs_file_vm_ops;
47
48 /*
49 * Locking primitives for read and write IO paths to ensure we consistently use
50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
51 */
52 static inline void
53 xfs_rw_ilock(
54 struct xfs_inode *ip,
55 int type)
56 {
57 if (type & XFS_IOLOCK_EXCL)
58 mutex_lock(&VFS_I(ip)->i_mutex);
59 xfs_ilock(ip, type);
60 }
61
62 static inline void
63 xfs_rw_iunlock(
64 struct xfs_inode *ip,
65 int type)
66 {
67 xfs_iunlock(ip, type);
68 if (type & XFS_IOLOCK_EXCL)
69 mutex_unlock(&VFS_I(ip)->i_mutex);
70 }
71
72 static inline void
73 xfs_rw_ilock_demote(
74 struct xfs_inode *ip,
75 int type)
76 {
77 xfs_ilock_demote(ip, type);
78 if (type & XFS_IOLOCK_EXCL)
79 mutex_unlock(&VFS_I(ip)->i_mutex);
80 }
81
82 /*
83 * xfs_iozero clears the specified range supplied via the page cache (except in
84 * the DAX case). Writes through the page cache will allocate blocks over holes,
85 * though the callers usually map the holes first and avoid them. If a block is
86 * not completely zeroed, then it will be read from disk before being partially
87 * zeroed.
88 *
89 * In the DAX case, we can just directly write to the underlying pages. This
90 * will not allocate blocks, but will avoid holes and unwritten extents and so
91 * not do unnecessary work.
92 */
93 int
94 xfs_iozero(
95 struct xfs_inode *ip, /* inode */
96 loff_t pos, /* offset in file */
97 size_t count) /* size of data to zero */
98 {
99 struct page *page;
100 struct address_space *mapping;
101 int status = 0;
102
103
104 mapping = VFS_I(ip)->i_mapping;
105 do {
106 unsigned offset, bytes;
107 void *fsdata;
108
109 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
110 bytes = PAGE_CACHE_SIZE - offset;
111 if (bytes > count)
112 bytes = count;
113
114 if (IS_DAX(VFS_I(ip))) {
115 status = dax_zero_page_range(VFS_I(ip), pos, bytes,
116 xfs_get_blocks_direct);
117 if (status)
118 break;
119 } else {
120 status = pagecache_write_begin(NULL, mapping, pos, bytes,
121 AOP_FLAG_UNINTERRUPTIBLE,
122 &page, &fsdata);
123 if (status)
124 break;
125
126 zero_user(page, offset, bytes);
127
128 status = pagecache_write_end(NULL, mapping, pos, bytes,
129 bytes, page, fsdata);
130 WARN_ON(status <= 0); /* can't return less than zero! */
131 status = 0;
132 }
133 pos += bytes;
134 count -= bytes;
135 } while (count);
136
137 return status;
138 }
139
140 int
141 xfs_update_prealloc_flags(
142 struct xfs_inode *ip,
143 enum xfs_prealloc_flags flags)
144 {
145 struct xfs_trans *tp;
146 int error;
147
148 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
149 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
150 if (error) {
151 xfs_trans_cancel(tp);
152 return error;
153 }
154
155 xfs_ilock(ip, XFS_ILOCK_EXCL);
156 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
157
158 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
159 ip->i_d.di_mode &= ~S_ISUID;
160 if (ip->i_d.di_mode & S_IXGRP)
161 ip->i_d.di_mode &= ~S_ISGID;
162 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
163 }
164
165 if (flags & XFS_PREALLOC_SET)
166 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
167 if (flags & XFS_PREALLOC_CLEAR)
168 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
169
170 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
171 if (flags & XFS_PREALLOC_SYNC)
172 xfs_trans_set_sync(tp);
173 return xfs_trans_commit(tp);
174 }
175
176 /*
177 * Fsync operations on directories are much simpler than on regular files,
178 * as there is no file data to flush, and thus also no need for explicit
179 * cache flush operations, and there are no non-transaction metadata updates
180 * on directories either.
181 */
182 STATIC int
183 xfs_dir_fsync(
184 struct file *file,
185 loff_t start,
186 loff_t end,
187 int datasync)
188 {
189 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
190 struct xfs_mount *mp = ip->i_mount;
191 xfs_lsn_t lsn = 0;
192
193 trace_xfs_dir_fsync(ip);
194
195 xfs_ilock(ip, XFS_ILOCK_SHARED);
196 if (xfs_ipincount(ip))
197 lsn = ip->i_itemp->ili_last_lsn;
198 xfs_iunlock(ip, XFS_ILOCK_SHARED);
199
200 if (!lsn)
201 return 0;
202 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
203 }
204
205 STATIC int
206 xfs_file_fsync(
207 struct file *file,
208 loff_t start,
209 loff_t end,
210 int datasync)
211 {
212 struct inode *inode = file->f_mapping->host;
213 struct xfs_inode *ip = XFS_I(inode);
214 struct xfs_mount *mp = ip->i_mount;
215 int error = 0;
216 int log_flushed = 0;
217 xfs_lsn_t lsn = 0;
218
219 trace_xfs_file_fsync(ip);
220
221 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
222 if (error)
223 return error;
224
225 if (XFS_FORCED_SHUTDOWN(mp))
226 return -EIO;
227
228 xfs_iflags_clear(ip, XFS_ITRUNCATED);
229
230 if (mp->m_flags & XFS_MOUNT_BARRIER) {
231 /*
232 * If we have an RT and/or log subvolume we need to make sure
233 * to flush the write cache the device used for file data
234 * first. This is to ensure newly written file data make
235 * it to disk before logging the new inode size in case of
236 * an extending write.
237 */
238 if (XFS_IS_REALTIME_INODE(ip))
239 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
240 else if (mp->m_logdev_targp != mp->m_ddev_targp)
241 xfs_blkdev_issue_flush(mp->m_ddev_targp);
242 }
243
244 /*
245 * All metadata updates are logged, which means that we just have
246 * to flush the log up to the latest LSN that touched the inode.
247 */
248 xfs_ilock(ip, XFS_ILOCK_SHARED);
249 if (xfs_ipincount(ip)) {
250 if (!datasync ||
251 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
252 lsn = ip->i_itemp->ili_last_lsn;
253 }
254 xfs_iunlock(ip, XFS_ILOCK_SHARED);
255
256 if (lsn)
257 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
258
259 /*
260 * If we only have a single device, and the log force about was
261 * a no-op we might have to flush the data device cache here.
262 * This can only happen for fdatasync/O_DSYNC if we were overwriting
263 * an already allocated file and thus do not have any metadata to
264 * commit.
265 */
266 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
267 mp->m_logdev_targp == mp->m_ddev_targp &&
268 !XFS_IS_REALTIME_INODE(ip) &&
269 !log_flushed)
270 xfs_blkdev_issue_flush(mp->m_ddev_targp);
271
272 return error;
273 }
274
275 STATIC ssize_t
276 xfs_file_read_iter(
277 struct kiocb *iocb,
278 struct iov_iter *to)
279 {
280 struct file *file = iocb->ki_filp;
281 struct inode *inode = file->f_mapping->host;
282 struct xfs_inode *ip = XFS_I(inode);
283 struct xfs_mount *mp = ip->i_mount;
284 size_t size = iov_iter_count(to);
285 ssize_t ret = 0;
286 int ioflags = 0;
287 xfs_fsize_t n;
288 loff_t pos = iocb->ki_pos;
289
290 XFS_STATS_INC(xs_read_calls);
291
292 if (unlikely(iocb->ki_flags & IOCB_DIRECT))
293 ioflags |= XFS_IO_ISDIRECT;
294 if (file->f_mode & FMODE_NOCMTIME)
295 ioflags |= XFS_IO_INVIS;
296
297 if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) {
298 xfs_buftarg_t *target =
299 XFS_IS_REALTIME_INODE(ip) ?
300 mp->m_rtdev_targp : mp->m_ddev_targp;
301 /* DIO must be aligned to device logical sector size */
302 if ((pos | size) & target->bt_logical_sectormask) {
303 if (pos == i_size_read(inode))
304 return 0;
305 return -EINVAL;
306 }
307 }
308
309 n = mp->m_super->s_maxbytes - pos;
310 if (n <= 0 || size == 0)
311 return 0;
312
313 if (n < size)
314 size = n;
315
316 if (XFS_FORCED_SHUTDOWN(mp))
317 return -EIO;
318
319 /*
320 * Locking is a bit tricky here. If we take an exclusive lock
321 * for direct IO, we effectively serialise all new concurrent
322 * read IO to this file and block it behind IO that is currently in
323 * progress because IO in progress holds the IO lock shared. We only
324 * need to hold the lock exclusive to blow away the page cache, so
325 * only take lock exclusively if the page cache needs invalidation.
326 * This allows the normal direct IO case of no page cache pages to
327 * proceeed concurrently without serialisation.
328 */
329 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
330 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
331 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
332 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
333
334 if (inode->i_mapping->nrpages) {
335 ret = filemap_write_and_wait_range(
336 VFS_I(ip)->i_mapping,
337 pos, pos + size - 1);
338 if (ret) {
339 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
340 return ret;
341 }
342
343 /*
344 * Invalidate whole pages. This can return an error if
345 * we fail to invalidate a page, but this should never
346 * happen on XFS. Warn if it does fail.
347 */
348 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
349 pos >> PAGE_CACHE_SHIFT,
350 (pos + size - 1) >> PAGE_CACHE_SHIFT);
351 WARN_ON_ONCE(ret);
352 ret = 0;
353 }
354 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
355 }
356
357 trace_xfs_file_read(ip, size, pos, ioflags);
358
359 ret = generic_file_read_iter(iocb, to);
360 if (ret > 0)
361 XFS_STATS_ADD(xs_read_bytes, ret);
362
363 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
364 return ret;
365 }
366
367 STATIC ssize_t
368 xfs_file_splice_read(
369 struct file *infilp,
370 loff_t *ppos,
371 struct pipe_inode_info *pipe,
372 size_t count,
373 unsigned int flags)
374 {
375 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
376 int ioflags = 0;
377 ssize_t ret;
378
379 XFS_STATS_INC(xs_read_calls);
380
381 if (infilp->f_mode & FMODE_NOCMTIME)
382 ioflags |= XFS_IO_INVIS;
383
384 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
385 return -EIO;
386
387 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
388
389 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
390
391 /* for dax, we need to avoid the page cache */
392 if (IS_DAX(VFS_I(ip)))
393 ret = default_file_splice_read(infilp, ppos, pipe, count, flags);
394 else
395 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
396 if (ret > 0)
397 XFS_STATS_ADD(xs_read_bytes, ret);
398
399 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
400 return ret;
401 }
402
403 /*
404 * This routine is called to handle zeroing any space in the last block of the
405 * file that is beyond the EOF. We do this since the size is being increased
406 * without writing anything to that block and we don't want to read the
407 * garbage on the disk.
408 */
409 STATIC int /* error (positive) */
410 xfs_zero_last_block(
411 struct xfs_inode *ip,
412 xfs_fsize_t offset,
413 xfs_fsize_t isize,
414 bool *did_zeroing)
415 {
416 struct xfs_mount *mp = ip->i_mount;
417 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
418 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
419 int zero_len;
420 int nimaps = 1;
421 int error = 0;
422 struct xfs_bmbt_irec imap;
423
424 xfs_ilock(ip, XFS_ILOCK_EXCL);
425 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
426 xfs_iunlock(ip, XFS_ILOCK_EXCL);
427 if (error)
428 return error;
429
430 ASSERT(nimaps > 0);
431
432 /*
433 * If the block underlying isize is just a hole, then there
434 * is nothing to zero.
435 */
436 if (imap.br_startblock == HOLESTARTBLOCK)
437 return 0;
438
439 zero_len = mp->m_sb.sb_blocksize - zero_offset;
440 if (isize + zero_len > offset)
441 zero_len = offset - isize;
442 *did_zeroing = true;
443 return xfs_iozero(ip, isize, zero_len);
444 }
445
446 /*
447 * Zero any on disk space between the current EOF and the new, larger EOF.
448 *
449 * This handles the normal case of zeroing the remainder of the last block in
450 * the file and the unusual case of zeroing blocks out beyond the size of the
451 * file. This second case only happens with fixed size extents and when the
452 * system crashes before the inode size was updated but after blocks were
453 * allocated.
454 *
455 * Expects the iolock to be held exclusive, and will take the ilock internally.
456 */
457 int /* error (positive) */
458 xfs_zero_eof(
459 struct xfs_inode *ip,
460 xfs_off_t offset, /* starting I/O offset */
461 xfs_fsize_t isize, /* current inode size */
462 bool *did_zeroing)
463 {
464 struct xfs_mount *mp = ip->i_mount;
465 xfs_fileoff_t start_zero_fsb;
466 xfs_fileoff_t end_zero_fsb;
467 xfs_fileoff_t zero_count_fsb;
468 xfs_fileoff_t last_fsb;
469 xfs_fileoff_t zero_off;
470 xfs_fsize_t zero_len;
471 int nimaps;
472 int error = 0;
473 struct xfs_bmbt_irec imap;
474
475 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
476 ASSERT(offset > isize);
477
478 /*
479 * First handle zeroing the block on which isize resides.
480 *
481 * We only zero a part of that block so it is handled specially.
482 */
483 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
484 error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
485 if (error)
486 return error;
487 }
488
489 /*
490 * Calculate the range between the new size and the old where blocks
491 * needing to be zeroed may exist.
492 *
493 * To get the block where the last byte in the file currently resides,
494 * we need to subtract one from the size and truncate back to a block
495 * boundary. We subtract 1 in case the size is exactly on a block
496 * boundary.
497 */
498 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
499 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
500 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
501 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
502 if (last_fsb == end_zero_fsb) {
503 /*
504 * The size was only incremented on its last block.
505 * We took care of that above, so just return.
506 */
507 return 0;
508 }
509
510 ASSERT(start_zero_fsb <= end_zero_fsb);
511 while (start_zero_fsb <= end_zero_fsb) {
512 nimaps = 1;
513 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
514
515 xfs_ilock(ip, XFS_ILOCK_EXCL);
516 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
517 &imap, &nimaps, 0);
518 xfs_iunlock(ip, XFS_ILOCK_EXCL);
519 if (error)
520 return error;
521
522 ASSERT(nimaps > 0);
523
524 if (imap.br_state == XFS_EXT_UNWRITTEN ||
525 imap.br_startblock == HOLESTARTBLOCK) {
526 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
527 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
528 continue;
529 }
530
531 /*
532 * There are blocks we need to zero.
533 */
534 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
535 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
536
537 if ((zero_off + zero_len) > offset)
538 zero_len = offset - zero_off;
539
540 error = xfs_iozero(ip, zero_off, zero_len);
541 if (error)
542 return error;
543
544 *did_zeroing = true;
545 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
546 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
547 }
548
549 return 0;
550 }
551
552 /*
553 * Common pre-write limit and setup checks.
554 *
555 * Called with the iolocked held either shared and exclusive according to
556 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
557 * if called for a direct write beyond i_size.
558 */
559 STATIC ssize_t
560 xfs_file_aio_write_checks(
561 struct kiocb *iocb,
562 struct iov_iter *from,
563 int *iolock)
564 {
565 struct file *file = iocb->ki_filp;
566 struct inode *inode = file->f_mapping->host;
567 struct xfs_inode *ip = XFS_I(inode);
568 ssize_t error = 0;
569 size_t count = iov_iter_count(from);
570
571 restart:
572 error = generic_write_checks(iocb, from);
573 if (error <= 0)
574 return error;
575
576 error = xfs_break_layouts(inode, iolock, true);
577 if (error)
578 return error;
579
580 /* For changing security info in file_remove_privs() we need i_mutex */
581 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
582 xfs_rw_iunlock(ip, *iolock);
583 *iolock = XFS_IOLOCK_EXCL;
584 xfs_rw_ilock(ip, *iolock);
585 goto restart;
586 }
587 /*
588 * If the offset is beyond the size of the file, we need to zero any
589 * blocks that fall between the existing EOF and the start of this
590 * write. If zeroing is needed and we are currently holding the
591 * iolock shared, we need to update it to exclusive which implies
592 * having to redo all checks before.
593 *
594 * We need to serialise against EOF updates that occur in IO
595 * completions here. We want to make sure that nobody is changing the
596 * size while we do this check until we have placed an IO barrier (i.e.
597 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
598 * The spinlock effectively forms a memory barrier once we have the
599 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
600 * and hence be able to correctly determine if we need to run zeroing.
601 */
602 spin_lock(&ip->i_flags_lock);
603 if (iocb->ki_pos > i_size_read(inode)) {
604 bool zero = false;
605
606 spin_unlock(&ip->i_flags_lock);
607 if (*iolock == XFS_IOLOCK_SHARED) {
608 xfs_rw_iunlock(ip, *iolock);
609 *iolock = XFS_IOLOCK_EXCL;
610 xfs_rw_ilock(ip, *iolock);
611 iov_iter_reexpand(from, count);
612
613 /*
614 * We now have an IO submission barrier in place, but
615 * AIO can do EOF updates during IO completion and hence
616 * we now need to wait for all of them to drain. Non-AIO
617 * DIO will have drained before we are given the
618 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
619 * no-op.
620 */
621 inode_dio_wait(inode);
622 goto restart;
623 }
624 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
625 if (error)
626 return error;
627 } else
628 spin_unlock(&ip->i_flags_lock);
629
630 /*
631 * Updating the timestamps will grab the ilock again from
632 * xfs_fs_dirty_inode, so we have to call it after dropping the
633 * lock above. Eventually we should look into a way to avoid
634 * the pointless lock roundtrip.
635 */
636 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
637 error = file_update_time(file);
638 if (error)
639 return error;
640 }
641
642 /*
643 * If we're writing the file then make sure to clear the setuid and
644 * setgid bits if the process is not being run by root. This keeps
645 * people from modifying setuid and setgid binaries.
646 */
647 if (!IS_NOSEC(inode))
648 return file_remove_privs(file);
649 return 0;
650 }
651
652 /*
653 * xfs_file_dio_aio_write - handle direct IO writes
654 *
655 * Lock the inode appropriately to prepare for and issue a direct IO write.
656 * By separating it from the buffered write path we remove all the tricky to
657 * follow locking changes and looping.
658 *
659 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
660 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
661 * pages are flushed out.
662 *
663 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
664 * allowing them to be done in parallel with reads and other direct IO writes.
665 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
666 * needs to do sub-block zeroing and that requires serialisation against other
667 * direct IOs to the same block. In this case we need to serialise the
668 * submission of the unaligned IOs so that we don't get racing block zeroing in
669 * the dio layer. To avoid the problem with aio, we also need to wait for
670 * outstanding IOs to complete so that unwritten extent conversion is completed
671 * before we try to map the overlapping block. This is currently implemented by
672 * hitting it with a big hammer (i.e. inode_dio_wait()).
673 *
674 * Returns with locks held indicated by @iolock and errors indicated by
675 * negative return values.
676 */
677 STATIC ssize_t
678 xfs_file_dio_aio_write(
679 struct kiocb *iocb,
680 struct iov_iter *from)
681 {
682 struct file *file = iocb->ki_filp;
683 struct address_space *mapping = file->f_mapping;
684 struct inode *inode = mapping->host;
685 struct xfs_inode *ip = XFS_I(inode);
686 struct xfs_mount *mp = ip->i_mount;
687 ssize_t ret = 0;
688 int unaligned_io = 0;
689 int iolock;
690 size_t count = iov_iter_count(from);
691 loff_t pos = iocb->ki_pos;
692 loff_t end;
693 struct iov_iter data;
694 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
695 mp->m_rtdev_targp : mp->m_ddev_targp;
696
697 /* DIO must be aligned to device logical sector size */
698 if (!IS_DAX(inode) && ((pos | count) & target->bt_logical_sectormask))
699 return -EINVAL;
700
701 /* "unaligned" here means not aligned to a filesystem block */
702 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
703 unaligned_io = 1;
704
705 /*
706 * We don't need to take an exclusive lock unless there page cache needs
707 * to be invalidated or unaligned IO is being executed. We don't need to
708 * consider the EOF extension case here because
709 * xfs_file_aio_write_checks() will relock the inode as necessary for
710 * EOF zeroing cases and fill out the new inode size as appropriate.
711 */
712 if (unaligned_io || mapping->nrpages)
713 iolock = XFS_IOLOCK_EXCL;
714 else
715 iolock = XFS_IOLOCK_SHARED;
716 xfs_rw_ilock(ip, iolock);
717
718 /*
719 * Recheck if there are cached pages that need invalidate after we got
720 * the iolock to protect against other threads adding new pages while
721 * we were waiting for the iolock.
722 */
723 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
724 xfs_rw_iunlock(ip, iolock);
725 iolock = XFS_IOLOCK_EXCL;
726 xfs_rw_ilock(ip, iolock);
727 }
728
729 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
730 if (ret)
731 goto out;
732 count = iov_iter_count(from);
733 pos = iocb->ki_pos;
734 end = pos + count - 1;
735
736 if (mapping->nrpages) {
737 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
738 pos, end);
739 if (ret)
740 goto out;
741 /*
742 * Invalidate whole pages. This can return an error if
743 * we fail to invalidate a page, but this should never
744 * happen on XFS. Warn if it does fail.
745 */
746 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
747 pos >> PAGE_CACHE_SHIFT,
748 end >> PAGE_CACHE_SHIFT);
749 WARN_ON_ONCE(ret);
750 ret = 0;
751 }
752
753 /*
754 * If we are doing unaligned IO, wait for all other IO to drain,
755 * otherwise demote the lock if we had to flush cached pages
756 */
757 if (unaligned_io)
758 inode_dio_wait(inode);
759 else if (iolock == XFS_IOLOCK_EXCL) {
760 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
761 iolock = XFS_IOLOCK_SHARED;
762 }
763
764 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
765
766 data = *from;
767 ret = mapping->a_ops->direct_IO(iocb, &data, pos);
768
769 /* see generic_file_direct_write() for why this is necessary */
770 if (mapping->nrpages) {
771 invalidate_inode_pages2_range(mapping,
772 pos >> PAGE_CACHE_SHIFT,
773 end >> PAGE_CACHE_SHIFT);
774 }
775
776 if (ret > 0) {
777 pos += ret;
778 iov_iter_advance(from, ret);
779 iocb->ki_pos = pos;
780 }
781 out:
782 xfs_rw_iunlock(ip, iolock);
783
784 /*
785 * No fallback to buffered IO on errors for XFS. DAX can result in
786 * partial writes, but direct IO will either complete fully or fail.
787 */
788 ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip)));
789 return ret;
790 }
791
792 STATIC ssize_t
793 xfs_file_buffered_aio_write(
794 struct kiocb *iocb,
795 struct iov_iter *from)
796 {
797 struct file *file = iocb->ki_filp;
798 struct address_space *mapping = file->f_mapping;
799 struct inode *inode = mapping->host;
800 struct xfs_inode *ip = XFS_I(inode);
801 ssize_t ret;
802 int enospc = 0;
803 int iolock = XFS_IOLOCK_EXCL;
804
805 xfs_rw_ilock(ip, iolock);
806
807 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
808 if (ret)
809 goto out;
810
811 /* We can write back this queue in page reclaim */
812 current->backing_dev_info = inode_to_bdi(inode);
813
814 write_retry:
815 trace_xfs_file_buffered_write(ip, iov_iter_count(from),
816 iocb->ki_pos, 0);
817 ret = generic_perform_write(file, from, iocb->ki_pos);
818 if (likely(ret >= 0))
819 iocb->ki_pos += ret;
820
821 /*
822 * If we hit a space limit, try to free up some lingering preallocated
823 * space before returning an error. In the case of ENOSPC, first try to
824 * write back all dirty inodes to free up some of the excess reserved
825 * metadata space. This reduces the chances that the eofblocks scan
826 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
827 * also behaves as a filter to prevent too many eofblocks scans from
828 * running at the same time.
829 */
830 if (ret == -EDQUOT && !enospc) {
831 enospc = xfs_inode_free_quota_eofblocks(ip);
832 if (enospc)
833 goto write_retry;
834 } else if (ret == -ENOSPC && !enospc) {
835 struct xfs_eofblocks eofb = {0};
836
837 enospc = 1;
838 xfs_flush_inodes(ip->i_mount);
839 eofb.eof_scan_owner = ip->i_ino; /* for locking */
840 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
841 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
842 goto write_retry;
843 }
844
845 current->backing_dev_info = NULL;
846 out:
847 xfs_rw_iunlock(ip, iolock);
848 return ret;
849 }
850
851 STATIC ssize_t
852 xfs_file_write_iter(
853 struct kiocb *iocb,
854 struct iov_iter *from)
855 {
856 struct file *file = iocb->ki_filp;
857 struct address_space *mapping = file->f_mapping;
858 struct inode *inode = mapping->host;
859 struct xfs_inode *ip = XFS_I(inode);
860 ssize_t ret;
861 size_t ocount = iov_iter_count(from);
862
863 XFS_STATS_INC(xs_write_calls);
864
865 if (ocount == 0)
866 return 0;
867
868 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
869 return -EIO;
870
871 if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode))
872 ret = xfs_file_dio_aio_write(iocb, from);
873 else
874 ret = xfs_file_buffered_aio_write(iocb, from);
875
876 if (ret > 0) {
877 ssize_t err;
878
879 XFS_STATS_ADD(xs_write_bytes, ret);
880
881 /* Handle various SYNC-type writes */
882 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
883 if (err < 0)
884 ret = err;
885 }
886 return ret;
887 }
888
889 #define XFS_FALLOC_FL_SUPPORTED \
890 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
891 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
892 FALLOC_FL_INSERT_RANGE)
893
894 STATIC long
895 xfs_file_fallocate(
896 struct file *file,
897 int mode,
898 loff_t offset,
899 loff_t len)
900 {
901 struct inode *inode = file_inode(file);
902 struct xfs_inode *ip = XFS_I(inode);
903 long error;
904 enum xfs_prealloc_flags flags = 0;
905 uint iolock = XFS_IOLOCK_EXCL;
906 loff_t new_size = 0;
907 bool do_file_insert = 0;
908
909 if (!S_ISREG(inode->i_mode))
910 return -EINVAL;
911 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
912 return -EOPNOTSUPP;
913
914 xfs_ilock(ip, iolock);
915 error = xfs_break_layouts(inode, &iolock, false);
916 if (error)
917 goto out_unlock;
918
919 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
920 iolock |= XFS_MMAPLOCK_EXCL;
921
922 if (mode & FALLOC_FL_PUNCH_HOLE) {
923 error = xfs_free_file_space(ip, offset, len);
924 if (error)
925 goto out_unlock;
926 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
927 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
928
929 if (offset & blksize_mask || len & blksize_mask) {
930 error = -EINVAL;
931 goto out_unlock;
932 }
933
934 /*
935 * There is no need to overlap collapse range with EOF,
936 * in which case it is effectively a truncate operation
937 */
938 if (offset + len >= i_size_read(inode)) {
939 error = -EINVAL;
940 goto out_unlock;
941 }
942
943 new_size = i_size_read(inode) - len;
944
945 error = xfs_collapse_file_space(ip, offset, len);
946 if (error)
947 goto out_unlock;
948 } else if (mode & FALLOC_FL_INSERT_RANGE) {
949 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
950
951 new_size = i_size_read(inode) + len;
952 if (offset & blksize_mask || len & blksize_mask) {
953 error = -EINVAL;
954 goto out_unlock;
955 }
956
957 /* check the new inode size does not wrap through zero */
958 if (new_size > inode->i_sb->s_maxbytes) {
959 error = -EFBIG;
960 goto out_unlock;
961 }
962
963 /* Offset should be less than i_size */
964 if (offset >= i_size_read(inode)) {
965 error = -EINVAL;
966 goto out_unlock;
967 }
968 do_file_insert = 1;
969 } else {
970 flags |= XFS_PREALLOC_SET;
971
972 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
973 offset + len > i_size_read(inode)) {
974 new_size = offset + len;
975 error = inode_newsize_ok(inode, new_size);
976 if (error)
977 goto out_unlock;
978 }
979
980 if (mode & FALLOC_FL_ZERO_RANGE)
981 error = xfs_zero_file_space(ip, offset, len);
982 else
983 error = xfs_alloc_file_space(ip, offset, len,
984 XFS_BMAPI_PREALLOC);
985 if (error)
986 goto out_unlock;
987 }
988
989 if (file->f_flags & O_DSYNC)
990 flags |= XFS_PREALLOC_SYNC;
991
992 error = xfs_update_prealloc_flags(ip, flags);
993 if (error)
994 goto out_unlock;
995
996 /* Change file size if needed */
997 if (new_size) {
998 struct iattr iattr;
999
1000 iattr.ia_valid = ATTR_SIZE;
1001 iattr.ia_size = new_size;
1002 error = xfs_setattr_size(ip, &iattr);
1003 if (error)
1004 goto out_unlock;
1005 }
1006
1007 /*
1008 * Perform hole insertion now that the file size has been
1009 * updated so that if we crash during the operation we don't
1010 * leave shifted extents past EOF and hence losing access to
1011 * the data that is contained within them.
1012 */
1013 if (do_file_insert)
1014 error = xfs_insert_file_space(ip, offset, len);
1015
1016 out_unlock:
1017 xfs_iunlock(ip, iolock);
1018 return error;
1019 }
1020
1021
1022 STATIC int
1023 xfs_file_open(
1024 struct inode *inode,
1025 struct file *file)
1026 {
1027 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1028 return -EFBIG;
1029 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1030 return -EIO;
1031 return 0;
1032 }
1033
1034 STATIC int
1035 xfs_dir_open(
1036 struct inode *inode,
1037 struct file *file)
1038 {
1039 struct xfs_inode *ip = XFS_I(inode);
1040 int mode;
1041 int error;
1042
1043 error = xfs_file_open(inode, file);
1044 if (error)
1045 return error;
1046
1047 /*
1048 * If there are any blocks, read-ahead block 0 as we're almost
1049 * certain to have the next operation be a read there.
1050 */
1051 mode = xfs_ilock_data_map_shared(ip);
1052 if (ip->i_d.di_nextents > 0)
1053 xfs_dir3_data_readahead(ip, 0, -1);
1054 xfs_iunlock(ip, mode);
1055 return 0;
1056 }
1057
1058 STATIC int
1059 xfs_file_release(
1060 struct inode *inode,
1061 struct file *filp)
1062 {
1063 return xfs_release(XFS_I(inode));
1064 }
1065
1066 STATIC int
1067 xfs_file_readdir(
1068 struct file *file,
1069 struct dir_context *ctx)
1070 {
1071 struct inode *inode = file_inode(file);
1072 xfs_inode_t *ip = XFS_I(inode);
1073 size_t bufsize;
1074
1075 /*
1076 * The Linux API doesn't pass down the total size of the buffer
1077 * we read into down to the filesystem. With the filldir concept
1078 * it's not needed for correct information, but the XFS dir2 leaf
1079 * code wants an estimate of the buffer size to calculate it's
1080 * readahead window and size the buffers used for mapping to
1081 * physical blocks.
1082 *
1083 * Try to give it an estimate that's good enough, maybe at some
1084 * point we can change the ->readdir prototype to include the
1085 * buffer size. For now we use the current glibc buffer size.
1086 */
1087 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1088
1089 return xfs_readdir(ip, ctx, bufsize);
1090 }
1091
1092 /*
1093 * This type is designed to indicate the type of offset we would like
1094 * to search from page cache for xfs_seek_hole_data().
1095 */
1096 enum {
1097 HOLE_OFF = 0,
1098 DATA_OFF,
1099 };
1100
1101 /*
1102 * Lookup the desired type of offset from the given page.
1103 *
1104 * On success, return true and the offset argument will point to the
1105 * start of the region that was found. Otherwise this function will
1106 * return false and keep the offset argument unchanged.
1107 */
1108 STATIC bool
1109 xfs_lookup_buffer_offset(
1110 struct page *page,
1111 loff_t *offset,
1112 unsigned int type)
1113 {
1114 loff_t lastoff = page_offset(page);
1115 bool found = false;
1116 struct buffer_head *bh, *head;
1117
1118 bh = head = page_buffers(page);
1119 do {
1120 /*
1121 * Unwritten extents that have data in the page
1122 * cache covering them can be identified by the
1123 * BH_Unwritten state flag. Pages with multiple
1124 * buffers might have a mix of holes, data and
1125 * unwritten extents - any buffer with valid
1126 * data in it should have BH_Uptodate flag set
1127 * on it.
1128 */
1129 if (buffer_unwritten(bh) ||
1130 buffer_uptodate(bh)) {
1131 if (type == DATA_OFF)
1132 found = true;
1133 } else {
1134 if (type == HOLE_OFF)
1135 found = true;
1136 }
1137
1138 if (found) {
1139 *offset = lastoff;
1140 break;
1141 }
1142 lastoff += bh->b_size;
1143 } while ((bh = bh->b_this_page) != head);
1144
1145 return found;
1146 }
1147
1148 /*
1149 * This routine is called to find out and return a data or hole offset
1150 * from the page cache for unwritten extents according to the desired
1151 * type for xfs_seek_hole_data().
1152 *
1153 * The argument offset is used to tell where we start to search from the
1154 * page cache. Map is used to figure out the end points of the range to
1155 * lookup pages.
1156 *
1157 * Return true if the desired type of offset was found, and the argument
1158 * offset is filled with that address. Otherwise, return false and keep
1159 * offset unchanged.
1160 */
1161 STATIC bool
1162 xfs_find_get_desired_pgoff(
1163 struct inode *inode,
1164 struct xfs_bmbt_irec *map,
1165 unsigned int type,
1166 loff_t *offset)
1167 {
1168 struct xfs_inode *ip = XFS_I(inode);
1169 struct xfs_mount *mp = ip->i_mount;
1170 struct pagevec pvec;
1171 pgoff_t index;
1172 pgoff_t end;
1173 loff_t endoff;
1174 loff_t startoff = *offset;
1175 loff_t lastoff = startoff;
1176 bool found = false;
1177
1178 pagevec_init(&pvec, 0);
1179
1180 index = startoff >> PAGE_CACHE_SHIFT;
1181 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1182 end = endoff >> PAGE_CACHE_SHIFT;
1183 do {
1184 int want;
1185 unsigned nr_pages;
1186 unsigned int i;
1187
1188 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1189 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1190 want);
1191 /*
1192 * No page mapped into given range. If we are searching holes
1193 * and if this is the first time we got into the loop, it means
1194 * that the given offset is landed in a hole, return it.
1195 *
1196 * If we have already stepped through some block buffers to find
1197 * holes but they all contains data. In this case, the last
1198 * offset is already updated and pointed to the end of the last
1199 * mapped page, if it does not reach the endpoint to search,
1200 * that means there should be a hole between them.
1201 */
1202 if (nr_pages == 0) {
1203 /* Data search found nothing */
1204 if (type == DATA_OFF)
1205 break;
1206
1207 ASSERT(type == HOLE_OFF);
1208 if (lastoff == startoff || lastoff < endoff) {
1209 found = true;
1210 *offset = lastoff;
1211 }
1212 break;
1213 }
1214
1215 /*
1216 * At lease we found one page. If this is the first time we
1217 * step into the loop, and if the first page index offset is
1218 * greater than the given search offset, a hole was found.
1219 */
1220 if (type == HOLE_OFF && lastoff == startoff &&
1221 lastoff < page_offset(pvec.pages[0])) {
1222 found = true;
1223 break;
1224 }
1225
1226 for (i = 0; i < nr_pages; i++) {
1227 struct page *page = pvec.pages[i];
1228 loff_t b_offset;
1229
1230 /*
1231 * At this point, the page may be truncated or
1232 * invalidated (changing page->mapping to NULL),
1233 * or even swizzled back from swapper_space to tmpfs
1234 * file mapping. However, page->index will not change
1235 * because we have a reference on the page.
1236 *
1237 * Searching done if the page index is out of range.
1238 * If the current offset is not reaches the end of
1239 * the specified search range, there should be a hole
1240 * between them.
1241 */
1242 if (page->index > end) {
1243 if (type == HOLE_OFF && lastoff < endoff) {
1244 *offset = lastoff;
1245 found = true;
1246 }
1247 goto out;
1248 }
1249
1250 lock_page(page);
1251 /*
1252 * Page truncated or invalidated(page->mapping == NULL).
1253 * We can freely skip it and proceed to check the next
1254 * page.
1255 */
1256 if (unlikely(page->mapping != inode->i_mapping)) {
1257 unlock_page(page);
1258 continue;
1259 }
1260
1261 if (!page_has_buffers(page)) {
1262 unlock_page(page);
1263 continue;
1264 }
1265
1266 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1267 if (found) {
1268 /*
1269 * The found offset may be less than the start
1270 * point to search if this is the first time to
1271 * come here.
1272 */
1273 *offset = max_t(loff_t, startoff, b_offset);
1274 unlock_page(page);
1275 goto out;
1276 }
1277
1278 /*
1279 * We either searching data but nothing was found, or
1280 * searching hole but found a data buffer. In either
1281 * case, probably the next page contains the desired
1282 * things, update the last offset to it so.
1283 */
1284 lastoff = page_offset(page) + PAGE_SIZE;
1285 unlock_page(page);
1286 }
1287
1288 /*
1289 * The number of returned pages less than our desired, search
1290 * done. In this case, nothing was found for searching data,
1291 * but we found a hole behind the last offset.
1292 */
1293 if (nr_pages < want) {
1294 if (type == HOLE_OFF) {
1295 *offset = lastoff;
1296 found = true;
1297 }
1298 break;
1299 }
1300
1301 index = pvec.pages[i - 1]->index + 1;
1302 pagevec_release(&pvec);
1303 } while (index <= end);
1304
1305 out:
1306 pagevec_release(&pvec);
1307 return found;
1308 }
1309
1310 STATIC loff_t
1311 xfs_seek_hole_data(
1312 struct file *file,
1313 loff_t start,
1314 int whence)
1315 {
1316 struct inode *inode = file->f_mapping->host;
1317 struct xfs_inode *ip = XFS_I(inode);
1318 struct xfs_mount *mp = ip->i_mount;
1319 loff_t uninitialized_var(offset);
1320 xfs_fsize_t isize;
1321 xfs_fileoff_t fsbno;
1322 xfs_filblks_t end;
1323 uint lock;
1324 int error;
1325
1326 if (XFS_FORCED_SHUTDOWN(mp))
1327 return -EIO;
1328
1329 lock = xfs_ilock_data_map_shared(ip);
1330
1331 isize = i_size_read(inode);
1332 if (start >= isize) {
1333 error = -ENXIO;
1334 goto out_unlock;
1335 }
1336
1337 /*
1338 * Try to read extents from the first block indicated
1339 * by fsbno to the end block of the file.
1340 */
1341 fsbno = XFS_B_TO_FSBT(mp, start);
1342 end = XFS_B_TO_FSB(mp, isize);
1343
1344 for (;;) {
1345 struct xfs_bmbt_irec map[2];
1346 int nmap = 2;
1347 unsigned int i;
1348
1349 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1350 XFS_BMAPI_ENTIRE);
1351 if (error)
1352 goto out_unlock;
1353
1354 /* No extents at given offset, must be beyond EOF */
1355 if (nmap == 0) {
1356 error = -ENXIO;
1357 goto out_unlock;
1358 }
1359
1360 for (i = 0; i < nmap; i++) {
1361 offset = max_t(loff_t, start,
1362 XFS_FSB_TO_B(mp, map[i].br_startoff));
1363
1364 /* Landed in the hole we wanted? */
1365 if (whence == SEEK_HOLE &&
1366 map[i].br_startblock == HOLESTARTBLOCK)
1367 goto out;
1368
1369 /* Landed in the data extent we wanted? */
1370 if (whence == SEEK_DATA &&
1371 (map[i].br_startblock == DELAYSTARTBLOCK ||
1372 (map[i].br_state == XFS_EXT_NORM &&
1373 !isnullstartblock(map[i].br_startblock))))
1374 goto out;
1375
1376 /*
1377 * Landed in an unwritten extent, try to search
1378 * for hole or data from page cache.
1379 */
1380 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1381 if (xfs_find_get_desired_pgoff(inode, &map[i],
1382 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1383 &offset))
1384 goto out;
1385 }
1386 }
1387
1388 /*
1389 * We only received one extent out of the two requested. This
1390 * means we've hit EOF and didn't find what we are looking for.
1391 */
1392 if (nmap == 1) {
1393 /*
1394 * If we were looking for a hole, set offset to
1395 * the end of the file (i.e., there is an implicit
1396 * hole at the end of any file).
1397 */
1398 if (whence == SEEK_HOLE) {
1399 offset = isize;
1400 break;
1401 }
1402 /*
1403 * If we were looking for data, it's nowhere to be found
1404 */
1405 ASSERT(whence == SEEK_DATA);
1406 error = -ENXIO;
1407 goto out_unlock;
1408 }
1409
1410 ASSERT(i > 1);
1411
1412 /*
1413 * Nothing was found, proceed to the next round of search
1414 * if the next reading offset is not at or beyond EOF.
1415 */
1416 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1417 start = XFS_FSB_TO_B(mp, fsbno);
1418 if (start >= isize) {
1419 if (whence == SEEK_HOLE) {
1420 offset = isize;
1421 break;
1422 }
1423 ASSERT(whence == SEEK_DATA);
1424 error = -ENXIO;
1425 goto out_unlock;
1426 }
1427 }
1428
1429 out:
1430 /*
1431 * If at this point we have found the hole we wanted, the returned
1432 * offset may be bigger than the file size as it may be aligned to
1433 * page boundary for unwritten extents. We need to deal with this
1434 * situation in particular.
1435 */
1436 if (whence == SEEK_HOLE)
1437 offset = min_t(loff_t, offset, isize);
1438 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1439
1440 out_unlock:
1441 xfs_iunlock(ip, lock);
1442
1443 if (error)
1444 return error;
1445 return offset;
1446 }
1447
1448 STATIC loff_t
1449 xfs_file_llseek(
1450 struct file *file,
1451 loff_t offset,
1452 int whence)
1453 {
1454 switch (whence) {
1455 case SEEK_END:
1456 case SEEK_CUR:
1457 case SEEK_SET:
1458 return generic_file_llseek(file, offset, whence);
1459 case SEEK_HOLE:
1460 case SEEK_DATA:
1461 return xfs_seek_hole_data(file, offset, whence);
1462 default:
1463 return -EINVAL;
1464 }
1465 }
1466
1467 /*
1468 * Locking for serialisation of IO during page faults. This results in a lock
1469 * ordering of:
1470 *
1471 * mmap_sem (MM)
1472 * sb_start_pagefault(vfs, freeze)
1473 * i_mmap_lock (XFS - truncate serialisation)
1474 * page_lock (MM)
1475 * i_lock (XFS - extent map serialisation)
1476 */
1477
1478 /*
1479 * mmap()d file has taken write protection fault and is being made writable. We
1480 * can set the page state up correctly for a writable page, which means we can
1481 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1482 * mapping.
1483 */
1484 STATIC int
1485 xfs_filemap_page_mkwrite(
1486 struct vm_area_struct *vma,
1487 struct vm_fault *vmf)
1488 {
1489 struct inode *inode = file_inode(vma->vm_file);
1490 int ret;
1491
1492 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1493
1494 sb_start_pagefault(inode->i_sb);
1495 file_update_time(vma->vm_file);
1496 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1497
1498 if (IS_DAX(inode)) {
1499 ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_direct,
1500 xfs_end_io_dax_write);
1501 } else {
1502 ret = __block_page_mkwrite(vma, vmf, xfs_get_blocks);
1503 ret = block_page_mkwrite_return(ret);
1504 }
1505
1506 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1507 sb_end_pagefault(inode->i_sb);
1508
1509 return ret;
1510 }
1511
1512 STATIC int
1513 xfs_filemap_fault(
1514 struct vm_area_struct *vma,
1515 struct vm_fault *vmf)
1516 {
1517 struct inode *inode = file_inode(vma->vm_file);
1518 int ret;
1519
1520 trace_xfs_filemap_fault(XFS_I(inode));
1521
1522 /* DAX can shortcut the normal fault path on write faults! */
1523 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1524 return xfs_filemap_page_mkwrite(vma, vmf);
1525
1526 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1527 if (IS_DAX(inode)) {
1528 /*
1529 * we do not want to trigger unwritten extent conversion on read
1530 * faults - that is unnecessary overhead and would also require
1531 * changes to xfs_get_blocks_direct() to map unwritten extent
1532 * ioend for conversion on read-only mappings.
1533 */
1534 ret = __dax_fault(vma, vmf, xfs_get_blocks_direct, NULL);
1535 } else
1536 ret = filemap_fault(vma, vmf);
1537 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1538
1539 return ret;
1540 }
1541
1542 static const struct vm_operations_struct xfs_file_vm_ops = {
1543 .fault = xfs_filemap_fault,
1544 .map_pages = filemap_map_pages,
1545 .page_mkwrite = xfs_filemap_page_mkwrite,
1546 };
1547
1548 STATIC int
1549 xfs_file_mmap(
1550 struct file *filp,
1551 struct vm_area_struct *vma)
1552 {
1553 file_accessed(filp);
1554 vma->vm_ops = &xfs_file_vm_ops;
1555 if (IS_DAX(file_inode(filp)))
1556 vma->vm_flags |= VM_MIXEDMAP;
1557 return 0;
1558 }
1559
1560 const struct file_operations xfs_file_operations = {
1561 .llseek = xfs_file_llseek,
1562 .read_iter = xfs_file_read_iter,
1563 .write_iter = xfs_file_write_iter,
1564 .splice_read = xfs_file_splice_read,
1565 .splice_write = iter_file_splice_write,
1566 .unlocked_ioctl = xfs_file_ioctl,
1567 #ifdef CONFIG_COMPAT
1568 .compat_ioctl = xfs_file_compat_ioctl,
1569 #endif
1570 .mmap = xfs_file_mmap,
1571 .open = xfs_file_open,
1572 .release = xfs_file_release,
1573 .fsync = xfs_file_fsync,
1574 .fallocate = xfs_file_fallocate,
1575 };
1576
1577 const struct file_operations xfs_dir_file_operations = {
1578 .open = xfs_dir_open,
1579 .read = generic_read_dir,
1580 .iterate = xfs_file_readdir,
1581 .llseek = generic_file_llseek,
1582 .unlocked_ioctl = xfs_file_ioctl,
1583 #ifdef CONFIG_COMPAT
1584 .compat_ioctl = xfs_file_compat_ioctl,
1585 #endif
1586 .fsync = xfs_dir_fsync,
1587 };
This page took 0.061086 seconds and 6 git commands to generate.