2a96dc48ebe6cdebe1db562f792ca5cb2eafb694
[deliverable/linux.git] / fs / xfs / xfs_icache.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_log_priv.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dinode.h"
32 #include "xfs_error.h"
33 #include "xfs_filestream.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_quota.h"
37 #include "xfs_trace.h"
38 #include "xfs_fsops.h"
39 #include "xfs_icache.h"
40
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43
44 STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
45 struct xfs_perag *pag, struct xfs_inode *ip);
46
47 /*
48 * Allocate and initialise an xfs_inode.
49 */
50 STATIC struct xfs_inode *
51 xfs_inode_alloc(
52 struct xfs_mount *mp,
53 xfs_ino_t ino)
54 {
55 struct xfs_inode *ip;
56
57 /*
58 * if this didn't occur in transactions, we could use
59 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
60 * code up to do this anyway.
61 */
62 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
63 if (!ip)
64 return NULL;
65 if (inode_init_always(mp->m_super, VFS_I(ip))) {
66 kmem_zone_free(xfs_inode_zone, ip);
67 return NULL;
68 }
69
70 ASSERT(atomic_read(&ip->i_pincount) == 0);
71 ASSERT(!spin_is_locked(&ip->i_flags_lock));
72 ASSERT(!xfs_isiflocked(ip));
73 ASSERT(ip->i_ino == 0);
74
75 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
76
77 /* initialise the xfs inode */
78 ip->i_ino = ino;
79 ip->i_mount = mp;
80 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
81 ip->i_afp = NULL;
82 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
83 ip->i_flags = 0;
84 ip->i_delayed_blks = 0;
85 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
86
87 return ip;
88 }
89
90 STATIC void
91 xfs_inode_free_callback(
92 struct rcu_head *head)
93 {
94 struct inode *inode = container_of(head, struct inode, i_rcu);
95 struct xfs_inode *ip = XFS_I(inode);
96
97 kmem_zone_free(xfs_inode_zone, ip);
98 }
99
100 STATIC void
101 xfs_inode_free(
102 struct xfs_inode *ip)
103 {
104 switch (ip->i_d.di_mode & S_IFMT) {
105 case S_IFREG:
106 case S_IFDIR:
107 case S_IFLNK:
108 xfs_idestroy_fork(ip, XFS_DATA_FORK);
109 break;
110 }
111
112 if (ip->i_afp)
113 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
114
115 if (ip->i_itemp) {
116 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
117 xfs_inode_item_destroy(ip);
118 ip->i_itemp = NULL;
119 }
120
121 /* asserts to verify all state is correct here */
122 ASSERT(atomic_read(&ip->i_pincount) == 0);
123 ASSERT(!spin_is_locked(&ip->i_flags_lock));
124 ASSERT(!xfs_isiflocked(ip));
125
126 /*
127 * Because we use RCU freeing we need to ensure the inode always
128 * appears to be reclaimed with an invalid inode number when in the
129 * free state. The ip->i_flags_lock provides the barrier against lookup
130 * races.
131 */
132 spin_lock(&ip->i_flags_lock);
133 ip->i_flags = XFS_IRECLAIM;
134 ip->i_ino = 0;
135 spin_unlock(&ip->i_flags_lock);
136
137 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
138 }
139
140 /*
141 * Check the validity of the inode we just found it the cache
142 */
143 static int
144 xfs_iget_cache_hit(
145 struct xfs_perag *pag,
146 struct xfs_inode *ip,
147 xfs_ino_t ino,
148 int flags,
149 int lock_flags) __releases(RCU)
150 {
151 struct inode *inode = VFS_I(ip);
152 struct xfs_mount *mp = ip->i_mount;
153 int error;
154
155 /*
156 * check for re-use of an inode within an RCU grace period due to the
157 * radix tree nodes not being updated yet. We monitor for this by
158 * setting the inode number to zero before freeing the inode structure.
159 * If the inode has been reallocated and set up, then the inode number
160 * will not match, so check for that, too.
161 */
162 spin_lock(&ip->i_flags_lock);
163 if (ip->i_ino != ino) {
164 trace_xfs_iget_skip(ip);
165 XFS_STATS_INC(xs_ig_frecycle);
166 error = EAGAIN;
167 goto out_error;
168 }
169
170
171 /*
172 * If we are racing with another cache hit that is currently
173 * instantiating this inode or currently recycling it out of
174 * reclaimabe state, wait for the initialisation to complete
175 * before continuing.
176 *
177 * XXX(hch): eventually we should do something equivalent to
178 * wait_on_inode to wait for these flags to be cleared
179 * instead of polling for it.
180 */
181 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
182 trace_xfs_iget_skip(ip);
183 XFS_STATS_INC(xs_ig_frecycle);
184 error = EAGAIN;
185 goto out_error;
186 }
187
188 /*
189 * If lookup is racing with unlink return an error immediately.
190 */
191 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
192 error = ENOENT;
193 goto out_error;
194 }
195
196 /*
197 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
198 * Need to carefully get it back into useable state.
199 */
200 if (ip->i_flags & XFS_IRECLAIMABLE) {
201 trace_xfs_iget_reclaim(ip);
202
203 /*
204 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
205 * from stomping over us while we recycle the inode. We can't
206 * clear the radix tree reclaimable tag yet as it requires
207 * pag_ici_lock to be held exclusive.
208 */
209 ip->i_flags |= XFS_IRECLAIM;
210
211 spin_unlock(&ip->i_flags_lock);
212 rcu_read_unlock();
213
214 error = -inode_init_always(mp->m_super, inode);
215 if (error) {
216 /*
217 * Re-initializing the inode failed, and we are in deep
218 * trouble. Try to re-add it to the reclaim list.
219 */
220 rcu_read_lock();
221 spin_lock(&ip->i_flags_lock);
222
223 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
224 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
225 trace_xfs_iget_reclaim_fail(ip);
226 goto out_error;
227 }
228
229 spin_lock(&pag->pag_ici_lock);
230 spin_lock(&ip->i_flags_lock);
231
232 /*
233 * Clear the per-lifetime state in the inode as we are now
234 * effectively a new inode and need to return to the initial
235 * state before reuse occurs.
236 */
237 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
238 ip->i_flags |= XFS_INEW;
239 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
240 inode->i_state = I_NEW;
241
242 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
243 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
244
245 spin_unlock(&ip->i_flags_lock);
246 spin_unlock(&pag->pag_ici_lock);
247 } else {
248 /* If the VFS inode is being torn down, pause and try again. */
249 if (!igrab(inode)) {
250 trace_xfs_iget_skip(ip);
251 error = EAGAIN;
252 goto out_error;
253 }
254
255 /* We've got a live one. */
256 spin_unlock(&ip->i_flags_lock);
257 rcu_read_unlock();
258 trace_xfs_iget_hit(ip);
259 }
260
261 if (lock_flags != 0)
262 xfs_ilock(ip, lock_flags);
263
264 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
265 XFS_STATS_INC(xs_ig_found);
266
267 return 0;
268
269 out_error:
270 spin_unlock(&ip->i_flags_lock);
271 rcu_read_unlock();
272 return error;
273 }
274
275
276 static int
277 xfs_iget_cache_miss(
278 struct xfs_mount *mp,
279 struct xfs_perag *pag,
280 xfs_trans_t *tp,
281 xfs_ino_t ino,
282 struct xfs_inode **ipp,
283 int flags,
284 int lock_flags)
285 {
286 struct xfs_inode *ip;
287 int error;
288 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
289 int iflags;
290
291 ip = xfs_inode_alloc(mp, ino);
292 if (!ip)
293 return ENOMEM;
294
295 error = xfs_iread(mp, tp, ip, flags);
296 if (error)
297 goto out_destroy;
298
299 trace_xfs_iget_miss(ip);
300
301 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
302 error = ENOENT;
303 goto out_destroy;
304 }
305
306 /*
307 * Preload the radix tree so we can insert safely under the
308 * write spinlock. Note that we cannot sleep inside the preload
309 * region. Since we can be called from transaction context, don't
310 * recurse into the file system.
311 */
312 if (radix_tree_preload(GFP_NOFS)) {
313 error = EAGAIN;
314 goto out_destroy;
315 }
316
317 /*
318 * Because the inode hasn't been added to the radix-tree yet it can't
319 * be found by another thread, so we can do the non-sleeping lock here.
320 */
321 if (lock_flags) {
322 if (!xfs_ilock_nowait(ip, lock_flags))
323 BUG();
324 }
325
326 /*
327 * These values must be set before inserting the inode into the radix
328 * tree as the moment it is inserted a concurrent lookup (allowed by the
329 * RCU locking mechanism) can find it and that lookup must see that this
330 * is an inode currently under construction (i.e. that XFS_INEW is set).
331 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
332 * memory barrier that ensures this detection works correctly at lookup
333 * time.
334 */
335 iflags = XFS_INEW;
336 if (flags & XFS_IGET_DONTCACHE)
337 iflags |= XFS_IDONTCACHE;
338 ip->i_udquot = ip->i_gdquot = NULL;
339 xfs_iflags_set(ip, iflags);
340
341 /* insert the new inode */
342 spin_lock(&pag->pag_ici_lock);
343 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
344 if (unlikely(error)) {
345 WARN_ON(error != -EEXIST);
346 XFS_STATS_INC(xs_ig_dup);
347 error = EAGAIN;
348 goto out_preload_end;
349 }
350 spin_unlock(&pag->pag_ici_lock);
351 radix_tree_preload_end();
352
353 *ipp = ip;
354 return 0;
355
356 out_preload_end:
357 spin_unlock(&pag->pag_ici_lock);
358 radix_tree_preload_end();
359 if (lock_flags)
360 xfs_iunlock(ip, lock_flags);
361 out_destroy:
362 __destroy_inode(VFS_I(ip));
363 xfs_inode_free(ip);
364 return error;
365 }
366
367 /*
368 * Look up an inode by number in the given file system.
369 * The inode is looked up in the cache held in each AG.
370 * If the inode is found in the cache, initialise the vfs inode
371 * if necessary.
372 *
373 * If it is not in core, read it in from the file system's device,
374 * add it to the cache and initialise the vfs inode.
375 *
376 * The inode is locked according to the value of the lock_flags parameter.
377 * This flag parameter indicates how and if the inode's IO lock and inode lock
378 * should be taken.
379 *
380 * mp -- the mount point structure for the current file system. It points
381 * to the inode hash table.
382 * tp -- a pointer to the current transaction if there is one. This is
383 * simply passed through to the xfs_iread() call.
384 * ino -- the number of the inode desired. This is the unique identifier
385 * within the file system for the inode being requested.
386 * lock_flags -- flags indicating how to lock the inode. See the comment
387 * for xfs_ilock() for a list of valid values.
388 */
389 int
390 xfs_iget(
391 xfs_mount_t *mp,
392 xfs_trans_t *tp,
393 xfs_ino_t ino,
394 uint flags,
395 uint lock_flags,
396 xfs_inode_t **ipp)
397 {
398 xfs_inode_t *ip;
399 int error;
400 xfs_perag_t *pag;
401 xfs_agino_t agino;
402
403 /*
404 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
405 * doesn't get freed while it's being referenced during a
406 * radix tree traversal here. It assumes this function
407 * aqcuires only the ILOCK (and therefore it has no need to
408 * involve the IOLOCK in this synchronization).
409 */
410 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
411
412 /* reject inode numbers outside existing AGs */
413 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
414 return EINVAL;
415
416 /* get the perag structure and ensure that it's inode capable */
417 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
418 agino = XFS_INO_TO_AGINO(mp, ino);
419
420 again:
421 error = 0;
422 rcu_read_lock();
423 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
424
425 if (ip) {
426 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
427 if (error)
428 goto out_error_or_again;
429 } else {
430 rcu_read_unlock();
431 XFS_STATS_INC(xs_ig_missed);
432
433 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
434 flags, lock_flags);
435 if (error)
436 goto out_error_or_again;
437 }
438 xfs_perag_put(pag);
439
440 *ipp = ip;
441
442 /*
443 * If we have a real type for an on-disk inode, we can set ops(&unlock)
444 * now. If it's a new inode being created, xfs_ialloc will handle it.
445 */
446 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
447 xfs_setup_inode(ip);
448 return 0;
449
450 out_error_or_again:
451 if (error == EAGAIN) {
452 delay(1);
453 goto again;
454 }
455 xfs_perag_put(pag);
456 return error;
457 }
458
459 /*
460 * The inode lookup is done in batches to keep the amount of lock traffic and
461 * radix tree lookups to a minimum. The batch size is a trade off between
462 * lookup reduction and stack usage. This is in the reclaim path, so we can't
463 * be too greedy.
464 */
465 #define XFS_LOOKUP_BATCH 32
466
467 STATIC int
468 xfs_inode_ag_walk_grab(
469 struct xfs_inode *ip)
470 {
471 struct inode *inode = VFS_I(ip);
472
473 ASSERT(rcu_read_lock_held());
474
475 /*
476 * check for stale RCU freed inode
477 *
478 * If the inode has been reallocated, it doesn't matter if it's not in
479 * the AG we are walking - we are walking for writeback, so if it
480 * passes all the "valid inode" checks and is dirty, then we'll write
481 * it back anyway. If it has been reallocated and still being
482 * initialised, the XFS_INEW check below will catch it.
483 */
484 spin_lock(&ip->i_flags_lock);
485 if (!ip->i_ino)
486 goto out_unlock_noent;
487
488 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
489 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
490 goto out_unlock_noent;
491 spin_unlock(&ip->i_flags_lock);
492
493 /* nothing to sync during shutdown */
494 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
495 return EFSCORRUPTED;
496
497 /* If we can't grab the inode, it must on it's way to reclaim. */
498 if (!igrab(inode))
499 return ENOENT;
500
501 if (is_bad_inode(inode)) {
502 IRELE(ip);
503 return ENOENT;
504 }
505
506 /* inode is valid */
507 return 0;
508
509 out_unlock_noent:
510 spin_unlock(&ip->i_flags_lock);
511 return ENOENT;
512 }
513
514 STATIC int
515 xfs_inode_ag_walk(
516 struct xfs_mount *mp,
517 struct xfs_perag *pag,
518 int (*execute)(struct xfs_inode *ip,
519 struct xfs_perag *pag, int flags,
520 void *args),
521 int flags,
522 void *args,
523 int tag)
524 {
525 uint32_t first_index;
526 int last_error = 0;
527 int skipped;
528 int done;
529 int nr_found;
530
531 restart:
532 done = 0;
533 skipped = 0;
534 first_index = 0;
535 nr_found = 0;
536 do {
537 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
538 int error = 0;
539 int i;
540
541 rcu_read_lock();
542
543 if (tag == -1)
544 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
545 (void **)batch, first_index,
546 XFS_LOOKUP_BATCH);
547 else
548 nr_found = radix_tree_gang_lookup_tag(
549 &pag->pag_ici_root,
550 (void **) batch, first_index,
551 XFS_LOOKUP_BATCH, tag);
552
553 if (!nr_found) {
554 rcu_read_unlock();
555 break;
556 }
557
558 /*
559 * Grab the inodes before we drop the lock. if we found
560 * nothing, nr == 0 and the loop will be skipped.
561 */
562 for (i = 0; i < nr_found; i++) {
563 struct xfs_inode *ip = batch[i];
564
565 if (done || xfs_inode_ag_walk_grab(ip))
566 batch[i] = NULL;
567
568 /*
569 * Update the index for the next lookup. Catch
570 * overflows into the next AG range which can occur if
571 * we have inodes in the last block of the AG and we
572 * are currently pointing to the last inode.
573 *
574 * Because we may see inodes that are from the wrong AG
575 * due to RCU freeing and reallocation, only update the
576 * index if it lies in this AG. It was a race that lead
577 * us to see this inode, so another lookup from the
578 * same index will not find it again.
579 */
580 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
581 continue;
582 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
583 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
584 done = 1;
585 }
586
587 /* unlock now we've grabbed the inodes. */
588 rcu_read_unlock();
589
590 for (i = 0; i < nr_found; i++) {
591 if (!batch[i])
592 continue;
593 error = execute(batch[i], pag, flags, args);
594 IRELE(batch[i]);
595 if (error == EAGAIN) {
596 skipped++;
597 continue;
598 }
599 if (error && last_error != EFSCORRUPTED)
600 last_error = error;
601 }
602
603 /* bail out if the filesystem is corrupted. */
604 if (error == EFSCORRUPTED)
605 break;
606
607 cond_resched();
608
609 } while (nr_found && !done);
610
611 if (skipped) {
612 delay(1);
613 goto restart;
614 }
615 return last_error;
616 }
617
618 int
619 xfs_inode_ag_iterator(
620 struct xfs_mount *mp,
621 int (*execute)(struct xfs_inode *ip,
622 struct xfs_perag *pag, int flags,
623 void *args),
624 int flags,
625 void *args)
626 {
627 struct xfs_perag *pag;
628 int error = 0;
629 int last_error = 0;
630 xfs_agnumber_t ag;
631
632 ag = 0;
633 while ((pag = xfs_perag_get(mp, ag))) {
634 ag = pag->pag_agno + 1;
635 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
636 xfs_perag_put(pag);
637 if (error) {
638 last_error = error;
639 if (error == EFSCORRUPTED)
640 break;
641 }
642 }
643 return XFS_ERROR(last_error);
644 }
645
646 int
647 xfs_inode_ag_iterator_tag(
648 struct xfs_mount *mp,
649 int (*execute)(struct xfs_inode *ip,
650 struct xfs_perag *pag, int flags,
651 void *args),
652 int flags,
653 void *args,
654 int tag)
655 {
656 struct xfs_perag *pag;
657 int error = 0;
658 int last_error = 0;
659 xfs_agnumber_t ag;
660
661 ag = 0;
662 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
663 ag = pag->pag_agno + 1;
664 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
665 xfs_perag_put(pag);
666 if (error) {
667 last_error = error;
668 if (error == EFSCORRUPTED)
669 break;
670 }
671 }
672 return XFS_ERROR(last_error);
673 }
674
675 /*
676 * Queue a new inode reclaim pass if there are reclaimable inodes and there
677 * isn't a reclaim pass already in progress. By default it runs every 5s based
678 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
679 * tunable, but that can be done if this method proves to be ineffective or too
680 * aggressive.
681 */
682 static void
683 xfs_reclaim_work_queue(
684 struct xfs_mount *mp)
685 {
686
687 rcu_read_lock();
688 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
689 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
690 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
691 }
692 rcu_read_unlock();
693 }
694
695 /*
696 * This is a fast pass over the inode cache to try to get reclaim moving on as
697 * many inodes as possible in a short period of time. It kicks itself every few
698 * seconds, as well as being kicked by the inode cache shrinker when memory
699 * goes low. It scans as quickly as possible avoiding locked inodes or those
700 * already being flushed, and once done schedules a future pass.
701 */
702 void
703 xfs_reclaim_worker(
704 struct work_struct *work)
705 {
706 struct xfs_mount *mp = container_of(to_delayed_work(work),
707 struct xfs_mount, m_reclaim_work);
708
709 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
710 xfs_reclaim_work_queue(mp);
711 }
712
713 static void
714 __xfs_inode_set_reclaim_tag(
715 struct xfs_perag *pag,
716 struct xfs_inode *ip)
717 {
718 radix_tree_tag_set(&pag->pag_ici_root,
719 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
720 XFS_ICI_RECLAIM_TAG);
721
722 if (!pag->pag_ici_reclaimable) {
723 /* propagate the reclaim tag up into the perag radix tree */
724 spin_lock(&ip->i_mount->m_perag_lock);
725 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
726 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
727 XFS_ICI_RECLAIM_TAG);
728 spin_unlock(&ip->i_mount->m_perag_lock);
729
730 /* schedule periodic background inode reclaim */
731 xfs_reclaim_work_queue(ip->i_mount);
732
733 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
734 -1, _RET_IP_);
735 }
736 pag->pag_ici_reclaimable++;
737 }
738
739 /*
740 * We set the inode flag atomically with the radix tree tag.
741 * Once we get tag lookups on the radix tree, this inode flag
742 * can go away.
743 */
744 void
745 xfs_inode_set_reclaim_tag(
746 xfs_inode_t *ip)
747 {
748 struct xfs_mount *mp = ip->i_mount;
749 struct xfs_perag *pag;
750
751 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
752 spin_lock(&pag->pag_ici_lock);
753 spin_lock(&ip->i_flags_lock);
754 __xfs_inode_set_reclaim_tag(pag, ip);
755 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
756 spin_unlock(&ip->i_flags_lock);
757 spin_unlock(&pag->pag_ici_lock);
758 xfs_perag_put(pag);
759 }
760
761 STATIC void
762 __xfs_inode_clear_reclaim(
763 xfs_perag_t *pag,
764 xfs_inode_t *ip)
765 {
766 pag->pag_ici_reclaimable--;
767 if (!pag->pag_ici_reclaimable) {
768 /* clear the reclaim tag from the perag radix tree */
769 spin_lock(&ip->i_mount->m_perag_lock);
770 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
771 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
772 XFS_ICI_RECLAIM_TAG);
773 spin_unlock(&ip->i_mount->m_perag_lock);
774 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
775 -1, _RET_IP_);
776 }
777 }
778
779 STATIC void
780 __xfs_inode_clear_reclaim_tag(
781 xfs_mount_t *mp,
782 xfs_perag_t *pag,
783 xfs_inode_t *ip)
784 {
785 radix_tree_tag_clear(&pag->pag_ici_root,
786 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
787 __xfs_inode_clear_reclaim(pag, ip);
788 }
789
790 /*
791 * Grab the inode for reclaim exclusively.
792 * Return 0 if we grabbed it, non-zero otherwise.
793 */
794 STATIC int
795 xfs_reclaim_inode_grab(
796 struct xfs_inode *ip,
797 int flags)
798 {
799 ASSERT(rcu_read_lock_held());
800
801 /* quick check for stale RCU freed inode */
802 if (!ip->i_ino)
803 return 1;
804
805 /*
806 * If we are asked for non-blocking operation, do unlocked checks to
807 * see if the inode already is being flushed or in reclaim to avoid
808 * lock traffic.
809 */
810 if ((flags & SYNC_TRYLOCK) &&
811 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
812 return 1;
813
814 /*
815 * The radix tree lock here protects a thread in xfs_iget from racing
816 * with us starting reclaim on the inode. Once we have the
817 * XFS_IRECLAIM flag set it will not touch us.
818 *
819 * Due to RCU lookup, we may find inodes that have been freed and only
820 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
821 * aren't candidates for reclaim at all, so we must check the
822 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
823 */
824 spin_lock(&ip->i_flags_lock);
825 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
826 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
827 /* not a reclaim candidate. */
828 spin_unlock(&ip->i_flags_lock);
829 return 1;
830 }
831 __xfs_iflags_set(ip, XFS_IRECLAIM);
832 spin_unlock(&ip->i_flags_lock);
833 return 0;
834 }
835
836 /*
837 * Inodes in different states need to be treated differently. The following
838 * table lists the inode states and the reclaim actions necessary:
839 *
840 * inode state iflush ret required action
841 * --------------- ---------- ---------------
842 * bad - reclaim
843 * shutdown EIO unpin and reclaim
844 * clean, unpinned 0 reclaim
845 * stale, unpinned 0 reclaim
846 * clean, pinned(*) 0 requeue
847 * stale, pinned EAGAIN requeue
848 * dirty, async - requeue
849 * dirty, sync 0 reclaim
850 *
851 * (*) dgc: I don't think the clean, pinned state is possible but it gets
852 * handled anyway given the order of checks implemented.
853 *
854 * Also, because we get the flush lock first, we know that any inode that has
855 * been flushed delwri has had the flush completed by the time we check that
856 * the inode is clean.
857 *
858 * Note that because the inode is flushed delayed write by AIL pushing, the
859 * flush lock may already be held here and waiting on it can result in very
860 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
861 * the caller should push the AIL first before trying to reclaim inodes to
862 * minimise the amount of time spent waiting. For background relaim, we only
863 * bother to reclaim clean inodes anyway.
864 *
865 * Hence the order of actions after gaining the locks should be:
866 * bad => reclaim
867 * shutdown => unpin and reclaim
868 * pinned, async => requeue
869 * pinned, sync => unpin
870 * stale => reclaim
871 * clean => reclaim
872 * dirty, async => requeue
873 * dirty, sync => flush, wait and reclaim
874 */
875 STATIC int
876 xfs_reclaim_inode(
877 struct xfs_inode *ip,
878 struct xfs_perag *pag,
879 int sync_mode)
880 {
881 struct xfs_buf *bp = NULL;
882 int error;
883
884 restart:
885 error = 0;
886 xfs_ilock(ip, XFS_ILOCK_EXCL);
887 if (!xfs_iflock_nowait(ip)) {
888 if (!(sync_mode & SYNC_WAIT))
889 goto out;
890 xfs_iflock(ip);
891 }
892
893 if (is_bad_inode(VFS_I(ip)))
894 goto reclaim;
895 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
896 xfs_iunpin_wait(ip);
897 xfs_iflush_abort(ip, false);
898 goto reclaim;
899 }
900 if (xfs_ipincount(ip)) {
901 if (!(sync_mode & SYNC_WAIT))
902 goto out_ifunlock;
903 xfs_iunpin_wait(ip);
904 }
905 if (xfs_iflags_test(ip, XFS_ISTALE))
906 goto reclaim;
907 if (xfs_inode_clean(ip))
908 goto reclaim;
909
910 /*
911 * Never flush out dirty data during non-blocking reclaim, as it would
912 * just contend with AIL pushing trying to do the same job.
913 */
914 if (!(sync_mode & SYNC_WAIT))
915 goto out_ifunlock;
916
917 /*
918 * Now we have an inode that needs flushing.
919 *
920 * Note that xfs_iflush will never block on the inode buffer lock, as
921 * xfs_ifree_cluster() can lock the inode buffer before it locks the
922 * ip->i_lock, and we are doing the exact opposite here. As a result,
923 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
924 * result in an ABBA deadlock with xfs_ifree_cluster().
925 *
926 * As xfs_ifree_cluser() must gather all inodes that are active in the
927 * cache to mark them stale, if we hit this case we don't actually want
928 * to do IO here - we want the inode marked stale so we can simply
929 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
930 * inode, back off and try again. Hopefully the next pass through will
931 * see the stale flag set on the inode.
932 */
933 error = xfs_iflush(ip, &bp);
934 if (error == EAGAIN) {
935 xfs_iunlock(ip, XFS_ILOCK_EXCL);
936 /* backoff longer than in xfs_ifree_cluster */
937 delay(2);
938 goto restart;
939 }
940
941 if (!error) {
942 error = xfs_bwrite(bp);
943 xfs_buf_relse(bp);
944 }
945
946 xfs_iflock(ip);
947 reclaim:
948 xfs_ifunlock(ip);
949 xfs_iunlock(ip, XFS_ILOCK_EXCL);
950
951 XFS_STATS_INC(xs_ig_reclaims);
952 /*
953 * Remove the inode from the per-AG radix tree.
954 *
955 * Because radix_tree_delete won't complain even if the item was never
956 * added to the tree assert that it's been there before to catch
957 * problems with the inode life time early on.
958 */
959 spin_lock(&pag->pag_ici_lock);
960 if (!radix_tree_delete(&pag->pag_ici_root,
961 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
962 ASSERT(0);
963 __xfs_inode_clear_reclaim(pag, ip);
964 spin_unlock(&pag->pag_ici_lock);
965
966 /*
967 * Here we do an (almost) spurious inode lock in order to coordinate
968 * with inode cache radix tree lookups. This is because the lookup
969 * can reference the inodes in the cache without taking references.
970 *
971 * We make that OK here by ensuring that we wait until the inode is
972 * unlocked after the lookup before we go ahead and free it.
973 */
974 xfs_ilock(ip, XFS_ILOCK_EXCL);
975 xfs_qm_dqdetach(ip);
976 xfs_iunlock(ip, XFS_ILOCK_EXCL);
977
978 xfs_inode_free(ip);
979 return error;
980
981 out_ifunlock:
982 xfs_ifunlock(ip);
983 out:
984 xfs_iflags_clear(ip, XFS_IRECLAIM);
985 xfs_iunlock(ip, XFS_ILOCK_EXCL);
986 /*
987 * We could return EAGAIN here to make reclaim rescan the inode tree in
988 * a short while. However, this just burns CPU time scanning the tree
989 * waiting for IO to complete and the reclaim work never goes back to
990 * the idle state. Instead, return 0 to let the next scheduled
991 * background reclaim attempt to reclaim the inode again.
992 */
993 return 0;
994 }
995
996 /*
997 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
998 * corrupted, we still want to try to reclaim all the inodes. If we don't,
999 * then a shut down during filesystem unmount reclaim walk leak all the
1000 * unreclaimed inodes.
1001 */
1002 STATIC int
1003 xfs_reclaim_inodes_ag(
1004 struct xfs_mount *mp,
1005 int flags,
1006 int *nr_to_scan)
1007 {
1008 struct xfs_perag *pag;
1009 int error = 0;
1010 int last_error = 0;
1011 xfs_agnumber_t ag;
1012 int trylock = flags & SYNC_TRYLOCK;
1013 int skipped;
1014
1015 restart:
1016 ag = 0;
1017 skipped = 0;
1018 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1019 unsigned long first_index = 0;
1020 int done = 0;
1021 int nr_found = 0;
1022
1023 ag = pag->pag_agno + 1;
1024
1025 if (trylock) {
1026 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1027 skipped++;
1028 xfs_perag_put(pag);
1029 continue;
1030 }
1031 first_index = pag->pag_ici_reclaim_cursor;
1032 } else
1033 mutex_lock(&pag->pag_ici_reclaim_lock);
1034
1035 do {
1036 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1037 int i;
1038
1039 rcu_read_lock();
1040 nr_found = radix_tree_gang_lookup_tag(
1041 &pag->pag_ici_root,
1042 (void **)batch, first_index,
1043 XFS_LOOKUP_BATCH,
1044 XFS_ICI_RECLAIM_TAG);
1045 if (!nr_found) {
1046 done = 1;
1047 rcu_read_unlock();
1048 break;
1049 }
1050
1051 /*
1052 * Grab the inodes before we drop the lock. if we found
1053 * nothing, nr == 0 and the loop will be skipped.
1054 */
1055 for (i = 0; i < nr_found; i++) {
1056 struct xfs_inode *ip = batch[i];
1057
1058 if (done || xfs_reclaim_inode_grab(ip, flags))
1059 batch[i] = NULL;
1060
1061 /*
1062 * Update the index for the next lookup. Catch
1063 * overflows into the next AG range which can
1064 * occur if we have inodes in the last block of
1065 * the AG and we are currently pointing to the
1066 * last inode.
1067 *
1068 * Because we may see inodes that are from the
1069 * wrong AG due to RCU freeing and
1070 * reallocation, only update the index if it
1071 * lies in this AG. It was a race that lead us
1072 * to see this inode, so another lookup from
1073 * the same index will not find it again.
1074 */
1075 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1076 pag->pag_agno)
1077 continue;
1078 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1079 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1080 done = 1;
1081 }
1082
1083 /* unlock now we've grabbed the inodes. */
1084 rcu_read_unlock();
1085
1086 for (i = 0; i < nr_found; i++) {
1087 if (!batch[i])
1088 continue;
1089 error = xfs_reclaim_inode(batch[i], pag, flags);
1090 if (error && last_error != EFSCORRUPTED)
1091 last_error = error;
1092 }
1093
1094 *nr_to_scan -= XFS_LOOKUP_BATCH;
1095
1096 cond_resched();
1097
1098 } while (nr_found && !done && *nr_to_scan > 0);
1099
1100 if (trylock && !done)
1101 pag->pag_ici_reclaim_cursor = first_index;
1102 else
1103 pag->pag_ici_reclaim_cursor = 0;
1104 mutex_unlock(&pag->pag_ici_reclaim_lock);
1105 xfs_perag_put(pag);
1106 }
1107
1108 /*
1109 * if we skipped any AG, and we still have scan count remaining, do
1110 * another pass this time using blocking reclaim semantics (i.e
1111 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1112 * ensure that when we get more reclaimers than AGs we block rather
1113 * than spin trying to execute reclaim.
1114 */
1115 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1116 trylock = 0;
1117 goto restart;
1118 }
1119 return XFS_ERROR(last_error);
1120 }
1121
1122 int
1123 xfs_reclaim_inodes(
1124 xfs_mount_t *mp,
1125 int mode)
1126 {
1127 int nr_to_scan = INT_MAX;
1128
1129 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1130 }
1131
1132 /*
1133 * Scan a certain number of inodes for reclaim.
1134 *
1135 * When called we make sure that there is a background (fast) inode reclaim in
1136 * progress, while we will throttle the speed of reclaim via doing synchronous
1137 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1138 * them to be cleaned, which we hope will not be very long due to the
1139 * background walker having already kicked the IO off on those dirty inodes.
1140 */
1141 void
1142 xfs_reclaim_inodes_nr(
1143 struct xfs_mount *mp,
1144 int nr_to_scan)
1145 {
1146 /* kick background reclaimer and push the AIL */
1147 xfs_reclaim_work_queue(mp);
1148 xfs_ail_push_all(mp->m_ail);
1149
1150 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1151 }
1152
1153 /*
1154 * Return the number of reclaimable inodes in the filesystem for
1155 * the shrinker to determine how much to reclaim.
1156 */
1157 int
1158 xfs_reclaim_inodes_count(
1159 struct xfs_mount *mp)
1160 {
1161 struct xfs_perag *pag;
1162 xfs_agnumber_t ag = 0;
1163 int reclaimable = 0;
1164
1165 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1166 ag = pag->pag_agno + 1;
1167 reclaimable += pag->pag_ici_reclaimable;
1168 xfs_perag_put(pag);
1169 }
1170 return reclaimable;
1171 }
1172
1173 void
1174 xfs_inode_set_eofblocks_tag(
1175 xfs_inode_t *ip)
1176 {
1177 struct xfs_mount *mp = ip->i_mount;
1178 struct xfs_perag *pag;
1179 int tagged;
1180
1181 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1182 spin_lock(&pag->pag_ici_lock);
1183 trace_xfs_inode_set_eofblocks_tag(ip);
1184
1185 tagged = radix_tree_tagged(&pag->pag_ici_root,
1186 XFS_ICI_EOFBLOCKS_TAG);
1187 radix_tree_tag_set(&pag->pag_ici_root,
1188 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1189 XFS_ICI_EOFBLOCKS_TAG);
1190 if (!tagged) {
1191 /* propagate the eofblocks tag up into the perag radix tree */
1192 spin_lock(&ip->i_mount->m_perag_lock);
1193 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1194 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1195 XFS_ICI_EOFBLOCKS_TAG);
1196 spin_unlock(&ip->i_mount->m_perag_lock);
1197
1198 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1199 -1, _RET_IP_);
1200 }
1201
1202 spin_unlock(&pag->pag_ici_lock);
1203 xfs_perag_put(pag);
1204 }
1205
1206 void
1207 xfs_inode_clear_eofblocks_tag(
1208 xfs_inode_t *ip)
1209 {
1210 struct xfs_mount *mp = ip->i_mount;
1211 struct xfs_perag *pag;
1212
1213 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1214 spin_lock(&pag->pag_ici_lock);
1215 trace_xfs_inode_clear_eofblocks_tag(ip);
1216
1217 radix_tree_tag_clear(&pag->pag_ici_root,
1218 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1219 XFS_ICI_EOFBLOCKS_TAG);
1220 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1221 /* clear the eofblocks tag from the perag radix tree */
1222 spin_lock(&ip->i_mount->m_perag_lock);
1223 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1224 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1225 XFS_ICI_EOFBLOCKS_TAG);
1226 spin_unlock(&ip->i_mount->m_perag_lock);
1227 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1228 -1, _RET_IP_);
1229 }
1230
1231 spin_unlock(&pag->pag_ici_lock);
1232 xfs_perag_put(pag);
1233 }
1234
This page took 0.077801 seconds and 5 git commands to generate.