xfs: move di_changecount to VFS inode
[deliverable/linux.git] / fs / xfs / xfs_icache.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36
37 #include <linux/kthread.h>
38 #include <linux/freezer.h>
39
40 STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
41 struct xfs_perag *pag, struct xfs_inode *ip);
42
43 /*
44 * Allocate and initialise an xfs_inode.
45 */
46 struct xfs_inode *
47 xfs_inode_alloc(
48 struct xfs_mount *mp,
49 xfs_ino_t ino)
50 {
51 struct xfs_inode *ip;
52
53 /*
54 * if this didn't occur in transactions, we could use
55 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
56 * code up to do this anyway.
57 */
58 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
59 if (!ip)
60 return NULL;
61 if (inode_init_always(mp->m_super, VFS_I(ip))) {
62 kmem_zone_free(xfs_inode_zone, ip);
63 return NULL;
64 }
65
66 XFS_STATS_INC(mp, vn_active);
67 ASSERT(atomic_read(&ip->i_pincount) == 0);
68 ASSERT(!spin_is_locked(&ip->i_flags_lock));
69 ASSERT(!xfs_isiflocked(ip));
70 ASSERT(ip->i_ino == 0);
71
72 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
73
74 /* initialise the xfs inode */
75 ip->i_ino = ino;
76 ip->i_mount = mp;
77 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
78 ip->i_afp = NULL;
79 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
80 ip->i_flags = 0;
81 ip->i_delayed_blks = 0;
82 memset(&ip->i_d, 0, sizeof(ip->i_d));
83
84 return ip;
85 }
86
87 STATIC void
88 xfs_inode_free_callback(
89 struct rcu_head *head)
90 {
91 struct inode *inode = container_of(head, struct inode, i_rcu);
92 struct xfs_inode *ip = XFS_I(inode);
93
94 kmem_zone_free(xfs_inode_zone, ip);
95 }
96
97 void
98 xfs_inode_free(
99 struct xfs_inode *ip)
100 {
101 switch (ip->i_d.di_mode & S_IFMT) {
102 case S_IFREG:
103 case S_IFDIR:
104 case S_IFLNK:
105 xfs_idestroy_fork(ip, XFS_DATA_FORK);
106 break;
107 }
108
109 if (ip->i_afp)
110 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
111
112 if (ip->i_itemp) {
113 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
114 xfs_inode_item_destroy(ip);
115 ip->i_itemp = NULL;
116 }
117
118 /*
119 * Because we use RCU freeing we need to ensure the inode always
120 * appears to be reclaimed with an invalid inode number when in the
121 * free state. The ip->i_flags_lock provides the barrier against lookup
122 * races.
123 */
124 spin_lock(&ip->i_flags_lock);
125 ip->i_flags = XFS_IRECLAIM;
126 ip->i_ino = 0;
127 spin_unlock(&ip->i_flags_lock);
128
129 /* asserts to verify all state is correct here */
130 ASSERT(atomic_read(&ip->i_pincount) == 0);
131 ASSERT(!xfs_isiflocked(ip));
132 XFS_STATS_DEC(ip->i_mount, vn_active);
133
134 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
135 }
136
137 /*
138 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
139 * part of the structure. This is made more complex by the fact we store
140 * information about the on-disk values in the VFS inode and so we can't just
141 * overwrite the values unconditionally. Hence we save the parameters we
142 * need to retain across reinitialisation, and rewrite them into the VFS inode
143 * after reinitialisation even if it fails.
144 */
145 static int
146 xfs_reinit_inode(
147 struct xfs_mount *mp,
148 struct inode *inode)
149 {
150 int error;
151 uint32_t nlink = inode->i_nlink;
152 uint32_t generation = inode->i_generation;
153 uint64_t version = inode->i_version;
154
155 error = inode_init_always(mp->m_super, inode);
156
157 set_nlink(inode, nlink);
158 inode->i_generation = generation;
159 inode->i_version = version;
160 return error;
161 }
162
163 /*
164 * Check the validity of the inode we just found it the cache
165 */
166 static int
167 xfs_iget_cache_hit(
168 struct xfs_perag *pag,
169 struct xfs_inode *ip,
170 xfs_ino_t ino,
171 int flags,
172 int lock_flags) __releases(RCU)
173 {
174 struct inode *inode = VFS_I(ip);
175 struct xfs_mount *mp = ip->i_mount;
176 int error;
177
178 /*
179 * check for re-use of an inode within an RCU grace period due to the
180 * radix tree nodes not being updated yet. We monitor for this by
181 * setting the inode number to zero before freeing the inode structure.
182 * If the inode has been reallocated and set up, then the inode number
183 * will not match, so check for that, too.
184 */
185 spin_lock(&ip->i_flags_lock);
186 if (ip->i_ino != ino) {
187 trace_xfs_iget_skip(ip);
188 XFS_STATS_INC(mp, xs_ig_frecycle);
189 error = -EAGAIN;
190 goto out_error;
191 }
192
193
194 /*
195 * If we are racing with another cache hit that is currently
196 * instantiating this inode or currently recycling it out of
197 * reclaimabe state, wait for the initialisation to complete
198 * before continuing.
199 *
200 * XXX(hch): eventually we should do something equivalent to
201 * wait_on_inode to wait for these flags to be cleared
202 * instead of polling for it.
203 */
204 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
205 trace_xfs_iget_skip(ip);
206 XFS_STATS_INC(mp, xs_ig_frecycle);
207 error = -EAGAIN;
208 goto out_error;
209 }
210
211 /*
212 * If lookup is racing with unlink return an error immediately.
213 */
214 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
215 error = -ENOENT;
216 goto out_error;
217 }
218
219 /*
220 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
221 * Need to carefully get it back into useable state.
222 */
223 if (ip->i_flags & XFS_IRECLAIMABLE) {
224 trace_xfs_iget_reclaim(ip);
225
226 /*
227 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
228 * from stomping over us while we recycle the inode. We can't
229 * clear the radix tree reclaimable tag yet as it requires
230 * pag_ici_lock to be held exclusive.
231 */
232 ip->i_flags |= XFS_IRECLAIM;
233
234 spin_unlock(&ip->i_flags_lock);
235 rcu_read_unlock();
236
237 error = xfs_reinit_inode(mp, inode);
238 if (error) {
239 /*
240 * Re-initializing the inode failed, and we are in deep
241 * trouble. Try to re-add it to the reclaim list.
242 */
243 rcu_read_lock();
244 spin_lock(&ip->i_flags_lock);
245
246 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
247 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
248 trace_xfs_iget_reclaim_fail(ip);
249 goto out_error;
250 }
251
252 spin_lock(&pag->pag_ici_lock);
253 spin_lock(&ip->i_flags_lock);
254
255 /*
256 * Clear the per-lifetime state in the inode as we are now
257 * effectively a new inode and need to return to the initial
258 * state before reuse occurs.
259 */
260 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
261 ip->i_flags |= XFS_INEW;
262 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
263 inode->i_state = I_NEW;
264
265 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
266 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
267
268 spin_unlock(&ip->i_flags_lock);
269 spin_unlock(&pag->pag_ici_lock);
270 } else {
271 /* If the VFS inode is being torn down, pause and try again. */
272 if (!igrab(inode)) {
273 trace_xfs_iget_skip(ip);
274 error = -EAGAIN;
275 goto out_error;
276 }
277
278 /* We've got a live one. */
279 spin_unlock(&ip->i_flags_lock);
280 rcu_read_unlock();
281 trace_xfs_iget_hit(ip);
282 }
283
284 if (lock_flags != 0)
285 xfs_ilock(ip, lock_flags);
286
287 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
288 XFS_STATS_INC(mp, xs_ig_found);
289
290 return 0;
291
292 out_error:
293 spin_unlock(&ip->i_flags_lock);
294 rcu_read_unlock();
295 return error;
296 }
297
298
299 static int
300 xfs_iget_cache_miss(
301 struct xfs_mount *mp,
302 struct xfs_perag *pag,
303 xfs_trans_t *tp,
304 xfs_ino_t ino,
305 struct xfs_inode **ipp,
306 int flags,
307 int lock_flags)
308 {
309 struct xfs_inode *ip;
310 int error;
311 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
312 int iflags;
313
314 ip = xfs_inode_alloc(mp, ino);
315 if (!ip)
316 return -ENOMEM;
317
318 error = xfs_iread(mp, tp, ip, flags);
319 if (error)
320 goto out_destroy;
321
322 trace_xfs_iget_miss(ip);
323
324 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
325 error = -ENOENT;
326 goto out_destroy;
327 }
328
329 /*
330 * Preload the radix tree so we can insert safely under the
331 * write spinlock. Note that we cannot sleep inside the preload
332 * region. Since we can be called from transaction context, don't
333 * recurse into the file system.
334 */
335 if (radix_tree_preload(GFP_NOFS)) {
336 error = -EAGAIN;
337 goto out_destroy;
338 }
339
340 /*
341 * Because the inode hasn't been added to the radix-tree yet it can't
342 * be found by another thread, so we can do the non-sleeping lock here.
343 */
344 if (lock_flags) {
345 if (!xfs_ilock_nowait(ip, lock_flags))
346 BUG();
347 }
348
349 /*
350 * These values must be set before inserting the inode into the radix
351 * tree as the moment it is inserted a concurrent lookup (allowed by the
352 * RCU locking mechanism) can find it and that lookup must see that this
353 * is an inode currently under construction (i.e. that XFS_INEW is set).
354 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
355 * memory barrier that ensures this detection works correctly at lookup
356 * time.
357 */
358 iflags = XFS_INEW;
359 if (flags & XFS_IGET_DONTCACHE)
360 iflags |= XFS_IDONTCACHE;
361 ip->i_udquot = NULL;
362 ip->i_gdquot = NULL;
363 ip->i_pdquot = NULL;
364 xfs_iflags_set(ip, iflags);
365
366 /* insert the new inode */
367 spin_lock(&pag->pag_ici_lock);
368 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
369 if (unlikely(error)) {
370 WARN_ON(error != -EEXIST);
371 XFS_STATS_INC(mp, xs_ig_dup);
372 error = -EAGAIN;
373 goto out_preload_end;
374 }
375 spin_unlock(&pag->pag_ici_lock);
376 radix_tree_preload_end();
377
378 *ipp = ip;
379 return 0;
380
381 out_preload_end:
382 spin_unlock(&pag->pag_ici_lock);
383 radix_tree_preload_end();
384 if (lock_flags)
385 xfs_iunlock(ip, lock_flags);
386 out_destroy:
387 __destroy_inode(VFS_I(ip));
388 xfs_inode_free(ip);
389 return error;
390 }
391
392 /*
393 * Look up an inode by number in the given file system.
394 * The inode is looked up in the cache held in each AG.
395 * If the inode is found in the cache, initialise the vfs inode
396 * if necessary.
397 *
398 * If it is not in core, read it in from the file system's device,
399 * add it to the cache and initialise the vfs inode.
400 *
401 * The inode is locked according to the value of the lock_flags parameter.
402 * This flag parameter indicates how and if the inode's IO lock and inode lock
403 * should be taken.
404 *
405 * mp -- the mount point structure for the current file system. It points
406 * to the inode hash table.
407 * tp -- a pointer to the current transaction if there is one. This is
408 * simply passed through to the xfs_iread() call.
409 * ino -- the number of the inode desired. This is the unique identifier
410 * within the file system for the inode being requested.
411 * lock_flags -- flags indicating how to lock the inode. See the comment
412 * for xfs_ilock() for a list of valid values.
413 */
414 int
415 xfs_iget(
416 xfs_mount_t *mp,
417 xfs_trans_t *tp,
418 xfs_ino_t ino,
419 uint flags,
420 uint lock_flags,
421 xfs_inode_t **ipp)
422 {
423 xfs_inode_t *ip;
424 int error;
425 xfs_perag_t *pag;
426 xfs_agino_t agino;
427
428 /*
429 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
430 * doesn't get freed while it's being referenced during a
431 * radix tree traversal here. It assumes this function
432 * aqcuires only the ILOCK (and therefore it has no need to
433 * involve the IOLOCK in this synchronization).
434 */
435 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
436
437 /* reject inode numbers outside existing AGs */
438 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
439 return -EINVAL;
440
441 XFS_STATS_INC(mp, xs_ig_attempts);
442
443 /* get the perag structure and ensure that it's inode capable */
444 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
445 agino = XFS_INO_TO_AGINO(mp, ino);
446
447 again:
448 error = 0;
449 rcu_read_lock();
450 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
451
452 if (ip) {
453 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
454 if (error)
455 goto out_error_or_again;
456 } else {
457 rcu_read_unlock();
458 XFS_STATS_INC(mp, xs_ig_missed);
459
460 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
461 flags, lock_flags);
462 if (error)
463 goto out_error_or_again;
464 }
465 xfs_perag_put(pag);
466
467 *ipp = ip;
468
469 /*
470 * If we have a real type for an on-disk inode, we can setup the inode
471 * now. If it's a new inode being created, xfs_ialloc will handle it.
472 */
473 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
474 xfs_setup_existing_inode(ip);
475 return 0;
476
477 out_error_or_again:
478 if (error == -EAGAIN) {
479 delay(1);
480 goto again;
481 }
482 xfs_perag_put(pag);
483 return error;
484 }
485
486 /*
487 * The inode lookup is done in batches to keep the amount of lock traffic and
488 * radix tree lookups to a minimum. The batch size is a trade off between
489 * lookup reduction and stack usage. This is in the reclaim path, so we can't
490 * be too greedy.
491 */
492 #define XFS_LOOKUP_BATCH 32
493
494 STATIC int
495 xfs_inode_ag_walk_grab(
496 struct xfs_inode *ip)
497 {
498 struct inode *inode = VFS_I(ip);
499
500 ASSERT(rcu_read_lock_held());
501
502 /*
503 * check for stale RCU freed inode
504 *
505 * If the inode has been reallocated, it doesn't matter if it's not in
506 * the AG we are walking - we are walking for writeback, so if it
507 * passes all the "valid inode" checks and is dirty, then we'll write
508 * it back anyway. If it has been reallocated and still being
509 * initialised, the XFS_INEW check below will catch it.
510 */
511 spin_lock(&ip->i_flags_lock);
512 if (!ip->i_ino)
513 goto out_unlock_noent;
514
515 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
516 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
517 goto out_unlock_noent;
518 spin_unlock(&ip->i_flags_lock);
519
520 /* nothing to sync during shutdown */
521 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
522 return -EFSCORRUPTED;
523
524 /* If we can't grab the inode, it must on it's way to reclaim. */
525 if (!igrab(inode))
526 return -ENOENT;
527
528 /* inode is valid */
529 return 0;
530
531 out_unlock_noent:
532 spin_unlock(&ip->i_flags_lock);
533 return -ENOENT;
534 }
535
536 STATIC int
537 xfs_inode_ag_walk(
538 struct xfs_mount *mp,
539 struct xfs_perag *pag,
540 int (*execute)(struct xfs_inode *ip, int flags,
541 void *args),
542 int flags,
543 void *args,
544 int tag)
545 {
546 uint32_t first_index;
547 int last_error = 0;
548 int skipped;
549 int done;
550 int nr_found;
551
552 restart:
553 done = 0;
554 skipped = 0;
555 first_index = 0;
556 nr_found = 0;
557 do {
558 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
559 int error = 0;
560 int i;
561
562 rcu_read_lock();
563
564 if (tag == -1)
565 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
566 (void **)batch, first_index,
567 XFS_LOOKUP_BATCH);
568 else
569 nr_found = radix_tree_gang_lookup_tag(
570 &pag->pag_ici_root,
571 (void **) batch, first_index,
572 XFS_LOOKUP_BATCH, tag);
573
574 if (!nr_found) {
575 rcu_read_unlock();
576 break;
577 }
578
579 /*
580 * Grab the inodes before we drop the lock. if we found
581 * nothing, nr == 0 and the loop will be skipped.
582 */
583 for (i = 0; i < nr_found; i++) {
584 struct xfs_inode *ip = batch[i];
585
586 if (done || xfs_inode_ag_walk_grab(ip))
587 batch[i] = NULL;
588
589 /*
590 * Update the index for the next lookup. Catch
591 * overflows into the next AG range which can occur if
592 * we have inodes in the last block of the AG and we
593 * are currently pointing to the last inode.
594 *
595 * Because we may see inodes that are from the wrong AG
596 * due to RCU freeing and reallocation, only update the
597 * index if it lies in this AG. It was a race that lead
598 * us to see this inode, so another lookup from the
599 * same index will not find it again.
600 */
601 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
602 continue;
603 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
604 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
605 done = 1;
606 }
607
608 /* unlock now we've grabbed the inodes. */
609 rcu_read_unlock();
610
611 for (i = 0; i < nr_found; i++) {
612 if (!batch[i])
613 continue;
614 error = execute(batch[i], flags, args);
615 IRELE(batch[i]);
616 if (error == -EAGAIN) {
617 skipped++;
618 continue;
619 }
620 if (error && last_error != -EFSCORRUPTED)
621 last_error = error;
622 }
623
624 /* bail out if the filesystem is corrupted. */
625 if (error == -EFSCORRUPTED)
626 break;
627
628 cond_resched();
629
630 } while (nr_found && !done);
631
632 if (skipped) {
633 delay(1);
634 goto restart;
635 }
636 return last_error;
637 }
638
639 /*
640 * Background scanning to trim post-EOF preallocated space. This is queued
641 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
642 */
643 STATIC void
644 xfs_queue_eofblocks(
645 struct xfs_mount *mp)
646 {
647 rcu_read_lock();
648 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
649 queue_delayed_work(mp->m_eofblocks_workqueue,
650 &mp->m_eofblocks_work,
651 msecs_to_jiffies(xfs_eofb_secs * 1000));
652 rcu_read_unlock();
653 }
654
655 void
656 xfs_eofblocks_worker(
657 struct work_struct *work)
658 {
659 struct xfs_mount *mp = container_of(to_delayed_work(work),
660 struct xfs_mount, m_eofblocks_work);
661 xfs_icache_free_eofblocks(mp, NULL);
662 xfs_queue_eofblocks(mp);
663 }
664
665 int
666 xfs_inode_ag_iterator(
667 struct xfs_mount *mp,
668 int (*execute)(struct xfs_inode *ip, int flags,
669 void *args),
670 int flags,
671 void *args)
672 {
673 struct xfs_perag *pag;
674 int error = 0;
675 int last_error = 0;
676 xfs_agnumber_t ag;
677
678 ag = 0;
679 while ((pag = xfs_perag_get(mp, ag))) {
680 ag = pag->pag_agno + 1;
681 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
682 xfs_perag_put(pag);
683 if (error) {
684 last_error = error;
685 if (error == -EFSCORRUPTED)
686 break;
687 }
688 }
689 return last_error;
690 }
691
692 int
693 xfs_inode_ag_iterator_tag(
694 struct xfs_mount *mp,
695 int (*execute)(struct xfs_inode *ip, int flags,
696 void *args),
697 int flags,
698 void *args,
699 int tag)
700 {
701 struct xfs_perag *pag;
702 int error = 0;
703 int last_error = 0;
704 xfs_agnumber_t ag;
705
706 ag = 0;
707 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
708 ag = pag->pag_agno + 1;
709 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
710 xfs_perag_put(pag);
711 if (error) {
712 last_error = error;
713 if (error == -EFSCORRUPTED)
714 break;
715 }
716 }
717 return last_error;
718 }
719
720 /*
721 * Queue a new inode reclaim pass if there are reclaimable inodes and there
722 * isn't a reclaim pass already in progress. By default it runs every 5s based
723 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
724 * tunable, but that can be done if this method proves to be ineffective or too
725 * aggressive.
726 */
727 static void
728 xfs_reclaim_work_queue(
729 struct xfs_mount *mp)
730 {
731
732 rcu_read_lock();
733 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
734 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
735 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
736 }
737 rcu_read_unlock();
738 }
739
740 /*
741 * This is a fast pass over the inode cache to try to get reclaim moving on as
742 * many inodes as possible in a short period of time. It kicks itself every few
743 * seconds, as well as being kicked by the inode cache shrinker when memory
744 * goes low. It scans as quickly as possible avoiding locked inodes or those
745 * already being flushed, and once done schedules a future pass.
746 */
747 void
748 xfs_reclaim_worker(
749 struct work_struct *work)
750 {
751 struct xfs_mount *mp = container_of(to_delayed_work(work),
752 struct xfs_mount, m_reclaim_work);
753
754 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
755 xfs_reclaim_work_queue(mp);
756 }
757
758 static void
759 __xfs_inode_set_reclaim_tag(
760 struct xfs_perag *pag,
761 struct xfs_inode *ip)
762 {
763 radix_tree_tag_set(&pag->pag_ici_root,
764 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
765 XFS_ICI_RECLAIM_TAG);
766
767 if (!pag->pag_ici_reclaimable) {
768 /* propagate the reclaim tag up into the perag radix tree */
769 spin_lock(&ip->i_mount->m_perag_lock);
770 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
771 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
772 XFS_ICI_RECLAIM_TAG);
773 spin_unlock(&ip->i_mount->m_perag_lock);
774
775 /* schedule periodic background inode reclaim */
776 xfs_reclaim_work_queue(ip->i_mount);
777
778 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
779 -1, _RET_IP_);
780 }
781 pag->pag_ici_reclaimable++;
782 }
783
784 /*
785 * We set the inode flag atomically with the radix tree tag.
786 * Once we get tag lookups on the radix tree, this inode flag
787 * can go away.
788 */
789 void
790 xfs_inode_set_reclaim_tag(
791 xfs_inode_t *ip)
792 {
793 struct xfs_mount *mp = ip->i_mount;
794 struct xfs_perag *pag;
795
796 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
797 spin_lock(&pag->pag_ici_lock);
798 spin_lock(&ip->i_flags_lock);
799 __xfs_inode_set_reclaim_tag(pag, ip);
800 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
801 spin_unlock(&ip->i_flags_lock);
802 spin_unlock(&pag->pag_ici_lock);
803 xfs_perag_put(pag);
804 }
805
806 STATIC void
807 __xfs_inode_clear_reclaim(
808 xfs_perag_t *pag,
809 xfs_inode_t *ip)
810 {
811 pag->pag_ici_reclaimable--;
812 if (!pag->pag_ici_reclaimable) {
813 /* clear the reclaim tag from the perag radix tree */
814 spin_lock(&ip->i_mount->m_perag_lock);
815 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
816 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
817 XFS_ICI_RECLAIM_TAG);
818 spin_unlock(&ip->i_mount->m_perag_lock);
819 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
820 -1, _RET_IP_);
821 }
822 }
823
824 STATIC void
825 __xfs_inode_clear_reclaim_tag(
826 xfs_mount_t *mp,
827 xfs_perag_t *pag,
828 xfs_inode_t *ip)
829 {
830 radix_tree_tag_clear(&pag->pag_ici_root,
831 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
832 __xfs_inode_clear_reclaim(pag, ip);
833 }
834
835 /*
836 * Grab the inode for reclaim exclusively.
837 * Return 0 if we grabbed it, non-zero otherwise.
838 */
839 STATIC int
840 xfs_reclaim_inode_grab(
841 struct xfs_inode *ip,
842 int flags)
843 {
844 ASSERT(rcu_read_lock_held());
845
846 /* quick check for stale RCU freed inode */
847 if (!ip->i_ino)
848 return 1;
849
850 /*
851 * If we are asked for non-blocking operation, do unlocked checks to
852 * see if the inode already is being flushed or in reclaim to avoid
853 * lock traffic.
854 */
855 if ((flags & SYNC_TRYLOCK) &&
856 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
857 return 1;
858
859 /*
860 * The radix tree lock here protects a thread in xfs_iget from racing
861 * with us starting reclaim on the inode. Once we have the
862 * XFS_IRECLAIM flag set it will not touch us.
863 *
864 * Due to RCU lookup, we may find inodes that have been freed and only
865 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
866 * aren't candidates for reclaim at all, so we must check the
867 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
868 */
869 spin_lock(&ip->i_flags_lock);
870 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
871 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
872 /* not a reclaim candidate. */
873 spin_unlock(&ip->i_flags_lock);
874 return 1;
875 }
876 __xfs_iflags_set(ip, XFS_IRECLAIM);
877 spin_unlock(&ip->i_flags_lock);
878 return 0;
879 }
880
881 /*
882 * Inodes in different states need to be treated differently. The following
883 * table lists the inode states and the reclaim actions necessary:
884 *
885 * inode state iflush ret required action
886 * --------------- ---------- ---------------
887 * bad - reclaim
888 * shutdown EIO unpin and reclaim
889 * clean, unpinned 0 reclaim
890 * stale, unpinned 0 reclaim
891 * clean, pinned(*) 0 requeue
892 * stale, pinned EAGAIN requeue
893 * dirty, async - requeue
894 * dirty, sync 0 reclaim
895 *
896 * (*) dgc: I don't think the clean, pinned state is possible but it gets
897 * handled anyway given the order of checks implemented.
898 *
899 * Also, because we get the flush lock first, we know that any inode that has
900 * been flushed delwri has had the flush completed by the time we check that
901 * the inode is clean.
902 *
903 * Note that because the inode is flushed delayed write by AIL pushing, the
904 * flush lock may already be held here and waiting on it can result in very
905 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
906 * the caller should push the AIL first before trying to reclaim inodes to
907 * minimise the amount of time spent waiting. For background relaim, we only
908 * bother to reclaim clean inodes anyway.
909 *
910 * Hence the order of actions after gaining the locks should be:
911 * bad => reclaim
912 * shutdown => unpin and reclaim
913 * pinned, async => requeue
914 * pinned, sync => unpin
915 * stale => reclaim
916 * clean => reclaim
917 * dirty, async => requeue
918 * dirty, sync => flush, wait and reclaim
919 */
920 STATIC int
921 xfs_reclaim_inode(
922 struct xfs_inode *ip,
923 struct xfs_perag *pag,
924 int sync_mode)
925 {
926 struct xfs_buf *bp = NULL;
927 int error;
928
929 restart:
930 error = 0;
931 xfs_ilock(ip, XFS_ILOCK_EXCL);
932 if (!xfs_iflock_nowait(ip)) {
933 if (!(sync_mode & SYNC_WAIT))
934 goto out;
935 xfs_iflock(ip);
936 }
937
938 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
939 xfs_iunpin_wait(ip);
940 xfs_iflush_abort(ip, false);
941 goto reclaim;
942 }
943 if (xfs_ipincount(ip)) {
944 if (!(sync_mode & SYNC_WAIT))
945 goto out_ifunlock;
946 xfs_iunpin_wait(ip);
947 }
948 if (xfs_iflags_test(ip, XFS_ISTALE))
949 goto reclaim;
950 if (xfs_inode_clean(ip))
951 goto reclaim;
952
953 /*
954 * Never flush out dirty data during non-blocking reclaim, as it would
955 * just contend with AIL pushing trying to do the same job.
956 */
957 if (!(sync_mode & SYNC_WAIT))
958 goto out_ifunlock;
959
960 /*
961 * Now we have an inode that needs flushing.
962 *
963 * Note that xfs_iflush will never block on the inode buffer lock, as
964 * xfs_ifree_cluster() can lock the inode buffer before it locks the
965 * ip->i_lock, and we are doing the exact opposite here. As a result,
966 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
967 * result in an ABBA deadlock with xfs_ifree_cluster().
968 *
969 * As xfs_ifree_cluser() must gather all inodes that are active in the
970 * cache to mark them stale, if we hit this case we don't actually want
971 * to do IO here - we want the inode marked stale so we can simply
972 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
973 * inode, back off and try again. Hopefully the next pass through will
974 * see the stale flag set on the inode.
975 */
976 error = xfs_iflush(ip, &bp);
977 if (error == -EAGAIN) {
978 xfs_iunlock(ip, XFS_ILOCK_EXCL);
979 /* backoff longer than in xfs_ifree_cluster */
980 delay(2);
981 goto restart;
982 }
983
984 if (!error) {
985 error = xfs_bwrite(bp);
986 xfs_buf_relse(bp);
987 }
988
989 xfs_iflock(ip);
990 reclaim:
991 xfs_ifunlock(ip);
992 xfs_iunlock(ip, XFS_ILOCK_EXCL);
993
994 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
995 /*
996 * Remove the inode from the per-AG radix tree.
997 *
998 * Because radix_tree_delete won't complain even if the item was never
999 * added to the tree assert that it's been there before to catch
1000 * problems with the inode life time early on.
1001 */
1002 spin_lock(&pag->pag_ici_lock);
1003 if (!radix_tree_delete(&pag->pag_ici_root,
1004 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
1005 ASSERT(0);
1006 __xfs_inode_clear_reclaim(pag, ip);
1007 spin_unlock(&pag->pag_ici_lock);
1008
1009 /*
1010 * Here we do an (almost) spurious inode lock in order to coordinate
1011 * with inode cache radix tree lookups. This is because the lookup
1012 * can reference the inodes in the cache without taking references.
1013 *
1014 * We make that OK here by ensuring that we wait until the inode is
1015 * unlocked after the lookup before we go ahead and free it.
1016 */
1017 xfs_ilock(ip, XFS_ILOCK_EXCL);
1018 xfs_qm_dqdetach(ip);
1019 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1020
1021 xfs_inode_free(ip);
1022 return error;
1023
1024 out_ifunlock:
1025 xfs_ifunlock(ip);
1026 out:
1027 xfs_iflags_clear(ip, XFS_IRECLAIM);
1028 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1029 /*
1030 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1031 * a short while. However, this just burns CPU time scanning the tree
1032 * waiting for IO to complete and the reclaim work never goes back to
1033 * the idle state. Instead, return 0 to let the next scheduled
1034 * background reclaim attempt to reclaim the inode again.
1035 */
1036 return 0;
1037 }
1038
1039 /*
1040 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1041 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1042 * then a shut down during filesystem unmount reclaim walk leak all the
1043 * unreclaimed inodes.
1044 */
1045 STATIC int
1046 xfs_reclaim_inodes_ag(
1047 struct xfs_mount *mp,
1048 int flags,
1049 int *nr_to_scan)
1050 {
1051 struct xfs_perag *pag;
1052 int error = 0;
1053 int last_error = 0;
1054 xfs_agnumber_t ag;
1055 int trylock = flags & SYNC_TRYLOCK;
1056 int skipped;
1057
1058 restart:
1059 ag = 0;
1060 skipped = 0;
1061 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1062 unsigned long first_index = 0;
1063 int done = 0;
1064 int nr_found = 0;
1065
1066 ag = pag->pag_agno + 1;
1067
1068 if (trylock) {
1069 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1070 skipped++;
1071 xfs_perag_put(pag);
1072 continue;
1073 }
1074 first_index = pag->pag_ici_reclaim_cursor;
1075 } else
1076 mutex_lock(&pag->pag_ici_reclaim_lock);
1077
1078 do {
1079 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1080 int i;
1081
1082 rcu_read_lock();
1083 nr_found = radix_tree_gang_lookup_tag(
1084 &pag->pag_ici_root,
1085 (void **)batch, first_index,
1086 XFS_LOOKUP_BATCH,
1087 XFS_ICI_RECLAIM_TAG);
1088 if (!nr_found) {
1089 done = 1;
1090 rcu_read_unlock();
1091 break;
1092 }
1093
1094 /*
1095 * Grab the inodes before we drop the lock. if we found
1096 * nothing, nr == 0 and the loop will be skipped.
1097 */
1098 for (i = 0; i < nr_found; i++) {
1099 struct xfs_inode *ip = batch[i];
1100
1101 if (done || xfs_reclaim_inode_grab(ip, flags))
1102 batch[i] = NULL;
1103
1104 /*
1105 * Update the index for the next lookup. Catch
1106 * overflows into the next AG range which can
1107 * occur if we have inodes in the last block of
1108 * the AG and we are currently pointing to the
1109 * last inode.
1110 *
1111 * Because we may see inodes that are from the
1112 * wrong AG due to RCU freeing and
1113 * reallocation, only update the index if it
1114 * lies in this AG. It was a race that lead us
1115 * to see this inode, so another lookup from
1116 * the same index will not find it again.
1117 */
1118 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1119 pag->pag_agno)
1120 continue;
1121 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1122 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1123 done = 1;
1124 }
1125
1126 /* unlock now we've grabbed the inodes. */
1127 rcu_read_unlock();
1128
1129 for (i = 0; i < nr_found; i++) {
1130 if (!batch[i])
1131 continue;
1132 error = xfs_reclaim_inode(batch[i], pag, flags);
1133 if (error && last_error != -EFSCORRUPTED)
1134 last_error = error;
1135 }
1136
1137 *nr_to_scan -= XFS_LOOKUP_BATCH;
1138
1139 cond_resched();
1140
1141 } while (nr_found && !done && *nr_to_scan > 0);
1142
1143 if (trylock && !done)
1144 pag->pag_ici_reclaim_cursor = first_index;
1145 else
1146 pag->pag_ici_reclaim_cursor = 0;
1147 mutex_unlock(&pag->pag_ici_reclaim_lock);
1148 xfs_perag_put(pag);
1149 }
1150
1151 /*
1152 * if we skipped any AG, and we still have scan count remaining, do
1153 * another pass this time using blocking reclaim semantics (i.e
1154 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1155 * ensure that when we get more reclaimers than AGs we block rather
1156 * than spin trying to execute reclaim.
1157 */
1158 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1159 trylock = 0;
1160 goto restart;
1161 }
1162 return last_error;
1163 }
1164
1165 int
1166 xfs_reclaim_inodes(
1167 xfs_mount_t *mp,
1168 int mode)
1169 {
1170 int nr_to_scan = INT_MAX;
1171
1172 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1173 }
1174
1175 /*
1176 * Scan a certain number of inodes for reclaim.
1177 *
1178 * When called we make sure that there is a background (fast) inode reclaim in
1179 * progress, while we will throttle the speed of reclaim via doing synchronous
1180 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1181 * them to be cleaned, which we hope will not be very long due to the
1182 * background walker having already kicked the IO off on those dirty inodes.
1183 */
1184 long
1185 xfs_reclaim_inodes_nr(
1186 struct xfs_mount *mp,
1187 int nr_to_scan)
1188 {
1189 /* kick background reclaimer and push the AIL */
1190 xfs_reclaim_work_queue(mp);
1191 xfs_ail_push_all(mp->m_ail);
1192
1193 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1194 }
1195
1196 /*
1197 * Return the number of reclaimable inodes in the filesystem for
1198 * the shrinker to determine how much to reclaim.
1199 */
1200 int
1201 xfs_reclaim_inodes_count(
1202 struct xfs_mount *mp)
1203 {
1204 struct xfs_perag *pag;
1205 xfs_agnumber_t ag = 0;
1206 int reclaimable = 0;
1207
1208 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1209 ag = pag->pag_agno + 1;
1210 reclaimable += pag->pag_ici_reclaimable;
1211 xfs_perag_put(pag);
1212 }
1213 return reclaimable;
1214 }
1215
1216 STATIC int
1217 xfs_inode_match_id(
1218 struct xfs_inode *ip,
1219 struct xfs_eofblocks *eofb)
1220 {
1221 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1222 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1223 return 0;
1224
1225 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1226 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1227 return 0;
1228
1229 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1230 xfs_get_projid(ip) != eofb->eof_prid)
1231 return 0;
1232
1233 return 1;
1234 }
1235
1236 /*
1237 * A union-based inode filtering algorithm. Process the inode if any of the
1238 * criteria match. This is for global/internal scans only.
1239 */
1240 STATIC int
1241 xfs_inode_match_id_union(
1242 struct xfs_inode *ip,
1243 struct xfs_eofblocks *eofb)
1244 {
1245 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1246 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1247 return 1;
1248
1249 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1250 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1251 return 1;
1252
1253 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1254 xfs_get_projid(ip) == eofb->eof_prid)
1255 return 1;
1256
1257 return 0;
1258 }
1259
1260 STATIC int
1261 xfs_inode_free_eofblocks(
1262 struct xfs_inode *ip,
1263 int flags,
1264 void *args)
1265 {
1266 int ret;
1267 struct xfs_eofblocks *eofb = args;
1268 bool need_iolock = true;
1269 int match;
1270
1271 ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0));
1272
1273 if (!xfs_can_free_eofblocks(ip, false)) {
1274 /* inode could be preallocated or append-only */
1275 trace_xfs_inode_free_eofblocks_invalid(ip);
1276 xfs_inode_clear_eofblocks_tag(ip);
1277 return 0;
1278 }
1279
1280 /*
1281 * If the mapping is dirty the operation can block and wait for some
1282 * time. Unless we are waiting, skip it.
1283 */
1284 if (!(flags & SYNC_WAIT) &&
1285 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1286 return 0;
1287
1288 if (eofb) {
1289 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1290 match = xfs_inode_match_id_union(ip, eofb);
1291 else
1292 match = xfs_inode_match_id(ip, eofb);
1293 if (!match)
1294 return 0;
1295
1296 /* skip the inode if the file size is too small */
1297 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1298 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1299 return 0;
1300
1301 /*
1302 * A scan owner implies we already hold the iolock. Skip it in
1303 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1304 * the possibility of EAGAIN being returned.
1305 */
1306 if (eofb->eof_scan_owner == ip->i_ino)
1307 need_iolock = false;
1308 }
1309
1310 ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock);
1311
1312 /* don't revisit the inode if we're not waiting */
1313 if (ret == -EAGAIN && !(flags & SYNC_WAIT))
1314 ret = 0;
1315
1316 return ret;
1317 }
1318
1319 int
1320 xfs_icache_free_eofblocks(
1321 struct xfs_mount *mp,
1322 struct xfs_eofblocks *eofb)
1323 {
1324 int flags = SYNC_TRYLOCK;
1325
1326 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1327 flags = SYNC_WAIT;
1328
1329 return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1330 eofb, XFS_ICI_EOFBLOCKS_TAG);
1331 }
1332
1333 /*
1334 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1335 * multiple quotas, we don't know exactly which quota caused an allocation
1336 * failure. We make a best effort by including each quota under low free space
1337 * conditions (less than 1% free space) in the scan.
1338 */
1339 int
1340 xfs_inode_free_quota_eofblocks(
1341 struct xfs_inode *ip)
1342 {
1343 int scan = 0;
1344 struct xfs_eofblocks eofb = {0};
1345 struct xfs_dquot *dq;
1346
1347 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1348
1349 /*
1350 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1351 * can repeatedly trylock on the inode we're currently processing. We
1352 * run a sync scan to increase effectiveness and use the union filter to
1353 * cover all applicable quotas in a single scan.
1354 */
1355 eofb.eof_scan_owner = ip->i_ino;
1356 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1357
1358 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1359 dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1360 if (dq && xfs_dquot_lowsp(dq)) {
1361 eofb.eof_uid = VFS_I(ip)->i_uid;
1362 eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1363 scan = 1;
1364 }
1365 }
1366
1367 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1368 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1369 if (dq && xfs_dquot_lowsp(dq)) {
1370 eofb.eof_gid = VFS_I(ip)->i_gid;
1371 eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1372 scan = 1;
1373 }
1374 }
1375
1376 if (scan)
1377 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
1378
1379 return scan;
1380 }
1381
1382 void
1383 xfs_inode_set_eofblocks_tag(
1384 xfs_inode_t *ip)
1385 {
1386 struct xfs_mount *mp = ip->i_mount;
1387 struct xfs_perag *pag;
1388 int tagged;
1389
1390 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1391 spin_lock(&pag->pag_ici_lock);
1392 trace_xfs_inode_set_eofblocks_tag(ip);
1393
1394 tagged = radix_tree_tagged(&pag->pag_ici_root,
1395 XFS_ICI_EOFBLOCKS_TAG);
1396 radix_tree_tag_set(&pag->pag_ici_root,
1397 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1398 XFS_ICI_EOFBLOCKS_TAG);
1399 if (!tagged) {
1400 /* propagate the eofblocks tag up into the perag radix tree */
1401 spin_lock(&ip->i_mount->m_perag_lock);
1402 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1403 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1404 XFS_ICI_EOFBLOCKS_TAG);
1405 spin_unlock(&ip->i_mount->m_perag_lock);
1406
1407 /* kick off background trimming */
1408 xfs_queue_eofblocks(ip->i_mount);
1409
1410 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1411 -1, _RET_IP_);
1412 }
1413
1414 spin_unlock(&pag->pag_ici_lock);
1415 xfs_perag_put(pag);
1416 }
1417
1418 void
1419 xfs_inode_clear_eofblocks_tag(
1420 xfs_inode_t *ip)
1421 {
1422 struct xfs_mount *mp = ip->i_mount;
1423 struct xfs_perag *pag;
1424
1425 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1426 spin_lock(&pag->pag_ici_lock);
1427 trace_xfs_inode_clear_eofblocks_tag(ip);
1428
1429 radix_tree_tag_clear(&pag->pag_ici_root,
1430 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1431 XFS_ICI_EOFBLOCKS_TAG);
1432 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1433 /* clear the eofblocks tag from the perag radix tree */
1434 spin_lock(&ip->i_mount->m_perag_lock);
1435 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1436 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1437 XFS_ICI_EOFBLOCKS_TAG);
1438 spin_unlock(&ip->i_mount->m_perag_lock);
1439 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1440 -1, _RET_IP_);
1441 }
1442
1443 spin_unlock(&pag->pag_ici_lock);
1444 xfs_perag_put(pag);
1445 }
1446
This page took 0.073119 seconds and 6 git commands to generate.