Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / fs / xfs / xfs_inode.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include <linux/log2.h>
19
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_inode.h"
29 #include "xfs_da_format.h"
30 #include "xfs_da_btree.h"
31 #include "xfs_dir2.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_attr.h"
34 #include "xfs_trans_space.h"
35 #include "xfs_trans.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_bmap_util.h"
41 #include "xfs_error.h"
42 #include "xfs_quota.h"
43 #include "xfs_filestream.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_symlink.h"
48 #include "xfs_trans_priv.h"
49 #include "xfs_log.h"
50 #include "xfs_bmap_btree.h"
51
52 kmem_zone_t *xfs_inode_zone;
53
54 /*
55 * Used in xfs_itruncate_extents(). This is the maximum number of extents
56 * freed from a file in a single transaction.
57 */
58 #define XFS_ITRUNC_MAX_EXTENTS 2
59
60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61
62 STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
63
64 /*
65 * helper function to extract extent size hint from inode
66 */
67 xfs_extlen_t
68 xfs_get_extsz_hint(
69 struct xfs_inode *ip)
70 {
71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 return ip->i_d.di_extsize;
73 if (XFS_IS_REALTIME_INODE(ip))
74 return ip->i_mount->m_sb.sb_rextsize;
75 return 0;
76 }
77
78 /*
79 * These two are wrapper routines around the xfs_ilock() routine used to
80 * centralize some grungy code. They are used in places that wish to lock the
81 * inode solely for reading the extents. The reason these places can't just
82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83 * bringing in of the extents from disk for a file in b-tree format. If the
84 * inode is in b-tree format, then we need to lock the inode exclusively until
85 * the extents are read in. Locking it exclusively all the time would limit
86 * our parallelism unnecessarily, though. What we do instead is check to see
87 * if the extents have been read in yet, and only lock the inode exclusively
88 * if they have not.
89 *
90 * The functions return a value which should be given to the corresponding
91 * xfs_iunlock() call.
92 */
93 uint
94 xfs_ilock_data_map_shared(
95 struct xfs_inode *ip)
96 {
97 uint lock_mode = XFS_ILOCK_SHARED;
98
99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
101 lock_mode = XFS_ILOCK_EXCL;
102 xfs_ilock(ip, lock_mode);
103 return lock_mode;
104 }
105
106 uint
107 xfs_ilock_attr_map_shared(
108 struct xfs_inode *ip)
109 {
110 uint lock_mode = XFS_ILOCK_SHARED;
111
112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 lock_mode = XFS_ILOCK_EXCL;
115 xfs_ilock(ip, lock_mode);
116 return lock_mode;
117 }
118
119 /*
120 * The xfs inode contains 2 locks: a multi-reader lock called the
121 * i_iolock and a multi-reader lock called the i_lock. This routine
122 * allows either or both of the locks to be obtained.
123 *
124 * The 2 locks should always be ordered so that the IO lock is
125 * obtained first in order to prevent deadlock.
126 *
127 * ip -- the inode being locked
128 * lock_flags -- this parameter indicates the inode's locks
129 * to be locked. It can be:
130 * XFS_IOLOCK_SHARED,
131 * XFS_IOLOCK_EXCL,
132 * XFS_ILOCK_SHARED,
133 * XFS_ILOCK_EXCL,
134 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
135 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
136 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
137 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
138 */
139 void
140 xfs_ilock(
141 xfs_inode_t *ip,
142 uint lock_flags)
143 {
144 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
145
146 /*
147 * You can't set both SHARED and EXCL for the same lock,
148 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
149 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
150 */
151 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
152 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
153 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
154 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
155 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
156
157 if (lock_flags & XFS_IOLOCK_EXCL)
158 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
159 else if (lock_flags & XFS_IOLOCK_SHARED)
160 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
161
162 if (lock_flags & XFS_ILOCK_EXCL)
163 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
164 else if (lock_flags & XFS_ILOCK_SHARED)
165 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
166 }
167
168 /*
169 * This is just like xfs_ilock(), except that the caller
170 * is guaranteed not to sleep. It returns 1 if it gets
171 * the requested locks and 0 otherwise. If the IO lock is
172 * obtained but the inode lock cannot be, then the IO lock
173 * is dropped before returning.
174 *
175 * ip -- the inode being locked
176 * lock_flags -- this parameter indicates the inode's locks to be
177 * to be locked. See the comment for xfs_ilock() for a list
178 * of valid values.
179 */
180 int
181 xfs_ilock_nowait(
182 xfs_inode_t *ip,
183 uint lock_flags)
184 {
185 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
186
187 /*
188 * You can't set both SHARED and EXCL for the same lock,
189 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
190 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
191 */
192 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
193 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
194 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
195 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
196 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
197
198 if (lock_flags & XFS_IOLOCK_EXCL) {
199 if (!mrtryupdate(&ip->i_iolock))
200 goto out;
201 } else if (lock_flags & XFS_IOLOCK_SHARED) {
202 if (!mrtryaccess(&ip->i_iolock))
203 goto out;
204 }
205 if (lock_flags & XFS_ILOCK_EXCL) {
206 if (!mrtryupdate(&ip->i_lock))
207 goto out_undo_iolock;
208 } else if (lock_flags & XFS_ILOCK_SHARED) {
209 if (!mrtryaccess(&ip->i_lock))
210 goto out_undo_iolock;
211 }
212 return 1;
213
214 out_undo_iolock:
215 if (lock_flags & XFS_IOLOCK_EXCL)
216 mrunlock_excl(&ip->i_iolock);
217 else if (lock_flags & XFS_IOLOCK_SHARED)
218 mrunlock_shared(&ip->i_iolock);
219 out:
220 return 0;
221 }
222
223 /*
224 * xfs_iunlock() is used to drop the inode locks acquired with
225 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
226 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
227 * that we know which locks to drop.
228 *
229 * ip -- the inode being unlocked
230 * lock_flags -- this parameter indicates the inode's locks to be
231 * to be unlocked. See the comment for xfs_ilock() for a list
232 * of valid values for this parameter.
233 *
234 */
235 void
236 xfs_iunlock(
237 xfs_inode_t *ip,
238 uint lock_flags)
239 {
240 /*
241 * You can't set both SHARED and EXCL for the same lock,
242 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
243 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
244 */
245 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
246 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
247 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
248 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
249 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
250 ASSERT(lock_flags != 0);
251
252 if (lock_flags & XFS_IOLOCK_EXCL)
253 mrunlock_excl(&ip->i_iolock);
254 else if (lock_flags & XFS_IOLOCK_SHARED)
255 mrunlock_shared(&ip->i_iolock);
256
257 if (lock_flags & XFS_ILOCK_EXCL)
258 mrunlock_excl(&ip->i_lock);
259 else if (lock_flags & XFS_ILOCK_SHARED)
260 mrunlock_shared(&ip->i_lock);
261
262 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
263 }
264
265 /*
266 * give up write locks. the i/o lock cannot be held nested
267 * if it is being demoted.
268 */
269 void
270 xfs_ilock_demote(
271 xfs_inode_t *ip,
272 uint lock_flags)
273 {
274 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
275 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
276
277 if (lock_flags & XFS_ILOCK_EXCL)
278 mrdemote(&ip->i_lock);
279 if (lock_flags & XFS_IOLOCK_EXCL)
280 mrdemote(&ip->i_iolock);
281
282 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
283 }
284
285 #if defined(DEBUG) || defined(XFS_WARN)
286 int
287 xfs_isilocked(
288 xfs_inode_t *ip,
289 uint lock_flags)
290 {
291 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
292 if (!(lock_flags & XFS_ILOCK_SHARED))
293 return !!ip->i_lock.mr_writer;
294 return rwsem_is_locked(&ip->i_lock.mr_lock);
295 }
296
297 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
298 if (!(lock_flags & XFS_IOLOCK_SHARED))
299 return !!ip->i_iolock.mr_writer;
300 return rwsem_is_locked(&ip->i_iolock.mr_lock);
301 }
302
303 ASSERT(0);
304 return 0;
305 }
306 #endif
307
308 #ifdef DEBUG
309 int xfs_locked_n;
310 int xfs_small_retries;
311 int xfs_middle_retries;
312 int xfs_lots_retries;
313 int xfs_lock_delays;
314 #endif
315
316 /*
317 * Bump the subclass so xfs_lock_inodes() acquires each lock with
318 * a different value
319 */
320 static inline int
321 xfs_lock_inumorder(int lock_mode, int subclass)
322 {
323 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
324 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
325 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
326 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
327
328 return lock_mode;
329 }
330
331 /*
332 * The following routine will lock n inodes in exclusive mode.
333 * We assume the caller calls us with the inodes in i_ino order.
334 *
335 * We need to detect deadlock where an inode that we lock
336 * is in the AIL and we start waiting for another inode that is locked
337 * by a thread in a long running transaction (such as truncate). This can
338 * result in deadlock since the long running trans might need to wait
339 * for the inode we just locked in order to push the tail and free space
340 * in the log.
341 */
342 void
343 xfs_lock_inodes(
344 xfs_inode_t **ips,
345 int inodes,
346 uint lock_mode)
347 {
348 int attempts = 0, i, j, try_lock;
349 xfs_log_item_t *lp;
350
351 ASSERT(ips && (inodes >= 2)); /* we need at least two */
352
353 try_lock = 0;
354 i = 0;
355
356 again:
357 for (; i < inodes; i++) {
358 ASSERT(ips[i]);
359
360 if (i && (ips[i] == ips[i-1])) /* Already locked */
361 continue;
362
363 /*
364 * If try_lock is not set yet, make sure all locked inodes
365 * are not in the AIL.
366 * If any are, set try_lock to be used later.
367 */
368
369 if (!try_lock) {
370 for (j = (i - 1); j >= 0 && !try_lock; j--) {
371 lp = (xfs_log_item_t *)ips[j]->i_itemp;
372 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
373 try_lock++;
374 }
375 }
376 }
377
378 /*
379 * If any of the previous locks we have locked is in the AIL,
380 * we must TRY to get the second and subsequent locks. If
381 * we can't get any, we must release all we have
382 * and try again.
383 */
384
385 if (try_lock) {
386 /* try_lock must be 0 if i is 0. */
387 /*
388 * try_lock means we have an inode locked
389 * that is in the AIL.
390 */
391 ASSERT(i != 0);
392 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
393 attempts++;
394
395 /*
396 * Unlock all previous guys and try again.
397 * xfs_iunlock will try to push the tail
398 * if the inode is in the AIL.
399 */
400
401 for(j = i - 1; j >= 0; j--) {
402
403 /*
404 * Check to see if we've already
405 * unlocked this one.
406 * Not the first one going back,
407 * and the inode ptr is the same.
408 */
409 if ((j != (i - 1)) && ips[j] ==
410 ips[j+1])
411 continue;
412
413 xfs_iunlock(ips[j], lock_mode);
414 }
415
416 if ((attempts % 5) == 0) {
417 delay(1); /* Don't just spin the CPU */
418 #ifdef DEBUG
419 xfs_lock_delays++;
420 #endif
421 }
422 i = 0;
423 try_lock = 0;
424 goto again;
425 }
426 } else {
427 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
428 }
429 }
430
431 #ifdef DEBUG
432 if (attempts) {
433 if (attempts < 5) xfs_small_retries++;
434 else if (attempts < 100) xfs_middle_retries++;
435 else xfs_lots_retries++;
436 } else {
437 xfs_locked_n++;
438 }
439 #endif
440 }
441
442 /*
443 * xfs_lock_two_inodes() can only be used to lock one type of lock
444 * at a time - the iolock or the ilock, but not both at once. If
445 * we lock both at once, lockdep will report false positives saying
446 * we have violated locking orders.
447 */
448 void
449 xfs_lock_two_inodes(
450 xfs_inode_t *ip0,
451 xfs_inode_t *ip1,
452 uint lock_mode)
453 {
454 xfs_inode_t *temp;
455 int attempts = 0;
456 xfs_log_item_t *lp;
457
458 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
459 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
460 ASSERT(ip0->i_ino != ip1->i_ino);
461
462 if (ip0->i_ino > ip1->i_ino) {
463 temp = ip0;
464 ip0 = ip1;
465 ip1 = temp;
466 }
467
468 again:
469 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
470
471 /*
472 * If the first lock we have locked is in the AIL, we must TRY to get
473 * the second lock. If we can't get it, we must release the first one
474 * and try again.
475 */
476 lp = (xfs_log_item_t *)ip0->i_itemp;
477 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
478 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
479 xfs_iunlock(ip0, lock_mode);
480 if ((++attempts % 5) == 0)
481 delay(1); /* Don't just spin the CPU */
482 goto again;
483 }
484 } else {
485 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
486 }
487 }
488
489
490 void
491 __xfs_iflock(
492 struct xfs_inode *ip)
493 {
494 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
495 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
496
497 do {
498 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
499 if (xfs_isiflocked(ip))
500 io_schedule();
501 } while (!xfs_iflock_nowait(ip));
502
503 finish_wait(wq, &wait.wait);
504 }
505
506 STATIC uint
507 _xfs_dic2xflags(
508 __uint16_t di_flags)
509 {
510 uint flags = 0;
511
512 if (di_flags & XFS_DIFLAG_ANY) {
513 if (di_flags & XFS_DIFLAG_REALTIME)
514 flags |= XFS_XFLAG_REALTIME;
515 if (di_flags & XFS_DIFLAG_PREALLOC)
516 flags |= XFS_XFLAG_PREALLOC;
517 if (di_flags & XFS_DIFLAG_IMMUTABLE)
518 flags |= XFS_XFLAG_IMMUTABLE;
519 if (di_flags & XFS_DIFLAG_APPEND)
520 flags |= XFS_XFLAG_APPEND;
521 if (di_flags & XFS_DIFLAG_SYNC)
522 flags |= XFS_XFLAG_SYNC;
523 if (di_flags & XFS_DIFLAG_NOATIME)
524 flags |= XFS_XFLAG_NOATIME;
525 if (di_flags & XFS_DIFLAG_NODUMP)
526 flags |= XFS_XFLAG_NODUMP;
527 if (di_flags & XFS_DIFLAG_RTINHERIT)
528 flags |= XFS_XFLAG_RTINHERIT;
529 if (di_flags & XFS_DIFLAG_PROJINHERIT)
530 flags |= XFS_XFLAG_PROJINHERIT;
531 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
532 flags |= XFS_XFLAG_NOSYMLINKS;
533 if (di_flags & XFS_DIFLAG_EXTSIZE)
534 flags |= XFS_XFLAG_EXTSIZE;
535 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
536 flags |= XFS_XFLAG_EXTSZINHERIT;
537 if (di_flags & XFS_DIFLAG_NODEFRAG)
538 flags |= XFS_XFLAG_NODEFRAG;
539 if (di_flags & XFS_DIFLAG_FILESTREAM)
540 flags |= XFS_XFLAG_FILESTREAM;
541 }
542
543 return flags;
544 }
545
546 uint
547 xfs_ip2xflags(
548 xfs_inode_t *ip)
549 {
550 xfs_icdinode_t *dic = &ip->i_d;
551
552 return _xfs_dic2xflags(dic->di_flags) |
553 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
554 }
555
556 uint
557 xfs_dic2xflags(
558 xfs_dinode_t *dip)
559 {
560 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
561 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
562 }
563
564 /*
565 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
566 * is allowed, otherwise it has to be an exact match. If a CI match is found,
567 * ci_name->name will point to a the actual name (caller must free) or
568 * will be set to NULL if an exact match is found.
569 */
570 int
571 xfs_lookup(
572 xfs_inode_t *dp,
573 struct xfs_name *name,
574 xfs_inode_t **ipp,
575 struct xfs_name *ci_name)
576 {
577 xfs_ino_t inum;
578 int error;
579 uint lock_mode;
580
581 trace_xfs_lookup(dp, name);
582
583 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
584 return -EIO;
585
586 lock_mode = xfs_ilock_data_map_shared(dp);
587 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
588 xfs_iunlock(dp, lock_mode);
589
590 if (error)
591 goto out;
592
593 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
594 if (error)
595 goto out_free_name;
596
597 return 0;
598
599 out_free_name:
600 if (ci_name)
601 kmem_free(ci_name->name);
602 out:
603 *ipp = NULL;
604 return error;
605 }
606
607 /*
608 * Allocate an inode on disk and return a copy of its in-core version.
609 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
610 * appropriately within the inode. The uid and gid for the inode are
611 * set according to the contents of the given cred structure.
612 *
613 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
614 * has a free inode available, call xfs_iget() to obtain the in-core
615 * version of the allocated inode. Finally, fill in the inode and
616 * log its initial contents. In this case, ialloc_context would be
617 * set to NULL.
618 *
619 * If xfs_dialloc() does not have an available inode, it will replenish
620 * its supply by doing an allocation. Since we can only do one
621 * allocation within a transaction without deadlocks, we must commit
622 * the current transaction before returning the inode itself.
623 * In this case, therefore, we will set ialloc_context and return.
624 * The caller should then commit the current transaction, start a new
625 * transaction, and call xfs_ialloc() again to actually get the inode.
626 *
627 * To ensure that some other process does not grab the inode that
628 * was allocated during the first call to xfs_ialloc(), this routine
629 * also returns the [locked] bp pointing to the head of the freelist
630 * as ialloc_context. The caller should hold this buffer across
631 * the commit and pass it back into this routine on the second call.
632 *
633 * If we are allocating quota inodes, we do not have a parent inode
634 * to attach to or associate with (i.e. pip == NULL) because they
635 * are not linked into the directory structure - they are attached
636 * directly to the superblock - and so have no parent.
637 */
638 int
639 xfs_ialloc(
640 xfs_trans_t *tp,
641 xfs_inode_t *pip,
642 umode_t mode,
643 xfs_nlink_t nlink,
644 xfs_dev_t rdev,
645 prid_t prid,
646 int okalloc,
647 xfs_buf_t **ialloc_context,
648 xfs_inode_t **ipp)
649 {
650 struct xfs_mount *mp = tp->t_mountp;
651 xfs_ino_t ino;
652 xfs_inode_t *ip;
653 uint flags;
654 int error;
655 struct timespec tv;
656
657 /*
658 * Call the space management code to pick
659 * the on-disk inode to be allocated.
660 */
661 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
662 ialloc_context, &ino);
663 if (error)
664 return error;
665 if (*ialloc_context || ino == NULLFSINO) {
666 *ipp = NULL;
667 return 0;
668 }
669 ASSERT(*ialloc_context == NULL);
670
671 /*
672 * Get the in-core inode with the lock held exclusively.
673 * This is because we're setting fields here we need
674 * to prevent others from looking at until we're done.
675 */
676 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
677 XFS_ILOCK_EXCL, &ip);
678 if (error)
679 return error;
680 ASSERT(ip != NULL);
681
682 /*
683 * We always convert v1 inodes to v2 now - we only support filesystems
684 * with >= v2 inode capability, so there is no reason for ever leaving
685 * an inode in v1 format.
686 */
687 if (ip->i_d.di_version == 1)
688 ip->i_d.di_version = 2;
689
690 ip->i_d.di_mode = mode;
691 ip->i_d.di_onlink = 0;
692 ip->i_d.di_nlink = nlink;
693 ASSERT(ip->i_d.di_nlink == nlink);
694 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
695 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
696 xfs_set_projid(ip, prid);
697 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
698
699 if (pip && XFS_INHERIT_GID(pip)) {
700 ip->i_d.di_gid = pip->i_d.di_gid;
701 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
702 ip->i_d.di_mode |= S_ISGID;
703 }
704 }
705
706 /*
707 * If the group ID of the new file does not match the effective group
708 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
709 * (and only if the irix_sgid_inherit compatibility variable is set).
710 */
711 if ((irix_sgid_inherit) &&
712 (ip->i_d.di_mode & S_ISGID) &&
713 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
714 ip->i_d.di_mode &= ~S_ISGID;
715 }
716
717 ip->i_d.di_size = 0;
718 ip->i_d.di_nextents = 0;
719 ASSERT(ip->i_d.di_nblocks == 0);
720
721 tv = current_fs_time(mp->m_super);
722 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
723 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
724 ip->i_d.di_atime = ip->i_d.di_mtime;
725 ip->i_d.di_ctime = ip->i_d.di_mtime;
726
727 /*
728 * di_gen will have been taken care of in xfs_iread.
729 */
730 ip->i_d.di_extsize = 0;
731 ip->i_d.di_dmevmask = 0;
732 ip->i_d.di_dmstate = 0;
733 ip->i_d.di_flags = 0;
734
735 if (ip->i_d.di_version == 3) {
736 ASSERT(ip->i_d.di_ino == ino);
737 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
738 ip->i_d.di_crc = 0;
739 ip->i_d.di_changecount = 1;
740 ip->i_d.di_lsn = 0;
741 ip->i_d.di_flags2 = 0;
742 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
743 ip->i_d.di_crtime = ip->i_d.di_mtime;
744 }
745
746
747 flags = XFS_ILOG_CORE;
748 switch (mode & S_IFMT) {
749 case S_IFIFO:
750 case S_IFCHR:
751 case S_IFBLK:
752 case S_IFSOCK:
753 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
754 ip->i_df.if_u2.if_rdev = rdev;
755 ip->i_df.if_flags = 0;
756 flags |= XFS_ILOG_DEV;
757 break;
758 case S_IFREG:
759 case S_IFDIR:
760 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
761 uint di_flags = 0;
762
763 if (S_ISDIR(mode)) {
764 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
765 di_flags |= XFS_DIFLAG_RTINHERIT;
766 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
767 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
768 ip->i_d.di_extsize = pip->i_d.di_extsize;
769 }
770 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
771 di_flags |= XFS_DIFLAG_PROJINHERIT;
772 } else if (S_ISREG(mode)) {
773 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
774 di_flags |= XFS_DIFLAG_REALTIME;
775 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
776 di_flags |= XFS_DIFLAG_EXTSIZE;
777 ip->i_d.di_extsize = pip->i_d.di_extsize;
778 }
779 }
780 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
781 xfs_inherit_noatime)
782 di_flags |= XFS_DIFLAG_NOATIME;
783 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
784 xfs_inherit_nodump)
785 di_flags |= XFS_DIFLAG_NODUMP;
786 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
787 xfs_inherit_sync)
788 di_flags |= XFS_DIFLAG_SYNC;
789 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
790 xfs_inherit_nosymlinks)
791 di_flags |= XFS_DIFLAG_NOSYMLINKS;
792 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
793 xfs_inherit_nodefrag)
794 di_flags |= XFS_DIFLAG_NODEFRAG;
795 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
796 di_flags |= XFS_DIFLAG_FILESTREAM;
797 ip->i_d.di_flags |= di_flags;
798 }
799 /* FALLTHROUGH */
800 case S_IFLNK:
801 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
802 ip->i_df.if_flags = XFS_IFEXTENTS;
803 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
804 ip->i_df.if_u1.if_extents = NULL;
805 break;
806 default:
807 ASSERT(0);
808 }
809 /*
810 * Attribute fork settings for new inode.
811 */
812 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
813 ip->i_d.di_anextents = 0;
814
815 /*
816 * Log the new values stuffed into the inode.
817 */
818 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
819 xfs_trans_log_inode(tp, ip, flags);
820
821 /* now that we have an i_mode we can setup inode ops and unlock */
822 xfs_setup_inode(ip);
823
824 *ipp = ip;
825 return 0;
826 }
827
828 /*
829 * Allocates a new inode from disk and return a pointer to the
830 * incore copy. This routine will internally commit the current
831 * transaction and allocate a new one if the Space Manager needed
832 * to do an allocation to replenish the inode free-list.
833 *
834 * This routine is designed to be called from xfs_create and
835 * xfs_create_dir.
836 *
837 */
838 int
839 xfs_dir_ialloc(
840 xfs_trans_t **tpp, /* input: current transaction;
841 output: may be a new transaction. */
842 xfs_inode_t *dp, /* directory within whose allocate
843 the inode. */
844 umode_t mode,
845 xfs_nlink_t nlink,
846 xfs_dev_t rdev,
847 prid_t prid, /* project id */
848 int okalloc, /* ok to allocate new space */
849 xfs_inode_t **ipp, /* pointer to inode; it will be
850 locked. */
851 int *committed)
852
853 {
854 xfs_trans_t *tp;
855 xfs_trans_t *ntp;
856 xfs_inode_t *ip;
857 xfs_buf_t *ialloc_context = NULL;
858 int code;
859 void *dqinfo;
860 uint tflags;
861
862 tp = *tpp;
863 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
864
865 /*
866 * xfs_ialloc will return a pointer to an incore inode if
867 * the Space Manager has an available inode on the free
868 * list. Otherwise, it will do an allocation and replenish
869 * the freelist. Since we can only do one allocation per
870 * transaction without deadlocks, we will need to commit the
871 * current transaction and start a new one. We will then
872 * need to call xfs_ialloc again to get the inode.
873 *
874 * If xfs_ialloc did an allocation to replenish the freelist,
875 * it returns the bp containing the head of the freelist as
876 * ialloc_context. We will hold a lock on it across the
877 * transaction commit so that no other process can steal
878 * the inode(s) that we've just allocated.
879 */
880 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
881 &ialloc_context, &ip);
882
883 /*
884 * Return an error if we were unable to allocate a new inode.
885 * This should only happen if we run out of space on disk or
886 * encounter a disk error.
887 */
888 if (code) {
889 *ipp = NULL;
890 return code;
891 }
892 if (!ialloc_context && !ip) {
893 *ipp = NULL;
894 return -ENOSPC;
895 }
896
897 /*
898 * If the AGI buffer is non-NULL, then we were unable to get an
899 * inode in one operation. We need to commit the current
900 * transaction and call xfs_ialloc() again. It is guaranteed
901 * to succeed the second time.
902 */
903 if (ialloc_context) {
904 struct xfs_trans_res tres;
905
906 /*
907 * Normally, xfs_trans_commit releases all the locks.
908 * We call bhold to hang on to the ialloc_context across
909 * the commit. Holding this buffer prevents any other
910 * processes from doing any allocations in this
911 * allocation group.
912 */
913 xfs_trans_bhold(tp, ialloc_context);
914 /*
915 * Save the log reservation so we can use
916 * them in the next transaction.
917 */
918 tres.tr_logres = xfs_trans_get_log_res(tp);
919 tres.tr_logcount = xfs_trans_get_log_count(tp);
920
921 /*
922 * We want the quota changes to be associated with the next
923 * transaction, NOT this one. So, detach the dqinfo from this
924 * and attach it to the next transaction.
925 */
926 dqinfo = NULL;
927 tflags = 0;
928 if (tp->t_dqinfo) {
929 dqinfo = (void *)tp->t_dqinfo;
930 tp->t_dqinfo = NULL;
931 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
932 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
933 }
934
935 ntp = xfs_trans_dup(tp);
936 code = xfs_trans_commit(tp, 0);
937 tp = ntp;
938 if (committed != NULL) {
939 *committed = 1;
940 }
941 /*
942 * If we get an error during the commit processing,
943 * release the buffer that is still held and return
944 * to the caller.
945 */
946 if (code) {
947 xfs_buf_relse(ialloc_context);
948 if (dqinfo) {
949 tp->t_dqinfo = dqinfo;
950 xfs_trans_free_dqinfo(tp);
951 }
952 *tpp = ntp;
953 *ipp = NULL;
954 return code;
955 }
956
957 /*
958 * transaction commit worked ok so we can drop the extra ticket
959 * reference that we gained in xfs_trans_dup()
960 */
961 xfs_log_ticket_put(tp->t_ticket);
962 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
963 code = xfs_trans_reserve(tp, &tres, 0, 0);
964
965 /*
966 * Re-attach the quota info that we detached from prev trx.
967 */
968 if (dqinfo) {
969 tp->t_dqinfo = dqinfo;
970 tp->t_flags |= tflags;
971 }
972
973 if (code) {
974 xfs_buf_relse(ialloc_context);
975 *tpp = ntp;
976 *ipp = NULL;
977 return code;
978 }
979 xfs_trans_bjoin(tp, ialloc_context);
980
981 /*
982 * Call ialloc again. Since we've locked out all
983 * other allocations in this allocation group,
984 * this call should always succeed.
985 */
986 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
987 okalloc, &ialloc_context, &ip);
988
989 /*
990 * If we get an error at this point, return to the caller
991 * so that the current transaction can be aborted.
992 */
993 if (code) {
994 *tpp = tp;
995 *ipp = NULL;
996 return code;
997 }
998 ASSERT(!ialloc_context && ip);
999
1000 } else {
1001 if (committed != NULL)
1002 *committed = 0;
1003 }
1004
1005 *ipp = ip;
1006 *tpp = tp;
1007
1008 return 0;
1009 }
1010
1011 /*
1012 * Decrement the link count on an inode & log the change.
1013 * If this causes the link count to go to zero, initiate the
1014 * logging activity required to truncate a file.
1015 */
1016 int /* error */
1017 xfs_droplink(
1018 xfs_trans_t *tp,
1019 xfs_inode_t *ip)
1020 {
1021 int error;
1022
1023 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1024
1025 ASSERT (ip->i_d.di_nlink > 0);
1026 ip->i_d.di_nlink--;
1027 drop_nlink(VFS_I(ip));
1028 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1029
1030 error = 0;
1031 if (ip->i_d.di_nlink == 0) {
1032 /*
1033 * We're dropping the last link to this file.
1034 * Move the on-disk inode to the AGI unlinked list.
1035 * From xfs_inactive() we will pull the inode from
1036 * the list and free it.
1037 */
1038 error = xfs_iunlink(tp, ip);
1039 }
1040 return error;
1041 }
1042
1043 /*
1044 * Increment the link count on an inode & log the change.
1045 */
1046 int
1047 xfs_bumplink(
1048 xfs_trans_t *tp,
1049 xfs_inode_t *ip)
1050 {
1051 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1052
1053 ASSERT(ip->i_d.di_version > 1);
1054 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
1055 ip->i_d.di_nlink++;
1056 inc_nlink(VFS_I(ip));
1057 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1058 return 0;
1059 }
1060
1061 int
1062 xfs_create(
1063 xfs_inode_t *dp,
1064 struct xfs_name *name,
1065 umode_t mode,
1066 xfs_dev_t rdev,
1067 xfs_inode_t **ipp)
1068 {
1069 int is_dir = S_ISDIR(mode);
1070 struct xfs_mount *mp = dp->i_mount;
1071 struct xfs_inode *ip = NULL;
1072 struct xfs_trans *tp = NULL;
1073 int error;
1074 xfs_bmap_free_t free_list;
1075 xfs_fsblock_t first_block;
1076 bool unlock_dp_on_error = false;
1077 uint cancel_flags;
1078 int committed;
1079 prid_t prid;
1080 struct xfs_dquot *udqp = NULL;
1081 struct xfs_dquot *gdqp = NULL;
1082 struct xfs_dquot *pdqp = NULL;
1083 struct xfs_trans_res *tres;
1084 uint resblks;
1085
1086 trace_xfs_create(dp, name);
1087
1088 if (XFS_FORCED_SHUTDOWN(mp))
1089 return -EIO;
1090
1091 prid = xfs_get_initial_prid(dp);
1092
1093 /*
1094 * Make sure that we have allocated dquot(s) on disk.
1095 */
1096 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1097 xfs_kgid_to_gid(current_fsgid()), prid,
1098 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1099 &udqp, &gdqp, &pdqp);
1100 if (error)
1101 return error;
1102
1103 if (is_dir) {
1104 rdev = 0;
1105 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1106 tres = &M_RES(mp)->tr_mkdir;
1107 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1108 } else {
1109 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1110 tres = &M_RES(mp)->tr_create;
1111 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1112 }
1113
1114 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1115
1116 /*
1117 * Initially assume that the file does not exist and
1118 * reserve the resources for that case. If that is not
1119 * the case we'll drop the one we have and get a more
1120 * appropriate transaction later.
1121 */
1122 error = xfs_trans_reserve(tp, tres, resblks, 0);
1123 if (error == -ENOSPC) {
1124 /* flush outstanding delalloc blocks and retry */
1125 xfs_flush_inodes(mp);
1126 error = xfs_trans_reserve(tp, tres, resblks, 0);
1127 }
1128 if (error == -ENOSPC) {
1129 /* No space at all so try a "no-allocation" reservation */
1130 resblks = 0;
1131 error = xfs_trans_reserve(tp, tres, 0, 0);
1132 }
1133 if (error) {
1134 cancel_flags = 0;
1135 goto out_trans_cancel;
1136 }
1137
1138 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1139 unlock_dp_on_error = true;
1140
1141 xfs_bmap_init(&free_list, &first_block);
1142
1143 /*
1144 * Reserve disk quota and the inode.
1145 */
1146 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1147 pdqp, resblks, 1, 0);
1148 if (error)
1149 goto out_trans_cancel;
1150
1151 if (!resblks) {
1152 error = xfs_dir_canenter(tp, dp, name);
1153 if (error)
1154 goto out_trans_cancel;
1155 }
1156
1157 /*
1158 * A newly created regular or special file just has one directory
1159 * entry pointing to them, but a directory also the "." entry
1160 * pointing to itself.
1161 */
1162 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1163 prid, resblks > 0, &ip, &committed);
1164 if (error) {
1165 if (error == -ENOSPC)
1166 goto out_trans_cancel;
1167 goto out_trans_abort;
1168 }
1169
1170 /*
1171 * Now we join the directory inode to the transaction. We do not do it
1172 * earlier because xfs_dir_ialloc might commit the previous transaction
1173 * (and release all the locks). An error from here on will result in
1174 * the transaction cancel unlocking dp so don't do it explicitly in the
1175 * error path.
1176 */
1177 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1178 unlock_dp_on_error = false;
1179
1180 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1181 &first_block, &free_list, resblks ?
1182 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1183 if (error) {
1184 ASSERT(error != -ENOSPC);
1185 goto out_trans_abort;
1186 }
1187 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1188 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1189
1190 if (is_dir) {
1191 error = xfs_dir_init(tp, ip, dp);
1192 if (error)
1193 goto out_bmap_cancel;
1194
1195 error = xfs_bumplink(tp, dp);
1196 if (error)
1197 goto out_bmap_cancel;
1198 }
1199
1200 /*
1201 * If this is a synchronous mount, make sure that the
1202 * create transaction goes to disk before returning to
1203 * the user.
1204 */
1205 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1206 xfs_trans_set_sync(tp);
1207
1208 /*
1209 * Attach the dquot(s) to the inodes and modify them incore.
1210 * These ids of the inode couldn't have changed since the new
1211 * inode has been locked ever since it was created.
1212 */
1213 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1214
1215 error = xfs_bmap_finish(&tp, &free_list, &committed);
1216 if (error)
1217 goto out_bmap_cancel;
1218
1219 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1220 if (error)
1221 goto out_release_inode;
1222
1223 xfs_qm_dqrele(udqp);
1224 xfs_qm_dqrele(gdqp);
1225 xfs_qm_dqrele(pdqp);
1226
1227 *ipp = ip;
1228 return 0;
1229
1230 out_bmap_cancel:
1231 xfs_bmap_cancel(&free_list);
1232 out_trans_abort:
1233 cancel_flags |= XFS_TRANS_ABORT;
1234 out_trans_cancel:
1235 xfs_trans_cancel(tp, cancel_flags);
1236 out_release_inode:
1237 /*
1238 * Wait until after the current transaction is aborted to
1239 * release the inode. This prevents recursive transactions
1240 * and deadlocks from xfs_inactive.
1241 */
1242 if (ip)
1243 IRELE(ip);
1244
1245 xfs_qm_dqrele(udqp);
1246 xfs_qm_dqrele(gdqp);
1247 xfs_qm_dqrele(pdqp);
1248
1249 if (unlock_dp_on_error)
1250 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1251 return error;
1252 }
1253
1254 int
1255 xfs_create_tmpfile(
1256 struct xfs_inode *dp,
1257 struct dentry *dentry,
1258 umode_t mode,
1259 struct xfs_inode **ipp)
1260 {
1261 struct xfs_mount *mp = dp->i_mount;
1262 struct xfs_inode *ip = NULL;
1263 struct xfs_trans *tp = NULL;
1264 int error;
1265 uint cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1266 prid_t prid;
1267 struct xfs_dquot *udqp = NULL;
1268 struct xfs_dquot *gdqp = NULL;
1269 struct xfs_dquot *pdqp = NULL;
1270 struct xfs_trans_res *tres;
1271 uint resblks;
1272
1273 if (XFS_FORCED_SHUTDOWN(mp))
1274 return -EIO;
1275
1276 prid = xfs_get_initial_prid(dp);
1277
1278 /*
1279 * Make sure that we have allocated dquot(s) on disk.
1280 */
1281 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1282 xfs_kgid_to_gid(current_fsgid()), prid,
1283 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1284 &udqp, &gdqp, &pdqp);
1285 if (error)
1286 return error;
1287
1288 resblks = XFS_IALLOC_SPACE_RES(mp);
1289 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1290
1291 tres = &M_RES(mp)->tr_create_tmpfile;
1292 error = xfs_trans_reserve(tp, tres, resblks, 0);
1293 if (error == -ENOSPC) {
1294 /* No space at all so try a "no-allocation" reservation */
1295 resblks = 0;
1296 error = xfs_trans_reserve(tp, tres, 0, 0);
1297 }
1298 if (error) {
1299 cancel_flags = 0;
1300 goto out_trans_cancel;
1301 }
1302
1303 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1304 pdqp, resblks, 1, 0);
1305 if (error)
1306 goto out_trans_cancel;
1307
1308 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1309 prid, resblks > 0, &ip, NULL);
1310 if (error) {
1311 if (error == -ENOSPC)
1312 goto out_trans_cancel;
1313 goto out_trans_abort;
1314 }
1315
1316 if (mp->m_flags & XFS_MOUNT_WSYNC)
1317 xfs_trans_set_sync(tp);
1318
1319 /*
1320 * Attach the dquot(s) to the inodes and modify them incore.
1321 * These ids of the inode couldn't have changed since the new
1322 * inode has been locked ever since it was created.
1323 */
1324 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1325
1326 ip->i_d.di_nlink--;
1327 error = xfs_iunlink(tp, ip);
1328 if (error)
1329 goto out_trans_abort;
1330
1331 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1332 if (error)
1333 goto out_release_inode;
1334
1335 xfs_qm_dqrele(udqp);
1336 xfs_qm_dqrele(gdqp);
1337 xfs_qm_dqrele(pdqp);
1338
1339 *ipp = ip;
1340 return 0;
1341
1342 out_trans_abort:
1343 cancel_flags |= XFS_TRANS_ABORT;
1344 out_trans_cancel:
1345 xfs_trans_cancel(tp, cancel_flags);
1346 out_release_inode:
1347 /*
1348 * Wait until after the current transaction is aborted to
1349 * release the inode. This prevents recursive transactions
1350 * and deadlocks from xfs_inactive.
1351 */
1352 if (ip)
1353 IRELE(ip);
1354
1355 xfs_qm_dqrele(udqp);
1356 xfs_qm_dqrele(gdqp);
1357 xfs_qm_dqrele(pdqp);
1358
1359 return error;
1360 }
1361
1362 int
1363 xfs_link(
1364 xfs_inode_t *tdp,
1365 xfs_inode_t *sip,
1366 struct xfs_name *target_name)
1367 {
1368 xfs_mount_t *mp = tdp->i_mount;
1369 xfs_trans_t *tp;
1370 int error;
1371 xfs_bmap_free_t free_list;
1372 xfs_fsblock_t first_block;
1373 int cancel_flags;
1374 int committed;
1375 int resblks;
1376
1377 trace_xfs_link(tdp, target_name);
1378
1379 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1380
1381 if (XFS_FORCED_SHUTDOWN(mp))
1382 return -EIO;
1383
1384 error = xfs_qm_dqattach(sip, 0);
1385 if (error)
1386 goto std_return;
1387
1388 error = xfs_qm_dqattach(tdp, 0);
1389 if (error)
1390 goto std_return;
1391
1392 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1393 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1394 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1395 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1396 if (error == -ENOSPC) {
1397 resblks = 0;
1398 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1399 }
1400 if (error) {
1401 cancel_flags = 0;
1402 goto error_return;
1403 }
1404
1405 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1406
1407 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1408 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1409
1410 /*
1411 * If we are using project inheritance, we only allow hard link
1412 * creation in our tree when the project IDs are the same; else
1413 * the tree quota mechanism could be circumvented.
1414 */
1415 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1416 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1417 error = -EXDEV;
1418 goto error_return;
1419 }
1420
1421 if (!resblks) {
1422 error = xfs_dir_canenter(tp, tdp, target_name);
1423 if (error)
1424 goto error_return;
1425 }
1426
1427 xfs_bmap_init(&free_list, &first_block);
1428
1429 if (sip->i_d.di_nlink == 0) {
1430 error = xfs_iunlink_remove(tp, sip);
1431 if (error)
1432 goto abort_return;
1433 }
1434
1435 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1436 &first_block, &free_list, resblks);
1437 if (error)
1438 goto abort_return;
1439 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1440 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1441
1442 error = xfs_bumplink(tp, sip);
1443 if (error)
1444 goto abort_return;
1445
1446 /*
1447 * If this is a synchronous mount, make sure that the
1448 * link transaction goes to disk before returning to
1449 * the user.
1450 */
1451 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1452 xfs_trans_set_sync(tp);
1453 }
1454
1455 error = xfs_bmap_finish (&tp, &free_list, &committed);
1456 if (error) {
1457 xfs_bmap_cancel(&free_list);
1458 goto abort_return;
1459 }
1460
1461 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1462
1463 abort_return:
1464 cancel_flags |= XFS_TRANS_ABORT;
1465 error_return:
1466 xfs_trans_cancel(tp, cancel_flags);
1467 std_return:
1468 return error;
1469 }
1470
1471 /*
1472 * Free up the underlying blocks past new_size. The new size must be smaller
1473 * than the current size. This routine can be used both for the attribute and
1474 * data fork, and does not modify the inode size, which is left to the caller.
1475 *
1476 * The transaction passed to this routine must have made a permanent log
1477 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1478 * given transaction and start new ones, so make sure everything involved in
1479 * the transaction is tidy before calling here. Some transaction will be
1480 * returned to the caller to be committed. The incoming transaction must
1481 * already include the inode, and both inode locks must be held exclusively.
1482 * The inode must also be "held" within the transaction. On return the inode
1483 * will be "held" within the returned transaction. This routine does NOT
1484 * require any disk space to be reserved for it within the transaction.
1485 *
1486 * If we get an error, we must return with the inode locked and linked into the
1487 * current transaction. This keeps things simple for the higher level code,
1488 * because it always knows that the inode is locked and held in the transaction
1489 * that returns to it whether errors occur or not. We don't mark the inode
1490 * dirty on error so that transactions can be easily aborted if possible.
1491 */
1492 int
1493 xfs_itruncate_extents(
1494 struct xfs_trans **tpp,
1495 struct xfs_inode *ip,
1496 int whichfork,
1497 xfs_fsize_t new_size)
1498 {
1499 struct xfs_mount *mp = ip->i_mount;
1500 struct xfs_trans *tp = *tpp;
1501 struct xfs_trans *ntp;
1502 xfs_bmap_free_t free_list;
1503 xfs_fsblock_t first_block;
1504 xfs_fileoff_t first_unmap_block;
1505 xfs_fileoff_t last_block;
1506 xfs_filblks_t unmap_len;
1507 int committed;
1508 int error = 0;
1509 int done = 0;
1510
1511 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1512 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1513 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1514 ASSERT(new_size <= XFS_ISIZE(ip));
1515 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1516 ASSERT(ip->i_itemp != NULL);
1517 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1518 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1519
1520 trace_xfs_itruncate_extents_start(ip, new_size);
1521
1522 /*
1523 * Since it is possible for space to become allocated beyond
1524 * the end of the file (in a crash where the space is allocated
1525 * but the inode size is not yet updated), simply remove any
1526 * blocks which show up between the new EOF and the maximum
1527 * possible file size. If the first block to be removed is
1528 * beyond the maximum file size (ie it is the same as last_block),
1529 * then there is nothing to do.
1530 */
1531 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1532 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1533 if (first_unmap_block == last_block)
1534 return 0;
1535
1536 ASSERT(first_unmap_block < last_block);
1537 unmap_len = last_block - first_unmap_block + 1;
1538 while (!done) {
1539 xfs_bmap_init(&free_list, &first_block);
1540 error = xfs_bunmapi(tp, ip,
1541 first_unmap_block, unmap_len,
1542 xfs_bmapi_aflag(whichfork),
1543 XFS_ITRUNC_MAX_EXTENTS,
1544 &first_block, &free_list,
1545 &done);
1546 if (error)
1547 goto out_bmap_cancel;
1548
1549 /*
1550 * Duplicate the transaction that has the permanent
1551 * reservation and commit the old transaction.
1552 */
1553 error = xfs_bmap_finish(&tp, &free_list, &committed);
1554 if (committed)
1555 xfs_trans_ijoin(tp, ip, 0);
1556 if (error)
1557 goto out_bmap_cancel;
1558
1559 if (committed) {
1560 /*
1561 * Mark the inode dirty so it will be logged and
1562 * moved forward in the log as part of every commit.
1563 */
1564 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1565 }
1566
1567 ntp = xfs_trans_dup(tp);
1568 error = xfs_trans_commit(tp, 0);
1569 tp = ntp;
1570
1571 xfs_trans_ijoin(tp, ip, 0);
1572
1573 if (error)
1574 goto out;
1575
1576 /*
1577 * Transaction commit worked ok so we can drop the extra ticket
1578 * reference that we gained in xfs_trans_dup()
1579 */
1580 xfs_log_ticket_put(tp->t_ticket);
1581 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1582 if (error)
1583 goto out;
1584 }
1585
1586 /*
1587 * Always re-log the inode so that our permanent transaction can keep
1588 * on rolling it forward in the log.
1589 */
1590 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1591
1592 trace_xfs_itruncate_extents_end(ip, new_size);
1593
1594 out:
1595 *tpp = tp;
1596 return error;
1597 out_bmap_cancel:
1598 /*
1599 * If the bunmapi call encounters an error, return to the caller where
1600 * the transaction can be properly aborted. We just need to make sure
1601 * we're not holding any resources that we were not when we came in.
1602 */
1603 xfs_bmap_cancel(&free_list);
1604 goto out;
1605 }
1606
1607 int
1608 xfs_release(
1609 xfs_inode_t *ip)
1610 {
1611 xfs_mount_t *mp = ip->i_mount;
1612 int error;
1613
1614 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1615 return 0;
1616
1617 /* If this is a read-only mount, don't do this (would generate I/O) */
1618 if (mp->m_flags & XFS_MOUNT_RDONLY)
1619 return 0;
1620
1621 if (!XFS_FORCED_SHUTDOWN(mp)) {
1622 int truncated;
1623
1624 /*
1625 * If we previously truncated this file and removed old data
1626 * in the process, we want to initiate "early" writeout on
1627 * the last close. This is an attempt to combat the notorious
1628 * NULL files problem which is particularly noticeable from a
1629 * truncate down, buffered (re-)write (delalloc), followed by
1630 * a crash. What we are effectively doing here is
1631 * significantly reducing the time window where we'd otherwise
1632 * be exposed to that problem.
1633 */
1634 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1635 if (truncated) {
1636 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1637 if (ip->i_delayed_blks > 0) {
1638 error = filemap_flush(VFS_I(ip)->i_mapping);
1639 if (error)
1640 return error;
1641 }
1642 }
1643 }
1644
1645 if (ip->i_d.di_nlink == 0)
1646 return 0;
1647
1648 if (xfs_can_free_eofblocks(ip, false)) {
1649
1650 /*
1651 * If we can't get the iolock just skip truncating the blocks
1652 * past EOF because we could deadlock with the mmap_sem
1653 * otherwise. We'll get another chance to drop them once the
1654 * last reference to the inode is dropped, so we'll never leak
1655 * blocks permanently.
1656 *
1657 * Further, check if the inode is being opened, written and
1658 * closed frequently and we have delayed allocation blocks
1659 * outstanding (e.g. streaming writes from the NFS server),
1660 * truncating the blocks past EOF will cause fragmentation to
1661 * occur.
1662 *
1663 * In this case don't do the truncation, either, but we have to
1664 * be careful how we detect this case. Blocks beyond EOF show
1665 * up as i_delayed_blks even when the inode is clean, so we
1666 * need to truncate them away first before checking for a dirty
1667 * release. Hence on the first dirty close we will still remove
1668 * the speculative allocation, but after that we will leave it
1669 * in place.
1670 */
1671 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1672 return 0;
1673
1674 error = xfs_free_eofblocks(mp, ip, true);
1675 if (error && error != -EAGAIN)
1676 return error;
1677
1678 /* delalloc blocks after truncation means it really is dirty */
1679 if (ip->i_delayed_blks)
1680 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1681 }
1682 return 0;
1683 }
1684
1685 /*
1686 * xfs_inactive_truncate
1687 *
1688 * Called to perform a truncate when an inode becomes unlinked.
1689 */
1690 STATIC int
1691 xfs_inactive_truncate(
1692 struct xfs_inode *ip)
1693 {
1694 struct xfs_mount *mp = ip->i_mount;
1695 struct xfs_trans *tp;
1696 int error;
1697
1698 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1699 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1700 if (error) {
1701 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1702 xfs_trans_cancel(tp, 0);
1703 return error;
1704 }
1705
1706 xfs_ilock(ip, XFS_ILOCK_EXCL);
1707 xfs_trans_ijoin(tp, ip, 0);
1708
1709 /*
1710 * Log the inode size first to prevent stale data exposure in the event
1711 * of a system crash before the truncate completes. See the related
1712 * comment in xfs_setattr_size() for details.
1713 */
1714 ip->i_d.di_size = 0;
1715 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1716
1717 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1718 if (error)
1719 goto error_trans_cancel;
1720
1721 ASSERT(ip->i_d.di_nextents == 0);
1722
1723 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1724 if (error)
1725 goto error_unlock;
1726
1727 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1728 return 0;
1729
1730 error_trans_cancel:
1731 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1732 error_unlock:
1733 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1734 return error;
1735 }
1736
1737 /*
1738 * xfs_inactive_ifree()
1739 *
1740 * Perform the inode free when an inode is unlinked.
1741 */
1742 STATIC int
1743 xfs_inactive_ifree(
1744 struct xfs_inode *ip)
1745 {
1746 xfs_bmap_free_t free_list;
1747 xfs_fsblock_t first_block;
1748 int committed;
1749 struct xfs_mount *mp = ip->i_mount;
1750 struct xfs_trans *tp;
1751 int error;
1752
1753 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1754
1755 /*
1756 * The ifree transaction might need to allocate blocks for record
1757 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1758 * allow ifree to dip into the reserved block pool if necessary.
1759 *
1760 * Freeing large sets of inodes generally means freeing inode chunks,
1761 * directory and file data blocks, so this should be relatively safe.
1762 * Only under severe circumstances should it be possible to free enough
1763 * inodes to exhaust the reserve block pool via finobt expansion while
1764 * at the same time not creating free space in the filesystem.
1765 *
1766 * Send a warning if the reservation does happen to fail, as the inode
1767 * now remains allocated and sits on the unlinked list until the fs is
1768 * repaired.
1769 */
1770 tp->t_flags |= XFS_TRANS_RESERVE;
1771 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1772 XFS_IFREE_SPACE_RES(mp), 0);
1773 if (error) {
1774 if (error == -ENOSPC) {
1775 xfs_warn_ratelimited(mp,
1776 "Failed to remove inode(s) from unlinked list. "
1777 "Please free space, unmount and run xfs_repair.");
1778 } else {
1779 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1780 }
1781 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1782 return error;
1783 }
1784
1785 xfs_ilock(ip, XFS_ILOCK_EXCL);
1786 xfs_trans_ijoin(tp, ip, 0);
1787
1788 xfs_bmap_init(&free_list, &first_block);
1789 error = xfs_ifree(tp, ip, &free_list);
1790 if (error) {
1791 /*
1792 * If we fail to free the inode, shut down. The cancel
1793 * might do that, we need to make sure. Otherwise the
1794 * inode might be lost for a long time or forever.
1795 */
1796 if (!XFS_FORCED_SHUTDOWN(mp)) {
1797 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1798 __func__, error);
1799 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1800 }
1801 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1802 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1803 return error;
1804 }
1805
1806 /*
1807 * Credit the quota account(s). The inode is gone.
1808 */
1809 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1810
1811 /*
1812 * Just ignore errors at this point. There is nothing we can
1813 * do except to try to keep going. Make sure it's not a silent
1814 * error.
1815 */
1816 error = xfs_bmap_finish(&tp, &free_list, &committed);
1817 if (error)
1818 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1819 __func__, error);
1820 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1821 if (error)
1822 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1823 __func__, error);
1824
1825 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1826 return 0;
1827 }
1828
1829 /*
1830 * xfs_inactive
1831 *
1832 * This is called when the vnode reference count for the vnode
1833 * goes to zero. If the file has been unlinked, then it must
1834 * now be truncated. Also, we clear all of the read-ahead state
1835 * kept for the inode here since the file is now closed.
1836 */
1837 void
1838 xfs_inactive(
1839 xfs_inode_t *ip)
1840 {
1841 struct xfs_mount *mp;
1842 int error;
1843 int truncate = 0;
1844
1845 /*
1846 * If the inode is already free, then there can be nothing
1847 * to clean up here.
1848 */
1849 if (ip->i_d.di_mode == 0) {
1850 ASSERT(ip->i_df.if_real_bytes == 0);
1851 ASSERT(ip->i_df.if_broot_bytes == 0);
1852 return;
1853 }
1854
1855 mp = ip->i_mount;
1856
1857 /* If this is a read-only mount, don't do this (would generate I/O) */
1858 if (mp->m_flags & XFS_MOUNT_RDONLY)
1859 return;
1860
1861 if (ip->i_d.di_nlink != 0) {
1862 /*
1863 * force is true because we are evicting an inode from the
1864 * cache. Post-eof blocks must be freed, lest we end up with
1865 * broken free space accounting.
1866 */
1867 if (xfs_can_free_eofblocks(ip, true))
1868 xfs_free_eofblocks(mp, ip, false);
1869
1870 return;
1871 }
1872
1873 if (S_ISREG(ip->i_d.di_mode) &&
1874 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1875 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1876 truncate = 1;
1877
1878 error = xfs_qm_dqattach(ip, 0);
1879 if (error)
1880 return;
1881
1882 if (S_ISLNK(ip->i_d.di_mode))
1883 error = xfs_inactive_symlink(ip);
1884 else if (truncate)
1885 error = xfs_inactive_truncate(ip);
1886 if (error)
1887 return;
1888
1889 /*
1890 * If there are attributes associated with the file then blow them away
1891 * now. The code calls a routine that recursively deconstructs the
1892 * attribute fork. We need to just commit the current transaction
1893 * because we can't use it for xfs_attr_inactive().
1894 */
1895 if (ip->i_d.di_anextents > 0) {
1896 ASSERT(ip->i_d.di_forkoff != 0);
1897
1898 error = xfs_attr_inactive(ip);
1899 if (error)
1900 return;
1901 }
1902
1903 if (ip->i_afp)
1904 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1905
1906 ASSERT(ip->i_d.di_anextents == 0);
1907
1908 /*
1909 * Free the inode.
1910 */
1911 error = xfs_inactive_ifree(ip);
1912 if (error)
1913 return;
1914
1915 /*
1916 * Release the dquots held by inode, if any.
1917 */
1918 xfs_qm_dqdetach(ip);
1919 }
1920
1921 /*
1922 * This is called when the inode's link count goes to 0.
1923 * We place the on-disk inode on a list in the AGI. It
1924 * will be pulled from this list when the inode is freed.
1925 */
1926 int
1927 xfs_iunlink(
1928 xfs_trans_t *tp,
1929 xfs_inode_t *ip)
1930 {
1931 xfs_mount_t *mp;
1932 xfs_agi_t *agi;
1933 xfs_dinode_t *dip;
1934 xfs_buf_t *agibp;
1935 xfs_buf_t *ibp;
1936 xfs_agino_t agino;
1937 short bucket_index;
1938 int offset;
1939 int error;
1940
1941 ASSERT(ip->i_d.di_nlink == 0);
1942 ASSERT(ip->i_d.di_mode != 0);
1943
1944 mp = tp->t_mountp;
1945
1946 /*
1947 * Get the agi buffer first. It ensures lock ordering
1948 * on the list.
1949 */
1950 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1951 if (error)
1952 return error;
1953 agi = XFS_BUF_TO_AGI(agibp);
1954
1955 /*
1956 * Get the index into the agi hash table for the
1957 * list this inode will go on.
1958 */
1959 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1960 ASSERT(agino != 0);
1961 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1962 ASSERT(agi->agi_unlinked[bucket_index]);
1963 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1964
1965 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1966 /*
1967 * There is already another inode in the bucket we need
1968 * to add ourselves to. Add us at the front of the list.
1969 * Here we put the head pointer into our next pointer,
1970 * and then we fall through to point the head at us.
1971 */
1972 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1973 0, 0);
1974 if (error)
1975 return error;
1976
1977 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1978 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1979 offset = ip->i_imap.im_boffset +
1980 offsetof(xfs_dinode_t, di_next_unlinked);
1981
1982 /* need to recalc the inode CRC if appropriate */
1983 xfs_dinode_calc_crc(mp, dip);
1984
1985 xfs_trans_inode_buf(tp, ibp);
1986 xfs_trans_log_buf(tp, ibp, offset,
1987 (offset + sizeof(xfs_agino_t) - 1));
1988 xfs_inobp_check(mp, ibp);
1989 }
1990
1991 /*
1992 * Point the bucket head pointer at the inode being inserted.
1993 */
1994 ASSERT(agino != 0);
1995 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1996 offset = offsetof(xfs_agi_t, agi_unlinked) +
1997 (sizeof(xfs_agino_t) * bucket_index);
1998 xfs_trans_log_buf(tp, agibp, offset,
1999 (offset + sizeof(xfs_agino_t) - 1));
2000 return 0;
2001 }
2002
2003 /*
2004 * Pull the on-disk inode from the AGI unlinked list.
2005 */
2006 STATIC int
2007 xfs_iunlink_remove(
2008 xfs_trans_t *tp,
2009 xfs_inode_t *ip)
2010 {
2011 xfs_ino_t next_ino;
2012 xfs_mount_t *mp;
2013 xfs_agi_t *agi;
2014 xfs_dinode_t *dip;
2015 xfs_buf_t *agibp;
2016 xfs_buf_t *ibp;
2017 xfs_agnumber_t agno;
2018 xfs_agino_t agino;
2019 xfs_agino_t next_agino;
2020 xfs_buf_t *last_ibp;
2021 xfs_dinode_t *last_dip = NULL;
2022 short bucket_index;
2023 int offset, last_offset = 0;
2024 int error;
2025
2026 mp = tp->t_mountp;
2027 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2028
2029 /*
2030 * Get the agi buffer first. It ensures lock ordering
2031 * on the list.
2032 */
2033 error = xfs_read_agi(mp, tp, agno, &agibp);
2034 if (error)
2035 return error;
2036
2037 agi = XFS_BUF_TO_AGI(agibp);
2038
2039 /*
2040 * Get the index into the agi hash table for the
2041 * list this inode will go on.
2042 */
2043 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2044 ASSERT(agino != 0);
2045 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2046 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2047 ASSERT(agi->agi_unlinked[bucket_index]);
2048
2049 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2050 /*
2051 * We're at the head of the list. Get the inode's on-disk
2052 * buffer to see if there is anyone after us on the list.
2053 * Only modify our next pointer if it is not already NULLAGINO.
2054 * This saves us the overhead of dealing with the buffer when
2055 * there is no need to change it.
2056 */
2057 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2058 0, 0);
2059 if (error) {
2060 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2061 __func__, error);
2062 return error;
2063 }
2064 next_agino = be32_to_cpu(dip->di_next_unlinked);
2065 ASSERT(next_agino != 0);
2066 if (next_agino != NULLAGINO) {
2067 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2068 offset = ip->i_imap.im_boffset +
2069 offsetof(xfs_dinode_t, di_next_unlinked);
2070
2071 /* need to recalc the inode CRC if appropriate */
2072 xfs_dinode_calc_crc(mp, dip);
2073
2074 xfs_trans_inode_buf(tp, ibp);
2075 xfs_trans_log_buf(tp, ibp, offset,
2076 (offset + sizeof(xfs_agino_t) - 1));
2077 xfs_inobp_check(mp, ibp);
2078 } else {
2079 xfs_trans_brelse(tp, ibp);
2080 }
2081 /*
2082 * Point the bucket head pointer at the next inode.
2083 */
2084 ASSERT(next_agino != 0);
2085 ASSERT(next_agino != agino);
2086 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2087 offset = offsetof(xfs_agi_t, agi_unlinked) +
2088 (sizeof(xfs_agino_t) * bucket_index);
2089 xfs_trans_log_buf(tp, agibp, offset,
2090 (offset + sizeof(xfs_agino_t) - 1));
2091 } else {
2092 /*
2093 * We need to search the list for the inode being freed.
2094 */
2095 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2096 last_ibp = NULL;
2097 while (next_agino != agino) {
2098 struct xfs_imap imap;
2099
2100 if (last_ibp)
2101 xfs_trans_brelse(tp, last_ibp);
2102
2103 imap.im_blkno = 0;
2104 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2105
2106 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2107 if (error) {
2108 xfs_warn(mp,
2109 "%s: xfs_imap returned error %d.",
2110 __func__, error);
2111 return error;
2112 }
2113
2114 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2115 &last_ibp, 0, 0);
2116 if (error) {
2117 xfs_warn(mp,
2118 "%s: xfs_imap_to_bp returned error %d.",
2119 __func__, error);
2120 return error;
2121 }
2122
2123 last_offset = imap.im_boffset;
2124 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2125 ASSERT(next_agino != NULLAGINO);
2126 ASSERT(next_agino != 0);
2127 }
2128
2129 /*
2130 * Now last_ibp points to the buffer previous to us on the
2131 * unlinked list. Pull us from the list.
2132 */
2133 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2134 0, 0);
2135 if (error) {
2136 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2137 __func__, error);
2138 return error;
2139 }
2140 next_agino = be32_to_cpu(dip->di_next_unlinked);
2141 ASSERT(next_agino != 0);
2142 ASSERT(next_agino != agino);
2143 if (next_agino != NULLAGINO) {
2144 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2145 offset = ip->i_imap.im_boffset +
2146 offsetof(xfs_dinode_t, di_next_unlinked);
2147
2148 /* need to recalc the inode CRC if appropriate */
2149 xfs_dinode_calc_crc(mp, dip);
2150
2151 xfs_trans_inode_buf(tp, ibp);
2152 xfs_trans_log_buf(tp, ibp, offset,
2153 (offset + sizeof(xfs_agino_t) - 1));
2154 xfs_inobp_check(mp, ibp);
2155 } else {
2156 xfs_trans_brelse(tp, ibp);
2157 }
2158 /*
2159 * Point the previous inode on the list to the next inode.
2160 */
2161 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2162 ASSERT(next_agino != 0);
2163 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2164
2165 /* need to recalc the inode CRC if appropriate */
2166 xfs_dinode_calc_crc(mp, last_dip);
2167
2168 xfs_trans_inode_buf(tp, last_ibp);
2169 xfs_trans_log_buf(tp, last_ibp, offset,
2170 (offset + sizeof(xfs_agino_t) - 1));
2171 xfs_inobp_check(mp, last_ibp);
2172 }
2173 return 0;
2174 }
2175
2176 /*
2177 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2178 * inodes that are in memory - they all must be marked stale and attached to
2179 * the cluster buffer.
2180 */
2181 STATIC int
2182 xfs_ifree_cluster(
2183 xfs_inode_t *free_ip,
2184 xfs_trans_t *tp,
2185 xfs_ino_t inum)
2186 {
2187 xfs_mount_t *mp = free_ip->i_mount;
2188 int blks_per_cluster;
2189 int inodes_per_cluster;
2190 int nbufs;
2191 int i, j;
2192 xfs_daddr_t blkno;
2193 xfs_buf_t *bp;
2194 xfs_inode_t *ip;
2195 xfs_inode_log_item_t *iip;
2196 xfs_log_item_t *lip;
2197 struct xfs_perag *pag;
2198
2199 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2200 blks_per_cluster = xfs_icluster_size_fsb(mp);
2201 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2202 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2203
2204 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2205 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2206 XFS_INO_TO_AGBNO(mp, inum));
2207
2208 /*
2209 * We obtain and lock the backing buffer first in the process
2210 * here, as we have to ensure that any dirty inode that we
2211 * can't get the flush lock on is attached to the buffer.
2212 * If we scan the in-memory inodes first, then buffer IO can
2213 * complete before we get a lock on it, and hence we may fail
2214 * to mark all the active inodes on the buffer stale.
2215 */
2216 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2217 mp->m_bsize * blks_per_cluster,
2218 XBF_UNMAPPED);
2219
2220 if (!bp)
2221 return -ENOMEM;
2222
2223 /*
2224 * This buffer may not have been correctly initialised as we
2225 * didn't read it from disk. That's not important because we are
2226 * only using to mark the buffer as stale in the log, and to
2227 * attach stale cached inodes on it. That means it will never be
2228 * dispatched for IO. If it is, we want to know about it, and we
2229 * want it to fail. We can acheive this by adding a write
2230 * verifier to the buffer.
2231 */
2232 bp->b_ops = &xfs_inode_buf_ops;
2233
2234 /*
2235 * Walk the inodes already attached to the buffer and mark them
2236 * stale. These will all have the flush locks held, so an
2237 * in-memory inode walk can't lock them. By marking them all
2238 * stale first, we will not attempt to lock them in the loop
2239 * below as the XFS_ISTALE flag will be set.
2240 */
2241 lip = bp->b_fspriv;
2242 while (lip) {
2243 if (lip->li_type == XFS_LI_INODE) {
2244 iip = (xfs_inode_log_item_t *)lip;
2245 ASSERT(iip->ili_logged == 1);
2246 lip->li_cb = xfs_istale_done;
2247 xfs_trans_ail_copy_lsn(mp->m_ail,
2248 &iip->ili_flush_lsn,
2249 &iip->ili_item.li_lsn);
2250 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2251 }
2252 lip = lip->li_bio_list;
2253 }
2254
2255
2256 /*
2257 * For each inode in memory attempt to add it to the inode
2258 * buffer and set it up for being staled on buffer IO
2259 * completion. This is safe as we've locked out tail pushing
2260 * and flushing by locking the buffer.
2261 *
2262 * We have already marked every inode that was part of a
2263 * transaction stale above, which means there is no point in
2264 * even trying to lock them.
2265 */
2266 for (i = 0; i < inodes_per_cluster; i++) {
2267 retry:
2268 rcu_read_lock();
2269 ip = radix_tree_lookup(&pag->pag_ici_root,
2270 XFS_INO_TO_AGINO(mp, (inum + i)));
2271
2272 /* Inode not in memory, nothing to do */
2273 if (!ip) {
2274 rcu_read_unlock();
2275 continue;
2276 }
2277
2278 /*
2279 * because this is an RCU protected lookup, we could
2280 * find a recently freed or even reallocated inode
2281 * during the lookup. We need to check under the
2282 * i_flags_lock for a valid inode here. Skip it if it
2283 * is not valid, the wrong inode or stale.
2284 */
2285 spin_lock(&ip->i_flags_lock);
2286 if (ip->i_ino != inum + i ||
2287 __xfs_iflags_test(ip, XFS_ISTALE)) {
2288 spin_unlock(&ip->i_flags_lock);
2289 rcu_read_unlock();
2290 continue;
2291 }
2292 spin_unlock(&ip->i_flags_lock);
2293
2294 /*
2295 * Don't try to lock/unlock the current inode, but we
2296 * _cannot_ skip the other inodes that we did not find
2297 * in the list attached to the buffer and are not
2298 * already marked stale. If we can't lock it, back off
2299 * and retry.
2300 */
2301 if (ip != free_ip &&
2302 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2303 rcu_read_unlock();
2304 delay(1);
2305 goto retry;
2306 }
2307 rcu_read_unlock();
2308
2309 xfs_iflock(ip);
2310 xfs_iflags_set(ip, XFS_ISTALE);
2311
2312 /*
2313 * we don't need to attach clean inodes or those only
2314 * with unlogged changes (which we throw away, anyway).
2315 */
2316 iip = ip->i_itemp;
2317 if (!iip || xfs_inode_clean(ip)) {
2318 ASSERT(ip != free_ip);
2319 xfs_ifunlock(ip);
2320 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2321 continue;
2322 }
2323
2324 iip->ili_last_fields = iip->ili_fields;
2325 iip->ili_fields = 0;
2326 iip->ili_logged = 1;
2327 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2328 &iip->ili_item.li_lsn);
2329
2330 xfs_buf_attach_iodone(bp, xfs_istale_done,
2331 &iip->ili_item);
2332
2333 if (ip != free_ip)
2334 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2335 }
2336
2337 xfs_trans_stale_inode_buf(tp, bp);
2338 xfs_trans_binval(tp, bp);
2339 }
2340
2341 xfs_perag_put(pag);
2342 return 0;
2343 }
2344
2345 /*
2346 * This is called to return an inode to the inode free list.
2347 * The inode should already be truncated to 0 length and have
2348 * no pages associated with it. This routine also assumes that
2349 * the inode is already a part of the transaction.
2350 *
2351 * The on-disk copy of the inode will have been added to the list
2352 * of unlinked inodes in the AGI. We need to remove the inode from
2353 * that list atomically with respect to freeing it here.
2354 */
2355 int
2356 xfs_ifree(
2357 xfs_trans_t *tp,
2358 xfs_inode_t *ip,
2359 xfs_bmap_free_t *flist)
2360 {
2361 int error;
2362 int delete;
2363 xfs_ino_t first_ino;
2364
2365 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2366 ASSERT(ip->i_d.di_nlink == 0);
2367 ASSERT(ip->i_d.di_nextents == 0);
2368 ASSERT(ip->i_d.di_anextents == 0);
2369 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2370 ASSERT(ip->i_d.di_nblocks == 0);
2371
2372 /*
2373 * Pull the on-disk inode from the AGI unlinked list.
2374 */
2375 error = xfs_iunlink_remove(tp, ip);
2376 if (error)
2377 return error;
2378
2379 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2380 if (error)
2381 return error;
2382
2383 ip->i_d.di_mode = 0; /* mark incore inode as free */
2384 ip->i_d.di_flags = 0;
2385 ip->i_d.di_dmevmask = 0;
2386 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2387 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2388 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2389 /*
2390 * Bump the generation count so no one will be confused
2391 * by reincarnations of this inode.
2392 */
2393 ip->i_d.di_gen++;
2394 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2395
2396 if (delete)
2397 error = xfs_ifree_cluster(ip, tp, first_ino);
2398
2399 return error;
2400 }
2401
2402 /*
2403 * This is called to unpin an inode. The caller must have the inode locked
2404 * in at least shared mode so that the buffer cannot be subsequently pinned
2405 * once someone is waiting for it to be unpinned.
2406 */
2407 static void
2408 xfs_iunpin(
2409 struct xfs_inode *ip)
2410 {
2411 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2412
2413 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2414
2415 /* Give the log a push to start the unpinning I/O */
2416 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2417
2418 }
2419
2420 static void
2421 __xfs_iunpin_wait(
2422 struct xfs_inode *ip)
2423 {
2424 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2425 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2426
2427 xfs_iunpin(ip);
2428
2429 do {
2430 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2431 if (xfs_ipincount(ip))
2432 io_schedule();
2433 } while (xfs_ipincount(ip));
2434 finish_wait(wq, &wait.wait);
2435 }
2436
2437 void
2438 xfs_iunpin_wait(
2439 struct xfs_inode *ip)
2440 {
2441 if (xfs_ipincount(ip))
2442 __xfs_iunpin_wait(ip);
2443 }
2444
2445 /*
2446 * Removing an inode from the namespace involves removing the directory entry
2447 * and dropping the link count on the inode. Removing the directory entry can
2448 * result in locking an AGF (directory blocks were freed) and removing a link
2449 * count can result in placing the inode on an unlinked list which results in
2450 * locking an AGI.
2451 *
2452 * The big problem here is that we have an ordering constraint on AGF and AGI
2453 * locking - inode allocation locks the AGI, then can allocate a new extent for
2454 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2455 * removes the inode from the unlinked list, requiring that we lock the AGI
2456 * first, and then freeing the inode can result in an inode chunk being freed
2457 * and hence freeing disk space requiring that we lock an AGF.
2458 *
2459 * Hence the ordering that is imposed by other parts of the code is AGI before
2460 * AGF. This means we cannot remove the directory entry before we drop the inode
2461 * reference count and put it on the unlinked list as this results in a lock
2462 * order of AGF then AGI, and this can deadlock against inode allocation and
2463 * freeing. Therefore we must drop the link counts before we remove the
2464 * directory entry.
2465 *
2466 * This is still safe from a transactional point of view - it is not until we
2467 * get to xfs_bmap_finish() that we have the possibility of multiple
2468 * transactions in this operation. Hence as long as we remove the directory
2469 * entry and drop the link count in the first transaction of the remove
2470 * operation, there are no transactional constraints on the ordering here.
2471 */
2472 int
2473 xfs_remove(
2474 xfs_inode_t *dp,
2475 struct xfs_name *name,
2476 xfs_inode_t *ip)
2477 {
2478 xfs_mount_t *mp = dp->i_mount;
2479 xfs_trans_t *tp = NULL;
2480 int is_dir = S_ISDIR(ip->i_d.di_mode);
2481 int error = 0;
2482 xfs_bmap_free_t free_list;
2483 xfs_fsblock_t first_block;
2484 int cancel_flags;
2485 int committed;
2486 uint resblks;
2487
2488 trace_xfs_remove(dp, name);
2489
2490 if (XFS_FORCED_SHUTDOWN(mp))
2491 return -EIO;
2492
2493 error = xfs_qm_dqattach(dp, 0);
2494 if (error)
2495 goto std_return;
2496
2497 error = xfs_qm_dqattach(ip, 0);
2498 if (error)
2499 goto std_return;
2500
2501 if (is_dir)
2502 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2503 else
2504 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2505 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2506
2507 /*
2508 * We try to get the real space reservation first,
2509 * allowing for directory btree deletion(s) implying
2510 * possible bmap insert(s). If we can't get the space
2511 * reservation then we use 0 instead, and avoid the bmap
2512 * btree insert(s) in the directory code by, if the bmap
2513 * insert tries to happen, instead trimming the LAST
2514 * block from the directory.
2515 */
2516 resblks = XFS_REMOVE_SPACE_RES(mp);
2517 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2518 if (error == -ENOSPC) {
2519 resblks = 0;
2520 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2521 }
2522 if (error) {
2523 ASSERT(error != -ENOSPC);
2524 cancel_flags = 0;
2525 goto out_trans_cancel;
2526 }
2527
2528 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2529
2530 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2531 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2532
2533 /*
2534 * If we're removing a directory perform some additional validation.
2535 */
2536 cancel_flags |= XFS_TRANS_ABORT;
2537 if (is_dir) {
2538 ASSERT(ip->i_d.di_nlink >= 2);
2539 if (ip->i_d.di_nlink != 2) {
2540 error = -ENOTEMPTY;
2541 goto out_trans_cancel;
2542 }
2543 if (!xfs_dir_isempty(ip)) {
2544 error = -ENOTEMPTY;
2545 goto out_trans_cancel;
2546 }
2547
2548 /* Drop the link from ip's "..". */
2549 error = xfs_droplink(tp, dp);
2550 if (error)
2551 goto out_trans_cancel;
2552
2553 /* Drop the "." link from ip to self. */
2554 error = xfs_droplink(tp, ip);
2555 if (error)
2556 goto out_trans_cancel;
2557 } else {
2558 /*
2559 * When removing a non-directory we need to log the parent
2560 * inode here. For a directory this is done implicitly
2561 * by the xfs_droplink call for the ".." entry.
2562 */
2563 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2564 }
2565 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2566
2567 /* Drop the link from dp to ip. */
2568 error = xfs_droplink(tp, ip);
2569 if (error)
2570 goto out_trans_cancel;
2571
2572 xfs_bmap_init(&free_list, &first_block);
2573 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2574 &first_block, &free_list, resblks);
2575 if (error) {
2576 ASSERT(error != -ENOENT);
2577 goto out_bmap_cancel;
2578 }
2579
2580 /*
2581 * If this is a synchronous mount, make sure that the
2582 * remove transaction goes to disk before returning to
2583 * the user.
2584 */
2585 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2586 xfs_trans_set_sync(tp);
2587
2588 error = xfs_bmap_finish(&tp, &free_list, &committed);
2589 if (error)
2590 goto out_bmap_cancel;
2591
2592 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2593 if (error)
2594 goto std_return;
2595
2596 if (is_dir && xfs_inode_is_filestream(ip))
2597 xfs_filestream_deassociate(ip);
2598
2599 return 0;
2600
2601 out_bmap_cancel:
2602 xfs_bmap_cancel(&free_list);
2603 out_trans_cancel:
2604 xfs_trans_cancel(tp, cancel_flags);
2605 std_return:
2606 return error;
2607 }
2608
2609 /*
2610 * Enter all inodes for a rename transaction into a sorted array.
2611 */
2612 STATIC void
2613 xfs_sort_for_rename(
2614 xfs_inode_t *dp1, /* in: old (source) directory inode */
2615 xfs_inode_t *dp2, /* in: new (target) directory inode */
2616 xfs_inode_t *ip1, /* in: inode of old entry */
2617 xfs_inode_t *ip2, /* in: inode of new entry, if it
2618 already exists, NULL otherwise. */
2619 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */
2620 int *num_inodes) /* out: number of inodes in array */
2621 {
2622 xfs_inode_t *temp;
2623 int i, j;
2624
2625 /*
2626 * i_tab contains a list of pointers to inodes. We initialize
2627 * the table here & we'll sort it. We will then use it to
2628 * order the acquisition of the inode locks.
2629 *
2630 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2631 */
2632 i_tab[0] = dp1;
2633 i_tab[1] = dp2;
2634 i_tab[2] = ip1;
2635 if (ip2) {
2636 *num_inodes = 4;
2637 i_tab[3] = ip2;
2638 } else {
2639 *num_inodes = 3;
2640 i_tab[3] = NULL;
2641 }
2642
2643 /*
2644 * Sort the elements via bubble sort. (Remember, there are at
2645 * most 4 elements to sort, so this is adequate.)
2646 */
2647 for (i = 0; i < *num_inodes; i++) {
2648 for (j = 1; j < *num_inodes; j++) {
2649 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2650 temp = i_tab[j];
2651 i_tab[j] = i_tab[j-1];
2652 i_tab[j-1] = temp;
2653 }
2654 }
2655 }
2656 }
2657
2658 /*
2659 * xfs_rename
2660 */
2661 int
2662 xfs_rename(
2663 xfs_inode_t *src_dp,
2664 struct xfs_name *src_name,
2665 xfs_inode_t *src_ip,
2666 xfs_inode_t *target_dp,
2667 struct xfs_name *target_name,
2668 xfs_inode_t *target_ip)
2669 {
2670 xfs_trans_t *tp = NULL;
2671 xfs_mount_t *mp = src_dp->i_mount;
2672 int new_parent; /* moving to a new dir */
2673 int src_is_directory; /* src_name is a directory */
2674 int error;
2675 xfs_bmap_free_t free_list;
2676 xfs_fsblock_t first_block;
2677 int cancel_flags;
2678 int committed;
2679 xfs_inode_t *inodes[4];
2680 int spaceres;
2681 int num_inodes;
2682
2683 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2684
2685 new_parent = (src_dp != target_dp);
2686 src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2687
2688 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2689 inodes, &num_inodes);
2690
2691 xfs_bmap_init(&free_list, &first_block);
2692 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2693 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2694 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2695 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2696 if (error == -ENOSPC) {
2697 spaceres = 0;
2698 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2699 }
2700 if (error) {
2701 xfs_trans_cancel(tp, 0);
2702 goto std_return;
2703 }
2704
2705 /*
2706 * Attach the dquots to the inodes
2707 */
2708 error = xfs_qm_vop_rename_dqattach(inodes);
2709 if (error) {
2710 xfs_trans_cancel(tp, cancel_flags);
2711 goto std_return;
2712 }
2713
2714 /*
2715 * Lock all the participating inodes. Depending upon whether
2716 * the target_name exists in the target directory, and
2717 * whether the target directory is the same as the source
2718 * directory, we can lock from 2 to 4 inodes.
2719 */
2720 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2721
2722 /*
2723 * Join all the inodes to the transaction. From this point on,
2724 * we can rely on either trans_commit or trans_cancel to unlock
2725 * them.
2726 */
2727 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2728 if (new_parent)
2729 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2730 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2731 if (target_ip)
2732 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2733
2734 /*
2735 * If we are using project inheritance, we only allow renames
2736 * into our tree when the project IDs are the same; else the
2737 * tree quota mechanism would be circumvented.
2738 */
2739 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2740 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2741 error = -EXDEV;
2742 goto error_return;
2743 }
2744
2745 /*
2746 * Set up the target.
2747 */
2748 if (target_ip == NULL) {
2749 /*
2750 * If there's no space reservation, check the entry will
2751 * fit before actually inserting it.
2752 */
2753 if (!spaceres) {
2754 error = xfs_dir_canenter(tp, target_dp, target_name);
2755 if (error)
2756 goto error_return;
2757 }
2758 /*
2759 * If target does not exist and the rename crosses
2760 * directories, adjust the target directory link count
2761 * to account for the ".." reference from the new entry.
2762 */
2763 error = xfs_dir_createname(tp, target_dp, target_name,
2764 src_ip->i_ino, &first_block,
2765 &free_list, spaceres);
2766 if (error == -ENOSPC)
2767 goto error_return;
2768 if (error)
2769 goto abort_return;
2770
2771 xfs_trans_ichgtime(tp, target_dp,
2772 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2773
2774 if (new_parent && src_is_directory) {
2775 error = xfs_bumplink(tp, target_dp);
2776 if (error)
2777 goto abort_return;
2778 }
2779 } else { /* target_ip != NULL */
2780 /*
2781 * If target exists and it's a directory, check that both
2782 * target and source are directories and that target can be
2783 * destroyed, or that neither is a directory.
2784 */
2785 if (S_ISDIR(target_ip->i_d.di_mode)) {
2786 /*
2787 * Make sure target dir is empty.
2788 */
2789 if (!(xfs_dir_isempty(target_ip)) ||
2790 (target_ip->i_d.di_nlink > 2)) {
2791 error = -EEXIST;
2792 goto error_return;
2793 }
2794 }
2795
2796 /*
2797 * Link the source inode under the target name.
2798 * If the source inode is a directory and we are moving
2799 * it across directories, its ".." entry will be
2800 * inconsistent until we replace that down below.
2801 *
2802 * In case there is already an entry with the same
2803 * name at the destination directory, remove it first.
2804 */
2805 error = xfs_dir_replace(tp, target_dp, target_name,
2806 src_ip->i_ino,
2807 &first_block, &free_list, spaceres);
2808 if (error)
2809 goto abort_return;
2810
2811 xfs_trans_ichgtime(tp, target_dp,
2812 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2813
2814 /*
2815 * Decrement the link count on the target since the target
2816 * dir no longer points to it.
2817 */
2818 error = xfs_droplink(tp, target_ip);
2819 if (error)
2820 goto abort_return;
2821
2822 if (src_is_directory) {
2823 /*
2824 * Drop the link from the old "." entry.
2825 */
2826 error = xfs_droplink(tp, target_ip);
2827 if (error)
2828 goto abort_return;
2829 }
2830 } /* target_ip != NULL */
2831
2832 /*
2833 * Remove the source.
2834 */
2835 if (new_parent && src_is_directory) {
2836 /*
2837 * Rewrite the ".." entry to point to the new
2838 * directory.
2839 */
2840 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2841 target_dp->i_ino,
2842 &first_block, &free_list, spaceres);
2843 ASSERT(error != -EEXIST);
2844 if (error)
2845 goto abort_return;
2846 }
2847
2848 /*
2849 * We always want to hit the ctime on the source inode.
2850 *
2851 * This isn't strictly required by the standards since the source
2852 * inode isn't really being changed, but old unix file systems did
2853 * it and some incremental backup programs won't work without it.
2854 */
2855 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2856 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2857
2858 /*
2859 * Adjust the link count on src_dp. This is necessary when
2860 * renaming a directory, either within one parent when
2861 * the target existed, or across two parent directories.
2862 */
2863 if (src_is_directory && (new_parent || target_ip != NULL)) {
2864
2865 /*
2866 * Decrement link count on src_directory since the
2867 * entry that's moved no longer points to it.
2868 */
2869 error = xfs_droplink(tp, src_dp);
2870 if (error)
2871 goto abort_return;
2872 }
2873
2874 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2875 &first_block, &free_list, spaceres);
2876 if (error)
2877 goto abort_return;
2878
2879 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2880 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2881 if (new_parent)
2882 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2883
2884 /*
2885 * If this is a synchronous mount, make sure that the
2886 * rename transaction goes to disk before returning to
2887 * the user.
2888 */
2889 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2890 xfs_trans_set_sync(tp);
2891 }
2892
2893 error = xfs_bmap_finish(&tp, &free_list, &committed);
2894 if (error) {
2895 xfs_bmap_cancel(&free_list);
2896 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2897 XFS_TRANS_ABORT));
2898 goto std_return;
2899 }
2900
2901 /*
2902 * trans_commit will unlock src_ip, target_ip & decrement
2903 * the vnode references.
2904 */
2905 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2906
2907 abort_return:
2908 cancel_flags |= XFS_TRANS_ABORT;
2909 error_return:
2910 xfs_bmap_cancel(&free_list);
2911 xfs_trans_cancel(tp, cancel_flags);
2912 std_return:
2913 return error;
2914 }
2915
2916 STATIC int
2917 xfs_iflush_cluster(
2918 xfs_inode_t *ip,
2919 xfs_buf_t *bp)
2920 {
2921 xfs_mount_t *mp = ip->i_mount;
2922 struct xfs_perag *pag;
2923 unsigned long first_index, mask;
2924 unsigned long inodes_per_cluster;
2925 int ilist_size;
2926 xfs_inode_t **ilist;
2927 xfs_inode_t *iq;
2928 int nr_found;
2929 int clcount = 0;
2930 int bufwasdelwri;
2931 int i;
2932
2933 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2934
2935 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
2936 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2937 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2938 if (!ilist)
2939 goto out_put;
2940
2941 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
2942 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2943 rcu_read_lock();
2944 /* really need a gang lookup range call here */
2945 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2946 first_index, inodes_per_cluster);
2947 if (nr_found == 0)
2948 goto out_free;
2949
2950 for (i = 0; i < nr_found; i++) {
2951 iq = ilist[i];
2952 if (iq == ip)
2953 continue;
2954
2955 /*
2956 * because this is an RCU protected lookup, we could find a
2957 * recently freed or even reallocated inode during the lookup.
2958 * We need to check under the i_flags_lock for a valid inode
2959 * here. Skip it if it is not valid or the wrong inode.
2960 */
2961 spin_lock(&ip->i_flags_lock);
2962 if (!ip->i_ino ||
2963 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2964 spin_unlock(&ip->i_flags_lock);
2965 continue;
2966 }
2967 spin_unlock(&ip->i_flags_lock);
2968
2969 /*
2970 * Do an un-protected check to see if the inode is dirty and
2971 * is a candidate for flushing. These checks will be repeated
2972 * later after the appropriate locks are acquired.
2973 */
2974 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2975 continue;
2976
2977 /*
2978 * Try to get locks. If any are unavailable or it is pinned,
2979 * then this inode cannot be flushed and is skipped.
2980 */
2981
2982 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2983 continue;
2984 if (!xfs_iflock_nowait(iq)) {
2985 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2986 continue;
2987 }
2988 if (xfs_ipincount(iq)) {
2989 xfs_ifunlock(iq);
2990 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2991 continue;
2992 }
2993
2994 /*
2995 * arriving here means that this inode can be flushed. First
2996 * re-check that it's dirty before flushing.
2997 */
2998 if (!xfs_inode_clean(iq)) {
2999 int error;
3000 error = xfs_iflush_int(iq, bp);
3001 if (error) {
3002 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3003 goto cluster_corrupt_out;
3004 }
3005 clcount++;
3006 } else {
3007 xfs_ifunlock(iq);
3008 }
3009 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3010 }
3011
3012 if (clcount) {
3013 XFS_STATS_INC(xs_icluster_flushcnt);
3014 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3015 }
3016
3017 out_free:
3018 rcu_read_unlock();
3019 kmem_free(ilist);
3020 out_put:
3021 xfs_perag_put(pag);
3022 return 0;
3023
3024
3025 cluster_corrupt_out:
3026 /*
3027 * Corruption detected in the clustering loop. Invalidate the
3028 * inode buffer and shut down the filesystem.
3029 */
3030 rcu_read_unlock();
3031 /*
3032 * Clean up the buffer. If it was delwri, just release it --
3033 * brelse can handle it with no problems. If not, shut down the
3034 * filesystem before releasing the buffer.
3035 */
3036 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3037 if (bufwasdelwri)
3038 xfs_buf_relse(bp);
3039
3040 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3041
3042 if (!bufwasdelwri) {
3043 /*
3044 * Just like incore_relse: if we have b_iodone functions,
3045 * mark the buffer as an error and call them. Otherwise
3046 * mark it as stale and brelse.
3047 */
3048 if (bp->b_iodone) {
3049 XFS_BUF_UNDONE(bp);
3050 xfs_buf_stale(bp);
3051 xfs_buf_ioerror(bp, -EIO);
3052 xfs_buf_ioend(bp);
3053 } else {
3054 xfs_buf_stale(bp);
3055 xfs_buf_relse(bp);
3056 }
3057 }
3058
3059 /*
3060 * Unlocks the flush lock
3061 */
3062 xfs_iflush_abort(iq, false);
3063 kmem_free(ilist);
3064 xfs_perag_put(pag);
3065 return -EFSCORRUPTED;
3066 }
3067
3068 /*
3069 * Flush dirty inode metadata into the backing buffer.
3070 *
3071 * The caller must have the inode lock and the inode flush lock held. The
3072 * inode lock will still be held upon return to the caller, and the inode
3073 * flush lock will be released after the inode has reached the disk.
3074 *
3075 * The caller must write out the buffer returned in *bpp and release it.
3076 */
3077 int
3078 xfs_iflush(
3079 struct xfs_inode *ip,
3080 struct xfs_buf **bpp)
3081 {
3082 struct xfs_mount *mp = ip->i_mount;
3083 struct xfs_buf *bp;
3084 struct xfs_dinode *dip;
3085 int error;
3086
3087 XFS_STATS_INC(xs_iflush_count);
3088
3089 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3090 ASSERT(xfs_isiflocked(ip));
3091 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3092 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3093
3094 *bpp = NULL;
3095
3096 xfs_iunpin_wait(ip);
3097
3098 /*
3099 * For stale inodes we cannot rely on the backing buffer remaining
3100 * stale in cache for the remaining life of the stale inode and so
3101 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3102 * inodes below. We have to check this after ensuring the inode is
3103 * unpinned so that it is safe to reclaim the stale inode after the
3104 * flush call.
3105 */
3106 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3107 xfs_ifunlock(ip);
3108 return 0;
3109 }
3110
3111 /*
3112 * This may have been unpinned because the filesystem is shutting
3113 * down forcibly. If that's the case we must not write this inode
3114 * to disk, because the log record didn't make it to disk.
3115 *
3116 * We also have to remove the log item from the AIL in this case,
3117 * as we wait for an empty AIL as part of the unmount process.
3118 */
3119 if (XFS_FORCED_SHUTDOWN(mp)) {
3120 error = -EIO;
3121 goto abort_out;
3122 }
3123
3124 /*
3125 * Get the buffer containing the on-disk inode.
3126 */
3127 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3128 0);
3129 if (error || !bp) {
3130 xfs_ifunlock(ip);
3131 return error;
3132 }
3133
3134 /*
3135 * First flush out the inode that xfs_iflush was called with.
3136 */
3137 error = xfs_iflush_int(ip, bp);
3138 if (error)
3139 goto corrupt_out;
3140
3141 /*
3142 * If the buffer is pinned then push on the log now so we won't
3143 * get stuck waiting in the write for too long.
3144 */
3145 if (xfs_buf_ispinned(bp))
3146 xfs_log_force(mp, 0);
3147
3148 /*
3149 * inode clustering:
3150 * see if other inodes can be gathered into this write
3151 */
3152 error = xfs_iflush_cluster(ip, bp);
3153 if (error)
3154 goto cluster_corrupt_out;
3155
3156 *bpp = bp;
3157 return 0;
3158
3159 corrupt_out:
3160 xfs_buf_relse(bp);
3161 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3162 cluster_corrupt_out:
3163 error = -EFSCORRUPTED;
3164 abort_out:
3165 /*
3166 * Unlocks the flush lock
3167 */
3168 xfs_iflush_abort(ip, false);
3169 return error;
3170 }
3171
3172 STATIC int
3173 xfs_iflush_int(
3174 struct xfs_inode *ip,
3175 struct xfs_buf *bp)
3176 {
3177 struct xfs_inode_log_item *iip = ip->i_itemp;
3178 struct xfs_dinode *dip;
3179 struct xfs_mount *mp = ip->i_mount;
3180
3181 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3182 ASSERT(xfs_isiflocked(ip));
3183 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3184 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3185 ASSERT(iip != NULL && iip->ili_fields != 0);
3186 ASSERT(ip->i_d.di_version > 1);
3187
3188 /* set *dip = inode's place in the buffer */
3189 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3190
3191 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3192 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3193 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3194 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3195 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3196 goto corrupt_out;
3197 }
3198 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3199 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3200 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3201 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3202 __func__, ip->i_ino, ip, ip->i_d.di_magic);
3203 goto corrupt_out;
3204 }
3205 if (S_ISREG(ip->i_d.di_mode)) {
3206 if (XFS_TEST_ERROR(
3207 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3208 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3209 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3210 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3211 "%s: Bad regular inode %Lu, ptr 0x%p",
3212 __func__, ip->i_ino, ip);
3213 goto corrupt_out;
3214 }
3215 } else if (S_ISDIR(ip->i_d.di_mode)) {
3216 if (XFS_TEST_ERROR(
3217 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3218 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3219 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3220 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3221 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3222 "%s: Bad directory inode %Lu, ptr 0x%p",
3223 __func__, ip->i_ino, ip);
3224 goto corrupt_out;
3225 }
3226 }
3227 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3228 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3229 XFS_RANDOM_IFLUSH_5)) {
3230 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3231 "%s: detected corrupt incore inode %Lu, "
3232 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3233 __func__, ip->i_ino,
3234 ip->i_d.di_nextents + ip->i_d.di_anextents,
3235 ip->i_d.di_nblocks, ip);
3236 goto corrupt_out;
3237 }
3238 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3239 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3240 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3241 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3242 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3243 goto corrupt_out;
3244 }
3245
3246 /*
3247 * Inode item log recovery for v2 inodes are dependent on the
3248 * di_flushiter count for correct sequencing. We bump the flush
3249 * iteration count so we can detect flushes which postdate a log record
3250 * during recovery. This is redundant as we now log every change and
3251 * hence this can't happen but we need to still do it to ensure
3252 * backwards compatibility with old kernels that predate logging all
3253 * inode changes.
3254 */
3255 if (ip->i_d.di_version < 3)
3256 ip->i_d.di_flushiter++;
3257
3258 /*
3259 * Copy the dirty parts of the inode into the on-disk
3260 * inode. We always copy out the core of the inode,
3261 * because if the inode is dirty at all the core must
3262 * be.
3263 */
3264 xfs_dinode_to_disk(dip, &ip->i_d);
3265
3266 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3267 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3268 ip->i_d.di_flushiter = 0;
3269
3270 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3271 if (XFS_IFORK_Q(ip))
3272 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3273 xfs_inobp_check(mp, bp);
3274
3275 /*
3276 * We've recorded everything logged in the inode, so we'd like to clear
3277 * the ili_fields bits so we don't log and flush things unnecessarily.
3278 * However, we can't stop logging all this information until the data
3279 * we've copied into the disk buffer is written to disk. If we did we
3280 * might overwrite the copy of the inode in the log with all the data
3281 * after re-logging only part of it, and in the face of a crash we
3282 * wouldn't have all the data we need to recover.
3283 *
3284 * What we do is move the bits to the ili_last_fields field. When
3285 * logging the inode, these bits are moved back to the ili_fields field.
3286 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3287 * know that the information those bits represent is permanently on
3288 * disk. As long as the flush completes before the inode is logged
3289 * again, then both ili_fields and ili_last_fields will be cleared.
3290 *
3291 * We can play with the ili_fields bits here, because the inode lock
3292 * must be held exclusively in order to set bits there and the flush
3293 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3294 * done routine can tell whether or not to look in the AIL. Also, store
3295 * the current LSN of the inode so that we can tell whether the item has
3296 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3297 * need the AIL lock, because it is a 64 bit value that cannot be read
3298 * atomically.
3299 */
3300 iip->ili_last_fields = iip->ili_fields;
3301 iip->ili_fields = 0;
3302 iip->ili_logged = 1;
3303
3304 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3305 &iip->ili_item.li_lsn);
3306
3307 /*
3308 * Attach the function xfs_iflush_done to the inode's
3309 * buffer. This will remove the inode from the AIL
3310 * and unlock the inode's flush lock when the inode is
3311 * completely written to disk.
3312 */
3313 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3314
3315 /* update the lsn in the on disk inode if required */
3316 if (ip->i_d.di_version == 3)
3317 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3318
3319 /* generate the checksum. */
3320 xfs_dinode_calc_crc(mp, dip);
3321
3322 ASSERT(bp->b_fspriv != NULL);
3323 ASSERT(bp->b_iodone != NULL);
3324 return 0;
3325
3326 corrupt_out:
3327 return -EFSCORRUPTED;
3328 }
This page took 0.239716 seconds and 5 git commands to generate.