Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[deliverable/linux.git] / fs / xfs / xfs_inode_item.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_error.h"
28 #include "xfs_trace.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_log.h"
31
32
33 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
34
35 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
36 {
37 return container_of(lip, struct xfs_inode_log_item, ili_item);
38 }
39
40 STATIC void
41 xfs_inode_item_data_fork_size(
42 struct xfs_inode_log_item *iip,
43 int *nvecs,
44 int *nbytes)
45 {
46 struct xfs_inode *ip = iip->ili_inode;
47
48 switch (ip->i_d.di_format) {
49 case XFS_DINODE_FMT_EXTENTS:
50 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
51 ip->i_d.di_nextents > 0 &&
52 ip->i_df.if_bytes > 0) {
53 /* worst case, doesn't subtract delalloc extents */
54 *nbytes += XFS_IFORK_DSIZE(ip);
55 *nvecs += 1;
56 }
57 break;
58 case XFS_DINODE_FMT_BTREE:
59 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
60 ip->i_df.if_broot_bytes > 0) {
61 *nbytes += ip->i_df.if_broot_bytes;
62 *nvecs += 1;
63 }
64 break;
65 case XFS_DINODE_FMT_LOCAL:
66 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
67 ip->i_df.if_bytes > 0) {
68 *nbytes += roundup(ip->i_df.if_bytes, 4);
69 *nvecs += 1;
70 }
71 break;
72
73 case XFS_DINODE_FMT_DEV:
74 case XFS_DINODE_FMT_UUID:
75 break;
76 default:
77 ASSERT(0);
78 break;
79 }
80 }
81
82 STATIC void
83 xfs_inode_item_attr_fork_size(
84 struct xfs_inode_log_item *iip,
85 int *nvecs,
86 int *nbytes)
87 {
88 struct xfs_inode *ip = iip->ili_inode;
89
90 switch (ip->i_d.di_aformat) {
91 case XFS_DINODE_FMT_EXTENTS:
92 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
93 ip->i_d.di_anextents > 0 &&
94 ip->i_afp->if_bytes > 0) {
95 /* worst case, doesn't subtract unused space */
96 *nbytes += XFS_IFORK_ASIZE(ip);
97 *nvecs += 1;
98 }
99 break;
100 case XFS_DINODE_FMT_BTREE:
101 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
102 ip->i_afp->if_broot_bytes > 0) {
103 *nbytes += ip->i_afp->if_broot_bytes;
104 *nvecs += 1;
105 }
106 break;
107 case XFS_DINODE_FMT_LOCAL:
108 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
109 ip->i_afp->if_bytes > 0) {
110 *nbytes += roundup(ip->i_afp->if_bytes, 4);
111 *nvecs += 1;
112 }
113 break;
114 default:
115 ASSERT(0);
116 break;
117 }
118 }
119
120 /*
121 * This returns the number of iovecs needed to log the given inode item.
122 *
123 * We need one iovec for the inode log format structure, one for the
124 * inode core, and possibly one for the inode data/extents/b-tree root
125 * and one for the inode attribute data/extents/b-tree root.
126 */
127 STATIC void
128 xfs_inode_item_size(
129 struct xfs_log_item *lip,
130 int *nvecs,
131 int *nbytes)
132 {
133 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
134 struct xfs_inode *ip = iip->ili_inode;
135
136 *nvecs += 2;
137 *nbytes += sizeof(struct xfs_inode_log_format) +
138 xfs_log_dinode_size(ip->i_d.di_version);
139
140 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
141 if (XFS_IFORK_Q(ip))
142 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
143 }
144
145 STATIC void
146 xfs_inode_item_format_data_fork(
147 struct xfs_inode_log_item *iip,
148 struct xfs_inode_log_format *ilf,
149 struct xfs_log_vec *lv,
150 struct xfs_log_iovec **vecp)
151 {
152 struct xfs_inode *ip = iip->ili_inode;
153 size_t data_bytes;
154
155 switch (ip->i_d.di_format) {
156 case XFS_DINODE_FMT_EXTENTS:
157 iip->ili_fields &=
158 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
159 XFS_ILOG_DEV | XFS_ILOG_UUID);
160
161 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
162 ip->i_d.di_nextents > 0 &&
163 ip->i_df.if_bytes > 0) {
164 struct xfs_bmbt_rec *p;
165
166 ASSERT(ip->i_df.if_u1.if_extents != NULL);
167 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
168
169 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
170 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
171 xlog_finish_iovec(lv, *vecp, data_bytes);
172
173 ASSERT(data_bytes <= ip->i_df.if_bytes);
174
175 ilf->ilf_dsize = data_bytes;
176 ilf->ilf_size++;
177 } else {
178 iip->ili_fields &= ~XFS_ILOG_DEXT;
179 }
180 break;
181 case XFS_DINODE_FMT_BTREE:
182 iip->ili_fields &=
183 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
184 XFS_ILOG_DEV | XFS_ILOG_UUID);
185
186 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
187 ip->i_df.if_broot_bytes > 0) {
188 ASSERT(ip->i_df.if_broot != NULL);
189 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
190 ip->i_df.if_broot,
191 ip->i_df.if_broot_bytes);
192 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
193 ilf->ilf_size++;
194 } else {
195 ASSERT(!(iip->ili_fields &
196 XFS_ILOG_DBROOT));
197 iip->ili_fields &= ~XFS_ILOG_DBROOT;
198 }
199 break;
200 case XFS_DINODE_FMT_LOCAL:
201 iip->ili_fields &=
202 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
203 XFS_ILOG_DEV | XFS_ILOG_UUID);
204 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
205 ip->i_df.if_bytes > 0) {
206 /*
207 * Round i_bytes up to a word boundary.
208 * The underlying memory is guaranteed to
209 * to be there by xfs_idata_realloc().
210 */
211 data_bytes = roundup(ip->i_df.if_bytes, 4);
212 ASSERT(ip->i_df.if_real_bytes == 0 ||
213 ip->i_df.if_real_bytes >= data_bytes);
214 ASSERT(ip->i_df.if_u1.if_data != NULL);
215 ASSERT(ip->i_d.di_size > 0);
216 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
217 ip->i_df.if_u1.if_data, data_bytes);
218 ilf->ilf_dsize = (unsigned)data_bytes;
219 ilf->ilf_size++;
220 } else {
221 iip->ili_fields &= ~XFS_ILOG_DDATA;
222 }
223 break;
224 case XFS_DINODE_FMT_DEV:
225 iip->ili_fields &=
226 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
227 XFS_ILOG_DEXT | XFS_ILOG_UUID);
228 if (iip->ili_fields & XFS_ILOG_DEV)
229 ilf->ilf_u.ilfu_rdev = ip->i_df.if_u2.if_rdev;
230 break;
231 case XFS_DINODE_FMT_UUID:
232 iip->ili_fields &=
233 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
234 XFS_ILOG_DEXT | XFS_ILOG_DEV);
235 if (iip->ili_fields & XFS_ILOG_UUID)
236 ilf->ilf_u.ilfu_uuid = ip->i_df.if_u2.if_uuid;
237 break;
238 default:
239 ASSERT(0);
240 break;
241 }
242 }
243
244 STATIC void
245 xfs_inode_item_format_attr_fork(
246 struct xfs_inode_log_item *iip,
247 struct xfs_inode_log_format *ilf,
248 struct xfs_log_vec *lv,
249 struct xfs_log_iovec **vecp)
250 {
251 struct xfs_inode *ip = iip->ili_inode;
252 size_t data_bytes;
253
254 switch (ip->i_d.di_aformat) {
255 case XFS_DINODE_FMT_EXTENTS:
256 iip->ili_fields &=
257 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
258
259 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
260 ip->i_d.di_anextents > 0 &&
261 ip->i_afp->if_bytes > 0) {
262 struct xfs_bmbt_rec *p;
263
264 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
265 ip->i_d.di_anextents);
266 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
267
268 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
269 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
270 xlog_finish_iovec(lv, *vecp, data_bytes);
271
272 ilf->ilf_asize = data_bytes;
273 ilf->ilf_size++;
274 } else {
275 iip->ili_fields &= ~XFS_ILOG_AEXT;
276 }
277 break;
278 case XFS_DINODE_FMT_BTREE:
279 iip->ili_fields &=
280 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
281
282 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
283 ip->i_afp->if_broot_bytes > 0) {
284 ASSERT(ip->i_afp->if_broot != NULL);
285
286 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
287 ip->i_afp->if_broot,
288 ip->i_afp->if_broot_bytes);
289 ilf->ilf_asize = ip->i_afp->if_broot_bytes;
290 ilf->ilf_size++;
291 } else {
292 iip->ili_fields &= ~XFS_ILOG_ABROOT;
293 }
294 break;
295 case XFS_DINODE_FMT_LOCAL:
296 iip->ili_fields &=
297 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
298
299 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
300 ip->i_afp->if_bytes > 0) {
301 /*
302 * Round i_bytes up to a word boundary.
303 * The underlying memory is guaranteed to
304 * to be there by xfs_idata_realloc().
305 */
306 data_bytes = roundup(ip->i_afp->if_bytes, 4);
307 ASSERT(ip->i_afp->if_real_bytes == 0 ||
308 ip->i_afp->if_real_bytes >= data_bytes);
309 ASSERT(ip->i_afp->if_u1.if_data != NULL);
310 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
311 ip->i_afp->if_u1.if_data,
312 data_bytes);
313 ilf->ilf_asize = (unsigned)data_bytes;
314 ilf->ilf_size++;
315 } else {
316 iip->ili_fields &= ~XFS_ILOG_ADATA;
317 }
318 break;
319 default:
320 ASSERT(0);
321 break;
322 }
323 }
324
325 static void
326 xfs_inode_to_log_dinode(
327 struct xfs_inode *ip,
328 struct xfs_log_dinode *to,
329 xfs_lsn_t lsn)
330 {
331 struct xfs_icdinode *from = &ip->i_d;
332 struct inode *inode = VFS_I(ip);
333
334 to->di_magic = XFS_DINODE_MAGIC;
335
336 to->di_version = from->di_version;
337 to->di_format = from->di_format;
338 to->di_uid = from->di_uid;
339 to->di_gid = from->di_gid;
340 to->di_projid_lo = from->di_projid_lo;
341 to->di_projid_hi = from->di_projid_hi;
342
343 memset(to->di_pad, 0, sizeof(to->di_pad));
344 memset(to->di_pad3, 0, sizeof(to->di_pad3));
345 to->di_atime.t_sec = inode->i_atime.tv_sec;
346 to->di_atime.t_nsec = inode->i_atime.tv_nsec;
347 to->di_mtime.t_sec = inode->i_mtime.tv_sec;
348 to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
349 to->di_ctime.t_sec = inode->i_ctime.tv_sec;
350 to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
351 to->di_nlink = inode->i_nlink;
352 to->di_gen = inode->i_generation;
353 to->di_mode = inode->i_mode;
354
355 to->di_size = from->di_size;
356 to->di_nblocks = from->di_nblocks;
357 to->di_extsize = from->di_extsize;
358 to->di_nextents = from->di_nextents;
359 to->di_anextents = from->di_anextents;
360 to->di_forkoff = from->di_forkoff;
361 to->di_aformat = from->di_aformat;
362 to->di_dmevmask = from->di_dmevmask;
363 to->di_dmstate = from->di_dmstate;
364 to->di_flags = from->di_flags;
365
366 if (from->di_version == 3) {
367 to->di_changecount = inode->i_version;
368 to->di_crtime.t_sec = from->di_crtime.t_sec;
369 to->di_crtime.t_nsec = from->di_crtime.t_nsec;
370 to->di_flags2 = from->di_flags2;
371
372 to->di_ino = ip->i_ino;
373 to->di_lsn = lsn;
374 memset(to->di_pad2, 0, sizeof(to->di_pad2));
375 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
376 to->di_flushiter = 0;
377 } else {
378 to->di_flushiter = from->di_flushiter;
379 }
380 }
381
382 /*
383 * Format the inode core. Current timestamp data is only in the VFS inode
384 * fields, so we need to grab them from there. Hence rather than just copying
385 * the XFS inode core structure, format the fields directly into the iovec.
386 */
387 static void
388 xfs_inode_item_format_core(
389 struct xfs_inode *ip,
390 struct xfs_log_vec *lv,
391 struct xfs_log_iovec **vecp)
392 {
393 struct xfs_log_dinode *dic;
394
395 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
396 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
397 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version));
398 }
399
400 /*
401 * This is called to fill in the vector of log iovecs for the given inode
402 * log item. It fills the first item with an inode log format structure,
403 * the second with the on-disk inode structure, and a possible third and/or
404 * fourth with the inode data/extents/b-tree root and inode attributes
405 * data/extents/b-tree root.
406 */
407 STATIC void
408 xfs_inode_item_format(
409 struct xfs_log_item *lip,
410 struct xfs_log_vec *lv)
411 {
412 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
413 struct xfs_inode *ip = iip->ili_inode;
414 struct xfs_inode_log_format *ilf;
415 struct xfs_log_iovec *vecp = NULL;
416
417 ASSERT(ip->i_d.di_version > 1);
418
419 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
420 ilf->ilf_type = XFS_LI_INODE;
421 ilf->ilf_ino = ip->i_ino;
422 ilf->ilf_blkno = ip->i_imap.im_blkno;
423 ilf->ilf_len = ip->i_imap.im_len;
424 ilf->ilf_boffset = ip->i_imap.im_boffset;
425 ilf->ilf_fields = XFS_ILOG_CORE;
426 ilf->ilf_size = 2; /* format + core */
427 xlog_finish_iovec(lv, vecp, sizeof(struct xfs_inode_log_format));
428
429 xfs_inode_item_format_core(ip, lv, &vecp);
430 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
431 if (XFS_IFORK_Q(ip)) {
432 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
433 } else {
434 iip->ili_fields &=
435 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
436 }
437
438 /* update the format with the exact fields we actually logged */
439 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
440 }
441
442 /*
443 * This is called to pin the inode associated with the inode log
444 * item in memory so it cannot be written out.
445 */
446 STATIC void
447 xfs_inode_item_pin(
448 struct xfs_log_item *lip)
449 {
450 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
451
452 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
453
454 trace_xfs_inode_pin(ip, _RET_IP_);
455 atomic_inc(&ip->i_pincount);
456 }
457
458
459 /*
460 * This is called to unpin the inode associated with the inode log
461 * item which was previously pinned with a call to xfs_inode_item_pin().
462 *
463 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
464 */
465 STATIC void
466 xfs_inode_item_unpin(
467 struct xfs_log_item *lip,
468 int remove)
469 {
470 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
471
472 trace_xfs_inode_unpin(ip, _RET_IP_);
473 ASSERT(atomic_read(&ip->i_pincount) > 0);
474 if (atomic_dec_and_test(&ip->i_pincount))
475 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
476 }
477
478 STATIC uint
479 xfs_inode_item_push(
480 struct xfs_log_item *lip,
481 struct list_head *buffer_list)
482 __releases(&lip->li_ailp->xa_lock)
483 __acquires(&lip->li_ailp->xa_lock)
484 {
485 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
486 struct xfs_inode *ip = iip->ili_inode;
487 struct xfs_buf *bp = NULL;
488 uint rval = XFS_ITEM_SUCCESS;
489 int error;
490
491 if (xfs_ipincount(ip) > 0)
492 return XFS_ITEM_PINNED;
493
494 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
495 return XFS_ITEM_LOCKED;
496
497 /*
498 * Re-check the pincount now that we stabilized the value by
499 * taking the ilock.
500 */
501 if (xfs_ipincount(ip) > 0) {
502 rval = XFS_ITEM_PINNED;
503 goto out_unlock;
504 }
505
506 /*
507 * Stale inode items should force out the iclog.
508 */
509 if (ip->i_flags & XFS_ISTALE) {
510 rval = XFS_ITEM_PINNED;
511 goto out_unlock;
512 }
513
514 /*
515 * Someone else is already flushing the inode. Nothing we can do
516 * here but wait for the flush to finish and remove the item from
517 * the AIL.
518 */
519 if (!xfs_iflock_nowait(ip)) {
520 rval = XFS_ITEM_FLUSHING;
521 goto out_unlock;
522 }
523
524 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
525 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
526
527 spin_unlock(&lip->li_ailp->xa_lock);
528
529 error = xfs_iflush(ip, &bp);
530 if (!error) {
531 if (!xfs_buf_delwri_queue(bp, buffer_list))
532 rval = XFS_ITEM_FLUSHING;
533 xfs_buf_relse(bp);
534 }
535
536 spin_lock(&lip->li_ailp->xa_lock);
537 out_unlock:
538 xfs_iunlock(ip, XFS_ILOCK_SHARED);
539 return rval;
540 }
541
542 /*
543 * Unlock the inode associated with the inode log item.
544 * Clear the fields of the inode and inode log item that
545 * are specific to the current transaction. If the
546 * hold flags is set, do not unlock the inode.
547 */
548 STATIC void
549 xfs_inode_item_unlock(
550 struct xfs_log_item *lip)
551 {
552 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
553 struct xfs_inode *ip = iip->ili_inode;
554 unsigned short lock_flags;
555
556 ASSERT(ip->i_itemp != NULL);
557 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
558
559 lock_flags = iip->ili_lock_flags;
560 iip->ili_lock_flags = 0;
561 if (lock_flags)
562 xfs_iunlock(ip, lock_flags);
563 }
564
565 /*
566 * This is called to find out where the oldest active copy of the inode log
567 * item in the on disk log resides now that the last log write of it completed
568 * at the given lsn. Since we always re-log all dirty data in an inode, the
569 * latest copy in the on disk log is the only one that matters. Therefore,
570 * simply return the given lsn.
571 *
572 * If the inode has been marked stale because the cluster is being freed, we
573 * don't want to (re-)insert this inode into the AIL. There is a race condition
574 * where the cluster buffer may be unpinned before the inode is inserted into
575 * the AIL during transaction committed processing. If the buffer is unpinned
576 * before the inode item has been committed and inserted, then it is possible
577 * for the buffer to be written and IO completes before the inode is inserted
578 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
579 * AIL which will never get removed. It will, however, get reclaimed which
580 * triggers an assert in xfs_inode_free() complaining about freein an inode
581 * still in the AIL.
582 *
583 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
584 * transaction committed code knows that it does not need to do any further
585 * processing on the item.
586 */
587 STATIC xfs_lsn_t
588 xfs_inode_item_committed(
589 struct xfs_log_item *lip,
590 xfs_lsn_t lsn)
591 {
592 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
593 struct xfs_inode *ip = iip->ili_inode;
594
595 if (xfs_iflags_test(ip, XFS_ISTALE)) {
596 xfs_inode_item_unpin(lip, 0);
597 return -1;
598 }
599 return lsn;
600 }
601
602 /*
603 * XXX rcc - this one really has to do something. Probably needs
604 * to stamp in a new field in the incore inode.
605 */
606 STATIC void
607 xfs_inode_item_committing(
608 struct xfs_log_item *lip,
609 xfs_lsn_t lsn)
610 {
611 INODE_ITEM(lip)->ili_last_lsn = lsn;
612 }
613
614 /*
615 * This is the ops vector shared by all buf log items.
616 */
617 static const struct xfs_item_ops xfs_inode_item_ops = {
618 .iop_size = xfs_inode_item_size,
619 .iop_format = xfs_inode_item_format,
620 .iop_pin = xfs_inode_item_pin,
621 .iop_unpin = xfs_inode_item_unpin,
622 .iop_unlock = xfs_inode_item_unlock,
623 .iop_committed = xfs_inode_item_committed,
624 .iop_push = xfs_inode_item_push,
625 .iop_committing = xfs_inode_item_committing
626 };
627
628
629 /*
630 * Initialize the inode log item for a newly allocated (in-core) inode.
631 */
632 void
633 xfs_inode_item_init(
634 struct xfs_inode *ip,
635 struct xfs_mount *mp)
636 {
637 struct xfs_inode_log_item *iip;
638
639 ASSERT(ip->i_itemp == NULL);
640 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
641
642 iip->ili_inode = ip;
643 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
644 &xfs_inode_item_ops);
645 }
646
647 /*
648 * Free the inode log item and any memory hanging off of it.
649 */
650 void
651 xfs_inode_item_destroy(
652 xfs_inode_t *ip)
653 {
654 kmem_free(ip->i_itemp->ili_item.li_lv_shadow);
655 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
656 }
657
658
659 /*
660 * This is the inode flushing I/O completion routine. It is called
661 * from interrupt level when the buffer containing the inode is
662 * flushed to disk. It is responsible for removing the inode item
663 * from the AIL if it has not been re-logged, and unlocking the inode's
664 * flush lock.
665 *
666 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
667 * list for other inodes that will run this function. We remove them from the
668 * buffer list so we can process all the inode IO completions in one AIL lock
669 * traversal.
670 */
671 void
672 xfs_iflush_done(
673 struct xfs_buf *bp,
674 struct xfs_log_item *lip)
675 {
676 struct xfs_inode_log_item *iip;
677 struct xfs_log_item *blip;
678 struct xfs_log_item *next;
679 struct xfs_log_item *prev;
680 struct xfs_ail *ailp = lip->li_ailp;
681 int need_ail = 0;
682
683 /*
684 * Scan the buffer IO completions for other inodes being completed and
685 * attach them to the current inode log item.
686 */
687 blip = bp->b_fspriv;
688 prev = NULL;
689 while (blip != NULL) {
690 if (blip->li_cb != xfs_iflush_done) {
691 prev = blip;
692 blip = blip->li_bio_list;
693 continue;
694 }
695
696 /* remove from list */
697 next = blip->li_bio_list;
698 if (!prev) {
699 bp->b_fspriv = next;
700 } else {
701 prev->li_bio_list = next;
702 }
703
704 /* add to current list */
705 blip->li_bio_list = lip->li_bio_list;
706 lip->li_bio_list = blip;
707
708 /*
709 * while we have the item, do the unlocked check for needing
710 * the AIL lock.
711 */
712 iip = INODE_ITEM(blip);
713 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
714 need_ail++;
715
716 blip = next;
717 }
718
719 /* make sure we capture the state of the initial inode. */
720 iip = INODE_ITEM(lip);
721 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
722 need_ail++;
723
724 /*
725 * We only want to pull the item from the AIL if it is
726 * actually there and its location in the log has not
727 * changed since we started the flush. Thus, we only bother
728 * if the ili_logged flag is set and the inode's lsn has not
729 * changed. First we check the lsn outside
730 * the lock since it's cheaper, and then we recheck while
731 * holding the lock before removing the inode from the AIL.
732 */
733 if (need_ail) {
734 struct xfs_log_item *log_items[need_ail];
735 int i = 0;
736 spin_lock(&ailp->xa_lock);
737 for (blip = lip; blip; blip = blip->li_bio_list) {
738 iip = INODE_ITEM(blip);
739 if (iip->ili_logged &&
740 blip->li_lsn == iip->ili_flush_lsn) {
741 log_items[i++] = blip;
742 }
743 ASSERT(i <= need_ail);
744 }
745 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
746 xfs_trans_ail_delete_bulk(ailp, log_items, i,
747 SHUTDOWN_CORRUPT_INCORE);
748 }
749
750
751 /*
752 * clean up and unlock the flush lock now we are done. We can clear the
753 * ili_last_fields bits now that we know that the data corresponding to
754 * them is safely on disk.
755 */
756 for (blip = lip; blip; blip = next) {
757 next = blip->li_bio_list;
758 blip->li_bio_list = NULL;
759
760 iip = INODE_ITEM(blip);
761 iip->ili_logged = 0;
762 iip->ili_last_fields = 0;
763 xfs_ifunlock(iip->ili_inode);
764 }
765 }
766
767 /*
768 * This is the inode flushing abort routine. It is called from xfs_iflush when
769 * the filesystem is shutting down to clean up the inode state. It is
770 * responsible for removing the inode item from the AIL if it has not been
771 * re-logged, and unlocking the inode's flush lock.
772 */
773 void
774 xfs_iflush_abort(
775 xfs_inode_t *ip,
776 bool stale)
777 {
778 xfs_inode_log_item_t *iip = ip->i_itemp;
779
780 if (iip) {
781 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
782 xfs_trans_ail_remove(&iip->ili_item,
783 stale ? SHUTDOWN_LOG_IO_ERROR :
784 SHUTDOWN_CORRUPT_INCORE);
785 }
786 iip->ili_logged = 0;
787 /*
788 * Clear the ili_last_fields bits now that we know that the
789 * data corresponding to them is safely on disk.
790 */
791 iip->ili_last_fields = 0;
792 /*
793 * Clear the inode logging fields so no more flushes are
794 * attempted.
795 */
796 iip->ili_fields = 0;
797 iip->ili_fsync_fields = 0;
798 }
799 /*
800 * Release the inode's flush lock since we're done with it.
801 */
802 xfs_ifunlock(ip);
803 }
804
805 void
806 xfs_istale_done(
807 struct xfs_buf *bp,
808 struct xfs_log_item *lip)
809 {
810 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
811 }
812
813 /*
814 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
815 * (which can have different field alignments) to the native version
816 */
817 int
818 xfs_inode_item_format_convert(
819 xfs_log_iovec_t *buf,
820 xfs_inode_log_format_t *in_f)
821 {
822 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
823 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
824
825 in_f->ilf_type = in_f32->ilf_type;
826 in_f->ilf_size = in_f32->ilf_size;
827 in_f->ilf_fields = in_f32->ilf_fields;
828 in_f->ilf_asize = in_f32->ilf_asize;
829 in_f->ilf_dsize = in_f32->ilf_dsize;
830 in_f->ilf_ino = in_f32->ilf_ino;
831 /* copy biggest field of ilf_u */
832 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
833 in_f32->ilf_u.ilfu_uuid.__u_bits,
834 sizeof(uuid_t));
835 in_f->ilf_blkno = in_f32->ilf_blkno;
836 in_f->ilf_len = in_f32->ilf_len;
837 in_f->ilf_boffset = in_f32->ilf_boffset;
838 return 0;
839 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
840 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
841
842 in_f->ilf_type = in_f64->ilf_type;
843 in_f->ilf_size = in_f64->ilf_size;
844 in_f->ilf_fields = in_f64->ilf_fields;
845 in_f->ilf_asize = in_f64->ilf_asize;
846 in_f->ilf_dsize = in_f64->ilf_dsize;
847 in_f->ilf_ino = in_f64->ilf_ino;
848 /* copy biggest field of ilf_u */
849 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
850 in_f64->ilf_u.ilfu_uuid.__u_bits,
851 sizeof(uuid_t));
852 in_f->ilf_blkno = in_f64->ilf_blkno;
853 in_f->ilf_len = in_f64->ilf_len;
854 in_f->ilf_boffset = in_f64->ilf_boffset;
855 return 0;
856 }
857 return -EFSCORRUPTED;
858 }
This page took 0.048045 seconds and 6 git commands to generate.