xfs: xfs_quiesce_attr() should quiesce the log like unmount
[deliverable/linux.git] / fs / xfs / xfs_log.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_error.h"
27 #include "xfs_log_priv.h"
28 #include "xfs_buf_item.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_trace.h"
37 #include "xfs_fsops.h"
38
39 kmem_zone_t *xfs_log_ticket_zone;
40
41 /* Local miscellaneous function prototypes */
42 STATIC int
43 xlog_commit_record(
44 struct xlog *log,
45 struct xlog_ticket *ticket,
46 struct xlog_in_core **iclog,
47 xfs_lsn_t *commitlsnp);
48
49 STATIC struct xlog *
50 xlog_alloc_log(
51 struct xfs_mount *mp,
52 struct xfs_buftarg *log_target,
53 xfs_daddr_t blk_offset,
54 int num_bblks);
55 STATIC int
56 xlog_space_left(
57 struct xlog *log,
58 atomic64_t *head);
59 STATIC int
60 xlog_sync(
61 struct xlog *log,
62 struct xlog_in_core *iclog);
63 STATIC void
64 xlog_dealloc_log(
65 struct xlog *log);
66
67 /* local state machine functions */
68 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
69 STATIC void
70 xlog_state_do_callback(
71 struct xlog *log,
72 int aborted,
73 struct xlog_in_core *iclog);
74 STATIC int
75 xlog_state_get_iclog_space(
76 struct xlog *log,
77 int len,
78 struct xlog_in_core **iclog,
79 struct xlog_ticket *ticket,
80 int *continued_write,
81 int *logoffsetp);
82 STATIC int
83 xlog_state_release_iclog(
84 struct xlog *log,
85 struct xlog_in_core *iclog);
86 STATIC void
87 xlog_state_switch_iclogs(
88 struct xlog *log,
89 struct xlog_in_core *iclog,
90 int eventual_size);
91 STATIC void
92 xlog_state_want_sync(
93 struct xlog *log,
94 struct xlog_in_core *iclog);
95
96 STATIC void
97 xlog_grant_push_ail(
98 struct xlog *log,
99 int need_bytes);
100 STATIC void
101 xlog_regrant_reserve_log_space(
102 struct xlog *log,
103 struct xlog_ticket *ticket);
104 STATIC void
105 xlog_ungrant_log_space(
106 struct xlog *log,
107 struct xlog_ticket *ticket);
108
109 #if defined(DEBUG)
110 STATIC void
111 xlog_verify_dest_ptr(
112 struct xlog *log,
113 char *ptr);
114 STATIC void
115 xlog_verify_grant_tail(
116 struct xlog *log);
117 STATIC void
118 xlog_verify_iclog(
119 struct xlog *log,
120 struct xlog_in_core *iclog,
121 int count,
122 boolean_t syncing);
123 STATIC void
124 xlog_verify_tail_lsn(
125 struct xlog *log,
126 struct xlog_in_core *iclog,
127 xfs_lsn_t tail_lsn);
128 #else
129 #define xlog_verify_dest_ptr(a,b)
130 #define xlog_verify_grant_tail(a)
131 #define xlog_verify_iclog(a,b,c,d)
132 #define xlog_verify_tail_lsn(a,b,c)
133 #endif
134
135 STATIC int
136 xlog_iclogs_empty(
137 struct xlog *log);
138
139 static void
140 xlog_grant_sub_space(
141 struct xlog *log,
142 atomic64_t *head,
143 int bytes)
144 {
145 int64_t head_val = atomic64_read(head);
146 int64_t new, old;
147
148 do {
149 int cycle, space;
150
151 xlog_crack_grant_head_val(head_val, &cycle, &space);
152
153 space -= bytes;
154 if (space < 0) {
155 space += log->l_logsize;
156 cycle--;
157 }
158
159 old = head_val;
160 new = xlog_assign_grant_head_val(cycle, space);
161 head_val = atomic64_cmpxchg(head, old, new);
162 } while (head_val != old);
163 }
164
165 static void
166 xlog_grant_add_space(
167 struct xlog *log,
168 atomic64_t *head,
169 int bytes)
170 {
171 int64_t head_val = atomic64_read(head);
172 int64_t new, old;
173
174 do {
175 int tmp;
176 int cycle, space;
177
178 xlog_crack_grant_head_val(head_val, &cycle, &space);
179
180 tmp = log->l_logsize - space;
181 if (tmp > bytes)
182 space += bytes;
183 else {
184 space = bytes - tmp;
185 cycle++;
186 }
187
188 old = head_val;
189 new = xlog_assign_grant_head_val(cycle, space);
190 head_val = atomic64_cmpxchg(head, old, new);
191 } while (head_val != old);
192 }
193
194 STATIC void
195 xlog_grant_head_init(
196 struct xlog_grant_head *head)
197 {
198 xlog_assign_grant_head(&head->grant, 1, 0);
199 INIT_LIST_HEAD(&head->waiters);
200 spin_lock_init(&head->lock);
201 }
202
203 STATIC void
204 xlog_grant_head_wake_all(
205 struct xlog_grant_head *head)
206 {
207 struct xlog_ticket *tic;
208
209 spin_lock(&head->lock);
210 list_for_each_entry(tic, &head->waiters, t_queue)
211 wake_up_process(tic->t_task);
212 spin_unlock(&head->lock);
213 }
214
215 static inline int
216 xlog_ticket_reservation(
217 struct xlog *log,
218 struct xlog_grant_head *head,
219 struct xlog_ticket *tic)
220 {
221 if (head == &log->l_write_head) {
222 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
223 return tic->t_unit_res;
224 } else {
225 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
226 return tic->t_unit_res * tic->t_cnt;
227 else
228 return tic->t_unit_res;
229 }
230 }
231
232 STATIC bool
233 xlog_grant_head_wake(
234 struct xlog *log,
235 struct xlog_grant_head *head,
236 int *free_bytes)
237 {
238 struct xlog_ticket *tic;
239 int need_bytes;
240
241 list_for_each_entry(tic, &head->waiters, t_queue) {
242 need_bytes = xlog_ticket_reservation(log, head, tic);
243 if (*free_bytes < need_bytes)
244 return false;
245
246 *free_bytes -= need_bytes;
247 trace_xfs_log_grant_wake_up(log, tic);
248 wake_up_process(tic->t_task);
249 }
250
251 return true;
252 }
253
254 STATIC int
255 xlog_grant_head_wait(
256 struct xlog *log,
257 struct xlog_grant_head *head,
258 struct xlog_ticket *tic,
259 int need_bytes)
260 {
261 list_add_tail(&tic->t_queue, &head->waiters);
262
263 do {
264 if (XLOG_FORCED_SHUTDOWN(log))
265 goto shutdown;
266 xlog_grant_push_ail(log, need_bytes);
267
268 __set_current_state(TASK_UNINTERRUPTIBLE);
269 spin_unlock(&head->lock);
270
271 XFS_STATS_INC(xs_sleep_logspace);
272
273 trace_xfs_log_grant_sleep(log, tic);
274 schedule();
275 trace_xfs_log_grant_wake(log, tic);
276
277 spin_lock(&head->lock);
278 if (XLOG_FORCED_SHUTDOWN(log))
279 goto shutdown;
280 } while (xlog_space_left(log, &head->grant) < need_bytes);
281
282 list_del_init(&tic->t_queue);
283 return 0;
284 shutdown:
285 list_del_init(&tic->t_queue);
286 return XFS_ERROR(EIO);
287 }
288
289 /*
290 * Atomically get the log space required for a log ticket.
291 *
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
294 *
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
298 * every pass.
299 *
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
305 */
306 STATIC int
307 xlog_grant_head_check(
308 struct xlog *log,
309 struct xlog_grant_head *head,
310 struct xlog_ticket *tic,
311 int *need_bytes)
312 {
313 int free_bytes;
314 int error = 0;
315
316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318 /*
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
323 */
324 *need_bytes = xlog_ticket_reservation(log, head, tic);
325 free_bytes = xlog_space_left(log, &head->grant);
326 if (!list_empty_careful(&head->waiters)) {
327 spin_lock(&head->lock);
328 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 free_bytes < *need_bytes) {
330 error = xlog_grant_head_wait(log, head, tic,
331 *need_bytes);
332 }
333 spin_unlock(&head->lock);
334 } else if (free_bytes < *need_bytes) {
335 spin_lock(&head->lock);
336 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 spin_unlock(&head->lock);
338 }
339
340 return error;
341 }
342
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 tic->t_res_num = 0;
347 tic->t_res_arr_sum = 0;
348 tic->t_res_num_ophdrs = 0;
349 }
350
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 /* add to overflow and start again */
356 tic->t_res_o_flow += tic->t_res_arr_sum;
357 tic->t_res_num = 0;
358 tic->t_res_arr_sum = 0;
359 }
360
361 tic->t_res_arr[tic->t_res_num].r_len = len;
362 tic->t_res_arr[tic->t_res_num].r_type = type;
363 tic->t_res_arr_sum += len;
364 tic->t_res_num++;
365 }
366
367 /*
368 * Replenish the byte reservation required by moving the grant write head.
369 */
370 int
371 xfs_log_regrant(
372 struct xfs_mount *mp,
373 struct xlog_ticket *tic)
374 {
375 struct xlog *log = mp->m_log;
376 int need_bytes;
377 int error = 0;
378
379 if (XLOG_FORCED_SHUTDOWN(log))
380 return XFS_ERROR(EIO);
381
382 XFS_STATS_INC(xs_try_logspace);
383
384 /*
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
389 */
390 tic->t_tid++;
391
392 xlog_grant_push_ail(log, tic->t_unit_res);
393
394 tic->t_curr_res = tic->t_unit_res;
395 xlog_tic_reset_res(tic);
396
397 if (tic->t_cnt > 0)
398 return 0;
399
400 trace_xfs_log_regrant(log, tic);
401
402 error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 &need_bytes);
404 if (error)
405 goto out_error;
406
407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 trace_xfs_log_regrant_exit(log, tic);
409 xlog_verify_grant_tail(log);
410 return 0;
411
412 out_error:
413 /*
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
417 */
418 tic->t_curr_res = 0;
419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420 return error;
421 }
422
423 /*
424 * Reserve log space and return a ticket corresponding the reservation.
425 *
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
430 */
431 int
432 xfs_log_reserve(
433 struct xfs_mount *mp,
434 int unit_bytes,
435 int cnt,
436 struct xlog_ticket **ticp,
437 __uint8_t client,
438 bool permanent,
439 uint t_type)
440 {
441 struct xlog *log = mp->m_log;
442 struct xlog_ticket *tic;
443 int need_bytes;
444 int error = 0;
445
446 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447
448 if (XLOG_FORCED_SHUTDOWN(log))
449 return XFS_ERROR(EIO);
450
451 XFS_STATS_INC(xs_try_logspace);
452
453 ASSERT(*ticp == NULL);
454 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 KM_SLEEP | KM_MAYFAIL);
456 if (!tic)
457 return XFS_ERROR(ENOMEM);
458
459 tic->t_trans_type = t_type;
460 *ticp = tic;
461
462 xlog_grant_push_ail(log, tic->t_unit_res * tic->t_cnt);
463
464 trace_xfs_log_reserve(log, tic);
465
466 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
467 &need_bytes);
468 if (error)
469 goto out_error;
470
471 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
472 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
473 trace_xfs_log_reserve_exit(log, tic);
474 xlog_verify_grant_tail(log);
475 return 0;
476
477 out_error:
478 /*
479 * If we are failing, make sure the ticket doesn't have any current
480 * reservations. We don't want to add this back when the ticket/
481 * transaction gets cancelled.
482 */
483 tic->t_curr_res = 0;
484 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
485 return error;
486 }
487
488
489 /*
490 * NOTES:
491 *
492 * 1. currblock field gets updated at startup and after in-core logs
493 * marked as with WANT_SYNC.
494 */
495
496 /*
497 * This routine is called when a user of a log manager ticket is done with
498 * the reservation. If the ticket was ever used, then a commit record for
499 * the associated transaction is written out as a log operation header with
500 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
501 * a given ticket. If the ticket was one with a permanent reservation, then
502 * a few operations are done differently. Permanent reservation tickets by
503 * default don't release the reservation. They just commit the current
504 * transaction with the belief that the reservation is still needed. A flag
505 * must be passed in before permanent reservations are actually released.
506 * When these type of tickets are not released, they need to be set into
507 * the inited state again. By doing this, a start record will be written
508 * out when the next write occurs.
509 */
510 xfs_lsn_t
511 xfs_log_done(
512 struct xfs_mount *mp,
513 struct xlog_ticket *ticket,
514 struct xlog_in_core **iclog,
515 uint flags)
516 {
517 struct xlog *log = mp->m_log;
518 xfs_lsn_t lsn = 0;
519
520 if (XLOG_FORCED_SHUTDOWN(log) ||
521 /*
522 * If nothing was ever written, don't write out commit record.
523 * If we get an error, just continue and give back the log ticket.
524 */
525 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
526 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
527 lsn = (xfs_lsn_t) -1;
528 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
529 flags |= XFS_LOG_REL_PERM_RESERV;
530 }
531 }
532
533
534 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
535 (flags & XFS_LOG_REL_PERM_RESERV)) {
536 trace_xfs_log_done_nonperm(log, ticket);
537
538 /*
539 * Release ticket if not permanent reservation or a specific
540 * request has been made to release a permanent reservation.
541 */
542 xlog_ungrant_log_space(log, ticket);
543 xfs_log_ticket_put(ticket);
544 } else {
545 trace_xfs_log_done_perm(log, ticket);
546
547 xlog_regrant_reserve_log_space(log, ticket);
548 /* If this ticket was a permanent reservation and we aren't
549 * trying to release it, reset the inited flags; so next time
550 * we write, a start record will be written out.
551 */
552 ticket->t_flags |= XLOG_TIC_INITED;
553 }
554
555 return lsn;
556 }
557
558 /*
559 * Attaches a new iclog I/O completion callback routine during
560 * transaction commit. If the log is in error state, a non-zero
561 * return code is handed back and the caller is responsible for
562 * executing the callback at an appropriate time.
563 */
564 int
565 xfs_log_notify(
566 struct xfs_mount *mp,
567 struct xlog_in_core *iclog,
568 xfs_log_callback_t *cb)
569 {
570 int abortflg;
571
572 spin_lock(&iclog->ic_callback_lock);
573 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
574 if (!abortflg) {
575 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
576 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
577 cb->cb_next = NULL;
578 *(iclog->ic_callback_tail) = cb;
579 iclog->ic_callback_tail = &(cb->cb_next);
580 }
581 spin_unlock(&iclog->ic_callback_lock);
582 return abortflg;
583 }
584
585 int
586 xfs_log_release_iclog(
587 struct xfs_mount *mp,
588 struct xlog_in_core *iclog)
589 {
590 if (xlog_state_release_iclog(mp->m_log, iclog)) {
591 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
592 return EIO;
593 }
594
595 return 0;
596 }
597
598 /*
599 * Mount a log filesystem
600 *
601 * mp - ubiquitous xfs mount point structure
602 * log_target - buftarg of on-disk log device
603 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
604 * num_bblocks - Number of BBSIZE blocks in on-disk log
605 *
606 * Return error or zero.
607 */
608 int
609 xfs_log_mount(
610 xfs_mount_t *mp,
611 xfs_buftarg_t *log_target,
612 xfs_daddr_t blk_offset,
613 int num_bblks)
614 {
615 int error;
616
617 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
618 xfs_notice(mp, "Mounting Filesystem");
619 else {
620 xfs_notice(mp,
621 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
622 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
623 }
624
625 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
626 if (IS_ERR(mp->m_log)) {
627 error = -PTR_ERR(mp->m_log);
628 goto out;
629 }
630
631 /*
632 * Initialize the AIL now we have a log.
633 */
634 error = xfs_trans_ail_init(mp);
635 if (error) {
636 xfs_warn(mp, "AIL initialisation failed: error %d", error);
637 goto out_free_log;
638 }
639 mp->m_log->l_ailp = mp->m_ail;
640
641 /*
642 * skip log recovery on a norecovery mount. pretend it all
643 * just worked.
644 */
645 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
646 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
647
648 if (readonly)
649 mp->m_flags &= ~XFS_MOUNT_RDONLY;
650
651 error = xlog_recover(mp->m_log);
652
653 if (readonly)
654 mp->m_flags |= XFS_MOUNT_RDONLY;
655 if (error) {
656 xfs_warn(mp, "log mount/recovery failed: error %d",
657 error);
658 goto out_destroy_ail;
659 }
660 }
661
662 /* Normal transactions can now occur */
663 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
664
665 /*
666 * Now the log has been fully initialised and we know were our
667 * space grant counters are, we can initialise the permanent ticket
668 * needed for delayed logging to work.
669 */
670 xlog_cil_init_post_recovery(mp->m_log);
671
672 return 0;
673
674 out_destroy_ail:
675 xfs_trans_ail_destroy(mp);
676 out_free_log:
677 xlog_dealloc_log(mp->m_log);
678 out:
679 return error;
680 }
681
682 /*
683 * Finish the recovery of the file system. This is separate from the
684 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
685 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
686 * here.
687 *
688 * If we finish recovery successfully, start the background log work. If we are
689 * not doing recovery, then we have a RO filesystem and we don't need to start
690 * it.
691 */
692 int
693 xfs_log_mount_finish(xfs_mount_t *mp)
694 {
695 int error = 0;
696
697 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
698 error = xlog_recover_finish(mp->m_log);
699 if (!error)
700 xfs_log_work_queue(mp);
701 } else {
702 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
703 }
704
705
706 return error;
707 }
708
709 /*
710 * Final log writes as part of unmount.
711 *
712 * Mark the filesystem clean as unmount happens. Note that during relocation
713 * this routine needs to be executed as part of source-bag while the
714 * deallocation must not be done until source-end.
715 */
716
717 /*
718 * Unmount record used to have a string "Unmount filesystem--" in the
719 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
720 * We just write the magic number now since that particular field isn't
721 * currently architecture converted and "nUmount" is a bit foo.
722 * As far as I know, there weren't any dependencies on the old behaviour.
723 */
724
725 int
726 xfs_log_unmount_write(xfs_mount_t *mp)
727 {
728 struct xlog *log = mp->m_log;
729 xlog_in_core_t *iclog;
730 #ifdef DEBUG
731 xlog_in_core_t *first_iclog;
732 #endif
733 xlog_ticket_t *tic = NULL;
734 xfs_lsn_t lsn;
735 int error;
736
737 /*
738 * Don't write out unmount record on read-only mounts.
739 * Or, if we are doing a forced umount (typically because of IO errors).
740 */
741 if (mp->m_flags & XFS_MOUNT_RDONLY)
742 return 0;
743
744 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
745 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
746
747 #ifdef DEBUG
748 first_iclog = iclog = log->l_iclog;
749 do {
750 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
751 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
752 ASSERT(iclog->ic_offset == 0);
753 }
754 iclog = iclog->ic_next;
755 } while (iclog != first_iclog);
756 #endif
757 if (! (XLOG_FORCED_SHUTDOWN(log))) {
758 error = xfs_log_reserve(mp, 600, 1, &tic,
759 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
760 if (!error) {
761 /* the data section must be 32 bit size aligned */
762 struct {
763 __uint16_t magic;
764 __uint16_t pad1;
765 __uint32_t pad2; /* may as well make it 64 bits */
766 } magic = {
767 .magic = XLOG_UNMOUNT_TYPE,
768 };
769 struct xfs_log_iovec reg = {
770 .i_addr = &magic,
771 .i_len = sizeof(magic),
772 .i_type = XLOG_REG_TYPE_UNMOUNT,
773 };
774 struct xfs_log_vec vec = {
775 .lv_niovecs = 1,
776 .lv_iovecp = &reg,
777 };
778
779 /* remove inited flag, and account for space used */
780 tic->t_flags = 0;
781 tic->t_curr_res -= sizeof(magic);
782 error = xlog_write(log, &vec, tic, &lsn,
783 NULL, XLOG_UNMOUNT_TRANS);
784 /*
785 * At this point, we're umounting anyway,
786 * so there's no point in transitioning log state
787 * to IOERROR. Just continue...
788 */
789 }
790
791 if (error)
792 xfs_alert(mp, "%s: unmount record failed", __func__);
793
794
795 spin_lock(&log->l_icloglock);
796 iclog = log->l_iclog;
797 atomic_inc(&iclog->ic_refcnt);
798 xlog_state_want_sync(log, iclog);
799 spin_unlock(&log->l_icloglock);
800 error = xlog_state_release_iclog(log, iclog);
801
802 spin_lock(&log->l_icloglock);
803 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
804 iclog->ic_state == XLOG_STATE_DIRTY)) {
805 if (!XLOG_FORCED_SHUTDOWN(log)) {
806 xlog_wait(&iclog->ic_force_wait,
807 &log->l_icloglock);
808 } else {
809 spin_unlock(&log->l_icloglock);
810 }
811 } else {
812 spin_unlock(&log->l_icloglock);
813 }
814 if (tic) {
815 trace_xfs_log_umount_write(log, tic);
816 xlog_ungrant_log_space(log, tic);
817 xfs_log_ticket_put(tic);
818 }
819 } else {
820 /*
821 * We're already in forced_shutdown mode, couldn't
822 * even attempt to write out the unmount transaction.
823 *
824 * Go through the motions of sync'ing and releasing
825 * the iclog, even though no I/O will actually happen,
826 * we need to wait for other log I/Os that may already
827 * be in progress. Do this as a separate section of
828 * code so we'll know if we ever get stuck here that
829 * we're in this odd situation of trying to unmount
830 * a file system that went into forced_shutdown as
831 * the result of an unmount..
832 */
833 spin_lock(&log->l_icloglock);
834 iclog = log->l_iclog;
835 atomic_inc(&iclog->ic_refcnt);
836
837 xlog_state_want_sync(log, iclog);
838 spin_unlock(&log->l_icloglock);
839 error = xlog_state_release_iclog(log, iclog);
840
841 spin_lock(&log->l_icloglock);
842
843 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
844 || iclog->ic_state == XLOG_STATE_DIRTY
845 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
846
847 xlog_wait(&iclog->ic_force_wait,
848 &log->l_icloglock);
849 } else {
850 spin_unlock(&log->l_icloglock);
851 }
852 }
853
854 return error;
855 } /* xfs_log_unmount_write */
856
857 /*
858 * Empty the log for unmount/freeze.
859 *
860 * To do this, we first need to shut down the background log work so it is not
861 * trying to cover the log as we clean up. We then need to unpin all objects in
862 * the log so we can then flush them out. Once they have completed their IO and
863 * run the callbacks removing themselves from the AIL, we can write the unmount
864 * record.
865 */
866 void
867 xfs_log_quiesce(
868 struct xfs_mount *mp)
869 {
870 cancel_delayed_work_sync(&mp->m_log->l_work);
871 xfs_log_force(mp, XFS_LOG_SYNC);
872
873 /*
874 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
875 * will push it, xfs_wait_buftarg() will not wait for it. Further,
876 * xfs_buf_iowait() cannot be used because it was pushed with the
877 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
878 * the IO to complete.
879 */
880 xfs_ail_push_all_sync(mp->m_ail);
881 xfs_wait_buftarg(mp->m_ddev_targp);
882 xfs_buf_lock(mp->m_sb_bp);
883 xfs_buf_unlock(mp->m_sb_bp);
884
885 xfs_log_unmount_write(mp);
886 }
887
888 /*
889 * Shut down and release the AIL and Log.
890 *
891 * During unmount, we need to ensure we flush all the dirty metadata objects
892 * from the AIL so that the log is empty before we write the unmount record to
893 * the log. Once this is done, we can tear down the AIL and the log.
894 */
895 void
896 xfs_log_unmount(
897 struct xfs_mount *mp)
898 {
899 xfs_log_quiesce(mp);
900
901 xfs_trans_ail_destroy(mp);
902 xlog_dealloc_log(mp->m_log);
903 }
904
905 void
906 xfs_log_item_init(
907 struct xfs_mount *mp,
908 struct xfs_log_item *item,
909 int type,
910 const struct xfs_item_ops *ops)
911 {
912 item->li_mountp = mp;
913 item->li_ailp = mp->m_ail;
914 item->li_type = type;
915 item->li_ops = ops;
916 item->li_lv = NULL;
917
918 INIT_LIST_HEAD(&item->li_ail);
919 INIT_LIST_HEAD(&item->li_cil);
920 }
921
922 /*
923 * Wake up processes waiting for log space after we have moved the log tail.
924 */
925 void
926 xfs_log_space_wake(
927 struct xfs_mount *mp)
928 {
929 struct xlog *log = mp->m_log;
930 int free_bytes;
931
932 if (XLOG_FORCED_SHUTDOWN(log))
933 return;
934
935 if (!list_empty_careful(&log->l_write_head.waiters)) {
936 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
937
938 spin_lock(&log->l_write_head.lock);
939 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
940 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
941 spin_unlock(&log->l_write_head.lock);
942 }
943
944 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
945 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
946
947 spin_lock(&log->l_reserve_head.lock);
948 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
949 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
950 spin_unlock(&log->l_reserve_head.lock);
951 }
952 }
953
954 /*
955 * Determine if we have a transaction that has gone to disk
956 * that needs to be covered. To begin the transition to the idle state
957 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
958 * If we are then in a state where covering is needed, the caller is informed
959 * that dummy transactions are required to move the log into the idle state.
960 *
961 * Because this is called as part of the sync process, we should also indicate
962 * that dummy transactions should be issued in anything but the covered or
963 * idle states. This ensures that the log tail is accurately reflected in
964 * the log at the end of the sync, hence if a crash occurrs avoids replay
965 * of transactions where the metadata is already on disk.
966 */
967 int
968 xfs_log_need_covered(xfs_mount_t *mp)
969 {
970 int needed = 0;
971 struct xlog *log = mp->m_log;
972
973 if (!xfs_fs_writable(mp))
974 return 0;
975
976 spin_lock(&log->l_icloglock);
977 switch (log->l_covered_state) {
978 case XLOG_STATE_COVER_DONE:
979 case XLOG_STATE_COVER_DONE2:
980 case XLOG_STATE_COVER_IDLE:
981 break;
982 case XLOG_STATE_COVER_NEED:
983 case XLOG_STATE_COVER_NEED2:
984 if (!xfs_ail_min_lsn(log->l_ailp) &&
985 xlog_iclogs_empty(log)) {
986 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
987 log->l_covered_state = XLOG_STATE_COVER_DONE;
988 else
989 log->l_covered_state = XLOG_STATE_COVER_DONE2;
990 }
991 /* FALLTHRU */
992 default:
993 needed = 1;
994 break;
995 }
996 spin_unlock(&log->l_icloglock);
997 return needed;
998 }
999
1000 /*
1001 * We may be holding the log iclog lock upon entering this routine.
1002 */
1003 xfs_lsn_t
1004 xlog_assign_tail_lsn_locked(
1005 struct xfs_mount *mp)
1006 {
1007 struct xlog *log = mp->m_log;
1008 struct xfs_log_item *lip;
1009 xfs_lsn_t tail_lsn;
1010
1011 assert_spin_locked(&mp->m_ail->xa_lock);
1012
1013 /*
1014 * To make sure we always have a valid LSN for the log tail we keep
1015 * track of the last LSN which was committed in log->l_last_sync_lsn,
1016 * and use that when the AIL was empty.
1017 */
1018 lip = xfs_ail_min(mp->m_ail);
1019 if (lip)
1020 tail_lsn = lip->li_lsn;
1021 else
1022 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1023 atomic64_set(&log->l_tail_lsn, tail_lsn);
1024 return tail_lsn;
1025 }
1026
1027 xfs_lsn_t
1028 xlog_assign_tail_lsn(
1029 struct xfs_mount *mp)
1030 {
1031 xfs_lsn_t tail_lsn;
1032
1033 spin_lock(&mp->m_ail->xa_lock);
1034 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1035 spin_unlock(&mp->m_ail->xa_lock);
1036
1037 return tail_lsn;
1038 }
1039
1040 /*
1041 * Return the space in the log between the tail and the head. The head
1042 * is passed in the cycle/bytes formal parms. In the special case where
1043 * the reserve head has wrapped passed the tail, this calculation is no
1044 * longer valid. In this case, just return 0 which means there is no space
1045 * in the log. This works for all places where this function is called
1046 * with the reserve head. Of course, if the write head were to ever
1047 * wrap the tail, we should blow up. Rather than catch this case here,
1048 * we depend on other ASSERTions in other parts of the code. XXXmiken
1049 *
1050 * This code also handles the case where the reservation head is behind
1051 * the tail. The details of this case are described below, but the end
1052 * result is that we return the size of the log as the amount of space left.
1053 */
1054 STATIC int
1055 xlog_space_left(
1056 struct xlog *log,
1057 atomic64_t *head)
1058 {
1059 int free_bytes;
1060 int tail_bytes;
1061 int tail_cycle;
1062 int head_cycle;
1063 int head_bytes;
1064
1065 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1066 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1067 tail_bytes = BBTOB(tail_bytes);
1068 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1069 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1070 else if (tail_cycle + 1 < head_cycle)
1071 return 0;
1072 else if (tail_cycle < head_cycle) {
1073 ASSERT(tail_cycle == (head_cycle - 1));
1074 free_bytes = tail_bytes - head_bytes;
1075 } else {
1076 /*
1077 * The reservation head is behind the tail.
1078 * In this case we just want to return the size of the
1079 * log as the amount of space left.
1080 */
1081 xfs_alert(log->l_mp,
1082 "xlog_space_left: head behind tail\n"
1083 " tail_cycle = %d, tail_bytes = %d\n"
1084 " GH cycle = %d, GH bytes = %d",
1085 tail_cycle, tail_bytes, head_cycle, head_bytes);
1086 ASSERT(0);
1087 free_bytes = log->l_logsize;
1088 }
1089 return free_bytes;
1090 }
1091
1092
1093 /*
1094 * Log function which is called when an io completes.
1095 *
1096 * The log manager needs its own routine, in order to control what
1097 * happens with the buffer after the write completes.
1098 */
1099 void
1100 xlog_iodone(xfs_buf_t *bp)
1101 {
1102 struct xlog_in_core *iclog = bp->b_fspriv;
1103 struct xlog *l = iclog->ic_log;
1104 int aborted = 0;
1105
1106 /*
1107 * Race to shutdown the filesystem if we see an error.
1108 */
1109 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1110 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1111 xfs_buf_ioerror_alert(bp, __func__);
1112 xfs_buf_stale(bp);
1113 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1114 /*
1115 * This flag will be propagated to the trans-committed
1116 * callback routines to let them know that the log-commit
1117 * didn't succeed.
1118 */
1119 aborted = XFS_LI_ABORTED;
1120 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1121 aborted = XFS_LI_ABORTED;
1122 }
1123
1124 /* log I/O is always issued ASYNC */
1125 ASSERT(XFS_BUF_ISASYNC(bp));
1126 xlog_state_done_syncing(iclog, aborted);
1127 /*
1128 * do not reference the buffer (bp) here as we could race
1129 * with it being freed after writing the unmount record to the
1130 * log.
1131 */
1132
1133 } /* xlog_iodone */
1134
1135 /*
1136 * Return size of each in-core log record buffer.
1137 *
1138 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1139 *
1140 * If the filesystem blocksize is too large, we may need to choose a
1141 * larger size since the directory code currently logs entire blocks.
1142 */
1143
1144 STATIC void
1145 xlog_get_iclog_buffer_size(
1146 struct xfs_mount *mp,
1147 struct xlog *log)
1148 {
1149 int size;
1150 int xhdrs;
1151
1152 if (mp->m_logbufs <= 0)
1153 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1154 else
1155 log->l_iclog_bufs = mp->m_logbufs;
1156
1157 /*
1158 * Buffer size passed in from mount system call.
1159 */
1160 if (mp->m_logbsize > 0) {
1161 size = log->l_iclog_size = mp->m_logbsize;
1162 log->l_iclog_size_log = 0;
1163 while (size != 1) {
1164 log->l_iclog_size_log++;
1165 size >>= 1;
1166 }
1167
1168 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1169 /* # headers = size / 32k
1170 * one header holds cycles from 32k of data
1171 */
1172
1173 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1174 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1175 xhdrs++;
1176 log->l_iclog_hsize = xhdrs << BBSHIFT;
1177 log->l_iclog_heads = xhdrs;
1178 } else {
1179 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1180 log->l_iclog_hsize = BBSIZE;
1181 log->l_iclog_heads = 1;
1182 }
1183 goto done;
1184 }
1185
1186 /* All machines use 32kB buffers by default. */
1187 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1188 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1189
1190 /* the default log size is 16k or 32k which is one header sector */
1191 log->l_iclog_hsize = BBSIZE;
1192 log->l_iclog_heads = 1;
1193
1194 done:
1195 /* are we being asked to make the sizes selected above visible? */
1196 if (mp->m_logbufs == 0)
1197 mp->m_logbufs = log->l_iclog_bufs;
1198 if (mp->m_logbsize == 0)
1199 mp->m_logbsize = log->l_iclog_size;
1200 } /* xlog_get_iclog_buffer_size */
1201
1202
1203 void
1204 xfs_log_work_queue(
1205 struct xfs_mount *mp)
1206 {
1207 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1208 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1209 }
1210
1211 /*
1212 * Every sync period we need to unpin all items in the AIL and push them to
1213 * disk. If there is nothing dirty, then we might need to cover the log to
1214 * indicate that the filesystem is idle.
1215 */
1216 void
1217 xfs_log_worker(
1218 struct work_struct *work)
1219 {
1220 struct xlog *log = container_of(to_delayed_work(work),
1221 struct xlog, l_work);
1222 struct xfs_mount *mp = log->l_mp;
1223
1224 /* dgc: errors ignored - not fatal and nowhere to report them */
1225 if (xfs_log_need_covered(mp))
1226 xfs_fs_log_dummy(mp);
1227 else
1228 xfs_log_force(mp, 0);
1229
1230 /* start pushing all the metadata that is currently dirty */
1231 xfs_ail_push_all(mp->m_ail);
1232
1233 /* queue us up again */
1234 xfs_log_work_queue(mp);
1235 }
1236
1237 /*
1238 * This routine initializes some of the log structure for a given mount point.
1239 * Its primary purpose is to fill in enough, so recovery can occur. However,
1240 * some other stuff may be filled in too.
1241 */
1242 STATIC struct xlog *
1243 xlog_alloc_log(
1244 struct xfs_mount *mp,
1245 struct xfs_buftarg *log_target,
1246 xfs_daddr_t blk_offset,
1247 int num_bblks)
1248 {
1249 struct xlog *log;
1250 xlog_rec_header_t *head;
1251 xlog_in_core_t **iclogp;
1252 xlog_in_core_t *iclog, *prev_iclog=NULL;
1253 xfs_buf_t *bp;
1254 int i;
1255 int error = ENOMEM;
1256 uint log2_size = 0;
1257
1258 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1259 if (!log) {
1260 xfs_warn(mp, "Log allocation failed: No memory!");
1261 goto out;
1262 }
1263
1264 log->l_mp = mp;
1265 log->l_targ = log_target;
1266 log->l_logsize = BBTOB(num_bblks);
1267 log->l_logBBstart = blk_offset;
1268 log->l_logBBsize = num_bblks;
1269 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1270 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1271 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1272
1273 log->l_prev_block = -1;
1274 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1275 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1276 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1277 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1278
1279 xlog_grant_head_init(&log->l_reserve_head);
1280 xlog_grant_head_init(&log->l_write_head);
1281
1282 error = EFSCORRUPTED;
1283 if (xfs_sb_version_hassector(&mp->m_sb)) {
1284 log2_size = mp->m_sb.sb_logsectlog;
1285 if (log2_size < BBSHIFT) {
1286 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1287 log2_size, BBSHIFT);
1288 goto out_free_log;
1289 }
1290
1291 log2_size -= BBSHIFT;
1292 if (log2_size > mp->m_sectbb_log) {
1293 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1294 log2_size, mp->m_sectbb_log);
1295 goto out_free_log;
1296 }
1297
1298 /* for larger sector sizes, must have v2 or external log */
1299 if (log2_size && log->l_logBBstart > 0 &&
1300 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1301 xfs_warn(mp,
1302 "log sector size (0x%x) invalid for configuration.",
1303 log2_size);
1304 goto out_free_log;
1305 }
1306 }
1307 log->l_sectBBsize = 1 << log2_size;
1308
1309 xlog_get_iclog_buffer_size(mp, log);
1310
1311 error = ENOMEM;
1312 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1313 if (!bp)
1314 goto out_free_log;
1315 bp->b_iodone = xlog_iodone;
1316 ASSERT(xfs_buf_islocked(bp));
1317 log->l_xbuf = bp;
1318
1319 spin_lock_init(&log->l_icloglock);
1320 init_waitqueue_head(&log->l_flush_wait);
1321
1322 iclogp = &log->l_iclog;
1323 /*
1324 * The amount of memory to allocate for the iclog structure is
1325 * rather funky due to the way the structure is defined. It is
1326 * done this way so that we can use different sizes for machines
1327 * with different amounts of memory. See the definition of
1328 * xlog_in_core_t in xfs_log_priv.h for details.
1329 */
1330 ASSERT(log->l_iclog_size >= 4096);
1331 for (i=0; i < log->l_iclog_bufs; i++) {
1332 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1333 if (!*iclogp)
1334 goto out_free_iclog;
1335
1336 iclog = *iclogp;
1337 iclog->ic_prev = prev_iclog;
1338 prev_iclog = iclog;
1339
1340 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1341 BTOBB(log->l_iclog_size), 0);
1342 if (!bp)
1343 goto out_free_iclog;
1344
1345 bp->b_iodone = xlog_iodone;
1346 iclog->ic_bp = bp;
1347 iclog->ic_data = bp->b_addr;
1348 #ifdef DEBUG
1349 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1350 #endif
1351 head = &iclog->ic_header;
1352 memset(head, 0, sizeof(xlog_rec_header_t));
1353 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1354 head->h_version = cpu_to_be32(
1355 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1356 head->h_size = cpu_to_be32(log->l_iclog_size);
1357 /* new fields */
1358 head->h_fmt = cpu_to_be32(XLOG_FMT);
1359 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1360
1361 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1362 iclog->ic_state = XLOG_STATE_ACTIVE;
1363 iclog->ic_log = log;
1364 atomic_set(&iclog->ic_refcnt, 0);
1365 spin_lock_init(&iclog->ic_callback_lock);
1366 iclog->ic_callback_tail = &(iclog->ic_callback);
1367 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1368
1369 ASSERT(xfs_buf_islocked(iclog->ic_bp));
1370 init_waitqueue_head(&iclog->ic_force_wait);
1371 init_waitqueue_head(&iclog->ic_write_wait);
1372
1373 iclogp = &iclog->ic_next;
1374 }
1375 *iclogp = log->l_iclog; /* complete ring */
1376 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1377
1378 error = xlog_cil_init(log);
1379 if (error)
1380 goto out_free_iclog;
1381 return log;
1382
1383 out_free_iclog:
1384 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1385 prev_iclog = iclog->ic_next;
1386 if (iclog->ic_bp)
1387 xfs_buf_free(iclog->ic_bp);
1388 kmem_free(iclog);
1389 }
1390 spinlock_destroy(&log->l_icloglock);
1391 xfs_buf_free(log->l_xbuf);
1392 out_free_log:
1393 kmem_free(log);
1394 out:
1395 return ERR_PTR(-error);
1396 } /* xlog_alloc_log */
1397
1398
1399 /*
1400 * Write out the commit record of a transaction associated with the given
1401 * ticket. Return the lsn of the commit record.
1402 */
1403 STATIC int
1404 xlog_commit_record(
1405 struct xlog *log,
1406 struct xlog_ticket *ticket,
1407 struct xlog_in_core **iclog,
1408 xfs_lsn_t *commitlsnp)
1409 {
1410 struct xfs_mount *mp = log->l_mp;
1411 int error;
1412 struct xfs_log_iovec reg = {
1413 .i_addr = NULL,
1414 .i_len = 0,
1415 .i_type = XLOG_REG_TYPE_COMMIT,
1416 };
1417 struct xfs_log_vec vec = {
1418 .lv_niovecs = 1,
1419 .lv_iovecp = &reg,
1420 };
1421
1422 ASSERT_ALWAYS(iclog);
1423 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1424 XLOG_COMMIT_TRANS);
1425 if (error)
1426 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1427 return error;
1428 }
1429
1430 /*
1431 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1432 * log space. This code pushes on the lsn which would supposedly free up
1433 * the 25% which we want to leave free. We may need to adopt a policy which
1434 * pushes on an lsn which is further along in the log once we reach the high
1435 * water mark. In this manner, we would be creating a low water mark.
1436 */
1437 STATIC void
1438 xlog_grant_push_ail(
1439 struct xlog *log,
1440 int need_bytes)
1441 {
1442 xfs_lsn_t threshold_lsn = 0;
1443 xfs_lsn_t last_sync_lsn;
1444 int free_blocks;
1445 int free_bytes;
1446 int threshold_block;
1447 int threshold_cycle;
1448 int free_threshold;
1449
1450 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1451
1452 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1453 free_blocks = BTOBBT(free_bytes);
1454
1455 /*
1456 * Set the threshold for the minimum number of free blocks in the
1457 * log to the maximum of what the caller needs, one quarter of the
1458 * log, and 256 blocks.
1459 */
1460 free_threshold = BTOBB(need_bytes);
1461 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1462 free_threshold = MAX(free_threshold, 256);
1463 if (free_blocks >= free_threshold)
1464 return;
1465
1466 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1467 &threshold_block);
1468 threshold_block += free_threshold;
1469 if (threshold_block >= log->l_logBBsize) {
1470 threshold_block -= log->l_logBBsize;
1471 threshold_cycle += 1;
1472 }
1473 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1474 threshold_block);
1475 /*
1476 * Don't pass in an lsn greater than the lsn of the last
1477 * log record known to be on disk. Use a snapshot of the last sync lsn
1478 * so that it doesn't change between the compare and the set.
1479 */
1480 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1481 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1482 threshold_lsn = last_sync_lsn;
1483
1484 /*
1485 * Get the transaction layer to kick the dirty buffers out to
1486 * disk asynchronously. No point in trying to do this if
1487 * the filesystem is shutting down.
1488 */
1489 if (!XLOG_FORCED_SHUTDOWN(log))
1490 xfs_ail_push(log->l_ailp, threshold_lsn);
1491 }
1492
1493 /*
1494 * The bdstrat callback function for log bufs. This gives us a central
1495 * place to trap bufs in case we get hit by a log I/O error and need to
1496 * shutdown. Actually, in practice, even when we didn't get a log error,
1497 * we transition the iclogs to IOERROR state *after* flushing all existing
1498 * iclogs to disk. This is because we don't want anymore new transactions to be
1499 * started or completed afterwards.
1500 */
1501 STATIC int
1502 xlog_bdstrat(
1503 struct xfs_buf *bp)
1504 {
1505 struct xlog_in_core *iclog = bp->b_fspriv;
1506
1507 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1508 xfs_buf_ioerror(bp, EIO);
1509 xfs_buf_stale(bp);
1510 xfs_buf_ioend(bp, 0);
1511 /*
1512 * It would seem logical to return EIO here, but we rely on
1513 * the log state machine to propagate I/O errors instead of
1514 * doing it here.
1515 */
1516 return 0;
1517 }
1518
1519 xfs_buf_iorequest(bp);
1520 return 0;
1521 }
1522
1523 /*
1524 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1525 * fashion. Previously, we should have moved the current iclog
1526 * ptr in the log to point to the next available iclog. This allows further
1527 * write to continue while this code syncs out an iclog ready to go.
1528 * Before an in-core log can be written out, the data section must be scanned
1529 * to save away the 1st word of each BBSIZE block into the header. We replace
1530 * it with the current cycle count. Each BBSIZE block is tagged with the
1531 * cycle count because there in an implicit assumption that drives will
1532 * guarantee that entire 512 byte blocks get written at once. In other words,
1533 * we can't have part of a 512 byte block written and part not written. By
1534 * tagging each block, we will know which blocks are valid when recovering
1535 * after an unclean shutdown.
1536 *
1537 * This routine is single threaded on the iclog. No other thread can be in
1538 * this routine with the same iclog. Changing contents of iclog can there-
1539 * fore be done without grabbing the state machine lock. Updating the global
1540 * log will require grabbing the lock though.
1541 *
1542 * The entire log manager uses a logical block numbering scheme. Only
1543 * log_sync (and then only bwrite()) know about the fact that the log may
1544 * not start with block zero on a given device. The log block start offset
1545 * is added immediately before calling bwrite().
1546 */
1547
1548 STATIC int
1549 xlog_sync(
1550 struct xlog *log,
1551 struct xlog_in_core *iclog)
1552 {
1553 xfs_caddr_t dptr; /* pointer to byte sized element */
1554 xfs_buf_t *bp;
1555 int i;
1556 uint count; /* byte count of bwrite */
1557 uint count_init; /* initial count before roundup */
1558 int roundoff; /* roundoff to BB or stripe */
1559 int split = 0; /* split write into two regions */
1560 int error;
1561 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1562
1563 XFS_STATS_INC(xs_log_writes);
1564 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1565
1566 /* Add for LR header */
1567 count_init = log->l_iclog_hsize + iclog->ic_offset;
1568
1569 /* Round out the log write size */
1570 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1571 /* we have a v2 stripe unit to use */
1572 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1573 } else {
1574 count = BBTOB(BTOBB(count_init));
1575 }
1576 roundoff = count - count_init;
1577 ASSERT(roundoff >= 0);
1578 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1579 roundoff < log->l_mp->m_sb.sb_logsunit)
1580 ||
1581 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1582 roundoff < BBTOB(1)));
1583
1584 /* move grant heads by roundoff in sync */
1585 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1586 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1587
1588 /* put cycle number in every block */
1589 xlog_pack_data(log, iclog, roundoff);
1590
1591 /* real byte length */
1592 if (v2) {
1593 iclog->ic_header.h_len =
1594 cpu_to_be32(iclog->ic_offset + roundoff);
1595 } else {
1596 iclog->ic_header.h_len =
1597 cpu_to_be32(iclog->ic_offset);
1598 }
1599
1600 bp = iclog->ic_bp;
1601 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1602
1603 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1604
1605 /* Do we need to split this write into 2 parts? */
1606 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1607 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1608 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1609 iclog->ic_bwritecnt = 2; /* split into 2 writes */
1610 } else {
1611 iclog->ic_bwritecnt = 1;
1612 }
1613 bp->b_io_length = BTOBB(count);
1614 bp->b_fspriv = iclog;
1615 XFS_BUF_ZEROFLAGS(bp);
1616 XFS_BUF_ASYNC(bp);
1617 bp->b_flags |= XBF_SYNCIO;
1618
1619 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1620 bp->b_flags |= XBF_FUA;
1621
1622 /*
1623 * Flush the data device before flushing the log to make
1624 * sure all meta data written back from the AIL actually made
1625 * it to disk before stamping the new log tail LSN into the
1626 * log buffer. For an external log we need to issue the
1627 * flush explicitly, and unfortunately synchronously here;
1628 * for an internal log we can simply use the block layer
1629 * state machine for preflushes.
1630 */
1631 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1632 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1633 else
1634 bp->b_flags |= XBF_FLUSH;
1635 }
1636
1637 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1638 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1639
1640 xlog_verify_iclog(log, iclog, count, B_TRUE);
1641
1642 /* account for log which doesn't start at block #0 */
1643 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1644 /*
1645 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1646 * is shutting down.
1647 */
1648 XFS_BUF_WRITE(bp);
1649
1650 error = xlog_bdstrat(bp);
1651 if (error) {
1652 xfs_buf_ioerror_alert(bp, "xlog_sync");
1653 return error;
1654 }
1655 if (split) {
1656 bp = iclog->ic_log->l_xbuf;
1657 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1658 xfs_buf_associate_memory(bp,
1659 (char *)&iclog->ic_header + count, split);
1660 bp->b_fspriv = iclog;
1661 XFS_BUF_ZEROFLAGS(bp);
1662 XFS_BUF_ASYNC(bp);
1663 bp->b_flags |= XBF_SYNCIO;
1664 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1665 bp->b_flags |= XBF_FUA;
1666 dptr = bp->b_addr;
1667 /*
1668 * Bump the cycle numbers at the start of each block
1669 * since this part of the buffer is at the start of
1670 * a new cycle. Watch out for the header magic number
1671 * case, though.
1672 */
1673 for (i = 0; i < split; i += BBSIZE) {
1674 be32_add_cpu((__be32 *)dptr, 1);
1675 if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1676 be32_add_cpu((__be32 *)dptr, 1);
1677 dptr += BBSIZE;
1678 }
1679
1680 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1681 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1682
1683 /* account for internal log which doesn't start at block #0 */
1684 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1685 XFS_BUF_WRITE(bp);
1686 error = xlog_bdstrat(bp);
1687 if (error) {
1688 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1689 return error;
1690 }
1691 }
1692 return 0;
1693 } /* xlog_sync */
1694
1695
1696 /*
1697 * Deallocate a log structure
1698 */
1699 STATIC void
1700 xlog_dealloc_log(
1701 struct xlog *log)
1702 {
1703 xlog_in_core_t *iclog, *next_iclog;
1704 int i;
1705
1706 xlog_cil_destroy(log);
1707
1708 /*
1709 * always need to ensure that the extra buffer does not point to memory
1710 * owned by another log buffer before we free it.
1711 */
1712 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1713 xfs_buf_free(log->l_xbuf);
1714
1715 iclog = log->l_iclog;
1716 for (i=0; i<log->l_iclog_bufs; i++) {
1717 xfs_buf_free(iclog->ic_bp);
1718 next_iclog = iclog->ic_next;
1719 kmem_free(iclog);
1720 iclog = next_iclog;
1721 }
1722 spinlock_destroy(&log->l_icloglock);
1723
1724 log->l_mp->m_log = NULL;
1725 kmem_free(log);
1726 } /* xlog_dealloc_log */
1727
1728 /*
1729 * Update counters atomically now that memcpy is done.
1730 */
1731 /* ARGSUSED */
1732 static inline void
1733 xlog_state_finish_copy(
1734 struct xlog *log,
1735 struct xlog_in_core *iclog,
1736 int record_cnt,
1737 int copy_bytes)
1738 {
1739 spin_lock(&log->l_icloglock);
1740
1741 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1742 iclog->ic_offset += copy_bytes;
1743
1744 spin_unlock(&log->l_icloglock);
1745 } /* xlog_state_finish_copy */
1746
1747
1748
1749
1750 /*
1751 * print out info relating to regions written which consume
1752 * the reservation
1753 */
1754 void
1755 xlog_print_tic_res(
1756 struct xfs_mount *mp,
1757 struct xlog_ticket *ticket)
1758 {
1759 uint i;
1760 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1761
1762 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1763 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1764 "bformat",
1765 "bchunk",
1766 "efi_format",
1767 "efd_format",
1768 "iformat",
1769 "icore",
1770 "iext",
1771 "ibroot",
1772 "ilocal",
1773 "iattr_ext",
1774 "iattr_broot",
1775 "iattr_local",
1776 "qformat",
1777 "dquot",
1778 "quotaoff",
1779 "LR header",
1780 "unmount",
1781 "commit",
1782 "trans header"
1783 };
1784 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1785 "SETATTR_NOT_SIZE",
1786 "SETATTR_SIZE",
1787 "INACTIVE",
1788 "CREATE",
1789 "CREATE_TRUNC",
1790 "TRUNCATE_FILE",
1791 "REMOVE",
1792 "LINK",
1793 "RENAME",
1794 "MKDIR",
1795 "RMDIR",
1796 "SYMLINK",
1797 "SET_DMATTRS",
1798 "GROWFS",
1799 "STRAT_WRITE",
1800 "DIOSTRAT",
1801 "WRITE_SYNC",
1802 "WRITEID",
1803 "ADDAFORK",
1804 "ATTRINVAL",
1805 "ATRUNCATE",
1806 "ATTR_SET",
1807 "ATTR_RM",
1808 "ATTR_FLAG",
1809 "CLEAR_AGI_BUCKET",
1810 "QM_SBCHANGE",
1811 "DUMMY1",
1812 "DUMMY2",
1813 "QM_QUOTAOFF",
1814 "QM_DQALLOC",
1815 "QM_SETQLIM",
1816 "QM_DQCLUSTER",
1817 "QM_QINOCREATE",
1818 "QM_QUOTAOFF_END",
1819 "SB_UNIT",
1820 "FSYNC_TS",
1821 "GROWFSRT_ALLOC",
1822 "GROWFSRT_ZERO",
1823 "GROWFSRT_FREE",
1824 "SWAPEXT"
1825 };
1826
1827 xfs_warn(mp,
1828 "xlog_write: reservation summary:\n"
1829 " trans type = %s (%u)\n"
1830 " unit res = %d bytes\n"
1831 " current res = %d bytes\n"
1832 " total reg = %u bytes (o/flow = %u bytes)\n"
1833 " ophdrs = %u (ophdr space = %u bytes)\n"
1834 " ophdr + reg = %u bytes\n"
1835 " num regions = %u\n",
1836 ((ticket->t_trans_type <= 0 ||
1837 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1838 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1839 ticket->t_trans_type,
1840 ticket->t_unit_res,
1841 ticket->t_curr_res,
1842 ticket->t_res_arr_sum, ticket->t_res_o_flow,
1843 ticket->t_res_num_ophdrs, ophdr_spc,
1844 ticket->t_res_arr_sum +
1845 ticket->t_res_o_flow + ophdr_spc,
1846 ticket->t_res_num);
1847
1848 for (i = 0; i < ticket->t_res_num; i++) {
1849 uint r_type = ticket->t_res_arr[i].r_type;
1850 xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1851 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1852 "bad-rtype" : res_type_str[r_type-1]),
1853 ticket->t_res_arr[i].r_len);
1854 }
1855
1856 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1857 "xlog_write: reservation ran out. Need to up reservation");
1858 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1859 }
1860
1861 /*
1862 * Calculate the potential space needed by the log vector. Each region gets
1863 * its own xlog_op_header_t and may need to be double word aligned.
1864 */
1865 static int
1866 xlog_write_calc_vec_length(
1867 struct xlog_ticket *ticket,
1868 struct xfs_log_vec *log_vector)
1869 {
1870 struct xfs_log_vec *lv;
1871 int headers = 0;
1872 int len = 0;
1873 int i;
1874
1875 /* acct for start rec of xact */
1876 if (ticket->t_flags & XLOG_TIC_INITED)
1877 headers++;
1878
1879 for (lv = log_vector; lv; lv = lv->lv_next) {
1880 headers += lv->lv_niovecs;
1881
1882 for (i = 0; i < lv->lv_niovecs; i++) {
1883 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
1884
1885 len += vecp->i_len;
1886 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1887 }
1888 }
1889
1890 ticket->t_res_num_ophdrs += headers;
1891 len += headers * sizeof(struct xlog_op_header);
1892
1893 return len;
1894 }
1895
1896 /*
1897 * If first write for transaction, insert start record We can't be trying to
1898 * commit if we are inited. We can't have any "partial_copy" if we are inited.
1899 */
1900 static int
1901 xlog_write_start_rec(
1902 struct xlog_op_header *ophdr,
1903 struct xlog_ticket *ticket)
1904 {
1905 if (!(ticket->t_flags & XLOG_TIC_INITED))
1906 return 0;
1907
1908 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1909 ophdr->oh_clientid = ticket->t_clientid;
1910 ophdr->oh_len = 0;
1911 ophdr->oh_flags = XLOG_START_TRANS;
1912 ophdr->oh_res2 = 0;
1913
1914 ticket->t_flags &= ~XLOG_TIC_INITED;
1915
1916 return sizeof(struct xlog_op_header);
1917 }
1918
1919 static xlog_op_header_t *
1920 xlog_write_setup_ophdr(
1921 struct xlog *log,
1922 struct xlog_op_header *ophdr,
1923 struct xlog_ticket *ticket,
1924 uint flags)
1925 {
1926 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1927 ophdr->oh_clientid = ticket->t_clientid;
1928 ophdr->oh_res2 = 0;
1929
1930 /* are we copying a commit or unmount record? */
1931 ophdr->oh_flags = flags;
1932
1933 /*
1934 * We've seen logs corrupted with bad transaction client ids. This
1935 * makes sure that XFS doesn't generate them on. Turn this into an EIO
1936 * and shut down the filesystem.
1937 */
1938 switch (ophdr->oh_clientid) {
1939 case XFS_TRANSACTION:
1940 case XFS_VOLUME:
1941 case XFS_LOG:
1942 break;
1943 default:
1944 xfs_warn(log->l_mp,
1945 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
1946 ophdr->oh_clientid, ticket);
1947 return NULL;
1948 }
1949
1950 return ophdr;
1951 }
1952
1953 /*
1954 * Set up the parameters of the region copy into the log. This has
1955 * to handle region write split across multiple log buffers - this
1956 * state is kept external to this function so that this code can
1957 * can be written in an obvious, self documenting manner.
1958 */
1959 static int
1960 xlog_write_setup_copy(
1961 struct xlog_ticket *ticket,
1962 struct xlog_op_header *ophdr,
1963 int space_available,
1964 int space_required,
1965 int *copy_off,
1966 int *copy_len,
1967 int *last_was_partial_copy,
1968 int *bytes_consumed)
1969 {
1970 int still_to_copy;
1971
1972 still_to_copy = space_required - *bytes_consumed;
1973 *copy_off = *bytes_consumed;
1974
1975 if (still_to_copy <= space_available) {
1976 /* write of region completes here */
1977 *copy_len = still_to_copy;
1978 ophdr->oh_len = cpu_to_be32(*copy_len);
1979 if (*last_was_partial_copy)
1980 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1981 *last_was_partial_copy = 0;
1982 *bytes_consumed = 0;
1983 return 0;
1984 }
1985
1986 /* partial write of region, needs extra log op header reservation */
1987 *copy_len = space_available;
1988 ophdr->oh_len = cpu_to_be32(*copy_len);
1989 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1990 if (*last_was_partial_copy)
1991 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1992 *bytes_consumed += *copy_len;
1993 (*last_was_partial_copy)++;
1994
1995 /* account for new log op header */
1996 ticket->t_curr_res -= sizeof(struct xlog_op_header);
1997 ticket->t_res_num_ophdrs++;
1998
1999 return sizeof(struct xlog_op_header);
2000 }
2001
2002 static int
2003 xlog_write_copy_finish(
2004 struct xlog *log,
2005 struct xlog_in_core *iclog,
2006 uint flags,
2007 int *record_cnt,
2008 int *data_cnt,
2009 int *partial_copy,
2010 int *partial_copy_len,
2011 int log_offset,
2012 struct xlog_in_core **commit_iclog)
2013 {
2014 if (*partial_copy) {
2015 /*
2016 * This iclog has already been marked WANT_SYNC by
2017 * xlog_state_get_iclog_space.
2018 */
2019 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2020 *record_cnt = 0;
2021 *data_cnt = 0;
2022 return xlog_state_release_iclog(log, iclog);
2023 }
2024
2025 *partial_copy = 0;
2026 *partial_copy_len = 0;
2027
2028 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2029 /* no more space in this iclog - push it. */
2030 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2031 *record_cnt = 0;
2032 *data_cnt = 0;
2033
2034 spin_lock(&log->l_icloglock);
2035 xlog_state_want_sync(log, iclog);
2036 spin_unlock(&log->l_icloglock);
2037
2038 if (!commit_iclog)
2039 return xlog_state_release_iclog(log, iclog);
2040 ASSERT(flags & XLOG_COMMIT_TRANS);
2041 *commit_iclog = iclog;
2042 }
2043
2044 return 0;
2045 }
2046
2047 /*
2048 * Write some region out to in-core log
2049 *
2050 * This will be called when writing externally provided regions or when
2051 * writing out a commit record for a given transaction.
2052 *
2053 * General algorithm:
2054 * 1. Find total length of this write. This may include adding to the
2055 * lengths passed in.
2056 * 2. Check whether we violate the tickets reservation.
2057 * 3. While writing to this iclog
2058 * A. Reserve as much space in this iclog as can get
2059 * B. If this is first write, save away start lsn
2060 * C. While writing this region:
2061 * 1. If first write of transaction, write start record
2062 * 2. Write log operation header (header per region)
2063 * 3. Find out if we can fit entire region into this iclog
2064 * 4. Potentially, verify destination memcpy ptr
2065 * 5. Memcpy (partial) region
2066 * 6. If partial copy, release iclog; otherwise, continue
2067 * copying more regions into current iclog
2068 * 4. Mark want sync bit (in simulation mode)
2069 * 5. Release iclog for potential flush to on-disk log.
2070 *
2071 * ERRORS:
2072 * 1. Panic if reservation is overrun. This should never happen since
2073 * reservation amounts are generated internal to the filesystem.
2074 * NOTES:
2075 * 1. Tickets are single threaded data structures.
2076 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2077 * syncing routine. When a single log_write region needs to span
2078 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2079 * on all log operation writes which don't contain the end of the
2080 * region. The XLOG_END_TRANS bit is used for the in-core log
2081 * operation which contains the end of the continued log_write region.
2082 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2083 * we don't really know exactly how much space will be used. As a result,
2084 * we don't update ic_offset until the end when we know exactly how many
2085 * bytes have been written out.
2086 */
2087 int
2088 xlog_write(
2089 struct xlog *log,
2090 struct xfs_log_vec *log_vector,
2091 struct xlog_ticket *ticket,
2092 xfs_lsn_t *start_lsn,
2093 struct xlog_in_core **commit_iclog,
2094 uint flags)
2095 {
2096 struct xlog_in_core *iclog = NULL;
2097 struct xfs_log_iovec *vecp;
2098 struct xfs_log_vec *lv;
2099 int len;
2100 int index;
2101 int partial_copy = 0;
2102 int partial_copy_len = 0;
2103 int contwr = 0;
2104 int record_cnt = 0;
2105 int data_cnt = 0;
2106 int error;
2107
2108 *start_lsn = 0;
2109
2110 len = xlog_write_calc_vec_length(ticket, log_vector);
2111
2112 /*
2113 * Region headers and bytes are already accounted for.
2114 * We only need to take into account start records and
2115 * split regions in this function.
2116 */
2117 if (ticket->t_flags & XLOG_TIC_INITED)
2118 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2119
2120 /*
2121 * Commit record headers need to be accounted for. These
2122 * come in as separate writes so are easy to detect.
2123 */
2124 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2125 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2126
2127 if (ticket->t_curr_res < 0)
2128 xlog_print_tic_res(log->l_mp, ticket);
2129
2130 index = 0;
2131 lv = log_vector;
2132 vecp = lv->lv_iovecp;
2133 while (lv && index < lv->lv_niovecs) {
2134 void *ptr;
2135 int log_offset;
2136
2137 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2138 &contwr, &log_offset);
2139 if (error)
2140 return error;
2141
2142 ASSERT(log_offset <= iclog->ic_size - 1);
2143 ptr = iclog->ic_datap + log_offset;
2144
2145 /* start_lsn is the first lsn written to. That's all we need. */
2146 if (!*start_lsn)
2147 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2148
2149 /*
2150 * This loop writes out as many regions as can fit in the amount
2151 * of space which was allocated by xlog_state_get_iclog_space().
2152 */
2153 while (lv && index < lv->lv_niovecs) {
2154 struct xfs_log_iovec *reg = &vecp[index];
2155 struct xlog_op_header *ophdr;
2156 int start_rec_copy;
2157 int copy_len;
2158 int copy_off;
2159
2160 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2161 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2162
2163 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2164 if (start_rec_copy) {
2165 record_cnt++;
2166 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2167 start_rec_copy);
2168 }
2169
2170 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2171 if (!ophdr)
2172 return XFS_ERROR(EIO);
2173
2174 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2175 sizeof(struct xlog_op_header));
2176
2177 len += xlog_write_setup_copy(ticket, ophdr,
2178 iclog->ic_size-log_offset,
2179 reg->i_len,
2180 &copy_off, &copy_len,
2181 &partial_copy,
2182 &partial_copy_len);
2183 xlog_verify_dest_ptr(log, ptr);
2184
2185 /* copy region */
2186 ASSERT(copy_len >= 0);
2187 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2188 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2189
2190 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2191 record_cnt++;
2192 data_cnt += contwr ? copy_len : 0;
2193
2194 error = xlog_write_copy_finish(log, iclog, flags,
2195 &record_cnt, &data_cnt,
2196 &partial_copy,
2197 &partial_copy_len,
2198 log_offset,
2199 commit_iclog);
2200 if (error)
2201 return error;
2202
2203 /*
2204 * if we had a partial copy, we need to get more iclog
2205 * space but we don't want to increment the region
2206 * index because there is still more is this region to
2207 * write.
2208 *
2209 * If we completed writing this region, and we flushed
2210 * the iclog (indicated by resetting of the record
2211 * count), then we also need to get more log space. If
2212 * this was the last record, though, we are done and
2213 * can just return.
2214 */
2215 if (partial_copy)
2216 break;
2217
2218 if (++index == lv->lv_niovecs) {
2219 lv = lv->lv_next;
2220 index = 0;
2221 if (lv)
2222 vecp = lv->lv_iovecp;
2223 }
2224 if (record_cnt == 0) {
2225 if (!lv)
2226 return 0;
2227 break;
2228 }
2229 }
2230 }
2231
2232 ASSERT(len == 0);
2233
2234 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2235 if (!commit_iclog)
2236 return xlog_state_release_iclog(log, iclog);
2237
2238 ASSERT(flags & XLOG_COMMIT_TRANS);
2239 *commit_iclog = iclog;
2240 return 0;
2241 }
2242
2243
2244 /*****************************************************************************
2245 *
2246 * State Machine functions
2247 *
2248 *****************************************************************************
2249 */
2250
2251 /* Clean iclogs starting from the head. This ordering must be
2252 * maintained, so an iclog doesn't become ACTIVE beyond one that
2253 * is SYNCING. This is also required to maintain the notion that we use
2254 * a ordered wait queue to hold off would be writers to the log when every
2255 * iclog is trying to sync to disk.
2256 *
2257 * State Change: DIRTY -> ACTIVE
2258 */
2259 STATIC void
2260 xlog_state_clean_log(
2261 struct xlog *log)
2262 {
2263 xlog_in_core_t *iclog;
2264 int changed = 0;
2265
2266 iclog = log->l_iclog;
2267 do {
2268 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2269 iclog->ic_state = XLOG_STATE_ACTIVE;
2270 iclog->ic_offset = 0;
2271 ASSERT(iclog->ic_callback == NULL);
2272 /*
2273 * If the number of ops in this iclog indicate it just
2274 * contains the dummy transaction, we can
2275 * change state into IDLE (the second time around).
2276 * Otherwise we should change the state into
2277 * NEED a dummy.
2278 * We don't need to cover the dummy.
2279 */
2280 if (!changed &&
2281 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2282 XLOG_COVER_OPS)) {
2283 changed = 1;
2284 } else {
2285 /*
2286 * We have two dirty iclogs so start over
2287 * This could also be num of ops indicates
2288 * this is not the dummy going out.
2289 */
2290 changed = 2;
2291 }
2292 iclog->ic_header.h_num_logops = 0;
2293 memset(iclog->ic_header.h_cycle_data, 0,
2294 sizeof(iclog->ic_header.h_cycle_data));
2295 iclog->ic_header.h_lsn = 0;
2296 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2297 /* do nothing */;
2298 else
2299 break; /* stop cleaning */
2300 iclog = iclog->ic_next;
2301 } while (iclog != log->l_iclog);
2302
2303 /* log is locked when we are called */
2304 /*
2305 * Change state for the dummy log recording.
2306 * We usually go to NEED. But we go to NEED2 if the changed indicates
2307 * we are done writing the dummy record.
2308 * If we are done with the second dummy recored (DONE2), then
2309 * we go to IDLE.
2310 */
2311 if (changed) {
2312 switch (log->l_covered_state) {
2313 case XLOG_STATE_COVER_IDLE:
2314 case XLOG_STATE_COVER_NEED:
2315 case XLOG_STATE_COVER_NEED2:
2316 log->l_covered_state = XLOG_STATE_COVER_NEED;
2317 break;
2318
2319 case XLOG_STATE_COVER_DONE:
2320 if (changed == 1)
2321 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2322 else
2323 log->l_covered_state = XLOG_STATE_COVER_NEED;
2324 break;
2325
2326 case XLOG_STATE_COVER_DONE2:
2327 if (changed == 1)
2328 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2329 else
2330 log->l_covered_state = XLOG_STATE_COVER_NEED;
2331 break;
2332
2333 default:
2334 ASSERT(0);
2335 }
2336 }
2337 } /* xlog_state_clean_log */
2338
2339 STATIC xfs_lsn_t
2340 xlog_get_lowest_lsn(
2341 struct xlog *log)
2342 {
2343 xlog_in_core_t *lsn_log;
2344 xfs_lsn_t lowest_lsn, lsn;
2345
2346 lsn_log = log->l_iclog;
2347 lowest_lsn = 0;
2348 do {
2349 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2350 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2351 if ((lsn && !lowest_lsn) ||
2352 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2353 lowest_lsn = lsn;
2354 }
2355 }
2356 lsn_log = lsn_log->ic_next;
2357 } while (lsn_log != log->l_iclog);
2358 return lowest_lsn;
2359 }
2360
2361
2362 STATIC void
2363 xlog_state_do_callback(
2364 struct xlog *log,
2365 int aborted,
2366 struct xlog_in_core *ciclog)
2367 {
2368 xlog_in_core_t *iclog;
2369 xlog_in_core_t *first_iclog; /* used to know when we've
2370 * processed all iclogs once */
2371 xfs_log_callback_t *cb, *cb_next;
2372 int flushcnt = 0;
2373 xfs_lsn_t lowest_lsn;
2374 int ioerrors; /* counter: iclogs with errors */
2375 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2376 int funcdidcallbacks; /* flag: function did callbacks */
2377 int repeats; /* for issuing console warnings if
2378 * looping too many times */
2379 int wake = 0;
2380
2381 spin_lock(&log->l_icloglock);
2382 first_iclog = iclog = log->l_iclog;
2383 ioerrors = 0;
2384 funcdidcallbacks = 0;
2385 repeats = 0;
2386
2387 do {
2388 /*
2389 * Scan all iclogs starting with the one pointed to by the
2390 * log. Reset this starting point each time the log is
2391 * unlocked (during callbacks).
2392 *
2393 * Keep looping through iclogs until one full pass is made
2394 * without running any callbacks.
2395 */
2396 first_iclog = log->l_iclog;
2397 iclog = log->l_iclog;
2398 loopdidcallbacks = 0;
2399 repeats++;
2400
2401 do {
2402
2403 /* skip all iclogs in the ACTIVE & DIRTY states */
2404 if (iclog->ic_state &
2405 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2406 iclog = iclog->ic_next;
2407 continue;
2408 }
2409
2410 /*
2411 * Between marking a filesystem SHUTDOWN and stopping
2412 * the log, we do flush all iclogs to disk (if there
2413 * wasn't a log I/O error). So, we do want things to
2414 * go smoothly in case of just a SHUTDOWN w/o a
2415 * LOG_IO_ERROR.
2416 */
2417 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2418 /*
2419 * Can only perform callbacks in order. Since
2420 * this iclog is not in the DONE_SYNC/
2421 * DO_CALLBACK state, we skip the rest and
2422 * just try to clean up. If we set our iclog
2423 * to DO_CALLBACK, we will not process it when
2424 * we retry since a previous iclog is in the
2425 * CALLBACK and the state cannot change since
2426 * we are holding the l_icloglock.
2427 */
2428 if (!(iclog->ic_state &
2429 (XLOG_STATE_DONE_SYNC |
2430 XLOG_STATE_DO_CALLBACK))) {
2431 if (ciclog && (ciclog->ic_state ==
2432 XLOG_STATE_DONE_SYNC)) {
2433 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2434 }
2435 break;
2436 }
2437 /*
2438 * We now have an iclog that is in either the
2439 * DO_CALLBACK or DONE_SYNC states. The other
2440 * states (WANT_SYNC, SYNCING, or CALLBACK were
2441 * caught by the above if and are going to
2442 * clean (i.e. we aren't doing their callbacks)
2443 * see the above if.
2444 */
2445
2446 /*
2447 * We will do one more check here to see if we
2448 * have chased our tail around.
2449 */
2450
2451 lowest_lsn = xlog_get_lowest_lsn(log);
2452 if (lowest_lsn &&
2453 XFS_LSN_CMP(lowest_lsn,
2454 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2455 iclog = iclog->ic_next;
2456 continue; /* Leave this iclog for
2457 * another thread */
2458 }
2459
2460 iclog->ic_state = XLOG_STATE_CALLBACK;
2461
2462
2463 /*
2464 * update the last_sync_lsn before we drop the
2465 * icloglock to ensure we are the only one that
2466 * can update it.
2467 */
2468 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2469 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2470 atomic64_set(&log->l_last_sync_lsn,
2471 be64_to_cpu(iclog->ic_header.h_lsn));
2472
2473 } else
2474 ioerrors++;
2475
2476 spin_unlock(&log->l_icloglock);
2477
2478 /*
2479 * Keep processing entries in the callback list until
2480 * we come around and it is empty. We need to
2481 * atomically see that the list is empty and change the
2482 * state to DIRTY so that we don't miss any more
2483 * callbacks being added.
2484 */
2485 spin_lock(&iclog->ic_callback_lock);
2486 cb = iclog->ic_callback;
2487 while (cb) {
2488 iclog->ic_callback_tail = &(iclog->ic_callback);
2489 iclog->ic_callback = NULL;
2490 spin_unlock(&iclog->ic_callback_lock);
2491
2492 /* perform callbacks in the order given */
2493 for (; cb; cb = cb_next) {
2494 cb_next = cb->cb_next;
2495 cb->cb_func(cb->cb_arg, aborted);
2496 }
2497 spin_lock(&iclog->ic_callback_lock);
2498 cb = iclog->ic_callback;
2499 }
2500
2501 loopdidcallbacks++;
2502 funcdidcallbacks++;
2503
2504 spin_lock(&log->l_icloglock);
2505 ASSERT(iclog->ic_callback == NULL);
2506 spin_unlock(&iclog->ic_callback_lock);
2507 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2508 iclog->ic_state = XLOG_STATE_DIRTY;
2509
2510 /*
2511 * Transition from DIRTY to ACTIVE if applicable.
2512 * NOP if STATE_IOERROR.
2513 */
2514 xlog_state_clean_log(log);
2515
2516 /* wake up threads waiting in xfs_log_force() */
2517 wake_up_all(&iclog->ic_force_wait);
2518
2519 iclog = iclog->ic_next;
2520 } while (first_iclog != iclog);
2521
2522 if (repeats > 5000) {
2523 flushcnt += repeats;
2524 repeats = 0;
2525 xfs_warn(log->l_mp,
2526 "%s: possible infinite loop (%d iterations)",
2527 __func__, flushcnt);
2528 }
2529 } while (!ioerrors && loopdidcallbacks);
2530
2531 /*
2532 * make one last gasp attempt to see if iclogs are being left in
2533 * limbo..
2534 */
2535 #ifdef DEBUG
2536 if (funcdidcallbacks) {
2537 first_iclog = iclog = log->l_iclog;
2538 do {
2539 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2540 /*
2541 * Terminate the loop if iclogs are found in states
2542 * which will cause other threads to clean up iclogs.
2543 *
2544 * SYNCING - i/o completion will go through logs
2545 * DONE_SYNC - interrupt thread should be waiting for
2546 * l_icloglock
2547 * IOERROR - give up hope all ye who enter here
2548 */
2549 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2550 iclog->ic_state == XLOG_STATE_SYNCING ||
2551 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2552 iclog->ic_state == XLOG_STATE_IOERROR )
2553 break;
2554 iclog = iclog->ic_next;
2555 } while (first_iclog != iclog);
2556 }
2557 #endif
2558
2559 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2560 wake = 1;
2561 spin_unlock(&log->l_icloglock);
2562
2563 if (wake)
2564 wake_up_all(&log->l_flush_wait);
2565 }
2566
2567
2568 /*
2569 * Finish transitioning this iclog to the dirty state.
2570 *
2571 * Make sure that we completely execute this routine only when this is
2572 * the last call to the iclog. There is a good chance that iclog flushes,
2573 * when we reach the end of the physical log, get turned into 2 separate
2574 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2575 * routine. By using the reference count bwritecnt, we guarantee that only
2576 * the second completion goes through.
2577 *
2578 * Callbacks could take time, so they are done outside the scope of the
2579 * global state machine log lock.
2580 */
2581 STATIC void
2582 xlog_state_done_syncing(
2583 xlog_in_core_t *iclog,
2584 int aborted)
2585 {
2586 struct xlog *log = iclog->ic_log;
2587
2588 spin_lock(&log->l_icloglock);
2589
2590 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2591 iclog->ic_state == XLOG_STATE_IOERROR);
2592 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2593 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2594
2595
2596 /*
2597 * If we got an error, either on the first buffer, or in the case of
2598 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2599 * and none should ever be attempted to be written to disk
2600 * again.
2601 */
2602 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2603 if (--iclog->ic_bwritecnt == 1) {
2604 spin_unlock(&log->l_icloglock);
2605 return;
2606 }
2607 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2608 }
2609
2610 /*
2611 * Someone could be sleeping prior to writing out the next
2612 * iclog buffer, we wake them all, one will get to do the
2613 * I/O, the others get to wait for the result.
2614 */
2615 wake_up_all(&iclog->ic_write_wait);
2616 spin_unlock(&log->l_icloglock);
2617 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2618 } /* xlog_state_done_syncing */
2619
2620
2621 /*
2622 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2623 * sleep. We wait on the flush queue on the head iclog as that should be
2624 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2625 * we will wait here and all new writes will sleep until a sync completes.
2626 *
2627 * The in-core logs are used in a circular fashion. They are not used
2628 * out-of-order even when an iclog past the head is free.
2629 *
2630 * return:
2631 * * log_offset where xlog_write() can start writing into the in-core
2632 * log's data space.
2633 * * in-core log pointer to which xlog_write() should write.
2634 * * boolean indicating this is a continued write to an in-core log.
2635 * If this is the last write, then the in-core log's offset field
2636 * needs to be incremented, depending on the amount of data which
2637 * is copied.
2638 */
2639 STATIC int
2640 xlog_state_get_iclog_space(
2641 struct xlog *log,
2642 int len,
2643 struct xlog_in_core **iclogp,
2644 struct xlog_ticket *ticket,
2645 int *continued_write,
2646 int *logoffsetp)
2647 {
2648 int log_offset;
2649 xlog_rec_header_t *head;
2650 xlog_in_core_t *iclog;
2651 int error;
2652
2653 restart:
2654 spin_lock(&log->l_icloglock);
2655 if (XLOG_FORCED_SHUTDOWN(log)) {
2656 spin_unlock(&log->l_icloglock);
2657 return XFS_ERROR(EIO);
2658 }
2659
2660 iclog = log->l_iclog;
2661 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2662 XFS_STATS_INC(xs_log_noiclogs);
2663
2664 /* Wait for log writes to have flushed */
2665 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2666 goto restart;
2667 }
2668
2669 head = &iclog->ic_header;
2670
2671 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2672 log_offset = iclog->ic_offset;
2673
2674 /* On the 1st write to an iclog, figure out lsn. This works
2675 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2676 * committing to. If the offset is set, that's how many blocks
2677 * must be written.
2678 */
2679 if (log_offset == 0) {
2680 ticket->t_curr_res -= log->l_iclog_hsize;
2681 xlog_tic_add_region(ticket,
2682 log->l_iclog_hsize,
2683 XLOG_REG_TYPE_LRHEADER);
2684 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2685 head->h_lsn = cpu_to_be64(
2686 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2687 ASSERT(log->l_curr_block >= 0);
2688 }
2689
2690 /* If there is enough room to write everything, then do it. Otherwise,
2691 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2692 * bit is on, so this will get flushed out. Don't update ic_offset
2693 * until you know exactly how many bytes get copied. Therefore, wait
2694 * until later to update ic_offset.
2695 *
2696 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2697 * can fit into remaining data section.
2698 */
2699 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2700 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2701
2702 /*
2703 * If I'm the only one writing to this iclog, sync it to disk.
2704 * We need to do an atomic compare and decrement here to avoid
2705 * racing with concurrent atomic_dec_and_lock() calls in
2706 * xlog_state_release_iclog() when there is more than one
2707 * reference to the iclog.
2708 */
2709 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2710 /* we are the only one */
2711 spin_unlock(&log->l_icloglock);
2712 error = xlog_state_release_iclog(log, iclog);
2713 if (error)
2714 return error;
2715 } else {
2716 spin_unlock(&log->l_icloglock);
2717 }
2718 goto restart;
2719 }
2720
2721 /* Do we have enough room to write the full amount in the remainder
2722 * of this iclog? Or must we continue a write on the next iclog and
2723 * mark this iclog as completely taken? In the case where we switch
2724 * iclogs (to mark it taken), this particular iclog will release/sync
2725 * to disk in xlog_write().
2726 */
2727 if (len <= iclog->ic_size - iclog->ic_offset) {
2728 *continued_write = 0;
2729 iclog->ic_offset += len;
2730 } else {
2731 *continued_write = 1;
2732 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2733 }
2734 *iclogp = iclog;
2735
2736 ASSERT(iclog->ic_offset <= iclog->ic_size);
2737 spin_unlock(&log->l_icloglock);
2738
2739 *logoffsetp = log_offset;
2740 return 0;
2741 } /* xlog_state_get_iclog_space */
2742
2743 /* The first cnt-1 times through here we don't need to
2744 * move the grant write head because the permanent
2745 * reservation has reserved cnt times the unit amount.
2746 * Release part of current permanent unit reservation and
2747 * reset current reservation to be one units worth. Also
2748 * move grant reservation head forward.
2749 */
2750 STATIC void
2751 xlog_regrant_reserve_log_space(
2752 struct xlog *log,
2753 struct xlog_ticket *ticket)
2754 {
2755 trace_xfs_log_regrant_reserve_enter(log, ticket);
2756
2757 if (ticket->t_cnt > 0)
2758 ticket->t_cnt--;
2759
2760 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2761 ticket->t_curr_res);
2762 xlog_grant_sub_space(log, &log->l_write_head.grant,
2763 ticket->t_curr_res);
2764 ticket->t_curr_res = ticket->t_unit_res;
2765 xlog_tic_reset_res(ticket);
2766
2767 trace_xfs_log_regrant_reserve_sub(log, ticket);
2768
2769 /* just return if we still have some of the pre-reserved space */
2770 if (ticket->t_cnt > 0)
2771 return;
2772
2773 xlog_grant_add_space(log, &log->l_reserve_head.grant,
2774 ticket->t_unit_res);
2775
2776 trace_xfs_log_regrant_reserve_exit(log, ticket);
2777
2778 ticket->t_curr_res = ticket->t_unit_res;
2779 xlog_tic_reset_res(ticket);
2780 } /* xlog_regrant_reserve_log_space */
2781
2782
2783 /*
2784 * Give back the space left from a reservation.
2785 *
2786 * All the information we need to make a correct determination of space left
2787 * is present. For non-permanent reservations, things are quite easy. The
2788 * count should have been decremented to zero. We only need to deal with the
2789 * space remaining in the current reservation part of the ticket. If the
2790 * ticket contains a permanent reservation, there may be left over space which
2791 * needs to be released. A count of N means that N-1 refills of the current
2792 * reservation can be done before we need to ask for more space. The first
2793 * one goes to fill up the first current reservation. Once we run out of
2794 * space, the count will stay at zero and the only space remaining will be
2795 * in the current reservation field.
2796 */
2797 STATIC void
2798 xlog_ungrant_log_space(
2799 struct xlog *log,
2800 struct xlog_ticket *ticket)
2801 {
2802 int bytes;
2803
2804 if (ticket->t_cnt > 0)
2805 ticket->t_cnt--;
2806
2807 trace_xfs_log_ungrant_enter(log, ticket);
2808 trace_xfs_log_ungrant_sub(log, ticket);
2809
2810 /*
2811 * If this is a permanent reservation ticket, we may be able to free
2812 * up more space based on the remaining count.
2813 */
2814 bytes = ticket->t_curr_res;
2815 if (ticket->t_cnt > 0) {
2816 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2817 bytes += ticket->t_unit_res*ticket->t_cnt;
2818 }
2819
2820 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2821 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2822
2823 trace_xfs_log_ungrant_exit(log, ticket);
2824
2825 xfs_log_space_wake(log->l_mp);
2826 }
2827
2828 /*
2829 * Flush iclog to disk if this is the last reference to the given iclog and
2830 * the WANT_SYNC bit is set.
2831 *
2832 * When this function is entered, the iclog is not necessarily in the
2833 * WANT_SYNC state. It may be sitting around waiting to get filled.
2834 *
2835 *
2836 */
2837 STATIC int
2838 xlog_state_release_iclog(
2839 struct xlog *log,
2840 struct xlog_in_core *iclog)
2841 {
2842 int sync = 0; /* do we sync? */
2843
2844 if (iclog->ic_state & XLOG_STATE_IOERROR)
2845 return XFS_ERROR(EIO);
2846
2847 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2848 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2849 return 0;
2850
2851 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2852 spin_unlock(&log->l_icloglock);
2853 return XFS_ERROR(EIO);
2854 }
2855 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2856 iclog->ic_state == XLOG_STATE_WANT_SYNC);
2857
2858 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2859 /* update tail before writing to iclog */
2860 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2861 sync++;
2862 iclog->ic_state = XLOG_STATE_SYNCING;
2863 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2864 xlog_verify_tail_lsn(log, iclog, tail_lsn);
2865 /* cycle incremented when incrementing curr_block */
2866 }
2867 spin_unlock(&log->l_icloglock);
2868
2869 /*
2870 * We let the log lock go, so it's possible that we hit a log I/O
2871 * error or some other SHUTDOWN condition that marks the iclog
2872 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2873 * this iclog has consistent data, so we ignore IOERROR
2874 * flags after this point.
2875 */
2876 if (sync)
2877 return xlog_sync(log, iclog);
2878 return 0;
2879 } /* xlog_state_release_iclog */
2880
2881
2882 /*
2883 * This routine will mark the current iclog in the ring as WANT_SYNC
2884 * and move the current iclog pointer to the next iclog in the ring.
2885 * When this routine is called from xlog_state_get_iclog_space(), the
2886 * exact size of the iclog has not yet been determined. All we know is
2887 * that every data block. We have run out of space in this log record.
2888 */
2889 STATIC void
2890 xlog_state_switch_iclogs(
2891 struct xlog *log,
2892 struct xlog_in_core *iclog,
2893 int eventual_size)
2894 {
2895 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2896 if (!eventual_size)
2897 eventual_size = iclog->ic_offset;
2898 iclog->ic_state = XLOG_STATE_WANT_SYNC;
2899 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2900 log->l_prev_block = log->l_curr_block;
2901 log->l_prev_cycle = log->l_curr_cycle;
2902
2903 /* roll log?: ic_offset changed later */
2904 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2905
2906 /* Round up to next log-sunit */
2907 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2908 log->l_mp->m_sb.sb_logsunit > 1) {
2909 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2910 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2911 }
2912
2913 if (log->l_curr_block >= log->l_logBBsize) {
2914 log->l_curr_cycle++;
2915 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2916 log->l_curr_cycle++;
2917 log->l_curr_block -= log->l_logBBsize;
2918 ASSERT(log->l_curr_block >= 0);
2919 }
2920 ASSERT(iclog == log->l_iclog);
2921 log->l_iclog = iclog->ic_next;
2922 } /* xlog_state_switch_iclogs */
2923
2924 /*
2925 * Write out all data in the in-core log as of this exact moment in time.
2926 *
2927 * Data may be written to the in-core log during this call. However,
2928 * we don't guarantee this data will be written out. A change from past
2929 * implementation means this routine will *not* write out zero length LRs.
2930 *
2931 * Basically, we try and perform an intelligent scan of the in-core logs.
2932 * If we determine there is no flushable data, we just return. There is no
2933 * flushable data if:
2934 *
2935 * 1. the current iclog is active and has no data; the previous iclog
2936 * is in the active or dirty state.
2937 * 2. the current iclog is drity, and the previous iclog is in the
2938 * active or dirty state.
2939 *
2940 * We may sleep if:
2941 *
2942 * 1. the current iclog is not in the active nor dirty state.
2943 * 2. the current iclog dirty, and the previous iclog is not in the
2944 * active nor dirty state.
2945 * 3. the current iclog is active, and there is another thread writing
2946 * to this particular iclog.
2947 * 4. a) the current iclog is active and has no other writers
2948 * b) when we return from flushing out this iclog, it is still
2949 * not in the active nor dirty state.
2950 */
2951 int
2952 _xfs_log_force(
2953 struct xfs_mount *mp,
2954 uint flags,
2955 int *log_flushed)
2956 {
2957 struct xlog *log = mp->m_log;
2958 struct xlog_in_core *iclog;
2959 xfs_lsn_t lsn;
2960
2961 XFS_STATS_INC(xs_log_force);
2962
2963 xlog_cil_force(log);
2964
2965 spin_lock(&log->l_icloglock);
2966
2967 iclog = log->l_iclog;
2968 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2969 spin_unlock(&log->l_icloglock);
2970 return XFS_ERROR(EIO);
2971 }
2972
2973 /* If the head iclog is not active nor dirty, we just attach
2974 * ourselves to the head and go to sleep.
2975 */
2976 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2977 iclog->ic_state == XLOG_STATE_DIRTY) {
2978 /*
2979 * If the head is dirty or (active and empty), then
2980 * we need to look at the previous iclog. If the previous
2981 * iclog is active or dirty we are done. There is nothing
2982 * to sync out. Otherwise, we attach ourselves to the
2983 * previous iclog and go to sleep.
2984 */
2985 if (iclog->ic_state == XLOG_STATE_DIRTY ||
2986 (atomic_read(&iclog->ic_refcnt) == 0
2987 && iclog->ic_offset == 0)) {
2988 iclog = iclog->ic_prev;
2989 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2990 iclog->ic_state == XLOG_STATE_DIRTY)
2991 goto no_sleep;
2992 else
2993 goto maybe_sleep;
2994 } else {
2995 if (atomic_read(&iclog->ic_refcnt) == 0) {
2996 /* We are the only one with access to this
2997 * iclog. Flush it out now. There should
2998 * be a roundoff of zero to show that someone
2999 * has already taken care of the roundoff from
3000 * the previous sync.
3001 */
3002 atomic_inc(&iclog->ic_refcnt);
3003 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3004 xlog_state_switch_iclogs(log, iclog, 0);
3005 spin_unlock(&log->l_icloglock);
3006
3007 if (xlog_state_release_iclog(log, iclog))
3008 return XFS_ERROR(EIO);
3009
3010 if (log_flushed)
3011 *log_flushed = 1;
3012 spin_lock(&log->l_icloglock);
3013 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3014 iclog->ic_state != XLOG_STATE_DIRTY)
3015 goto maybe_sleep;
3016 else
3017 goto no_sleep;
3018 } else {
3019 /* Someone else is writing to this iclog.
3020 * Use its call to flush out the data. However,
3021 * the other thread may not force out this LR,
3022 * so we mark it WANT_SYNC.
3023 */
3024 xlog_state_switch_iclogs(log, iclog, 0);
3025 goto maybe_sleep;
3026 }
3027 }
3028 }
3029
3030 /* By the time we come around again, the iclog could've been filled
3031 * which would give it another lsn. If we have a new lsn, just
3032 * return because the relevant data has been flushed.
3033 */
3034 maybe_sleep:
3035 if (flags & XFS_LOG_SYNC) {
3036 /*
3037 * We must check if we're shutting down here, before
3038 * we wait, while we're holding the l_icloglock.
3039 * Then we check again after waking up, in case our
3040 * sleep was disturbed by a bad news.
3041 */
3042 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3043 spin_unlock(&log->l_icloglock);
3044 return XFS_ERROR(EIO);
3045 }
3046 XFS_STATS_INC(xs_log_force_sleep);
3047 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3048 /*
3049 * No need to grab the log lock here since we're
3050 * only deciding whether or not to return EIO
3051 * and the memory read should be atomic.
3052 */
3053 if (iclog->ic_state & XLOG_STATE_IOERROR)
3054 return XFS_ERROR(EIO);
3055 if (log_flushed)
3056 *log_flushed = 1;
3057 } else {
3058
3059 no_sleep:
3060 spin_unlock(&log->l_icloglock);
3061 }
3062 return 0;
3063 }
3064
3065 /*
3066 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3067 * about errors or whether the log was flushed or not. This is the normal
3068 * interface to use when trying to unpin items or move the log forward.
3069 */
3070 void
3071 xfs_log_force(
3072 xfs_mount_t *mp,
3073 uint flags)
3074 {
3075 int error;
3076
3077 trace_xfs_log_force(mp, 0);
3078 error = _xfs_log_force(mp, flags, NULL);
3079 if (error)
3080 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3081 }
3082
3083 /*
3084 * Force the in-core log to disk for a specific LSN.
3085 *
3086 * Find in-core log with lsn.
3087 * If it is in the DIRTY state, just return.
3088 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3089 * state and go to sleep or return.
3090 * If it is in any other state, go to sleep or return.
3091 *
3092 * Synchronous forces are implemented with a signal variable. All callers
3093 * to force a given lsn to disk will wait on a the sv attached to the
3094 * specific in-core log. When given in-core log finally completes its
3095 * write to disk, that thread will wake up all threads waiting on the
3096 * sv.
3097 */
3098 int
3099 _xfs_log_force_lsn(
3100 struct xfs_mount *mp,
3101 xfs_lsn_t lsn,
3102 uint flags,
3103 int *log_flushed)
3104 {
3105 struct xlog *log = mp->m_log;
3106 struct xlog_in_core *iclog;
3107 int already_slept = 0;
3108
3109 ASSERT(lsn != 0);
3110
3111 XFS_STATS_INC(xs_log_force);
3112
3113 lsn = xlog_cil_force_lsn(log, lsn);
3114 if (lsn == NULLCOMMITLSN)
3115 return 0;
3116
3117 try_again:
3118 spin_lock(&log->l_icloglock);
3119 iclog = log->l_iclog;
3120 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3121 spin_unlock(&log->l_icloglock);
3122 return XFS_ERROR(EIO);
3123 }
3124
3125 do {
3126 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3127 iclog = iclog->ic_next;
3128 continue;
3129 }
3130
3131 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3132 spin_unlock(&log->l_icloglock);
3133 return 0;
3134 }
3135
3136 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3137 /*
3138 * We sleep here if we haven't already slept (e.g.
3139 * this is the first time we've looked at the correct
3140 * iclog buf) and the buffer before us is going to
3141 * be sync'ed. The reason for this is that if we
3142 * are doing sync transactions here, by waiting for
3143 * the previous I/O to complete, we can allow a few
3144 * more transactions into this iclog before we close
3145 * it down.
3146 *
3147 * Otherwise, we mark the buffer WANT_SYNC, and bump
3148 * up the refcnt so we can release the log (which
3149 * drops the ref count). The state switch keeps new
3150 * transaction commits from using this buffer. When
3151 * the current commits finish writing into the buffer,
3152 * the refcount will drop to zero and the buffer will
3153 * go out then.
3154 */
3155 if (!already_slept &&
3156 (iclog->ic_prev->ic_state &
3157 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3158 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3159
3160 XFS_STATS_INC(xs_log_force_sleep);
3161
3162 xlog_wait(&iclog->ic_prev->ic_write_wait,
3163 &log->l_icloglock);
3164 if (log_flushed)
3165 *log_flushed = 1;
3166 already_slept = 1;
3167 goto try_again;
3168 }
3169 atomic_inc(&iclog->ic_refcnt);
3170 xlog_state_switch_iclogs(log, iclog, 0);
3171 spin_unlock(&log->l_icloglock);
3172 if (xlog_state_release_iclog(log, iclog))
3173 return XFS_ERROR(EIO);
3174 if (log_flushed)
3175 *log_flushed = 1;
3176 spin_lock(&log->l_icloglock);
3177 }
3178
3179 if ((flags & XFS_LOG_SYNC) && /* sleep */
3180 !(iclog->ic_state &
3181 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3182 /*
3183 * Don't wait on completion if we know that we've
3184 * gotten a log write error.
3185 */
3186 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3187 spin_unlock(&log->l_icloglock);
3188 return XFS_ERROR(EIO);
3189 }
3190 XFS_STATS_INC(xs_log_force_sleep);
3191 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3192 /*
3193 * No need to grab the log lock here since we're
3194 * only deciding whether or not to return EIO
3195 * and the memory read should be atomic.
3196 */
3197 if (iclog->ic_state & XLOG_STATE_IOERROR)
3198 return XFS_ERROR(EIO);
3199
3200 if (log_flushed)
3201 *log_flushed = 1;
3202 } else { /* just return */
3203 spin_unlock(&log->l_icloglock);
3204 }
3205
3206 return 0;
3207 } while (iclog != log->l_iclog);
3208
3209 spin_unlock(&log->l_icloglock);
3210 return 0;
3211 }
3212
3213 /*
3214 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3215 * about errors or whether the log was flushed or not. This is the normal
3216 * interface to use when trying to unpin items or move the log forward.
3217 */
3218 void
3219 xfs_log_force_lsn(
3220 xfs_mount_t *mp,
3221 xfs_lsn_t lsn,
3222 uint flags)
3223 {
3224 int error;
3225
3226 trace_xfs_log_force(mp, lsn);
3227 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3228 if (error)
3229 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3230 }
3231
3232 /*
3233 * Called when we want to mark the current iclog as being ready to sync to
3234 * disk.
3235 */
3236 STATIC void
3237 xlog_state_want_sync(
3238 struct xlog *log,
3239 struct xlog_in_core *iclog)
3240 {
3241 assert_spin_locked(&log->l_icloglock);
3242
3243 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3244 xlog_state_switch_iclogs(log, iclog, 0);
3245 } else {
3246 ASSERT(iclog->ic_state &
3247 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3248 }
3249 }
3250
3251
3252 /*****************************************************************************
3253 *
3254 * TICKET functions
3255 *
3256 *****************************************************************************
3257 */
3258
3259 /*
3260 * Free a used ticket when its refcount falls to zero.
3261 */
3262 void
3263 xfs_log_ticket_put(
3264 xlog_ticket_t *ticket)
3265 {
3266 ASSERT(atomic_read(&ticket->t_ref) > 0);
3267 if (atomic_dec_and_test(&ticket->t_ref))
3268 kmem_zone_free(xfs_log_ticket_zone, ticket);
3269 }
3270
3271 xlog_ticket_t *
3272 xfs_log_ticket_get(
3273 xlog_ticket_t *ticket)
3274 {
3275 ASSERT(atomic_read(&ticket->t_ref) > 0);
3276 atomic_inc(&ticket->t_ref);
3277 return ticket;
3278 }
3279
3280 /*
3281 * Allocate and initialise a new log ticket.
3282 */
3283 struct xlog_ticket *
3284 xlog_ticket_alloc(
3285 struct xlog *log,
3286 int unit_bytes,
3287 int cnt,
3288 char client,
3289 bool permanent,
3290 xfs_km_flags_t alloc_flags)
3291 {
3292 struct xlog_ticket *tic;
3293 uint num_headers;
3294 int iclog_space;
3295
3296 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3297 if (!tic)
3298 return NULL;
3299
3300 /*
3301 * Permanent reservations have up to 'cnt'-1 active log operations
3302 * in the log. A unit in this case is the amount of space for one
3303 * of these log operations. Normal reservations have a cnt of 1
3304 * and their unit amount is the total amount of space required.
3305 *
3306 * The following lines of code account for non-transaction data
3307 * which occupy space in the on-disk log.
3308 *
3309 * Normal form of a transaction is:
3310 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3311 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3312 *
3313 * We need to account for all the leadup data and trailer data
3314 * around the transaction data.
3315 * And then we need to account for the worst case in terms of using
3316 * more space.
3317 * The worst case will happen if:
3318 * - the placement of the transaction happens to be such that the
3319 * roundoff is at its maximum
3320 * - the transaction data is synced before the commit record is synced
3321 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3322 * Therefore the commit record is in its own Log Record.
3323 * This can happen as the commit record is called with its
3324 * own region to xlog_write().
3325 * This then means that in the worst case, roundoff can happen for
3326 * the commit-rec as well.
3327 * The commit-rec is smaller than padding in this scenario and so it is
3328 * not added separately.
3329 */
3330
3331 /* for trans header */
3332 unit_bytes += sizeof(xlog_op_header_t);
3333 unit_bytes += sizeof(xfs_trans_header_t);
3334
3335 /* for start-rec */
3336 unit_bytes += sizeof(xlog_op_header_t);
3337
3338 /*
3339 * for LR headers - the space for data in an iclog is the size minus
3340 * the space used for the headers. If we use the iclog size, then we
3341 * undercalculate the number of headers required.
3342 *
3343 * Furthermore - the addition of op headers for split-recs might
3344 * increase the space required enough to require more log and op
3345 * headers, so take that into account too.
3346 *
3347 * IMPORTANT: This reservation makes the assumption that if this
3348 * transaction is the first in an iclog and hence has the LR headers
3349 * accounted to it, then the remaining space in the iclog is
3350 * exclusively for this transaction. i.e. if the transaction is larger
3351 * than the iclog, it will be the only thing in that iclog.
3352 * Fundamentally, this means we must pass the entire log vector to
3353 * xlog_write to guarantee this.
3354 */
3355 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3356 num_headers = howmany(unit_bytes, iclog_space);
3357
3358 /* for split-recs - ophdrs added when data split over LRs */
3359 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3360
3361 /* add extra header reservations if we overrun */
3362 while (!num_headers ||
3363 howmany(unit_bytes, iclog_space) > num_headers) {
3364 unit_bytes += sizeof(xlog_op_header_t);
3365 num_headers++;
3366 }
3367 unit_bytes += log->l_iclog_hsize * num_headers;
3368
3369 /* for commit-rec LR header - note: padding will subsume the ophdr */
3370 unit_bytes += log->l_iclog_hsize;
3371
3372 /* for roundoff padding for transaction data and one for commit record */
3373 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3374 log->l_mp->m_sb.sb_logsunit > 1) {
3375 /* log su roundoff */
3376 unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3377 } else {
3378 /* BB roundoff */
3379 unit_bytes += 2*BBSIZE;
3380 }
3381
3382 atomic_set(&tic->t_ref, 1);
3383 tic->t_task = current;
3384 INIT_LIST_HEAD(&tic->t_queue);
3385 tic->t_unit_res = unit_bytes;
3386 tic->t_curr_res = unit_bytes;
3387 tic->t_cnt = cnt;
3388 tic->t_ocnt = cnt;
3389 tic->t_tid = random32();
3390 tic->t_clientid = client;
3391 tic->t_flags = XLOG_TIC_INITED;
3392 tic->t_trans_type = 0;
3393 if (permanent)
3394 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3395
3396 xlog_tic_reset_res(tic);
3397
3398 return tic;
3399 }
3400
3401
3402 /******************************************************************************
3403 *
3404 * Log debug routines
3405 *
3406 ******************************************************************************
3407 */
3408 #if defined(DEBUG)
3409 /*
3410 * Make sure that the destination ptr is within the valid data region of
3411 * one of the iclogs. This uses backup pointers stored in a different
3412 * part of the log in case we trash the log structure.
3413 */
3414 void
3415 xlog_verify_dest_ptr(
3416 struct xlog *log,
3417 char *ptr)
3418 {
3419 int i;
3420 int good_ptr = 0;
3421
3422 for (i = 0; i < log->l_iclog_bufs; i++) {
3423 if (ptr >= log->l_iclog_bak[i] &&
3424 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3425 good_ptr++;
3426 }
3427
3428 if (!good_ptr)
3429 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3430 }
3431
3432 /*
3433 * Check to make sure the grant write head didn't just over lap the tail. If
3434 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3435 * the cycles differ by exactly one and check the byte count.
3436 *
3437 * This check is run unlocked, so can give false positives. Rather than assert
3438 * on failures, use a warn-once flag and a panic tag to allow the admin to
3439 * determine if they want to panic the machine when such an error occurs. For
3440 * debug kernels this will have the same effect as using an assert but, unlinke
3441 * an assert, it can be turned off at runtime.
3442 */
3443 STATIC void
3444 xlog_verify_grant_tail(
3445 struct xlog *log)
3446 {
3447 int tail_cycle, tail_blocks;
3448 int cycle, space;
3449
3450 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3451 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3452 if (tail_cycle != cycle) {
3453 if (cycle - 1 != tail_cycle &&
3454 !(log->l_flags & XLOG_TAIL_WARN)) {
3455 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3456 "%s: cycle - 1 != tail_cycle", __func__);
3457 log->l_flags |= XLOG_TAIL_WARN;
3458 }
3459
3460 if (space > BBTOB(tail_blocks) &&
3461 !(log->l_flags & XLOG_TAIL_WARN)) {
3462 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3463 "%s: space > BBTOB(tail_blocks)", __func__);
3464 log->l_flags |= XLOG_TAIL_WARN;
3465 }
3466 }
3467 }
3468
3469 /* check if it will fit */
3470 STATIC void
3471 xlog_verify_tail_lsn(
3472 struct xlog *log,
3473 struct xlog_in_core *iclog,
3474 xfs_lsn_t tail_lsn)
3475 {
3476 int blocks;
3477
3478 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3479 blocks =
3480 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3481 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3482 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3483 } else {
3484 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3485
3486 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3487 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3488
3489 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3490 if (blocks < BTOBB(iclog->ic_offset) + 1)
3491 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3492 }
3493 } /* xlog_verify_tail_lsn */
3494
3495 /*
3496 * Perform a number of checks on the iclog before writing to disk.
3497 *
3498 * 1. Make sure the iclogs are still circular
3499 * 2. Make sure we have a good magic number
3500 * 3. Make sure we don't have magic numbers in the data
3501 * 4. Check fields of each log operation header for:
3502 * A. Valid client identifier
3503 * B. tid ptr value falls in valid ptr space (user space code)
3504 * C. Length in log record header is correct according to the
3505 * individual operation headers within record.
3506 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3507 * log, check the preceding blocks of the physical log to make sure all
3508 * the cycle numbers agree with the current cycle number.
3509 */
3510 STATIC void
3511 xlog_verify_iclog(
3512 struct xlog *log,
3513 struct xlog_in_core *iclog,
3514 int count,
3515 boolean_t syncing)
3516 {
3517 xlog_op_header_t *ophead;
3518 xlog_in_core_t *icptr;
3519 xlog_in_core_2_t *xhdr;
3520 xfs_caddr_t ptr;
3521 xfs_caddr_t base_ptr;
3522 __psint_t field_offset;
3523 __uint8_t clientid;
3524 int len, i, j, k, op_len;
3525 int idx;
3526
3527 /* check validity of iclog pointers */
3528 spin_lock(&log->l_icloglock);
3529 icptr = log->l_iclog;
3530 for (i=0; i < log->l_iclog_bufs; i++) {
3531 if (icptr == NULL)
3532 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3533 icptr = icptr->ic_next;
3534 }
3535 if (icptr != log->l_iclog)
3536 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3537 spin_unlock(&log->l_icloglock);
3538
3539 /* check log magic numbers */
3540 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3541 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3542
3543 ptr = (xfs_caddr_t) &iclog->ic_header;
3544 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3545 ptr += BBSIZE) {
3546 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3547 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3548 __func__);
3549 }
3550
3551 /* check fields */
3552 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3553 ptr = iclog->ic_datap;
3554 base_ptr = ptr;
3555 ophead = (xlog_op_header_t *)ptr;
3556 xhdr = iclog->ic_data;
3557 for (i = 0; i < len; i++) {
3558 ophead = (xlog_op_header_t *)ptr;
3559
3560 /* clientid is only 1 byte */
3561 field_offset = (__psint_t)
3562 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3563 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3564 clientid = ophead->oh_clientid;
3565 } else {
3566 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3567 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3568 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3569 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3570 clientid = xlog_get_client_id(
3571 xhdr[j].hic_xheader.xh_cycle_data[k]);
3572 } else {
3573 clientid = xlog_get_client_id(
3574 iclog->ic_header.h_cycle_data[idx]);
3575 }
3576 }
3577 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3578 xfs_warn(log->l_mp,
3579 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3580 __func__, clientid, ophead,
3581 (unsigned long)field_offset);
3582
3583 /* check length */
3584 field_offset = (__psint_t)
3585 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3586 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3587 op_len = be32_to_cpu(ophead->oh_len);
3588 } else {
3589 idx = BTOBBT((__psint_t)&ophead->oh_len -
3590 (__psint_t)iclog->ic_datap);
3591 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3592 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3593 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3594 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3595 } else {
3596 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3597 }
3598 }
3599 ptr += sizeof(xlog_op_header_t) + op_len;
3600 }
3601 } /* xlog_verify_iclog */
3602 #endif
3603
3604 /*
3605 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3606 */
3607 STATIC int
3608 xlog_state_ioerror(
3609 struct xlog *log)
3610 {
3611 xlog_in_core_t *iclog, *ic;
3612
3613 iclog = log->l_iclog;
3614 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3615 /*
3616 * Mark all the incore logs IOERROR.
3617 * From now on, no log flushes will result.
3618 */
3619 ic = iclog;
3620 do {
3621 ic->ic_state = XLOG_STATE_IOERROR;
3622 ic = ic->ic_next;
3623 } while (ic != iclog);
3624 return 0;
3625 }
3626 /*
3627 * Return non-zero, if state transition has already happened.
3628 */
3629 return 1;
3630 }
3631
3632 /*
3633 * This is called from xfs_force_shutdown, when we're forcibly
3634 * shutting down the filesystem, typically because of an IO error.
3635 * Our main objectives here are to make sure that:
3636 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3637 * parties to find out, 'atomically'.
3638 * b. those who're sleeping on log reservations, pinned objects and
3639 * other resources get woken up, and be told the bad news.
3640 * c. nothing new gets queued up after (a) and (b) are done.
3641 * d. if !logerror, flush the iclogs to disk, then seal them off
3642 * for business.
3643 *
3644 * Note: for delayed logging the !logerror case needs to flush the regions
3645 * held in memory out to the iclogs before flushing them to disk. This needs
3646 * to be done before the log is marked as shutdown, otherwise the flush to the
3647 * iclogs will fail.
3648 */
3649 int
3650 xfs_log_force_umount(
3651 struct xfs_mount *mp,
3652 int logerror)
3653 {
3654 struct xlog *log;
3655 int retval;
3656
3657 log = mp->m_log;
3658
3659 /*
3660 * If this happens during log recovery, don't worry about
3661 * locking; the log isn't open for business yet.
3662 */
3663 if (!log ||
3664 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3665 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3666 if (mp->m_sb_bp)
3667 XFS_BUF_DONE(mp->m_sb_bp);
3668 return 0;
3669 }
3670
3671 /*
3672 * Somebody could've already done the hard work for us.
3673 * No need to get locks for this.
3674 */
3675 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3676 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3677 return 1;
3678 }
3679 retval = 0;
3680
3681 /*
3682 * Flush the in memory commit item list before marking the log as
3683 * being shut down. We need to do it in this order to ensure all the
3684 * completed transactions are flushed to disk with the xfs_log_force()
3685 * call below.
3686 */
3687 if (!logerror)
3688 xlog_cil_force(log);
3689
3690 /*
3691 * mark the filesystem and the as in a shutdown state and wake
3692 * everybody up to tell them the bad news.
3693 */
3694 spin_lock(&log->l_icloglock);
3695 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3696 if (mp->m_sb_bp)
3697 XFS_BUF_DONE(mp->m_sb_bp);
3698
3699 /*
3700 * This flag is sort of redundant because of the mount flag, but
3701 * it's good to maintain the separation between the log and the rest
3702 * of XFS.
3703 */
3704 log->l_flags |= XLOG_IO_ERROR;
3705
3706 /*
3707 * If we hit a log error, we want to mark all the iclogs IOERROR
3708 * while we're still holding the loglock.
3709 */
3710 if (logerror)
3711 retval = xlog_state_ioerror(log);
3712 spin_unlock(&log->l_icloglock);
3713
3714 /*
3715 * We don't want anybody waiting for log reservations after this. That
3716 * means we have to wake up everybody queued up on reserveq as well as
3717 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3718 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3719 * action is protected by the grant locks.
3720 */
3721 xlog_grant_head_wake_all(&log->l_reserve_head);
3722 xlog_grant_head_wake_all(&log->l_write_head);
3723
3724 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3725 ASSERT(!logerror);
3726 /*
3727 * Force the incore logs to disk before shutting the
3728 * log down completely.
3729 */
3730 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3731
3732 spin_lock(&log->l_icloglock);
3733 retval = xlog_state_ioerror(log);
3734 spin_unlock(&log->l_icloglock);
3735 }
3736 /*
3737 * Wake up everybody waiting on xfs_log_force.
3738 * Callback all log item committed functions as if the
3739 * log writes were completed.
3740 */
3741 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3742
3743 #ifdef XFSERRORDEBUG
3744 {
3745 xlog_in_core_t *iclog;
3746
3747 spin_lock(&log->l_icloglock);
3748 iclog = log->l_iclog;
3749 do {
3750 ASSERT(iclog->ic_callback == 0);
3751 iclog = iclog->ic_next;
3752 } while (iclog != log->l_iclog);
3753 spin_unlock(&log->l_icloglock);
3754 }
3755 #endif
3756 /* return non-zero if log IOERROR transition had already happened */
3757 return retval;
3758 }
3759
3760 STATIC int
3761 xlog_iclogs_empty(
3762 struct xlog *log)
3763 {
3764 xlog_in_core_t *iclog;
3765
3766 iclog = log->l_iclog;
3767 do {
3768 /* endianness does not matter here, zero is zero in
3769 * any language.
3770 */
3771 if (iclog->ic_header.h_num_logops)
3772 return 0;
3773 iclog = iclog->ic_next;
3774 } while (iclog != log->l_iclog);
3775 return 1;
3776 }
3777
This page took 0.146141 seconds and 5 git commands to generate.