Merge remote-tracking branch 'asoc/fix/dapm' into asoc-linus
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_log_recover.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_extfree_item.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_alloc.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_cksum.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_bmap_btree.h"
44 #include "xfs_error.h"
45 #include "xfs_dir2.h"
46 #include "xfs_rmap_item.h"
47
48 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
49
50 STATIC int
51 xlog_find_zeroed(
52 struct xlog *,
53 xfs_daddr_t *);
54 STATIC int
55 xlog_clear_stale_blocks(
56 struct xlog *,
57 xfs_lsn_t);
58 #if defined(DEBUG)
59 STATIC void
60 xlog_recover_check_summary(
61 struct xlog *);
62 #else
63 #define xlog_recover_check_summary(log)
64 #endif
65 STATIC int
66 xlog_do_recovery_pass(
67 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
68
69 /*
70 * This structure is used during recovery to record the buf log items which
71 * have been canceled and should not be replayed.
72 */
73 struct xfs_buf_cancel {
74 xfs_daddr_t bc_blkno;
75 uint bc_len;
76 int bc_refcount;
77 struct list_head bc_list;
78 };
79
80 /*
81 * Sector aligned buffer routines for buffer create/read/write/access
82 */
83
84 /*
85 * Verify the given count of basic blocks is valid number of blocks
86 * to specify for an operation involving the given XFS log buffer.
87 * Returns nonzero if the count is valid, 0 otherwise.
88 */
89
90 static inline int
91 xlog_buf_bbcount_valid(
92 struct xlog *log,
93 int bbcount)
94 {
95 return bbcount > 0 && bbcount <= log->l_logBBsize;
96 }
97
98 /*
99 * Allocate a buffer to hold log data. The buffer needs to be able
100 * to map to a range of nbblks basic blocks at any valid (basic
101 * block) offset within the log.
102 */
103 STATIC xfs_buf_t *
104 xlog_get_bp(
105 struct xlog *log,
106 int nbblks)
107 {
108 struct xfs_buf *bp;
109
110 if (!xlog_buf_bbcount_valid(log, nbblks)) {
111 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
112 nbblks);
113 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
114 return NULL;
115 }
116
117 /*
118 * We do log I/O in units of log sectors (a power-of-2
119 * multiple of the basic block size), so we round up the
120 * requested size to accommodate the basic blocks required
121 * for complete log sectors.
122 *
123 * In addition, the buffer may be used for a non-sector-
124 * aligned block offset, in which case an I/O of the
125 * requested size could extend beyond the end of the
126 * buffer. If the requested size is only 1 basic block it
127 * will never straddle a sector boundary, so this won't be
128 * an issue. Nor will this be a problem if the log I/O is
129 * done in basic blocks (sector size 1). But otherwise we
130 * extend the buffer by one extra log sector to ensure
131 * there's space to accommodate this possibility.
132 */
133 if (nbblks > 1 && log->l_sectBBsize > 1)
134 nbblks += log->l_sectBBsize;
135 nbblks = round_up(nbblks, log->l_sectBBsize);
136
137 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
138 if (bp)
139 xfs_buf_unlock(bp);
140 return bp;
141 }
142
143 STATIC void
144 xlog_put_bp(
145 xfs_buf_t *bp)
146 {
147 xfs_buf_free(bp);
148 }
149
150 /*
151 * Return the address of the start of the given block number's data
152 * in a log buffer. The buffer covers a log sector-aligned region.
153 */
154 STATIC char *
155 xlog_align(
156 struct xlog *log,
157 xfs_daddr_t blk_no,
158 int nbblks,
159 struct xfs_buf *bp)
160 {
161 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
162
163 ASSERT(offset + nbblks <= bp->b_length);
164 return bp->b_addr + BBTOB(offset);
165 }
166
167
168 /*
169 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
170 */
171 STATIC int
172 xlog_bread_noalign(
173 struct xlog *log,
174 xfs_daddr_t blk_no,
175 int nbblks,
176 struct xfs_buf *bp)
177 {
178 int error;
179
180 if (!xlog_buf_bbcount_valid(log, nbblks)) {
181 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
182 nbblks);
183 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
184 return -EFSCORRUPTED;
185 }
186
187 blk_no = round_down(blk_no, log->l_sectBBsize);
188 nbblks = round_up(nbblks, log->l_sectBBsize);
189
190 ASSERT(nbblks > 0);
191 ASSERT(nbblks <= bp->b_length);
192
193 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
194 bp->b_flags |= XBF_READ;
195 bp->b_io_length = nbblks;
196 bp->b_error = 0;
197
198 error = xfs_buf_submit_wait(bp);
199 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
200 xfs_buf_ioerror_alert(bp, __func__);
201 return error;
202 }
203
204 STATIC int
205 xlog_bread(
206 struct xlog *log,
207 xfs_daddr_t blk_no,
208 int nbblks,
209 struct xfs_buf *bp,
210 char **offset)
211 {
212 int error;
213
214 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
215 if (error)
216 return error;
217
218 *offset = xlog_align(log, blk_no, nbblks, bp);
219 return 0;
220 }
221
222 /*
223 * Read at an offset into the buffer. Returns with the buffer in it's original
224 * state regardless of the result of the read.
225 */
226 STATIC int
227 xlog_bread_offset(
228 struct xlog *log,
229 xfs_daddr_t blk_no, /* block to read from */
230 int nbblks, /* blocks to read */
231 struct xfs_buf *bp,
232 char *offset)
233 {
234 char *orig_offset = bp->b_addr;
235 int orig_len = BBTOB(bp->b_length);
236 int error, error2;
237
238 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
239 if (error)
240 return error;
241
242 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
243
244 /* must reset buffer pointer even on error */
245 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
246 if (error)
247 return error;
248 return error2;
249 }
250
251 /*
252 * Write out the buffer at the given block for the given number of blocks.
253 * The buffer is kept locked across the write and is returned locked.
254 * This can only be used for synchronous log writes.
255 */
256 STATIC int
257 xlog_bwrite(
258 struct xlog *log,
259 xfs_daddr_t blk_no,
260 int nbblks,
261 struct xfs_buf *bp)
262 {
263 int error;
264
265 if (!xlog_buf_bbcount_valid(log, nbblks)) {
266 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
267 nbblks);
268 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
269 return -EFSCORRUPTED;
270 }
271
272 blk_no = round_down(blk_no, log->l_sectBBsize);
273 nbblks = round_up(nbblks, log->l_sectBBsize);
274
275 ASSERT(nbblks > 0);
276 ASSERT(nbblks <= bp->b_length);
277
278 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
279 xfs_buf_hold(bp);
280 xfs_buf_lock(bp);
281 bp->b_io_length = nbblks;
282 bp->b_error = 0;
283
284 error = xfs_bwrite(bp);
285 if (error)
286 xfs_buf_ioerror_alert(bp, __func__);
287 xfs_buf_relse(bp);
288 return error;
289 }
290
291 #ifdef DEBUG
292 /*
293 * dump debug superblock and log record information
294 */
295 STATIC void
296 xlog_header_check_dump(
297 xfs_mount_t *mp,
298 xlog_rec_header_t *head)
299 {
300 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
301 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
302 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
303 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
304 }
305 #else
306 #define xlog_header_check_dump(mp, head)
307 #endif
308
309 /*
310 * check log record header for recovery
311 */
312 STATIC int
313 xlog_header_check_recover(
314 xfs_mount_t *mp,
315 xlog_rec_header_t *head)
316 {
317 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
318
319 /*
320 * IRIX doesn't write the h_fmt field and leaves it zeroed
321 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
322 * a dirty log created in IRIX.
323 */
324 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
325 xfs_warn(mp,
326 "dirty log written in incompatible format - can't recover");
327 xlog_header_check_dump(mp, head);
328 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
329 XFS_ERRLEVEL_HIGH, mp);
330 return -EFSCORRUPTED;
331 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
332 xfs_warn(mp,
333 "dirty log entry has mismatched uuid - can't recover");
334 xlog_header_check_dump(mp, head);
335 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
336 XFS_ERRLEVEL_HIGH, mp);
337 return -EFSCORRUPTED;
338 }
339 return 0;
340 }
341
342 /*
343 * read the head block of the log and check the header
344 */
345 STATIC int
346 xlog_header_check_mount(
347 xfs_mount_t *mp,
348 xlog_rec_header_t *head)
349 {
350 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
351
352 if (uuid_is_nil(&head->h_fs_uuid)) {
353 /*
354 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
355 * h_fs_uuid is nil, we assume this log was last mounted
356 * by IRIX and continue.
357 */
358 xfs_warn(mp, "nil uuid in log - IRIX style log");
359 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
360 xfs_warn(mp, "log has mismatched uuid - can't recover");
361 xlog_header_check_dump(mp, head);
362 XFS_ERROR_REPORT("xlog_header_check_mount",
363 XFS_ERRLEVEL_HIGH, mp);
364 return -EFSCORRUPTED;
365 }
366 return 0;
367 }
368
369 STATIC void
370 xlog_recover_iodone(
371 struct xfs_buf *bp)
372 {
373 if (bp->b_error) {
374 /*
375 * We're not going to bother about retrying
376 * this during recovery. One strike!
377 */
378 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
379 xfs_buf_ioerror_alert(bp, __func__);
380 xfs_force_shutdown(bp->b_target->bt_mount,
381 SHUTDOWN_META_IO_ERROR);
382 }
383 }
384 bp->b_iodone = NULL;
385 xfs_buf_ioend(bp);
386 }
387
388 /*
389 * This routine finds (to an approximation) the first block in the physical
390 * log which contains the given cycle. It uses a binary search algorithm.
391 * Note that the algorithm can not be perfect because the disk will not
392 * necessarily be perfect.
393 */
394 STATIC int
395 xlog_find_cycle_start(
396 struct xlog *log,
397 struct xfs_buf *bp,
398 xfs_daddr_t first_blk,
399 xfs_daddr_t *last_blk,
400 uint cycle)
401 {
402 char *offset;
403 xfs_daddr_t mid_blk;
404 xfs_daddr_t end_blk;
405 uint mid_cycle;
406 int error;
407
408 end_blk = *last_blk;
409 mid_blk = BLK_AVG(first_blk, end_blk);
410 while (mid_blk != first_blk && mid_blk != end_blk) {
411 error = xlog_bread(log, mid_blk, 1, bp, &offset);
412 if (error)
413 return error;
414 mid_cycle = xlog_get_cycle(offset);
415 if (mid_cycle == cycle)
416 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
417 else
418 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
419 mid_blk = BLK_AVG(first_blk, end_blk);
420 }
421 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
422 (mid_blk == end_blk && mid_blk-1 == first_blk));
423
424 *last_blk = end_blk;
425
426 return 0;
427 }
428
429 /*
430 * Check that a range of blocks does not contain stop_on_cycle_no.
431 * Fill in *new_blk with the block offset where such a block is
432 * found, or with -1 (an invalid block number) if there is no such
433 * block in the range. The scan needs to occur from front to back
434 * and the pointer into the region must be updated since a later
435 * routine will need to perform another test.
436 */
437 STATIC int
438 xlog_find_verify_cycle(
439 struct xlog *log,
440 xfs_daddr_t start_blk,
441 int nbblks,
442 uint stop_on_cycle_no,
443 xfs_daddr_t *new_blk)
444 {
445 xfs_daddr_t i, j;
446 uint cycle;
447 xfs_buf_t *bp;
448 xfs_daddr_t bufblks;
449 char *buf = NULL;
450 int error = 0;
451
452 /*
453 * Greedily allocate a buffer big enough to handle the full
454 * range of basic blocks we'll be examining. If that fails,
455 * try a smaller size. We need to be able to read at least
456 * a log sector, or we're out of luck.
457 */
458 bufblks = 1 << ffs(nbblks);
459 while (bufblks > log->l_logBBsize)
460 bufblks >>= 1;
461 while (!(bp = xlog_get_bp(log, bufblks))) {
462 bufblks >>= 1;
463 if (bufblks < log->l_sectBBsize)
464 return -ENOMEM;
465 }
466
467 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
468 int bcount;
469
470 bcount = min(bufblks, (start_blk + nbblks - i));
471
472 error = xlog_bread(log, i, bcount, bp, &buf);
473 if (error)
474 goto out;
475
476 for (j = 0; j < bcount; j++) {
477 cycle = xlog_get_cycle(buf);
478 if (cycle == stop_on_cycle_no) {
479 *new_blk = i+j;
480 goto out;
481 }
482
483 buf += BBSIZE;
484 }
485 }
486
487 *new_blk = -1;
488
489 out:
490 xlog_put_bp(bp);
491 return error;
492 }
493
494 /*
495 * Potentially backup over partial log record write.
496 *
497 * In the typical case, last_blk is the number of the block directly after
498 * a good log record. Therefore, we subtract one to get the block number
499 * of the last block in the given buffer. extra_bblks contains the number
500 * of blocks we would have read on a previous read. This happens when the
501 * last log record is split over the end of the physical log.
502 *
503 * extra_bblks is the number of blocks potentially verified on a previous
504 * call to this routine.
505 */
506 STATIC int
507 xlog_find_verify_log_record(
508 struct xlog *log,
509 xfs_daddr_t start_blk,
510 xfs_daddr_t *last_blk,
511 int extra_bblks)
512 {
513 xfs_daddr_t i;
514 xfs_buf_t *bp;
515 char *offset = NULL;
516 xlog_rec_header_t *head = NULL;
517 int error = 0;
518 int smallmem = 0;
519 int num_blks = *last_blk - start_blk;
520 int xhdrs;
521
522 ASSERT(start_blk != 0 || *last_blk != start_blk);
523
524 if (!(bp = xlog_get_bp(log, num_blks))) {
525 if (!(bp = xlog_get_bp(log, 1)))
526 return -ENOMEM;
527 smallmem = 1;
528 } else {
529 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
530 if (error)
531 goto out;
532 offset += ((num_blks - 1) << BBSHIFT);
533 }
534
535 for (i = (*last_blk) - 1; i >= 0; i--) {
536 if (i < start_blk) {
537 /* valid log record not found */
538 xfs_warn(log->l_mp,
539 "Log inconsistent (didn't find previous header)");
540 ASSERT(0);
541 error = -EIO;
542 goto out;
543 }
544
545 if (smallmem) {
546 error = xlog_bread(log, i, 1, bp, &offset);
547 if (error)
548 goto out;
549 }
550
551 head = (xlog_rec_header_t *)offset;
552
553 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
554 break;
555
556 if (!smallmem)
557 offset -= BBSIZE;
558 }
559
560 /*
561 * We hit the beginning of the physical log & still no header. Return
562 * to caller. If caller can handle a return of -1, then this routine
563 * will be called again for the end of the physical log.
564 */
565 if (i == -1) {
566 error = 1;
567 goto out;
568 }
569
570 /*
571 * We have the final block of the good log (the first block
572 * of the log record _before_ the head. So we check the uuid.
573 */
574 if ((error = xlog_header_check_mount(log->l_mp, head)))
575 goto out;
576
577 /*
578 * We may have found a log record header before we expected one.
579 * last_blk will be the 1st block # with a given cycle #. We may end
580 * up reading an entire log record. In this case, we don't want to
581 * reset last_blk. Only when last_blk points in the middle of a log
582 * record do we update last_blk.
583 */
584 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
585 uint h_size = be32_to_cpu(head->h_size);
586
587 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
588 if (h_size % XLOG_HEADER_CYCLE_SIZE)
589 xhdrs++;
590 } else {
591 xhdrs = 1;
592 }
593
594 if (*last_blk - i + extra_bblks !=
595 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
596 *last_blk = i;
597
598 out:
599 xlog_put_bp(bp);
600 return error;
601 }
602
603 /*
604 * Head is defined to be the point of the log where the next log write
605 * could go. This means that incomplete LR writes at the end are
606 * eliminated when calculating the head. We aren't guaranteed that previous
607 * LR have complete transactions. We only know that a cycle number of
608 * current cycle number -1 won't be present in the log if we start writing
609 * from our current block number.
610 *
611 * last_blk contains the block number of the first block with a given
612 * cycle number.
613 *
614 * Return: zero if normal, non-zero if error.
615 */
616 STATIC int
617 xlog_find_head(
618 struct xlog *log,
619 xfs_daddr_t *return_head_blk)
620 {
621 xfs_buf_t *bp;
622 char *offset;
623 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
624 int num_scan_bblks;
625 uint first_half_cycle, last_half_cycle;
626 uint stop_on_cycle;
627 int error, log_bbnum = log->l_logBBsize;
628
629 /* Is the end of the log device zeroed? */
630 error = xlog_find_zeroed(log, &first_blk);
631 if (error < 0) {
632 xfs_warn(log->l_mp, "empty log check failed");
633 return error;
634 }
635 if (error == 1) {
636 *return_head_blk = first_blk;
637
638 /* Is the whole lot zeroed? */
639 if (!first_blk) {
640 /* Linux XFS shouldn't generate totally zeroed logs -
641 * mkfs etc write a dummy unmount record to a fresh
642 * log so we can store the uuid in there
643 */
644 xfs_warn(log->l_mp, "totally zeroed log");
645 }
646
647 return 0;
648 }
649
650 first_blk = 0; /* get cycle # of 1st block */
651 bp = xlog_get_bp(log, 1);
652 if (!bp)
653 return -ENOMEM;
654
655 error = xlog_bread(log, 0, 1, bp, &offset);
656 if (error)
657 goto bp_err;
658
659 first_half_cycle = xlog_get_cycle(offset);
660
661 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
662 error = xlog_bread(log, last_blk, 1, bp, &offset);
663 if (error)
664 goto bp_err;
665
666 last_half_cycle = xlog_get_cycle(offset);
667 ASSERT(last_half_cycle != 0);
668
669 /*
670 * If the 1st half cycle number is equal to the last half cycle number,
671 * then the entire log is stamped with the same cycle number. In this
672 * case, head_blk can't be set to zero (which makes sense). The below
673 * math doesn't work out properly with head_blk equal to zero. Instead,
674 * we set it to log_bbnum which is an invalid block number, but this
675 * value makes the math correct. If head_blk doesn't changed through
676 * all the tests below, *head_blk is set to zero at the very end rather
677 * than log_bbnum. In a sense, log_bbnum and zero are the same block
678 * in a circular file.
679 */
680 if (first_half_cycle == last_half_cycle) {
681 /*
682 * In this case we believe that the entire log should have
683 * cycle number last_half_cycle. We need to scan backwards
684 * from the end verifying that there are no holes still
685 * containing last_half_cycle - 1. If we find such a hole,
686 * then the start of that hole will be the new head. The
687 * simple case looks like
688 * x | x ... | x - 1 | x
689 * Another case that fits this picture would be
690 * x | x + 1 | x ... | x
691 * In this case the head really is somewhere at the end of the
692 * log, as one of the latest writes at the beginning was
693 * incomplete.
694 * One more case is
695 * x | x + 1 | x ... | x - 1 | x
696 * This is really the combination of the above two cases, and
697 * the head has to end up at the start of the x-1 hole at the
698 * end of the log.
699 *
700 * In the 256k log case, we will read from the beginning to the
701 * end of the log and search for cycle numbers equal to x-1.
702 * We don't worry about the x+1 blocks that we encounter,
703 * because we know that they cannot be the head since the log
704 * started with x.
705 */
706 head_blk = log_bbnum;
707 stop_on_cycle = last_half_cycle - 1;
708 } else {
709 /*
710 * In this case we want to find the first block with cycle
711 * number matching last_half_cycle. We expect the log to be
712 * some variation on
713 * x + 1 ... | x ... | x
714 * The first block with cycle number x (last_half_cycle) will
715 * be where the new head belongs. First we do a binary search
716 * for the first occurrence of last_half_cycle. The binary
717 * search may not be totally accurate, so then we scan back
718 * from there looking for occurrences of last_half_cycle before
719 * us. If that backwards scan wraps around the beginning of
720 * the log, then we look for occurrences of last_half_cycle - 1
721 * at the end of the log. The cases we're looking for look
722 * like
723 * v binary search stopped here
724 * x + 1 ... | x | x + 1 | x ... | x
725 * ^ but we want to locate this spot
726 * or
727 * <---------> less than scan distance
728 * x + 1 ... | x ... | x - 1 | x
729 * ^ we want to locate this spot
730 */
731 stop_on_cycle = last_half_cycle;
732 if ((error = xlog_find_cycle_start(log, bp, first_blk,
733 &head_blk, last_half_cycle)))
734 goto bp_err;
735 }
736
737 /*
738 * Now validate the answer. Scan back some number of maximum possible
739 * blocks and make sure each one has the expected cycle number. The
740 * maximum is determined by the total possible amount of buffering
741 * in the in-core log. The following number can be made tighter if
742 * we actually look at the block size of the filesystem.
743 */
744 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
745 if (head_blk >= num_scan_bblks) {
746 /*
747 * We are guaranteed that the entire check can be performed
748 * in one buffer.
749 */
750 start_blk = head_blk - num_scan_bblks;
751 if ((error = xlog_find_verify_cycle(log,
752 start_blk, num_scan_bblks,
753 stop_on_cycle, &new_blk)))
754 goto bp_err;
755 if (new_blk != -1)
756 head_blk = new_blk;
757 } else { /* need to read 2 parts of log */
758 /*
759 * We are going to scan backwards in the log in two parts.
760 * First we scan the physical end of the log. In this part
761 * of the log, we are looking for blocks with cycle number
762 * last_half_cycle - 1.
763 * If we find one, then we know that the log starts there, as
764 * we've found a hole that didn't get written in going around
765 * the end of the physical log. The simple case for this is
766 * x + 1 ... | x ... | x - 1 | x
767 * <---------> less than scan distance
768 * If all of the blocks at the end of the log have cycle number
769 * last_half_cycle, then we check the blocks at the start of
770 * the log looking for occurrences of last_half_cycle. If we
771 * find one, then our current estimate for the location of the
772 * first occurrence of last_half_cycle is wrong and we move
773 * back to the hole we've found. This case looks like
774 * x + 1 ... | x | x + 1 | x ...
775 * ^ binary search stopped here
776 * Another case we need to handle that only occurs in 256k
777 * logs is
778 * x + 1 ... | x ... | x+1 | x ...
779 * ^ binary search stops here
780 * In a 256k log, the scan at the end of the log will see the
781 * x + 1 blocks. We need to skip past those since that is
782 * certainly not the head of the log. By searching for
783 * last_half_cycle-1 we accomplish that.
784 */
785 ASSERT(head_blk <= INT_MAX &&
786 (xfs_daddr_t) num_scan_bblks >= head_blk);
787 start_blk = log_bbnum - (num_scan_bblks - head_blk);
788 if ((error = xlog_find_verify_cycle(log, start_blk,
789 num_scan_bblks - (int)head_blk,
790 (stop_on_cycle - 1), &new_blk)))
791 goto bp_err;
792 if (new_blk != -1) {
793 head_blk = new_blk;
794 goto validate_head;
795 }
796
797 /*
798 * Scan beginning of log now. The last part of the physical
799 * log is good. This scan needs to verify that it doesn't find
800 * the last_half_cycle.
801 */
802 start_blk = 0;
803 ASSERT(head_blk <= INT_MAX);
804 if ((error = xlog_find_verify_cycle(log,
805 start_blk, (int)head_blk,
806 stop_on_cycle, &new_blk)))
807 goto bp_err;
808 if (new_blk != -1)
809 head_blk = new_blk;
810 }
811
812 validate_head:
813 /*
814 * Now we need to make sure head_blk is not pointing to a block in
815 * the middle of a log record.
816 */
817 num_scan_bblks = XLOG_REC_SHIFT(log);
818 if (head_blk >= num_scan_bblks) {
819 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
820
821 /* start ptr at last block ptr before head_blk */
822 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
823 if (error == 1)
824 error = -EIO;
825 if (error)
826 goto bp_err;
827 } else {
828 start_blk = 0;
829 ASSERT(head_blk <= INT_MAX);
830 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
831 if (error < 0)
832 goto bp_err;
833 if (error == 1) {
834 /* We hit the beginning of the log during our search */
835 start_blk = log_bbnum - (num_scan_bblks - head_blk);
836 new_blk = log_bbnum;
837 ASSERT(start_blk <= INT_MAX &&
838 (xfs_daddr_t) log_bbnum-start_blk >= 0);
839 ASSERT(head_blk <= INT_MAX);
840 error = xlog_find_verify_log_record(log, start_blk,
841 &new_blk, (int)head_blk);
842 if (error == 1)
843 error = -EIO;
844 if (error)
845 goto bp_err;
846 if (new_blk != log_bbnum)
847 head_blk = new_blk;
848 } else if (error)
849 goto bp_err;
850 }
851
852 xlog_put_bp(bp);
853 if (head_blk == log_bbnum)
854 *return_head_blk = 0;
855 else
856 *return_head_blk = head_blk;
857 /*
858 * When returning here, we have a good block number. Bad block
859 * means that during a previous crash, we didn't have a clean break
860 * from cycle number N to cycle number N-1. In this case, we need
861 * to find the first block with cycle number N-1.
862 */
863 return 0;
864
865 bp_err:
866 xlog_put_bp(bp);
867
868 if (error)
869 xfs_warn(log->l_mp, "failed to find log head");
870 return error;
871 }
872
873 /*
874 * Seek backwards in the log for log record headers.
875 *
876 * Given a starting log block, walk backwards until we find the provided number
877 * of records or hit the provided tail block. The return value is the number of
878 * records encountered or a negative error code. The log block and buffer
879 * pointer of the last record seen are returned in rblk and rhead respectively.
880 */
881 STATIC int
882 xlog_rseek_logrec_hdr(
883 struct xlog *log,
884 xfs_daddr_t head_blk,
885 xfs_daddr_t tail_blk,
886 int count,
887 struct xfs_buf *bp,
888 xfs_daddr_t *rblk,
889 struct xlog_rec_header **rhead,
890 bool *wrapped)
891 {
892 int i;
893 int error;
894 int found = 0;
895 char *offset = NULL;
896 xfs_daddr_t end_blk;
897
898 *wrapped = false;
899
900 /*
901 * Walk backwards from the head block until we hit the tail or the first
902 * block in the log.
903 */
904 end_blk = head_blk > tail_blk ? tail_blk : 0;
905 for (i = (int) head_blk - 1; i >= end_blk; i--) {
906 error = xlog_bread(log, i, 1, bp, &offset);
907 if (error)
908 goto out_error;
909
910 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
911 *rblk = i;
912 *rhead = (struct xlog_rec_header *) offset;
913 if (++found == count)
914 break;
915 }
916 }
917
918 /*
919 * If we haven't hit the tail block or the log record header count,
920 * start looking again from the end of the physical log. Note that
921 * callers can pass head == tail if the tail is not yet known.
922 */
923 if (tail_blk >= head_blk && found != count) {
924 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
925 error = xlog_bread(log, i, 1, bp, &offset);
926 if (error)
927 goto out_error;
928
929 if (*(__be32 *)offset ==
930 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
931 *wrapped = true;
932 *rblk = i;
933 *rhead = (struct xlog_rec_header *) offset;
934 if (++found == count)
935 break;
936 }
937 }
938 }
939
940 return found;
941
942 out_error:
943 return error;
944 }
945
946 /*
947 * Seek forward in the log for log record headers.
948 *
949 * Given head and tail blocks, walk forward from the tail block until we find
950 * the provided number of records or hit the head block. The return value is the
951 * number of records encountered or a negative error code. The log block and
952 * buffer pointer of the last record seen are returned in rblk and rhead
953 * respectively.
954 */
955 STATIC int
956 xlog_seek_logrec_hdr(
957 struct xlog *log,
958 xfs_daddr_t head_blk,
959 xfs_daddr_t tail_blk,
960 int count,
961 struct xfs_buf *bp,
962 xfs_daddr_t *rblk,
963 struct xlog_rec_header **rhead,
964 bool *wrapped)
965 {
966 int i;
967 int error;
968 int found = 0;
969 char *offset = NULL;
970 xfs_daddr_t end_blk;
971
972 *wrapped = false;
973
974 /*
975 * Walk forward from the tail block until we hit the head or the last
976 * block in the log.
977 */
978 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
979 for (i = (int) tail_blk; i <= end_blk; i++) {
980 error = xlog_bread(log, i, 1, bp, &offset);
981 if (error)
982 goto out_error;
983
984 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
985 *rblk = i;
986 *rhead = (struct xlog_rec_header *) offset;
987 if (++found == count)
988 break;
989 }
990 }
991
992 /*
993 * If we haven't hit the head block or the log record header count,
994 * start looking again from the start of the physical log.
995 */
996 if (tail_blk > head_blk && found != count) {
997 for (i = 0; i < (int) head_blk; i++) {
998 error = xlog_bread(log, i, 1, bp, &offset);
999 if (error)
1000 goto out_error;
1001
1002 if (*(__be32 *)offset ==
1003 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1004 *wrapped = true;
1005 *rblk = i;
1006 *rhead = (struct xlog_rec_header *) offset;
1007 if (++found == count)
1008 break;
1009 }
1010 }
1011 }
1012
1013 return found;
1014
1015 out_error:
1016 return error;
1017 }
1018
1019 /*
1020 * Check the log tail for torn writes. This is required when torn writes are
1021 * detected at the head and the head had to be walked back to a previous record.
1022 * The tail of the previous record must now be verified to ensure the torn
1023 * writes didn't corrupt the previous tail.
1024 *
1025 * Return an error if CRC verification fails as recovery cannot proceed.
1026 */
1027 STATIC int
1028 xlog_verify_tail(
1029 struct xlog *log,
1030 xfs_daddr_t head_blk,
1031 xfs_daddr_t tail_blk)
1032 {
1033 struct xlog_rec_header *thead;
1034 struct xfs_buf *bp;
1035 xfs_daddr_t first_bad;
1036 int count;
1037 int error = 0;
1038 bool wrapped;
1039 xfs_daddr_t tmp_head;
1040
1041 bp = xlog_get_bp(log, 1);
1042 if (!bp)
1043 return -ENOMEM;
1044
1045 /*
1046 * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get
1047 * a temporary head block that points after the last possible
1048 * concurrently written record of the tail.
1049 */
1050 count = xlog_seek_logrec_hdr(log, head_blk, tail_blk,
1051 XLOG_MAX_ICLOGS + 1, bp, &tmp_head, &thead,
1052 &wrapped);
1053 if (count < 0) {
1054 error = count;
1055 goto out;
1056 }
1057
1058 /*
1059 * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran
1060 * into the actual log head. tmp_head points to the start of the record
1061 * so update it to the actual head block.
1062 */
1063 if (count < XLOG_MAX_ICLOGS + 1)
1064 tmp_head = head_blk;
1065
1066 /*
1067 * We now have a tail and temporary head block that covers at least
1068 * XLOG_MAX_ICLOGS records from the tail. We need to verify that these
1069 * records were completely written. Run a CRC verification pass from
1070 * tail to head and return the result.
1071 */
1072 error = xlog_do_recovery_pass(log, tmp_head, tail_blk,
1073 XLOG_RECOVER_CRCPASS, &first_bad);
1074
1075 out:
1076 xlog_put_bp(bp);
1077 return error;
1078 }
1079
1080 /*
1081 * Detect and trim torn writes from the head of the log.
1082 *
1083 * Storage without sector atomicity guarantees can result in torn writes in the
1084 * log in the event of a crash. Our only means to detect this scenario is via
1085 * CRC verification. While we can't always be certain that CRC verification
1086 * failure is due to a torn write vs. an unrelated corruption, we do know that
1087 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1088 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1089 * the log and treat failures in this range as torn writes as a matter of
1090 * policy. In the event of CRC failure, the head is walked back to the last good
1091 * record in the log and the tail is updated from that record and verified.
1092 */
1093 STATIC int
1094 xlog_verify_head(
1095 struct xlog *log,
1096 xfs_daddr_t *head_blk, /* in/out: unverified head */
1097 xfs_daddr_t *tail_blk, /* out: tail block */
1098 struct xfs_buf *bp,
1099 xfs_daddr_t *rhead_blk, /* start blk of last record */
1100 struct xlog_rec_header **rhead, /* ptr to last record */
1101 bool *wrapped) /* last rec. wraps phys. log */
1102 {
1103 struct xlog_rec_header *tmp_rhead;
1104 struct xfs_buf *tmp_bp;
1105 xfs_daddr_t first_bad;
1106 xfs_daddr_t tmp_rhead_blk;
1107 int found;
1108 int error;
1109 bool tmp_wrapped;
1110
1111 /*
1112 * Check the head of the log for torn writes. Search backwards from the
1113 * head until we hit the tail or the maximum number of log record I/Os
1114 * that could have been in flight at one time. Use a temporary buffer so
1115 * we don't trash the rhead/bp pointers from the caller.
1116 */
1117 tmp_bp = xlog_get_bp(log, 1);
1118 if (!tmp_bp)
1119 return -ENOMEM;
1120 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1121 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1122 &tmp_rhead, &tmp_wrapped);
1123 xlog_put_bp(tmp_bp);
1124 if (error < 0)
1125 return error;
1126
1127 /*
1128 * Now run a CRC verification pass over the records starting at the
1129 * block found above to the current head. If a CRC failure occurs, the
1130 * log block of the first bad record is saved in first_bad.
1131 */
1132 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1133 XLOG_RECOVER_CRCPASS, &first_bad);
1134 if (error == -EFSBADCRC) {
1135 /*
1136 * We've hit a potential torn write. Reset the error and warn
1137 * about it.
1138 */
1139 error = 0;
1140 xfs_warn(log->l_mp,
1141 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1142 first_bad, *head_blk);
1143
1144 /*
1145 * Get the header block and buffer pointer for the last good
1146 * record before the bad record.
1147 *
1148 * Note that xlog_find_tail() clears the blocks at the new head
1149 * (i.e., the records with invalid CRC) if the cycle number
1150 * matches the the current cycle.
1151 */
1152 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1153 rhead_blk, rhead, wrapped);
1154 if (found < 0)
1155 return found;
1156 if (found == 0) /* XXX: right thing to do here? */
1157 return -EIO;
1158
1159 /*
1160 * Reset the head block to the starting block of the first bad
1161 * log record and set the tail block based on the last good
1162 * record.
1163 *
1164 * Bail out if the updated head/tail match as this indicates
1165 * possible corruption outside of the acceptable
1166 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1167 */
1168 *head_blk = first_bad;
1169 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1170 if (*head_blk == *tail_blk) {
1171 ASSERT(0);
1172 return 0;
1173 }
1174
1175 /*
1176 * Now verify the tail based on the updated head. This is
1177 * required because the torn writes trimmed from the head could
1178 * have been written over the tail of a previous record. Return
1179 * any errors since recovery cannot proceed if the tail is
1180 * corrupt.
1181 *
1182 * XXX: This leaves a gap in truly robust protection from torn
1183 * writes in the log. If the head is behind the tail, the tail
1184 * pushes forward to create some space and then a crash occurs
1185 * causing the writes into the previous record's tail region to
1186 * tear, log recovery isn't able to recover.
1187 *
1188 * How likely is this to occur? If possible, can we do something
1189 * more intelligent here? Is it safe to push the tail forward if
1190 * we can determine that the tail is within the range of the
1191 * torn write (e.g., the kernel can only overwrite the tail if
1192 * it has actually been pushed forward)? Alternatively, could we
1193 * somehow prevent this condition at runtime?
1194 */
1195 error = xlog_verify_tail(log, *head_blk, *tail_blk);
1196 }
1197
1198 return error;
1199 }
1200
1201 /*
1202 * Check whether the head of the log points to an unmount record. In other
1203 * words, determine whether the log is clean. If so, update the in-core state
1204 * appropriately.
1205 */
1206 static int
1207 xlog_check_unmount_rec(
1208 struct xlog *log,
1209 xfs_daddr_t *head_blk,
1210 xfs_daddr_t *tail_blk,
1211 struct xlog_rec_header *rhead,
1212 xfs_daddr_t rhead_blk,
1213 struct xfs_buf *bp,
1214 bool *clean)
1215 {
1216 struct xlog_op_header *op_head;
1217 xfs_daddr_t umount_data_blk;
1218 xfs_daddr_t after_umount_blk;
1219 int hblks;
1220 int error;
1221 char *offset;
1222
1223 *clean = false;
1224
1225 /*
1226 * Look for unmount record. If we find it, then we know there was a
1227 * clean unmount. Since 'i' could be the last block in the physical
1228 * log, we convert to a log block before comparing to the head_blk.
1229 *
1230 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1231 * below. We won't want to clear the unmount record if there is one, so
1232 * we pass the lsn of the unmount record rather than the block after it.
1233 */
1234 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1235 int h_size = be32_to_cpu(rhead->h_size);
1236 int h_version = be32_to_cpu(rhead->h_version);
1237
1238 if ((h_version & XLOG_VERSION_2) &&
1239 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1240 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1241 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1242 hblks++;
1243 } else {
1244 hblks = 1;
1245 }
1246 } else {
1247 hblks = 1;
1248 }
1249 after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1250 after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1251 if (*head_blk == after_umount_blk &&
1252 be32_to_cpu(rhead->h_num_logops) == 1) {
1253 umount_data_blk = rhead_blk + hblks;
1254 umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1255 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1256 if (error)
1257 return error;
1258
1259 op_head = (struct xlog_op_header *)offset;
1260 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1261 /*
1262 * Set tail and last sync so that newly written log
1263 * records will point recovery to after the current
1264 * unmount record.
1265 */
1266 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1267 log->l_curr_cycle, after_umount_blk);
1268 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1269 log->l_curr_cycle, after_umount_blk);
1270 *tail_blk = after_umount_blk;
1271
1272 *clean = true;
1273 }
1274 }
1275
1276 return 0;
1277 }
1278
1279 static void
1280 xlog_set_state(
1281 struct xlog *log,
1282 xfs_daddr_t head_blk,
1283 struct xlog_rec_header *rhead,
1284 xfs_daddr_t rhead_blk,
1285 bool bump_cycle)
1286 {
1287 /*
1288 * Reset log values according to the state of the log when we
1289 * crashed. In the case where head_blk == 0, we bump curr_cycle
1290 * one because the next write starts a new cycle rather than
1291 * continuing the cycle of the last good log record. At this
1292 * point we have guaranteed that all partial log records have been
1293 * accounted for. Therefore, we know that the last good log record
1294 * written was complete and ended exactly on the end boundary
1295 * of the physical log.
1296 */
1297 log->l_prev_block = rhead_blk;
1298 log->l_curr_block = (int)head_blk;
1299 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1300 if (bump_cycle)
1301 log->l_curr_cycle++;
1302 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1303 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1304 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1305 BBTOB(log->l_curr_block));
1306 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1307 BBTOB(log->l_curr_block));
1308 }
1309
1310 /*
1311 * Find the sync block number or the tail of the log.
1312 *
1313 * This will be the block number of the last record to have its
1314 * associated buffers synced to disk. Every log record header has
1315 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1316 * to get a sync block number. The only concern is to figure out which
1317 * log record header to believe.
1318 *
1319 * The following algorithm uses the log record header with the largest
1320 * lsn. The entire log record does not need to be valid. We only care
1321 * that the header is valid.
1322 *
1323 * We could speed up search by using current head_blk buffer, but it is not
1324 * available.
1325 */
1326 STATIC int
1327 xlog_find_tail(
1328 struct xlog *log,
1329 xfs_daddr_t *head_blk,
1330 xfs_daddr_t *tail_blk)
1331 {
1332 xlog_rec_header_t *rhead;
1333 char *offset = NULL;
1334 xfs_buf_t *bp;
1335 int error;
1336 xfs_daddr_t rhead_blk;
1337 xfs_lsn_t tail_lsn;
1338 bool wrapped = false;
1339 bool clean = false;
1340
1341 /*
1342 * Find previous log record
1343 */
1344 if ((error = xlog_find_head(log, head_blk)))
1345 return error;
1346 ASSERT(*head_blk < INT_MAX);
1347
1348 bp = xlog_get_bp(log, 1);
1349 if (!bp)
1350 return -ENOMEM;
1351 if (*head_blk == 0) { /* special case */
1352 error = xlog_bread(log, 0, 1, bp, &offset);
1353 if (error)
1354 goto done;
1355
1356 if (xlog_get_cycle(offset) == 0) {
1357 *tail_blk = 0;
1358 /* leave all other log inited values alone */
1359 goto done;
1360 }
1361 }
1362
1363 /*
1364 * Search backwards through the log looking for the log record header
1365 * block. This wraps all the way back around to the head so something is
1366 * seriously wrong if we can't find it.
1367 */
1368 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1369 &rhead_blk, &rhead, &wrapped);
1370 if (error < 0)
1371 return error;
1372 if (!error) {
1373 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1374 return -EIO;
1375 }
1376 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1377
1378 /*
1379 * Set the log state based on the current head record.
1380 */
1381 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1382 tail_lsn = atomic64_read(&log->l_tail_lsn);
1383
1384 /*
1385 * Look for an unmount record at the head of the log. This sets the log
1386 * state to determine whether recovery is necessary.
1387 */
1388 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1389 rhead_blk, bp, &clean);
1390 if (error)
1391 goto done;
1392
1393 /*
1394 * Verify the log head if the log is not clean (e.g., we have anything
1395 * but an unmount record at the head). This uses CRC verification to
1396 * detect and trim torn writes. If discovered, CRC failures are
1397 * considered torn writes and the log head is trimmed accordingly.
1398 *
1399 * Note that we can only run CRC verification when the log is dirty
1400 * because there's no guarantee that the log data behind an unmount
1401 * record is compatible with the current architecture.
1402 */
1403 if (!clean) {
1404 xfs_daddr_t orig_head = *head_blk;
1405
1406 error = xlog_verify_head(log, head_blk, tail_blk, bp,
1407 &rhead_blk, &rhead, &wrapped);
1408 if (error)
1409 goto done;
1410
1411 /* update in-core state again if the head changed */
1412 if (*head_blk != orig_head) {
1413 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1414 wrapped);
1415 tail_lsn = atomic64_read(&log->l_tail_lsn);
1416 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1417 rhead, rhead_blk, bp,
1418 &clean);
1419 if (error)
1420 goto done;
1421 }
1422 }
1423
1424 /*
1425 * Note that the unmount was clean. If the unmount was not clean, we
1426 * need to know this to rebuild the superblock counters from the perag
1427 * headers if we have a filesystem using non-persistent counters.
1428 */
1429 if (clean)
1430 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1431
1432 /*
1433 * Make sure that there are no blocks in front of the head
1434 * with the same cycle number as the head. This can happen
1435 * because we allow multiple outstanding log writes concurrently,
1436 * and the later writes might make it out before earlier ones.
1437 *
1438 * We use the lsn from before modifying it so that we'll never
1439 * overwrite the unmount record after a clean unmount.
1440 *
1441 * Do this only if we are going to recover the filesystem
1442 *
1443 * NOTE: This used to say "if (!readonly)"
1444 * However on Linux, we can & do recover a read-only filesystem.
1445 * We only skip recovery if NORECOVERY is specified on mount,
1446 * in which case we would not be here.
1447 *
1448 * But... if the -device- itself is readonly, just skip this.
1449 * We can't recover this device anyway, so it won't matter.
1450 */
1451 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1452 error = xlog_clear_stale_blocks(log, tail_lsn);
1453
1454 done:
1455 xlog_put_bp(bp);
1456
1457 if (error)
1458 xfs_warn(log->l_mp, "failed to locate log tail");
1459 return error;
1460 }
1461
1462 /*
1463 * Is the log zeroed at all?
1464 *
1465 * The last binary search should be changed to perform an X block read
1466 * once X becomes small enough. You can then search linearly through
1467 * the X blocks. This will cut down on the number of reads we need to do.
1468 *
1469 * If the log is partially zeroed, this routine will pass back the blkno
1470 * of the first block with cycle number 0. It won't have a complete LR
1471 * preceding it.
1472 *
1473 * Return:
1474 * 0 => the log is completely written to
1475 * 1 => use *blk_no as the first block of the log
1476 * <0 => error has occurred
1477 */
1478 STATIC int
1479 xlog_find_zeroed(
1480 struct xlog *log,
1481 xfs_daddr_t *blk_no)
1482 {
1483 xfs_buf_t *bp;
1484 char *offset;
1485 uint first_cycle, last_cycle;
1486 xfs_daddr_t new_blk, last_blk, start_blk;
1487 xfs_daddr_t num_scan_bblks;
1488 int error, log_bbnum = log->l_logBBsize;
1489
1490 *blk_no = 0;
1491
1492 /* check totally zeroed log */
1493 bp = xlog_get_bp(log, 1);
1494 if (!bp)
1495 return -ENOMEM;
1496 error = xlog_bread(log, 0, 1, bp, &offset);
1497 if (error)
1498 goto bp_err;
1499
1500 first_cycle = xlog_get_cycle(offset);
1501 if (first_cycle == 0) { /* completely zeroed log */
1502 *blk_no = 0;
1503 xlog_put_bp(bp);
1504 return 1;
1505 }
1506
1507 /* check partially zeroed log */
1508 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1509 if (error)
1510 goto bp_err;
1511
1512 last_cycle = xlog_get_cycle(offset);
1513 if (last_cycle != 0) { /* log completely written to */
1514 xlog_put_bp(bp);
1515 return 0;
1516 } else if (first_cycle != 1) {
1517 /*
1518 * If the cycle of the last block is zero, the cycle of
1519 * the first block must be 1. If it's not, maybe we're
1520 * not looking at a log... Bail out.
1521 */
1522 xfs_warn(log->l_mp,
1523 "Log inconsistent or not a log (last==0, first!=1)");
1524 error = -EINVAL;
1525 goto bp_err;
1526 }
1527
1528 /* we have a partially zeroed log */
1529 last_blk = log_bbnum-1;
1530 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1531 goto bp_err;
1532
1533 /*
1534 * Validate the answer. Because there is no way to guarantee that
1535 * the entire log is made up of log records which are the same size,
1536 * we scan over the defined maximum blocks. At this point, the maximum
1537 * is not chosen to mean anything special. XXXmiken
1538 */
1539 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1540 ASSERT(num_scan_bblks <= INT_MAX);
1541
1542 if (last_blk < num_scan_bblks)
1543 num_scan_bblks = last_blk;
1544 start_blk = last_blk - num_scan_bblks;
1545
1546 /*
1547 * We search for any instances of cycle number 0 that occur before
1548 * our current estimate of the head. What we're trying to detect is
1549 * 1 ... | 0 | 1 | 0...
1550 * ^ binary search ends here
1551 */
1552 if ((error = xlog_find_verify_cycle(log, start_blk,
1553 (int)num_scan_bblks, 0, &new_blk)))
1554 goto bp_err;
1555 if (new_blk != -1)
1556 last_blk = new_blk;
1557
1558 /*
1559 * Potentially backup over partial log record write. We don't need
1560 * to search the end of the log because we know it is zero.
1561 */
1562 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1563 if (error == 1)
1564 error = -EIO;
1565 if (error)
1566 goto bp_err;
1567
1568 *blk_no = last_blk;
1569 bp_err:
1570 xlog_put_bp(bp);
1571 if (error)
1572 return error;
1573 return 1;
1574 }
1575
1576 /*
1577 * These are simple subroutines used by xlog_clear_stale_blocks() below
1578 * to initialize a buffer full of empty log record headers and write
1579 * them into the log.
1580 */
1581 STATIC void
1582 xlog_add_record(
1583 struct xlog *log,
1584 char *buf,
1585 int cycle,
1586 int block,
1587 int tail_cycle,
1588 int tail_block)
1589 {
1590 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1591
1592 memset(buf, 0, BBSIZE);
1593 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1594 recp->h_cycle = cpu_to_be32(cycle);
1595 recp->h_version = cpu_to_be32(
1596 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1597 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1598 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1599 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1600 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1601 }
1602
1603 STATIC int
1604 xlog_write_log_records(
1605 struct xlog *log,
1606 int cycle,
1607 int start_block,
1608 int blocks,
1609 int tail_cycle,
1610 int tail_block)
1611 {
1612 char *offset;
1613 xfs_buf_t *bp;
1614 int balign, ealign;
1615 int sectbb = log->l_sectBBsize;
1616 int end_block = start_block + blocks;
1617 int bufblks;
1618 int error = 0;
1619 int i, j = 0;
1620
1621 /*
1622 * Greedily allocate a buffer big enough to handle the full
1623 * range of basic blocks to be written. If that fails, try
1624 * a smaller size. We need to be able to write at least a
1625 * log sector, or we're out of luck.
1626 */
1627 bufblks = 1 << ffs(blocks);
1628 while (bufblks > log->l_logBBsize)
1629 bufblks >>= 1;
1630 while (!(bp = xlog_get_bp(log, bufblks))) {
1631 bufblks >>= 1;
1632 if (bufblks < sectbb)
1633 return -ENOMEM;
1634 }
1635
1636 /* We may need to do a read at the start to fill in part of
1637 * the buffer in the starting sector not covered by the first
1638 * write below.
1639 */
1640 balign = round_down(start_block, sectbb);
1641 if (balign != start_block) {
1642 error = xlog_bread_noalign(log, start_block, 1, bp);
1643 if (error)
1644 goto out_put_bp;
1645
1646 j = start_block - balign;
1647 }
1648
1649 for (i = start_block; i < end_block; i += bufblks) {
1650 int bcount, endcount;
1651
1652 bcount = min(bufblks, end_block - start_block);
1653 endcount = bcount - j;
1654
1655 /* We may need to do a read at the end to fill in part of
1656 * the buffer in the final sector not covered by the write.
1657 * If this is the same sector as the above read, skip it.
1658 */
1659 ealign = round_down(end_block, sectbb);
1660 if (j == 0 && (start_block + endcount > ealign)) {
1661 offset = bp->b_addr + BBTOB(ealign - start_block);
1662 error = xlog_bread_offset(log, ealign, sectbb,
1663 bp, offset);
1664 if (error)
1665 break;
1666
1667 }
1668
1669 offset = xlog_align(log, start_block, endcount, bp);
1670 for (; j < endcount; j++) {
1671 xlog_add_record(log, offset, cycle, i+j,
1672 tail_cycle, tail_block);
1673 offset += BBSIZE;
1674 }
1675 error = xlog_bwrite(log, start_block, endcount, bp);
1676 if (error)
1677 break;
1678 start_block += endcount;
1679 j = 0;
1680 }
1681
1682 out_put_bp:
1683 xlog_put_bp(bp);
1684 return error;
1685 }
1686
1687 /*
1688 * This routine is called to blow away any incomplete log writes out
1689 * in front of the log head. We do this so that we won't become confused
1690 * if we come up, write only a little bit more, and then crash again.
1691 * If we leave the partial log records out there, this situation could
1692 * cause us to think those partial writes are valid blocks since they
1693 * have the current cycle number. We get rid of them by overwriting them
1694 * with empty log records with the old cycle number rather than the
1695 * current one.
1696 *
1697 * The tail lsn is passed in rather than taken from
1698 * the log so that we will not write over the unmount record after a
1699 * clean unmount in a 512 block log. Doing so would leave the log without
1700 * any valid log records in it until a new one was written. If we crashed
1701 * during that time we would not be able to recover.
1702 */
1703 STATIC int
1704 xlog_clear_stale_blocks(
1705 struct xlog *log,
1706 xfs_lsn_t tail_lsn)
1707 {
1708 int tail_cycle, head_cycle;
1709 int tail_block, head_block;
1710 int tail_distance, max_distance;
1711 int distance;
1712 int error;
1713
1714 tail_cycle = CYCLE_LSN(tail_lsn);
1715 tail_block = BLOCK_LSN(tail_lsn);
1716 head_cycle = log->l_curr_cycle;
1717 head_block = log->l_curr_block;
1718
1719 /*
1720 * Figure out the distance between the new head of the log
1721 * and the tail. We want to write over any blocks beyond the
1722 * head that we may have written just before the crash, but
1723 * we don't want to overwrite the tail of the log.
1724 */
1725 if (head_cycle == tail_cycle) {
1726 /*
1727 * The tail is behind the head in the physical log,
1728 * so the distance from the head to the tail is the
1729 * distance from the head to the end of the log plus
1730 * the distance from the beginning of the log to the
1731 * tail.
1732 */
1733 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1734 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1735 XFS_ERRLEVEL_LOW, log->l_mp);
1736 return -EFSCORRUPTED;
1737 }
1738 tail_distance = tail_block + (log->l_logBBsize - head_block);
1739 } else {
1740 /*
1741 * The head is behind the tail in the physical log,
1742 * so the distance from the head to the tail is just
1743 * the tail block minus the head block.
1744 */
1745 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1746 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1747 XFS_ERRLEVEL_LOW, log->l_mp);
1748 return -EFSCORRUPTED;
1749 }
1750 tail_distance = tail_block - head_block;
1751 }
1752
1753 /*
1754 * If the head is right up against the tail, we can't clear
1755 * anything.
1756 */
1757 if (tail_distance <= 0) {
1758 ASSERT(tail_distance == 0);
1759 return 0;
1760 }
1761
1762 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1763 /*
1764 * Take the smaller of the maximum amount of outstanding I/O
1765 * we could have and the distance to the tail to clear out.
1766 * We take the smaller so that we don't overwrite the tail and
1767 * we don't waste all day writing from the head to the tail
1768 * for no reason.
1769 */
1770 max_distance = MIN(max_distance, tail_distance);
1771
1772 if ((head_block + max_distance) <= log->l_logBBsize) {
1773 /*
1774 * We can stomp all the blocks we need to without
1775 * wrapping around the end of the log. Just do it
1776 * in a single write. Use the cycle number of the
1777 * current cycle minus one so that the log will look like:
1778 * n ... | n - 1 ...
1779 */
1780 error = xlog_write_log_records(log, (head_cycle - 1),
1781 head_block, max_distance, tail_cycle,
1782 tail_block);
1783 if (error)
1784 return error;
1785 } else {
1786 /*
1787 * We need to wrap around the end of the physical log in
1788 * order to clear all the blocks. Do it in two separate
1789 * I/Os. The first write should be from the head to the
1790 * end of the physical log, and it should use the current
1791 * cycle number minus one just like above.
1792 */
1793 distance = log->l_logBBsize - head_block;
1794 error = xlog_write_log_records(log, (head_cycle - 1),
1795 head_block, distance, tail_cycle,
1796 tail_block);
1797
1798 if (error)
1799 return error;
1800
1801 /*
1802 * Now write the blocks at the start of the physical log.
1803 * This writes the remainder of the blocks we want to clear.
1804 * It uses the current cycle number since we're now on the
1805 * same cycle as the head so that we get:
1806 * n ... n ... | n - 1 ...
1807 * ^^^^^ blocks we're writing
1808 */
1809 distance = max_distance - (log->l_logBBsize - head_block);
1810 error = xlog_write_log_records(log, head_cycle, 0, distance,
1811 tail_cycle, tail_block);
1812 if (error)
1813 return error;
1814 }
1815
1816 return 0;
1817 }
1818
1819 /******************************************************************************
1820 *
1821 * Log recover routines
1822 *
1823 ******************************************************************************
1824 */
1825
1826 /*
1827 * Sort the log items in the transaction.
1828 *
1829 * The ordering constraints are defined by the inode allocation and unlink
1830 * behaviour. The rules are:
1831 *
1832 * 1. Every item is only logged once in a given transaction. Hence it
1833 * represents the last logged state of the item. Hence ordering is
1834 * dependent on the order in which operations need to be performed so
1835 * required initial conditions are always met.
1836 *
1837 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1838 * there's nothing to replay from them so we can simply cull them
1839 * from the transaction. However, we can't do that until after we've
1840 * replayed all the other items because they may be dependent on the
1841 * cancelled buffer and replaying the cancelled buffer can remove it
1842 * form the cancelled buffer table. Hence they have tobe done last.
1843 *
1844 * 3. Inode allocation buffers must be replayed before inode items that
1845 * read the buffer and replay changes into it. For filesystems using the
1846 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1847 * treated the same as inode allocation buffers as they create and
1848 * initialise the buffers directly.
1849 *
1850 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1851 * This ensures that inodes are completely flushed to the inode buffer
1852 * in a "free" state before we remove the unlinked inode list pointer.
1853 *
1854 * Hence the ordering needs to be inode allocation buffers first, inode items
1855 * second, inode unlink buffers third and cancelled buffers last.
1856 *
1857 * But there's a problem with that - we can't tell an inode allocation buffer
1858 * apart from a regular buffer, so we can't separate them. We can, however,
1859 * tell an inode unlink buffer from the others, and so we can separate them out
1860 * from all the other buffers and move them to last.
1861 *
1862 * Hence, 4 lists, in order from head to tail:
1863 * - buffer_list for all buffers except cancelled/inode unlink buffers
1864 * - item_list for all non-buffer items
1865 * - inode_buffer_list for inode unlink buffers
1866 * - cancel_list for the cancelled buffers
1867 *
1868 * Note that we add objects to the tail of the lists so that first-to-last
1869 * ordering is preserved within the lists. Adding objects to the head of the
1870 * list means when we traverse from the head we walk them in last-to-first
1871 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1872 * but for all other items there may be specific ordering that we need to
1873 * preserve.
1874 */
1875 STATIC int
1876 xlog_recover_reorder_trans(
1877 struct xlog *log,
1878 struct xlog_recover *trans,
1879 int pass)
1880 {
1881 xlog_recover_item_t *item, *n;
1882 int error = 0;
1883 LIST_HEAD(sort_list);
1884 LIST_HEAD(cancel_list);
1885 LIST_HEAD(buffer_list);
1886 LIST_HEAD(inode_buffer_list);
1887 LIST_HEAD(inode_list);
1888
1889 list_splice_init(&trans->r_itemq, &sort_list);
1890 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1891 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1892
1893 switch (ITEM_TYPE(item)) {
1894 case XFS_LI_ICREATE:
1895 list_move_tail(&item->ri_list, &buffer_list);
1896 break;
1897 case XFS_LI_BUF:
1898 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1899 trace_xfs_log_recover_item_reorder_head(log,
1900 trans, item, pass);
1901 list_move(&item->ri_list, &cancel_list);
1902 break;
1903 }
1904 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1905 list_move(&item->ri_list, &inode_buffer_list);
1906 break;
1907 }
1908 list_move_tail(&item->ri_list, &buffer_list);
1909 break;
1910 case XFS_LI_INODE:
1911 case XFS_LI_DQUOT:
1912 case XFS_LI_QUOTAOFF:
1913 case XFS_LI_EFD:
1914 case XFS_LI_EFI:
1915 case XFS_LI_RUI:
1916 case XFS_LI_RUD:
1917 trace_xfs_log_recover_item_reorder_tail(log,
1918 trans, item, pass);
1919 list_move_tail(&item->ri_list, &inode_list);
1920 break;
1921 default:
1922 xfs_warn(log->l_mp,
1923 "%s: unrecognized type of log operation",
1924 __func__);
1925 ASSERT(0);
1926 /*
1927 * return the remaining items back to the transaction
1928 * item list so they can be freed in caller.
1929 */
1930 if (!list_empty(&sort_list))
1931 list_splice_init(&sort_list, &trans->r_itemq);
1932 error = -EIO;
1933 goto out;
1934 }
1935 }
1936 out:
1937 ASSERT(list_empty(&sort_list));
1938 if (!list_empty(&buffer_list))
1939 list_splice(&buffer_list, &trans->r_itemq);
1940 if (!list_empty(&inode_list))
1941 list_splice_tail(&inode_list, &trans->r_itemq);
1942 if (!list_empty(&inode_buffer_list))
1943 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1944 if (!list_empty(&cancel_list))
1945 list_splice_tail(&cancel_list, &trans->r_itemq);
1946 return error;
1947 }
1948
1949 /*
1950 * Build up the table of buf cancel records so that we don't replay
1951 * cancelled data in the second pass. For buffer records that are
1952 * not cancel records, there is nothing to do here so we just return.
1953 *
1954 * If we get a cancel record which is already in the table, this indicates
1955 * that the buffer was cancelled multiple times. In order to ensure
1956 * that during pass 2 we keep the record in the table until we reach its
1957 * last occurrence in the log, we keep a reference count in the cancel
1958 * record in the table to tell us how many times we expect to see this
1959 * record during the second pass.
1960 */
1961 STATIC int
1962 xlog_recover_buffer_pass1(
1963 struct xlog *log,
1964 struct xlog_recover_item *item)
1965 {
1966 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1967 struct list_head *bucket;
1968 struct xfs_buf_cancel *bcp;
1969
1970 /*
1971 * If this isn't a cancel buffer item, then just return.
1972 */
1973 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1974 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1975 return 0;
1976 }
1977
1978 /*
1979 * Insert an xfs_buf_cancel record into the hash table of them.
1980 * If there is already an identical record, bump its reference count.
1981 */
1982 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1983 list_for_each_entry(bcp, bucket, bc_list) {
1984 if (bcp->bc_blkno == buf_f->blf_blkno &&
1985 bcp->bc_len == buf_f->blf_len) {
1986 bcp->bc_refcount++;
1987 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1988 return 0;
1989 }
1990 }
1991
1992 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1993 bcp->bc_blkno = buf_f->blf_blkno;
1994 bcp->bc_len = buf_f->blf_len;
1995 bcp->bc_refcount = 1;
1996 list_add_tail(&bcp->bc_list, bucket);
1997
1998 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1999 return 0;
2000 }
2001
2002 /*
2003 * Check to see whether the buffer being recovered has a corresponding
2004 * entry in the buffer cancel record table. If it is, return the cancel
2005 * buffer structure to the caller.
2006 */
2007 STATIC struct xfs_buf_cancel *
2008 xlog_peek_buffer_cancelled(
2009 struct xlog *log,
2010 xfs_daddr_t blkno,
2011 uint len,
2012 ushort flags)
2013 {
2014 struct list_head *bucket;
2015 struct xfs_buf_cancel *bcp;
2016
2017 if (!log->l_buf_cancel_table) {
2018 /* empty table means no cancelled buffers in the log */
2019 ASSERT(!(flags & XFS_BLF_CANCEL));
2020 return NULL;
2021 }
2022
2023 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2024 list_for_each_entry(bcp, bucket, bc_list) {
2025 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2026 return bcp;
2027 }
2028
2029 /*
2030 * We didn't find a corresponding entry in the table, so return 0 so
2031 * that the buffer is NOT cancelled.
2032 */
2033 ASSERT(!(flags & XFS_BLF_CANCEL));
2034 return NULL;
2035 }
2036
2037 /*
2038 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2039 * otherwise return 0. If the buffer is actually a buffer cancel item
2040 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2041 * table and remove it from the table if this is the last reference.
2042 *
2043 * We remove the cancel record from the table when we encounter its last
2044 * occurrence in the log so that if the same buffer is re-used again after its
2045 * last cancellation we actually replay the changes made at that point.
2046 */
2047 STATIC int
2048 xlog_check_buffer_cancelled(
2049 struct xlog *log,
2050 xfs_daddr_t blkno,
2051 uint len,
2052 ushort flags)
2053 {
2054 struct xfs_buf_cancel *bcp;
2055
2056 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2057 if (!bcp)
2058 return 0;
2059
2060 /*
2061 * We've go a match, so return 1 so that the recovery of this buffer
2062 * is cancelled. If this buffer is actually a buffer cancel log
2063 * item, then decrement the refcount on the one in the table and
2064 * remove it if this is the last reference.
2065 */
2066 if (flags & XFS_BLF_CANCEL) {
2067 if (--bcp->bc_refcount == 0) {
2068 list_del(&bcp->bc_list);
2069 kmem_free(bcp);
2070 }
2071 }
2072 return 1;
2073 }
2074
2075 /*
2076 * Perform recovery for a buffer full of inodes. In these buffers, the only
2077 * data which should be recovered is that which corresponds to the
2078 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2079 * data for the inodes is always logged through the inodes themselves rather
2080 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2081 *
2082 * The only time when buffers full of inodes are fully recovered is when the
2083 * buffer is full of newly allocated inodes. In this case the buffer will
2084 * not be marked as an inode buffer and so will be sent to
2085 * xlog_recover_do_reg_buffer() below during recovery.
2086 */
2087 STATIC int
2088 xlog_recover_do_inode_buffer(
2089 struct xfs_mount *mp,
2090 xlog_recover_item_t *item,
2091 struct xfs_buf *bp,
2092 xfs_buf_log_format_t *buf_f)
2093 {
2094 int i;
2095 int item_index = 0;
2096 int bit = 0;
2097 int nbits = 0;
2098 int reg_buf_offset = 0;
2099 int reg_buf_bytes = 0;
2100 int next_unlinked_offset;
2101 int inodes_per_buf;
2102 xfs_agino_t *logged_nextp;
2103 xfs_agino_t *buffer_nextp;
2104
2105 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2106
2107 /*
2108 * Post recovery validation only works properly on CRC enabled
2109 * filesystems.
2110 */
2111 if (xfs_sb_version_hascrc(&mp->m_sb))
2112 bp->b_ops = &xfs_inode_buf_ops;
2113
2114 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2115 for (i = 0; i < inodes_per_buf; i++) {
2116 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2117 offsetof(xfs_dinode_t, di_next_unlinked);
2118
2119 while (next_unlinked_offset >=
2120 (reg_buf_offset + reg_buf_bytes)) {
2121 /*
2122 * The next di_next_unlinked field is beyond
2123 * the current logged region. Find the next
2124 * logged region that contains or is beyond
2125 * the current di_next_unlinked field.
2126 */
2127 bit += nbits;
2128 bit = xfs_next_bit(buf_f->blf_data_map,
2129 buf_f->blf_map_size, bit);
2130
2131 /*
2132 * If there are no more logged regions in the
2133 * buffer, then we're done.
2134 */
2135 if (bit == -1)
2136 return 0;
2137
2138 nbits = xfs_contig_bits(buf_f->blf_data_map,
2139 buf_f->blf_map_size, bit);
2140 ASSERT(nbits > 0);
2141 reg_buf_offset = bit << XFS_BLF_SHIFT;
2142 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2143 item_index++;
2144 }
2145
2146 /*
2147 * If the current logged region starts after the current
2148 * di_next_unlinked field, then move on to the next
2149 * di_next_unlinked field.
2150 */
2151 if (next_unlinked_offset < reg_buf_offset)
2152 continue;
2153
2154 ASSERT(item->ri_buf[item_index].i_addr != NULL);
2155 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2156 ASSERT((reg_buf_offset + reg_buf_bytes) <=
2157 BBTOB(bp->b_io_length));
2158
2159 /*
2160 * The current logged region contains a copy of the
2161 * current di_next_unlinked field. Extract its value
2162 * and copy it to the buffer copy.
2163 */
2164 logged_nextp = item->ri_buf[item_index].i_addr +
2165 next_unlinked_offset - reg_buf_offset;
2166 if (unlikely(*logged_nextp == 0)) {
2167 xfs_alert(mp,
2168 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2169 "Trying to replay bad (0) inode di_next_unlinked field.",
2170 item, bp);
2171 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2172 XFS_ERRLEVEL_LOW, mp);
2173 return -EFSCORRUPTED;
2174 }
2175
2176 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2177 *buffer_nextp = *logged_nextp;
2178
2179 /*
2180 * If necessary, recalculate the CRC in the on-disk inode. We
2181 * have to leave the inode in a consistent state for whoever
2182 * reads it next....
2183 */
2184 xfs_dinode_calc_crc(mp,
2185 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2186
2187 }
2188
2189 return 0;
2190 }
2191
2192 /*
2193 * V5 filesystems know the age of the buffer on disk being recovered. We can
2194 * have newer objects on disk than we are replaying, and so for these cases we
2195 * don't want to replay the current change as that will make the buffer contents
2196 * temporarily invalid on disk.
2197 *
2198 * The magic number might not match the buffer type we are going to recover
2199 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2200 * extract the LSN of the existing object in the buffer based on it's current
2201 * magic number. If we don't recognise the magic number in the buffer, then
2202 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2203 * so can recover the buffer.
2204 *
2205 * Note: we cannot rely solely on magic number matches to determine that the
2206 * buffer has a valid LSN - we also need to verify that it belongs to this
2207 * filesystem, so we need to extract the object's LSN and compare it to that
2208 * which we read from the superblock. If the UUIDs don't match, then we've got a
2209 * stale metadata block from an old filesystem instance that we need to recover
2210 * over the top of.
2211 */
2212 static xfs_lsn_t
2213 xlog_recover_get_buf_lsn(
2214 struct xfs_mount *mp,
2215 struct xfs_buf *bp)
2216 {
2217 __uint32_t magic32;
2218 __uint16_t magic16;
2219 __uint16_t magicda;
2220 void *blk = bp->b_addr;
2221 uuid_t *uuid;
2222 xfs_lsn_t lsn = -1;
2223
2224 /* v4 filesystems always recover immediately */
2225 if (!xfs_sb_version_hascrc(&mp->m_sb))
2226 goto recover_immediately;
2227
2228 magic32 = be32_to_cpu(*(__be32 *)blk);
2229 switch (magic32) {
2230 case XFS_ABTB_CRC_MAGIC:
2231 case XFS_ABTC_CRC_MAGIC:
2232 case XFS_ABTB_MAGIC:
2233 case XFS_ABTC_MAGIC:
2234 case XFS_RMAP_CRC_MAGIC:
2235 case XFS_IBT_CRC_MAGIC:
2236 case XFS_IBT_MAGIC: {
2237 struct xfs_btree_block *btb = blk;
2238
2239 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2240 uuid = &btb->bb_u.s.bb_uuid;
2241 break;
2242 }
2243 case XFS_BMAP_CRC_MAGIC:
2244 case XFS_BMAP_MAGIC: {
2245 struct xfs_btree_block *btb = blk;
2246
2247 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2248 uuid = &btb->bb_u.l.bb_uuid;
2249 break;
2250 }
2251 case XFS_AGF_MAGIC:
2252 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2253 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2254 break;
2255 case XFS_AGFL_MAGIC:
2256 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2257 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2258 break;
2259 case XFS_AGI_MAGIC:
2260 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2261 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2262 break;
2263 case XFS_SYMLINK_MAGIC:
2264 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2265 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2266 break;
2267 case XFS_DIR3_BLOCK_MAGIC:
2268 case XFS_DIR3_DATA_MAGIC:
2269 case XFS_DIR3_FREE_MAGIC:
2270 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2271 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2272 break;
2273 case XFS_ATTR3_RMT_MAGIC:
2274 /*
2275 * Remote attr blocks are written synchronously, rather than
2276 * being logged. That means they do not contain a valid LSN
2277 * (i.e. transactionally ordered) in them, and hence any time we
2278 * see a buffer to replay over the top of a remote attribute
2279 * block we should simply do so.
2280 */
2281 goto recover_immediately;
2282 case XFS_SB_MAGIC:
2283 /*
2284 * superblock uuids are magic. We may or may not have a
2285 * sb_meta_uuid on disk, but it will be set in the in-core
2286 * superblock. We set the uuid pointer for verification
2287 * according to the superblock feature mask to ensure we check
2288 * the relevant UUID in the superblock.
2289 */
2290 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2291 if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2292 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2293 else
2294 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2295 break;
2296 default:
2297 break;
2298 }
2299
2300 if (lsn != (xfs_lsn_t)-1) {
2301 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2302 goto recover_immediately;
2303 return lsn;
2304 }
2305
2306 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2307 switch (magicda) {
2308 case XFS_DIR3_LEAF1_MAGIC:
2309 case XFS_DIR3_LEAFN_MAGIC:
2310 case XFS_DA3_NODE_MAGIC:
2311 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2312 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2313 break;
2314 default:
2315 break;
2316 }
2317
2318 if (lsn != (xfs_lsn_t)-1) {
2319 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2320 goto recover_immediately;
2321 return lsn;
2322 }
2323
2324 /*
2325 * We do individual object checks on dquot and inode buffers as they
2326 * have their own individual LSN records. Also, we could have a stale
2327 * buffer here, so we have to at least recognise these buffer types.
2328 *
2329 * A notd complexity here is inode unlinked list processing - it logs
2330 * the inode directly in the buffer, but we don't know which inodes have
2331 * been modified, and there is no global buffer LSN. Hence we need to
2332 * recover all inode buffer types immediately. This problem will be
2333 * fixed by logical logging of the unlinked list modifications.
2334 */
2335 magic16 = be16_to_cpu(*(__be16 *)blk);
2336 switch (magic16) {
2337 case XFS_DQUOT_MAGIC:
2338 case XFS_DINODE_MAGIC:
2339 goto recover_immediately;
2340 default:
2341 break;
2342 }
2343
2344 /* unknown buffer contents, recover immediately */
2345
2346 recover_immediately:
2347 return (xfs_lsn_t)-1;
2348
2349 }
2350
2351 /*
2352 * Validate the recovered buffer is of the correct type and attach the
2353 * appropriate buffer operations to them for writeback. Magic numbers are in a
2354 * few places:
2355 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2356 * the first 32 bits of the buffer (most blocks),
2357 * inside a struct xfs_da_blkinfo at the start of the buffer.
2358 */
2359 static void
2360 xlog_recover_validate_buf_type(
2361 struct xfs_mount *mp,
2362 struct xfs_buf *bp,
2363 xfs_buf_log_format_t *buf_f)
2364 {
2365 struct xfs_da_blkinfo *info = bp->b_addr;
2366 __uint32_t magic32;
2367 __uint16_t magic16;
2368 __uint16_t magicda;
2369
2370 /*
2371 * We can only do post recovery validation on items on CRC enabled
2372 * fielsystems as we need to know when the buffer was written to be able
2373 * to determine if we should have replayed the item. If we replay old
2374 * metadata over a newer buffer, then it will enter a temporarily
2375 * inconsistent state resulting in verification failures. Hence for now
2376 * just avoid the verification stage for non-crc filesystems
2377 */
2378 if (!xfs_sb_version_hascrc(&mp->m_sb))
2379 return;
2380
2381 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2382 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2383 magicda = be16_to_cpu(info->magic);
2384 switch (xfs_blft_from_flags(buf_f)) {
2385 case XFS_BLFT_BTREE_BUF:
2386 switch (magic32) {
2387 case XFS_ABTB_CRC_MAGIC:
2388 case XFS_ABTC_CRC_MAGIC:
2389 case XFS_ABTB_MAGIC:
2390 case XFS_ABTC_MAGIC:
2391 bp->b_ops = &xfs_allocbt_buf_ops;
2392 break;
2393 case XFS_IBT_CRC_MAGIC:
2394 case XFS_FIBT_CRC_MAGIC:
2395 case XFS_IBT_MAGIC:
2396 case XFS_FIBT_MAGIC:
2397 bp->b_ops = &xfs_inobt_buf_ops;
2398 break;
2399 case XFS_BMAP_CRC_MAGIC:
2400 case XFS_BMAP_MAGIC:
2401 bp->b_ops = &xfs_bmbt_buf_ops;
2402 break;
2403 case XFS_RMAP_CRC_MAGIC:
2404 bp->b_ops = &xfs_rmapbt_buf_ops;
2405 break;
2406 default:
2407 xfs_warn(mp, "Bad btree block magic!");
2408 ASSERT(0);
2409 break;
2410 }
2411 break;
2412 case XFS_BLFT_AGF_BUF:
2413 if (magic32 != XFS_AGF_MAGIC) {
2414 xfs_warn(mp, "Bad AGF block magic!");
2415 ASSERT(0);
2416 break;
2417 }
2418 bp->b_ops = &xfs_agf_buf_ops;
2419 break;
2420 case XFS_BLFT_AGFL_BUF:
2421 if (magic32 != XFS_AGFL_MAGIC) {
2422 xfs_warn(mp, "Bad AGFL block magic!");
2423 ASSERT(0);
2424 break;
2425 }
2426 bp->b_ops = &xfs_agfl_buf_ops;
2427 break;
2428 case XFS_BLFT_AGI_BUF:
2429 if (magic32 != XFS_AGI_MAGIC) {
2430 xfs_warn(mp, "Bad AGI block magic!");
2431 ASSERT(0);
2432 break;
2433 }
2434 bp->b_ops = &xfs_agi_buf_ops;
2435 break;
2436 case XFS_BLFT_UDQUOT_BUF:
2437 case XFS_BLFT_PDQUOT_BUF:
2438 case XFS_BLFT_GDQUOT_BUF:
2439 #ifdef CONFIG_XFS_QUOTA
2440 if (magic16 != XFS_DQUOT_MAGIC) {
2441 xfs_warn(mp, "Bad DQUOT block magic!");
2442 ASSERT(0);
2443 break;
2444 }
2445 bp->b_ops = &xfs_dquot_buf_ops;
2446 #else
2447 xfs_alert(mp,
2448 "Trying to recover dquots without QUOTA support built in!");
2449 ASSERT(0);
2450 #endif
2451 break;
2452 case XFS_BLFT_DINO_BUF:
2453 if (magic16 != XFS_DINODE_MAGIC) {
2454 xfs_warn(mp, "Bad INODE block magic!");
2455 ASSERT(0);
2456 break;
2457 }
2458 bp->b_ops = &xfs_inode_buf_ops;
2459 break;
2460 case XFS_BLFT_SYMLINK_BUF:
2461 if (magic32 != XFS_SYMLINK_MAGIC) {
2462 xfs_warn(mp, "Bad symlink block magic!");
2463 ASSERT(0);
2464 break;
2465 }
2466 bp->b_ops = &xfs_symlink_buf_ops;
2467 break;
2468 case XFS_BLFT_DIR_BLOCK_BUF:
2469 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2470 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2471 xfs_warn(mp, "Bad dir block magic!");
2472 ASSERT(0);
2473 break;
2474 }
2475 bp->b_ops = &xfs_dir3_block_buf_ops;
2476 break;
2477 case XFS_BLFT_DIR_DATA_BUF:
2478 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2479 magic32 != XFS_DIR3_DATA_MAGIC) {
2480 xfs_warn(mp, "Bad dir data magic!");
2481 ASSERT(0);
2482 break;
2483 }
2484 bp->b_ops = &xfs_dir3_data_buf_ops;
2485 break;
2486 case XFS_BLFT_DIR_FREE_BUF:
2487 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2488 magic32 != XFS_DIR3_FREE_MAGIC) {
2489 xfs_warn(mp, "Bad dir3 free magic!");
2490 ASSERT(0);
2491 break;
2492 }
2493 bp->b_ops = &xfs_dir3_free_buf_ops;
2494 break;
2495 case XFS_BLFT_DIR_LEAF1_BUF:
2496 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2497 magicda != XFS_DIR3_LEAF1_MAGIC) {
2498 xfs_warn(mp, "Bad dir leaf1 magic!");
2499 ASSERT(0);
2500 break;
2501 }
2502 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2503 break;
2504 case XFS_BLFT_DIR_LEAFN_BUF:
2505 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2506 magicda != XFS_DIR3_LEAFN_MAGIC) {
2507 xfs_warn(mp, "Bad dir leafn magic!");
2508 ASSERT(0);
2509 break;
2510 }
2511 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2512 break;
2513 case XFS_BLFT_DA_NODE_BUF:
2514 if (magicda != XFS_DA_NODE_MAGIC &&
2515 magicda != XFS_DA3_NODE_MAGIC) {
2516 xfs_warn(mp, "Bad da node magic!");
2517 ASSERT(0);
2518 break;
2519 }
2520 bp->b_ops = &xfs_da3_node_buf_ops;
2521 break;
2522 case XFS_BLFT_ATTR_LEAF_BUF:
2523 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2524 magicda != XFS_ATTR3_LEAF_MAGIC) {
2525 xfs_warn(mp, "Bad attr leaf magic!");
2526 ASSERT(0);
2527 break;
2528 }
2529 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2530 break;
2531 case XFS_BLFT_ATTR_RMT_BUF:
2532 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2533 xfs_warn(mp, "Bad attr remote magic!");
2534 ASSERT(0);
2535 break;
2536 }
2537 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2538 break;
2539 case XFS_BLFT_SB_BUF:
2540 if (magic32 != XFS_SB_MAGIC) {
2541 xfs_warn(mp, "Bad SB block magic!");
2542 ASSERT(0);
2543 break;
2544 }
2545 bp->b_ops = &xfs_sb_buf_ops;
2546 break;
2547 #ifdef CONFIG_XFS_RT
2548 case XFS_BLFT_RTBITMAP_BUF:
2549 case XFS_BLFT_RTSUMMARY_BUF:
2550 /* no magic numbers for verification of RT buffers */
2551 bp->b_ops = &xfs_rtbuf_ops;
2552 break;
2553 #endif /* CONFIG_XFS_RT */
2554 default:
2555 xfs_warn(mp, "Unknown buffer type %d!",
2556 xfs_blft_from_flags(buf_f));
2557 break;
2558 }
2559 }
2560
2561 /*
2562 * Perform a 'normal' buffer recovery. Each logged region of the
2563 * buffer should be copied over the corresponding region in the
2564 * given buffer. The bitmap in the buf log format structure indicates
2565 * where to place the logged data.
2566 */
2567 STATIC void
2568 xlog_recover_do_reg_buffer(
2569 struct xfs_mount *mp,
2570 xlog_recover_item_t *item,
2571 struct xfs_buf *bp,
2572 xfs_buf_log_format_t *buf_f)
2573 {
2574 int i;
2575 int bit;
2576 int nbits;
2577 int error;
2578
2579 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2580
2581 bit = 0;
2582 i = 1; /* 0 is the buf format structure */
2583 while (1) {
2584 bit = xfs_next_bit(buf_f->blf_data_map,
2585 buf_f->blf_map_size, bit);
2586 if (bit == -1)
2587 break;
2588 nbits = xfs_contig_bits(buf_f->blf_data_map,
2589 buf_f->blf_map_size, bit);
2590 ASSERT(nbits > 0);
2591 ASSERT(item->ri_buf[i].i_addr != NULL);
2592 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2593 ASSERT(BBTOB(bp->b_io_length) >=
2594 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2595
2596 /*
2597 * The dirty regions logged in the buffer, even though
2598 * contiguous, may span multiple chunks. This is because the
2599 * dirty region may span a physical page boundary in a buffer
2600 * and hence be split into two separate vectors for writing into
2601 * the log. Hence we need to trim nbits back to the length of
2602 * the current region being copied out of the log.
2603 */
2604 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2605 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2606
2607 /*
2608 * Do a sanity check if this is a dquot buffer. Just checking
2609 * the first dquot in the buffer should do. XXXThis is
2610 * probably a good thing to do for other buf types also.
2611 */
2612 error = 0;
2613 if (buf_f->blf_flags &
2614 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2615 if (item->ri_buf[i].i_addr == NULL) {
2616 xfs_alert(mp,
2617 "XFS: NULL dquot in %s.", __func__);
2618 goto next;
2619 }
2620 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2621 xfs_alert(mp,
2622 "XFS: dquot too small (%d) in %s.",
2623 item->ri_buf[i].i_len, __func__);
2624 goto next;
2625 }
2626 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2627 -1, 0, XFS_QMOPT_DOWARN,
2628 "dquot_buf_recover");
2629 if (error)
2630 goto next;
2631 }
2632
2633 memcpy(xfs_buf_offset(bp,
2634 (uint)bit << XFS_BLF_SHIFT), /* dest */
2635 item->ri_buf[i].i_addr, /* source */
2636 nbits<<XFS_BLF_SHIFT); /* length */
2637 next:
2638 i++;
2639 bit += nbits;
2640 }
2641
2642 /* Shouldn't be any more regions */
2643 ASSERT(i == item->ri_total);
2644
2645 xlog_recover_validate_buf_type(mp, bp, buf_f);
2646 }
2647
2648 /*
2649 * Perform a dquot buffer recovery.
2650 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2651 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2652 * Else, treat it as a regular buffer and do recovery.
2653 *
2654 * Return false if the buffer was tossed and true if we recovered the buffer to
2655 * indicate to the caller if the buffer needs writing.
2656 */
2657 STATIC bool
2658 xlog_recover_do_dquot_buffer(
2659 struct xfs_mount *mp,
2660 struct xlog *log,
2661 struct xlog_recover_item *item,
2662 struct xfs_buf *bp,
2663 struct xfs_buf_log_format *buf_f)
2664 {
2665 uint type;
2666
2667 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2668
2669 /*
2670 * Filesystems are required to send in quota flags at mount time.
2671 */
2672 if (!mp->m_qflags)
2673 return false;
2674
2675 type = 0;
2676 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2677 type |= XFS_DQ_USER;
2678 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2679 type |= XFS_DQ_PROJ;
2680 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2681 type |= XFS_DQ_GROUP;
2682 /*
2683 * This type of quotas was turned off, so ignore this buffer
2684 */
2685 if (log->l_quotaoffs_flag & type)
2686 return false;
2687
2688 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2689 return true;
2690 }
2691
2692 /*
2693 * This routine replays a modification made to a buffer at runtime.
2694 * There are actually two types of buffer, regular and inode, which
2695 * are handled differently. Inode buffers are handled differently
2696 * in that we only recover a specific set of data from them, namely
2697 * the inode di_next_unlinked fields. This is because all other inode
2698 * data is actually logged via inode records and any data we replay
2699 * here which overlaps that may be stale.
2700 *
2701 * When meta-data buffers are freed at run time we log a buffer item
2702 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2703 * of the buffer in the log should not be replayed at recovery time.
2704 * This is so that if the blocks covered by the buffer are reused for
2705 * file data before we crash we don't end up replaying old, freed
2706 * meta-data into a user's file.
2707 *
2708 * To handle the cancellation of buffer log items, we make two passes
2709 * over the log during recovery. During the first we build a table of
2710 * those buffers which have been cancelled, and during the second we
2711 * only replay those buffers which do not have corresponding cancel
2712 * records in the table. See xlog_recover_buffer_pass[1,2] above
2713 * for more details on the implementation of the table of cancel records.
2714 */
2715 STATIC int
2716 xlog_recover_buffer_pass2(
2717 struct xlog *log,
2718 struct list_head *buffer_list,
2719 struct xlog_recover_item *item,
2720 xfs_lsn_t current_lsn)
2721 {
2722 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2723 xfs_mount_t *mp = log->l_mp;
2724 xfs_buf_t *bp;
2725 int error;
2726 uint buf_flags;
2727 xfs_lsn_t lsn;
2728
2729 /*
2730 * In this pass we only want to recover all the buffers which have
2731 * not been cancelled and are not cancellation buffers themselves.
2732 */
2733 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2734 buf_f->blf_len, buf_f->blf_flags)) {
2735 trace_xfs_log_recover_buf_cancel(log, buf_f);
2736 return 0;
2737 }
2738
2739 trace_xfs_log_recover_buf_recover(log, buf_f);
2740
2741 buf_flags = 0;
2742 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2743 buf_flags |= XBF_UNMAPPED;
2744
2745 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2746 buf_flags, NULL);
2747 if (!bp)
2748 return -ENOMEM;
2749 error = bp->b_error;
2750 if (error) {
2751 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2752 goto out_release;
2753 }
2754
2755 /*
2756 * Recover the buffer only if we get an LSN from it and it's less than
2757 * the lsn of the transaction we are replaying.
2758 *
2759 * Note that we have to be extremely careful of readahead here.
2760 * Readahead does not attach verfiers to the buffers so if we don't
2761 * actually do any replay after readahead because of the LSN we found
2762 * in the buffer if more recent than that current transaction then we
2763 * need to attach the verifier directly. Failure to do so can lead to
2764 * future recovery actions (e.g. EFI and unlinked list recovery) can
2765 * operate on the buffers and they won't get the verifier attached. This
2766 * can lead to blocks on disk having the correct content but a stale
2767 * CRC.
2768 *
2769 * It is safe to assume these clean buffers are currently up to date.
2770 * If the buffer is dirtied by a later transaction being replayed, then
2771 * the verifier will be reset to match whatever recover turns that
2772 * buffer into.
2773 */
2774 lsn = xlog_recover_get_buf_lsn(mp, bp);
2775 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2776 xlog_recover_validate_buf_type(mp, bp, buf_f);
2777 goto out_release;
2778 }
2779
2780 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2781 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2782 if (error)
2783 goto out_release;
2784 } else if (buf_f->blf_flags &
2785 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2786 bool dirty;
2787
2788 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2789 if (!dirty)
2790 goto out_release;
2791 } else {
2792 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2793 }
2794
2795 /*
2796 * Perform delayed write on the buffer. Asynchronous writes will be
2797 * slower when taking into account all the buffers to be flushed.
2798 *
2799 * Also make sure that only inode buffers with good sizes stay in
2800 * the buffer cache. The kernel moves inodes in buffers of 1 block
2801 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2802 * buffers in the log can be a different size if the log was generated
2803 * by an older kernel using unclustered inode buffers or a newer kernel
2804 * running with a different inode cluster size. Regardless, if the
2805 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2806 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2807 * the buffer out of the buffer cache so that the buffer won't
2808 * overlap with future reads of those inodes.
2809 */
2810 if (XFS_DINODE_MAGIC ==
2811 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2812 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2813 (__uint32_t)log->l_mp->m_inode_cluster_size))) {
2814 xfs_buf_stale(bp);
2815 error = xfs_bwrite(bp);
2816 } else {
2817 ASSERT(bp->b_target->bt_mount == mp);
2818 bp->b_iodone = xlog_recover_iodone;
2819 xfs_buf_delwri_queue(bp, buffer_list);
2820 }
2821
2822 out_release:
2823 xfs_buf_relse(bp);
2824 return error;
2825 }
2826
2827 /*
2828 * Inode fork owner changes
2829 *
2830 * If we have been told that we have to reparent the inode fork, it's because an
2831 * extent swap operation on a CRC enabled filesystem has been done and we are
2832 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2833 * owners of it.
2834 *
2835 * The complexity here is that we don't have an inode context to work with, so
2836 * after we've replayed the inode we need to instantiate one. This is where the
2837 * fun begins.
2838 *
2839 * We are in the middle of log recovery, so we can't run transactions. That
2840 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2841 * that will result in the corresponding iput() running the inode through
2842 * xfs_inactive(). If we've just replayed an inode core that changes the link
2843 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2844 * transactions (bad!).
2845 *
2846 * So, to avoid this, we instantiate an inode directly from the inode core we've
2847 * just recovered. We have the buffer still locked, and all we really need to
2848 * instantiate is the inode core and the forks being modified. We can do this
2849 * manually, then run the inode btree owner change, and then tear down the
2850 * xfs_inode without having to run any transactions at all.
2851 *
2852 * Also, because we don't have a transaction context available here but need to
2853 * gather all the buffers we modify for writeback so we pass the buffer_list
2854 * instead for the operation to use.
2855 */
2856
2857 STATIC int
2858 xfs_recover_inode_owner_change(
2859 struct xfs_mount *mp,
2860 struct xfs_dinode *dip,
2861 struct xfs_inode_log_format *in_f,
2862 struct list_head *buffer_list)
2863 {
2864 struct xfs_inode *ip;
2865 int error;
2866
2867 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2868
2869 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2870 if (!ip)
2871 return -ENOMEM;
2872
2873 /* instantiate the inode */
2874 xfs_inode_from_disk(ip, dip);
2875 ASSERT(ip->i_d.di_version >= 3);
2876
2877 error = xfs_iformat_fork(ip, dip);
2878 if (error)
2879 goto out_free_ip;
2880
2881
2882 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2883 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2884 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2885 ip->i_ino, buffer_list);
2886 if (error)
2887 goto out_free_ip;
2888 }
2889
2890 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2891 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2892 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2893 ip->i_ino, buffer_list);
2894 if (error)
2895 goto out_free_ip;
2896 }
2897
2898 out_free_ip:
2899 xfs_inode_free(ip);
2900 return error;
2901 }
2902
2903 STATIC int
2904 xlog_recover_inode_pass2(
2905 struct xlog *log,
2906 struct list_head *buffer_list,
2907 struct xlog_recover_item *item,
2908 xfs_lsn_t current_lsn)
2909 {
2910 xfs_inode_log_format_t *in_f;
2911 xfs_mount_t *mp = log->l_mp;
2912 xfs_buf_t *bp;
2913 xfs_dinode_t *dip;
2914 int len;
2915 char *src;
2916 char *dest;
2917 int error;
2918 int attr_index;
2919 uint fields;
2920 struct xfs_log_dinode *ldip;
2921 uint isize;
2922 int need_free = 0;
2923
2924 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2925 in_f = item->ri_buf[0].i_addr;
2926 } else {
2927 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2928 need_free = 1;
2929 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2930 if (error)
2931 goto error;
2932 }
2933
2934 /*
2935 * Inode buffers can be freed, look out for it,
2936 * and do not replay the inode.
2937 */
2938 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2939 in_f->ilf_len, 0)) {
2940 error = 0;
2941 trace_xfs_log_recover_inode_cancel(log, in_f);
2942 goto error;
2943 }
2944 trace_xfs_log_recover_inode_recover(log, in_f);
2945
2946 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2947 &xfs_inode_buf_ops);
2948 if (!bp) {
2949 error = -ENOMEM;
2950 goto error;
2951 }
2952 error = bp->b_error;
2953 if (error) {
2954 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2955 goto out_release;
2956 }
2957 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2958 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
2959
2960 /*
2961 * Make sure the place we're flushing out to really looks
2962 * like an inode!
2963 */
2964 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2965 xfs_alert(mp,
2966 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2967 __func__, dip, bp, in_f->ilf_ino);
2968 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2969 XFS_ERRLEVEL_LOW, mp);
2970 error = -EFSCORRUPTED;
2971 goto out_release;
2972 }
2973 ldip = item->ri_buf[1].i_addr;
2974 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
2975 xfs_alert(mp,
2976 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2977 __func__, item, in_f->ilf_ino);
2978 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2979 XFS_ERRLEVEL_LOW, mp);
2980 error = -EFSCORRUPTED;
2981 goto out_release;
2982 }
2983
2984 /*
2985 * If the inode has an LSN in it, recover the inode only if it's less
2986 * than the lsn of the transaction we are replaying. Note: we still
2987 * need to replay an owner change even though the inode is more recent
2988 * than the transaction as there is no guarantee that all the btree
2989 * blocks are more recent than this transaction, too.
2990 */
2991 if (dip->di_version >= 3) {
2992 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2993
2994 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2995 trace_xfs_log_recover_inode_skip(log, in_f);
2996 error = 0;
2997 goto out_owner_change;
2998 }
2999 }
3000
3001 /*
3002 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3003 * are transactional and if ordering is necessary we can determine that
3004 * more accurately by the LSN field in the V3 inode core. Don't trust
3005 * the inode versions we might be changing them here - use the
3006 * superblock flag to determine whether we need to look at di_flushiter
3007 * to skip replay when the on disk inode is newer than the log one
3008 */
3009 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3010 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3011 /*
3012 * Deal with the wrap case, DI_MAX_FLUSH is less
3013 * than smaller numbers
3014 */
3015 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3016 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3017 /* do nothing */
3018 } else {
3019 trace_xfs_log_recover_inode_skip(log, in_f);
3020 error = 0;
3021 goto out_release;
3022 }
3023 }
3024
3025 /* Take the opportunity to reset the flush iteration count */
3026 ldip->di_flushiter = 0;
3027
3028 if (unlikely(S_ISREG(ldip->di_mode))) {
3029 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3030 (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3031 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3032 XFS_ERRLEVEL_LOW, mp, ldip);
3033 xfs_alert(mp,
3034 "%s: Bad regular inode log record, rec ptr 0x%p, "
3035 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3036 __func__, item, dip, bp, in_f->ilf_ino);
3037 error = -EFSCORRUPTED;
3038 goto out_release;
3039 }
3040 } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3041 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3042 (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3043 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3044 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3045 XFS_ERRLEVEL_LOW, mp, ldip);
3046 xfs_alert(mp,
3047 "%s: Bad dir inode log record, rec ptr 0x%p, "
3048 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3049 __func__, item, dip, bp, in_f->ilf_ino);
3050 error = -EFSCORRUPTED;
3051 goto out_release;
3052 }
3053 }
3054 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3055 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3056 XFS_ERRLEVEL_LOW, mp, ldip);
3057 xfs_alert(mp,
3058 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3059 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3060 __func__, item, dip, bp, in_f->ilf_ino,
3061 ldip->di_nextents + ldip->di_anextents,
3062 ldip->di_nblocks);
3063 error = -EFSCORRUPTED;
3064 goto out_release;
3065 }
3066 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3067 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3068 XFS_ERRLEVEL_LOW, mp, ldip);
3069 xfs_alert(mp,
3070 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3071 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
3072 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3073 error = -EFSCORRUPTED;
3074 goto out_release;
3075 }
3076 isize = xfs_log_dinode_size(ldip->di_version);
3077 if (unlikely(item->ri_buf[1].i_len > isize)) {
3078 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3079 XFS_ERRLEVEL_LOW, mp, ldip);
3080 xfs_alert(mp,
3081 "%s: Bad inode log record length %d, rec ptr 0x%p",
3082 __func__, item->ri_buf[1].i_len, item);
3083 error = -EFSCORRUPTED;
3084 goto out_release;
3085 }
3086
3087 /* recover the log dinode inode into the on disk inode */
3088 xfs_log_dinode_to_disk(ldip, dip);
3089
3090 /* the rest is in on-disk format */
3091 if (item->ri_buf[1].i_len > isize) {
3092 memcpy((char *)dip + isize,
3093 item->ri_buf[1].i_addr + isize,
3094 item->ri_buf[1].i_len - isize);
3095 }
3096
3097 fields = in_f->ilf_fields;
3098 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
3099 case XFS_ILOG_DEV:
3100 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3101 break;
3102 case XFS_ILOG_UUID:
3103 memcpy(XFS_DFORK_DPTR(dip),
3104 &in_f->ilf_u.ilfu_uuid,
3105 sizeof(uuid_t));
3106 break;
3107 }
3108
3109 if (in_f->ilf_size == 2)
3110 goto out_owner_change;
3111 len = item->ri_buf[2].i_len;
3112 src = item->ri_buf[2].i_addr;
3113 ASSERT(in_f->ilf_size <= 4);
3114 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3115 ASSERT(!(fields & XFS_ILOG_DFORK) ||
3116 (len == in_f->ilf_dsize));
3117
3118 switch (fields & XFS_ILOG_DFORK) {
3119 case XFS_ILOG_DDATA:
3120 case XFS_ILOG_DEXT:
3121 memcpy(XFS_DFORK_DPTR(dip), src, len);
3122 break;
3123
3124 case XFS_ILOG_DBROOT:
3125 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3126 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3127 XFS_DFORK_DSIZE(dip, mp));
3128 break;
3129
3130 default:
3131 /*
3132 * There are no data fork flags set.
3133 */
3134 ASSERT((fields & XFS_ILOG_DFORK) == 0);
3135 break;
3136 }
3137
3138 /*
3139 * If we logged any attribute data, recover it. There may or
3140 * may not have been any other non-core data logged in this
3141 * transaction.
3142 */
3143 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3144 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3145 attr_index = 3;
3146 } else {
3147 attr_index = 2;
3148 }
3149 len = item->ri_buf[attr_index].i_len;
3150 src = item->ri_buf[attr_index].i_addr;
3151 ASSERT(len == in_f->ilf_asize);
3152
3153 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3154 case XFS_ILOG_ADATA:
3155 case XFS_ILOG_AEXT:
3156 dest = XFS_DFORK_APTR(dip);
3157 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3158 memcpy(dest, src, len);
3159 break;
3160
3161 case XFS_ILOG_ABROOT:
3162 dest = XFS_DFORK_APTR(dip);
3163 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3164 len, (xfs_bmdr_block_t*)dest,
3165 XFS_DFORK_ASIZE(dip, mp));
3166 break;
3167
3168 default:
3169 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3170 ASSERT(0);
3171 error = -EIO;
3172 goto out_release;
3173 }
3174 }
3175
3176 out_owner_change:
3177 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3178 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3179 buffer_list);
3180 /* re-generate the checksum. */
3181 xfs_dinode_calc_crc(log->l_mp, dip);
3182
3183 ASSERT(bp->b_target->bt_mount == mp);
3184 bp->b_iodone = xlog_recover_iodone;
3185 xfs_buf_delwri_queue(bp, buffer_list);
3186
3187 out_release:
3188 xfs_buf_relse(bp);
3189 error:
3190 if (need_free)
3191 kmem_free(in_f);
3192 return error;
3193 }
3194
3195 /*
3196 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3197 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3198 * of that type.
3199 */
3200 STATIC int
3201 xlog_recover_quotaoff_pass1(
3202 struct xlog *log,
3203 struct xlog_recover_item *item)
3204 {
3205 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
3206 ASSERT(qoff_f);
3207
3208 /*
3209 * The logitem format's flag tells us if this was user quotaoff,
3210 * group/project quotaoff or both.
3211 */
3212 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3213 log->l_quotaoffs_flag |= XFS_DQ_USER;
3214 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3215 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3216 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3217 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3218
3219 return 0;
3220 }
3221
3222 /*
3223 * Recover a dquot record
3224 */
3225 STATIC int
3226 xlog_recover_dquot_pass2(
3227 struct xlog *log,
3228 struct list_head *buffer_list,
3229 struct xlog_recover_item *item,
3230 xfs_lsn_t current_lsn)
3231 {
3232 xfs_mount_t *mp = log->l_mp;
3233 xfs_buf_t *bp;
3234 struct xfs_disk_dquot *ddq, *recddq;
3235 int error;
3236 xfs_dq_logformat_t *dq_f;
3237 uint type;
3238
3239
3240 /*
3241 * Filesystems are required to send in quota flags at mount time.
3242 */
3243 if (mp->m_qflags == 0)
3244 return 0;
3245
3246 recddq = item->ri_buf[1].i_addr;
3247 if (recddq == NULL) {
3248 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3249 return -EIO;
3250 }
3251 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3252 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3253 item->ri_buf[1].i_len, __func__);
3254 return -EIO;
3255 }
3256
3257 /*
3258 * This type of quotas was turned off, so ignore this record.
3259 */
3260 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3261 ASSERT(type);
3262 if (log->l_quotaoffs_flag & type)
3263 return 0;
3264
3265 /*
3266 * At this point we know that quota was _not_ turned off.
3267 * Since the mount flags are not indicating to us otherwise, this
3268 * must mean that quota is on, and the dquot needs to be replayed.
3269 * Remember that we may not have fully recovered the superblock yet,
3270 * so we can't do the usual trick of looking at the SB quota bits.
3271 *
3272 * The other possibility, of course, is that the quota subsystem was
3273 * removed since the last mount - ENOSYS.
3274 */
3275 dq_f = item->ri_buf[0].i_addr;
3276 ASSERT(dq_f);
3277 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3278 "xlog_recover_dquot_pass2 (log copy)");
3279 if (error)
3280 return -EIO;
3281 ASSERT(dq_f->qlf_len == 1);
3282
3283 /*
3284 * At this point we are assuming that the dquots have been allocated
3285 * and hence the buffer has valid dquots stamped in it. It should,
3286 * therefore, pass verifier validation. If the dquot is bad, then the
3287 * we'll return an error here, so we don't need to specifically check
3288 * the dquot in the buffer after the verifier has run.
3289 */
3290 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3291 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3292 &xfs_dquot_buf_ops);
3293 if (error)
3294 return error;
3295
3296 ASSERT(bp);
3297 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3298
3299 /*
3300 * If the dquot has an LSN in it, recover the dquot only if it's less
3301 * than the lsn of the transaction we are replaying.
3302 */
3303 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3304 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3305 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3306
3307 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3308 goto out_release;
3309 }
3310 }
3311
3312 memcpy(ddq, recddq, item->ri_buf[1].i_len);
3313 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3314 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3315 XFS_DQUOT_CRC_OFF);
3316 }
3317
3318 ASSERT(dq_f->qlf_size == 2);
3319 ASSERT(bp->b_target->bt_mount == mp);
3320 bp->b_iodone = xlog_recover_iodone;
3321 xfs_buf_delwri_queue(bp, buffer_list);
3322
3323 out_release:
3324 xfs_buf_relse(bp);
3325 return 0;
3326 }
3327
3328 /*
3329 * This routine is called to create an in-core extent free intent
3330 * item from the efi format structure which was logged on disk.
3331 * It allocates an in-core efi, copies the extents from the format
3332 * structure into it, and adds the efi to the AIL with the given
3333 * LSN.
3334 */
3335 STATIC int
3336 xlog_recover_efi_pass2(
3337 struct xlog *log,
3338 struct xlog_recover_item *item,
3339 xfs_lsn_t lsn)
3340 {
3341 int error;
3342 struct xfs_mount *mp = log->l_mp;
3343 struct xfs_efi_log_item *efip;
3344 struct xfs_efi_log_format *efi_formatp;
3345
3346 efi_formatp = item->ri_buf[0].i_addr;
3347
3348 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3349 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3350 if (error) {
3351 xfs_efi_item_free(efip);
3352 return error;
3353 }
3354 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3355
3356 spin_lock(&log->l_ailp->xa_lock);
3357 /*
3358 * The EFI has two references. One for the EFD and one for EFI to ensure
3359 * it makes it into the AIL. Insert the EFI into the AIL directly and
3360 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3361 * AIL lock.
3362 */
3363 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3364 xfs_efi_release(efip);
3365 return 0;
3366 }
3367
3368
3369 /*
3370 * This routine is called when an EFD format structure is found in a committed
3371 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3372 * was still in the log. To do this it searches the AIL for the EFI with an id
3373 * equal to that in the EFD format structure. If we find it we drop the EFD
3374 * reference, which removes the EFI from the AIL and frees it.
3375 */
3376 STATIC int
3377 xlog_recover_efd_pass2(
3378 struct xlog *log,
3379 struct xlog_recover_item *item)
3380 {
3381 xfs_efd_log_format_t *efd_formatp;
3382 xfs_efi_log_item_t *efip = NULL;
3383 xfs_log_item_t *lip;
3384 __uint64_t efi_id;
3385 struct xfs_ail_cursor cur;
3386 struct xfs_ail *ailp = log->l_ailp;
3387
3388 efd_formatp = item->ri_buf[0].i_addr;
3389 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3390 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3391 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3392 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3393 efi_id = efd_formatp->efd_efi_id;
3394
3395 /*
3396 * Search for the EFI with the id in the EFD format structure in the
3397 * AIL.
3398 */
3399 spin_lock(&ailp->xa_lock);
3400 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3401 while (lip != NULL) {
3402 if (lip->li_type == XFS_LI_EFI) {
3403 efip = (xfs_efi_log_item_t *)lip;
3404 if (efip->efi_format.efi_id == efi_id) {
3405 /*
3406 * Drop the EFD reference to the EFI. This
3407 * removes the EFI from the AIL and frees it.
3408 */
3409 spin_unlock(&ailp->xa_lock);
3410 xfs_efi_release(efip);
3411 spin_lock(&ailp->xa_lock);
3412 break;
3413 }
3414 }
3415 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3416 }
3417
3418 xfs_trans_ail_cursor_done(&cur);
3419 spin_unlock(&ailp->xa_lock);
3420
3421 return 0;
3422 }
3423
3424 /*
3425 * This routine is called to create an in-core extent rmap update
3426 * item from the rui format structure which was logged on disk.
3427 * It allocates an in-core rui, copies the extents from the format
3428 * structure into it, and adds the rui to the AIL with the given
3429 * LSN.
3430 */
3431 STATIC int
3432 xlog_recover_rui_pass2(
3433 struct xlog *log,
3434 struct xlog_recover_item *item,
3435 xfs_lsn_t lsn)
3436 {
3437 int error;
3438 struct xfs_mount *mp = log->l_mp;
3439 struct xfs_rui_log_item *ruip;
3440 struct xfs_rui_log_format *rui_formatp;
3441
3442 rui_formatp = item->ri_buf[0].i_addr;
3443
3444 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3445 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3446 if (error) {
3447 xfs_rui_item_free(ruip);
3448 return error;
3449 }
3450 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3451
3452 spin_lock(&log->l_ailp->xa_lock);
3453 /*
3454 * The RUI has two references. One for the RUD and one for RUI to ensure
3455 * it makes it into the AIL. Insert the RUI into the AIL directly and
3456 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3457 * AIL lock.
3458 */
3459 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3460 xfs_rui_release(ruip);
3461 return 0;
3462 }
3463
3464
3465 /*
3466 * This routine is called when an RUD format structure is found in a committed
3467 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3468 * was still in the log. To do this it searches the AIL for the RUI with an id
3469 * equal to that in the RUD format structure. If we find it we drop the RUD
3470 * reference, which removes the RUI from the AIL and frees it.
3471 */
3472 STATIC int
3473 xlog_recover_rud_pass2(
3474 struct xlog *log,
3475 struct xlog_recover_item *item)
3476 {
3477 struct xfs_rud_log_format *rud_formatp;
3478 struct xfs_rui_log_item *ruip = NULL;
3479 struct xfs_log_item *lip;
3480 __uint64_t rui_id;
3481 struct xfs_ail_cursor cur;
3482 struct xfs_ail *ailp = log->l_ailp;
3483
3484 rud_formatp = item->ri_buf[0].i_addr;
3485 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3486 rui_id = rud_formatp->rud_rui_id;
3487
3488 /*
3489 * Search for the RUI with the id in the RUD format structure in the
3490 * AIL.
3491 */
3492 spin_lock(&ailp->xa_lock);
3493 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3494 while (lip != NULL) {
3495 if (lip->li_type == XFS_LI_RUI) {
3496 ruip = (struct xfs_rui_log_item *)lip;
3497 if (ruip->rui_format.rui_id == rui_id) {
3498 /*
3499 * Drop the RUD reference to the RUI. This
3500 * removes the RUI from the AIL and frees it.
3501 */
3502 spin_unlock(&ailp->xa_lock);
3503 xfs_rui_release(ruip);
3504 spin_lock(&ailp->xa_lock);
3505 break;
3506 }
3507 }
3508 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3509 }
3510
3511 xfs_trans_ail_cursor_done(&cur);
3512 spin_unlock(&ailp->xa_lock);
3513
3514 return 0;
3515 }
3516
3517 /*
3518 * This routine is called when an inode create format structure is found in a
3519 * committed transaction in the log. It's purpose is to initialise the inodes
3520 * being allocated on disk. This requires us to get inode cluster buffers that
3521 * match the range to be intialised, stamped with inode templates and written
3522 * by delayed write so that subsequent modifications will hit the cached buffer
3523 * and only need writing out at the end of recovery.
3524 */
3525 STATIC int
3526 xlog_recover_do_icreate_pass2(
3527 struct xlog *log,
3528 struct list_head *buffer_list,
3529 xlog_recover_item_t *item)
3530 {
3531 struct xfs_mount *mp = log->l_mp;
3532 struct xfs_icreate_log *icl;
3533 xfs_agnumber_t agno;
3534 xfs_agblock_t agbno;
3535 unsigned int count;
3536 unsigned int isize;
3537 xfs_agblock_t length;
3538 int blks_per_cluster;
3539 int bb_per_cluster;
3540 int cancel_count;
3541 int nbufs;
3542 int i;
3543
3544 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3545 if (icl->icl_type != XFS_LI_ICREATE) {
3546 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3547 return -EINVAL;
3548 }
3549
3550 if (icl->icl_size != 1) {
3551 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3552 return -EINVAL;
3553 }
3554
3555 agno = be32_to_cpu(icl->icl_ag);
3556 if (agno >= mp->m_sb.sb_agcount) {
3557 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3558 return -EINVAL;
3559 }
3560 agbno = be32_to_cpu(icl->icl_agbno);
3561 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3562 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3563 return -EINVAL;
3564 }
3565 isize = be32_to_cpu(icl->icl_isize);
3566 if (isize != mp->m_sb.sb_inodesize) {
3567 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3568 return -EINVAL;
3569 }
3570 count = be32_to_cpu(icl->icl_count);
3571 if (!count) {
3572 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3573 return -EINVAL;
3574 }
3575 length = be32_to_cpu(icl->icl_length);
3576 if (!length || length >= mp->m_sb.sb_agblocks) {
3577 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3578 return -EINVAL;
3579 }
3580
3581 /*
3582 * The inode chunk is either full or sparse and we only support
3583 * m_ialloc_min_blks sized sparse allocations at this time.
3584 */
3585 if (length != mp->m_ialloc_blks &&
3586 length != mp->m_ialloc_min_blks) {
3587 xfs_warn(log->l_mp,
3588 "%s: unsupported chunk length", __FUNCTION__);
3589 return -EINVAL;
3590 }
3591
3592 /* verify inode count is consistent with extent length */
3593 if ((count >> mp->m_sb.sb_inopblog) != length) {
3594 xfs_warn(log->l_mp,
3595 "%s: inconsistent inode count and chunk length",
3596 __FUNCTION__);
3597 return -EINVAL;
3598 }
3599
3600 /*
3601 * The icreate transaction can cover multiple cluster buffers and these
3602 * buffers could have been freed and reused. Check the individual
3603 * buffers for cancellation so we don't overwrite anything written after
3604 * a cancellation.
3605 */
3606 blks_per_cluster = xfs_icluster_size_fsb(mp);
3607 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3608 nbufs = length / blks_per_cluster;
3609 for (i = 0, cancel_count = 0; i < nbufs; i++) {
3610 xfs_daddr_t daddr;
3611
3612 daddr = XFS_AGB_TO_DADDR(mp, agno,
3613 agbno + i * blks_per_cluster);
3614 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3615 cancel_count++;
3616 }
3617
3618 /*
3619 * We currently only use icreate for a single allocation at a time. This
3620 * means we should expect either all or none of the buffers to be
3621 * cancelled. Be conservative and skip replay if at least one buffer is
3622 * cancelled, but warn the user that something is awry if the buffers
3623 * are not consistent.
3624 *
3625 * XXX: This must be refined to only skip cancelled clusters once we use
3626 * icreate for multiple chunk allocations.
3627 */
3628 ASSERT(!cancel_count || cancel_count == nbufs);
3629 if (cancel_count) {
3630 if (cancel_count != nbufs)
3631 xfs_warn(mp,
3632 "WARNING: partial inode chunk cancellation, skipped icreate.");
3633 trace_xfs_log_recover_icreate_cancel(log, icl);
3634 return 0;
3635 }
3636
3637 trace_xfs_log_recover_icreate_recover(log, icl);
3638 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3639 length, be32_to_cpu(icl->icl_gen));
3640 }
3641
3642 STATIC void
3643 xlog_recover_buffer_ra_pass2(
3644 struct xlog *log,
3645 struct xlog_recover_item *item)
3646 {
3647 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3648 struct xfs_mount *mp = log->l_mp;
3649
3650 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3651 buf_f->blf_len, buf_f->blf_flags)) {
3652 return;
3653 }
3654
3655 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3656 buf_f->blf_len, NULL);
3657 }
3658
3659 STATIC void
3660 xlog_recover_inode_ra_pass2(
3661 struct xlog *log,
3662 struct xlog_recover_item *item)
3663 {
3664 struct xfs_inode_log_format ilf_buf;
3665 struct xfs_inode_log_format *ilfp;
3666 struct xfs_mount *mp = log->l_mp;
3667 int error;
3668
3669 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3670 ilfp = item->ri_buf[0].i_addr;
3671 } else {
3672 ilfp = &ilf_buf;
3673 memset(ilfp, 0, sizeof(*ilfp));
3674 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3675 if (error)
3676 return;
3677 }
3678
3679 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3680 return;
3681
3682 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3683 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3684 }
3685
3686 STATIC void
3687 xlog_recover_dquot_ra_pass2(
3688 struct xlog *log,
3689 struct xlog_recover_item *item)
3690 {
3691 struct xfs_mount *mp = log->l_mp;
3692 struct xfs_disk_dquot *recddq;
3693 struct xfs_dq_logformat *dq_f;
3694 uint type;
3695 int len;
3696
3697
3698 if (mp->m_qflags == 0)
3699 return;
3700
3701 recddq = item->ri_buf[1].i_addr;
3702 if (recddq == NULL)
3703 return;
3704 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3705 return;
3706
3707 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3708 ASSERT(type);
3709 if (log->l_quotaoffs_flag & type)
3710 return;
3711
3712 dq_f = item->ri_buf[0].i_addr;
3713 ASSERT(dq_f);
3714 ASSERT(dq_f->qlf_len == 1);
3715
3716 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3717 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3718 return;
3719
3720 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3721 &xfs_dquot_buf_ra_ops);
3722 }
3723
3724 STATIC void
3725 xlog_recover_ra_pass2(
3726 struct xlog *log,
3727 struct xlog_recover_item *item)
3728 {
3729 switch (ITEM_TYPE(item)) {
3730 case XFS_LI_BUF:
3731 xlog_recover_buffer_ra_pass2(log, item);
3732 break;
3733 case XFS_LI_INODE:
3734 xlog_recover_inode_ra_pass2(log, item);
3735 break;
3736 case XFS_LI_DQUOT:
3737 xlog_recover_dquot_ra_pass2(log, item);
3738 break;
3739 case XFS_LI_EFI:
3740 case XFS_LI_EFD:
3741 case XFS_LI_QUOTAOFF:
3742 case XFS_LI_RUI:
3743 case XFS_LI_RUD:
3744 default:
3745 break;
3746 }
3747 }
3748
3749 STATIC int
3750 xlog_recover_commit_pass1(
3751 struct xlog *log,
3752 struct xlog_recover *trans,
3753 struct xlog_recover_item *item)
3754 {
3755 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3756
3757 switch (ITEM_TYPE(item)) {
3758 case XFS_LI_BUF:
3759 return xlog_recover_buffer_pass1(log, item);
3760 case XFS_LI_QUOTAOFF:
3761 return xlog_recover_quotaoff_pass1(log, item);
3762 case XFS_LI_INODE:
3763 case XFS_LI_EFI:
3764 case XFS_LI_EFD:
3765 case XFS_LI_DQUOT:
3766 case XFS_LI_ICREATE:
3767 case XFS_LI_RUI:
3768 case XFS_LI_RUD:
3769 /* nothing to do in pass 1 */
3770 return 0;
3771 default:
3772 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3773 __func__, ITEM_TYPE(item));
3774 ASSERT(0);
3775 return -EIO;
3776 }
3777 }
3778
3779 STATIC int
3780 xlog_recover_commit_pass2(
3781 struct xlog *log,
3782 struct xlog_recover *trans,
3783 struct list_head *buffer_list,
3784 struct xlog_recover_item *item)
3785 {
3786 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3787
3788 switch (ITEM_TYPE(item)) {
3789 case XFS_LI_BUF:
3790 return xlog_recover_buffer_pass2(log, buffer_list, item,
3791 trans->r_lsn);
3792 case XFS_LI_INODE:
3793 return xlog_recover_inode_pass2(log, buffer_list, item,
3794 trans->r_lsn);
3795 case XFS_LI_EFI:
3796 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3797 case XFS_LI_EFD:
3798 return xlog_recover_efd_pass2(log, item);
3799 case XFS_LI_RUI:
3800 return xlog_recover_rui_pass2(log, item, trans->r_lsn);
3801 case XFS_LI_RUD:
3802 return xlog_recover_rud_pass2(log, item);
3803 case XFS_LI_DQUOT:
3804 return xlog_recover_dquot_pass2(log, buffer_list, item,
3805 trans->r_lsn);
3806 case XFS_LI_ICREATE:
3807 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3808 case XFS_LI_QUOTAOFF:
3809 /* nothing to do in pass2 */
3810 return 0;
3811 default:
3812 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3813 __func__, ITEM_TYPE(item));
3814 ASSERT(0);
3815 return -EIO;
3816 }
3817 }
3818
3819 STATIC int
3820 xlog_recover_items_pass2(
3821 struct xlog *log,
3822 struct xlog_recover *trans,
3823 struct list_head *buffer_list,
3824 struct list_head *item_list)
3825 {
3826 struct xlog_recover_item *item;
3827 int error = 0;
3828
3829 list_for_each_entry(item, item_list, ri_list) {
3830 error = xlog_recover_commit_pass2(log, trans,
3831 buffer_list, item);
3832 if (error)
3833 return error;
3834 }
3835
3836 return error;
3837 }
3838
3839 /*
3840 * Perform the transaction.
3841 *
3842 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3843 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3844 */
3845 STATIC int
3846 xlog_recover_commit_trans(
3847 struct xlog *log,
3848 struct xlog_recover *trans,
3849 int pass)
3850 {
3851 int error = 0;
3852 int error2;
3853 int items_queued = 0;
3854 struct xlog_recover_item *item;
3855 struct xlog_recover_item *next;
3856 LIST_HEAD (buffer_list);
3857 LIST_HEAD (ra_list);
3858 LIST_HEAD (done_list);
3859
3860 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3861
3862 hlist_del(&trans->r_list);
3863
3864 error = xlog_recover_reorder_trans(log, trans, pass);
3865 if (error)
3866 return error;
3867
3868 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3869 switch (pass) {
3870 case XLOG_RECOVER_PASS1:
3871 error = xlog_recover_commit_pass1(log, trans, item);
3872 break;
3873 case XLOG_RECOVER_PASS2:
3874 xlog_recover_ra_pass2(log, item);
3875 list_move_tail(&item->ri_list, &ra_list);
3876 items_queued++;
3877 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3878 error = xlog_recover_items_pass2(log, trans,
3879 &buffer_list, &ra_list);
3880 list_splice_tail_init(&ra_list, &done_list);
3881 items_queued = 0;
3882 }
3883
3884 break;
3885 default:
3886 ASSERT(0);
3887 }
3888
3889 if (error)
3890 goto out;
3891 }
3892
3893 out:
3894 if (!list_empty(&ra_list)) {
3895 if (!error)
3896 error = xlog_recover_items_pass2(log, trans,
3897 &buffer_list, &ra_list);
3898 list_splice_tail_init(&ra_list, &done_list);
3899 }
3900
3901 if (!list_empty(&done_list))
3902 list_splice_init(&done_list, &trans->r_itemq);
3903
3904 error2 = xfs_buf_delwri_submit(&buffer_list);
3905 return error ? error : error2;
3906 }
3907
3908 STATIC void
3909 xlog_recover_add_item(
3910 struct list_head *head)
3911 {
3912 xlog_recover_item_t *item;
3913
3914 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
3915 INIT_LIST_HEAD(&item->ri_list);
3916 list_add_tail(&item->ri_list, head);
3917 }
3918
3919 STATIC int
3920 xlog_recover_add_to_cont_trans(
3921 struct xlog *log,
3922 struct xlog_recover *trans,
3923 char *dp,
3924 int len)
3925 {
3926 xlog_recover_item_t *item;
3927 char *ptr, *old_ptr;
3928 int old_len;
3929
3930 /*
3931 * If the transaction is empty, the header was split across this and the
3932 * previous record. Copy the rest of the header.
3933 */
3934 if (list_empty(&trans->r_itemq)) {
3935 ASSERT(len <= sizeof(struct xfs_trans_header));
3936 if (len > sizeof(struct xfs_trans_header)) {
3937 xfs_warn(log->l_mp, "%s: bad header length", __func__);
3938 return -EIO;
3939 }
3940
3941 xlog_recover_add_item(&trans->r_itemq);
3942 ptr = (char *)&trans->r_theader +
3943 sizeof(struct xfs_trans_header) - len;
3944 memcpy(ptr, dp, len);
3945 return 0;
3946 }
3947
3948 /* take the tail entry */
3949 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3950
3951 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
3952 old_len = item->ri_buf[item->ri_cnt-1].i_len;
3953
3954 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
3955 memcpy(&ptr[old_len], dp, len);
3956 item->ri_buf[item->ri_cnt-1].i_len += len;
3957 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
3958 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
3959 return 0;
3960 }
3961
3962 /*
3963 * The next region to add is the start of a new region. It could be
3964 * a whole region or it could be the first part of a new region. Because
3965 * of this, the assumption here is that the type and size fields of all
3966 * format structures fit into the first 32 bits of the structure.
3967 *
3968 * This works because all regions must be 32 bit aligned. Therefore, we
3969 * either have both fields or we have neither field. In the case we have
3970 * neither field, the data part of the region is zero length. We only have
3971 * a log_op_header and can throw away the header since a new one will appear
3972 * later. If we have at least 4 bytes, then we can determine how many regions
3973 * will appear in the current log item.
3974 */
3975 STATIC int
3976 xlog_recover_add_to_trans(
3977 struct xlog *log,
3978 struct xlog_recover *trans,
3979 char *dp,
3980 int len)
3981 {
3982 xfs_inode_log_format_t *in_f; /* any will do */
3983 xlog_recover_item_t *item;
3984 char *ptr;
3985
3986 if (!len)
3987 return 0;
3988 if (list_empty(&trans->r_itemq)) {
3989 /* we need to catch log corruptions here */
3990 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
3991 xfs_warn(log->l_mp, "%s: bad header magic number",
3992 __func__);
3993 ASSERT(0);
3994 return -EIO;
3995 }
3996
3997 if (len > sizeof(struct xfs_trans_header)) {
3998 xfs_warn(log->l_mp, "%s: bad header length", __func__);
3999 ASSERT(0);
4000 return -EIO;
4001 }
4002
4003 /*
4004 * The transaction header can be arbitrarily split across op
4005 * records. If we don't have the whole thing here, copy what we
4006 * do have and handle the rest in the next record.
4007 */
4008 if (len == sizeof(struct xfs_trans_header))
4009 xlog_recover_add_item(&trans->r_itemq);
4010 memcpy(&trans->r_theader, dp, len);
4011 return 0;
4012 }
4013
4014 ptr = kmem_alloc(len, KM_SLEEP);
4015 memcpy(ptr, dp, len);
4016 in_f = (xfs_inode_log_format_t *)ptr;
4017
4018 /* take the tail entry */
4019 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4020 if (item->ri_total != 0 &&
4021 item->ri_total == item->ri_cnt) {
4022 /* tail item is in use, get a new one */
4023 xlog_recover_add_item(&trans->r_itemq);
4024 item = list_entry(trans->r_itemq.prev,
4025 xlog_recover_item_t, ri_list);
4026 }
4027
4028 if (item->ri_total == 0) { /* first region to be added */
4029 if (in_f->ilf_size == 0 ||
4030 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4031 xfs_warn(log->l_mp,
4032 "bad number of regions (%d) in inode log format",
4033 in_f->ilf_size);
4034 ASSERT(0);
4035 kmem_free(ptr);
4036 return -EIO;
4037 }
4038
4039 item->ri_total = in_f->ilf_size;
4040 item->ri_buf =
4041 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4042 KM_SLEEP);
4043 }
4044 ASSERT(item->ri_total > item->ri_cnt);
4045 /* Description region is ri_buf[0] */
4046 item->ri_buf[item->ri_cnt].i_addr = ptr;
4047 item->ri_buf[item->ri_cnt].i_len = len;
4048 item->ri_cnt++;
4049 trace_xfs_log_recover_item_add(log, trans, item, 0);
4050 return 0;
4051 }
4052
4053 /*
4054 * Free up any resources allocated by the transaction
4055 *
4056 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4057 */
4058 STATIC void
4059 xlog_recover_free_trans(
4060 struct xlog_recover *trans)
4061 {
4062 xlog_recover_item_t *item, *n;
4063 int i;
4064
4065 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4066 /* Free the regions in the item. */
4067 list_del(&item->ri_list);
4068 for (i = 0; i < item->ri_cnt; i++)
4069 kmem_free(item->ri_buf[i].i_addr);
4070 /* Free the item itself */
4071 kmem_free(item->ri_buf);
4072 kmem_free(item);
4073 }
4074 /* Free the transaction recover structure */
4075 kmem_free(trans);
4076 }
4077
4078 /*
4079 * On error or completion, trans is freed.
4080 */
4081 STATIC int
4082 xlog_recovery_process_trans(
4083 struct xlog *log,
4084 struct xlog_recover *trans,
4085 char *dp,
4086 unsigned int len,
4087 unsigned int flags,
4088 int pass)
4089 {
4090 int error = 0;
4091 bool freeit = false;
4092
4093 /* mask off ophdr transaction container flags */
4094 flags &= ~XLOG_END_TRANS;
4095 if (flags & XLOG_WAS_CONT_TRANS)
4096 flags &= ~XLOG_CONTINUE_TRANS;
4097
4098 /*
4099 * Callees must not free the trans structure. We'll decide if we need to
4100 * free it or not based on the operation being done and it's result.
4101 */
4102 switch (flags) {
4103 /* expected flag values */
4104 case 0:
4105 case XLOG_CONTINUE_TRANS:
4106 error = xlog_recover_add_to_trans(log, trans, dp, len);
4107 break;
4108 case XLOG_WAS_CONT_TRANS:
4109 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4110 break;
4111 case XLOG_COMMIT_TRANS:
4112 error = xlog_recover_commit_trans(log, trans, pass);
4113 /* success or fail, we are now done with this transaction. */
4114 freeit = true;
4115 break;
4116
4117 /* unexpected flag values */
4118 case XLOG_UNMOUNT_TRANS:
4119 /* just skip trans */
4120 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4121 freeit = true;
4122 break;
4123 case XLOG_START_TRANS:
4124 default:
4125 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4126 ASSERT(0);
4127 error = -EIO;
4128 break;
4129 }
4130 if (error || freeit)
4131 xlog_recover_free_trans(trans);
4132 return error;
4133 }
4134
4135 /*
4136 * Lookup the transaction recovery structure associated with the ID in the
4137 * current ophdr. If the transaction doesn't exist and the start flag is set in
4138 * the ophdr, then allocate a new transaction for future ID matches to find.
4139 * Either way, return what we found during the lookup - an existing transaction
4140 * or nothing.
4141 */
4142 STATIC struct xlog_recover *
4143 xlog_recover_ophdr_to_trans(
4144 struct hlist_head rhash[],
4145 struct xlog_rec_header *rhead,
4146 struct xlog_op_header *ohead)
4147 {
4148 struct xlog_recover *trans;
4149 xlog_tid_t tid;
4150 struct hlist_head *rhp;
4151
4152 tid = be32_to_cpu(ohead->oh_tid);
4153 rhp = &rhash[XLOG_RHASH(tid)];
4154 hlist_for_each_entry(trans, rhp, r_list) {
4155 if (trans->r_log_tid == tid)
4156 return trans;
4157 }
4158
4159 /*
4160 * skip over non-start transaction headers - we could be
4161 * processing slack space before the next transaction starts
4162 */
4163 if (!(ohead->oh_flags & XLOG_START_TRANS))
4164 return NULL;
4165
4166 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4167
4168 /*
4169 * This is a new transaction so allocate a new recovery container to
4170 * hold the recovery ops that will follow.
4171 */
4172 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4173 trans->r_log_tid = tid;
4174 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4175 INIT_LIST_HEAD(&trans->r_itemq);
4176 INIT_HLIST_NODE(&trans->r_list);
4177 hlist_add_head(&trans->r_list, rhp);
4178
4179 /*
4180 * Nothing more to do for this ophdr. Items to be added to this new
4181 * transaction will be in subsequent ophdr containers.
4182 */
4183 return NULL;
4184 }
4185
4186 STATIC int
4187 xlog_recover_process_ophdr(
4188 struct xlog *log,
4189 struct hlist_head rhash[],
4190 struct xlog_rec_header *rhead,
4191 struct xlog_op_header *ohead,
4192 char *dp,
4193 char *end,
4194 int pass)
4195 {
4196 struct xlog_recover *trans;
4197 unsigned int len;
4198
4199 /* Do we understand who wrote this op? */
4200 if (ohead->oh_clientid != XFS_TRANSACTION &&
4201 ohead->oh_clientid != XFS_LOG) {
4202 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4203 __func__, ohead->oh_clientid);
4204 ASSERT(0);
4205 return -EIO;
4206 }
4207
4208 /*
4209 * Check the ophdr contains all the data it is supposed to contain.
4210 */
4211 len = be32_to_cpu(ohead->oh_len);
4212 if (dp + len > end) {
4213 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4214 WARN_ON(1);
4215 return -EIO;
4216 }
4217
4218 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4219 if (!trans) {
4220 /* nothing to do, so skip over this ophdr */
4221 return 0;
4222 }
4223
4224 return xlog_recovery_process_trans(log, trans, dp, len,
4225 ohead->oh_flags, pass);
4226 }
4227
4228 /*
4229 * There are two valid states of the r_state field. 0 indicates that the
4230 * transaction structure is in a normal state. We have either seen the
4231 * start of the transaction or the last operation we added was not a partial
4232 * operation. If the last operation we added to the transaction was a
4233 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4234 *
4235 * NOTE: skip LRs with 0 data length.
4236 */
4237 STATIC int
4238 xlog_recover_process_data(
4239 struct xlog *log,
4240 struct hlist_head rhash[],
4241 struct xlog_rec_header *rhead,
4242 char *dp,
4243 int pass)
4244 {
4245 struct xlog_op_header *ohead;
4246 char *end;
4247 int num_logops;
4248 int error;
4249
4250 end = dp + be32_to_cpu(rhead->h_len);
4251 num_logops = be32_to_cpu(rhead->h_num_logops);
4252
4253 /* check the log format matches our own - else we can't recover */
4254 if (xlog_header_check_recover(log->l_mp, rhead))
4255 return -EIO;
4256
4257 while ((dp < end) && num_logops) {
4258
4259 ohead = (struct xlog_op_header *)dp;
4260 dp += sizeof(*ohead);
4261 ASSERT(dp <= end);
4262
4263 /* errors will abort recovery */
4264 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4265 dp, end, pass);
4266 if (error)
4267 return error;
4268
4269 dp += be32_to_cpu(ohead->oh_len);
4270 num_logops--;
4271 }
4272 return 0;
4273 }
4274
4275 /* Recover the EFI if necessary. */
4276 STATIC int
4277 xlog_recover_process_efi(
4278 struct xfs_mount *mp,
4279 struct xfs_ail *ailp,
4280 struct xfs_log_item *lip)
4281 {
4282 struct xfs_efi_log_item *efip;
4283 int error;
4284
4285 /*
4286 * Skip EFIs that we've already processed.
4287 */
4288 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4289 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4290 return 0;
4291
4292 spin_unlock(&ailp->xa_lock);
4293 error = xfs_efi_recover(mp, efip);
4294 spin_lock(&ailp->xa_lock);
4295
4296 return error;
4297 }
4298
4299 /* Release the EFI since we're cancelling everything. */
4300 STATIC void
4301 xlog_recover_cancel_efi(
4302 struct xfs_mount *mp,
4303 struct xfs_ail *ailp,
4304 struct xfs_log_item *lip)
4305 {
4306 struct xfs_efi_log_item *efip;
4307
4308 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4309
4310 spin_unlock(&ailp->xa_lock);
4311 xfs_efi_release(efip);
4312 spin_lock(&ailp->xa_lock);
4313 }
4314
4315 /* Recover the RUI if necessary. */
4316 STATIC int
4317 xlog_recover_process_rui(
4318 struct xfs_mount *mp,
4319 struct xfs_ail *ailp,
4320 struct xfs_log_item *lip)
4321 {
4322 struct xfs_rui_log_item *ruip;
4323 int error;
4324
4325 /*
4326 * Skip RUIs that we've already processed.
4327 */
4328 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4329 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4330 return 0;
4331
4332 spin_unlock(&ailp->xa_lock);
4333 error = xfs_rui_recover(mp, ruip);
4334 spin_lock(&ailp->xa_lock);
4335
4336 return error;
4337 }
4338
4339 /* Release the RUI since we're cancelling everything. */
4340 STATIC void
4341 xlog_recover_cancel_rui(
4342 struct xfs_mount *mp,
4343 struct xfs_ail *ailp,
4344 struct xfs_log_item *lip)
4345 {
4346 struct xfs_rui_log_item *ruip;
4347
4348 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4349
4350 spin_unlock(&ailp->xa_lock);
4351 xfs_rui_release(ruip);
4352 spin_lock(&ailp->xa_lock);
4353 }
4354
4355 /* Is this log item a deferred action intent? */
4356 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4357 {
4358 switch (lip->li_type) {
4359 case XFS_LI_EFI:
4360 case XFS_LI_RUI:
4361 return true;
4362 default:
4363 return false;
4364 }
4365 }
4366
4367 /*
4368 * When this is called, all of the log intent items which did not have
4369 * corresponding log done items should be in the AIL. What we do now
4370 * is update the data structures associated with each one.
4371 *
4372 * Since we process the log intent items in normal transactions, they
4373 * will be removed at some point after the commit. This prevents us
4374 * from just walking down the list processing each one. We'll use a
4375 * flag in the intent item to skip those that we've already processed
4376 * and use the AIL iteration mechanism's generation count to try to
4377 * speed this up at least a bit.
4378 *
4379 * When we start, we know that the intents are the only things in the
4380 * AIL. As we process them, however, other items are added to the
4381 * AIL.
4382 */
4383 STATIC int
4384 xlog_recover_process_intents(
4385 struct xlog *log)
4386 {
4387 struct xfs_log_item *lip;
4388 int error = 0;
4389 struct xfs_ail_cursor cur;
4390 struct xfs_ail *ailp;
4391 xfs_lsn_t last_lsn;
4392
4393 ailp = log->l_ailp;
4394 spin_lock(&ailp->xa_lock);
4395 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4396 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4397 while (lip != NULL) {
4398 /*
4399 * We're done when we see something other than an intent.
4400 * There should be no intents left in the AIL now.
4401 */
4402 if (!xlog_item_is_intent(lip)) {
4403 #ifdef DEBUG
4404 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4405 ASSERT(!xlog_item_is_intent(lip));
4406 #endif
4407 break;
4408 }
4409
4410 /*
4411 * We should never see a redo item with a LSN higher than
4412 * the last transaction we found in the log at the start
4413 * of recovery.
4414 */
4415 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4416
4417 switch (lip->li_type) {
4418 case XFS_LI_EFI:
4419 error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4420 break;
4421 case XFS_LI_RUI:
4422 error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4423 break;
4424 }
4425 if (error)
4426 goto out;
4427 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4428 }
4429 out:
4430 xfs_trans_ail_cursor_done(&cur);
4431 spin_unlock(&ailp->xa_lock);
4432 return error;
4433 }
4434
4435 /*
4436 * A cancel occurs when the mount has failed and we're bailing out.
4437 * Release all pending log intent items so they don't pin the AIL.
4438 */
4439 STATIC int
4440 xlog_recover_cancel_intents(
4441 struct xlog *log)
4442 {
4443 struct xfs_log_item *lip;
4444 int error = 0;
4445 struct xfs_ail_cursor cur;
4446 struct xfs_ail *ailp;
4447
4448 ailp = log->l_ailp;
4449 spin_lock(&ailp->xa_lock);
4450 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4451 while (lip != NULL) {
4452 /*
4453 * We're done when we see something other than an intent.
4454 * There should be no intents left in the AIL now.
4455 */
4456 if (!xlog_item_is_intent(lip)) {
4457 #ifdef DEBUG
4458 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4459 ASSERT(!xlog_item_is_intent(lip));
4460 #endif
4461 break;
4462 }
4463
4464 switch (lip->li_type) {
4465 case XFS_LI_EFI:
4466 xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4467 break;
4468 case XFS_LI_RUI:
4469 xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4470 break;
4471 }
4472
4473 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4474 }
4475
4476 xfs_trans_ail_cursor_done(&cur);
4477 spin_unlock(&ailp->xa_lock);
4478 return error;
4479 }
4480
4481 /*
4482 * This routine performs a transaction to null out a bad inode pointer
4483 * in an agi unlinked inode hash bucket.
4484 */
4485 STATIC void
4486 xlog_recover_clear_agi_bucket(
4487 xfs_mount_t *mp,
4488 xfs_agnumber_t agno,
4489 int bucket)
4490 {
4491 xfs_trans_t *tp;
4492 xfs_agi_t *agi;
4493 xfs_buf_t *agibp;
4494 int offset;
4495 int error;
4496
4497 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
4498 if (error)
4499 goto out_error;
4500
4501 error = xfs_read_agi(mp, tp, agno, &agibp);
4502 if (error)
4503 goto out_abort;
4504
4505 agi = XFS_BUF_TO_AGI(agibp);
4506 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4507 offset = offsetof(xfs_agi_t, agi_unlinked) +
4508 (sizeof(xfs_agino_t) * bucket);
4509 xfs_trans_log_buf(tp, agibp, offset,
4510 (offset + sizeof(xfs_agino_t) - 1));
4511
4512 error = xfs_trans_commit(tp);
4513 if (error)
4514 goto out_error;
4515 return;
4516
4517 out_abort:
4518 xfs_trans_cancel(tp);
4519 out_error:
4520 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4521 return;
4522 }
4523
4524 STATIC xfs_agino_t
4525 xlog_recover_process_one_iunlink(
4526 struct xfs_mount *mp,
4527 xfs_agnumber_t agno,
4528 xfs_agino_t agino,
4529 int bucket)
4530 {
4531 struct xfs_buf *ibp;
4532 struct xfs_dinode *dip;
4533 struct xfs_inode *ip;
4534 xfs_ino_t ino;
4535 int error;
4536
4537 ino = XFS_AGINO_TO_INO(mp, agno, agino);
4538 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4539 if (error)
4540 goto fail;
4541
4542 /*
4543 * Get the on disk inode to find the next inode in the bucket.
4544 */
4545 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
4546 if (error)
4547 goto fail_iput;
4548
4549 ASSERT(VFS_I(ip)->i_nlink == 0);
4550 ASSERT(VFS_I(ip)->i_mode != 0);
4551
4552 /* setup for the next pass */
4553 agino = be32_to_cpu(dip->di_next_unlinked);
4554 xfs_buf_relse(ibp);
4555
4556 /*
4557 * Prevent any DMAPI event from being sent when the reference on
4558 * the inode is dropped.
4559 */
4560 ip->i_d.di_dmevmask = 0;
4561
4562 IRELE(ip);
4563 return agino;
4564
4565 fail_iput:
4566 IRELE(ip);
4567 fail:
4568 /*
4569 * We can't read in the inode this bucket points to, or this inode
4570 * is messed up. Just ditch this bucket of inodes. We will lose
4571 * some inodes and space, but at least we won't hang.
4572 *
4573 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
4574 * clear the inode pointer in the bucket.
4575 */
4576 xlog_recover_clear_agi_bucket(mp, agno, bucket);
4577 return NULLAGINO;
4578 }
4579
4580 /*
4581 * xlog_iunlink_recover
4582 *
4583 * This is called during recovery to process any inodes which
4584 * we unlinked but not freed when the system crashed. These
4585 * inodes will be on the lists in the AGI blocks. What we do
4586 * here is scan all the AGIs and fully truncate and free any
4587 * inodes found on the lists. Each inode is removed from the
4588 * lists when it has been fully truncated and is freed. The
4589 * freeing of the inode and its removal from the list must be
4590 * atomic.
4591 */
4592 STATIC void
4593 xlog_recover_process_iunlinks(
4594 struct xlog *log)
4595 {
4596 xfs_mount_t *mp;
4597 xfs_agnumber_t agno;
4598 xfs_agi_t *agi;
4599 xfs_buf_t *agibp;
4600 xfs_agino_t agino;
4601 int bucket;
4602 int error;
4603 uint mp_dmevmask;
4604
4605 mp = log->l_mp;
4606
4607 /*
4608 * Prevent any DMAPI event from being sent while in this function.
4609 */
4610 mp_dmevmask = mp->m_dmevmask;
4611 mp->m_dmevmask = 0;
4612
4613 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4614 /*
4615 * Find the agi for this ag.
4616 */
4617 error = xfs_read_agi(mp, NULL, agno, &agibp);
4618 if (error) {
4619 /*
4620 * AGI is b0rked. Don't process it.
4621 *
4622 * We should probably mark the filesystem as corrupt
4623 * after we've recovered all the ag's we can....
4624 */
4625 continue;
4626 }
4627 /*
4628 * Unlock the buffer so that it can be acquired in the normal
4629 * course of the transaction to truncate and free each inode.
4630 * Because we are not racing with anyone else here for the AGI
4631 * buffer, we don't even need to hold it locked to read the
4632 * initial unlinked bucket entries out of the buffer. We keep
4633 * buffer reference though, so that it stays pinned in memory
4634 * while we need the buffer.
4635 */
4636 agi = XFS_BUF_TO_AGI(agibp);
4637 xfs_buf_unlock(agibp);
4638
4639 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
4640 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
4641 while (agino != NULLAGINO) {
4642 agino = xlog_recover_process_one_iunlink(mp,
4643 agno, agino, bucket);
4644 }
4645 }
4646 xfs_buf_rele(agibp);
4647 }
4648
4649 mp->m_dmevmask = mp_dmevmask;
4650 }
4651
4652 STATIC int
4653 xlog_unpack_data(
4654 struct xlog_rec_header *rhead,
4655 char *dp,
4656 struct xlog *log)
4657 {
4658 int i, j, k;
4659
4660 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
4661 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
4662 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
4663 dp += BBSIZE;
4664 }
4665
4666 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4667 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
4668 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
4669 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4670 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4671 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4672 dp += BBSIZE;
4673 }
4674 }
4675
4676 return 0;
4677 }
4678
4679 /*
4680 * CRC check, unpack and process a log record.
4681 */
4682 STATIC int
4683 xlog_recover_process(
4684 struct xlog *log,
4685 struct hlist_head rhash[],
4686 struct xlog_rec_header *rhead,
4687 char *dp,
4688 int pass)
4689 {
4690 int error;
4691 __le32 crc;
4692
4693 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4694
4695 /*
4696 * Nothing else to do if this is a CRC verification pass. Just return
4697 * if this a record with a non-zero crc. Unfortunately, mkfs always
4698 * sets h_crc to 0 so we must consider this valid even on v5 supers.
4699 * Otherwise, return EFSBADCRC on failure so the callers up the stack
4700 * know precisely what failed.
4701 */
4702 if (pass == XLOG_RECOVER_CRCPASS) {
4703 if (rhead->h_crc && crc != rhead->h_crc)
4704 return -EFSBADCRC;
4705 return 0;
4706 }
4707
4708 /*
4709 * We're in the normal recovery path. Issue a warning if and only if the
4710 * CRC in the header is non-zero. This is an advisory warning and the
4711 * zero CRC check prevents warnings from being emitted when upgrading
4712 * the kernel from one that does not add CRCs by default.
4713 */
4714 if (crc != rhead->h_crc) {
4715 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4716 xfs_alert(log->l_mp,
4717 "log record CRC mismatch: found 0x%x, expected 0x%x.",
4718 le32_to_cpu(rhead->h_crc),
4719 le32_to_cpu(crc));
4720 xfs_hex_dump(dp, 32);
4721 }
4722
4723 /*
4724 * If the filesystem is CRC enabled, this mismatch becomes a
4725 * fatal log corruption failure.
4726 */
4727 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4728 return -EFSCORRUPTED;
4729 }
4730
4731 error = xlog_unpack_data(rhead, dp, log);
4732 if (error)
4733 return error;
4734
4735 return xlog_recover_process_data(log, rhash, rhead, dp, pass);
4736 }
4737
4738 STATIC int
4739 xlog_valid_rec_header(
4740 struct xlog *log,
4741 struct xlog_rec_header *rhead,
4742 xfs_daddr_t blkno)
4743 {
4744 int hlen;
4745
4746 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4747 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4748 XFS_ERRLEVEL_LOW, log->l_mp);
4749 return -EFSCORRUPTED;
4750 }
4751 if (unlikely(
4752 (!rhead->h_version ||
4753 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4754 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4755 __func__, be32_to_cpu(rhead->h_version));
4756 return -EIO;
4757 }
4758
4759 /* LR body must have data or it wouldn't have been written */
4760 hlen = be32_to_cpu(rhead->h_len);
4761 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4762 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4763 XFS_ERRLEVEL_LOW, log->l_mp);
4764 return -EFSCORRUPTED;
4765 }
4766 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4767 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4768 XFS_ERRLEVEL_LOW, log->l_mp);
4769 return -EFSCORRUPTED;
4770 }
4771 return 0;
4772 }
4773
4774 /*
4775 * Read the log from tail to head and process the log records found.
4776 * Handle the two cases where the tail and head are in the same cycle
4777 * and where the active portion of the log wraps around the end of
4778 * the physical log separately. The pass parameter is passed through
4779 * to the routines called to process the data and is not looked at
4780 * here.
4781 */
4782 STATIC int
4783 xlog_do_recovery_pass(
4784 struct xlog *log,
4785 xfs_daddr_t head_blk,
4786 xfs_daddr_t tail_blk,
4787 int pass,
4788 xfs_daddr_t *first_bad) /* out: first bad log rec */
4789 {
4790 xlog_rec_header_t *rhead;
4791 xfs_daddr_t blk_no;
4792 xfs_daddr_t rhead_blk;
4793 char *offset;
4794 xfs_buf_t *hbp, *dbp;
4795 int error = 0, h_size, h_len;
4796 int bblks, split_bblks;
4797 int hblks, split_hblks, wrapped_hblks;
4798 struct hlist_head rhash[XLOG_RHASH_SIZE];
4799
4800 ASSERT(head_blk != tail_blk);
4801 rhead_blk = 0;
4802
4803 /*
4804 * Read the header of the tail block and get the iclog buffer size from
4805 * h_size. Use this to tell how many sectors make up the log header.
4806 */
4807 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4808 /*
4809 * When using variable length iclogs, read first sector of
4810 * iclog header and extract the header size from it. Get a
4811 * new hbp that is the correct size.
4812 */
4813 hbp = xlog_get_bp(log, 1);
4814 if (!hbp)
4815 return -ENOMEM;
4816
4817 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4818 if (error)
4819 goto bread_err1;
4820
4821 rhead = (xlog_rec_header_t *)offset;
4822 error = xlog_valid_rec_header(log, rhead, tail_blk);
4823 if (error)
4824 goto bread_err1;
4825
4826 /*
4827 * xfsprogs has a bug where record length is based on lsunit but
4828 * h_size (iclog size) is hardcoded to 32k. Now that we
4829 * unconditionally CRC verify the unmount record, this means the
4830 * log buffer can be too small for the record and cause an
4831 * overrun.
4832 *
4833 * Detect this condition here. Use lsunit for the buffer size as
4834 * long as this looks like the mkfs case. Otherwise, return an
4835 * error to avoid a buffer overrun.
4836 */
4837 h_size = be32_to_cpu(rhead->h_size);
4838 h_len = be32_to_cpu(rhead->h_len);
4839 if (h_len > h_size) {
4840 if (h_len <= log->l_mp->m_logbsize &&
4841 be32_to_cpu(rhead->h_num_logops) == 1) {
4842 xfs_warn(log->l_mp,
4843 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
4844 h_size, log->l_mp->m_logbsize);
4845 h_size = log->l_mp->m_logbsize;
4846 } else
4847 return -EFSCORRUPTED;
4848 }
4849
4850 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4851 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4852 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4853 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4854 hblks++;
4855 xlog_put_bp(hbp);
4856 hbp = xlog_get_bp(log, hblks);
4857 } else {
4858 hblks = 1;
4859 }
4860 } else {
4861 ASSERT(log->l_sectBBsize == 1);
4862 hblks = 1;
4863 hbp = xlog_get_bp(log, 1);
4864 h_size = XLOG_BIG_RECORD_BSIZE;
4865 }
4866
4867 if (!hbp)
4868 return -ENOMEM;
4869 dbp = xlog_get_bp(log, BTOBB(h_size));
4870 if (!dbp) {
4871 xlog_put_bp(hbp);
4872 return -ENOMEM;
4873 }
4874
4875 memset(rhash, 0, sizeof(rhash));
4876 blk_no = rhead_blk = tail_blk;
4877 if (tail_blk > head_blk) {
4878 /*
4879 * Perform recovery around the end of the physical log.
4880 * When the head is not on the same cycle number as the tail,
4881 * we can't do a sequential recovery.
4882 */
4883 while (blk_no < log->l_logBBsize) {
4884 /*
4885 * Check for header wrapping around physical end-of-log
4886 */
4887 offset = hbp->b_addr;
4888 split_hblks = 0;
4889 wrapped_hblks = 0;
4890 if (blk_no + hblks <= log->l_logBBsize) {
4891 /* Read header in one read */
4892 error = xlog_bread(log, blk_no, hblks, hbp,
4893 &offset);
4894 if (error)
4895 goto bread_err2;
4896 } else {
4897 /* This LR is split across physical log end */
4898 if (blk_no != log->l_logBBsize) {
4899 /* some data before physical log end */
4900 ASSERT(blk_no <= INT_MAX);
4901 split_hblks = log->l_logBBsize - (int)blk_no;
4902 ASSERT(split_hblks > 0);
4903 error = xlog_bread(log, blk_no,
4904 split_hblks, hbp,
4905 &offset);
4906 if (error)
4907 goto bread_err2;
4908 }
4909
4910 /*
4911 * Note: this black magic still works with
4912 * large sector sizes (non-512) only because:
4913 * - we increased the buffer size originally
4914 * by 1 sector giving us enough extra space
4915 * for the second read;
4916 * - the log start is guaranteed to be sector
4917 * aligned;
4918 * - we read the log end (LR header start)
4919 * _first_, then the log start (LR header end)
4920 * - order is important.
4921 */
4922 wrapped_hblks = hblks - split_hblks;
4923 error = xlog_bread_offset(log, 0,
4924 wrapped_hblks, hbp,
4925 offset + BBTOB(split_hblks));
4926 if (error)
4927 goto bread_err2;
4928 }
4929 rhead = (xlog_rec_header_t *)offset;
4930 error = xlog_valid_rec_header(log, rhead,
4931 split_hblks ? blk_no : 0);
4932 if (error)
4933 goto bread_err2;
4934
4935 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4936 blk_no += hblks;
4937
4938 /* Read in data for log record */
4939 if (blk_no + bblks <= log->l_logBBsize) {
4940 error = xlog_bread(log, blk_no, bblks, dbp,
4941 &offset);
4942 if (error)
4943 goto bread_err2;
4944 } else {
4945 /* This log record is split across the
4946 * physical end of log */
4947 offset = dbp->b_addr;
4948 split_bblks = 0;
4949 if (blk_no != log->l_logBBsize) {
4950 /* some data is before the physical
4951 * end of log */
4952 ASSERT(!wrapped_hblks);
4953 ASSERT(blk_no <= INT_MAX);
4954 split_bblks =
4955 log->l_logBBsize - (int)blk_no;
4956 ASSERT(split_bblks > 0);
4957 error = xlog_bread(log, blk_no,
4958 split_bblks, dbp,
4959 &offset);
4960 if (error)
4961 goto bread_err2;
4962 }
4963
4964 /*
4965 * Note: this black magic still works with
4966 * large sector sizes (non-512) only because:
4967 * - we increased the buffer size originally
4968 * by 1 sector giving us enough extra space
4969 * for the second read;
4970 * - the log start is guaranteed to be sector
4971 * aligned;
4972 * - we read the log end (LR header start)
4973 * _first_, then the log start (LR header end)
4974 * - order is important.
4975 */
4976 error = xlog_bread_offset(log, 0,
4977 bblks - split_bblks, dbp,
4978 offset + BBTOB(split_bblks));
4979 if (error)
4980 goto bread_err2;
4981 }
4982
4983 error = xlog_recover_process(log, rhash, rhead, offset,
4984 pass);
4985 if (error)
4986 goto bread_err2;
4987
4988 blk_no += bblks;
4989 rhead_blk = blk_no;
4990 }
4991
4992 ASSERT(blk_no >= log->l_logBBsize);
4993 blk_no -= log->l_logBBsize;
4994 rhead_blk = blk_no;
4995 }
4996
4997 /* read first part of physical log */
4998 while (blk_no < head_blk) {
4999 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5000 if (error)
5001 goto bread_err2;
5002
5003 rhead = (xlog_rec_header_t *)offset;
5004 error = xlog_valid_rec_header(log, rhead, blk_no);
5005 if (error)
5006 goto bread_err2;
5007
5008 /* blocks in data section */
5009 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5010 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5011 &offset);
5012 if (error)
5013 goto bread_err2;
5014
5015 error = xlog_recover_process(log, rhash, rhead, offset, pass);
5016 if (error)
5017 goto bread_err2;
5018
5019 blk_no += bblks + hblks;
5020 rhead_blk = blk_no;
5021 }
5022
5023 bread_err2:
5024 xlog_put_bp(dbp);
5025 bread_err1:
5026 xlog_put_bp(hbp);
5027
5028 if (error && first_bad)
5029 *first_bad = rhead_blk;
5030
5031 return error;
5032 }
5033
5034 /*
5035 * Do the recovery of the log. We actually do this in two phases.
5036 * The two passes are necessary in order to implement the function
5037 * of cancelling a record written into the log. The first pass
5038 * determines those things which have been cancelled, and the
5039 * second pass replays log items normally except for those which
5040 * have been cancelled. The handling of the replay and cancellations
5041 * takes place in the log item type specific routines.
5042 *
5043 * The table of items which have cancel records in the log is allocated
5044 * and freed at this level, since only here do we know when all of
5045 * the log recovery has been completed.
5046 */
5047 STATIC int
5048 xlog_do_log_recovery(
5049 struct xlog *log,
5050 xfs_daddr_t head_blk,
5051 xfs_daddr_t tail_blk)
5052 {
5053 int error, i;
5054
5055 ASSERT(head_blk != tail_blk);
5056
5057 /*
5058 * First do a pass to find all of the cancelled buf log items.
5059 * Store them in the buf_cancel_table for use in the second pass.
5060 */
5061 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5062 sizeof(struct list_head),
5063 KM_SLEEP);
5064 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5065 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5066
5067 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5068 XLOG_RECOVER_PASS1, NULL);
5069 if (error != 0) {
5070 kmem_free(log->l_buf_cancel_table);
5071 log->l_buf_cancel_table = NULL;
5072 return error;
5073 }
5074 /*
5075 * Then do a second pass to actually recover the items in the log.
5076 * When it is complete free the table of buf cancel items.
5077 */
5078 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5079 XLOG_RECOVER_PASS2, NULL);
5080 #ifdef DEBUG
5081 if (!error) {
5082 int i;
5083
5084 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5085 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5086 }
5087 #endif /* DEBUG */
5088
5089 kmem_free(log->l_buf_cancel_table);
5090 log->l_buf_cancel_table = NULL;
5091
5092 return error;
5093 }
5094
5095 /*
5096 * Do the actual recovery
5097 */
5098 STATIC int
5099 xlog_do_recover(
5100 struct xlog *log,
5101 xfs_daddr_t head_blk,
5102 xfs_daddr_t tail_blk)
5103 {
5104 struct xfs_mount *mp = log->l_mp;
5105 int error;
5106 xfs_buf_t *bp;
5107 xfs_sb_t *sbp;
5108
5109 /*
5110 * First replay the images in the log.
5111 */
5112 error = xlog_do_log_recovery(log, head_blk, tail_blk);
5113 if (error)
5114 return error;
5115
5116 /*
5117 * If IO errors happened during recovery, bail out.
5118 */
5119 if (XFS_FORCED_SHUTDOWN(mp)) {
5120 return -EIO;
5121 }
5122
5123 /*
5124 * We now update the tail_lsn since much of the recovery has completed
5125 * and there may be space available to use. If there were no extent
5126 * or iunlinks, we can free up the entire log and set the tail_lsn to
5127 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5128 * lsn of the last known good LR on disk. If there are extent frees
5129 * or iunlinks they will have some entries in the AIL; so we look at
5130 * the AIL to determine how to set the tail_lsn.
5131 */
5132 xlog_assign_tail_lsn(mp);
5133
5134 /*
5135 * Now that we've finished replaying all buffer and inode
5136 * updates, re-read in the superblock and reverify it.
5137 */
5138 bp = xfs_getsb(mp, 0);
5139 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5140 ASSERT(!(bp->b_flags & XBF_WRITE));
5141 bp->b_flags |= XBF_READ;
5142 bp->b_ops = &xfs_sb_buf_ops;
5143
5144 error = xfs_buf_submit_wait(bp);
5145 if (error) {
5146 if (!XFS_FORCED_SHUTDOWN(mp)) {
5147 xfs_buf_ioerror_alert(bp, __func__);
5148 ASSERT(0);
5149 }
5150 xfs_buf_relse(bp);
5151 return error;
5152 }
5153
5154 /* Convert superblock from on-disk format */
5155 sbp = &mp->m_sb;
5156 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5157 xfs_buf_relse(bp);
5158
5159 /* re-initialise in-core superblock and geometry structures */
5160 xfs_reinit_percpu_counters(mp);
5161 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5162 if (error) {
5163 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5164 return error;
5165 }
5166 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5167
5168 xlog_recover_check_summary(log);
5169
5170 /* Normal transactions can now occur */
5171 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5172 return 0;
5173 }
5174
5175 /*
5176 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5177 *
5178 * Return error or zero.
5179 */
5180 int
5181 xlog_recover(
5182 struct xlog *log)
5183 {
5184 xfs_daddr_t head_blk, tail_blk;
5185 int error;
5186
5187 /* find the tail of the log */
5188 error = xlog_find_tail(log, &head_blk, &tail_blk);
5189 if (error)
5190 return error;
5191
5192 /*
5193 * The superblock was read before the log was available and thus the LSN
5194 * could not be verified. Check the superblock LSN against the current
5195 * LSN now that it's known.
5196 */
5197 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5198 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5199 return -EINVAL;
5200
5201 if (tail_blk != head_blk) {
5202 /* There used to be a comment here:
5203 *
5204 * disallow recovery on read-only mounts. note -- mount
5205 * checks for ENOSPC and turns it into an intelligent
5206 * error message.
5207 * ...but this is no longer true. Now, unless you specify
5208 * NORECOVERY (in which case this function would never be
5209 * called), we just go ahead and recover. We do this all
5210 * under the vfs layer, so we can get away with it unless
5211 * the device itself is read-only, in which case we fail.
5212 */
5213 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5214 return error;
5215 }
5216
5217 /*
5218 * Version 5 superblock log feature mask validation. We know the
5219 * log is dirty so check if there are any unknown log features
5220 * in what we need to recover. If there are unknown features
5221 * (e.g. unsupported transactions, then simply reject the
5222 * attempt at recovery before touching anything.
5223 */
5224 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5225 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5226 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5227 xfs_warn(log->l_mp,
5228 "Superblock has unknown incompatible log features (0x%x) enabled.",
5229 (log->l_mp->m_sb.sb_features_log_incompat &
5230 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5231 xfs_warn(log->l_mp,
5232 "The log can not be fully and/or safely recovered by this kernel.");
5233 xfs_warn(log->l_mp,
5234 "Please recover the log on a kernel that supports the unknown features.");
5235 return -EINVAL;
5236 }
5237
5238 /*
5239 * Delay log recovery if the debug hook is set. This is debug
5240 * instrumention to coordinate simulation of I/O failures with
5241 * log recovery.
5242 */
5243 if (xfs_globals.log_recovery_delay) {
5244 xfs_notice(log->l_mp,
5245 "Delaying log recovery for %d seconds.",
5246 xfs_globals.log_recovery_delay);
5247 msleep(xfs_globals.log_recovery_delay * 1000);
5248 }
5249
5250 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5251 log->l_mp->m_logname ? log->l_mp->m_logname
5252 : "internal");
5253
5254 error = xlog_do_recover(log, head_blk, tail_blk);
5255 log->l_flags |= XLOG_RECOVERY_NEEDED;
5256 }
5257 return error;
5258 }
5259
5260 /*
5261 * In the first part of recovery we replay inodes and buffers and build
5262 * up the list of extent free items which need to be processed. Here
5263 * we process the extent free items and clean up the on disk unlinked
5264 * inode lists. This is separated from the first part of recovery so
5265 * that the root and real-time bitmap inodes can be read in from disk in
5266 * between the two stages. This is necessary so that we can free space
5267 * in the real-time portion of the file system.
5268 */
5269 int
5270 xlog_recover_finish(
5271 struct xlog *log)
5272 {
5273 /*
5274 * Now we're ready to do the transactions needed for the
5275 * rest of recovery. Start with completing all the extent
5276 * free intent records and then process the unlinked inode
5277 * lists. At this point, we essentially run in normal mode
5278 * except that we're still performing recovery actions
5279 * rather than accepting new requests.
5280 */
5281 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5282 int error;
5283 error = xlog_recover_process_intents(log);
5284 if (error) {
5285 xfs_alert(log->l_mp, "Failed to recover intents");
5286 return error;
5287 }
5288
5289 /*
5290 * Sync the log to get all the intents out of the AIL.
5291 * This isn't absolutely necessary, but it helps in
5292 * case the unlink transactions would have problems
5293 * pushing the intents out of the way.
5294 */
5295 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5296
5297 xlog_recover_process_iunlinks(log);
5298
5299 xlog_recover_check_summary(log);
5300
5301 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5302 log->l_mp->m_logname ? log->l_mp->m_logname
5303 : "internal");
5304 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5305 } else {
5306 xfs_info(log->l_mp, "Ending clean mount");
5307 }
5308 return 0;
5309 }
5310
5311 int
5312 xlog_recover_cancel(
5313 struct xlog *log)
5314 {
5315 int error = 0;
5316
5317 if (log->l_flags & XLOG_RECOVERY_NEEDED)
5318 error = xlog_recover_cancel_intents(log);
5319
5320 return error;
5321 }
5322
5323 #if defined(DEBUG)
5324 /*
5325 * Read all of the agf and agi counters and check that they
5326 * are consistent with the superblock counters.
5327 */
5328 void
5329 xlog_recover_check_summary(
5330 struct xlog *log)
5331 {
5332 xfs_mount_t *mp;
5333 xfs_agf_t *agfp;
5334 xfs_buf_t *agfbp;
5335 xfs_buf_t *agibp;
5336 xfs_agnumber_t agno;
5337 __uint64_t freeblks;
5338 __uint64_t itotal;
5339 __uint64_t ifree;
5340 int error;
5341
5342 mp = log->l_mp;
5343
5344 freeblks = 0LL;
5345 itotal = 0LL;
5346 ifree = 0LL;
5347 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5348 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5349 if (error) {
5350 xfs_alert(mp, "%s agf read failed agno %d error %d",
5351 __func__, agno, error);
5352 } else {
5353 agfp = XFS_BUF_TO_AGF(agfbp);
5354 freeblks += be32_to_cpu(agfp->agf_freeblks) +
5355 be32_to_cpu(agfp->agf_flcount);
5356 xfs_buf_relse(agfbp);
5357 }
5358
5359 error = xfs_read_agi(mp, NULL, agno, &agibp);
5360 if (error) {
5361 xfs_alert(mp, "%s agi read failed agno %d error %d",
5362 __func__, agno, error);
5363 } else {
5364 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
5365
5366 itotal += be32_to_cpu(agi->agi_count);
5367 ifree += be32_to_cpu(agi->agi_freecount);
5368 xfs_buf_relse(agibp);
5369 }
5370 }
5371 }
5372 #endif /* DEBUG */
This page took 0.144821 seconds and 6 git commands to generate.