Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / fs / xfs / xfs_sync.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dinode.h"
32 #include "xfs_error.h"
33 #include "xfs_filestream.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_quota.h"
37 #include "xfs_trace.h"
38 #include "xfs_fsops.h"
39
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42
43 struct workqueue_struct *xfs_syncd_wq; /* sync workqueue */
44
45 /*
46 * The inode lookup is done in batches to keep the amount of lock traffic and
47 * radix tree lookups to a minimum. The batch size is a trade off between
48 * lookup reduction and stack usage. This is in the reclaim path, so we can't
49 * be too greedy.
50 */
51 #define XFS_LOOKUP_BATCH 32
52
53 STATIC int
54 xfs_inode_ag_walk_grab(
55 struct xfs_inode *ip)
56 {
57 struct inode *inode = VFS_I(ip);
58
59 ASSERT(rcu_read_lock_held());
60
61 /*
62 * check for stale RCU freed inode
63 *
64 * If the inode has been reallocated, it doesn't matter if it's not in
65 * the AG we are walking - we are walking for writeback, so if it
66 * passes all the "valid inode" checks and is dirty, then we'll write
67 * it back anyway. If it has been reallocated and still being
68 * initialised, the XFS_INEW check below will catch it.
69 */
70 spin_lock(&ip->i_flags_lock);
71 if (!ip->i_ino)
72 goto out_unlock_noent;
73
74 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
75 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
76 goto out_unlock_noent;
77 spin_unlock(&ip->i_flags_lock);
78
79 /* nothing to sync during shutdown */
80 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
81 return EFSCORRUPTED;
82
83 /* If we can't grab the inode, it must on it's way to reclaim. */
84 if (!igrab(inode))
85 return ENOENT;
86
87 if (is_bad_inode(inode)) {
88 IRELE(ip);
89 return ENOENT;
90 }
91
92 /* inode is valid */
93 return 0;
94
95 out_unlock_noent:
96 spin_unlock(&ip->i_flags_lock);
97 return ENOENT;
98 }
99
100 STATIC int
101 xfs_inode_ag_walk(
102 struct xfs_mount *mp,
103 struct xfs_perag *pag,
104 int (*execute)(struct xfs_inode *ip,
105 struct xfs_perag *pag, int flags),
106 int flags)
107 {
108 uint32_t first_index;
109 int last_error = 0;
110 int skipped;
111 int done;
112 int nr_found;
113
114 restart:
115 done = 0;
116 skipped = 0;
117 first_index = 0;
118 nr_found = 0;
119 do {
120 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
121 int error = 0;
122 int i;
123
124 rcu_read_lock();
125 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
126 (void **)batch, first_index,
127 XFS_LOOKUP_BATCH);
128 if (!nr_found) {
129 rcu_read_unlock();
130 break;
131 }
132
133 /*
134 * Grab the inodes before we drop the lock. if we found
135 * nothing, nr == 0 and the loop will be skipped.
136 */
137 for (i = 0; i < nr_found; i++) {
138 struct xfs_inode *ip = batch[i];
139
140 if (done || xfs_inode_ag_walk_grab(ip))
141 batch[i] = NULL;
142
143 /*
144 * Update the index for the next lookup. Catch
145 * overflows into the next AG range which can occur if
146 * we have inodes in the last block of the AG and we
147 * are currently pointing to the last inode.
148 *
149 * Because we may see inodes that are from the wrong AG
150 * due to RCU freeing and reallocation, only update the
151 * index if it lies in this AG. It was a race that lead
152 * us to see this inode, so another lookup from the
153 * same index will not find it again.
154 */
155 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
156 continue;
157 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
158 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
159 done = 1;
160 }
161
162 /* unlock now we've grabbed the inodes. */
163 rcu_read_unlock();
164
165 for (i = 0; i < nr_found; i++) {
166 if (!batch[i])
167 continue;
168 error = execute(batch[i], pag, flags);
169 IRELE(batch[i]);
170 if (error == EAGAIN) {
171 skipped++;
172 continue;
173 }
174 if (error && last_error != EFSCORRUPTED)
175 last_error = error;
176 }
177
178 /* bail out if the filesystem is corrupted. */
179 if (error == EFSCORRUPTED)
180 break;
181
182 cond_resched();
183
184 } while (nr_found && !done);
185
186 if (skipped) {
187 delay(1);
188 goto restart;
189 }
190 return last_error;
191 }
192
193 int
194 xfs_inode_ag_iterator(
195 struct xfs_mount *mp,
196 int (*execute)(struct xfs_inode *ip,
197 struct xfs_perag *pag, int flags),
198 int flags)
199 {
200 struct xfs_perag *pag;
201 int error = 0;
202 int last_error = 0;
203 xfs_agnumber_t ag;
204
205 ag = 0;
206 while ((pag = xfs_perag_get(mp, ag))) {
207 ag = pag->pag_agno + 1;
208 error = xfs_inode_ag_walk(mp, pag, execute, flags);
209 xfs_perag_put(pag);
210 if (error) {
211 last_error = error;
212 if (error == EFSCORRUPTED)
213 break;
214 }
215 }
216 return XFS_ERROR(last_error);
217 }
218
219 STATIC int
220 xfs_sync_inode_data(
221 struct xfs_inode *ip,
222 struct xfs_perag *pag,
223 int flags)
224 {
225 struct inode *inode = VFS_I(ip);
226 struct address_space *mapping = inode->i_mapping;
227 int error = 0;
228
229 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
230 return 0;
231
232 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
233 if (flags & SYNC_TRYLOCK)
234 return 0;
235 xfs_ilock(ip, XFS_IOLOCK_SHARED);
236 }
237
238 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
239 0 : XBF_ASYNC, FI_NONE);
240 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
241 return error;
242 }
243
244 STATIC int
245 xfs_sync_inode_attr(
246 struct xfs_inode *ip,
247 struct xfs_perag *pag,
248 int flags)
249 {
250 int error = 0;
251
252 xfs_ilock(ip, XFS_ILOCK_SHARED);
253 if (xfs_inode_clean(ip))
254 goto out_unlock;
255 if (!xfs_iflock_nowait(ip)) {
256 if (!(flags & SYNC_WAIT))
257 goto out_unlock;
258 xfs_iflock(ip);
259 }
260
261 if (xfs_inode_clean(ip)) {
262 xfs_ifunlock(ip);
263 goto out_unlock;
264 }
265
266 error = xfs_iflush(ip, flags);
267
268 /*
269 * We don't want to try again on non-blocking flushes that can't run
270 * again immediately. If an inode really must be written, then that's
271 * what the SYNC_WAIT flag is for.
272 */
273 if (error == EAGAIN) {
274 ASSERT(!(flags & SYNC_WAIT));
275 error = 0;
276 }
277
278 out_unlock:
279 xfs_iunlock(ip, XFS_ILOCK_SHARED);
280 return error;
281 }
282
283 /*
284 * Write out pagecache data for the whole filesystem.
285 */
286 STATIC int
287 xfs_sync_data(
288 struct xfs_mount *mp,
289 int flags)
290 {
291 int error;
292
293 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
294
295 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
296 if (error)
297 return XFS_ERROR(error);
298
299 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
300 return 0;
301 }
302
303 /*
304 * Write out inode metadata (attributes) for the whole filesystem.
305 */
306 STATIC int
307 xfs_sync_attr(
308 struct xfs_mount *mp,
309 int flags)
310 {
311 ASSERT((flags & ~SYNC_WAIT) == 0);
312
313 return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags);
314 }
315
316 STATIC int
317 xfs_sync_fsdata(
318 struct xfs_mount *mp)
319 {
320 struct xfs_buf *bp;
321 int error;
322
323 /*
324 * If the buffer is pinned then push on the log so we won't get stuck
325 * waiting in the write for someone, maybe ourselves, to flush the log.
326 *
327 * Even though we just pushed the log above, we did not have the
328 * superblock buffer locked at that point so it can become pinned in
329 * between there and here.
330 */
331 bp = xfs_getsb(mp, 0);
332 if (xfs_buf_ispinned(bp))
333 xfs_log_force(mp, 0);
334 error = xfs_bwrite(bp);
335 xfs_buf_relse(bp);
336 return error;
337 }
338
339 int
340 xfs_log_dirty_inode(
341 struct xfs_inode *ip,
342 struct xfs_perag *pag,
343 int flags)
344 {
345 struct xfs_mount *mp = ip->i_mount;
346 struct xfs_trans *tp;
347 int error;
348
349 if (!ip->i_update_core)
350 return 0;
351
352 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
353 error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
354 if (error) {
355 xfs_trans_cancel(tp, 0);
356 return error;
357 }
358
359 xfs_ilock(ip, XFS_ILOCK_EXCL);
360 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
361 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
362 return xfs_trans_commit(tp, 0);
363 }
364
365 /*
366 * When remounting a filesystem read-only or freezing the filesystem, we have
367 * two phases to execute. This first phase is syncing the data before we
368 * quiesce the filesystem, and the second is flushing all the inodes out after
369 * we've waited for all the transactions created by the first phase to
370 * complete. The second phase ensures that the inodes are written to their
371 * location on disk rather than just existing in transactions in the log. This
372 * means after a quiesce there is no log replay required to write the inodes to
373 * disk (this is the main difference between a sync and a quiesce).
374 */
375 /*
376 * First stage of freeze - no writers will make progress now we are here,
377 * so we flush delwri and delalloc buffers here, then wait for all I/O to
378 * complete. Data is frozen at that point. Metadata is not frozen,
379 * transactions can still occur here so don't bother flushing the buftarg
380 * because it'll just get dirty again.
381 */
382 int
383 xfs_quiesce_data(
384 struct xfs_mount *mp)
385 {
386 int error, error2 = 0;
387
388 /*
389 * Log all pending size and timestamp updates. The vfs writeback
390 * code is supposed to do this, but due to its overagressive
391 * livelock detection it will skip inodes where appending writes
392 * were written out in the first non-blocking sync phase if their
393 * completion took long enough that it happened after taking the
394 * timestamp for the cut-off in the blocking phase.
395 */
396 xfs_inode_ag_iterator(mp, xfs_log_dirty_inode, 0);
397
398 /* force out the log */
399 xfs_log_force(mp, XFS_LOG_SYNC);
400
401 /* write superblock and hoover up shutdown errors */
402 error = xfs_sync_fsdata(mp);
403
404 /* make sure all delwri buffers are written out */
405 xfs_flush_buftarg(mp->m_ddev_targp, 1);
406
407 /* mark the log as covered if needed */
408 if (xfs_log_need_covered(mp))
409 error2 = xfs_fs_log_dummy(mp);
410
411 /* flush data-only devices */
412 if (mp->m_rtdev_targp)
413 xfs_flush_buftarg(mp->m_rtdev_targp, 1);
414
415 return error ? error : error2;
416 }
417
418 STATIC void
419 xfs_quiesce_fs(
420 struct xfs_mount *mp)
421 {
422 int count = 0, pincount;
423
424 xfs_reclaim_inodes(mp, 0);
425 xfs_flush_buftarg(mp->m_ddev_targp, 0);
426
427 /*
428 * This loop must run at least twice. The first instance of the loop
429 * will flush most meta data but that will generate more meta data
430 * (typically directory updates). Which then must be flushed and
431 * logged before we can write the unmount record. We also so sync
432 * reclaim of inodes to catch any that the above delwri flush skipped.
433 */
434 do {
435 xfs_reclaim_inodes(mp, SYNC_WAIT);
436 xfs_sync_attr(mp, SYNC_WAIT);
437 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
438 if (!pincount) {
439 delay(50);
440 count++;
441 }
442 } while (count < 2);
443 }
444
445 /*
446 * Second stage of a quiesce. The data is already synced, now we have to take
447 * care of the metadata. New transactions are already blocked, so we need to
448 * wait for any remaining transactions to drain out before proceeding.
449 */
450 void
451 xfs_quiesce_attr(
452 struct xfs_mount *mp)
453 {
454 int error = 0;
455
456 /* wait for all modifications to complete */
457 while (atomic_read(&mp->m_active_trans) > 0)
458 delay(100);
459
460 /* flush inodes and push all remaining buffers out to disk */
461 xfs_quiesce_fs(mp);
462
463 /*
464 * Just warn here till VFS can correctly support
465 * read-only remount without racing.
466 */
467 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
468
469 /* Push the superblock and write an unmount record */
470 error = xfs_log_sbcount(mp);
471 if (error)
472 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
473 "Frozen image may not be consistent.");
474 xfs_log_unmount_write(mp);
475 xfs_unmountfs_writesb(mp);
476 }
477
478 static void
479 xfs_syncd_queue_sync(
480 struct xfs_mount *mp)
481 {
482 queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work,
483 msecs_to_jiffies(xfs_syncd_centisecs * 10));
484 }
485
486 /*
487 * Every sync period we need to unpin all items, reclaim inodes and sync
488 * disk quotas. We might need to cover the log to indicate that the
489 * filesystem is idle and not frozen.
490 */
491 STATIC void
492 xfs_sync_worker(
493 struct work_struct *work)
494 {
495 struct xfs_mount *mp = container_of(to_delayed_work(work),
496 struct xfs_mount, m_sync_work);
497 int error;
498
499 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
500 /* dgc: errors ignored here */
501 if (mp->m_super->s_frozen == SB_UNFROZEN &&
502 xfs_log_need_covered(mp))
503 error = xfs_fs_log_dummy(mp);
504 else
505 xfs_log_force(mp, 0);
506
507 /* start pushing all the metadata that is currently dirty */
508 xfs_ail_push_all(mp->m_ail);
509 }
510
511 /* queue us up again */
512 xfs_syncd_queue_sync(mp);
513 }
514
515 /*
516 * Queue a new inode reclaim pass if there are reclaimable inodes and there
517 * isn't a reclaim pass already in progress. By default it runs every 5s based
518 * on the xfs syncd work default of 30s. Perhaps this should have it's own
519 * tunable, but that can be done if this method proves to be ineffective or too
520 * aggressive.
521 */
522 static void
523 xfs_syncd_queue_reclaim(
524 struct xfs_mount *mp)
525 {
526
527 /*
528 * We can have inodes enter reclaim after we've shut down the syncd
529 * workqueue during unmount, so don't allow reclaim work to be queued
530 * during unmount.
531 */
532 if (!(mp->m_super->s_flags & MS_ACTIVE))
533 return;
534
535 rcu_read_lock();
536 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
537 queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work,
538 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
539 }
540 rcu_read_unlock();
541 }
542
543 /*
544 * This is a fast pass over the inode cache to try to get reclaim moving on as
545 * many inodes as possible in a short period of time. It kicks itself every few
546 * seconds, as well as being kicked by the inode cache shrinker when memory
547 * goes low. It scans as quickly as possible avoiding locked inodes or those
548 * already being flushed, and once done schedules a future pass.
549 */
550 STATIC void
551 xfs_reclaim_worker(
552 struct work_struct *work)
553 {
554 struct xfs_mount *mp = container_of(to_delayed_work(work),
555 struct xfs_mount, m_reclaim_work);
556
557 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
558 xfs_syncd_queue_reclaim(mp);
559 }
560
561 /*
562 * Flush delayed allocate data, attempting to free up reserved space
563 * from existing allocations. At this point a new allocation attempt
564 * has failed with ENOSPC and we are in the process of scratching our
565 * heads, looking about for more room.
566 *
567 * Queue a new data flush if there isn't one already in progress and
568 * wait for completion of the flush. This means that we only ever have one
569 * inode flush in progress no matter how many ENOSPC events are occurring and
570 * so will prevent the system from bogging down due to every concurrent
571 * ENOSPC event scanning all the active inodes in the system for writeback.
572 */
573 void
574 xfs_flush_inodes(
575 struct xfs_inode *ip)
576 {
577 struct xfs_mount *mp = ip->i_mount;
578
579 queue_work(xfs_syncd_wq, &mp->m_flush_work);
580 flush_work_sync(&mp->m_flush_work);
581 }
582
583 STATIC void
584 xfs_flush_worker(
585 struct work_struct *work)
586 {
587 struct xfs_mount *mp = container_of(work,
588 struct xfs_mount, m_flush_work);
589
590 xfs_sync_data(mp, SYNC_TRYLOCK);
591 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
592 }
593
594 int
595 xfs_syncd_init(
596 struct xfs_mount *mp)
597 {
598 INIT_WORK(&mp->m_flush_work, xfs_flush_worker);
599 INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker);
600 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
601
602 xfs_syncd_queue_sync(mp);
603 xfs_syncd_queue_reclaim(mp);
604
605 return 0;
606 }
607
608 void
609 xfs_syncd_stop(
610 struct xfs_mount *mp)
611 {
612 cancel_delayed_work_sync(&mp->m_sync_work);
613 cancel_delayed_work_sync(&mp->m_reclaim_work);
614 cancel_work_sync(&mp->m_flush_work);
615 }
616
617 void
618 __xfs_inode_set_reclaim_tag(
619 struct xfs_perag *pag,
620 struct xfs_inode *ip)
621 {
622 radix_tree_tag_set(&pag->pag_ici_root,
623 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
624 XFS_ICI_RECLAIM_TAG);
625
626 if (!pag->pag_ici_reclaimable) {
627 /* propagate the reclaim tag up into the perag radix tree */
628 spin_lock(&ip->i_mount->m_perag_lock);
629 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
630 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
631 XFS_ICI_RECLAIM_TAG);
632 spin_unlock(&ip->i_mount->m_perag_lock);
633
634 /* schedule periodic background inode reclaim */
635 xfs_syncd_queue_reclaim(ip->i_mount);
636
637 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
638 -1, _RET_IP_);
639 }
640 pag->pag_ici_reclaimable++;
641 }
642
643 /*
644 * We set the inode flag atomically with the radix tree tag.
645 * Once we get tag lookups on the radix tree, this inode flag
646 * can go away.
647 */
648 void
649 xfs_inode_set_reclaim_tag(
650 xfs_inode_t *ip)
651 {
652 struct xfs_mount *mp = ip->i_mount;
653 struct xfs_perag *pag;
654
655 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
656 spin_lock(&pag->pag_ici_lock);
657 spin_lock(&ip->i_flags_lock);
658 __xfs_inode_set_reclaim_tag(pag, ip);
659 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
660 spin_unlock(&ip->i_flags_lock);
661 spin_unlock(&pag->pag_ici_lock);
662 xfs_perag_put(pag);
663 }
664
665 STATIC void
666 __xfs_inode_clear_reclaim(
667 xfs_perag_t *pag,
668 xfs_inode_t *ip)
669 {
670 pag->pag_ici_reclaimable--;
671 if (!pag->pag_ici_reclaimable) {
672 /* clear the reclaim tag from the perag radix tree */
673 spin_lock(&ip->i_mount->m_perag_lock);
674 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
675 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
676 XFS_ICI_RECLAIM_TAG);
677 spin_unlock(&ip->i_mount->m_perag_lock);
678 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
679 -1, _RET_IP_);
680 }
681 }
682
683 void
684 __xfs_inode_clear_reclaim_tag(
685 xfs_mount_t *mp,
686 xfs_perag_t *pag,
687 xfs_inode_t *ip)
688 {
689 radix_tree_tag_clear(&pag->pag_ici_root,
690 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
691 __xfs_inode_clear_reclaim(pag, ip);
692 }
693
694 /*
695 * Grab the inode for reclaim exclusively.
696 * Return 0 if we grabbed it, non-zero otherwise.
697 */
698 STATIC int
699 xfs_reclaim_inode_grab(
700 struct xfs_inode *ip,
701 int flags)
702 {
703 ASSERT(rcu_read_lock_held());
704
705 /* quick check for stale RCU freed inode */
706 if (!ip->i_ino)
707 return 1;
708
709 /*
710 * do some unlocked checks first to avoid unnecessary lock traffic.
711 * The first is a flush lock check, the second is a already in reclaim
712 * check. Only do these checks if we are not going to block on locks.
713 */
714 if ((flags & SYNC_TRYLOCK) &&
715 (!ip->i_flush.done || __xfs_iflags_test(ip, XFS_IRECLAIM))) {
716 return 1;
717 }
718
719 /*
720 * The radix tree lock here protects a thread in xfs_iget from racing
721 * with us starting reclaim on the inode. Once we have the
722 * XFS_IRECLAIM flag set it will not touch us.
723 *
724 * Due to RCU lookup, we may find inodes that have been freed and only
725 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
726 * aren't candidates for reclaim at all, so we must check the
727 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
728 */
729 spin_lock(&ip->i_flags_lock);
730 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
731 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
732 /* not a reclaim candidate. */
733 spin_unlock(&ip->i_flags_lock);
734 return 1;
735 }
736 __xfs_iflags_set(ip, XFS_IRECLAIM);
737 spin_unlock(&ip->i_flags_lock);
738 return 0;
739 }
740
741 /*
742 * Inodes in different states need to be treated differently, and the return
743 * value of xfs_iflush is not sufficient to get this right. The following table
744 * lists the inode states and the reclaim actions necessary for non-blocking
745 * reclaim:
746 *
747 *
748 * inode state iflush ret required action
749 * --------------- ---------- ---------------
750 * bad - reclaim
751 * shutdown EIO unpin and reclaim
752 * clean, unpinned 0 reclaim
753 * stale, unpinned 0 reclaim
754 * clean, pinned(*) 0 requeue
755 * stale, pinned EAGAIN requeue
756 * dirty, delwri ok 0 requeue
757 * dirty, delwri blocked EAGAIN requeue
758 * dirty, sync flush 0 reclaim
759 *
760 * (*) dgc: I don't think the clean, pinned state is possible but it gets
761 * handled anyway given the order of checks implemented.
762 *
763 * As can be seen from the table, the return value of xfs_iflush() is not
764 * sufficient to correctly decide the reclaim action here. The checks in
765 * xfs_iflush() might look like duplicates, but they are not.
766 *
767 * Also, because we get the flush lock first, we know that any inode that has
768 * been flushed delwri has had the flush completed by the time we check that
769 * the inode is clean. The clean inode check needs to be done before flushing
770 * the inode delwri otherwise we would loop forever requeuing clean inodes as
771 * we cannot tell apart a successful delwri flush and a clean inode from the
772 * return value of xfs_iflush().
773 *
774 * Note that because the inode is flushed delayed write by background
775 * writeback, the flush lock may already be held here and waiting on it can
776 * result in very long latencies. Hence for sync reclaims, where we wait on the
777 * flush lock, the caller should push out delayed write inodes first before
778 * trying to reclaim them to minimise the amount of time spent waiting. For
779 * background relaim, we just requeue the inode for the next pass.
780 *
781 * Hence the order of actions after gaining the locks should be:
782 * bad => reclaim
783 * shutdown => unpin and reclaim
784 * pinned, delwri => requeue
785 * pinned, sync => unpin
786 * stale => reclaim
787 * clean => reclaim
788 * dirty, delwri => flush and requeue
789 * dirty, sync => flush, wait and reclaim
790 */
791 STATIC int
792 xfs_reclaim_inode(
793 struct xfs_inode *ip,
794 struct xfs_perag *pag,
795 int sync_mode)
796 {
797 int error;
798
799 restart:
800 error = 0;
801 xfs_ilock(ip, XFS_ILOCK_EXCL);
802 if (!xfs_iflock_nowait(ip)) {
803 if (!(sync_mode & SYNC_WAIT))
804 goto out;
805
806 /*
807 * If we only have a single dirty inode in a cluster there is
808 * a fair chance that the AIL push may have pushed it into
809 * the buffer, but xfsbufd won't touch it until 30 seconds
810 * from now, and thus we will lock up here.
811 *
812 * Promote the inode buffer to the front of the delwri list
813 * and wake up xfsbufd now.
814 */
815 xfs_promote_inode(ip);
816 xfs_iflock(ip);
817 }
818
819 if (is_bad_inode(VFS_I(ip)))
820 goto reclaim;
821 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
822 xfs_iunpin_wait(ip);
823 goto reclaim;
824 }
825 if (xfs_ipincount(ip)) {
826 if (!(sync_mode & SYNC_WAIT)) {
827 xfs_ifunlock(ip);
828 goto out;
829 }
830 xfs_iunpin_wait(ip);
831 }
832 if (xfs_iflags_test(ip, XFS_ISTALE))
833 goto reclaim;
834 if (xfs_inode_clean(ip))
835 goto reclaim;
836
837 /*
838 * Now we have an inode that needs flushing.
839 *
840 * We do a nonblocking flush here even if we are doing a SYNC_WAIT
841 * reclaim as we can deadlock with inode cluster removal.
842 * xfs_ifree_cluster() can lock the inode buffer before it locks the
843 * ip->i_lock, and we are doing the exact opposite here. As a result,
844 * doing a blocking xfs_itobp() to get the cluster buffer will result
845 * in an ABBA deadlock with xfs_ifree_cluster().
846 *
847 * As xfs_ifree_cluser() must gather all inodes that are active in the
848 * cache to mark them stale, if we hit this case we don't actually want
849 * to do IO here - we want the inode marked stale so we can simply
850 * reclaim it. Hence if we get an EAGAIN error on a SYNC_WAIT flush,
851 * just unlock the inode, back off and try again. Hopefully the next
852 * pass through will see the stale flag set on the inode.
853 */
854 error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode);
855 if (sync_mode & SYNC_WAIT) {
856 if (error == EAGAIN) {
857 xfs_iunlock(ip, XFS_ILOCK_EXCL);
858 /* backoff longer than in xfs_ifree_cluster */
859 delay(2);
860 goto restart;
861 }
862 xfs_iflock(ip);
863 goto reclaim;
864 }
865
866 /*
867 * When we have to flush an inode but don't have SYNC_WAIT set, we
868 * flush the inode out using a delwri buffer and wait for the next
869 * call into reclaim to find it in a clean state instead of waiting for
870 * it now. We also don't return errors here - if the error is transient
871 * then the next reclaim pass will flush the inode, and if the error
872 * is permanent then the next sync reclaim will reclaim the inode and
873 * pass on the error.
874 */
875 if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
876 xfs_warn(ip->i_mount,
877 "inode 0x%llx background reclaim flush failed with %d",
878 (long long)ip->i_ino, error);
879 }
880 out:
881 xfs_iflags_clear(ip, XFS_IRECLAIM);
882 xfs_iunlock(ip, XFS_ILOCK_EXCL);
883 /*
884 * We could return EAGAIN here to make reclaim rescan the inode tree in
885 * a short while. However, this just burns CPU time scanning the tree
886 * waiting for IO to complete and xfssyncd never goes back to the idle
887 * state. Instead, return 0 to let the next scheduled background reclaim
888 * attempt to reclaim the inode again.
889 */
890 return 0;
891
892 reclaim:
893 xfs_ifunlock(ip);
894 xfs_iunlock(ip, XFS_ILOCK_EXCL);
895
896 XFS_STATS_INC(xs_ig_reclaims);
897 /*
898 * Remove the inode from the per-AG radix tree.
899 *
900 * Because radix_tree_delete won't complain even if the item was never
901 * added to the tree assert that it's been there before to catch
902 * problems with the inode life time early on.
903 */
904 spin_lock(&pag->pag_ici_lock);
905 if (!radix_tree_delete(&pag->pag_ici_root,
906 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
907 ASSERT(0);
908 __xfs_inode_clear_reclaim(pag, ip);
909 spin_unlock(&pag->pag_ici_lock);
910
911 /*
912 * Here we do an (almost) spurious inode lock in order to coordinate
913 * with inode cache radix tree lookups. This is because the lookup
914 * can reference the inodes in the cache without taking references.
915 *
916 * We make that OK here by ensuring that we wait until the inode is
917 * unlocked after the lookup before we go ahead and free it. We get
918 * both the ilock and the iolock because the code may need to drop the
919 * ilock one but will still hold the iolock.
920 */
921 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
922 xfs_qm_dqdetach(ip);
923 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
924
925 xfs_inode_free(ip);
926 return error;
927
928 }
929
930 /*
931 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
932 * corrupted, we still want to try to reclaim all the inodes. If we don't,
933 * then a shut down during filesystem unmount reclaim walk leak all the
934 * unreclaimed inodes.
935 */
936 int
937 xfs_reclaim_inodes_ag(
938 struct xfs_mount *mp,
939 int flags,
940 int *nr_to_scan)
941 {
942 struct xfs_perag *pag;
943 int error = 0;
944 int last_error = 0;
945 xfs_agnumber_t ag;
946 int trylock = flags & SYNC_TRYLOCK;
947 int skipped;
948
949 restart:
950 ag = 0;
951 skipped = 0;
952 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
953 unsigned long first_index = 0;
954 int done = 0;
955 int nr_found = 0;
956
957 ag = pag->pag_agno + 1;
958
959 if (trylock) {
960 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
961 skipped++;
962 xfs_perag_put(pag);
963 continue;
964 }
965 first_index = pag->pag_ici_reclaim_cursor;
966 } else
967 mutex_lock(&pag->pag_ici_reclaim_lock);
968
969 do {
970 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
971 int i;
972
973 rcu_read_lock();
974 nr_found = radix_tree_gang_lookup_tag(
975 &pag->pag_ici_root,
976 (void **)batch, first_index,
977 XFS_LOOKUP_BATCH,
978 XFS_ICI_RECLAIM_TAG);
979 if (!nr_found) {
980 done = 1;
981 rcu_read_unlock();
982 break;
983 }
984
985 /*
986 * Grab the inodes before we drop the lock. if we found
987 * nothing, nr == 0 and the loop will be skipped.
988 */
989 for (i = 0; i < nr_found; i++) {
990 struct xfs_inode *ip = batch[i];
991
992 if (done || xfs_reclaim_inode_grab(ip, flags))
993 batch[i] = NULL;
994
995 /*
996 * Update the index for the next lookup. Catch
997 * overflows into the next AG range which can
998 * occur if we have inodes in the last block of
999 * the AG and we are currently pointing to the
1000 * last inode.
1001 *
1002 * Because we may see inodes that are from the
1003 * wrong AG due to RCU freeing and
1004 * reallocation, only update the index if it
1005 * lies in this AG. It was a race that lead us
1006 * to see this inode, so another lookup from
1007 * the same index will not find it again.
1008 */
1009 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1010 pag->pag_agno)
1011 continue;
1012 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1013 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1014 done = 1;
1015 }
1016
1017 /* unlock now we've grabbed the inodes. */
1018 rcu_read_unlock();
1019
1020 for (i = 0; i < nr_found; i++) {
1021 if (!batch[i])
1022 continue;
1023 error = xfs_reclaim_inode(batch[i], pag, flags);
1024 if (error && last_error != EFSCORRUPTED)
1025 last_error = error;
1026 }
1027
1028 *nr_to_scan -= XFS_LOOKUP_BATCH;
1029
1030 cond_resched();
1031
1032 } while (nr_found && !done && *nr_to_scan > 0);
1033
1034 if (trylock && !done)
1035 pag->pag_ici_reclaim_cursor = first_index;
1036 else
1037 pag->pag_ici_reclaim_cursor = 0;
1038 mutex_unlock(&pag->pag_ici_reclaim_lock);
1039 xfs_perag_put(pag);
1040 }
1041
1042 /*
1043 * if we skipped any AG, and we still have scan count remaining, do
1044 * another pass this time using blocking reclaim semantics (i.e
1045 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1046 * ensure that when we get more reclaimers than AGs we block rather
1047 * than spin trying to execute reclaim.
1048 */
1049 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1050 trylock = 0;
1051 goto restart;
1052 }
1053 return XFS_ERROR(last_error);
1054 }
1055
1056 int
1057 xfs_reclaim_inodes(
1058 xfs_mount_t *mp,
1059 int mode)
1060 {
1061 int nr_to_scan = INT_MAX;
1062
1063 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1064 }
1065
1066 /*
1067 * Scan a certain number of inodes for reclaim.
1068 *
1069 * When called we make sure that there is a background (fast) inode reclaim in
1070 * progress, while we will throttle the speed of reclaim via doing synchronous
1071 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1072 * them to be cleaned, which we hope will not be very long due to the
1073 * background walker having already kicked the IO off on those dirty inodes.
1074 */
1075 void
1076 xfs_reclaim_inodes_nr(
1077 struct xfs_mount *mp,
1078 int nr_to_scan)
1079 {
1080 /* kick background reclaimer and push the AIL */
1081 xfs_syncd_queue_reclaim(mp);
1082 xfs_ail_push_all(mp->m_ail);
1083
1084 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1085 }
1086
1087 /*
1088 * Return the number of reclaimable inodes in the filesystem for
1089 * the shrinker to determine how much to reclaim.
1090 */
1091 int
1092 xfs_reclaim_inodes_count(
1093 struct xfs_mount *mp)
1094 {
1095 struct xfs_perag *pag;
1096 xfs_agnumber_t ag = 0;
1097 int reclaimable = 0;
1098
1099 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1100 ag = pag->pag_agno + 1;
1101 reclaimable += pag->pag_ici_reclaimable;
1102 xfs_perag_put(pag);
1103 }
1104 return reclaimable;
1105 }
1106
This page took 0.051778 seconds and 6 git commands to generate.