ChangeLog:
[deliverable/binutils-gdb.git] / gas / atof-generic.c
1 /* atof_generic.c - turn a string of digits into a Flonum
2 Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2000,
3 2001, 2003, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "as.h"
23 #include "safe-ctype.h"
24
25 #ifndef FALSE
26 #define FALSE (0)
27 #endif
28 #ifndef TRUE
29 #define TRUE (1)
30 #endif
31
32 #ifdef TRACE
33 static void flonum_print (const FLONUM_TYPE *);
34 #endif
35
36 #define ASSUME_DECIMAL_MARK_IS_DOT
37
38 /***********************************************************************\
39 * *
40 * Given a string of decimal digits , with optional decimal *
41 * mark and optional decimal exponent (place value) of the *
42 * lowest_order decimal digit: produce a floating point *
43 * number. The number is 'generic' floating point: our *
44 * caller will encode it for a specific machine architecture. *
45 * *
46 * Assumptions *
47 * uses base (radix) 2 *
48 * this machine uses 2's complement binary integers *
49 * target flonums use " " " " *
50 * target flonums exponents fit in a long *
51 * *
52 \***********************************************************************/
53
54 /*
55
56 Syntax:
57
58 <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
59 <optional-sign> ::= '+' | '-' | {empty}
60 <decimal-number> ::= <integer>
61 | <integer> <radix-character>
62 | <integer> <radix-character> <integer>
63 | <radix-character> <integer>
64
65 <optional-exponent> ::= {empty}
66 | <exponent-character> <optional-sign> <integer>
67
68 <integer> ::= <digit> | <digit> <integer>
69 <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
70 <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
71 <radix-character> ::= {one character from "string_of_decimal_marks"}
72
73 */
74
75 int
76 atof_generic (/* return pointer to just AFTER number we read. */
77 char **address_of_string_pointer,
78 /* At most one per number. */
79 const char *string_of_decimal_marks,
80 const char *string_of_decimal_exponent_marks,
81 FLONUM_TYPE *address_of_generic_floating_point_number)
82 {
83 int return_value; /* 0 means OK. */
84 char *first_digit;
85 unsigned int number_of_digits_before_decimal;
86 unsigned int number_of_digits_after_decimal;
87 long decimal_exponent;
88 unsigned int number_of_digits_available;
89 char digits_sign_char;
90
91 /*
92 * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
93 * It would be simpler to modify the string, but we don't; just to be nice
94 * to caller.
95 * We need to know how many digits we have, so we can allocate space for
96 * the digits' value.
97 */
98
99 char *p;
100 char c;
101 int seen_significant_digit;
102
103 #ifdef ASSUME_DECIMAL_MARK_IS_DOT
104 gas_assert (string_of_decimal_marks[0] == '.'
105 && string_of_decimal_marks[1] == 0);
106 #define IS_DECIMAL_MARK(c) ((c) == '.')
107 #else
108 #define IS_DECIMAL_MARK(c) (0 != strchr (string_of_decimal_marks, (c)))
109 #endif
110
111 first_digit = *address_of_string_pointer;
112 c = *first_digit;
113
114 if (c == '-' || c == '+')
115 {
116 digits_sign_char = c;
117 first_digit++;
118 }
119 else
120 digits_sign_char = '+';
121
122 switch (first_digit[0])
123 {
124 case 'n':
125 case 'N':
126 if (!strncasecmp ("nan", first_digit, 3))
127 {
128 address_of_generic_floating_point_number->sign = 0;
129 address_of_generic_floating_point_number->exponent = 0;
130 address_of_generic_floating_point_number->leader =
131 address_of_generic_floating_point_number->low;
132 *address_of_string_pointer = first_digit + 3;
133 return 0;
134 }
135 break;
136
137 case 'i':
138 case 'I':
139 if (!strncasecmp ("inf", first_digit, 3))
140 {
141 address_of_generic_floating_point_number->sign =
142 digits_sign_char == '+' ? 'P' : 'N';
143 address_of_generic_floating_point_number->exponent = 0;
144 address_of_generic_floating_point_number->leader =
145 address_of_generic_floating_point_number->low;
146
147 first_digit += 3;
148 if (!strncasecmp ("inity", first_digit, 5))
149 first_digit += 5;
150
151 *address_of_string_pointer = first_digit;
152
153 return 0;
154 }
155 break;
156 }
157
158 number_of_digits_before_decimal = 0;
159 number_of_digits_after_decimal = 0;
160 decimal_exponent = 0;
161 seen_significant_digit = 0;
162 for (p = first_digit;
163 (((c = *p) != '\0')
164 && (!c || !IS_DECIMAL_MARK (c))
165 && (!c || !strchr (string_of_decimal_exponent_marks, c)));
166 p++)
167 {
168 if (ISDIGIT (c))
169 {
170 if (seen_significant_digit || c > '0')
171 {
172 ++number_of_digits_before_decimal;
173 seen_significant_digit = 1;
174 }
175 else
176 {
177 first_digit++;
178 }
179 }
180 else
181 {
182 break; /* p -> char after pre-decimal digits. */
183 }
184 } /* For each digit before decimal mark. */
185
186 #ifndef OLD_FLOAT_READS
187 /* Ignore trailing 0's after the decimal point. The original code here
188 * (ifdef'd out) does not do this, and numbers like
189 * 4.29496729600000000000e+09 (2**31)
190 * come out inexact for some reason related to length of the digit
191 * string.
192 */
193 if (c && IS_DECIMAL_MARK (c))
194 {
195 unsigned int zeros = 0; /* Length of current string of zeros */
196
197 for (p++; (c = *p) && ISDIGIT (c); p++)
198 {
199 if (c == '0')
200 {
201 zeros++;
202 }
203 else
204 {
205 number_of_digits_after_decimal += 1 + zeros;
206 zeros = 0;
207 }
208 }
209 }
210 #else
211 if (c && IS_DECIMAL_MARK (c))
212 {
213 for (p++;
214 (((c = *p) != '\0')
215 && (!c || !strchr (string_of_decimal_exponent_marks, c)));
216 p++)
217 {
218 if (ISDIGIT (c))
219 {
220 /* This may be retracted below. */
221 number_of_digits_after_decimal++;
222
223 if ( /* seen_significant_digit || */ c > '0')
224 {
225 seen_significant_digit = TRUE;
226 }
227 }
228 else
229 {
230 if (!seen_significant_digit)
231 {
232 number_of_digits_after_decimal = 0;
233 }
234 break;
235 }
236 } /* For each digit after decimal mark. */
237 }
238
239 while (number_of_digits_after_decimal
240 && first_digit[number_of_digits_before_decimal
241 + number_of_digits_after_decimal] == '0')
242 --number_of_digits_after_decimal;
243 #endif
244
245 if (flag_m68k_mri)
246 {
247 while (c == '_')
248 c = *++p;
249 }
250 if (c && strchr (string_of_decimal_exponent_marks, c))
251 {
252 char digits_exponent_sign_char;
253
254 c = *++p;
255 if (flag_m68k_mri)
256 {
257 while (c == '_')
258 c = *++p;
259 }
260 if (c && strchr ("+-", c))
261 {
262 digits_exponent_sign_char = c;
263 c = *++p;
264 }
265 else
266 {
267 digits_exponent_sign_char = '+';
268 }
269
270 for (; (c); c = *++p)
271 {
272 if (ISDIGIT (c))
273 {
274 decimal_exponent = decimal_exponent * 10 + c - '0';
275 /*
276 * BUG! If we overflow here, we lose!
277 */
278 }
279 else
280 {
281 break;
282 }
283 }
284
285 if (digits_exponent_sign_char == '-')
286 {
287 decimal_exponent = -decimal_exponent;
288 }
289 }
290
291 *address_of_string_pointer = p;
292
293 number_of_digits_available =
294 number_of_digits_before_decimal + number_of_digits_after_decimal;
295 return_value = 0;
296 if (number_of_digits_available == 0)
297 {
298 address_of_generic_floating_point_number->exponent = 0; /* Not strictly necessary */
299 address_of_generic_floating_point_number->leader
300 = -1 + address_of_generic_floating_point_number->low;
301 address_of_generic_floating_point_number->sign = digits_sign_char;
302 /* We have just concocted (+/-)0.0E0 */
303
304 }
305 else
306 {
307 int count; /* Number of useful digits left to scan. */
308
309 LITTLENUM_TYPE *digits_binary_low;
310 unsigned int precision;
311 unsigned int maximum_useful_digits;
312 unsigned int number_of_digits_to_use;
313 unsigned int more_than_enough_bits_for_digits;
314 unsigned int more_than_enough_littlenums_for_digits;
315 unsigned int size_of_digits_in_littlenums;
316 unsigned int size_of_digits_in_chars;
317 FLONUM_TYPE power_of_10_flonum;
318 FLONUM_TYPE digits_flonum;
319
320 precision = (address_of_generic_floating_point_number->high
321 - address_of_generic_floating_point_number->low
322 + 1); /* Number of destination littlenums. */
323
324 /* Includes guard bits (two littlenums worth) */
325 maximum_useful_digits = (((precision - 2))
326 * ( (LITTLENUM_NUMBER_OF_BITS))
327 * 1000000 / 3321928)
328 + 2; /* 2 :: guard digits. */
329
330 if (number_of_digits_available > maximum_useful_digits)
331 {
332 number_of_digits_to_use = maximum_useful_digits;
333 }
334 else
335 {
336 number_of_digits_to_use = number_of_digits_available;
337 }
338
339 /* Cast these to SIGNED LONG first, otherwise, on systems with
340 LONG wider than INT (such as Alpha OSF/1), unsignedness may
341 cause unexpected results. */
342 decimal_exponent += ((long) number_of_digits_before_decimal
343 - (long) number_of_digits_to_use);
344
345 more_than_enough_bits_for_digits
346 = (number_of_digits_to_use * 3321928 / 1000000 + 1);
347
348 more_than_enough_littlenums_for_digits
349 = (more_than_enough_bits_for_digits
350 / LITTLENUM_NUMBER_OF_BITS)
351 + 2;
352
353 /* Compute (digits) part. In "12.34E56" this is the "1234" part.
354 Arithmetic is exact here. If no digits are supplied then this
355 part is a 0 valued binary integer. Allocate room to build up
356 the binary number as littlenums. We want this memory to
357 disappear when we leave this function. Assume no alignment
358 problems => (room for n objects) == n * (room for 1
359 object). */
360
361 size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
362 size_of_digits_in_chars = size_of_digits_in_littlenums
363 * sizeof (LITTLENUM_TYPE);
364
365 digits_binary_low = (LITTLENUM_TYPE *)
366 alloca (size_of_digits_in_chars);
367
368 memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
369
370 /* Digits_binary_low[] is allocated and zeroed. */
371
372 /*
373 * Parse the decimal digits as if * digits_low was in the units position.
374 * Emit a binary number into digits_binary_low[].
375 *
376 * Use a large-precision version of:
377 * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
378 */
379
380 for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
381 {
382 c = *p;
383 if (ISDIGIT (c))
384 {
385 /*
386 * Multiply by 10. Assume can never overflow.
387 * Add this digit to digits_binary_low[].
388 */
389
390 long carry;
391 LITTLENUM_TYPE *littlenum_pointer;
392 LITTLENUM_TYPE *littlenum_limit;
393
394 littlenum_limit = digits_binary_low
395 + more_than_enough_littlenums_for_digits
396 - 1;
397
398 carry = c - '0'; /* char -> binary */
399
400 for (littlenum_pointer = digits_binary_low;
401 littlenum_pointer <= littlenum_limit;
402 littlenum_pointer++)
403 {
404 long work;
405
406 work = carry + 10 * (long) (*littlenum_pointer);
407 *littlenum_pointer = work & LITTLENUM_MASK;
408 carry = work >> LITTLENUM_NUMBER_OF_BITS;
409 }
410
411 if (carry != 0)
412 {
413 /*
414 * We have a GROSS internal error.
415 * This should never happen.
416 */
417 as_fatal (_("failed sanity check"));
418 }
419 }
420 else
421 {
422 ++count; /* '.' doesn't alter digits used count. */
423 }
424 }
425
426 /*
427 * Digits_binary_low[] properly encodes the value of the digits.
428 * Forget about any high-order littlenums that are 0.
429 */
430 while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
431 && size_of_digits_in_littlenums >= 2)
432 size_of_digits_in_littlenums--;
433
434 digits_flonum.low = digits_binary_low;
435 digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
436 digits_flonum.leader = digits_flonum.high;
437 digits_flonum.exponent = 0;
438 /*
439 * The value of digits_flonum . sign should not be important.
440 * We have already decided the output's sign.
441 * We trust that the sign won't influence the other parts of the number!
442 * So we give it a value for these reasons:
443 * (1) courtesy to humans reading/debugging
444 * these numbers so they don't get excited about strange values
445 * (2) in future there may be more meaning attached to sign,
446 * and what was
447 * harmless noise may become disruptive, ill-conditioned (or worse)
448 * input.
449 */
450 digits_flonum.sign = '+';
451
452 {
453 /*
454 * Compute the mantssa (& exponent) of the power of 10.
455 * If successful, then multiply the power of 10 by the digits
456 * giving return_binary_mantissa and return_binary_exponent.
457 */
458
459 LITTLENUM_TYPE *power_binary_low;
460 int decimal_exponent_is_negative;
461 /* This refers to the "-56" in "12.34E-56". */
462 /* FALSE: decimal_exponent is positive (or 0) */
463 /* TRUE: decimal_exponent is negative */
464 FLONUM_TYPE temporary_flonum;
465 LITTLENUM_TYPE *temporary_binary_low;
466 unsigned int size_of_power_in_littlenums;
467 unsigned int size_of_power_in_chars;
468
469 size_of_power_in_littlenums = precision;
470 /* Precision has a built-in fudge factor so we get a few guard bits. */
471
472 decimal_exponent_is_negative = decimal_exponent < 0;
473 if (decimal_exponent_is_negative)
474 {
475 decimal_exponent = -decimal_exponent;
476 }
477
478 /* From now on: the decimal exponent is > 0. Its sign is separate. */
479
480 size_of_power_in_chars = size_of_power_in_littlenums
481 * sizeof (LITTLENUM_TYPE) + 2;
482
483 power_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
484 temporary_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
485 memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
486 *power_binary_low = 1;
487 power_of_10_flonum.exponent = 0;
488 power_of_10_flonum.low = power_binary_low;
489 power_of_10_flonum.leader = power_binary_low;
490 power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
491 power_of_10_flonum.sign = '+';
492 temporary_flonum.low = temporary_binary_low;
493 temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
494 /*
495 * (power) == 1.
496 * Space for temporary_flonum allocated.
497 */
498
499 /*
500 * ...
501 *
502 * WHILE more bits
503 * DO find next bit (with place value)
504 * multiply into power mantissa
505 * OD
506 */
507 {
508 int place_number_limit;
509 /* Any 10^(2^n) whose "n" exceeds this */
510 /* value will fall off the end of */
511 /* flonum_XXXX_powers_of_ten[]. */
512 int place_number;
513 const FLONUM_TYPE *multiplicand; /* -> 10^(2^n) */
514
515 place_number_limit = table_size_of_flonum_powers_of_ten;
516
517 multiplicand = (decimal_exponent_is_negative
518 ? flonum_negative_powers_of_ten
519 : flonum_positive_powers_of_ten);
520
521 for (place_number = 1;/* Place value of this bit of exponent. */
522 decimal_exponent;/* Quit when no more 1 bits in exponent. */
523 decimal_exponent >>= 1, place_number++)
524 {
525 if (decimal_exponent & 1)
526 {
527 if (place_number > place_number_limit)
528 {
529 /* The decimal exponent has a magnitude so great
530 that our tables can't help us fragment it.
531 Although this routine is in error because it
532 can't imagine a number that big, signal an
533 error as if it is the user's fault for
534 presenting such a big number. */
535 return_value = ERROR_EXPONENT_OVERFLOW;
536 /* quit out of loop gracefully */
537 decimal_exponent = 0;
538 }
539 else
540 {
541 #ifdef TRACE
542 printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
543 place_number);
544
545 flonum_print (&power_of_10_flonum);
546 (void) putchar ('\n');
547 #endif
548 #ifdef TRACE
549 printf ("multiplier:\n");
550 flonum_print (multiplicand + place_number);
551 (void) putchar ('\n');
552 #endif
553 flonum_multip (multiplicand + place_number,
554 &power_of_10_flonum, &temporary_flonum);
555 #ifdef TRACE
556 printf ("after multiply:\n");
557 flonum_print (&temporary_flonum);
558 (void) putchar ('\n');
559 #endif
560 flonum_copy (&temporary_flonum, &power_of_10_flonum);
561 #ifdef TRACE
562 printf ("after copy:\n");
563 flonum_print (&power_of_10_flonum);
564 (void) putchar ('\n');
565 #endif
566 } /* If this bit of decimal_exponent was computable.*/
567 } /* If this bit of decimal_exponent was set. */
568 } /* For each bit of binary representation of exponent */
569 #ifdef TRACE
570 printf ("after computing power_of_10_flonum:\n");
571 flonum_print (&power_of_10_flonum);
572 (void) putchar ('\n');
573 #endif
574 }
575
576 }
577
578 /*
579 * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
580 * It may be the number 1, in which case we don't NEED to multiply.
581 *
582 * Multiply (decimal digits) by power_of_10_flonum.
583 */
584
585 flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
586 /* Assert sign of the number we made is '+'. */
587 address_of_generic_floating_point_number->sign = digits_sign_char;
588
589 }
590 return return_value;
591 }
592
593 #ifdef TRACE
594 static void
595 flonum_print (f)
596 const FLONUM_TYPE *f;
597 {
598 LITTLENUM_TYPE *lp;
599 char littlenum_format[10];
600 sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
601 #define print_littlenum(LP) (printf (littlenum_format, LP))
602 printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
603 if (f->low < f->high)
604 for (lp = f->high; lp >= f->low; lp--)
605 print_littlenum (*lp);
606 else
607 for (lp = f->low; lp <= f->high; lp++)
608 print_littlenum (*lp);
609 printf ("\n");
610 fflush (stdout);
611 }
612 #endif
613
614 /* end of atof_generic.c */
This page took 0.065602 seconds and 4 git commands to generate.