gdb/testsuite: Add gdb_test_name variable
[deliverable/binutils-gdb.git] / gas / atof-generic.c
1 /* atof_generic.c - turn a string of digits into a Flonum
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "as.h"
22 #include "safe-ctype.h"
23
24 #ifndef FALSE
25 #define FALSE (0)
26 #endif
27 #ifndef TRUE
28 #define TRUE (1)
29 #endif
30
31 #ifdef TRACE
32 static void flonum_print (const FLONUM_TYPE *);
33 #endif
34
35 #define ASSUME_DECIMAL_MARK_IS_DOT
36
37 /***********************************************************************\
38 * *
39 * Given a string of decimal digits , with optional decimal *
40 * mark and optional decimal exponent (place value) of the *
41 * lowest_order decimal digit: produce a floating point *
42 * number. The number is 'generic' floating point: our *
43 * caller will encode it for a specific machine architecture. *
44 * *
45 * Assumptions *
46 * uses base (radix) 2 *
47 * this machine uses 2's complement binary integers *
48 * target flonums use " " " " *
49 * target flonums exponents fit in a long *
50 * *
51 \***********************************************************************/
52
53 /*
54
55 Syntax:
56
57 <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
58 <optional-sign> ::= '+' | '-' | {empty}
59 <decimal-number> ::= <integer>
60 | <integer> <radix-character>
61 | <integer> <radix-character> <integer>
62 | <radix-character> <integer>
63
64 <optional-exponent> ::= {empty}
65 | <exponent-character> <optional-sign> <integer>
66
67 <integer> ::= <digit> | <digit> <integer>
68 <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
69 <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
70 <radix-character> ::= {one character from "string_of_decimal_marks"}
71
72 */
73
74 int
75 atof_generic (/* return pointer to just AFTER number we read. */
76 char **address_of_string_pointer,
77 /* At most one per number. */
78 const char *string_of_decimal_marks,
79 const char *string_of_decimal_exponent_marks,
80 FLONUM_TYPE *address_of_generic_floating_point_number)
81 {
82 int return_value; /* 0 means OK. */
83 char *first_digit;
84 unsigned int number_of_digits_before_decimal;
85 unsigned int number_of_digits_after_decimal;
86 long decimal_exponent;
87 unsigned int number_of_digits_available;
88 char digits_sign_char;
89
90 /*
91 * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
92 * It would be simpler to modify the string, but we don't; just to be nice
93 * to caller.
94 * We need to know how many digits we have, so we can allocate space for
95 * the digits' value.
96 */
97
98 char *p;
99 char c;
100 int seen_significant_digit;
101
102 #ifdef ASSUME_DECIMAL_MARK_IS_DOT
103 gas_assert (string_of_decimal_marks[0] == '.'
104 && string_of_decimal_marks[1] == 0);
105 #define IS_DECIMAL_MARK(c) ((c) == '.')
106 #else
107 #define IS_DECIMAL_MARK(c) (0 != strchr (string_of_decimal_marks, (c)))
108 #endif
109
110 first_digit = *address_of_string_pointer;
111 c = *first_digit;
112
113 if (c == '-' || c == '+')
114 {
115 digits_sign_char = c;
116 first_digit++;
117 }
118 else
119 digits_sign_char = '+';
120
121 switch (first_digit[0])
122 {
123 case 'n':
124 case 'N':
125 if (!strncasecmp ("nan", first_digit, 3))
126 {
127 address_of_generic_floating_point_number->sign = 0;
128 address_of_generic_floating_point_number->exponent = 0;
129 address_of_generic_floating_point_number->leader =
130 address_of_generic_floating_point_number->low;
131 *address_of_string_pointer = first_digit + 3;
132 return 0;
133 }
134 break;
135
136 case 'i':
137 case 'I':
138 if (!strncasecmp ("inf", first_digit, 3))
139 {
140 address_of_generic_floating_point_number->sign =
141 digits_sign_char == '+' ? 'P' : 'N';
142 address_of_generic_floating_point_number->exponent = 0;
143 address_of_generic_floating_point_number->leader =
144 address_of_generic_floating_point_number->low;
145
146 first_digit += 3;
147 if (!strncasecmp ("inity", first_digit, 5))
148 first_digit += 5;
149
150 *address_of_string_pointer = first_digit;
151
152 return 0;
153 }
154 break;
155 }
156
157 number_of_digits_before_decimal = 0;
158 number_of_digits_after_decimal = 0;
159 decimal_exponent = 0;
160 seen_significant_digit = 0;
161 for (p = first_digit;
162 (((c = *p) != '\0')
163 && (!c || !IS_DECIMAL_MARK (c))
164 && (!c || !strchr (string_of_decimal_exponent_marks, c)));
165 p++)
166 {
167 if (ISDIGIT (c))
168 {
169 if (seen_significant_digit || c > '0')
170 {
171 ++number_of_digits_before_decimal;
172 seen_significant_digit = 1;
173 }
174 else
175 {
176 first_digit++;
177 }
178 }
179 else
180 {
181 break; /* p -> char after pre-decimal digits. */
182 }
183 } /* For each digit before decimal mark. */
184
185 #ifndef OLD_FLOAT_READS
186 /* Ignore trailing 0's after the decimal point. The original code here
187 (ifdef'd out) does not do this, and numbers like
188 4.29496729600000000000e+09 (2**31)
189 come out inexact for some reason related to length of the digit
190 string. */
191
192 /* The case number_of_digits_before_decimal = 0 is handled for
193 deleting zeros after decimal. In this case the decimal mark and
194 the first zero digits after decimal mark are skipped. */
195 seen_significant_digit = 0;
196 signed long subtract_decimal_exponent = 0;
197
198 if (c && IS_DECIMAL_MARK (c))
199 {
200 unsigned int zeros = 0; /* Length of current string of zeros. */
201
202 if (number_of_digits_before_decimal == 0)
203 /* Skip decimal mark. */
204 first_digit++;
205
206 for (p++; (c = *p) && ISDIGIT (c); p++)
207 {
208 if (c == '0')
209 {
210 if (number_of_digits_before_decimal == 0
211 && !seen_significant_digit)
212 {
213 /* Skip '0' and the decimal mark. */
214 first_digit++;
215 subtract_decimal_exponent--;
216 }
217 else
218 zeros++;
219 }
220 else
221 {
222 seen_significant_digit = 1;
223 number_of_digits_after_decimal += 1 + zeros;
224 zeros = 0;
225 }
226 }
227 }
228 #else
229 if (c && IS_DECIMAL_MARK (c))
230 {
231 for (p++;
232 (((c = *p) != '\0')
233 && (!c || !strchr (string_of_decimal_exponent_marks, c)));
234 p++)
235 {
236 if (ISDIGIT (c))
237 {
238 /* This may be retracted below. */
239 number_of_digits_after_decimal++;
240
241 if ( /* seen_significant_digit || */ c > '0')
242 {
243 seen_significant_digit = TRUE;
244 }
245 }
246 else
247 {
248 if (!seen_significant_digit)
249 {
250 number_of_digits_after_decimal = 0;
251 }
252 break;
253 }
254 } /* For each digit after decimal mark. */
255 }
256
257 while (number_of_digits_after_decimal
258 && first_digit[number_of_digits_before_decimal
259 + number_of_digits_after_decimal] == '0')
260 --number_of_digits_after_decimal;
261 #endif
262
263 if (flag_m68k_mri)
264 {
265 while (c == '_')
266 c = *++p;
267 }
268 if (c && strchr (string_of_decimal_exponent_marks, c))
269 {
270 char digits_exponent_sign_char;
271
272 c = *++p;
273 if (flag_m68k_mri)
274 {
275 while (c == '_')
276 c = *++p;
277 }
278 if (c && strchr ("+-", c))
279 {
280 digits_exponent_sign_char = c;
281 c = *++p;
282 }
283 else
284 {
285 digits_exponent_sign_char = '+';
286 }
287
288 for (; (c); c = *++p)
289 {
290 if (ISDIGIT (c))
291 {
292 decimal_exponent = decimal_exponent * 10 + c - '0';
293 /*
294 * BUG! If we overflow here, we lose!
295 */
296 }
297 else
298 {
299 break;
300 }
301 }
302
303 if (digits_exponent_sign_char == '-')
304 {
305 decimal_exponent = -decimal_exponent;
306 }
307 }
308
309 #ifndef OLD_FLOAT_READS
310 /* Subtract_decimal_exponent != 0 when number_of_digits_before_decimal = 0
311 and first digit after decimal is '0'. */
312 decimal_exponent += subtract_decimal_exponent;
313 #endif
314
315 *address_of_string_pointer = p;
316
317 number_of_digits_available =
318 number_of_digits_before_decimal + number_of_digits_after_decimal;
319 return_value = 0;
320 if (number_of_digits_available == 0)
321 {
322 address_of_generic_floating_point_number->exponent = 0; /* Not strictly necessary */
323 address_of_generic_floating_point_number->leader
324 = -1 + address_of_generic_floating_point_number->low;
325 address_of_generic_floating_point_number->sign = digits_sign_char;
326 /* We have just concocted (+/-)0.0E0 */
327
328 }
329 else
330 {
331 int count; /* Number of useful digits left to scan. */
332
333 LITTLENUM_TYPE *temporary_binary_low = NULL;
334 LITTLENUM_TYPE *power_binary_low = NULL;
335 LITTLENUM_TYPE *digits_binary_low;
336 unsigned int precision;
337 unsigned int maximum_useful_digits;
338 unsigned int number_of_digits_to_use;
339 unsigned int more_than_enough_bits_for_digits;
340 unsigned int more_than_enough_littlenums_for_digits;
341 unsigned int size_of_digits_in_littlenums;
342 unsigned int size_of_digits_in_chars;
343 FLONUM_TYPE power_of_10_flonum;
344 FLONUM_TYPE digits_flonum;
345
346 precision = (address_of_generic_floating_point_number->high
347 - address_of_generic_floating_point_number->low
348 + 1); /* Number of destination littlenums. */
349
350 /* Includes guard bits (two littlenums worth) */
351 maximum_useful_digits = (((precision - 2))
352 * ( (LITTLENUM_NUMBER_OF_BITS))
353 * 1000000 / 3321928)
354 + 2; /* 2 :: guard digits. */
355
356 if (number_of_digits_available > maximum_useful_digits)
357 {
358 number_of_digits_to_use = maximum_useful_digits;
359 }
360 else
361 {
362 number_of_digits_to_use = number_of_digits_available;
363 }
364
365 /* Cast these to SIGNED LONG first, otherwise, on systems with
366 LONG wider than INT (such as Alpha OSF/1), unsignedness may
367 cause unexpected results. */
368 decimal_exponent += ((long) number_of_digits_before_decimal
369 - (long) number_of_digits_to_use);
370
371 more_than_enough_bits_for_digits
372 = (number_of_digits_to_use * 3321928 / 1000000 + 1);
373
374 more_than_enough_littlenums_for_digits
375 = (more_than_enough_bits_for_digits
376 / LITTLENUM_NUMBER_OF_BITS)
377 + 2;
378
379 /* Compute (digits) part. In "12.34E56" this is the "1234" part.
380 Arithmetic is exact here. If no digits are supplied then this
381 part is a 0 valued binary integer. Allocate room to build up
382 the binary number as littlenums. We want this memory to
383 disappear when we leave this function. Assume no alignment
384 problems => (room for n objects) == n * (room for 1
385 object). */
386
387 size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
388 size_of_digits_in_chars = size_of_digits_in_littlenums
389 * sizeof (LITTLENUM_TYPE);
390
391 digits_binary_low = (LITTLENUM_TYPE *)
392 xmalloc (size_of_digits_in_chars);
393
394 memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
395
396 /* Digits_binary_low[] is allocated and zeroed. */
397
398 /*
399 * Parse the decimal digits as if * digits_low was in the units position.
400 * Emit a binary number into digits_binary_low[].
401 *
402 * Use a large-precision version of:
403 * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
404 */
405
406 for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
407 {
408 c = *p;
409 if (ISDIGIT (c))
410 {
411 /*
412 * Multiply by 10. Assume can never overflow.
413 * Add this digit to digits_binary_low[].
414 */
415
416 long carry;
417 LITTLENUM_TYPE *littlenum_pointer;
418 LITTLENUM_TYPE *littlenum_limit;
419
420 littlenum_limit = digits_binary_low
421 + more_than_enough_littlenums_for_digits
422 - 1;
423
424 carry = c - '0'; /* char -> binary */
425
426 for (littlenum_pointer = digits_binary_low;
427 littlenum_pointer <= littlenum_limit;
428 littlenum_pointer++)
429 {
430 long work;
431
432 work = carry + 10 * (long) (*littlenum_pointer);
433 *littlenum_pointer = work & LITTLENUM_MASK;
434 carry = work >> LITTLENUM_NUMBER_OF_BITS;
435 }
436
437 if (carry != 0)
438 {
439 /*
440 * We have a GROSS internal error.
441 * This should never happen.
442 */
443 as_fatal (_("failed sanity check"));
444 }
445 }
446 else
447 {
448 ++count; /* '.' doesn't alter digits used count. */
449 }
450 }
451
452 /*
453 * Digits_binary_low[] properly encodes the value of the digits.
454 * Forget about any high-order littlenums that are 0.
455 */
456 while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
457 && size_of_digits_in_littlenums >= 2)
458 size_of_digits_in_littlenums--;
459
460 digits_flonum.low = digits_binary_low;
461 digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
462 digits_flonum.leader = digits_flonum.high;
463 digits_flonum.exponent = 0;
464 /*
465 * The value of digits_flonum . sign should not be important.
466 * We have already decided the output's sign.
467 * We trust that the sign won't influence the other parts of the number!
468 * So we give it a value for these reasons:
469 * (1) courtesy to humans reading/debugging
470 * these numbers so they don't get excited about strange values
471 * (2) in future there may be more meaning attached to sign,
472 * and what was
473 * harmless noise may become disruptive, ill-conditioned (or worse)
474 * input.
475 */
476 digits_flonum.sign = '+';
477
478 {
479 /*
480 * Compute the mantissa (& exponent) of the power of 10.
481 * If successful, then multiply the power of 10 by the digits
482 * giving return_binary_mantissa and return_binary_exponent.
483 */
484
485 int decimal_exponent_is_negative;
486 /* This refers to the "-56" in "12.34E-56". */
487 /* FALSE: decimal_exponent is positive (or 0) */
488 /* TRUE: decimal_exponent is negative */
489 FLONUM_TYPE temporary_flonum;
490 unsigned int size_of_power_in_littlenums;
491 unsigned int size_of_power_in_chars;
492
493 size_of_power_in_littlenums = precision;
494 /* Precision has a built-in fudge factor so we get a few guard bits. */
495
496 decimal_exponent_is_negative = decimal_exponent < 0;
497 if (decimal_exponent_is_negative)
498 {
499 decimal_exponent = -decimal_exponent;
500 }
501
502 /* From now on: the decimal exponent is > 0. Its sign is separate. */
503
504 size_of_power_in_chars = size_of_power_in_littlenums
505 * sizeof (LITTLENUM_TYPE) + 2;
506
507 power_binary_low = (LITTLENUM_TYPE *) xmalloc (size_of_power_in_chars);
508 temporary_binary_low = (LITTLENUM_TYPE *) xmalloc (size_of_power_in_chars);
509
510 memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
511 *power_binary_low = 1;
512 power_of_10_flonum.exponent = 0;
513 power_of_10_flonum.low = power_binary_low;
514 power_of_10_flonum.leader = power_binary_low;
515 power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
516 power_of_10_flonum.sign = '+';
517 temporary_flonum.low = temporary_binary_low;
518 temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
519 /*
520 * (power) == 1.
521 * Space for temporary_flonum allocated.
522 */
523
524 /*
525 * ...
526 *
527 * WHILE more bits
528 * DO find next bit (with place value)
529 * multiply into power mantissa
530 * OD
531 */
532 {
533 int place_number_limit;
534 /* Any 10^(2^n) whose "n" exceeds this */
535 /* value will fall off the end of */
536 /* flonum_XXXX_powers_of_ten[]. */
537 int place_number;
538 const FLONUM_TYPE *multiplicand; /* -> 10^(2^n) */
539
540 place_number_limit = table_size_of_flonum_powers_of_ten;
541
542 multiplicand = (decimal_exponent_is_negative
543 ? flonum_negative_powers_of_ten
544 : flonum_positive_powers_of_ten);
545
546 for (place_number = 1;/* Place value of this bit of exponent. */
547 decimal_exponent;/* Quit when no more 1 bits in exponent. */
548 decimal_exponent >>= 1, place_number++)
549 {
550 if (decimal_exponent & 1)
551 {
552 if (place_number > place_number_limit)
553 {
554 /* The decimal exponent has a magnitude so great
555 that our tables can't help us fragment it.
556 Although this routine is in error because it
557 can't imagine a number that big, signal an
558 error as if it is the user's fault for
559 presenting such a big number. */
560 return_value = ERROR_EXPONENT_OVERFLOW;
561 /* quit out of loop gracefully */
562 decimal_exponent = 0;
563 }
564 else
565 {
566 #ifdef TRACE
567 printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
568 place_number);
569
570 flonum_print (&power_of_10_flonum);
571 (void) putchar ('\n');
572 #endif
573 #ifdef TRACE
574 printf ("multiplier:\n");
575 flonum_print (multiplicand + place_number);
576 (void) putchar ('\n');
577 #endif
578 flonum_multip (multiplicand + place_number,
579 &power_of_10_flonum, &temporary_flonum);
580 #ifdef TRACE
581 printf ("after multiply:\n");
582 flonum_print (&temporary_flonum);
583 (void) putchar ('\n');
584 #endif
585 flonum_copy (&temporary_flonum, &power_of_10_flonum);
586 #ifdef TRACE
587 printf ("after copy:\n");
588 flonum_print (&power_of_10_flonum);
589 (void) putchar ('\n');
590 #endif
591 } /* If this bit of decimal_exponent was computable.*/
592 } /* If this bit of decimal_exponent was set. */
593 } /* For each bit of binary representation of exponent */
594 #ifdef TRACE
595 printf ("after computing power_of_10_flonum:\n");
596 flonum_print (&power_of_10_flonum);
597 (void) putchar ('\n');
598 #endif
599 }
600 }
601
602 /*
603 * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
604 * It may be the number 1, in which case we don't NEED to multiply.
605 *
606 * Multiply (decimal digits) by power_of_10_flonum.
607 */
608
609 flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
610 /* Assert sign of the number we made is '+'. */
611 address_of_generic_floating_point_number->sign = digits_sign_char;
612
613 if (temporary_binary_low)
614 free (temporary_binary_low);
615 if (power_binary_low)
616 free (power_binary_low);
617 free (digits_binary_low);
618 }
619 return return_value;
620 }
621
622 #ifdef TRACE
623 static void
624 flonum_print (f)
625 const FLONUM_TYPE *f;
626 {
627 LITTLENUM_TYPE *lp;
628 char littlenum_format[10];
629 sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
630 #define print_littlenum(LP) (printf (littlenum_format, LP))
631 printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
632 if (f->low < f->high)
633 for (lp = f->high; lp >= f->low; lp--)
634 print_littlenum (*lp);
635 else
636 for (lp = f->low; lp <= f->high; lp++)
637 print_littlenum (*lp);
638 printf ("\n");
639 fflush (stdout);
640 }
641 #endif
642
643 /* end of atof_generic.c */
This page took 0.04349 seconds and 4 git commands to generate.