2003-08-27 Christian Groessler <chris@groessler.org>
[deliverable/binutils-gdb.git] / gas / atof-generic.c
1 /* atof_generic.c - turn a string of digits into a Flonum
2 Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include <string.h>
23
24 #include "as.h"
25 #include "safe-ctype.h"
26
27 #ifndef FALSE
28 #define FALSE (0)
29 #endif
30 #ifndef TRUE
31 #define TRUE (1)
32 #endif
33
34 #ifdef TRACE
35 static void flonum_print PARAMS ((const FLONUM_TYPE *));
36 #endif
37
38 #define ASSUME_DECIMAL_MARK_IS_DOT
39
40 /***********************************************************************\
41 * *
42 * Given a string of decimal digits , with optional decimal *
43 * mark and optional decimal exponent (place value) of the *
44 * lowest_order decimal digit: produce a floating point *
45 * number. The number is 'generic' floating point: our *
46 * caller will encode it for a specific machine architecture. *
47 * *
48 * Assumptions *
49 * uses base (radix) 2 *
50 * this machine uses 2's complement binary integers *
51 * target flonums use " " " " *
52 * target flonums exponents fit in a long *
53 * *
54 \***********************************************************************/
55
56 /*
57
58 Syntax:
59
60 <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
61 <optional-sign> ::= '+' | '-' | {empty}
62 <decimal-number> ::= <integer>
63 | <integer> <radix-character>
64 | <integer> <radix-character> <integer>
65 | <radix-character> <integer>
66
67 <optional-exponent> ::= {empty}
68 | <exponent-character> <optional-sign> <integer>
69
70 <integer> ::= <digit> | <digit> <integer>
71 <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
72 <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
73 <radix-character> ::= {one character from "string_of_decimal_marks"}
74
75 */
76
77 int
78 atof_generic (address_of_string_pointer,
79 string_of_decimal_marks,
80 string_of_decimal_exponent_marks,
81 address_of_generic_floating_point_number)
82 /* return pointer to just AFTER number we read. */
83 char **address_of_string_pointer;
84 /* At most one per number. */
85 const char *string_of_decimal_marks;
86 const char *string_of_decimal_exponent_marks;
87 FLONUM_TYPE *address_of_generic_floating_point_number;
88 {
89 int return_value; /* 0 means OK. */
90 char *first_digit;
91 unsigned int number_of_digits_before_decimal;
92 unsigned int number_of_digits_after_decimal;
93 long decimal_exponent;
94 unsigned int number_of_digits_available;
95 char digits_sign_char;
96
97 /*
98 * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
99 * It would be simpler to modify the string, but we don't; just to be nice
100 * to caller.
101 * We need to know how many digits we have, so we can allocate space for
102 * the digits' value.
103 */
104
105 char *p;
106 char c;
107 int seen_significant_digit;
108
109 #ifdef ASSUME_DECIMAL_MARK_IS_DOT
110 assert (string_of_decimal_marks[0] == '.'
111 && string_of_decimal_marks[1] == 0);
112 #define IS_DECIMAL_MARK(c) ((c) == '.')
113 #else
114 #define IS_DECIMAL_MARK(c) (0 != strchr (string_of_decimal_marks, (c)))
115 #endif
116
117 first_digit = *address_of_string_pointer;
118 c = *first_digit;
119
120 if (c == '-' || c == '+')
121 {
122 digits_sign_char = c;
123 first_digit++;
124 }
125 else
126 digits_sign_char = '+';
127
128 switch (first_digit[0])
129 {
130 case 'n':
131 case 'N':
132 if (!strncasecmp ("nan", first_digit, 3))
133 {
134 address_of_generic_floating_point_number->sign = 0;
135 address_of_generic_floating_point_number->exponent = 0;
136 address_of_generic_floating_point_number->leader =
137 address_of_generic_floating_point_number->low;
138 *address_of_string_pointer = first_digit + 3;
139 return 0;
140 }
141 break;
142
143 case 'i':
144 case 'I':
145 if (!strncasecmp ("inf", first_digit, 3))
146 {
147 address_of_generic_floating_point_number->sign =
148 digits_sign_char == '+' ? 'P' : 'N';
149 address_of_generic_floating_point_number->exponent = 0;
150 address_of_generic_floating_point_number->leader =
151 address_of_generic_floating_point_number->low;
152
153 first_digit += 3;
154 if (!strncasecmp ("inity", first_digit, 5))
155 first_digit += 5;
156
157 *address_of_string_pointer = first_digit;
158
159 return 0;
160 }
161 break;
162 }
163
164 number_of_digits_before_decimal = 0;
165 number_of_digits_after_decimal = 0;
166 decimal_exponent = 0;
167 seen_significant_digit = 0;
168 for (p = first_digit;
169 (((c = *p) != '\0')
170 && (!c || !IS_DECIMAL_MARK (c))
171 && (!c || !strchr (string_of_decimal_exponent_marks, c)));
172 p++)
173 {
174 if (ISDIGIT (c))
175 {
176 if (seen_significant_digit || c > '0')
177 {
178 ++number_of_digits_before_decimal;
179 seen_significant_digit = 1;
180 }
181 else
182 {
183 first_digit++;
184 }
185 }
186 else
187 {
188 break; /* p -> char after pre-decimal digits. */
189 }
190 } /* For each digit before decimal mark. */
191
192 #ifndef OLD_FLOAT_READS
193 /* Ignore trailing 0's after the decimal point. The original code here
194 * (ifdef'd out) does not do this, and numbers like
195 * 4.29496729600000000000e+09 (2**31)
196 * come out inexact for some reason related to length of the digit
197 * string.
198 */
199 if (c && IS_DECIMAL_MARK (c))
200 {
201 unsigned int zeros = 0; /* Length of current string of zeros */
202
203 for (p++; (c = *p) && ISDIGIT (c); p++)
204 {
205 if (c == '0')
206 {
207 zeros++;
208 }
209 else
210 {
211 number_of_digits_after_decimal += 1 + zeros;
212 zeros = 0;
213 }
214 }
215 }
216 #else
217 if (c && IS_DECIMAL_MARK (c))
218 {
219 for (p++;
220 (((c = *p) != '\0')
221 && (!c || !strchr (string_of_decimal_exponent_marks, c)));
222 p++)
223 {
224 if (ISDIGIT (c))
225 {
226 /* This may be retracted below. */
227 number_of_digits_after_decimal++;
228
229 if ( /* seen_significant_digit || */ c > '0')
230 {
231 seen_significant_digit = TRUE;
232 }
233 }
234 else
235 {
236 if (!seen_significant_digit)
237 {
238 number_of_digits_after_decimal = 0;
239 }
240 break;
241 }
242 } /* For each digit after decimal mark. */
243 }
244
245 while (number_of_digits_after_decimal
246 && first_digit[number_of_digits_before_decimal
247 + number_of_digits_after_decimal] == '0')
248 --number_of_digits_after_decimal;
249 #endif
250
251 if (flag_m68k_mri)
252 {
253 while (c == '_')
254 c = *++p;
255 }
256 if (c && strchr (string_of_decimal_exponent_marks, c))
257 {
258 char digits_exponent_sign_char;
259
260 c = *++p;
261 if (flag_m68k_mri)
262 {
263 while (c == '_')
264 c = *++p;
265 }
266 if (c && strchr ("+-", c))
267 {
268 digits_exponent_sign_char = c;
269 c = *++p;
270 }
271 else
272 {
273 digits_exponent_sign_char = '+';
274 }
275
276 for (; (c); c = *++p)
277 {
278 if (ISDIGIT (c))
279 {
280 decimal_exponent = decimal_exponent * 10 + c - '0';
281 /*
282 * BUG! If we overflow here, we lose!
283 */
284 }
285 else
286 {
287 break;
288 }
289 }
290
291 if (digits_exponent_sign_char == '-')
292 {
293 decimal_exponent = -decimal_exponent;
294 }
295 }
296
297 *address_of_string_pointer = p;
298
299 number_of_digits_available =
300 number_of_digits_before_decimal + number_of_digits_after_decimal;
301 return_value = 0;
302 if (number_of_digits_available == 0)
303 {
304 address_of_generic_floating_point_number->exponent = 0; /* Not strictly necessary */
305 address_of_generic_floating_point_number->leader
306 = -1 + address_of_generic_floating_point_number->low;
307 address_of_generic_floating_point_number->sign = digits_sign_char;
308 /* We have just concocted (+/-)0.0E0 */
309
310 }
311 else
312 {
313 int count; /* Number of useful digits left to scan. */
314
315 LITTLENUM_TYPE *digits_binary_low;
316 unsigned int precision;
317 unsigned int maximum_useful_digits;
318 unsigned int number_of_digits_to_use;
319 unsigned int more_than_enough_bits_for_digits;
320 unsigned int more_than_enough_littlenums_for_digits;
321 unsigned int size_of_digits_in_littlenums;
322 unsigned int size_of_digits_in_chars;
323 FLONUM_TYPE power_of_10_flonum;
324 FLONUM_TYPE digits_flonum;
325
326 precision = (address_of_generic_floating_point_number->high
327 - address_of_generic_floating_point_number->low
328 + 1); /* Number of destination littlenums. */
329
330 /* Includes guard bits (two littlenums worth) */
331 #if 0 /* The integer version below is very close, and it doesn't
332 require floating point support (which is currently buggy on
333 the Alpha). */
334 maximum_useful_digits = (((double) (precision - 2))
335 * ((double) (LITTLENUM_NUMBER_OF_BITS))
336 / (LOG_TO_BASE_2_OF_10))
337 + 2; /* 2 :: guard digits. */
338 #else
339 maximum_useful_digits = (((precision - 2))
340 * ( (LITTLENUM_NUMBER_OF_BITS))
341 * 1000000 / 3321928)
342 + 2; /* 2 :: guard digits. */
343 #endif
344
345 if (number_of_digits_available > maximum_useful_digits)
346 {
347 number_of_digits_to_use = maximum_useful_digits;
348 }
349 else
350 {
351 number_of_digits_to_use = number_of_digits_available;
352 }
353
354 /* Cast these to SIGNED LONG first, otherwise, on systems with
355 LONG wider than INT (such as Alpha OSF/1), unsignedness may
356 cause unexpected results. */
357 decimal_exponent += ((long) number_of_digits_before_decimal
358 - (long) number_of_digits_to_use);
359
360 #if 0
361 more_than_enough_bits_for_digits
362 = ((((double) number_of_digits_to_use) * LOG_TO_BASE_2_OF_10) + 1);
363 #else
364 more_than_enough_bits_for_digits
365 = (number_of_digits_to_use * 3321928 / 1000000 + 1);
366 #endif
367
368 more_than_enough_littlenums_for_digits
369 = (more_than_enough_bits_for_digits
370 / LITTLENUM_NUMBER_OF_BITS)
371 + 2;
372
373 /* Compute (digits) part. In "12.34E56" this is the "1234" part.
374 Arithmetic is exact here. If no digits are supplied then this
375 part is a 0 valued binary integer. Allocate room to build up
376 the binary number as littlenums. We want this memory to
377 disappear when we leave this function. Assume no alignment
378 problems => (room for n objects) == n * (room for 1
379 object). */
380
381 size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
382 size_of_digits_in_chars = size_of_digits_in_littlenums
383 * sizeof (LITTLENUM_TYPE);
384
385 digits_binary_low = (LITTLENUM_TYPE *)
386 alloca (size_of_digits_in_chars);
387
388 memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
389
390 /* Digits_binary_low[] is allocated and zeroed. */
391
392 /*
393 * Parse the decimal digits as if * digits_low was in the units position.
394 * Emit a binary number into digits_binary_low[].
395 *
396 * Use a large-precision version of:
397 * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
398 */
399
400 for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
401 {
402 c = *p;
403 if (ISDIGIT (c))
404 {
405 /*
406 * Multiply by 10. Assume can never overflow.
407 * Add this digit to digits_binary_low[].
408 */
409
410 long carry;
411 LITTLENUM_TYPE *littlenum_pointer;
412 LITTLENUM_TYPE *littlenum_limit;
413
414 littlenum_limit = digits_binary_low
415 + more_than_enough_littlenums_for_digits
416 - 1;
417
418 carry = c - '0'; /* char -> binary */
419
420 for (littlenum_pointer = digits_binary_low;
421 littlenum_pointer <= littlenum_limit;
422 littlenum_pointer++)
423 {
424 long work;
425
426 work = carry + 10 * (long) (*littlenum_pointer);
427 *littlenum_pointer = work & LITTLENUM_MASK;
428 carry = work >> LITTLENUM_NUMBER_OF_BITS;
429 }
430
431 if (carry != 0)
432 {
433 /*
434 * We have a GROSS internal error.
435 * This should never happen.
436 */
437 as_fatal (_("failed sanity check"));
438 }
439 }
440 else
441 {
442 ++count; /* '.' doesn't alter digits used count. */
443 }
444 }
445
446 /*
447 * Digits_binary_low[] properly encodes the value of the digits.
448 * Forget about any high-order littlenums that are 0.
449 */
450 while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
451 && size_of_digits_in_littlenums >= 2)
452 size_of_digits_in_littlenums--;
453
454 digits_flonum.low = digits_binary_low;
455 digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
456 digits_flonum.leader = digits_flonum.high;
457 digits_flonum.exponent = 0;
458 /*
459 * The value of digits_flonum . sign should not be important.
460 * We have already decided the output's sign.
461 * We trust that the sign won't influence the other parts of the number!
462 * So we give it a value for these reasons:
463 * (1) courtesy to humans reading/debugging
464 * these numbers so they don't get excited about strange values
465 * (2) in future there may be more meaning attached to sign,
466 * and what was
467 * harmless noise may become disruptive, ill-conditioned (or worse)
468 * input.
469 */
470 digits_flonum.sign = '+';
471
472 {
473 /*
474 * Compute the mantssa (& exponent) of the power of 10.
475 * If sucessful, then multiply the power of 10 by the digits
476 * giving return_binary_mantissa and return_binary_exponent.
477 */
478
479 LITTLENUM_TYPE *power_binary_low;
480 int decimal_exponent_is_negative;
481 /* This refers to the "-56" in "12.34E-56". */
482 /* FALSE: decimal_exponent is positive (or 0) */
483 /* TRUE: decimal_exponent is negative */
484 FLONUM_TYPE temporary_flonum;
485 LITTLENUM_TYPE *temporary_binary_low;
486 unsigned int size_of_power_in_littlenums;
487 unsigned int size_of_power_in_chars;
488
489 size_of_power_in_littlenums = precision;
490 /* Precision has a built-in fudge factor so we get a few guard bits. */
491
492 decimal_exponent_is_negative = decimal_exponent < 0;
493 if (decimal_exponent_is_negative)
494 {
495 decimal_exponent = -decimal_exponent;
496 }
497
498 /* From now on: the decimal exponent is > 0. Its sign is separate. */
499
500 size_of_power_in_chars = size_of_power_in_littlenums
501 * sizeof (LITTLENUM_TYPE) + 2;
502
503 power_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
504 temporary_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
505 memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
506 *power_binary_low = 1;
507 power_of_10_flonum.exponent = 0;
508 power_of_10_flonum.low = power_binary_low;
509 power_of_10_flonum.leader = power_binary_low;
510 power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
511 power_of_10_flonum.sign = '+';
512 temporary_flonum.low = temporary_binary_low;
513 temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
514 /*
515 * (power) == 1.
516 * Space for temporary_flonum allocated.
517 */
518
519 /*
520 * ...
521 *
522 * WHILE more bits
523 * DO find next bit (with place value)
524 * multiply into power mantissa
525 * OD
526 */
527 {
528 int place_number_limit;
529 /* Any 10^(2^n) whose "n" exceeds this */
530 /* value will fall off the end of */
531 /* flonum_XXXX_powers_of_ten[]. */
532 int place_number;
533 const FLONUM_TYPE *multiplicand; /* -> 10^(2^n) */
534
535 place_number_limit = table_size_of_flonum_powers_of_ten;
536
537 multiplicand = (decimal_exponent_is_negative
538 ? flonum_negative_powers_of_ten
539 : flonum_positive_powers_of_ten);
540
541 for (place_number = 1;/* Place value of this bit of exponent. */
542 decimal_exponent;/* Quit when no more 1 bits in exponent. */
543 decimal_exponent >>= 1, place_number++)
544 {
545 if (decimal_exponent & 1)
546 {
547 if (place_number > place_number_limit)
548 {
549 /* The decimal exponent has a magnitude so great
550 that our tables can't help us fragment it.
551 Although this routine is in error because it
552 can't imagine a number that big, signal an
553 error as if it is the user's fault for
554 presenting such a big number. */
555 return_value = ERROR_EXPONENT_OVERFLOW;
556 /* quit out of loop gracefully */
557 decimal_exponent = 0;
558 }
559 else
560 {
561 #ifdef TRACE
562 printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
563 place_number);
564
565 flonum_print (&power_of_10_flonum);
566 (void) putchar ('\n');
567 #endif
568 #ifdef TRACE
569 printf ("multiplier:\n");
570 flonum_print (multiplicand + place_number);
571 (void) putchar ('\n');
572 #endif
573 flonum_multip (multiplicand + place_number,
574 &power_of_10_flonum, &temporary_flonum);
575 #ifdef TRACE
576 printf ("after multiply:\n");
577 flonum_print (&temporary_flonum);
578 (void) putchar ('\n');
579 #endif
580 flonum_copy (&temporary_flonum, &power_of_10_flonum);
581 #ifdef TRACE
582 printf ("after copy:\n");
583 flonum_print (&power_of_10_flonum);
584 (void) putchar ('\n');
585 #endif
586 } /* If this bit of decimal_exponent was computable.*/
587 } /* If this bit of decimal_exponent was set. */
588 } /* For each bit of binary representation of exponent */
589 #ifdef TRACE
590 printf ("after computing power_of_10_flonum:\n");
591 flonum_print (&power_of_10_flonum);
592 (void) putchar ('\n');
593 #endif
594 }
595
596 }
597
598 /*
599 * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
600 * It may be the number 1, in which case we don't NEED to multiply.
601 *
602 * Multiply (decimal digits) by power_of_10_flonum.
603 */
604
605 flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
606 /* Assert sign of the number we made is '+'. */
607 address_of_generic_floating_point_number->sign = digits_sign_char;
608
609 }
610 return return_value;
611 }
612
613 #ifdef TRACE
614 static void
615 flonum_print (f)
616 const FLONUM_TYPE *f;
617 {
618 LITTLENUM_TYPE *lp;
619 char littlenum_format[10];
620 sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
621 #define print_littlenum(LP) (printf (littlenum_format, LP))
622 printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
623 if (f->low < f->high)
624 for (lp = f->high; lp >= f->low; lp--)
625 print_littlenum (*lp);
626 else
627 for (lp = f->low; lp <= f->high; lp++)
628 print_littlenum (*lp);
629 printf ("\n");
630 fflush (stdout);
631 }
632 #endif
633
634 /* end of atof_generic.c */
This page took 0.051672 seconds and 4 git commands to generate.