a5782c4fce90fea1db7bbfca20c2479dc67a58fc
[deliverable/binutils-gdb.git] / gas / config / atof-ieee.c
1 /* atof_ieee.c - turn a Flonum into an IEEE floating point number
2 Copyright (C) 1987, 1992 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "as.h"
21
22 extern FLONUM_TYPE generic_floating_point_number; /* Flonums returned here. */
23
24 #ifndef NULL
25 #define NULL (0)
26 #endif
27
28 extern const char EXP_CHARS[];
29 /* Precision in LittleNums. */
30 #define MAX_PRECISION (6)
31 #define F_PRECISION (2)
32 #define D_PRECISION (4)
33 #define X_PRECISION (6)
34 #define P_PRECISION (6)
35
36 /* Length in LittleNums of guard bits. */
37 #define GUARD (2)
38
39 static unsigned long mask[] =
40 {
41 0x00000000,
42 0x00000001,
43 0x00000003,
44 0x00000007,
45 0x0000000f,
46 0x0000001f,
47 0x0000003f,
48 0x0000007f,
49 0x000000ff,
50 0x000001ff,
51 0x000003ff,
52 0x000007ff,
53 0x00000fff,
54 0x00001fff,
55 0x00003fff,
56 0x00007fff,
57 0x0000ffff,
58 0x0001ffff,
59 0x0003ffff,
60 0x0007ffff,
61 0x000fffff,
62 0x001fffff,
63 0x003fffff,
64 0x007fffff,
65 0x00ffffff,
66 0x01ffffff,
67 0x03ffffff,
68 0x07ffffff,
69 0x0fffffff,
70 0x1fffffff,
71 0x3fffffff,
72 0x7fffffff,
73 0xffffffff,
74 };
75 \f
76
77 static int bits_left_in_littlenum;
78 static int littlenums_left;
79 static LITTLENUM_TYPE *littlenum_pointer;
80
81 static int
82 next_bits (number_of_bits)
83 int number_of_bits;
84 {
85 int return_value;
86
87 if (!littlenums_left)
88 return (0);
89 if (number_of_bits >= bits_left_in_littlenum)
90 {
91 return_value = mask[bits_left_in_littlenum] & *littlenum_pointer;
92 number_of_bits -= bits_left_in_littlenum;
93 return_value <<= number_of_bits;
94
95 if (--littlenums_left)
96 {
97 bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS - number_of_bits;
98 --littlenum_pointer;
99 return_value |= (*littlenum_pointer >> bits_left_in_littlenum) & mask[number_of_bits];
100 }
101 }
102 else
103 {
104 bits_left_in_littlenum -= number_of_bits;
105 return_value = mask[number_of_bits] & (*littlenum_pointer >> bits_left_in_littlenum);
106 }
107 return (return_value);
108 }
109
110 /* Num had better be less than LITTLENUM_NUMBER_OF_BITS */
111 static void
112 unget_bits (num)
113 int num;
114 {
115 if (!littlenums_left)
116 {
117 ++littlenum_pointer;
118 ++littlenums_left;
119 bits_left_in_littlenum = num;
120 }
121 else if (bits_left_in_littlenum + num > LITTLENUM_NUMBER_OF_BITS)
122 {
123 bits_left_in_littlenum = num - (LITTLENUM_NUMBER_OF_BITS - bits_left_in_littlenum);
124 ++littlenum_pointer;
125 ++littlenums_left;
126 }
127 else
128 bits_left_in_littlenum += num;
129 }
130
131 static void
132 make_invalid_floating_point_number (words)
133 LITTLENUM_TYPE *words;
134 {
135 as_bad ("cannot create floating-point number");
136 words[0] = ((unsigned) -1) >> 1; /* Zero the leftmost bit */
137 words[1] = -1;
138 words[2] = -1;
139 words[3] = -1;
140 words[4] = -1;
141 words[5] = -1;
142 }
143 \f
144 /***********************************************************************\
145 * Warning: this returns 16-bit LITTLENUMs. It is up to the caller *
146 * to figure out any alignment problems and to conspire for the *
147 * bytes/word to be emitted in the right order. Bigendians beware! *
148 * *
149 \***********************************************************************/
150
151 /* Note that atof-ieee always has X and P precisions enabled. it is up
152 to md_atof to filter them out if the target machine does not support
153 them. */
154
155 char * /* Return pointer past text consumed. */
156 atof_ieee (str, what_kind, words)
157 char *str; /* Text to convert to binary. */
158 char what_kind; /* 'd', 'f', 'g', 'h' */
159 LITTLENUM_TYPE *words; /* Build the binary here. */
160 {
161 static LITTLENUM_TYPE bits[MAX_PRECISION + MAX_PRECISION + GUARD];
162 /* Extra bits for zeroed low-order bits. */
163 /* The 1st MAX_PRECISION are zeroed, */
164 /* the last contain flonum bits. */
165 char *return_value;
166 int precision; /* Number of 16-bit words in the format. */
167 long exponent_bits;
168 FLONUM_TYPE save_gen_flonum;
169
170 /* We have to save the generic_floating_point_number because it
171 contains storage allocation about the array of LITTLENUMs
172 where the value is actually stored. We will allocate our
173 own array of littlenums below, but have to restore the global
174 one on exit. */
175 save_gen_flonum = generic_floating_point_number;
176
177 return_value = str;
178 generic_floating_point_number.low = bits + MAX_PRECISION;
179 generic_floating_point_number.high = NULL;
180 generic_floating_point_number.leader = NULL;
181 generic_floating_point_number.exponent = NULL;
182 generic_floating_point_number.sign = '\0';
183
184 /* Use more LittleNums than seems */
185 /* necessary: the highest flonum may have */
186 /* 15 leading 0 bits, so could be useless. */
187
188 memset (bits, '\0', sizeof (LITTLENUM_TYPE) * MAX_PRECISION);
189
190 switch (what_kind)
191 {
192 case 'f':
193 case 'F':
194 case 's':
195 case 'S':
196 precision = F_PRECISION;
197 exponent_bits = 8;
198 break;
199
200 case 'd':
201 case 'D':
202 case 'r':
203 case 'R':
204 precision = D_PRECISION;
205 exponent_bits = 11;
206 break;
207
208 case 'x':
209 case 'X':
210 case 'e':
211 case 'E':
212 precision = X_PRECISION;
213 exponent_bits = 15;
214 break;
215
216 case 'p':
217 case 'P':
218
219 precision = P_PRECISION;
220 exponent_bits = -1;
221 break;
222
223 default:
224 make_invalid_floating_point_number (words);
225 return (NULL);
226 }
227
228 generic_floating_point_number.high = generic_floating_point_number.low + precision - 1 + GUARD;
229
230 if (atof_generic (&return_value, ".", EXP_CHARS, &generic_floating_point_number))
231 {
232 /* as_bad("Error converting floating point number (Exponent overflow?)"); */
233 make_invalid_floating_point_number (words);
234 return (NULL);
235 }
236 gen_to_words (words, precision, exponent_bits);
237
238 /* Restore the generic_floating_point_number's storage alloc
239 (and everything else). */
240 generic_floating_point_number = save_gen_flonum;
241
242 return (return_value);
243 }
244
245 /* Turn generic_floating_point_number into a real float/double/extended */
246 int
247 gen_to_words (words, precision, exponent_bits)
248 LITTLENUM_TYPE *words;
249 int precision;
250 long exponent_bits;
251 {
252 int return_value = 0;
253
254 long exponent_1;
255 long exponent_2;
256 long exponent_3;
257 long exponent_4;
258 int exponent_skippage;
259 LITTLENUM_TYPE word1;
260 LITTLENUM_TYPE *lp;
261
262 if (generic_floating_point_number.low > generic_floating_point_number.leader)
263 {
264 /* 0.0e0 seen. */
265 if (generic_floating_point_number.sign == '+')
266 words[0] = 0x0000;
267 else
268 words[0] = 0x8000;
269 memset (&words[1], '\0', sizeof (LITTLENUM_TYPE) * (precision - 1));
270 return (return_value);
271 }
272
273 /* NaN: Do the right thing */
274 if (generic_floating_point_number.sign == 0)
275 {
276 if (precision == F_PRECISION)
277 {
278 words[0] = 0x7fff;
279 words[1] = 0xffff;
280 }
281 else
282 {
283 words[0] = 0x7fff;
284 words[1] = 0xffff;
285 words[2] = 0xffff;
286 words[3] = 0xffff;
287 }
288 return return_value;
289 }
290 else if (generic_floating_point_number.sign == 'P')
291 {
292 /* +INF: Do the right thing */
293 if (precision == F_PRECISION)
294 {
295 words[0] = 0x7f80;
296 words[1] = 0;
297 }
298 else
299 {
300 words[0] = 0x7ff0;
301 words[1] = 0;
302 words[2] = 0;
303 words[3] = 0;
304 }
305 return (return_value);
306 }
307 else if (generic_floating_point_number.sign == 'N')
308 {
309 /* Negative INF */
310 if (precision == F_PRECISION)
311 {
312 words[0] = 0xff80;
313 words[1] = 0x0;
314 }
315 else
316 {
317 words[0] = 0xfff0;
318 words[1] = 0x0;
319 words[2] = 0x0;
320 words[3] = 0x0;
321 }
322 return (return_value);
323 }
324 /*
325 * The floating point formats we support have:
326 * Bit 15 is sign bit.
327 * Bits 14:n are excess-whatever exponent.
328 * Bits n-1:0 (if any) are most significant bits of fraction.
329 * Bits 15:0 of the next word(s) are the next most significant bits.
330 *
331 * So we need: number of bits of exponent, number of bits of
332 * mantissa.
333 */
334 bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS;
335 littlenum_pointer = generic_floating_point_number.leader;
336 littlenums_left = 1 + generic_floating_point_number.leader - generic_floating_point_number.low;
337 /* Seek (and forget) 1st significant bit */
338 for (exponent_skippage = 0; !next_bits (1); ++exponent_skippage);;
339 exponent_1 = generic_floating_point_number.exponent + generic_floating_point_number.leader
340 + 1 - generic_floating_point_number.low;
341 /* Radix LITTLENUM_RADIX, point just higher than generic_floating_point_number.leader. */
342 exponent_2 = exponent_1 * LITTLENUM_NUMBER_OF_BITS;
343 /* Radix 2. */
344 exponent_3 = exponent_2 - exponent_skippage;
345 /* Forget leading zeros, forget 1st bit. */
346 exponent_4 = exponent_3 + ((1 << (exponent_bits - 1)) - 2);
347 /* Offset exponent. */
348
349 lp = words;
350
351 /* Word 1. Sign, exponent and perhaps high bits. */
352 word1 = (generic_floating_point_number.sign == '+') ? 0 : (1 << (LITTLENUM_NUMBER_OF_BITS - 1));
353
354 /* Assume 2's complement integers. */
355 if (exponent_4 < 1 && exponent_4 >= -62)
356 {
357 int prec_bits;
358 int num_bits;
359
360 unget_bits (1);
361 num_bits = -exponent_4;
362 prec_bits = LITTLENUM_NUMBER_OF_BITS * precision - (exponent_bits + 1 + num_bits);
363 if (precision == X_PRECISION && exponent_bits == 15)
364 prec_bits -= LITTLENUM_NUMBER_OF_BITS + 1;
365
366 if (num_bits >= LITTLENUM_NUMBER_OF_BITS - exponent_bits)
367 {
368 /* Bigger than one littlenum */
369 num_bits -= (LITTLENUM_NUMBER_OF_BITS - 1) - exponent_bits;
370 *lp++ = word1;
371 if (num_bits + exponent_bits + 1 >= precision * LITTLENUM_NUMBER_OF_BITS)
372 {
373 /* Exponent overflow */
374 make_invalid_floating_point_number (words);
375 return (return_value);
376 }
377 if (precision == X_PRECISION && exponent_bits == 15)
378 {
379 *lp++ = 0;
380 *lp++ = 0;
381 num_bits -= LITTLENUM_NUMBER_OF_BITS - 1;
382 }
383 while (num_bits >= LITTLENUM_NUMBER_OF_BITS)
384 {
385 num_bits -= LITTLENUM_NUMBER_OF_BITS;
386 *lp++ = 0;
387 }
388 if (num_bits)
389 *lp++ = next_bits (LITTLENUM_NUMBER_OF_BITS - (num_bits));
390 }
391 else
392 {
393 if (precision == X_PRECISION && exponent_bits == 15)
394 {
395 *lp++ = word1;
396 *lp++ = 0;
397 if (num_bits == LITTLENUM_NUMBER_OF_BITS)
398 {
399 *lp++ = 0;
400 *lp++ = next_bits (LITTLENUM_NUMBER_OF_BITS - 1);
401 }
402 else if (num_bits == LITTLENUM_NUMBER_OF_BITS - 1)
403 *lp++ = 0;
404 else
405 *lp++ = next_bits (LITTLENUM_NUMBER_OF_BITS - 1 - num_bits);
406 num_bits = 0;
407 }
408 else
409 {
410 word1 |= next_bits ((LITTLENUM_NUMBER_OF_BITS - 1) - (exponent_bits + num_bits));
411 *lp++ = word1;
412 }
413 }
414 while (lp < words + precision)
415 *lp++ = next_bits (LITTLENUM_NUMBER_OF_BITS);
416
417 /* Round the mantissa up, but don't change the number */
418 if (next_bits (1))
419 {
420 --lp;
421 if (prec_bits > LITTLENUM_NUMBER_OF_BITS)
422 {
423 int n = 0;
424 int tmp_bits;
425
426 n = 0;
427 tmp_bits = prec_bits;
428 while (tmp_bits > LITTLENUM_NUMBER_OF_BITS)
429 {
430 if (lp[n] != (LITTLENUM_TYPE) - 1)
431 break;
432 --n;
433 tmp_bits -= LITTLENUM_NUMBER_OF_BITS;
434 }
435 if (tmp_bits > LITTLENUM_NUMBER_OF_BITS || (lp[n] & mask[tmp_bits]) != mask[tmp_bits])
436 {
437 unsigned long carry;
438
439 for (carry = 1; carry && (lp >= words); lp--)
440 {
441 carry = *lp + carry;
442 *lp = carry;
443 carry >>= LITTLENUM_NUMBER_OF_BITS;
444 }
445 }
446 }
447 else if ((*lp & mask[prec_bits]) != mask[prec_bits])
448 lp++;
449 }
450
451 return return_value;
452 }
453 else if (exponent_4 & ~mask[exponent_bits])
454 {
455 /*
456 * Exponent overflow. Lose immediately.
457 */
458
459 /*
460 * We leave return_value alone: admit we read the
461 * number, but return a floating exception
462 * because we can't encode the number.
463 */
464 make_invalid_floating_point_number (words);
465 return return_value;
466 }
467 else
468 {
469 word1 |= (exponent_4 << ((LITTLENUM_NUMBER_OF_BITS - 1) - exponent_bits))
470 | next_bits ((LITTLENUM_NUMBER_OF_BITS - 1) - exponent_bits);
471 }
472
473 *lp++ = word1;
474
475 /* X_PRECISION is special: it has 16 bits of zero in the middle,
476 followed by a 1 bit. */
477 if (exponent_bits == 15 && precision == X_PRECISION)
478 {
479 *lp++ = 0;
480 *lp++ = 1 << (LITTLENUM_NUMBER_OF_BITS) | next_bits (LITTLENUM_NUMBER_OF_BITS - 1);
481 }
482
483 /* The rest of the words are just mantissa bits. */
484 while (lp < words + precision)
485 *lp++ = next_bits (LITTLENUM_NUMBER_OF_BITS);
486
487 if (next_bits (1))
488 {
489 unsigned long carry;
490 /*
491 * Since the NEXT bit is a 1, round UP the mantissa.
492 * The cunning design of these hidden-1 floats permits
493 * us to let the mantissa overflow into the exponent, and
494 * it 'does the right thing'. However, we lose if the
495 * highest-order bit of the lowest-order word flips.
496 * Is that clear?
497 */
498
499 /* #if (sizeof(carry)) < ((sizeof(bits[0]) * BITS_PER_CHAR) + 2)
500 Please allow at least 1 more bit in carry than is in a LITTLENUM.
501 We need that extra bit to hold a carry during a LITTLENUM carry
502 propagation. Another extra bit (kept 0) will assure us that we
503 don't get a sticky sign bit after shifting right, and that
504 permits us to propagate the carry without any masking of bits.
505 #endif */
506 for (carry = 1, lp--; carry && (lp >= words); lp--)
507 {
508 carry = *lp + carry;
509 *lp = carry;
510 carry >>= LITTLENUM_NUMBER_OF_BITS;
511 }
512 if ((word1 ^ *words) & (1 << (LITTLENUM_NUMBER_OF_BITS - 1)))
513 {
514 /* We leave return_value alone: admit we read the
515 * number, but return a floating exception
516 * because we can't encode the number.
517 */
518 *words &= ~(1 << (LITTLENUM_NUMBER_OF_BITS - 1));
519 /* make_invalid_floating_point_number (words); */
520 /* return return_value; */
521 }
522 }
523 return (return_value);
524 }
525
526 /* This routine is a real kludge. Someone really should do it better, but
527 I'm too lazy, and I don't understand this stuff all too well anyway
528 (JF)
529 */
530 void
531 int_to_gen (x)
532 long x;
533 {
534 char buf[20];
535 char *bufp;
536
537 sprintf (buf, "%ld", x);
538 bufp = &buf[0];
539 if (atof_generic (&bufp, ".", EXP_CHARS, &generic_floating_point_number))
540 as_bad ("Error converting number to floating point (Exponent overflow?)");
541 }
542
543 #ifdef TEST
544 char *
545 print_gen (gen)
546 FLONUM_TYPE *gen;
547 {
548 FLONUM_TYPE f;
549 LITTLENUM_TYPE arr[10];
550 double dv;
551 float fv;
552 static char sbuf[40];
553
554 if (gen)
555 {
556 f = generic_floating_point_number;
557 generic_floating_point_number = *gen;
558 }
559 gen_to_words (&arr[0], 4, 11);
560 memcpy (&dv, &arr[0], sizeof (double));
561 sprintf (sbuf, "%x %x %x %x %.14G ", arr[0], arr[1], arr[2], arr[3], dv);
562 gen_to_words (&arr[0], 2, 8);
563 memcpy (&fv, &arr[0], sizeof (float));
564 sprintf (sbuf + strlen (sbuf), "%x %x %.12g\n", arr[0], arr[1], fv);
565
566 if (gen)
567 {
568 generic_floating_point_number = f;
569 }
570
571 return (sbuf);
572 }
573
574 #endif
575
576 /* end of atof-ieee.c */
This page took 0.058583 seconds and 4 git commands to generate.