Modify AArch64 Assembly and disassembly functions to be able to fail and report why.
[deliverable/binutils-gdb.git] / gas / config / tc-aarch64.c
1 /* tc-aarch64.c -- Assemble for the AArch64 ISA
2
3 Copyright (C) 2009-2018 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22 #include "as.h"
23 #include <limits.h>
24 #include <stdarg.h>
25 #include "bfd_stdint.h"
26 #define NO_RELOC 0
27 #include "safe-ctype.h"
28 #include "subsegs.h"
29 #include "obstack.h"
30
31 #ifdef OBJ_ELF
32 #include "elf/aarch64.h"
33 #include "dw2gencfi.h"
34 #endif
35
36 #include "dwarf2dbg.h"
37
38 /* Types of processor to assemble for. */
39 #ifndef CPU_DEFAULT
40 #define CPU_DEFAULT AARCH64_ARCH_V8
41 #endif
42
43 #define streq(a, b) (strcmp (a, b) == 0)
44
45 #define END_OF_INSN '\0'
46
47 static aarch64_feature_set cpu_variant;
48
49 /* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52 static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53 static const aarch64_feature_set *march_cpu_opt = NULL;
54
55 /* Constants for known architecture features. */
56 static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
58 #ifdef OBJ_ELF
59 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
60 static symbolS *GOT_symbol;
61
62 /* Which ABI to use. */
63 enum aarch64_abi_type
64 {
65 AARCH64_ABI_NONE = 0,
66 AARCH64_ABI_LP64 = 1,
67 AARCH64_ABI_ILP32 = 2
68 };
69
70 #ifndef DEFAULT_ARCH
71 #define DEFAULT_ARCH "aarch64"
72 #endif
73
74 /* DEFAULT_ARCH is initialized in gas/configure.tgt. */
75 static const char *default_arch = DEFAULT_ARCH;
76
77 /* AArch64 ABI for the output file. */
78 static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_NONE;
79
80 /* When non-zero, program to a 32-bit model, in which the C data types
81 int, long and all pointer types are 32-bit objects (ILP32); or to a
82 64-bit model, in which the C int type is 32-bits but the C long type
83 and all pointer types are 64-bit objects (LP64). */
84 #define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
85 #endif
86
87 enum vector_el_type
88 {
89 NT_invtype = -1,
90 NT_b,
91 NT_h,
92 NT_s,
93 NT_d,
94 NT_q,
95 NT_zero,
96 NT_merge
97 };
98
99 /* Bits for DEFINED field in vector_type_el. */
100 #define NTA_HASTYPE 1
101 #define NTA_HASINDEX 2
102 #define NTA_HASVARWIDTH 4
103
104 struct vector_type_el
105 {
106 enum vector_el_type type;
107 unsigned char defined;
108 unsigned width;
109 int64_t index;
110 };
111
112 #define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
113
114 struct reloc
115 {
116 bfd_reloc_code_real_type type;
117 expressionS exp;
118 int pc_rel;
119 enum aarch64_opnd opnd;
120 uint32_t flags;
121 unsigned need_libopcodes_p : 1;
122 };
123
124 struct aarch64_instruction
125 {
126 /* libopcodes structure for instruction intermediate representation. */
127 aarch64_inst base;
128 /* Record assembly errors found during the parsing. */
129 struct
130 {
131 enum aarch64_operand_error_kind kind;
132 const char *error;
133 } parsing_error;
134 /* The condition that appears in the assembly line. */
135 int cond;
136 /* Relocation information (including the GAS internal fixup). */
137 struct reloc reloc;
138 /* Need to generate an immediate in the literal pool. */
139 unsigned gen_lit_pool : 1;
140 };
141
142 typedef struct aarch64_instruction aarch64_instruction;
143
144 static aarch64_instruction inst;
145
146 static bfd_boolean parse_operands (char *, const aarch64_opcode *);
147 static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
148
149 /* Diagnostics inline function utilities.
150
151 These are lightweight utilities which should only be called by parse_operands
152 and other parsers. GAS processes each assembly line by parsing it against
153 instruction template(s), in the case of multiple templates (for the same
154 mnemonic name), those templates are tried one by one until one succeeds or
155 all fail. An assembly line may fail a few templates before being
156 successfully parsed; an error saved here in most cases is not a user error
157 but an error indicating the current template is not the right template.
158 Therefore it is very important that errors can be saved at a low cost during
159 the parsing; we don't want to slow down the whole parsing by recording
160 non-user errors in detail.
161
162 Remember that the objective is to help GAS pick up the most appropriate
163 error message in the case of multiple templates, e.g. FMOV which has 8
164 templates. */
165
166 static inline void
167 clear_error (void)
168 {
169 inst.parsing_error.kind = AARCH64_OPDE_NIL;
170 inst.parsing_error.error = NULL;
171 }
172
173 static inline bfd_boolean
174 error_p (void)
175 {
176 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
177 }
178
179 static inline const char *
180 get_error_message (void)
181 {
182 return inst.parsing_error.error;
183 }
184
185 static inline enum aarch64_operand_error_kind
186 get_error_kind (void)
187 {
188 return inst.parsing_error.kind;
189 }
190
191 static inline void
192 set_error (enum aarch64_operand_error_kind kind, const char *error)
193 {
194 inst.parsing_error.kind = kind;
195 inst.parsing_error.error = error;
196 }
197
198 static inline void
199 set_recoverable_error (const char *error)
200 {
201 set_error (AARCH64_OPDE_RECOVERABLE, error);
202 }
203
204 /* Use the DESC field of the corresponding aarch64_operand entry to compose
205 the error message. */
206 static inline void
207 set_default_error (void)
208 {
209 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
210 }
211
212 static inline void
213 set_syntax_error (const char *error)
214 {
215 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
216 }
217
218 static inline void
219 set_first_syntax_error (const char *error)
220 {
221 if (! error_p ())
222 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
223 }
224
225 static inline void
226 set_fatal_syntax_error (const char *error)
227 {
228 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
229 }
230 \f
231 /* Number of littlenums required to hold an extended precision number. */
232 #define MAX_LITTLENUMS 6
233
234 /* Return value for certain parsers when the parsing fails; those parsers
235 return the information of the parsed result, e.g. register number, on
236 success. */
237 #define PARSE_FAIL -1
238
239 /* This is an invalid condition code that means no conditional field is
240 present. */
241 #define COND_ALWAYS 0x10
242
243 typedef struct
244 {
245 const char *template;
246 unsigned long value;
247 } asm_barrier_opt;
248
249 typedef struct
250 {
251 const char *template;
252 uint32_t value;
253 } asm_nzcv;
254
255 struct reloc_entry
256 {
257 char *name;
258 bfd_reloc_code_real_type reloc;
259 };
260
261 /* Macros to define the register types and masks for the purpose
262 of parsing. */
263
264 #undef AARCH64_REG_TYPES
265 #define AARCH64_REG_TYPES \
266 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
267 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
268 BASIC_REG_TYPE(SP_32) /* wsp */ \
269 BASIC_REG_TYPE(SP_64) /* sp */ \
270 BASIC_REG_TYPE(Z_32) /* wzr */ \
271 BASIC_REG_TYPE(Z_64) /* xzr */ \
272 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
273 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
274 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
275 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
276 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
277 BASIC_REG_TYPE(VN) /* v[0-31] */ \
278 BASIC_REG_TYPE(ZN) /* z[0-31] */ \
279 BASIC_REG_TYPE(PN) /* p[0-15] */ \
280 /* Typecheck: any 64-bit int reg (inc SP exc XZR). */ \
281 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
282 /* Typecheck: same, plus SVE registers. */ \
283 MULTI_REG_TYPE(SVE_BASE, REG_TYPE(R_64) | REG_TYPE(SP_64) \
284 | REG_TYPE(ZN)) \
285 /* Typecheck: x[0-30], w[0-30] or [xw]zr. */ \
286 MULTI_REG_TYPE(R_Z, REG_TYPE(R_32) | REG_TYPE(R_64) \
287 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
288 /* Typecheck: same, plus SVE registers. */ \
289 MULTI_REG_TYPE(SVE_OFFSET, REG_TYPE(R_32) | REG_TYPE(R_64) \
290 | REG_TYPE(Z_32) | REG_TYPE(Z_64) \
291 | REG_TYPE(ZN)) \
292 /* Typecheck: x[0-30], w[0-30] or {w}sp. */ \
293 MULTI_REG_TYPE(R_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
294 | REG_TYPE(SP_32) | REG_TYPE(SP_64)) \
295 /* Typecheck: any int (inc {W}SP inc [WX]ZR). */ \
296 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
297 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
298 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
299 /* Typecheck: any [BHSDQ]P FP. */ \
300 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
301 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
302 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR). */ \
303 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
304 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
305 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
306 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
307 /* Typecheck: as above, but also Zn, Pn, and {W}SP. This should only \
308 be used for SVE instructions, since Zn and Pn are valid symbols \
309 in other contexts. */ \
310 MULTI_REG_TYPE(R_Z_SP_BHSDQ_VZP, REG_TYPE(R_32) | REG_TYPE(R_64) \
311 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
312 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
313 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
314 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q) \
315 | REG_TYPE(ZN) | REG_TYPE(PN)) \
316 /* Any integer register; used for error messages only. */ \
317 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
318 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
319 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
320 /* Pseudo type to mark the end of the enumerator sequence. */ \
321 BASIC_REG_TYPE(MAX)
322
323 #undef BASIC_REG_TYPE
324 #define BASIC_REG_TYPE(T) REG_TYPE_##T,
325 #undef MULTI_REG_TYPE
326 #define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
327
328 /* Register type enumerators. */
329 typedef enum aarch64_reg_type_
330 {
331 /* A list of REG_TYPE_*. */
332 AARCH64_REG_TYPES
333 } aarch64_reg_type;
334
335 #undef BASIC_REG_TYPE
336 #define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
337 #undef REG_TYPE
338 #define REG_TYPE(T) (1 << REG_TYPE_##T)
339 #undef MULTI_REG_TYPE
340 #define MULTI_REG_TYPE(T,V) V,
341
342 /* Structure for a hash table entry for a register. */
343 typedef struct
344 {
345 const char *name;
346 unsigned char number;
347 ENUM_BITFIELD (aarch64_reg_type_) type : 8;
348 unsigned char builtin;
349 } reg_entry;
350
351 /* Values indexed by aarch64_reg_type to assist the type checking. */
352 static const unsigned reg_type_masks[] =
353 {
354 AARCH64_REG_TYPES
355 };
356
357 #undef BASIC_REG_TYPE
358 #undef REG_TYPE
359 #undef MULTI_REG_TYPE
360 #undef AARCH64_REG_TYPES
361
362 /* Diagnostics used when we don't get a register of the expected type.
363 Note: this has to synchronized with aarch64_reg_type definitions
364 above. */
365 static const char *
366 get_reg_expected_msg (aarch64_reg_type reg_type)
367 {
368 const char *msg;
369
370 switch (reg_type)
371 {
372 case REG_TYPE_R_32:
373 msg = N_("integer 32-bit register expected");
374 break;
375 case REG_TYPE_R_64:
376 msg = N_("integer 64-bit register expected");
377 break;
378 case REG_TYPE_R_N:
379 msg = N_("integer register expected");
380 break;
381 case REG_TYPE_R64_SP:
382 msg = N_("64-bit integer or SP register expected");
383 break;
384 case REG_TYPE_SVE_BASE:
385 msg = N_("base register expected");
386 break;
387 case REG_TYPE_R_Z:
388 msg = N_("integer or zero register expected");
389 break;
390 case REG_TYPE_SVE_OFFSET:
391 msg = N_("offset register expected");
392 break;
393 case REG_TYPE_R_SP:
394 msg = N_("integer or SP register expected");
395 break;
396 case REG_TYPE_R_Z_SP:
397 msg = N_("integer, zero or SP register expected");
398 break;
399 case REG_TYPE_FP_B:
400 msg = N_("8-bit SIMD scalar register expected");
401 break;
402 case REG_TYPE_FP_H:
403 msg = N_("16-bit SIMD scalar or floating-point half precision "
404 "register expected");
405 break;
406 case REG_TYPE_FP_S:
407 msg = N_("32-bit SIMD scalar or floating-point single precision "
408 "register expected");
409 break;
410 case REG_TYPE_FP_D:
411 msg = N_("64-bit SIMD scalar or floating-point double precision "
412 "register expected");
413 break;
414 case REG_TYPE_FP_Q:
415 msg = N_("128-bit SIMD scalar or floating-point quad precision "
416 "register expected");
417 break;
418 case REG_TYPE_R_Z_BHSDQ_V:
419 case REG_TYPE_R_Z_SP_BHSDQ_VZP:
420 msg = N_("register expected");
421 break;
422 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
423 msg = N_("SIMD scalar or floating-point register expected");
424 break;
425 case REG_TYPE_VN: /* any V reg */
426 msg = N_("vector register expected");
427 break;
428 case REG_TYPE_ZN:
429 msg = N_("SVE vector register expected");
430 break;
431 case REG_TYPE_PN:
432 msg = N_("SVE predicate register expected");
433 break;
434 default:
435 as_fatal (_("invalid register type %d"), reg_type);
436 }
437 return msg;
438 }
439
440 /* Some well known registers that we refer to directly elsewhere. */
441 #define REG_SP 31
442
443 /* Instructions take 4 bytes in the object file. */
444 #define INSN_SIZE 4
445
446 static struct hash_control *aarch64_ops_hsh;
447 static struct hash_control *aarch64_cond_hsh;
448 static struct hash_control *aarch64_shift_hsh;
449 static struct hash_control *aarch64_sys_regs_hsh;
450 static struct hash_control *aarch64_pstatefield_hsh;
451 static struct hash_control *aarch64_sys_regs_ic_hsh;
452 static struct hash_control *aarch64_sys_regs_dc_hsh;
453 static struct hash_control *aarch64_sys_regs_at_hsh;
454 static struct hash_control *aarch64_sys_regs_tlbi_hsh;
455 static struct hash_control *aarch64_reg_hsh;
456 static struct hash_control *aarch64_barrier_opt_hsh;
457 static struct hash_control *aarch64_nzcv_hsh;
458 static struct hash_control *aarch64_pldop_hsh;
459 static struct hash_control *aarch64_hint_opt_hsh;
460
461 /* Stuff needed to resolve the label ambiguity
462 As:
463 ...
464 label: <insn>
465 may differ from:
466 ...
467 label:
468 <insn> */
469
470 static symbolS *last_label_seen;
471
472 /* Literal pool structure. Held on a per-section
473 and per-sub-section basis. */
474
475 #define MAX_LITERAL_POOL_SIZE 1024
476 typedef struct literal_expression
477 {
478 expressionS exp;
479 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
480 LITTLENUM_TYPE * bignum;
481 } literal_expression;
482
483 typedef struct literal_pool
484 {
485 literal_expression literals[MAX_LITERAL_POOL_SIZE];
486 unsigned int next_free_entry;
487 unsigned int id;
488 symbolS *symbol;
489 segT section;
490 subsegT sub_section;
491 int size;
492 struct literal_pool *next;
493 } literal_pool;
494
495 /* Pointer to a linked list of literal pools. */
496 static literal_pool *list_of_pools = NULL;
497 \f
498 /* Pure syntax. */
499
500 /* This array holds the chars that always start a comment. If the
501 pre-processor is disabled, these aren't very useful. */
502 const char comment_chars[] = "";
503
504 /* This array holds the chars that only start a comment at the beginning of
505 a line. If the line seems to have the form '# 123 filename'
506 .line and .file directives will appear in the pre-processed output. */
507 /* Note that input_file.c hand checks for '#' at the beginning of the
508 first line of the input file. This is because the compiler outputs
509 #NO_APP at the beginning of its output. */
510 /* Also note that comments like this one will always work. */
511 const char line_comment_chars[] = "#";
512
513 const char line_separator_chars[] = ";";
514
515 /* Chars that can be used to separate mant
516 from exp in floating point numbers. */
517 const char EXP_CHARS[] = "eE";
518
519 /* Chars that mean this number is a floating point constant. */
520 /* As in 0f12.456 */
521 /* or 0d1.2345e12 */
522
523 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
524
525 /* Prefix character that indicates the start of an immediate value. */
526 #define is_immediate_prefix(C) ((C) == '#')
527
528 /* Separator character handling. */
529
530 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
531
532 static inline bfd_boolean
533 skip_past_char (char **str, char c)
534 {
535 if (**str == c)
536 {
537 (*str)++;
538 return TRUE;
539 }
540 else
541 return FALSE;
542 }
543
544 #define skip_past_comma(str) skip_past_char (str, ',')
545
546 /* Arithmetic expressions (possibly involving symbols). */
547
548 static bfd_boolean in_my_get_expression_p = FALSE;
549
550 /* Third argument to my_get_expression. */
551 #define GE_NO_PREFIX 0
552 #define GE_OPT_PREFIX 1
553
554 /* Return TRUE if the string pointed by *STR is successfully parsed
555 as an valid expression; *EP will be filled with the information of
556 such an expression. Otherwise return FALSE. */
557
558 static bfd_boolean
559 my_get_expression (expressionS * ep, char **str, int prefix_mode,
560 int reject_absent)
561 {
562 char *save_in;
563 segT seg;
564 int prefix_present_p = 0;
565
566 switch (prefix_mode)
567 {
568 case GE_NO_PREFIX:
569 break;
570 case GE_OPT_PREFIX:
571 if (is_immediate_prefix (**str))
572 {
573 (*str)++;
574 prefix_present_p = 1;
575 }
576 break;
577 default:
578 abort ();
579 }
580
581 memset (ep, 0, sizeof (expressionS));
582
583 save_in = input_line_pointer;
584 input_line_pointer = *str;
585 in_my_get_expression_p = TRUE;
586 seg = expression (ep);
587 in_my_get_expression_p = FALSE;
588
589 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
590 {
591 /* We found a bad expression in md_operand(). */
592 *str = input_line_pointer;
593 input_line_pointer = save_in;
594 if (prefix_present_p && ! error_p ())
595 set_fatal_syntax_error (_("bad expression"));
596 else
597 set_first_syntax_error (_("bad expression"));
598 return FALSE;
599 }
600
601 #ifdef OBJ_AOUT
602 if (seg != absolute_section
603 && seg != text_section
604 && seg != data_section
605 && seg != bss_section && seg != undefined_section)
606 {
607 set_syntax_error (_("bad segment"));
608 *str = input_line_pointer;
609 input_line_pointer = save_in;
610 return FALSE;
611 }
612 #else
613 (void) seg;
614 #endif
615
616 *str = input_line_pointer;
617 input_line_pointer = save_in;
618 return TRUE;
619 }
620
621 /* Turn a string in input_line_pointer into a floating point constant
622 of type TYPE, and store the appropriate bytes in *LITP. The number
623 of LITTLENUMS emitted is stored in *SIZEP. An error message is
624 returned, or NULL on OK. */
625
626 const char *
627 md_atof (int type, char *litP, int *sizeP)
628 {
629 return ieee_md_atof (type, litP, sizeP, target_big_endian);
630 }
631
632 /* We handle all bad expressions here, so that we can report the faulty
633 instruction in the error message. */
634 void
635 md_operand (expressionS * exp)
636 {
637 if (in_my_get_expression_p)
638 exp->X_op = O_illegal;
639 }
640
641 /* Immediate values. */
642
643 /* Errors may be set multiple times during parsing or bit encoding
644 (particularly in the Neon bits), but usually the earliest error which is set
645 will be the most meaningful. Avoid overwriting it with later (cascading)
646 errors by calling this function. */
647
648 static void
649 first_error (const char *error)
650 {
651 if (! error_p ())
652 set_syntax_error (error);
653 }
654
655 /* Similar to first_error, but this function accepts formatted error
656 message. */
657 static void
658 first_error_fmt (const char *format, ...)
659 {
660 va_list args;
661 enum
662 { size = 100 };
663 /* N.B. this single buffer will not cause error messages for different
664 instructions to pollute each other; this is because at the end of
665 processing of each assembly line, error message if any will be
666 collected by as_bad. */
667 static char buffer[size];
668
669 if (! error_p ())
670 {
671 int ret ATTRIBUTE_UNUSED;
672 va_start (args, format);
673 ret = vsnprintf (buffer, size, format, args);
674 know (ret <= size - 1 && ret >= 0);
675 va_end (args);
676 set_syntax_error (buffer);
677 }
678 }
679
680 /* Register parsing. */
681
682 /* Generic register parser which is called by other specialized
683 register parsers.
684 CCP points to what should be the beginning of a register name.
685 If it is indeed a valid register name, advance CCP over it and
686 return the reg_entry structure; otherwise return NULL.
687 It does not issue diagnostics. */
688
689 static reg_entry *
690 parse_reg (char **ccp)
691 {
692 char *start = *ccp;
693 char *p;
694 reg_entry *reg;
695
696 #ifdef REGISTER_PREFIX
697 if (*start != REGISTER_PREFIX)
698 return NULL;
699 start++;
700 #endif
701
702 p = start;
703 if (!ISALPHA (*p) || !is_name_beginner (*p))
704 return NULL;
705
706 do
707 p++;
708 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
709
710 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
711
712 if (!reg)
713 return NULL;
714
715 *ccp = p;
716 return reg;
717 }
718
719 /* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
720 return FALSE. */
721 static bfd_boolean
722 aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
723 {
724 return (reg_type_masks[type] & (1 << reg->type)) != 0;
725 }
726
727 /* Try to parse a base or offset register. Allow SVE base and offset
728 registers if REG_TYPE includes SVE registers. Return the register
729 entry on success, setting *QUALIFIER to the register qualifier.
730 Return null otherwise.
731
732 Note that this function does not issue any diagnostics. */
733
734 static const reg_entry *
735 aarch64_addr_reg_parse (char **ccp, aarch64_reg_type reg_type,
736 aarch64_opnd_qualifier_t *qualifier)
737 {
738 char *str = *ccp;
739 const reg_entry *reg = parse_reg (&str);
740
741 if (reg == NULL)
742 return NULL;
743
744 switch (reg->type)
745 {
746 case REG_TYPE_R_32:
747 case REG_TYPE_SP_32:
748 case REG_TYPE_Z_32:
749 *qualifier = AARCH64_OPND_QLF_W;
750 break;
751
752 case REG_TYPE_R_64:
753 case REG_TYPE_SP_64:
754 case REG_TYPE_Z_64:
755 *qualifier = AARCH64_OPND_QLF_X;
756 break;
757
758 case REG_TYPE_ZN:
759 if ((reg_type_masks[reg_type] & (1 << REG_TYPE_ZN)) == 0
760 || str[0] != '.')
761 return NULL;
762 switch (TOLOWER (str[1]))
763 {
764 case 's':
765 *qualifier = AARCH64_OPND_QLF_S_S;
766 break;
767 case 'd':
768 *qualifier = AARCH64_OPND_QLF_S_D;
769 break;
770 default:
771 return NULL;
772 }
773 str += 2;
774 break;
775
776 default:
777 return NULL;
778 }
779
780 *ccp = str;
781
782 return reg;
783 }
784
785 /* Try to parse a base or offset register. Return the register entry
786 on success, setting *QUALIFIER to the register qualifier. Return null
787 otherwise.
788
789 Note that this function does not issue any diagnostics. */
790
791 static const reg_entry *
792 aarch64_reg_parse_32_64 (char **ccp, aarch64_opnd_qualifier_t *qualifier)
793 {
794 return aarch64_addr_reg_parse (ccp, REG_TYPE_R_Z_SP, qualifier);
795 }
796
797 /* Parse the qualifier of a vector register or vector element of type
798 REG_TYPE. Fill in *PARSED_TYPE and return TRUE if the parsing
799 succeeds; otherwise return FALSE.
800
801 Accept only one occurrence of:
802 4b 8b 16b 2h 4h 8h 2s 4s 1d 2d
803 b h s d q */
804 static bfd_boolean
805 parse_vector_type_for_operand (aarch64_reg_type reg_type,
806 struct vector_type_el *parsed_type, char **str)
807 {
808 char *ptr = *str;
809 unsigned width;
810 unsigned element_size;
811 enum vector_el_type type;
812
813 /* skip '.' */
814 gas_assert (*ptr == '.');
815 ptr++;
816
817 if (reg_type == REG_TYPE_ZN || reg_type == REG_TYPE_PN || !ISDIGIT (*ptr))
818 {
819 width = 0;
820 goto elt_size;
821 }
822 width = strtoul (ptr, &ptr, 10);
823 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
824 {
825 first_error_fmt (_("bad size %d in vector width specifier"), width);
826 return FALSE;
827 }
828
829 elt_size:
830 switch (TOLOWER (*ptr))
831 {
832 case 'b':
833 type = NT_b;
834 element_size = 8;
835 break;
836 case 'h':
837 type = NT_h;
838 element_size = 16;
839 break;
840 case 's':
841 type = NT_s;
842 element_size = 32;
843 break;
844 case 'd':
845 type = NT_d;
846 element_size = 64;
847 break;
848 case 'q':
849 if (reg_type == REG_TYPE_ZN || width == 1)
850 {
851 type = NT_q;
852 element_size = 128;
853 break;
854 }
855 /* fall through. */
856 default:
857 if (*ptr != '\0')
858 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
859 else
860 first_error (_("missing element size"));
861 return FALSE;
862 }
863 if (width != 0 && width * element_size != 64
864 && width * element_size != 128
865 && !(width == 2 && element_size == 16)
866 && !(width == 4 && element_size == 8))
867 {
868 first_error_fmt (_
869 ("invalid element size %d and vector size combination %c"),
870 width, *ptr);
871 return FALSE;
872 }
873 ptr++;
874
875 parsed_type->type = type;
876 parsed_type->width = width;
877
878 *str = ptr;
879
880 return TRUE;
881 }
882
883 /* *STR contains an SVE zero/merge predication suffix. Parse it into
884 *PARSED_TYPE and point *STR at the end of the suffix. */
885
886 static bfd_boolean
887 parse_predication_for_operand (struct vector_type_el *parsed_type, char **str)
888 {
889 char *ptr = *str;
890
891 /* Skip '/'. */
892 gas_assert (*ptr == '/');
893 ptr++;
894 switch (TOLOWER (*ptr))
895 {
896 case 'z':
897 parsed_type->type = NT_zero;
898 break;
899 case 'm':
900 parsed_type->type = NT_merge;
901 break;
902 default:
903 if (*ptr != '\0' && *ptr != ',')
904 first_error_fmt (_("unexpected character `%c' in predication type"),
905 *ptr);
906 else
907 first_error (_("missing predication type"));
908 return FALSE;
909 }
910 parsed_type->width = 0;
911 *str = ptr + 1;
912 return TRUE;
913 }
914
915 /* Parse a register of the type TYPE.
916
917 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
918 name or the parsed register is not of TYPE.
919
920 Otherwise return the register number, and optionally fill in the actual
921 type of the register in *RTYPE when multiple alternatives were given, and
922 return the register shape and element index information in *TYPEINFO.
923
924 IN_REG_LIST should be set with TRUE if the caller is parsing a register
925 list. */
926
927 static int
928 parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
929 struct vector_type_el *typeinfo, bfd_boolean in_reg_list)
930 {
931 char *str = *ccp;
932 const reg_entry *reg = parse_reg (&str);
933 struct vector_type_el atype;
934 struct vector_type_el parsetype;
935 bfd_boolean is_typed_vecreg = FALSE;
936
937 atype.defined = 0;
938 atype.type = NT_invtype;
939 atype.width = -1;
940 atype.index = 0;
941
942 if (reg == NULL)
943 {
944 if (typeinfo)
945 *typeinfo = atype;
946 set_default_error ();
947 return PARSE_FAIL;
948 }
949
950 if (! aarch64_check_reg_type (reg, type))
951 {
952 DEBUG_TRACE ("reg type check failed");
953 set_default_error ();
954 return PARSE_FAIL;
955 }
956 type = reg->type;
957
958 if ((type == REG_TYPE_VN || type == REG_TYPE_ZN || type == REG_TYPE_PN)
959 && (*str == '.' || (type == REG_TYPE_PN && *str == '/')))
960 {
961 if (*str == '.')
962 {
963 if (!parse_vector_type_for_operand (type, &parsetype, &str))
964 return PARSE_FAIL;
965 }
966 else
967 {
968 if (!parse_predication_for_operand (&parsetype, &str))
969 return PARSE_FAIL;
970 }
971
972 /* Register if of the form Vn.[bhsdq]. */
973 is_typed_vecreg = TRUE;
974
975 if (type == REG_TYPE_ZN || type == REG_TYPE_PN)
976 {
977 /* The width is always variable; we don't allow an integer width
978 to be specified. */
979 gas_assert (parsetype.width == 0);
980 atype.defined |= NTA_HASVARWIDTH | NTA_HASTYPE;
981 }
982 else if (parsetype.width == 0)
983 /* Expect index. In the new scheme we cannot have
984 Vn.[bhsdq] represent a scalar. Therefore any
985 Vn.[bhsdq] should have an index following it.
986 Except in reglists of course. */
987 atype.defined |= NTA_HASINDEX;
988 else
989 atype.defined |= NTA_HASTYPE;
990
991 atype.type = parsetype.type;
992 atype.width = parsetype.width;
993 }
994
995 if (skip_past_char (&str, '['))
996 {
997 expressionS exp;
998
999 /* Reject Sn[index] syntax. */
1000 if (!is_typed_vecreg)
1001 {
1002 first_error (_("this type of register can't be indexed"));
1003 return PARSE_FAIL;
1004 }
1005
1006 if (in_reg_list)
1007 {
1008 first_error (_("index not allowed inside register list"));
1009 return PARSE_FAIL;
1010 }
1011
1012 atype.defined |= NTA_HASINDEX;
1013
1014 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1015
1016 if (exp.X_op != O_constant)
1017 {
1018 first_error (_("constant expression required"));
1019 return PARSE_FAIL;
1020 }
1021
1022 if (! skip_past_char (&str, ']'))
1023 return PARSE_FAIL;
1024
1025 atype.index = exp.X_add_number;
1026 }
1027 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
1028 {
1029 /* Indexed vector register expected. */
1030 first_error (_("indexed vector register expected"));
1031 return PARSE_FAIL;
1032 }
1033
1034 /* A vector reg Vn should be typed or indexed. */
1035 if (type == REG_TYPE_VN && atype.defined == 0)
1036 {
1037 first_error (_("invalid use of vector register"));
1038 }
1039
1040 if (typeinfo)
1041 *typeinfo = atype;
1042
1043 if (rtype)
1044 *rtype = type;
1045
1046 *ccp = str;
1047
1048 return reg->number;
1049 }
1050
1051 /* Parse register.
1052
1053 Return the register number on success; return PARSE_FAIL otherwise.
1054
1055 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
1056 the register (e.g. NEON double or quad reg when either has been requested).
1057
1058 If this is a NEON vector register with additional type information, fill
1059 in the struct pointed to by VECTYPE (if non-NULL).
1060
1061 This parser does not handle register list. */
1062
1063 static int
1064 aarch64_reg_parse (char **ccp, aarch64_reg_type type,
1065 aarch64_reg_type *rtype, struct vector_type_el *vectype)
1066 {
1067 struct vector_type_el atype;
1068 char *str = *ccp;
1069 int reg = parse_typed_reg (&str, type, rtype, &atype,
1070 /*in_reg_list= */ FALSE);
1071
1072 if (reg == PARSE_FAIL)
1073 return PARSE_FAIL;
1074
1075 if (vectype)
1076 *vectype = atype;
1077
1078 *ccp = str;
1079
1080 return reg;
1081 }
1082
1083 static inline bfd_boolean
1084 eq_vector_type_el (struct vector_type_el e1, struct vector_type_el e2)
1085 {
1086 return
1087 e1.type == e2.type
1088 && e1.defined == e2.defined
1089 && e1.width == e2.width && e1.index == e2.index;
1090 }
1091
1092 /* This function parses a list of vector registers of type TYPE.
1093 On success, it returns the parsed register list information in the
1094 following encoded format:
1095
1096 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1097 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1098
1099 The information of the register shape and/or index is returned in
1100 *VECTYPE.
1101
1102 It returns PARSE_FAIL if the register list is invalid.
1103
1104 The list contains one to four registers.
1105 Each register can be one of:
1106 <Vt>.<T>[<index>]
1107 <Vt>.<T>
1108 All <T> should be identical.
1109 All <index> should be identical.
1110 There are restrictions on <Vt> numbers which are checked later
1111 (by reg_list_valid_p). */
1112
1113 static int
1114 parse_vector_reg_list (char **ccp, aarch64_reg_type type,
1115 struct vector_type_el *vectype)
1116 {
1117 char *str = *ccp;
1118 int nb_regs;
1119 struct vector_type_el typeinfo, typeinfo_first;
1120 int val, val_range;
1121 int in_range;
1122 int ret_val;
1123 int i;
1124 bfd_boolean error = FALSE;
1125 bfd_boolean expect_index = FALSE;
1126
1127 if (*str != '{')
1128 {
1129 set_syntax_error (_("expecting {"));
1130 return PARSE_FAIL;
1131 }
1132 str++;
1133
1134 nb_regs = 0;
1135 typeinfo_first.defined = 0;
1136 typeinfo_first.type = NT_invtype;
1137 typeinfo_first.width = -1;
1138 typeinfo_first.index = 0;
1139 ret_val = 0;
1140 val = -1;
1141 val_range = -1;
1142 in_range = 0;
1143 do
1144 {
1145 if (in_range)
1146 {
1147 str++; /* skip over '-' */
1148 val_range = val;
1149 }
1150 val = parse_typed_reg (&str, type, NULL, &typeinfo,
1151 /*in_reg_list= */ TRUE);
1152 if (val == PARSE_FAIL)
1153 {
1154 set_first_syntax_error (_("invalid vector register in list"));
1155 error = TRUE;
1156 continue;
1157 }
1158 /* reject [bhsd]n */
1159 if (type == REG_TYPE_VN && typeinfo.defined == 0)
1160 {
1161 set_first_syntax_error (_("invalid scalar register in list"));
1162 error = TRUE;
1163 continue;
1164 }
1165
1166 if (typeinfo.defined & NTA_HASINDEX)
1167 expect_index = TRUE;
1168
1169 if (in_range)
1170 {
1171 if (val < val_range)
1172 {
1173 set_first_syntax_error
1174 (_("invalid range in vector register list"));
1175 error = TRUE;
1176 }
1177 val_range++;
1178 }
1179 else
1180 {
1181 val_range = val;
1182 if (nb_regs == 0)
1183 typeinfo_first = typeinfo;
1184 else if (! eq_vector_type_el (typeinfo_first, typeinfo))
1185 {
1186 set_first_syntax_error
1187 (_("type mismatch in vector register list"));
1188 error = TRUE;
1189 }
1190 }
1191 if (! error)
1192 for (i = val_range; i <= val; i++)
1193 {
1194 ret_val |= i << (5 * nb_regs);
1195 nb_regs++;
1196 }
1197 in_range = 0;
1198 }
1199 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1200
1201 skip_whitespace (str);
1202 if (*str != '}')
1203 {
1204 set_first_syntax_error (_("end of vector register list not found"));
1205 error = TRUE;
1206 }
1207 str++;
1208
1209 skip_whitespace (str);
1210
1211 if (expect_index)
1212 {
1213 if (skip_past_char (&str, '['))
1214 {
1215 expressionS exp;
1216
1217 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1218 if (exp.X_op != O_constant)
1219 {
1220 set_first_syntax_error (_("constant expression required."));
1221 error = TRUE;
1222 }
1223 if (! skip_past_char (&str, ']'))
1224 error = TRUE;
1225 else
1226 typeinfo_first.index = exp.X_add_number;
1227 }
1228 else
1229 {
1230 set_first_syntax_error (_("expected index"));
1231 error = TRUE;
1232 }
1233 }
1234
1235 if (nb_regs > 4)
1236 {
1237 set_first_syntax_error (_("too many registers in vector register list"));
1238 error = TRUE;
1239 }
1240 else if (nb_regs == 0)
1241 {
1242 set_first_syntax_error (_("empty vector register list"));
1243 error = TRUE;
1244 }
1245
1246 *ccp = str;
1247 if (! error)
1248 *vectype = typeinfo_first;
1249
1250 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1251 }
1252
1253 /* Directives: register aliases. */
1254
1255 static reg_entry *
1256 insert_reg_alias (char *str, int number, aarch64_reg_type type)
1257 {
1258 reg_entry *new;
1259 const char *name;
1260
1261 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1262 {
1263 if (new->builtin)
1264 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1265 str);
1266
1267 /* Only warn about a redefinition if it's not defined as the
1268 same register. */
1269 else if (new->number != number || new->type != type)
1270 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1271
1272 return NULL;
1273 }
1274
1275 name = xstrdup (str);
1276 new = XNEW (reg_entry);
1277
1278 new->name = name;
1279 new->number = number;
1280 new->type = type;
1281 new->builtin = FALSE;
1282
1283 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1284 abort ();
1285
1286 return new;
1287 }
1288
1289 /* Look for the .req directive. This is of the form:
1290
1291 new_register_name .req existing_register_name
1292
1293 If we find one, or if it looks sufficiently like one that we want to
1294 handle any error here, return TRUE. Otherwise return FALSE. */
1295
1296 static bfd_boolean
1297 create_register_alias (char *newname, char *p)
1298 {
1299 const reg_entry *old;
1300 char *oldname, *nbuf;
1301 size_t nlen;
1302
1303 /* The input scrubber ensures that whitespace after the mnemonic is
1304 collapsed to single spaces. */
1305 oldname = p;
1306 if (strncmp (oldname, " .req ", 6) != 0)
1307 return FALSE;
1308
1309 oldname += 6;
1310 if (*oldname == '\0')
1311 return FALSE;
1312
1313 old = hash_find (aarch64_reg_hsh, oldname);
1314 if (!old)
1315 {
1316 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1317 return TRUE;
1318 }
1319
1320 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1321 the desired alias name, and p points to its end. If not, then
1322 the desired alias name is in the global original_case_string. */
1323 #ifdef TC_CASE_SENSITIVE
1324 nlen = p - newname;
1325 #else
1326 newname = original_case_string;
1327 nlen = strlen (newname);
1328 #endif
1329
1330 nbuf = xmemdup0 (newname, nlen);
1331
1332 /* Create aliases under the new name as stated; an all-lowercase
1333 version of the new name; and an all-uppercase version of the new
1334 name. */
1335 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1336 {
1337 for (p = nbuf; *p; p++)
1338 *p = TOUPPER (*p);
1339
1340 if (strncmp (nbuf, newname, nlen))
1341 {
1342 /* If this attempt to create an additional alias fails, do not bother
1343 trying to create the all-lower case alias. We will fail and issue
1344 a second, duplicate error message. This situation arises when the
1345 programmer does something like:
1346 foo .req r0
1347 Foo .req r1
1348 The second .req creates the "Foo" alias but then fails to create
1349 the artificial FOO alias because it has already been created by the
1350 first .req. */
1351 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
1352 {
1353 free (nbuf);
1354 return TRUE;
1355 }
1356 }
1357
1358 for (p = nbuf; *p; p++)
1359 *p = TOLOWER (*p);
1360
1361 if (strncmp (nbuf, newname, nlen))
1362 insert_reg_alias (nbuf, old->number, old->type);
1363 }
1364
1365 free (nbuf);
1366 return TRUE;
1367 }
1368
1369 /* Should never be called, as .req goes between the alias and the
1370 register name, not at the beginning of the line. */
1371 static void
1372 s_req (int a ATTRIBUTE_UNUSED)
1373 {
1374 as_bad (_("invalid syntax for .req directive"));
1375 }
1376
1377 /* The .unreq directive deletes an alias which was previously defined
1378 by .req. For example:
1379
1380 my_alias .req r11
1381 .unreq my_alias */
1382
1383 static void
1384 s_unreq (int a ATTRIBUTE_UNUSED)
1385 {
1386 char *name;
1387 char saved_char;
1388
1389 name = input_line_pointer;
1390
1391 while (*input_line_pointer != 0
1392 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1393 ++input_line_pointer;
1394
1395 saved_char = *input_line_pointer;
1396 *input_line_pointer = 0;
1397
1398 if (!*name)
1399 as_bad (_("invalid syntax for .unreq directive"));
1400 else
1401 {
1402 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1403
1404 if (!reg)
1405 as_bad (_("unknown register alias '%s'"), name);
1406 else if (reg->builtin)
1407 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1408 name);
1409 else
1410 {
1411 char *p;
1412 char *nbuf;
1413
1414 hash_delete (aarch64_reg_hsh, name, FALSE);
1415 free ((char *) reg->name);
1416 free (reg);
1417
1418 /* Also locate the all upper case and all lower case versions.
1419 Do not complain if we cannot find one or the other as it
1420 was probably deleted above. */
1421
1422 nbuf = strdup (name);
1423 for (p = nbuf; *p; p++)
1424 *p = TOUPPER (*p);
1425 reg = hash_find (aarch64_reg_hsh, nbuf);
1426 if (reg)
1427 {
1428 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1429 free ((char *) reg->name);
1430 free (reg);
1431 }
1432
1433 for (p = nbuf; *p; p++)
1434 *p = TOLOWER (*p);
1435 reg = hash_find (aarch64_reg_hsh, nbuf);
1436 if (reg)
1437 {
1438 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1439 free ((char *) reg->name);
1440 free (reg);
1441 }
1442
1443 free (nbuf);
1444 }
1445 }
1446
1447 *input_line_pointer = saved_char;
1448 demand_empty_rest_of_line ();
1449 }
1450
1451 /* Directives: Instruction set selection. */
1452
1453 #ifdef OBJ_ELF
1454 /* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1455 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1456 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1457 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1458
1459 /* Create a new mapping symbol for the transition to STATE. */
1460
1461 static void
1462 make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1463 {
1464 symbolS *symbolP;
1465 const char *symname;
1466 int type;
1467
1468 switch (state)
1469 {
1470 case MAP_DATA:
1471 symname = "$d";
1472 type = BSF_NO_FLAGS;
1473 break;
1474 case MAP_INSN:
1475 symname = "$x";
1476 type = BSF_NO_FLAGS;
1477 break;
1478 default:
1479 abort ();
1480 }
1481
1482 symbolP = symbol_new (symname, now_seg, value, frag);
1483 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1484
1485 /* Save the mapping symbols for future reference. Also check that
1486 we do not place two mapping symbols at the same offset within a
1487 frag. We'll handle overlap between frags in
1488 check_mapping_symbols.
1489
1490 If .fill or other data filling directive generates zero sized data,
1491 the mapping symbol for the following code will have the same value
1492 as the one generated for the data filling directive. In this case,
1493 we replace the old symbol with the new one at the same address. */
1494 if (value == 0)
1495 {
1496 if (frag->tc_frag_data.first_map != NULL)
1497 {
1498 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1499 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1500 &symbol_lastP);
1501 }
1502 frag->tc_frag_data.first_map = symbolP;
1503 }
1504 if (frag->tc_frag_data.last_map != NULL)
1505 {
1506 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1507 S_GET_VALUE (symbolP));
1508 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1509 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1510 &symbol_lastP);
1511 }
1512 frag->tc_frag_data.last_map = symbolP;
1513 }
1514
1515 /* We must sometimes convert a region marked as code to data during
1516 code alignment, if an odd number of bytes have to be padded. The
1517 code mapping symbol is pushed to an aligned address. */
1518
1519 static void
1520 insert_data_mapping_symbol (enum mstate state,
1521 valueT value, fragS * frag, offsetT bytes)
1522 {
1523 /* If there was already a mapping symbol, remove it. */
1524 if (frag->tc_frag_data.last_map != NULL
1525 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1526 frag->fr_address + value)
1527 {
1528 symbolS *symp = frag->tc_frag_data.last_map;
1529
1530 if (value == 0)
1531 {
1532 know (frag->tc_frag_data.first_map == symp);
1533 frag->tc_frag_data.first_map = NULL;
1534 }
1535 frag->tc_frag_data.last_map = NULL;
1536 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1537 }
1538
1539 make_mapping_symbol (MAP_DATA, value, frag);
1540 make_mapping_symbol (state, value + bytes, frag);
1541 }
1542
1543 static void mapping_state_2 (enum mstate state, int max_chars);
1544
1545 /* Set the mapping state to STATE. Only call this when about to
1546 emit some STATE bytes to the file. */
1547
1548 void
1549 mapping_state (enum mstate state)
1550 {
1551 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1552
1553 if (state == MAP_INSN)
1554 /* AArch64 instructions require 4-byte alignment. When emitting
1555 instructions into any section, record the appropriate section
1556 alignment. */
1557 record_alignment (now_seg, 2);
1558
1559 if (mapstate == state)
1560 /* The mapping symbol has already been emitted.
1561 There is nothing else to do. */
1562 return;
1563
1564 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
1565 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1566 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
1567 evaluated later in the next else. */
1568 return;
1569 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1570 {
1571 /* Only add the symbol if the offset is > 0:
1572 if we're at the first frag, check it's size > 0;
1573 if we're not at the first frag, then for sure
1574 the offset is > 0. */
1575 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1576 const int add_symbol = (frag_now != frag_first)
1577 || (frag_now_fix () > 0);
1578
1579 if (add_symbol)
1580 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1581 }
1582 #undef TRANSITION
1583
1584 mapping_state_2 (state, 0);
1585 }
1586
1587 /* Same as mapping_state, but MAX_CHARS bytes have already been
1588 allocated. Put the mapping symbol that far back. */
1589
1590 static void
1591 mapping_state_2 (enum mstate state, int max_chars)
1592 {
1593 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1594
1595 if (!SEG_NORMAL (now_seg))
1596 return;
1597
1598 if (mapstate == state)
1599 /* The mapping symbol has already been emitted.
1600 There is nothing else to do. */
1601 return;
1602
1603 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1604 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1605 }
1606 #else
1607 #define mapping_state(x) /* nothing */
1608 #define mapping_state_2(x, y) /* nothing */
1609 #endif
1610
1611 /* Directives: sectioning and alignment. */
1612
1613 static void
1614 s_bss (int ignore ATTRIBUTE_UNUSED)
1615 {
1616 /* We don't support putting frags in the BSS segment, we fake it by
1617 marking in_bss, then looking at s_skip for clues. */
1618 subseg_set (bss_section, 0);
1619 demand_empty_rest_of_line ();
1620 mapping_state (MAP_DATA);
1621 }
1622
1623 static void
1624 s_even (int ignore ATTRIBUTE_UNUSED)
1625 {
1626 /* Never make frag if expect extra pass. */
1627 if (!need_pass_2)
1628 frag_align (1, 0, 0);
1629
1630 record_alignment (now_seg, 1);
1631
1632 demand_empty_rest_of_line ();
1633 }
1634
1635 /* Directives: Literal pools. */
1636
1637 static literal_pool *
1638 find_literal_pool (int size)
1639 {
1640 literal_pool *pool;
1641
1642 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1643 {
1644 if (pool->section == now_seg
1645 && pool->sub_section == now_subseg && pool->size == size)
1646 break;
1647 }
1648
1649 return pool;
1650 }
1651
1652 static literal_pool *
1653 find_or_make_literal_pool (int size)
1654 {
1655 /* Next literal pool ID number. */
1656 static unsigned int latest_pool_num = 1;
1657 literal_pool *pool;
1658
1659 pool = find_literal_pool (size);
1660
1661 if (pool == NULL)
1662 {
1663 /* Create a new pool. */
1664 pool = XNEW (literal_pool);
1665 if (!pool)
1666 return NULL;
1667
1668 /* Currently we always put the literal pool in the current text
1669 section. If we were generating "small" model code where we
1670 knew that all code and initialised data was within 1MB then
1671 we could output literals to mergeable, read-only data
1672 sections. */
1673
1674 pool->next_free_entry = 0;
1675 pool->section = now_seg;
1676 pool->sub_section = now_subseg;
1677 pool->size = size;
1678 pool->next = list_of_pools;
1679 pool->symbol = NULL;
1680
1681 /* Add it to the list. */
1682 list_of_pools = pool;
1683 }
1684
1685 /* New pools, and emptied pools, will have a NULL symbol. */
1686 if (pool->symbol == NULL)
1687 {
1688 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1689 (valueT) 0, &zero_address_frag);
1690 pool->id = latest_pool_num++;
1691 }
1692
1693 /* Done. */
1694 return pool;
1695 }
1696
1697 /* Add the literal of size SIZE in *EXP to the relevant literal pool.
1698 Return TRUE on success, otherwise return FALSE. */
1699 static bfd_boolean
1700 add_to_lit_pool (expressionS *exp, int size)
1701 {
1702 literal_pool *pool;
1703 unsigned int entry;
1704
1705 pool = find_or_make_literal_pool (size);
1706
1707 /* Check if this literal value is already in the pool. */
1708 for (entry = 0; entry < pool->next_free_entry; entry++)
1709 {
1710 expressionS * litexp = & pool->literals[entry].exp;
1711
1712 if ((litexp->X_op == exp->X_op)
1713 && (exp->X_op == O_constant)
1714 && (litexp->X_add_number == exp->X_add_number)
1715 && (litexp->X_unsigned == exp->X_unsigned))
1716 break;
1717
1718 if ((litexp->X_op == exp->X_op)
1719 && (exp->X_op == O_symbol)
1720 && (litexp->X_add_number == exp->X_add_number)
1721 && (litexp->X_add_symbol == exp->X_add_symbol)
1722 && (litexp->X_op_symbol == exp->X_op_symbol))
1723 break;
1724 }
1725
1726 /* Do we need to create a new entry? */
1727 if (entry == pool->next_free_entry)
1728 {
1729 if (entry >= MAX_LITERAL_POOL_SIZE)
1730 {
1731 set_syntax_error (_("literal pool overflow"));
1732 return FALSE;
1733 }
1734
1735 pool->literals[entry].exp = *exp;
1736 pool->next_free_entry += 1;
1737 if (exp->X_op == O_big)
1738 {
1739 /* PR 16688: Bignums are held in a single global array. We must
1740 copy and preserve that value now, before it is overwritten. */
1741 pool->literals[entry].bignum = XNEWVEC (LITTLENUM_TYPE,
1742 exp->X_add_number);
1743 memcpy (pool->literals[entry].bignum, generic_bignum,
1744 CHARS_PER_LITTLENUM * exp->X_add_number);
1745 }
1746 else
1747 pool->literals[entry].bignum = NULL;
1748 }
1749
1750 exp->X_op = O_symbol;
1751 exp->X_add_number = ((int) entry) * size;
1752 exp->X_add_symbol = pool->symbol;
1753
1754 return TRUE;
1755 }
1756
1757 /* Can't use symbol_new here, so have to create a symbol and then at
1758 a later date assign it a value. That's what these functions do. */
1759
1760 static void
1761 symbol_locate (symbolS * symbolP,
1762 const char *name,/* It is copied, the caller can modify. */
1763 segT segment, /* Segment identifier (SEG_<something>). */
1764 valueT valu, /* Symbol value. */
1765 fragS * frag) /* Associated fragment. */
1766 {
1767 size_t name_length;
1768 char *preserved_copy_of_name;
1769
1770 name_length = strlen (name) + 1; /* +1 for \0. */
1771 obstack_grow (&notes, name, name_length);
1772 preserved_copy_of_name = obstack_finish (&notes);
1773
1774 #ifdef tc_canonicalize_symbol_name
1775 preserved_copy_of_name =
1776 tc_canonicalize_symbol_name (preserved_copy_of_name);
1777 #endif
1778
1779 S_SET_NAME (symbolP, preserved_copy_of_name);
1780
1781 S_SET_SEGMENT (symbolP, segment);
1782 S_SET_VALUE (symbolP, valu);
1783 symbol_clear_list_pointers (symbolP);
1784
1785 symbol_set_frag (symbolP, frag);
1786
1787 /* Link to end of symbol chain. */
1788 {
1789 extern int symbol_table_frozen;
1790
1791 if (symbol_table_frozen)
1792 abort ();
1793 }
1794
1795 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1796
1797 obj_symbol_new_hook (symbolP);
1798
1799 #ifdef tc_symbol_new_hook
1800 tc_symbol_new_hook (symbolP);
1801 #endif
1802
1803 #ifdef DEBUG_SYMS
1804 verify_symbol_chain (symbol_rootP, symbol_lastP);
1805 #endif /* DEBUG_SYMS */
1806 }
1807
1808
1809 static void
1810 s_ltorg (int ignored ATTRIBUTE_UNUSED)
1811 {
1812 unsigned int entry;
1813 literal_pool *pool;
1814 char sym_name[20];
1815 int align;
1816
1817 for (align = 2; align <= 4; align++)
1818 {
1819 int size = 1 << align;
1820
1821 pool = find_literal_pool (size);
1822 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1823 continue;
1824
1825 /* Align pool as you have word accesses.
1826 Only make a frag if we have to. */
1827 if (!need_pass_2)
1828 frag_align (align, 0, 0);
1829
1830 mapping_state (MAP_DATA);
1831
1832 record_alignment (now_seg, align);
1833
1834 sprintf (sym_name, "$$lit_\002%x", pool->id);
1835
1836 symbol_locate (pool->symbol, sym_name, now_seg,
1837 (valueT) frag_now_fix (), frag_now);
1838 symbol_table_insert (pool->symbol);
1839
1840 for (entry = 0; entry < pool->next_free_entry; entry++)
1841 {
1842 expressionS * exp = & pool->literals[entry].exp;
1843
1844 if (exp->X_op == O_big)
1845 {
1846 /* PR 16688: Restore the global bignum value. */
1847 gas_assert (pool->literals[entry].bignum != NULL);
1848 memcpy (generic_bignum, pool->literals[entry].bignum,
1849 CHARS_PER_LITTLENUM * exp->X_add_number);
1850 }
1851
1852 /* First output the expression in the instruction to the pool. */
1853 emit_expr (exp, size); /* .word|.xword */
1854
1855 if (exp->X_op == O_big)
1856 {
1857 free (pool->literals[entry].bignum);
1858 pool->literals[entry].bignum = NULL;
1859 }
1860 }
1861
1862 /* Mark the pool as empty. */
1863 pool->next_free_entry = 0;
1864 pool->symbol = NULL;
1865 }
1866 }
1867
1868 #ifdef OBJ_ELF
1869 /* Forward declarations for functions below, in the MD interface
1870 section. */
1871 static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1872 static struct reloc_table_entry * find_reloc_table_entry (char **);
1873
1874 /* Directives: Data. */
1875 /* N.B. the support for relocation suffix in this directive needs to be
1876 implemented properly. */
1877
1878 static void
1879 s_aarch64_elf_cons (int nbytes)
1880 {
1881 expressionS exp;
1882
1883 #ifdef md_flush_pending_output
1884 md_flush_pending_output ();
1885 #endif
1886
1887 if (is_it_end_of_statement ())
1888 {
1889 demand_empty_rest_of_line ();
1890 return;
1891 }
1892
1893 #ifdef md_cons_align
1894 md_cons_align (nbytes);
1895 #endif
1896
1897 mapping_state (MAP_DATA);
1898 do
1899 {
1900 struct reloc_table_entry *reloc;
1901
1902 expression (&exp);
1903
1904 if (exp.X_op != O_symbol)
1905 emit_expr (&exp, (unsigned int) nbytes);
1906 else
1907 {
1908 skip_past_char (&input_line_pointer, '#');
1909 if (skip_past_char (&input_line_pointer, ':'))
1910 {
1911 reloc = find_reloc_table_entry (&input_line_pointer);
1912 if (reloc == NULL)
1913 as_bad (_("unrecognized relocation suffix"));
1914 else
1915 as_bad (_("unimplemented relocation suffix"));
1916 ignore_rest_of_line ();
1917 return;
1918 }
1919 else
1920 emit_expr (&exp, (unsigned int) nbytes);
1921 }
1922 }
1923 while (*input_line_pointer++ == ',');
1924
1925 /* Put terminator back into stream. */
1926 input_line_pointer--;
1927 demand_empty_rest_of_line ();
1928 }
1929
1930 #endif /* OBJ_ELF */
1931
1932 /* Output a 32-bit word, but mark as an instruction. */
1933
1934 static void
1935 s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1936 {
1937 expressionS exp;
1938
1939 #ifdef md_flush_pending_output
1940 md_flush_pending_output ();
1941 #endif
1942
1943 if (is_it_end_of_statement ())
1944 {
1945 demand_empty_rest_of_line ();
1946 return;
1947 }
1948
1949 /* Sections are assumed to start aligned. In executable section, there is no
1950 MAP_DATA symbol pending. So we only align the address during
1951 MAP_DATA --> MAP_INSN transition.
1952 For other sections, this is not guaranteed. */
1953 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1954 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
1955 frag_align_code (2, 0);
1956
1957 #ifdef OBJ_ELF
1958 mapping_state (MAP_INSN);
1959 #endif
1960
1961 do
1962 {
1963 expression (&exp);
1964 if (exp.X_op != O_constant)
1965 {
1966 as_bad (_("constant expression required"));
1967 ignore_rest_of_line ();
1968 return;
1969 }
1970
1971 if (target_big_endian)
1972 {
1973 unsigned int val = exp.X_add_number;
1974 exp.X_add_number = SWAP_32 (val);
1975 }
1976 emit_expr (&exp, 4);
1977 }
1978 while (*input_line_pointer++ == ',');
1979
1980 /* Put terminator back into stream. */
1981 input_line_pointer--;
1982 demand_empty_rest_of_line ();
1983 }
1984
1985 #ifdef OBJ_ELF
1986 /* Emit BFD_RELOC_AARCH64_TLSDESC_ADD on the next ADD instruction. */
1987
1988 static void
1989 s_tlsdescadd (int ignored ATTRIBUTE_UNUSED)
1990 {
1991 expressionS exp;
1992
1993 expression (&exp);
1994 frag_grow (4);
1995 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1996 BFD_RELOC_AARCH64_TLSDESC_ADD);
1997
1998 demand_empty_rest_of_line ();
1999 }
2000
2001 /* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
2002
2003 static void
2004 s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
2005 {
2006 expressionS exp;
2007
2008 /* Since we're just labelling the code, there's no need to define a
2009 mapping symbol. */
2010 expression (&exp);
2011 /* Make sure there is enough room in this frag for the following
2012 blr. This trick only works if the blr follows immediately after
2013 the .tlsdesc directive. */
2014 frag_grow (4);
2015 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2016 BFD_RELOC_AARCH64_TLSDESC_CALL);
2017
2018 demand_empty_rest_of_line ();
2019 }
2020
2021 /* Emit BFD_RELOC_AARCH64_TLSDESC_LDR on the next LDR instruction. */
2022
2023 static void
2024 s_tlsdescldr (int ignored ATTRIBUTE_UNUSED)
2025 {
2026 expressionS exp;
2027
2028 expression (&exp);
2029 frag_grow (4);
2030 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2031 BFD_RELOC_AARCH64_TLSDESC_LDR);
2032
2033 demand_empty_rest_of_line ();
2034 }
2035 #endif /* OBJ_ELF */
2036
2037 static void s_aarch64_arch (int);
2038 static void s_aarch64_cpu (int);
2039 static void s_aarch64_arch_extension (int);
2040
2041 /* This table describes all the machine specific pseudo-ops the assembler
2042 has to support. The fields are:
2043 pseudo-op name without dot
2044 function to call to execute this pseudo-op
2045 Integer arg to pass to the function. */
2046
2047 const pseudo_typeS md_pseudo_table[] = {
2048 /* Never called because '.req' does not start a line. */
2049 {"req", s_req, 0},
2050 {"unreq", s_unreq, 0},
2051 {"bss", s_bss, 0},
2052 {"even", s_even, 0},
2053 {"ltorg", s_ltorg, 0},
2054 {"pool", s_ltorg, 0},
2055 {"cpu", s_aarch64_cpu, 0},
2056 {"arch", s_aarch64_arch, 0},
2057 {"arch_extension", s_aarch64_arch_extension, 0},
2058 {"inst", s_aarch64_inst, 0},
2059 #ifdef OBJ_ELF
2060 {"tlsdescadd", s_tlsdescadd, 0},
2061 {"tlsdesccall", s_tlsdesccall, 0},
2062 {"tlsdescldr", s_tlsdescldr, 0},
2063 {"word", s_aarch64_elf_cons, 4},
2064 {"long", s_aarch64_elf_cons, 4},
2065 {"xword", s_aarch64_elf_cons, 8},
2066 {"dword", s_aarch64_elf_cons, 8},
2067 #endif
2068 {0, 0, 0}
2069 };
2070 \f
2071
2072 /* Check whether STR points to a register name followed by a comma or the
2073 end of line; REG_TYPE indicates which register types are checked
2074 against. Return TRUE if STR is such a register name; otherwise return
2075 FALSE. The function does not intend to produce any diagnostics, but since
2076 the register parser aarch64_reg_parse, which is called by this function,
2077 does produce diagnostics, we call clear_error to clear any diagnostics
2078 that may be generated by aarch64_reg_parse.
2079 Also, the function returns FALSE directly if there is any user error
2080 present at the function entry. This prevents the existing diagnostics
2081 state from being spoiled.
2082 The function currently serves parse_constant_immediate and
2083 parse_big_immediate only. */
2084 static bfd_boolean
2085 reg_name_p (char *str, aarch64_reg_type reg_type)
2086 {
2087 int reg;
2088
2089 /* Prevent the diagnostics state from being spoiled. */
2090 if (error_p ())
2091 return FALSE;
2092
2093 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
2094
2095 /* Clear the parsing error that may be set by the reg parser. */
2096 clear_error ();
2097
2098 if (reg == PARSE_FAIL)
2099 return FALSE;
2100
2101 skip_whitespace (str);
2102 if (*str == ',' || is_end_of_line[(unsigned int) *str])
2103 return TRUE;
2104
2105 return FALSE;
2106 }
2107
2108 /* Parser functions used exclusively in instruction operands. */
2109
2110 /* Parse an immediate expression which may not be constant.
2111
2112 To prevent the expression parser from pushing a register name
2113 into the symbol table as an undefined symbol, firstly a check is
2114 done to find out whether STR is a register of type REG_TYPE followed
2115 by a comma or the end of line. Return FALSE if STR is such a string. */
2116
2117 static bfd_boolean
2118 parse_immediate_expression (char **str, expressionS *exp,
2119 aarch64_reg_type reg_type)
2120 {
2121 if (reg_name_p (*str, reg_type))
2122 {
2123 set_recoverable_error (_("immediate operand required"));
2124 return FALSE;
2125 }
2126
2127 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2128
2129 if (exp->X_op == O_absent)
2130 {
2131 set_fatal_syntax_error (_("missing immediate expression"));
2132 return FALSE;
2133 }
2134
2135 return TRUE;
2136 }
2137
2138 /* Constant immediate-value read function for use in insn parsing.
2139 STR points to the beginning of the immediate (with the optional
2140 leading #); *VAL receives the value. REG_TYPE says which register
2141 names should be treated as registers rather than as symbolic immediates.
2142
2143 Return TRUE on success; otherwise return FALSE. */
2144
2145 static bfd_boolean
2146 parse_constant_immediate (char **str, int64_t *val, aarch64_reg_type reg_type)
2147 {
2148 expressionS exp;
2149
2150 if (! parse_immediate_expression (str, &exp, reg_type))
2151 return FALSE;
2152
2153 if (exp.X_op != O_constant)
2154 {
2155 set_syntax_error (_("constant expression required"));
2156 return FALSE;
2157 }
2158
2159 *val = exp.X_add_number;
2160 return TRUE;
2161 }
2162
2163 static uint32_t
2164 encode_imm_float_bits (uint32_t imm)
2165 {
2166 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2167 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2168 }
2169
2170 /* Return TRUE if the single-precision floating-point value encoded in IMM
2171 can be expressed in the AArch64 8-bit signed floating-point format with
2172 3-bit exponent and normalized 4 bits of precision; in other words, the
2173 floating-point value must be expressable as
2174 (+/-) n / 16 * power (2, r)
2175 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2176
2177 static bfd_boolean
2178 aarch64_imm_float_p (uint32_t imm)
2179 {
2180 /* If a single-precision floating-point value has the following bit
2181 pattern, it can be expressed in the AArch64 8-bit floating-point
2182 format:
2183
2184 3 32222222 2221111111111
2185 1 09876543 21098765432109876543210
2186 n Eeeeeexx xxxx0000000000000000000
2187
2188 where n, e and each x are either 0 or 1 independently, with
2189 E == ~ e. */
2190
2191 uint32_t pattern;
2192
2193 /* Prepare the pattern for 'Eeeeee'. */
2194 if (((imm >> 30) & 0x1) == 0)
2195 pattern = 0x3e000000;
2196 else
2197 pattern = 0x40000000;
2198
2199 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2200 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
2201 }
2202
2203 /* Return TRUE if the IEEE double value encoded in IMM can be expressed
2204 as an IEEE float without any loss of precision. Store the value in
2205 *FPWORD if so. */
2206
2207 static bfd_boolean
2208 can_convert_double_to_float (uint64_t imm, uint32_t *fpword)
2209 {
2210 /* If a double-precision floating-point value has the following bit
2211 pattern, it can be expressed in a float:
2212
2213 6 66655555555 5544 44444444 33333333 33222222 22221111 111111
2214 3 21098765432 1098 76543210 98765432 10987654 32109876 54321098 76543210
2215 n E~~~eeeeeee ssss ssssssss ssssssss SSS00000 00000000 00000000 00000000
2216
2217 -----------------------------> nEeeeeee esssssss ssssssss sssssSSS
2218 if Eeee_eeee != 1111_1111
2219
2220 where n, e, s and S are either 0 or 1 independently and where ~ is the
2221 inverse of E. */
2222
2223 uint32_t pattern;
2224 uint32_t high32 = imm >> 32;
2225 uint32_t low32 = imm;
2226
2227 /* Lower 29 bits need to be 0s. */
2228 if ((imm & 0x1fffffff) != 0)
2229 return FALSE;
2230
2231 /* Prepare the pattern for 'Eeeeeeeee'. */
2232 if (((high32 >> 30) & 0x1) == 0)
2233 pattern = 0x38000000;
2234 else
2235 pattern = 0x40000000;
2236
2237 /* Check E~~~. */
2238 if ((high32 & 0x78000000) != pattern)
2239 return FALSE;
2240
2241 /* Check Eeee_eeee != 1111_1111. */
2242 if ((high32 & 0x7ff00000) == 0x47f00000)
2243 return FALSE;
2244
2245 *fpword = ((high32 & 0xc0000000) /* 1 n bit and 1 E bit. */
2246 | ((high32 << 3) & 0x3ffffff8) /* 7 e and 20 s bits. */
2247 | (low32 >> 29)); /* 3 S bits. */
2248 return TRUE;
2249 }
2250
2251 /* Return true if we should treat OPERAND as a double-precision
2252 floating-point operand rather than a single-precision one. */
2253 static bfd_boolean
2254 double_precision_operand_p (const aarch64_opnd_info *operand)
2255 {
2256 /* Check for unsuffixed SVE registers, which are allowed
2257 for LDR and STR but not in instructions that require an
2258 immediate. We get better error messages if we arbitrarily
2259 pick one size, parse the immediate normally, and then
2260 report the match failure in the normal way. */
2261 return (operand->qualifier == AARCH64_OPND_QLF_NIL
2262 || aarch64_get_qualifier_esize (operand->qualifier) == 8);
2263 }
2264
2265 /* Parse a floating-point immediate. Return TRUE on success and return the
2266 value in *IMMED in the format of IEEE754 single-precision encoding.
2267 *CCP points to the start of the string; DP_P is TRUE when the immediate
2268 is expected to be in double-precision (N.B. this only matters when
2269 hexadecimal representation is involved). REG_TYPE says which register
2270 names should be treated as registers rather than as symbolic immediates.
2271
2272 This routine accepts any IEEE float; it is up to the callers to reject
2273 invalid ones. */
2274
2275 static bfd_boolean
2276 parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p,
2277 aarch64_reg_type reg_type)
2278 {
2279 char *str = *ccp;
2280 char *fpnum;
2281 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2282 int64_t val = 0;
2283 unsigned fpword = 0;
2284 bfd_boolean hex_p = FALSE;
2285
2286 skip_past_char (&str, '#');
2287
2288 fpnum = str;
2289 skip_whitespace (fpnum);
2290
2291 if (strncmp (fpnum, "0x", 2) == 0)
2292 {
2293 /* Support the hexadecimal representation of the IEEE754 encoding.
2294 Double-precision is expected when DP_P is TRUE, otherwise the
2295 representation should be in single-precision. */
2296 if (! parse_constant_immediate (&str, &val, reg_type))
2297 goto invalid_fp;
2298
2299 if (dp_p)
2300 {
2301 if (!can_convert_double_to_float (val, &fpword))
2302 goto invalid_fp;
2303 }
2304 else if ((uint64_t) val > 0xffffffff)
2305 goto invalid_fp;
2306 else
2307 fpword = val;
2308
2309 hex_p = TRUE;
2310 }
2311 else if (reg_name_p (str, reg_type))
2312 {
2313 set_recoverable_error (_("immediate operand required"));
2314 return FALSE;
2315 }
2316
2317 if (! hex_p)
2318 {
2319 int i;
2320
2321 if ((str = atof_ieee (str, 's', words)) == NULL)
2322 goto invalid_fp;
2323
2324 /* Our FP word must be 32 bits (single-precision FP). */
2325 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2326 {
2327 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2328 fpword |= words[i];
2329 }
2330 }
2331
2332 *immed = fpword;
2333 *ccp = str;
2334 return TRUE;
2335
2336 invalid_fp:
2337 set_fatal_syntax_error (_("invalid floating-point constant"));
2338 return FALSE;
2339 }
2340
2341 /* Less-generic immediate-value read function with the possibility of loading
2342 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2343 instructions.
2344
2345 To prevent the expression parser from pushing a register name into the
2346 symbol table as an undefined symbol, a check is firstly done to find
2347 out whether STR is a register of type REG_TYPE followed by a comma or
2348 the end of line. Return FALSE if STR is such a register. */
2349
2350 static bfd_boolean
2351 parse_big_immediate (char **str, int64_t *imm, aarch64_reg_type reg_type)
2352 {
2353 char *ptr = *str;
2354
2355 if (reg_name_p (ptr, reg_type))
2356 {
2357 set_syntax_error (_("immediate operand required"));
2358 return FALSE;
2359 }
2360
2361 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2362
2363 if (inst.reloc.exp.X_op == O_constant)
2364 *imm = inst.reloc.exp.X_add_number;
2365
2366 *str = ptr;
2367
2368 return TRUE;
2369 }
2370
2371 /* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2372 if NEED_LIBOPCODES is non-zero, the fixup will need
2373 assistance from the libopcodes. */
2374
2375 static inline void
2376 aarch64_set_gas_internal_fixup (struct reloc *reloc,
2377 const aarch64_opnd_info *operand,
2378 int need_libopcodes_p)
2379 {
2380 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2381 reloc->opnd = operand->type;
2382 if (need_libopcodes_p)
2383 reloc->need_libopcodes_p = 1;
2384 };
2385
2386 /* Return TRUE if the instruction needs to be fixed up later internally by
2387 the GAS; otherwise return FALSE. */
2388
2389 static inline bfd_boolean
2390 aarch64_gas_internal_fixup_p (void)
2391 {
2392 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2393 }
2394
2395 /* Assign the immediate value to the relevant field in *OPERAND if
2396 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2397 needs an internal fixup in a later stage.
2398 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2399 IMM.VALUE that may get assigned with the constant. */
2400 static inline void
2401 assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2402 aarch64_opnd_info *operand,
2403 int addr_off_p,
2404 int need_libopcodes_p,
2405 int skip_p)
2406 {
2407 if (reloc->exp.X_op == O_constant)
2408 {
2409 if (addr_off_p)
2410 operand->addr.offset.imm = reloc->exp.X_add_number;
2411 else
2412 operand->imm.value = reloc->exp.X_add_number;
2413 reloc->type = BFD_RELOC_UNUSED;
2414 }
2415 else
2416 {
2417 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2418 /* Tell libopcodes to ignore this operand or not. This is helpful
2419 when one of the operands needs to be fixed up later but we need
2420 libopcodes to check the other operands. */
2421 operand->skip = skip_p;
2422 }
2423 }
2424
2425 /* Relocation modifiers. Each entry in the table contains the textual
2426 name for the relocation which may be placed before a symbol used as
2427 a load/store offset, or add immediate. It must be surrounded by a
2428 leading and trailing colon, for example:
2429
2430 ldr x0, [x1, #:rello:varsym]
2431 add x0, x1, #:rello:varsym */
2432
2433 struct reloc_table_entry
2434 {
2435 const char *name;
2436 int pc_rel;
2437 bfd_reloc_code_real_type adr_type;
2438 bfd_reloc_code_real_type adrp_type;
2439 bfd_reloc_code_real_type movw_type;
2440 bfd_reloc_code_real_type add_type;
2441 bfd_reloc_code_real_type ldst_type;
2442 bfd_reloc_code_real_type ld_literal_type;
2443 };
2444
2445 static struct reloc_table_entry reloc_table[] = {
2446 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2447 {"lo12", 0,
2448 0, /* adr_type */
2449 0,
2450 0,
2451 BFD_RELOC_AARCH64_ADD_LO12,
2452 BFD_RELOC_AARCH64_LDST_LO12,
2453 0},
2454
2455 /* Higher 21 bits of pc-relative page offset: ADRP */
2456 {"pg_hi21", 1,
2457 0, /* adr_type */
2458 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2459 0,
2460 0,
2461 0,
2462 0},
2463
2464 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2465 {"pg_hi21_nc", 1,
2466 0, /* adr_type */
2467 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2468 0,
2469 0,
2470 0,
2471 0},
2472
2473 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2474 {"abs_g0", 0,
2475 0, /* adr_type */
2476 0,
2477 BFD_RELOC_AARCH64_MOVW_G0,
2478 0,
2479 0,
2480 0},
2481
2482 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2483 {"abs_g0_s", 0,
2484 0, /* adr_type */
2485 0,
2486 BFD_RELOC_AARCH64_MOVW_G0_S,
2487 0,
2488 0,
2489 0},
2490
2491 /* Less significant bits 0-15 of address/value: MOVK, no check */
2492 {"abs_g0_nc", 0,
2493 0, /* adr_type */
2494 0,
2495 BFD_RELOC_AARCH64_MOVW_G0_NC,
2496 0,
2497 0,
2498 0},
2499
2500 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2501 {"abs_g1", 0,
2502 0, /* adr_type */
2503 0,
2504 BFD_RELOC_AARCH64_MOVW_G1,
2505 0,
2506 0,
2507 0},
2508
2509 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2510 {"abs_g1_s", 0,
2511 0, /* adr_type */
2512 0,
2513 BFD_RELOC_AARCH64_MOVW_G1_S,
2514 0,
2515 0,
2516 0},
2517
2518 /* Less significant bits 16-31 of address/value: MOVK, no check */
2519 {"abs_g1_nc", 0,
2520 0, /* adr_type */
2521 0,
2522 BFD_RELOC_AARCH64_MOVW_G1_NC,
2523 0,
2524 0,
2525 0},
2526
2527 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2528 {"abs_g2", 0,
2529 0, /* adr_type */
2530 0,
2531 BFD_RELOC_AARCH64_MOVW_G2,
2532 0,
2533 0,
2534 0},
2535
2536 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2537 {"abs_g2_s", 0,
2538 0, /* adr_type */
2539 0,
2540 BFD_RELOC_AARCH64_MOVW_G2_S,
2541 0,
2542 0,
2543 0},
2544
2545 /* Less significant bits 32-47 of address/value: MOVK, no check */
2546 {"abs_g2_nc", 0,
2547 0, /* adr_type */
2548 0,
2549 BFD_RELOC_AARCH64_MOVW_G2_NC,
2550 0,
2551 0,
2552 0},
2553
2554 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2555 {"abs_g3", 0,
2556 0, /* adr_type */
2557 0,
2558 BFD_RELOC_AARCH64_MOVW_G3,
2559 0,
2560 0,
2561 0},
2562
2563 /* Most significant bits 0-15 of signed/unsigned address/value: MOVZ */
2564 {"prel_g0", 1,
2565 0, /* adr_type */
2566 0,
2567 BFD_RELOC_AARCH64_MOVW_PREL_G0,
2568 0,
2569 0,
2570 0},
2571
2572 /* Most significant bits 0-15 of signed/unsigned address/value: MOVK */
2573 {"prel_g0_nc", 1,
2574 0, /* adr_type */
2575 0,
2576 BFD_RELOC_AARCH64_MOVW_PREL_G0_NC,
2577 0,
2578 0,
2579 0},
2580
2581 /* Most significant bits 16-31 of signed/unsigned address/value: MOVZ */
2582 {"prel_g1", 1,
2583 0, /* adr_type */
2584 0,
2585 BFD_RELOC_AARCH64_MOVW_PREL_G1,
2586 0,
2587 0,
2588 0},
2589
2590 /* Most significant bits 16-31 of signed/unsigned address/value: MOVK */
2591 {"prel_g1_nc", 1,
2592 0, /* adr_type */
2593 0,
2594 BFD_RELOC_AARCH64_MOVW_PREL_G1_NC,
2595 0,
2596 0,
2597 0},
2598
2599 /* Most significant bits 32-47 of signed/unsigned address/value: MOVZ */
2600 {"prel_g2", 1,
2601 0, /* adr_type */
2602 0,
2603 BFD_RELOC_AARCH64_MOVW_PREL_G2,
2604 0,
2605 0,
2606 0},
2607
2608 /* Most significant bits 32-47 of signed/unsigned address/value: MOVK */
2609 {"prel_g2_nc", 1,
2610 0, /* adr_type */
2611 0,
2612 BFD_RELOC_AARCH64_MOVW_PREL_G2_NC,
2613 0,
2614 0,
2615 0},
2616
2617 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2618 {"prel_g3", 1,
2619 0, /* adr_type */
2620 0,
2621 BFD_RELOC_AARCH64_MOVW_PREL_G3,
2622 0,
2623 0,
2624 0},
2625
2626 /* Get to the page containing GOT entry for a symbol. */
2627 {"got", 1,
2628 0, /* adr_type */
2629 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2630 0,
2631 0,
2632 0,
2633 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2634
2635 /* 12 bit offset into the page containing GOT entry for that symbol. */
2636 {"got_lo12", 0,
2637 0, /* adr_type */
2638 0,
2639 0,
2640 0,
2641 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2642 0},
2643
2644 /* 0-15 bits of address/value: MOVk, no check. */
2645 {"gotoff_g0_nc", 0,
2646 0, /* adr_type */
2647 0,
2648 BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
2649 0,
2650 0,
2651 0},
2652
2653 /* Most significant bits 16-31 of address/value: MOVZ. */
2654 {"gotoff_g1", 0,
2655 0, /* adr_type */
2656 0,
2657 BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
2658 0,
2659 0,
2660 0},
2661
2662 /* 15 bit offset into the page containing GOT entry for that symbol. */
2663 {"gotoff_lo15", 0,
2664 0, /* adr_type */
2665 0,
2666 0,
2667 0,
2668 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2669 0},
2670
2671 /* Get to the page containing GOT TLS entry for a symbol */
2672 {"gottprel_g0_nc", 0,
2673 0, /* adr_type */
2674 0,
2675 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
2676 0,
2677 0,
2678 0},
2679
2680 /* Get to the page containing GOT TLS entry for a symbol */
2681 {"gottprel_g1", 0,
2682 0, /* adr_type */
2683 0,
2684 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
2685 0,
2686 0,
2687 0},
2688
2689 /* Get to the page containing GOT TLS entry for a symbol */
2690 {"tlsgd", 0,
2691 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
2692 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2693 0,
2694 0,
2695 0,
2696 0},
2697
2698 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2699 {"tlsgd_lo12", 0,
2700 0, /* adr_type */
2701 0,
2702 0,
2703 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
2704 0,
2705 0},
2706
2707 /* Lower 16 bits address/value: MOVk. */
2708 {"tlsgd_g0_nc", 0,
2709 0, /* adr_type */
2710 0,
2711 BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC,
2712 0,
2713 0,
2714 0},
2715
2716 /* Most significant bits 16-31 of address/value: MOVZ. */
2717 {"tlsgd_g1", 0,
2718 0, /* adr_type */
2719 0,
2720 BFD_RELOC_AARCH64_TLSGD_MOVW_G1,
2721 0,
2722 0,
2723 0},
2724
2725 /* Get to the page containing GOT TLS entry for a symbol */
2726 {"tlsdesc", 0,
2727 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
2728 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
2729 0,
2730 0,
2731 0,
2732 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
2733
2734 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2735 {"tlsdesc_lo12", 0,
2736 0, /* adr_type */
2737 0,
2738 0,
2739 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12,
2740 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2741 0},
2742
2743 /* Get to the page containing GOT TLS entry for a symbol.
2744 The same as GD, we allocate two consecutive GOT slots
2745 for module index and module offset, the only difference
2746 with GD is the module offset should be initialized to
2747 zero without any outstanding runtime relocation. */
2748 {"tlsldm", 0,
2749 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
2750 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
2751 0,
2752 0,
2753 0,
2754 0},
2755
2756 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2757 {"tlsldm_lo12_nc", 0,
2758 0, /* adr_type */
2759 0,
2760 0,
2761 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
2762 0,
2763 0},
2764
2765 /* 12 bit offset into the module TLS base address. */
2766 {"dtprel_lo12", 0,
2767 0, /* adr_type */
2768 0,
2769 0,
2770 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
2771 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
2772 0},
2773
2774 /* Same as dtprel_lo12, no overflow check. */
2775 {"dtprel_lo12_nc", 0,
2776 0, /* adr_type */
2777 0,
2778 0,
2779 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
2780 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
2781 0},
2782
2783 /* bits[23:12] of offset to the module TLS base address. */
2784 {"dtprel_hi12", 0,
2785 0, /* adr_type */
2786 0,
2787 0,
2788 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
2789 0,
2790 0},
2791
2792 /* bits[15:0] of offset to the module TLS base address. */
2793 {"dtprel_g0", 0,
2794 0, /* adr_type */
2795 0,
2796 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
2797 0,
2798 0,
2799 0},
2800
2801 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
2802 {"dtprel_g0_nc", 0,
2803 0, /* adr_type */
2804 0,
2805 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
2806 0,
2807 0,
2808 0},
2809
2810 /* bits[31:16] of offset to the module TLS base address. */
2811 {"dtprel_g1", 0,
2812 0, /* adr_type */
2813 0,
2814 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
2815 0,
2816 0,
2817 0},
2818
2819 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
2820 {"dtprel_g1_nc", 0,
2821 0, /* adr_type */
2822 0,
2823 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
2824 0,
2825 0,
2826 0},
2827
2828 /* bits[47:32] of offset to the module TLS base address. */
2829 {"dtprel_g2", 0,
2830 0, /* adr_type */
2831 0,
2832 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
2833 0,
2834 0,
2835 0},
2836
2837 /* Lower 16 bit offset into GOT entry for a symbol */
2838 {"tlsdesc_off_g0_nc", 0,
2839 0, /* adr_type */
2840 0,
2841 BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC,
2842 0,
2843 0,
2844 0},
2845
2846 /* Higher 16 bit offset into GOT entry for a symbol */
2847 {"tlsdesc_off_g1", 0,
2848 0, /* adr_type */
2849 0,
2850 BFD_RELOC_AARCH64_TLSDESC_OFF_G1,
2851 0,
2852 0,
2853 0},
2854
2855 /* Get to the page containing GOT TLS entry for a symbol */
2856 {"gottprel", 0,
2857 0, /* adr_type */
2858 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2859 0,
2860 0,
2861 0,
2862 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
2863
2864 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2865 {"gottprel_lo12", 0,
2866 0, /* adr_type */
2867 0,
2868 0,
2869 0,
2870 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2871 0},
2872
2873 /* Get tp offset for a symbol. */
2874 {"tprel", 0,
2875 0, /* adr_type */
2876 0,
2877 0,
2878 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2879 0,
2880 0},
2881
2882 /* Get tp offset for a symbol. */
2883 {"tprel_lo12", 0,
2884 0, /* adr_type */
2885 0,
2886 0,
2887 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2888 BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12,
2889 0},
2890
2891 /* Get tp offset for a symbol. */
2892 {"tprel_hi12", 0,
2893 0, /* adr_type */
2894 0,
2895 0,
2896 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
2897 0,
2898 0},
2899
2900 /* Get tp offset for a symbol. */
2901 {"tprel_lo12_nc", 0,
2902 0, /* adr_type */
2903 0,
2904 0,
2905 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
2906 BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC,
2907 0},
2908
2909 /* Most significant bits 32-47 of address/value: MOVZ. */
2910 {"tprel_g2", 0,
2911 0, /* adr_type */
2912 0,
2913 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2914 0,
2915 0,
2916 0},
2917
2918 /* Most significant bits 16-31 of address/value: MOVZ. */
2919 {"tprel_g1", 0,
2920 0, /* adr_type */
2921 0,
2922 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2923 0,
2924 0,
2925 0},
2926
2927 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2928 {"tprel_g1_nc", 0,
2929 0, /* adr_type */
2930 0,
2931 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2932 0,
2933 0,
2934 0},
2935
2936 /* Most significant bits 0-15 of address/value: MOVZ. */
2937 {"tprel_g0", 0,
2938 0, /* adr_type */
2939 0,
2940 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2941 0,
2942 0,
2943 0},
2944
2945 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2946 {"tprel_g0_nc", 0,
2947 0, /* adr_type */
2948 0,
2949 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2950 0,
2951 0,
2952 0},
2953
2954 /* 15bit offset from got entry to base address of GOT table. */
2955 {"gotpage_lo15", 0,
2956 0,
2957 0,
2958 0,
2959 0,
2960 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
2961 0},
2962
2963 /* 14bit offset from got entry to base address of GOT table. */
2964 {"gotpage_lo14", 0,
2965 0,
2966 0,
2967 0,
2968 0,
2969 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
2970 0},
2971 };
2972
2973 /* Given the address of a pointer pointing to the textual name of a
2974 relocation as may appear in assembler source, attempt to find its
2975 details in reloc_table. The pointer will be updated to the character
2976 after the trailing colon. On failure, NULL will be returned;
2977 otherwise return the reloc_table_entry. */
2978
2979 static struct reloc_table_entry *
2980 find_reloc_table_entry (char **str)
2981 {
2982 unsigned int i;
2983 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2984 {
2985 int length = strlen (reloc_table[i].name);
2986
2987 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2988 && (*str)[length] == ':')
2989 {
2990 *str += (length + 1);
2991 return &reloc_table[i];
2992 }
2993 }
2994
2995 return NULL;
2996 }
2997
2998 /* Mode argument to parse_shift and parser_shifter_operand. */
2999 enum parse_shift_mode
3000 {
3001 SHIFTED_NONE, /* no shifter allowed */
3002 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
3003 "#imm{,lsl #n}" */
3004 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
3005 "#imm" */
3006 SHIFTED_LSL, /* bare "lsl #n" */
3007 SHIFTED_MUL, /* bare "mul #n" */
3008 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
3009 SHIFTED_MUL_VL, /* "mul vl" */
3010 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
3011 };
3012
3013 /* Parse a <shift> operator on an AArch64 data processing instruction.
3014 Return TRUE on success; otherwise return FALSE. */
3015 static bfd_boolean
3016 parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
3017 {
3018 const struct aarch64_name_value_pair *shift_op;
3019 enum aarch64_modifier_kind kind;
3020 expressionS exp;
3021 int exp_has_prefix;
3022 char *s = *str;
3023 char *p = s;
3024
3025 for (p = *str; ISALPHA (*p); p++)
3026 ;
3027
3028 if (p == *str)
3029 {
3030 set_syntax_error (_("shift expression expected"));
3031 return FALSE;
3032 }
3033
3034 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
3035
3036 if (shift_op == NULL)
3037 {
3038 set_syntax_error (_("shift operator expected"));
3039 return FALSE;
3040 }
3041
3042 kind = aarch64_get_operand_modifier (shift_op);
3043
3044 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
3045 {
3046 set_syntax_error (_("invalid use of 'MSL'"));
3047 return FALSE;
3048 }
3049
3050 if (kind == AARCH64_MOD_MUL
3051 && mode != SHIFTED_MUL
3052 && mode != SHIFTED_MUL_VL)
3053 {
3054 set_syntax_error (_("invalid use of 'MUL'"));
3055 return FALSE;
3056 }
3057
3058 switch (mode)
3059 {
3060 case SHIFTED_LOGIC_IMM:
3061 if (aarch64_extend_operator_p (kind))
3062 {
3063 set_syntax_error (_("extending shift is not permitted"));
3064 return FALSE;
3065 }
3066 break;
3067
3068 case SHIFTED_ARITH_IMM:
3069 if (kind == AARCH64_MOD_ROR)
3070 {
3071 set_syntax_error (_("'ROR' shift is not permitted"));
3072 return FALSE;
3073 }
3074 break;
3075
3076 case SHIFTED_LSL:
3077 if (kind != AARCH64_MOD_LSL)
3078 {
3079 set_syntax_error (_("only 'LSL' shift is permitted"));
3080 return FALSE;
3081 }
3082 break;
3083
3084 case SHIFTED_MUL:
3085 if (kind != AARCH64_MOD_MUL)
3086 {
3087 set_syntax_error (_("only 'MUL' is permitted"));
3088 return FALSE;
3089 }
3090 break;
3091
3092 case SHIFTED_MUL_VL:
3093 /* "MUL VL" consists of two separate tokens. Require the first
3094 token to be "MUL" and look for a following "VL". */
3095 if (kind == AARCH64_MOD_MUL)
3096 {
3097 skip_whitespace (p);
3098 if (strncasecmp (p, "vl", 2) == 0 && !ISALPHA (p[2]))
3099 {
3100 p += 2;
3101 kind = AARCH64_MOD_MUL_VL;
3102 break;
3103 }
3104 }
3105 set_syntax_error (_("only 'MUL VL' is permitted"));
3106 return FALSE;
3107
3108 case SHIFTED_REG_OFFSET:
3109 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
3110 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
3111 {
3112 set_fatal_syntax_error
3113 (_("invalid shift for the register offset addressing mode"));
3114 return FALSE;
3115 }
3116 break;
3117
3118 case SHIFTED_LSL_MSL:
3119 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
3120 {
3121 set_syntax_error (_("invalid shift operator"));
3122 return FALSE;
3123 }
3124 break;
3125
3126 default:
3127 abort ();
3128 }
3129
3130 /* Whitespace can appear here if the next thing is a bare digit. */
3131 skip_whitespace (p);
3132
3133 /* Parse shift amount. */
3134 exp_has_prefix = 0;
3135 if ((mode == SHIFTED_REG_OFFSET && *p == ']') || kind == AARCH64_MOD_MUL_VL)
3136 exp.X_op = O_absent;
3137 else
3138 {
3139 if (is_immediate_prefix (*p))
3140 {
3141 p++;
3142 exp_has_prefix = 1;
3143 }
3144 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
3145 }
3146 if (kind == AARCH64_MOD_MUL_VL)
3147 /* For consistency, give MUL VL the same shift amount as an implicit
3148 MUL #1. */
3149 operand->shifter.amount = 1;
3150 else if (exp.X_op == O_absent)
3151 {
3152 if (!aarch64_extend_operator_p (kind) || exp_has_prefix)
3153 {
3154 set_syntax_error (_("missing shift amount"));
3155 return FALSE;
3156 }
3157 operand->shifter.amount = 0;
3158 }
3159 else if (exp.X_op != O_constant)
3160 {
3161 set_syntax_error (_("constant shift amount required"));
3162 return FALSE;
3163 }
3164 /* For parsing purposes, MUL #n has no inherent range. The range
3165 depends on the operand and will be checked by operand-specific
3166 routines. */
3167 else if (kind != AARCH64_MOD_MUL
3168 && (exp.X_add_number < 0 || exp.X_add_number > 63))
3169 {
3170 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
3171 return FALSE;
3172 }
3173 else
3174 {
3175 operand->shifter.amount = exp.X_add_number;
3176 operand->shifter.amount_present = 1;
3177 }
3178
3179 operand->shifter.operator_present = 1;
3180 operand->shifter.kind = kind;
3181
3182 *str = p;
3183 return TRUE;
3184 }
3185
3186 /* Parse a <shifter_operand> for a data processing instruction:
3187
3188 #<immediate>
3189 #<immediate>, LSL #imm
3190
3191 Validation of immediate operands is deferred to md_apply_fix.
3192
3193 Return TRUE on success; otherwise return FALSE. */
3194
3195 static bfd_boolean
3196 parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
3197 enum parse_shift_mode mode)
3198 {
3199 char *p;
3200
3201 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
3202 return FALSE;
3203
3204 p = *str;
3205
3206 /* Accept an immediate expression. */
3207 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
3208 return FALSE;
3209
3210 /* Accept optional LSL for arithmetic immediate values. */
3211 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
3212 if (! parse_shift (&p, operand, SHIFTED_LSL))
3213 return FALSE;
3214
3215 /* Not accept any shifter for logical immediate values. */
3216 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
3217 && parse_shift (&p, operand, mode))
3218 {
3219 set_syntax_error (_("unexpected shift operator"));
3220 return FALSE;
3221 }
3222
3223 *str = p;
3224 return TRUE;
3225 }
3226
3227 /* Parse a <shifter_operand> for a data processing instruction:
3228
3229 <Rm>
3230 <Rm>, <shift>
3231 #<immediate>
3232 #<immediate>, LSL #imm
3233
3234 where <shift> is handled by parse_shift above, and the last two
3235 cases are handled by the function above.
3236
3237 Validation of immediate operands is deferred to md_apply_fix.
3238
3239 Return TRUE on success; otherwise return FALSE. */
3240
3241 static bfd_boolean
3242 parse_shifter_operand (char **str, aarch64_opnd_info *operand,
3243 enum parse_shift_mode mode)
3244 {
3245 const reg_entry *reg;
3246 aarch64_opnd_qualifier_t qualifier;
3247 enum aarch64_operand_class opd_class
3248 = aarch64_get_operand_class (operand->type);
3249
3250 reg = aarch64_reg_parse_32_64 (str, &qualifier);
3251 if (reg)
3252 {
3253 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
3254 {
3255 set_syntax_error (_("unexpected register in the immediate operand"));
3256 return FALSE;
3257 }
3258
3259 if (!aarch64_check_reg_type (reg, REG_TYPE_R_Z))
3260 {
3261 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_Z)));
3262 return FALSE;
3263 }
3264
3265 operand->reg.regno = reg->number;
3266 operand->qualifier = qualifier;
3267
3268 /* Accept optional shift operation on register. */
3269 if (! skip_past_comma (str))
3270 return TRUE;
3271
3272 if (! parse_shift (str, operand, mode))
3273 return FALSE;
3274
3275 return TRUE;
3276 }
3277 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
3278 {
3279 set_syntax_error
3280 (_("integer register expected in the extended/shifted operand "
3281 "register"));
3282 return FALSE;
3283 }
3284
3285 /* We have a shifted immediate variable. */
3286 return parse_shifter_operand_imm (str, operand, mode);
3287 }
3288
3289 /* Return TRUE on success; return FALSE otherwise. */
3290
3291 static bfd_boolean
3292 parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
3293 enum parse_shift_mode mode)
3294 {
3295 char *p = *str;
3296
3297 /* Determine if we have the sequence of characters #: or just :
3298 coming next. If we do, then we check for a :rello: relocation
3299 modifier. If we don't, punt the whole lot to
3300 parse_shifter_operand. */
3301
3302 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3303 {
3304 struct reloc_table_entry *entry;
3305
3306 if (p[0] == '#')
3307 p += 2;
3308 else
3309 p++;
3310 *str = p;
3311
3312 /* Try to parse a relocation. Anything else is an error. */
3313 if (!(entry = find_reloc_table_entry (str)))
3314 {
3315 set_syntax_error (_("unknown relocation modifier"));
3316 return FALSE;
3317 }
3318
3319 if (entry->add_type == 0)
3320 {
3321 set_syntax_error
3322 (_("this relocation modifier is not allowed on this instruction"));
3323 return FALSE;
3324 }
3325
3326 /* Save str before we decompose it. */
3327 p = *str;
3328
3329 /* Next, we parse the expression. */
3330 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
3331 return FALSE;
3332
3333 /* Record the relocation type (use the ADD variant here). */
3334 inst.reloc.type = entry->add_type;
3335 inst.reloc.pc_rel = entry->pc_rel;
3336
3337 /* If str is empty, we've reached the end, stop here. */
3338 if (**str == '\0')
3339 return TRUE;
3340
3341 /* Otherwise, we have a shifted reloc modifier, so rewind to
3342 recover the variable name and continue parsing for the shifter. */
3343 *str = p;
3344 return parse_shifter_operand_imm (str, operand, mode);
3345 }
3346
3347 return parse_shifter_operand (str, operand, mode);
3348 }
3349
3350 /* Parse all forms of an address expression. Information is written
3351 to *OPERAND and/or inst.reloc.
3352
3353 The A64 instruction set has the following addressing modes:
3354
3355 Offset
3356 [base] // in SIMD ld/st structure
3357 [base{,#0}] // in ld/st exclusive
3358 [base{,#imm}]
3359 [base,Xm{,LSL #imm}]
3360 [base,Xm,SXTX {#imm}]
3361 [base,Wm,(S|U)XTW {#imm}]
3362 Pre-indexed
3363 [base,#imm]!
3364 Post-indexed
3365 [base],#imm
3366 [base],Xm // in SIMD ld/st structure
3367 PC-relative (literal)
3368 label
3369 SVE:
3370 [base,#imm,MUL VL]
3371 [base,Zm.D{,LSL #imm}]
3372 [base,Zm.S,(S|U)XTW {#imm}]
3373 [base,Zm.D,(S|U)XTW {#imm}] // ignores top 32 bits of Zm.D elements
3374 [Zn.S,#imm]
3375 [Zn.D,#imm]
3376 [Zn.S,Zm.S{,LSL #imm}] // in ADR
3377 [Zn.D,Zm.D{,LSL #imm}] // in ADR
3378 [Zn.D,Zm.D,(S|U)XTW {#imm}] // in ADR
3379
3380 (As a convenience, the notation "=immediate" is permitted in conjunction
3381 with the pc-relative literal load instructions to automatically place an
3382 immediate value or symbolic address in a nearby literal pool and generate
3383 a hidden label which references it.)
3384
3385 Upon a successful parsing, the address structure in *OPERAND will be
3386 filled in the following way:
3387
3388 .base_regno = <base>
3389 .offset.is_reg // 1 if the offset is a register
3390 .offset.imm = <imm>
3391 .offset.regno = <Rm>
3392
3393 For different addressing modes defined in the A64 ISA:
3394
3395 Offset
3396 .pcrel=0; .preind=1; .postind=0; .writeback=0
3397 Pre-indexed
3398 .pcrel=0; .preind=1; .postind=0; .writeback=1
3399 Post-indexed
3400 .pcrel=0; .preind=0; .postind=1; .writeback=1
3401 PC-relative (literal)
3402 .pcrel=1; .preind=1; .postind=0; .writeback=0
3403
3404 The shift/extension information, if any, will be stored in .shifter.
3405 The base and offset qualifiers will be stored in *BASE_QUALIFIER and
3406 *OFFSET_QUALIFIER respectively, with NIL being used if there's no
3407 corresponding register.
3408
3409 BASE_TYPE says which types of base register should be accepted and
3410 OFFSET_TYPE says the same for offset registers. IMM_SHIFT_MODE
3411 is the type of shifter that is allowed for immediate offsets,
3412 or SHIFTED_NONE if none.
3413
3414 In all other respects, it is the caller's responsibility to check
3415 for addressing modes not supported by the instruction, and to set
3416 inst.reloc.type. */
3417
3418 static bfd_boolean
3419 parse_address_main (char **str, aarch64_opnd_info *operand,
3420 aarch64_opnd_qualifier_t *base_qualifier,
3421 aarch64_opnd_qualifier_t *offset_qualifier,
3422 aarch64_reg_type base_type, aarch64_reg_type offset_type,
3423 enum parse_shift_mode imm_shift_mode)
3424 {
3425 char *p = *str;
3426 const reg_entry *reg;
3427 expressionS *exp = &inst.reloc.exp;
3428
3429 *base_qualifier = AARCH64_OPND_QLF_NIL;
3430 *offset_qualifier = AARCH64_OPND_QLF_NIL;
3431 if (! skip_past_char (&p, '['))
3432 {
3433 /* =immediate or label. */
3434 operand->addr.pcrel = 1;
3435 operand->addr.preind = 1;
3436
3437 /* #:<reloc_op>:<symbol> */
3438 skip_past_char (&p, '#');
3439 if (skip_past_char (&p, ':'))
3440 {
3441 bfd_reloc_code_real_type ty;
3442 struct reloc_table_entry *entry;
3443
3444 /* Try to parse a relocation modifier. Anything else is
3445 an error. */
3446 entry = find_reloc_table_entry (&p);
3447 if (! entry)
3448 {
3449 set_syntax_error (_("unknown relocation modifier"));
3450 return FALSE;
3451 }
3452
3453 switch (operand->type)
3454 {
3455 case AARCH64_OPND_ADDR_PCREL21:
3456 /* adr */
3457 ty = entry->adr_type;
3458 break;
3459
3460 default:
3461 ty = entry->ld_literal_type;
3462 break;
3463 }
3464
3465 if (ty == 0)
3466 {
3467 set_syntax_error
3468 (_("this relocation modifier is not allowed on this "
3469 "instruction"));
3470 return FALSE;
3471 }
3472
3473 /* #:<reloc_op>: */
3474 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3475 {
3476 set_syntax_error (_("invalid relocation expression"));
3477 return FALSE;
3478 }
3479
3480 /* #:<reloc_op>:<expr> */
3481 /* Record the relocation type. */
3482 inst.reloc.type = ty;
3483 inst.reloc.pc_rel = entry->pc_rel;
3484 }
3485 else
3486 {
3487
3488 if (skip_past_char (&p, '='))
3489 /* =immediate; need to generate the literal in the literal pool. */
3490 inst.gen_lit_pool = 1;
3491
3492 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3493 {
3494 set_syntax_error (_("invalid address"));
3495 return FALSE;
3496 }
3497 }
3498
3499 *str = p;
3500 return TRUE;
3501 }
3502
3503 /* [ */
3504
3505 reg = aarch64_addr_reg_parse (&p, base_type, base_qualifier);
3506 if (!reg || !aarch64_check_reg_type (reg, base_type))
3507 {
3508 set_syntax_error (_(get_reg_expected_msg (base_type)));
3509 return FALSE;
3510 }
3511 operand->addr.base_regno = reg->number;
3512
3513 /* [Xn */
3514 if (skip_past_comma (&p))
3515 {
3516 /* [Xn, */
3517 operand->addr.preind = 1;
3518
3519 reg = aarch64_addr_reg_parse (&p, offset_type, offset_qualifier);
3520 if (reg)
3521 {
3522 if (!aarch64_check_reg_type (reg, offset_type))
3523 {
3524 set_syntax_error (_(get_reg_expected_msg (offset_type)));
3525 return FALSE;
3526 }
3527
3528 /* [Xn,Rm */
3529 operand->addr.offset.regno = reg->number;
3530 operand->addr.offset.is_reg = 1;
3531 /* Shifted index. */
3532 if (skip_past_comma (&p))
3533 {
3534 /* [Xn,Rm, */
3535 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3536 /* Use the diagnostics set in parse_shift, so not set new
3537 error message here. */
3538 return FALSE;
3539 }
3540 /* We only accept:
3541 [base,Xm{,LSL #imm}]
3542 [base,Xm,SXTX {#imm}]
3543 [base,Wm,(S|U)XTW {#imm}] */
3544 if (operand->shifter.kind == AARCH64_MOD_NONE
3545 || operand->shifter.kind == AARCH64_MOD_LSL
3546 || operand->shifter.kind == AARCH64_MOD_SXTX)
3547 {
3548 if (*offset_qualifier == AARCH64_OPND_QLF_W)
3549 {
3550 set_syntax_error (_("invalid use of 32-bit register offset"));
3551 return FALSE;
3552 }
3553 if (aarch64_get_qualifier_esize (*base_qualifier)
3554 != aarch64_get_qualifier_esize (*offset_qualifier))
3555 {
3556 set_syntax_error (_("offset has different size from base"));
3557 return FALSE;
3558 }
3559 }
3560 else if (*offset_qualifier == AARCH64_OPND_QLF_X)
3561 {
3562 set_syntax_error (_("invalid use of 64-bit register offset"));
3563 return FALSE;
3564 }
3565 }
3566 else
3567 {
3568 /* [Xn,#:<reloc_op>:<symbol> */
3569 skip_past_char (&p, '#');
3570 if (skip_past_char (&p, ':'))
3571 {
3572 struct reloc_table_entry *entry;
3573
3574 /* Try to parse a relocation modifier. Anything else is
3575 an error. */
3576 if (!(entry = find_reloc_table_entry (&p)))
3577 {
3578 set_syntax_error (_("unknown relocation modifier"));
3579 return FALSE;
3580 }
3581
3582 if (entry->ldst_type == 0)
3583 {
3584 set_syntax_error
3585 (_("this relocation modifier is not allowed on this "
3586 "instruction"));
3587 return FALSE;
3588 }
3589
3590 /* [Xn,#:<reloc_op>: */
3591 /* We now have the group relocation table entry corresponding to
3592 the name in the assembler source. Next, we parse the
3593 expression. */
3594 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3595 {
3596 set_syntax_error (_("invalid relocation expression"));
3597 return FALSE;
3598 }
3599
3600 /* [Xn,#:<reloc_op>:<expr> */
3601 /* Record the load/store relocation type. */
3602 inst.reloc.type = entry->ldst_type;
3603 inst.reloc.pc_rel = entry->pc_rel;
3604 }
3605 else
3606 {
3607 if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3608 {
3609 set_syntax_error (_("invalid expression in the address"));
3610 return FALSE;
3611 }
3612 /* [Xn,<expr> */
3613 if (imm_shift_mode != SHIFTED_NONE && skip_past_comma (&p))
3614 /* [Xn,<expr>,<shifter> */
3615 if (! parse_shift (&p, operand, imm_shift_mode))
3616 return FALSE;
3617 }
3618 }
3619 }
3620
3621 if (! skip_past_char (&p, ']'))
3622 {
3623 set_syntax_error (_("']' expected"));
3624 return FALSE;
3625 }
3626
3627 if (skip_past_char (&p, '!'))
3628 {
3629 if (operand->addr.preind && operand->addr.offset.is_reg)
3630 {
3631 set_syntax_error (_("register offset not allowed in pre-indexed "
3632 "addressing mode"));
3633 return FALSE;
3634 }
3635 /* [Xn]! */
3636 operand->addr.writeback = 1;
3637 }
3638 else if (skip_past_comma (&p))
3639 {
3640 /* [Xn], */
3641 operand->addr.postind = 1;
3642 operand->addr.writeback = 1;
3643
3644 if (operand->addr.preind)
3645 {
3646 set_syntax_error (_("cannot combine pre- and post-indexing"));
3647 return FALSE;
3648 }
3649
3650 reg = aarch64_reg_parse_32_64 (&p, offset_qualifier);
3651 if (reg)
3652 {
3653 /* [Xn],Xm */
3654 if (!aarch64_check_reg_type (reg, REG_TYPE_R_64))
3655 {
3656 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
3657 return FALSE;
3658 }
3659
3660 operand->addr.offset.regno = reg->number;
3661 operand->addr.offset.is_reg = 1;
3662 }
3663 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3664 {
3665 /* [Xn],#expr */
3666 set_syntax_error (_("invalid expression in the address"));
3667 return FALSE;
3668 }
3669 }
3670
3671 /* If at this point neither .preind nor .postind is set, we have a
3672 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3673 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3674 {
3675 if (operand->addr.writeback)
3676 {
3677 /* Reject [Rn]! */
3678 set_syntax_error (_("missing offset in the pre-indexed address"));
3679 return FALSE;
3680 }
3681
3682 operand->addr.preind = 1;
3683 inst.reloc.exp.X_op = O_constant;
3684 inst.reloc.exp.X_add_number = 0;
3685 }
3686
3687 *str = p;
3688 return TRUE;
3689 }
3690
3691 /* Parse a base AArch64 address (as opposed to an SVE one). Return TRUE
3692 on success. */
3693 static bfd_boolean
3694 parse_address (char **str, aarch64_opnd_info *operand)
3695 {
3696 aarch64_opnd_qualifier_t base_qualifier, offset_qualifier;
3697 return parse_address_main (str, operand, &base_qualifier, &offset_qualifier,
3698 REG_TYPE_R64_SP, REG_TYPE_R_Z, SHIFTED_NONE);
3699 }
3700
3701 /* Parse an address in which SVE vector registers and MUL VL are allowed.
3702 The arguments have the same meaning as for parse_address_main.
3703 Return TRUE on success. */
3704 static bfd_boolean
3705 parse_sve_address (char **str, aarch64_opnd_info *operand,
3706 aarch64_opnd_qualifier_t *base_qualifier,
3707 aarch64_opnd_qualifier_t *offset_qualifier)
3708 {
3709 return parse_address_main (str, operand, base_qualifier, offset_qualifier,
3710 REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET,
3711 SHIFTED_MUL_VL);
3712 }
3713
3714 /* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3715 Return TRUE on success; otherwise return FALSE. */
3716 static bfd_boolean
3717 parse_half (char **str, int *internal_fixup_p)
3718 {
3719 char *p = *str;
3720
3721 skip_past_char (&p, '#');
3722
3723 gas_assert (internal_fixup_p);
3724 *internal_fixup_p = 0;
3725
3726 if (*p == ':')
3727 {
3728 struct reloc_table_entry *entry;
3729
3730 /* Try to parse a relocation. Anything else is an error. */
3731 ++p;
3732 if (!(entry = find_reloc_table_entry (&p)))
3733 {
3734 set_syntax_error (_("unknown relocation modifier"));
3735 return FALSE;
3736 }
3737
3738 if (entry->movw_type == 0)
3739 {
3740 set_syntax_error
3741 (_("this relocation modifier is not allowed on this instruction"));
3742 return FALSE;
3743 }
3744
3745 inst.reloc.type = entry->movw_type;
3746 }
3747 else
3748 *internal_fixup_p = 1;
3749
3750 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3751 return FALSE;
3752
3753 *str = p;
3754 return TRUE;
3755 }
3756
3757 /* Parse an operand for an ADRP instruction:
3758 ADRP <Xd>, <label>
3759 Return TRUE on success; otherwise return FALSE. */
3760
3761 static bfd_boolean
3762 parse_adrp (char **str)
3763 {
3764 char *p;
3765
3766 p = *str;
3767 if (*p == ':')
3768 {
3769 struct reloc_table_entry *entry;
3770
3771 /* Try to parse a relocation. Anything else is an error. */
3772 ++p;
3773 if (!(entry = find_reloc_table_entry (&p)))
3774 {
3775 set_syntax_error (_("unknown relocation modifier"));
3776 return FALSE;
3777 }
3778
3779 if (entry->adrp_type == 0)
3780 {
3781 set_syntax_error
3782 (_("this relocation modifier is not allowed on this instruction"));
3783 return FALSE;
3784 }
3785
3786 inst.reloc.type = entry->adrp_type;
3787 }
3788 else
3789 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3790
3791 inst.reloc.pc_rel = 1;
3792
3793 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3794 return FALSE;
3795
3796 *str = p;
3797 return TRUE;
3798 }
3799
3800 /* Miscellaneous. */
3801
3802 /* Parse a symbolic operand such as "pow2" at *STR. ARRAY is an array
3803 of SIZE tokens in which index I gives the token for field value I,
3804 or is null if field value I is invalid. REG_TYPE says which register
3805 names should be treated as registers rather than as symbolic immediates.
3806
3807 Return true on success, moving *STR past the operand and storing the
3808 field value in *VAL. */
3809
3810 static int
3811 parse_enum_string (char **str, int64_t *val, const char *const *array,
3812 size_t size, aarch64_reg_type reg_type)
3813 {
3814 expressionS exp;
3815 char *p, *q;
3816 size_t i;
3817
3818 /* Match C-like tokens. */
3819 p = q = *str;
3820 while (ISALNUM (*q))
3821 q++;
3822
3823 for (i = 0; i < size; ++i)
3824 if (array[i]
3825 && strncasecmp (array[i], p, q - p) == 0
3826 && array[i][q - p] == 0)
3827 {
3828 *val = i;
3829 *str = q;
3830 return TRUE;
3831 }
3832
3833 if (!parse_immediate_expression (&p, &exp, reg_type))
3834 return FALSE;
3835
3836 if (exp.X_op == O_constant
3837 && (uint64_t) exp.X_add_number < size)
3838 {
3839 *val = exp.X_add_number;
3840 *str = p;
3841 return TRUE;
3842 }
3843
3844 /* Use the default error for this operand. */
3845 return FALSE;
3846 }
3847
3848 /* Parse an option for a preload instruction. Returns the encoding for the
3849 option, or PARSE_FAIL. */
3850
3851 static int
3852 parse_pldop (char **str)
3853 {
3854 char *p, *q;
3855 const struct aarch64_name_value_pair *o;
3856
3857 p = q = *str;
3858 while (ISALNUM (*q))
3859 q++;
3860
3861 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3862 if (!o)
3863 return PARSE_FAIL;
3864
3865 *str = q;
3866 return o->value;
3867 }
3868
3869 /* Parse an option for a barrier instruction. Returns the encoding for the
3870 option, or PARSE_FAIL. */
3871
3872 static int
3873 parse_barrier (char **str)
3874 {
3875 char *p, *q;
3876 const asm_barrier_opt *o;
3877
3878 p = q = *str;
3879 while (ISALPHA (*q))
3880 q++;
3881
3882 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3883 if (!o)
3884 return PARSE_FAIL;
3885
3886 *str = q;
3887 return o->value;
3888 }
3889
3890 /* Parse an operand for a PSB barrier. Set *HINT_OPT to the hint-option record
3891 return 0 if successful. Otherwise return PARSE_FAIL. */
3892
3893 static int
3894 parse_barrier_psb (char **str,
3895 const struct aarch64_name_value_pair ** hint_opt)
3896 {
3897 char *p, *q;
3898 const struct aarch64_name_value_pair *o;
3899
3900 p = q = *str;
3901 while (ISALPHA (*q))
3902 q++;
3903
3904 o = hash_find_n (aarch64_hint_opt_hsh, p, q - p);
3905 if (!o)
3906 {
3907 set_fatal_syntax_error
3908 ( _("unknown or missing option to PSB"));
3909 return PARSE_FAIL;
3910 }
3911
3912 if (o->value != 0x11)
3913 {
3914 /* PSB only accepts option name 'CSYNC'. */
3915 set_syntax_error
3916 (_("the specified option is not accepted for PSB"));
3917 return PARSE_FAIL;
3918 }
3919
3920 *str = q;
3921 *hint_opt = o;
3922 return 0;
3923 }
3924
3925 /* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
3926 Returns the encoding for the option, or PARSE_FAIL.
3927
3928 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
3929 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
3930
3931 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
3932 field, otherwise as a system register.
3933 */
3934
3935 static int
3936 parse_sys_reg (char **str, struct hash_control *sys_regs,
3937 int imple_defined_p, int pstatefield_p,
3938 uint32_t* flags)
3939 {
3940 char *p, *q;
3941 char buf[32];
3942 const aarch64_sys_reg *o;
3943 int value;
3944
3945 p = buf;
3946 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3947 if (p < buf + 31)
3948 *p++ = TOLOWER (*q);
3949 *p = '\0';
3950 /* Assert that BUF be large enough. */
3951 gas_assert (p - buf == q - *str);
3952
3953 o = hash_find (sys_regs, buf);
3954 if (!o)
3955 {
3956 if (!imple_defined_p)
3957 return PARSE_FAIL;
3958 else
3959 {
3960 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
3961 unsigned int op0, op1, cn, cm, op2;
3962
3963 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3964 != 5)
3965 return PARSE_FAIL;
3966 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
3967 return PARSE_FAIL;
3968 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3969 if (flags)
3970 *flags = 0;
3971 }
3972 }
3973 else
3974 {
3975 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
3976 as_bad (_("selected processor does not support PSTATE field "
3977 "name '%s'"), buf);
3978 if (!pstatefield_p && !aarch64_sys_reg_supported_p (cpu_variant, o))
3979 as_bad (_("selected processor does not support system register "
3980 "name '%s'"), buf);
3981 if (aarch64_sys_reg_deprecated_p (o))
3982 as_warn (_("system register name '%s' is deprecated and may be "
3983 "removed in a future release"), buf);
3984 value = o->value;
3985 if (flags)
3986 *flags = o->flags;
3987 }
3988
3989 *str = q;
3990 return value;
3991 }
3992
3993 /* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3994 for the option, or NULL. */
3995
3996 static const aarch64_sys_ins_reg *
3997 parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3998 {
3999 char *p, *q;
4000 char buf[32];
4001 const aarch64_sys_ins_reg *o;
4002
4003 p = buf;
4004 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
4005 if (p < buf + 31)
4006 *p++ = TOLOWER (*q);
4007 *p = '\0';
4008
4009 o = hash_find (sys_ins_regs, buf);
4010 if (!o)
4011 return NULL;
4012
4013 if (!aarch64_sys_ins_reg_supported_p (cpu_variant, o))
4014 as_bad (_("selected processor does not support system register "
4015 "name '%s'"), buf);
4016
4017 *str = q;
4018 return o;
4019 }
4020 \f
4021 #define po_char_or_fail(chr) do { \
4022 if (! skip_past_char (&str, chr)) \
4023 goto failure; \
4024 } while (0)
4025
4026 #define po_reg_or_fail(regtype) do { \
4027 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
4028 if (val == PARSE_FAIL) \
4029 { \
4030 set_default_error (); \
4031 goto failure; \
4032 } \
4033 } while (0)
4034
4035 #define po_int_reg_or_fail(reg_type) do { \
4036 reg = aarch64_reg_parse_32_64 (&str, &qualifier); \
4037 if (!reg || !aarch64_check_reg_type (reg, reg_type)) \
4038 { \
4039 set_default_error (); \
4040 goto failure; \
4041 } \
4042 info->reg.regno = reg->number; \
4043 info->qualifier = qualifier; \
4044 } while (0)
4045
4046 #define po_imm_nc_or_fail() do { \
4047 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
4048 goto failure; \
4049 } while (0)
4050
4051 #define po_imm_or_fail(min, max) do { \
4052 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
4053 goto failure; \
4054 if (val < min || val > max) \
4055 { \
4056 set_fatal_syntax_error (_("immediate value out of range "\
4057 #min " to "#max)); \
4058 goto failure; \
4059 } \
4060 } while (0)
4061
4062 #define po_enum_or_fail(array) do { \
4063 if (!parse_enum_string (&str, &val, array, \
4064 ARRAY_SIZE (array), imm_reg_type)) \
4065 goto failure; \
4066 } while (0)
4067
4068 #define po_misc_or_fail(expr) do { \
4069 if (!expr) \
4070 goto failure; \
4071 } while (0)
4072 \f
4073 /* encode the 12-bit imm field of Add/sub immediate */
4074 static inline uint32_t
4075 encode_addsub_imm (uint32_t imm)
4076 {
4077 return imm << 10;
4078 }
4079
4080 /* encode the shift amount field of Add/sub immediate */
4081 static inline uint32_t
4082 encode_addsub_imm_shift_amount (uint32_t cnt)
4083 {
4084 return cnt << 22;
4085 }
4086
4087
4088 /* encode the imm field of Adr instruction */
4089 static inline uint32_t
4090 encode_adr_imm (uint32_t imm)
4091 {
4092 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
4093 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
4094 }
4095
4096 /* encode the immediate field of Move wide immediate */
4097 static inline uint32_t
4098 encode_movw_imm (uint32_t imm)
4099 {
4100 return imm << 5;
4101 }
4102
4103 /* encode the 26-bit offset of unconditional branch */
4104 static inline uint32_t
4105 encode_branch_ofs_26 (uint32_t ofs)
4106 {
4107 return ofs & ((1 << 26) - 1);
4108 }
4109
4110 /* encode the 19-bit offset of conditional branch and compare & branch */
4111 static inline uint32_t
4112 encode_cond_branch_ofs_19 (uint32_t ofs)
4113 {
4114 return (ofs & ((1 << 19) - 1)) << 5;
4115 }
4116
4117 /* encode the 19-bit offset of ld literal */
4118 static inline uint32_t
4119 encode_ld_lit_ofs_19 (uint32_t ofs)
4120 {
4121 return (ofs & ((1 << 19) - 1)) << 5;
4122 }
4123
4124 /* Encode the 14-bit offset of test & branch. */
4125 static inline uint32_t
4126 encode_tst_branch_ofs_14 (uint32_t ofs)
4127 {
4128 return (ofs & ((1 << 14) - 1)) << 5;
4129 }
4130
4131 /* Encode the 16-bit imm field of svc/hvc/smc. */
4132 static inline uint32_t
4133 encode_svc_imm (uint32_t imm)
4134 {
4135 return imm << 5;
4136 }
4137
4138 /* Reencode add(s) to sub(s), or sub(s) to add(s). */
4139 static inline uint32_t
4140 reencode_addsub_switch_add_sub (uint32_t opcode)
4141 {
4142 return opcode ^ (1 << 30);
4143 }
4144
4145 static inline uint32_t
4146 reencode_movzn_to_movz (uint32_t opcode)
4147 {
4148 return opcode | (1 << 30);
4149 }
4150
4151 static inline uint32_t
4152 reencode_movzn_to_movn (uint32_t opcode)
4153 {
4154 return opcode & ~(1 << 30);
4155 }
4156
4157 /* Overall per-instruction processing. */
4158
4159 /* We need to be able to fix up arbitrary expressions in some statements.
4160 This is so that we can handle symbols that are an arbitrary distance from
4161 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
4162 which returns part of an address in a form which will be valid for
4163 a data instruction. We do this by pushing the expression into a symbol
4164 in the expr_section, and creating a fix for that. */
4165
4166 static fixS *
4167 fix_new_aarch64 (fragS * frag,
4168 int where,
4169 short int size, expressionS * exp, int pc_rel, int reloc)
4170 {
4171 fixS *new_fix;
4172
4173 switch (exp->X_op)
4174 {
4175 case O_constant:
4176 case O_symbol:
4177 case O_add:
4178 case O_subtract:
4179 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
4180 break;
4181
4182 default:
4183 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
4184 pc_rel, reloc);
4185 break;
4186 }
4187 return new_fix;
4188 }
4189 \f
4190 /* Diagnostics on operands errors. */
4191
4192 /* By default, output verbose error message.
4193 Disable the verbose error message by -mno-verbose-error. */
4194 static int verbose_error_p = 1;
4195
4196 #ifdef DEBUG_AARCH64
4197 /* N.B. this is only for the purpose of debugging. */
4198 const char* operand_mismatch_kind_names[] =
4199 {
4200 "AARCH64_OPDE_NIL",
4201 "AARCH64_OPDE_RECOVERABLE",
4202 "AARCH64_OPDE_SYNTAX_ERROR",
4203 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
4204 "AARCH64_OPDE_INVALID_VARIANT",
4205 "AARCH64_OPDE_OUT_OF_RANGE",
4206 "AARCH64_OPDE_UNALIGNED",
4207 "AARCH64_OPDE_REG_LIST",
4208 "AARCH64_OPDE_OTHER_ERROR",
4209 };
4210 #endif /* DEBUG_AARCH64 */
4211
4212 /* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
4213
4214 When multiple errors of different kinds are found in the same assembly
4215 line, only the error of the highest severity will be picked up for
4216 issuing the diagnostics. */
4217
4218 static inline bfd_boolean
4219 operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
4220 enum aarch64_operand_error_kind rhs)
4221 {
4222 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
4223 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
4224 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
4225 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
4226 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
4227 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
4228 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
4229 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
4230 return lhs > rhs;
4231 }
4232
4233 /* Helper routine to get the mnemonic name from the assembly instruction
4234 line; should only be called for the diagnosis purpose, as there is
4235 string copy operation involved, which may affect the runtime
4236 performance if used in elsewhere. */
4237
4238 static const char*
4239 get_mnemonic_name (const char *str)
4240 {
4241 static char mnemonic[32];
4242 char *ptr;
4243
4244 /* Get the first 15 bytes and assume that the full name is included. */
4245 strncpy (mnemonic, str, 31);
4246 mnemonic[31] = '\0';
4247
4248 /* Scan up to the end of the mnemonic, which must end in white space,
4249 '.', or end of string. */
4250 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
4251 ;
4252
4253 *ptr = '\0';
4254
4255 /* Append '...' to the truncated long name. */
4256 if (ptr - mnemonic == 31)
4257 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
4258
4259 return mnemonic;
4260 }
4261
4262 static void
4263 reset_aarch64_instruction (aarch64_instruction *instruction)
4264 {
4265 memset (instruction, '\0', sizeof (aarch64_instruction));
4266 instruction->reloc.type = BFD_RELOC_UNUSED;
4267 }
4268
4269 /* Data structures storing one user error in the assembly code related to
4270 operands. */
4271
4272 struct operand_error_record
4273 {
4274 const aarch64_opcode *opcode;
4275 aarch64_operand_error detail;
4276 struct operand_error_record *next;
4277 };
4278
4279 typedef struct operand_error_record operand_error_record;
4280
4281 struct operand_errors
4282 {
4283 operand_error_record *head;
4284 operand_error_record *tail;
4285 };
4286
4287 typedef struct operand_errors operand_errors;
4288
4289 /* Top-level data structure reporting user errors for the current line of
4290 the assembly code.
4291 The way md_assemble works is that all opcodes sharing the same mnemonic
4292 name are iterated to find a match to the assembly line. In this data
4293 structure, each of the such opcodes will have one operand_error_record
4294 allocated and inserted. In other words, excessive errors related with
4295 a single opcode are disregarded. */
4296 operand_errors operand_error_report;
4297
4298 /* Free record nodes. */
4299 static operand_error_record *free_opnd_error_record_nodes = NULL;
4300
4301 /* Initialize the data structure that stores the operand mismatch
4302 information on assembling one line of the assembly code. */
4303 static void
4304 init_operand_error_report (void)
4305 {
4306 if (operand_error_report.head != NULL)
4307 {
4308 gas_assert (operand_error_report.tail != NULL);
4309 operand_error_report.tail->next = free_opnd_error_record_nodes;
4310 free_opnd_error_record_nodes = operand_error_report.head;
4311 operand_error_report.head = NULL;
4312 operand_error_report.tail = NULL;
4313 return;
4314 }
4315 gas_assert (operand_error_report.tail == NULL);
4316 }
4317
4318 /* Return TRUE if some operand error has been recorded during the
4319 parsing of the current assembly line using the opcode *OPCODE;
4320 otherwise return FALSE. */
4321 static inline bfd_boolean
4322 opcode_has_operand_error_p (const aarch64_opcode *opcode)
4323 {
4324 operand_error_record *record = operand_error_report.head;
4325 return record && record->opcode == opcode;
4326 }
4327
4328 /* Add the error record *NEW_RECORD to operand_error_report. The record's
4329 OPCODE field is initialized with OPCODE.
4330 N.B. only one record for each opcode, i.e. the maximum of one error is
4331 recorded for each instruction template. */
4332
4333 static void
4334 add_operand_error_record (const operand_error_record* new_record)
4335 {
4336 const aarch64_opcode *opcode = new_record->opcode;
4337 operand_error_record* record = operand_error_report.head;
4338
4339 /* The record may have been created for this opcode. If not, we need
4340 to prepare one. */
4341 if (! opcode_has_operand_error_p (opcode))
4342 {
4343 /* Get one empty record. */
4344 if (free_opnd_error_record_nodes == NULL)
4345 {
4346 record = XNEW (operand_error_record);
4347 }
4348 else
4349 {
4350 record = free_opnd_error_record_nodes;
4351 free_opnd_error_record_nodes = record->next;
4352 }
4353 record->opcode = opcode;
4354 /* Insert at the head. */
4355 record->next = operand_error_report.head;
4356 operand_error_report.head = record;
4357 if (operand_error_report.tail == NULL)
4358 operand_error_report.tail = record;
4359 }
4360 else if (record->detail.kind != AARCH64_OPDE_NIL
4361 && record->detail.index <= new_record->detail.index
4362 && operand_error_higher_severity_p (record->detail.kind,
4363 new_record->detail.kind))
4364 {
4365 /* In the case of multiple errors found on operands related with a
4366 single opcode, only record the error of the leftmost operand and
4367 only if the error is of higher severity. */
4368 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
4369 " the existing error %s on operand %d",
4370 operand_mismatch_kind_names[new_record->detail.kind],
4371 new_record->detail.index,
4372 operand_mismatch_kind_names[record->detail.kind],
4373 record->detail.index);
4374 return;
4375 }
4376
4377 record->detail = new_record->detail;
4378 }
4379
4380 static inline void
4381 record_operand_error_info (const aarch64_opcode *opcode,
4382 aarch64_operand_error *error_info)
4383 {
4384 operand_error_record record;
4385 record.opcode = opcode;
4386 record.detail = *error_info;
4387 add_operand_error_record (&record);
4388 }
4389
4390 /* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
4391 error message *ERROR, for operand IDX (count from 0). */
4392
4393 static void
4394 record_operand_error (const aarch64_opcode *opcode, int idx,
4395 enum aarch64_operand_error_kind kind,
4396 const char* error)
4397 {
4398 aarch64_operand_error info;
4399 memset(&info, 0, sizeof (info));
4400 info.index = idx;
4401 info.kind = kind;
4402 info.error = error;
4403 record_operand_error_info (opcode, &info);
4404 }
4405
4406 static void
4407 record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
4408 enum aarch64_operand_error_kind kind,
4409 const char* error, const int *extra_data)
4410 {
4411 aarch64_operand_error info;
4412 info.index = idx;
4413 info.kind = kind;
4414 info.error = error;
4415 info.data[0] = extra_data[0];
4416 info.data[1] = extra_data[1];
4417 info.data[2] = extra_data[2];
4418 record_operand_error_info (opcode, &info);
4419 }
4420
4421 static void
4422 record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
4423 const char* error, int lower_bound,
4424 int upper_bound)
4425 {
4426 int data[3] = {lower_bound, upper_bound, 0};
4427 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
4428 error, data);
4429 }
4430
4431 /* Remove the operand error record for *OPCODE. */
4432 static void ATTRIBUTE_UNUSED
4433 remove_operand_error_record (const aarch64_opcode *opcode)
4434 {
4435 if (opcode_has_operand_error_p (opcode))
4436 {
4437 operand_error_record* record = operand_error_report.head;
4438 gas_assert (record != NULL && operand_error_report.tail != NULL);
4439 operand_error_report.head = record->next;
4440 record->next = free_opnd_error_record_nodes;
4441 free_opnd_error_record_nodes = record;
4442 if (operand_error_report.head == NULL)
4443 {
4444 gas_assert (operand_error_report.tail == record);
4445 operand_error_report.tail = NULL;
4446 }
4447 }
4448 }
4449
4450 /* Given the instruction in *INSTR, return the index of the best matched
4451 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
4452
4453 Return -1 if there is no qualifier sequence; return the first match
4454 if there is multiple matches found. */
4455
4456 static int
4457 find_best_match (const aarch64_inst *instr,
4458 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
4459 {
4460 int i, num_opnds, max_num_matched, idx;
4461
4462 num_opnds = aarch64_num_of_operands (instr->opcode);
4463 if (num_opnds == 0)
4464 {
4465 DEBUG_TRACE ("no operand");
4466 return -1;
4467 }
4468
4469 max_num_matched = 0;
4470 idx = 0;
4471
4472 /* For each pattern. */
4473 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4474 {
4475 int j, num_matched;
4476 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
4477
4478 /* Most opcodes has much fewer patterns in the list. */
4479 if (empty_qualifier_sequence_p (qualifiers))
4480 {
4481 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
4482 break;
4483 }
4484
4485 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
4486 if (*qualifiers == instr->operands[j].qualifier)
4487 ++num_matched;
4488
4489 if (num_matched > max_num_matched)
4490 {
4491 max_num_matched = num_matched;
4492 idx = i;
4493 }
4494 }
4495
4496 DEBUG_TRACE ("return with %d", idx);
4497 return idx;
4498 }
4499
4500 /* Assign qualifiers in the qualifier sequence (headed by QUALIFIERS) to the
4501 corresponding operands in *INSTR. */
4502
4503 static inline void
4504 assign_qualifier_sequence (aarch64_inst *instr,
4505 const aarch64_opnd_qualifier_t *qualifiers)
4506 {
4507 int i = 0;
4508 int num_opnds = aarch64_num_of_operands (instr->opcode);
4509 gas_assert (num_opnds);
4510 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4511 instr->operands[i].qualifier = *qualifiers;
4512 }
4513
4514 /* Print operands for the diagnosis purpose. */
4515
4516 static void
4517 print_operands (char *buf, const aarch64_opcode *opcode,
4518 const aarch64_opnd_info *opnds)
4519 {
4520 int i;
4521
4522 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4523 {
4524 char str[128];
4525
4526 /* We regard the opcode operand info more, however we also look into
4527 the inst->operands to support the disassembling of the optional
4528 operand.
4529 The two operand code should be the same in all cases, apart from
4530 when the operand can be optional. */
4531 if (opcode->operands[i] == AARCH64_OPND_NIL
4532 || opnds[i].type == AARCH64_OPND_NIL)
4533 break;
4534
4535 /* Generate the operand string in STR. */
4536 aarch64_print_operand (str, sizeof (str), 0, opcode, opnds, i, NULL, NULL);
4537
4538 /* Delimiter. */
4539 if (str[0] != '\0')
4540 strcat (buf, i == 0 ? " " : ", ");
4541
4542 /* Append the operand string. */
4543 strcat (buf, str);
4544 }
4545 }
4546
4547 /* Send to stderr a string as information. */
4548
4549 static void
4550 output_info (const char *format, ...)
4551 {
4552 const char *file;
4553 unsigned int line;
4554 va_list args;
4555
4556 file = as_where (&line);
4557 if (file)
4558 {
4559 if (line != 0)
4560 fprintf (stderr, "%s:%u: ", file, line);
4561 else
4562 fprintf (stderr, "%s: ", file);
4563 }
4564 fprintf (stderr, _("Info: "));
4565 va_start (args, format);
4566 vfprintf (stderr, format, args);
4567 va_end (args);
4568 (void) putc ('\n', stderr);
4569 }
4570
4571 /* Output one operand error record. */
4572
4573 static void
4574 output_operand_error_record (const operand_error_record *record, char *str)
4575 {
4576 const aarch64_operand_error *detail = &record->detail;
4577 int idx = detail->index;
4578 const aarch64_opcode *opcode = record->opcode;
4579 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
4580 : AARCH64_OPND_NIL);
4581
4582 switch (detail->kind)
4583 {
4584 case AARCH64_OPDE_NIL:
4585 gas_assert (0);
4586 break;
4587
4588 case AARCH64_OPDE_SYNTAX_ERROR:
4589 case AARCH64_OPDE_RECOVERABLE:
4590 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4591 case AARCH64_OPDE_OTHER_ERROR:
4592 /* Use the prepared error message if there is, otherwise use the
4593 operand description string to describe the error. */
4594 if (detail->error != NULL)
4595 {
4596 if (idx < 0)
4597 as_bad (_("%s -- `%s'"), detail->error, str);
4598 else
4599 as_bad (_("%s at operand %d -- `%s'"),
4600 detail->error, idx + 1, str);
4601 }
4602 else
4603 {
4604 gas_assert (idx >= 0);
4605 as_bad (_("operand %d must be %s -- `%s'"), idx + 1,
4606 aarch64_get_operand_desc (opd_code), str);
4607 }
4608 break;
4609
4610 case AARCH64_OPDE_INVALID_VARIANT:
4611 as_bad (_("operand mismatch -- `%s'"), str);
4612 if (verbose_error_p)
4613 {
4614 /* We will try to correct the erroneous instruction and also provide
4615 more information e.g. all other valid variants.
4616
4617 The string representation of the corrected instruction and other
4618 valid variants are generated by
4619
4620 1) obtaining the intermediate representation of the erroneous
4621 instruction;
4622 2) manipulating the IR, e.g. replacing the operand qualifier;
4623 3) printing out the instruction by calling the printer functions
4624 shared with the disassembler.
4625
4626 The limitation of this method is that the exact input assembly
4627 line cannot be accurately reproduced in some cases, for example an
4628 optional operand present in the actual assembly line will be
4629 omitted in the output; likewise for the optional syntax rules,
4630 e.g. the # before the immediate. Another limitation is that the
4631 assembly symbols and relocation operations in the assembly line
4632 currently cannot be printed out in the error report. Last but not
4633 least, when there is other error(s) co-exist with this error, the
4634 'corrected' instruction may be still incorrect, e.g. given
4635 'ldnp h0,h1,[x0,#6]!'
4636 this diagnosis will provide the version:
4637 'ldnp s0,s1,[x0,#6]!'
4638 which is still not right. */
4639 size_t len = strlen (get_mnemonic_name (str));
4640 int i, qlf_idx;
4641 bfd_boolean result;
4642 char buf[2048];
4643 aarch64_inst *inst_base = &inst.base;
4644 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4645
4646 /* Init inst. */
4647 reset_aarch64_instruction (&inst);
4648 inst_base->opcode = opcode;
4649
4650 /* Reset the error report so that there is no side effect on the
4651 following operand parsing. */
4652 init_operand_error_report ();
4653
4654 /* Fill inst. */
4655 result = parse_operands (str + len, opcode)
4656 && programmer_friendly_fixup (&inst);
4657 gas_assert (result);
4658 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4659 NULL, NULL);
4660 gas_assert (!result);
4661
4662 /* Find the most matched qualifier sequence. */
4663 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4664 gas_assert (qlf_idx > -1);
4665
4666 /* Assign the qualifiers. */
4667 assign_qualifier_sequence (inst_base,
4668 opcode->qualifiers_list[qlf_idx]);
4669
4670 /* Print the hint. */
4671 output_info (_(" did you mean this?"));
4672 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
4673 print_operands (buf, opcode, inst_base->operands);
4674 output_info (_(" %s"), buf);
4675
4676 /* Print out other variant(s) if there is any. */
4677 if (qlf_idx != 0 ||
4678 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4679 output_info (_(" other valid variant(s):"));
4680
4681 /* For each pattern. */
4682 qualifiers_list = opcode->qualifiers_list;
4683 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4684 {
4685 /* Most opcodes has much fewer patterns in the list.
4686 First NIL qualifier indicates the end in the list. */
4687 if (empty_qualifier_sequence_p (*qualifiers_list))
4688 break;
4689
4690 if (i != qlf_idx)
4691 {
4692 /* Mnemonics name. */
4693 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
4694
4695 /* Assign the qualifiers. */
4696 assign_qualifier_sequence (inst_base, *qualifiers_list);
4697
4698 /* Print instruction. */
4699 print_operands (buf, opcode, inst_base->operands);
4700
4701 output_info (_(" %s"), buf);
4702 }
4703 }
4704 }
4705 break;
4706
4707 case AARCH64_OPDE_UNTIED_OPERAND:
4708 as_bad (_("operand %d must be the same register as operand 1 -- `%s'"),
4709 detail->index + 1, str);
4710 break;
4711
4712 case AARCH64_OPDE_OUT_OF_RANGE:
4713 if (detail->data[0] != detail->data[1])
4714 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4715 detail->error ? detail->error : _("immediate value"),
4716 detail->data[0], detail->data[1], idx + 1, str);
4717 else
4718 as_bad (_("%s must be %d at operand %d -- `%s'"),
4719 detail->error ? detail->error : _("immediate value"),
4720 detail->data[0], idx + 1, str);
4721 break;
4722
4723 case AARCH64_OPDE_REG_LIST:
4724 if (detail->data[0] == 1)
4725 as_bad (_("invalid number of registers in the list; "
4726 "only 1 register is expected at operand %d -- `%s'"),
4727 idx + 1, str);
4728 else
4729 as_bad (_("invalid number of registers in the list; "
4730 "%d registers are expected at operand %d -- `%s'"),
4731 detail->data[0], idx + 1, str);
4732 break;
4733
4734 case AARCH64_OPDE_UNALIGNED:
4735 as_bad (_("immediate value must be a multiple of "
4736 "%d at operand %d -- `%s'"),
4737 detail->data[0], idx + 1, str);
4738 break;
4739
4740 default:
4741 gas_assert (0);
4742 break;
4743 }
4744 }
4745
4746 /* Process and output the error message about the operand mismatching.
4747
4748 When this function is called, the operand error information had
4749 been collected for an assembly line and there will be multiple
4750 errors in the case of multiple instruction templates; output the
4751 error message that most closely describes the problem. */
4752
4753 static void
4754 output_operand_error_report (char *str)
4755 {
4756 int largest_error_pos;
4757 const char *msg = NULL;
4758 enum aarch64_operand_error_kind kind;
4759 operand_error_record *curr;
4760 operand_error_record *head = operand_error_report.head;
4761 operand_error_record *record = NULL;
4762
4763 /* No error to report. */
4764 if (head == NULL)
4765 return;
4766
4767 gas_assert (head != NULL && operand_error_report.tail != NULL);
4768
4769 /* Only one error. */
4770 if (head == operand_error_report.tail)
4771 {
4772 DEBUG_TRACE ("single opcode entry with error kind: %s",
4773 operand_mismatch_kind_names[head->detail.kind]);
4774 output_operand_error_record (head, str);
4775 return;
4776 }
4777
4778 /* Find the error kind of the highest severity. */
4779 DEBUG_TRACE ("multiple opcode entries with error kind");
4780 kind = AARCH64_OPDE_NIL;
4781 for (curr = head; curr != NULL; curr = curr->next)
4782 {
4783 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4784 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4785 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4786 kind = curr->detail.kind;
4787 }
4788 gas_assert (kind != AARCH64_OPDE_NIL);
4789
4790 /* Pick up one of errors of KIND to report. */
4791 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4792 for (curr = head; curr != NULL; curr = curr->next)
4793 {
4794 if (curr->detail.kind != kind)
4795 continue;
4796 /* If there are multiple errors, pick up the one with the highest
4797 mismatching operand index. In the case of multiple errors with
4798 the equally highest operand index, pick up the first one or the
4799 first one with non-NULL error message. */
4800 if (curr->detail.index > largest_error_pos
4801 || (curr->detail.index == largest_error_pos && msg == NULL
4802 && curr->detail.error != NULL))
4803 {
4804 largest_error_pos = curr->detail.index;
4805 record = curr;
4806 msg = record->detail.error;
4807 }
4808 }
4809
4810 gas_assert (largest_error_pos != -2 && record != NULL);
4811 DEBUG_TRACE ("Pick up error kind %s to report",
4812 operand_mismatch_kind_names[record->detail.kind]);
4813
4814 /* Output. */
4815 output_operand_error_record (record, str);
4816 }
4817 \f
4818 /* Write an AARCH64 instruction to buf - always little-endian. */
4819 static void
4820 put_aarch64_insn (char *buf, uint32_t insn)
4821 {
4822 unsigned char *where = (unsigned char *) buf;
4823 where[0] = insn;
4824 where[1] = insn >> 8;
4825 where[2] = insn >> 16;
4826 where[3] = insn >> 24;
4827 }
4828
4829 static uint32_t
4830 get_aarch64_insn (char *buf)
4831 {
4832 unsigned char *where = (unsigned char *) buf;
4833 uint32_t result;
4834 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4835 return result;
4836 }
4837
4838 static void
4839 output_inst (struct aarch64_inst *new_inst)
4840 {
4841 char *to = NULL;
4842
4843 to = frag_more (INSN_SIZE);
4844
4845 frag_now->tc_frag_data.recorded = 1;
4846
4847 put_aarch64_insn (to, inst.base.value);
4848
4849 if (inst.reloc.type != BFD_RELOC_UNUSED)
4850 {
4851 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4852 INSN_SIZE, &inst.reloc.exp,
4853 inst.reloc.pc_rel,
4854 inst.reloc.type);
4855 DEBUG_TRACE ("Prepared relocation fix up");
4856 /* Don't check the addend value against the instruction size,
4857 that's the job of our code in md_apply_fix(). */
4858 fixp->fx_no_overflow = 1;
4859 if (new_inst != NULL)
4860 fixp->tc_fix_data.inst = new_inst;
4861 if (aarch64_gas_internal_fixup_p ())
4862 {
4863 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4864 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4865 fixp->fx_addnumber = inst.reloc.flags;
4866 }
4867 }
4868
4869 dwarf2_emit_insn (INSN_SIZE);
4870 }
4871
4872 /* Link together opcodes of the same name. */
4873
4874 struct templates
4875 {
4876 aarch64_opcode *opcode;
4877 struct templates *next;
4878 };
4879
4880 typedef struct templates templates;
4881
4882 static templates *
4883 lookup_mnemonic (const char *start, int len)
4884 {
4885 templates *templ = NULL;
4886
4887 templ = hash_find_n (aarch64_ops_hsh, start, len);
4888 return templ;
4889 }
4890
4891 /* Subroutine of md_assemble, responsible for looking up the primary
4892 opcode from the mnemonic the user wrote. STR points to the
4893 beginning of the mnemonic. */
4894
4895 static templates *
4896 opcode_lookup (char **str)
4897 {
4898 char *end, *base, *dot;
4899 const aarch64_cond *cond;
4900 char condname[16];
4901 int len;
4902
4903 /* Scan up to the end of the mnemonic, which must end in white space,
4904 '.', or end of string. */
4905 dot = 0;
4906 for (base = end = *str; is_part_of_name(*end); end++)
4907 if (*end == '.' && !dot)
4908 dot = end;
4909
4910 if (end == base || dot == base)
4911 return 0;
4912
4913 inst.cond = COND_ALWAYS;
4914
4915 /* Handle a possible condition. */
4916 if (dot)
4917 {
4918 cond = hash_find_n (aarch64_cond_hsh, dot + 1, end - dot - 1);
4919 if (cond)
4920 {
4921 inst.cond = cond->value;
4922 *str = end;
4923 }
4924 else
4925 {
4926 *str = dot;
4927 return 0;
4928 }
4929 len = dot - base;
4930 }
4931 else
4932 {
4933 *str = end;
4934 len = end - base;
4935 }
4936
4937 if (inst.cond == COND_ALWAYS)
4938 {
4939 /* Look for unaffixed mnemonic. */
4940 return lookup_mnemonic (base, len);
4941 }
4942 else if (len <= 13)
4943 {
4944 /* append ".c" to mnemonic if conditional */
4945 memcpy (condname, base, len);
4946 memcpy (condname + len, ".c", 2);
4947 base = condname;
4948 len += 2;
4949 return lookup_mnemonic (base, len);
4950 }
4951
4952 return NULL;
4953 }
4954
4955 /* Internal helper routine converting a vector_type_el structure *VECTYPE
4956 to a corresponding operand qualifier. */
4957
4958 static inline aarch64_opnd_qualifier_t
4959 vectype_to_qualifier (const struct vector_type_el *vectype)
4960 {
4961 /* Element size in bytes indexed by vector_el_type. */
4962 const unsigned char ele_size[5]
4963 = {1, 2, 4, 8, 16};
4964 const unsigned int ele_base [5] =
4965 {
4966 AARCH64_OPND_QLF_V_4B,
4967 AARCH64_OPND_QLF_V_2H,
4968 AARCH64_OPND_QLF_V_2S,
4969 AARCH64_OPND_QLF_V_1D,
4970 AARCH64_OPND_QLF_V_1Q
4971 };
4972
4973 if (!vectype->defined || vectype->type == NT_invtype)
4974 goto vectype_conversion_fail;
4975
4976 if (vectype->type == NT_zero)
4977 return AARCH64_OPND_QLF_P_Z;
4978 if (vectype->type == NT_merge)
4979 return AARCH64_OPND_QLF_P_M;
4980
4981 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4982
4983 if (vectype->defined & (NTA_HASINDEX | NTA_HASVARWIDTH))
4984 {
4985 /* Special case S_4B. */
4986 if (vectype->type == NT_b && vectype->width == 4)
4987 return AARCH64_OPND_QLF_S_4B;
4988
4989 /* Vector element register. */
4990 return AARCH64_OPND_QLF_S_B + vectype->type;
4991 }
4992 else
4993 {
4994 /* Vector register. */
4995 int reg_size = ele_size[vectype->type] * vectype->width;
4996 unsigned offset;
4997 unsigned shift;
4998 if (reg_size != 16 && reg_size != 8 && reg_size != 4)
4999 goto vectype_conversion_fail;
5000
5001 /* The conversion is by calculating the offset from the base operand
5002 qualifier for the vector type. The operand qualifiers are regular
5003 enough that the offset can established by shifting the vector width by
5004 a vector-type dependent amount. */
5005 shift = 0;
5006 if (vectype->type == NT_b)
5007 shift = 3;
5008 else if (vectype->type == NT_h || vectype->type == NT_s)
5009 shift = 2;
5010 else if (vectype->type >= NT_d)
5011 shift = 1;
5012 else
5013 gas_assert (0);
5014
5015 offset = ele_base [vectype->type] + (vectype->width >> shift);
5016 gas_assert (AARCH64_OPND_QLF_V_4B <= offset
5017 && offset <= AARCH64_OPND_QLF_V_1Q);
5018 return offset;
5019 }
5020
5021 vectype_conversion_fail:
5022 first_error (_("bad vector arrangement type"));
5023 return AARCH64_OPND_QLF_NIL;
5024 }
5025
5026 /* Process an optional operand that is found omitted from the assembly line.
5027 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
5028 instruction's opcode entry while IDX is the index of this omitted operand.
5029 */
5030
5031 static void
5032 process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
5033 int idx, aarch64_opnd_info *operand)
5034 {
5035 aarch64_insn default_value = get_optional_operand_default_value (opcode);
5036 gas_assert (optional_operand_p (opcode, idx));
5037 gas_assert (!operand->present);
5038
5039 switch (type)
5040 {
5041 case AARCH64_OPND_Rd:
5042 case AARCH64_OPND_Rn:
5043 case AARCH64_OPND_Rm:
5044 case AARCH64_OPND_Rt:
5045 case AARCH64_OPND_Rt2:
5046 case AARCH64_OPND_Rs:
5047 case AARCH64_OPND_Ra:
5048 case AARCH64_OPND_Rt_SYS:
5049 case AARCH64_OPND_Rd_SP:
5050 case AARCH64_OPND_Rn_SP:
5051 case AARCH64_OPND_Rm_SP:
5052 case AARCH64_OPND_Fd:
5053 case AARCH64_OPND_Fn:
5054 case AARCH64_OPND_Fm:
5055 case AARCH64_OPND_Fa:
5056 case AARCH64_OPND_Ft:
5057 case AARCH64_OPND_Ft2:
5058 case AARCH64_OPND_Sd:
5059 case AARCH64_OPND_Sn:
5060 case AARCH64_OPND_Sm:
5061 case AARCH64_OPND_Va:
5062 case AARCH64_OPND_Vd:
5063 case AARCH64_OPND_Vn:
5064 case AARCH64_OPND_Vm:
5065 case AARCH64_OPND_VdD1:
5066 case AARCH64_OPND_VnD1:
5067 operand->reg.regno = default_value;
5068 break;
5069
5070 case AARCH64_OPND_Ed:
5071 case AARCH64_OPND_En:
5072 case AARCH64_OPND_Em:
5073 case AARCH64_OPND_SM3_IMM2:
5074 operand->reglane.regno = default_value;
5075 break;
5076
5077 case AARCH64_OPND_IDX:
5078 case AARCH64_OPND_BIT_NUM:
5079 case AARCH64_OPND_IMMR:
5080 case AARCH64_OPND_IMMS:
5081 case AARCH64_OPND_SHLL_IMM:
5082 case AARCH64_OPND_IMM_VLSL:
5083 case AARCH64_OPND_IMM_VLSR:
5084 case AARCH64_OPND_CCMP_IMM:
5085 case AARCH64_OPND_FBITS:
5086 case AARCH64_OPND_UIMM4:
5087 case AARCH64_OPND_UIMM3_OP1:
5088 case AARCH64_OPND_UIMM3_OP2:
5089 case AARCH64_OPND_IMM:
5090 case AARCH64_OPND_IMM_2:
5091 case AARCH64_OPND_WIDTH:
5092 case AARCH64_OPND_UIMM7:
5093 case AARCH64_OPND_NZCV:
5094 case AARCH64_OPND_SVE_PATTERN:
5095 case AARCH64_OPND_SVE_PRFOP:
5096 operand->imm.value = default_value;
5097 break;
5098
5099 case AARCH64_OPND_SVE_PATTERN_SCALED:
5100 operand->imm.value = default_value;
5101 operand->shifter.kind = AARCH64_MOD_MUL;
5102 operand->shifter.amount = 1;
5103 break;
5104
5105 case AARCH64_OPND_EXCEPTION:
5106 inst.reloc.type = BFD_RELOC_UNUSED;
5107 break;
5108
5109 case AARCH64_OPND_BARRIER_ISB:
5110 operand->barrier = aarch64_barrier_options + default_value;
5111
5112 default:
5113 break;
5114 }
5115 }
5116
5117 /* Process the relocation type for move wide instructions.
5118 Return TRUE on success; otherwise return FALSE. */
5119
5120 static bfd_boolean
5121 process_movw_reloc_info (void)
5122 {
5123 int is32;
5124 unsigned shift;
5125
5126 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
5127
5128 if (inst.base.opcode->op == OP_MOVK)
5129 switch (inst.reloc.type)
5130 {
5131 case BFD_RELOC_AARCH64_MOVW_G0_S:
5132 case BFD_RELOC_AARCH64_MOVW_G1_S:
5133 case BFD_RELOC_AARCH64_MOVW_G2_S:
5134 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5135 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5136 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5137 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5138 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5139 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5140 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5141 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5142 set_syntax_error
5143 (_("the specified relocation type is not allowed for MOVK"));
5144 return FALSE;
5145 default:
5146 break;
5147 }
5148
5149 switch (inst.reloc.type)
5150 {
5151 case BFD_RELOC_AARCH64_MOVW_G0:
5152 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5153 case BFD_RELOC_AARCH64_MOVW_G0_S:
5154 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5155 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5156 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5157 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5158 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5159 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5160 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5161 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5162 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5163 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5164 shift = 0;
5165 break;
5166 case BFD_RELOC_AARCH64_MOVW_G1:
5167 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5168 case BFD_RELOC_AARCH64_MOVW_G1_S:
5169 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5170 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5171 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5172 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5173 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5174 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5175 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5176 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5177 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5178 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5179 shift = 16;
5180 break;
5181 case BFD_RELOC_AARCH64_MOVW_G2:
5182 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5183 case BFD_RELOC_AARCH64_MOVW_G2_S:
5184 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5185 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5186 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5187 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5188 if (is32)
5189 {
5190 set_fatal_syntax_error
5191 (_("the specified relocation type is not allowed for 32-bit "
5192 "register"));
5193 return FALSE;
5194 }
5195 shift = 32;
5196 break;
5197 case BFD_RELOC_AARCH64_MOVW_G3:
5198 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5199 if (is32)
5200 {
5201 set_fatal_syntax_error
5202 (_("the specified relocation type is not allowed for 32-bit "
5203 "register"));
5204 return FALSE;
5205 }
5206 shift = 48;
5207 break;
5208 default:
5209 /* More cases should be added when more MOVW-related relocation types
5210 are supported in GAS. */
5211 gas_assert (aarch64_gas_internal_fixup_p ());
5212 /* The shift amount should have already been set by the parser. */
5213 return TRUE;
5214 }
5215 inst.base.operands[1].shifter.amount = shift;
5216 return TRUE;
5217 }
5218
5219 /* A primitive log calculator. */
5220
5221 static inline unsigned int
5222 get_logsz (unsigned int size)
5223 {
5224 const unsigned char ls[16] =
5225 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
5226 if (size > 16)
5227 {
5228 gas_assert (0);
5229 return -1;
5230 }
5231 gas_assert (ls[size - 1] != (unsigned char)-1);
5232 return ls[size - 1];
5233 }
5234
5235 /* Determine and return the real reloc type code for an instruction
5236 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
5237
5238 static inline bfd_reloc_code_real_type
5239 ldst_lo12_determine_real_reloc_type (void)
5240 {
5241 unsigned logsz;
5242 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
5243 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
5244
5245 const bfd_reloc_code_real_type reloc_ldst_lo12[5][5] = {
5246 {
5247 BFD_RELOC_AARCH64_LDST8_LO12,
5248 BFD_RELOC_AARCH64_LDST16_LO12,
5249 BFD_RELOC_AARCH64_LDST32_LO12,
5250 BFD_RELOC_AARCH64_LDST64_LO12,
5251 BFD_RELOC_AARCH64_LDST128_LO12
5252 },
5253 {
5254 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
5255 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
5256 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
5257 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
5258 BFD_RELOC_AARCH64_NONE
5259 },
5260 {
5261 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
5262 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
5263 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
5264 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
5265 BFD_RELOC_AARCH64_NONE
5266 },
5267 {
5268 BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12,
5269 BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12,
5270 BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12,
5271 BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12,
5272 BFD_RELOC_AARCH64_NONE
5273 },
5274 {
5275 BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC,
5276 BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC,
5277 BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC,
5278 BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC,
5279 BFD_RELOC_AARCH64_NONE
5280 }
5281 };
5282
5283 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
5284 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5285 || (inst.reloc.type
5286 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
5287 || (inst.reloc.type
5288 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
5289 || (inst.reloc.type
5290 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC));
5291 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
5292
5293 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
5294 opd1_qlf =
5295 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
5296 1, opd0_qlf, 0);
5297 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
5298
5299 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
5300 if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5301 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC
5302 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12
5303 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC)
5304 gas_assert (logsz <= 3);
5305 else
5306 gas_assert (logsz <= 4);
5307
5308 /* In reloc.c, these pseudo relocation types should be defined in similar
5309 order as above reloc_ldst_lo12 array. Because the array index calculation
5310 below relies on this. */
5311 return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
5312 }
5313
5314 /* Check whether a register list REGINFO is valid. The registers must be
5315 numbered in increasing order (modulo 32), in increments of one or two.
5316
5317 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
5318 increments of two.
5319
5320 Return FALSE if such a register list is invalid, otherwise return TRUE. */
5321
5322 static bfd_boolean
5323 reg_list_valid_p (uint32_t reginfo, int accept_alternate)
5324 {
5325 uint32_t i, nb_regs, prev_regno, incr;
5326
5327 nb_regs = 1 + (reginfo & 0x3);
5328 reginfo >>= 2;
5329 prev_regno = reginfo & 0x1f;
5330 incr = accept_alternate ? 2 : 1;
5331
5332 for (i = 1; i < nb_regs; ++i)
5333 {
5334 uint32_t curr_regno;
5335 reginfo >>= 5;
5336 curr_regno = reginfo & 0x1f;
5337 if (curr_regno != ((prev_regno + incr) & 0x1f))
5338 return FALSE;
5339 prev_regno = curr_regno;
5340 }
5341
5342 return TRUE;
5343 }
5344
5345 /* Generic instruction operand parser. This does no encoding and no
5346 semantic validation; it merely squirrels values away in the inst
5347 structure. Returns TRUE or FALSE depending on whether the
5348 specified grammar matched. */
5349
5350 static bfd_boolean
5351 parse_operands (char *str, const aarch64_opcode *opcode)
5352 {
5353 int i;
5354 char *backtrack_pos = 0;
5355 const enum aarch64_opnd *operands = opcode->operands;
5356 aarch64_reg_type imm_reg_type;
5357
5358 clear_error ();
5359 skip_whitespace (str);
5360
5361 if (AARCH64_CPU_HAS_FEATURE (AARCH64_FEATURE_SVE, *opcode->avariant))
5362 imm_reg_type = REG_TYPE_R_Z_SP_BHSDQ_VZP;
5363 else
5364 imm_reg_type = REG_TYPE_R_Z_BHSDQ_V;
5365
5366 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
5367 {
5368 int64_t val;
5369 const reg_entry *reg;
5370 int comma_skipped_p = 0;
5371 aarch64_reg_type rtype;
5372 struct vector_type_el vectype;
5373 aarch64_opnd_qualifier_t qualifier, base_qualifier, offset_qualifier;
5374 aarch64_opnd_info *info = &inst.base.operands[i];
5375 aarch64_reg_type reg_type;
5376
5377 DEBUG_TRACE ("parse operand %d", i);
5378
5379 /* Assign the operand code. */
5380 info->type = operands[i];
5381
5382 if (optional_operand_p (opcode, i))
5383 {
5384 /* Remember where we are in case we need to backtrack. */
5385 gas_assert (!backtrack_pos);
5386 backtrack_pos = str;
5387 }
5388
5389 /* Expect comma between operands; the backtrack mechanism will take
5390 care of cases of omitted optional operand. */
5391 if (i > 0 && ! skip_past_char (&str, ','))
5392 {
5393 set_syntax_error (_("comma expected between operands"));
5394 goto failure;
5395 }
5396 else
5397 comma_skipped_p = 1;
5398
5399 switch (operands[i])
5400 {
5401 case AARCH64_OPND_Rd:
5402 case AARCH64_OPND_Rn:
5403 case AARCH64_OPND_Rm:
5404 case AARCH64_OPND_Rt:
5405 case AARCH64_OPND_Rt2:
5406 case AARCH64_OPND_Rs:
5407 case AARCH64_OPND_Ra:
5408 case AARCH64_OPND_Rt_SYS:
5409 case AARCH64_OPND_PAIRREG:
5410 case AARCH64_OPND_SVE_Rm:
5411 po_int_reg_or_fail (REG_TYPE_R_Z);
5412 break;
5413
5414 case AARCH64_OPND_Rd_SP:
5415 case AARCH64_OPND_Rn_SP:
5416 case AARCH64_OPND_SVE_Rn_SP:
5417 case AARCH64_OPND_Rm_SP:
5418 po_int_reg_or_fail (REG_TYPE_R_SP);
5419 break;
5420
5421 case AARCH64_OPND_Rm_EXT:
5422 case AARCH64_OPND_Rm_SFT:
5423 po_misc_or_fail (parse_shifter_operand
5424 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
5425 ? SHIFTED_ARITH_IMM
5426 : SHIFTED_LOGIC_IMM)));
5427 if (!info->shifter.operator_present)
5428 {
5429 /* Default to LSL if not present. Libopcodes prefers shifter
5430 kind to be explicit. */
5431 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5432 info->shifter.kind = AARCH64_MOD_LSL;
5433 /* For Rm_EXT, libopcodes will carry out further check on whether
5434 or not stack pointer is used in the instruction (Recall that
5435 "the extend operator is not optional unless at least one of
5436 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
5437 }
5438 break;
5439
5440 case AARCH64_OPND_Fd:
5441 case AARCH64_OPND_Fn:
5442 case AARCH64_OPND_Fm:
5443 case AARCH64_OPND_Fa:
5444 case AARCH64_OPND_Ft:
5445 case AARCH64_OPND_Ft2:
5446 case AARCH64_OPND_Sd:
5447 case AARCH64_OPND_Sn:
5448 case AARCH64_OPND_Sm:
5449 case AARCH64_OPND_SVE_VZn:
5450 case AARCH64_OPND_SVE_Vd:
5451 case AARCH64_OPND_SVE_Vm:
5452 case AARCH64_OPND_SVE_Vn:
5453 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
5454 if (val == PARSE_FAIL)
5455 {
5456 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
5457 goto failure;
5458 }
5459 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
5460
5461 info->reg.regno = val;
5462 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
5463 break;
5464
5465 case AARCH64_OPND_SVE_Pd:
5466 case AARCH64_OPND_SVE_Pg3:
5467 case AARCH64_OPND_SVE_Pg4_5:
5468 case AARCH64_OPND_SVE_Pg4_10:
5469 case AARCH64_OPND_SVE_Pg4_16:
5470 case AARCH64_OPND_SVE_Pm:
5471 case AARCH64_OPND_SVE_Pn:
5472 case AARCH64_OPND_SVE_Pt:
5473 reg_type = REG_TYPE_PN;
5474 goto vector_reg;
5475
5476 case AARCH64_OPND_SVE_Za_5:
5477 case AARCH64_OPND_SVE_Za_16:
5478 case AARCH64_OPND_SVE_Zd:
5479 case AARCH64_OPND_SVE_Zm_5:
5480 case AARCH64_OPND_SVE_Zm_16:
5481 case AARCH64_OPND_SVE_Zn:
5482 case AARCH64_OPND_SVE_Zt:
5483 reg_type = REG_TYPE_ZN;
5484 goto vector_reg;
5485
5486 case AARCH64_OPND_Va:
5487 case AARCH64_OPND_Vd:
5488 case AARCH64_OPND_Vn:
5489 case AARCH64_OPND_Vm:
5490 reg_type = REG_TYPE_VN;
5491 vector_reg:
5492 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5493 if (val == PARSE_FAIL)
5494 {
5495 first_error (_(get_reg_expected_msg (reg_type)));
5496 goto failure;
5497 }
5498 if (vectype.defined & NTA_HASINDEX)
5499 goto failure;
5500
5501 info->reg.regno = val;
5502 if ((reg_type == REG_TYPE_PN || reg_type == REG_TYPE_ZN)
5503 && vectype.type == NT_invtype)
5504 /* Unqualified Pn and Zn registers are allowed in certain
5505 contexts. Rely on F_STRICT qualifier checking to catch
5506 invalid uses. */
5507 info->qualifier = AARCH64_OPND_QLF_NIL;
5508 else
5509 {
5510 info->qualifier = vectype_to_qualifier (&vectype);
5511 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5512 goto failure;
5513 }
5514 break;
5515
5516 case AARCH64_OPND_VdD1:
5517 case AARCH64_OPND_VnD1:
5518 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5519 if (val == PARSE_FAIL)
5520 {
5521 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5522 goto failure;
5523 }
5524 if (vectype.type != NT_d || vectype.index != 1)
5525 {
5526 set_fatal_syntax_error
5527 (_("the top half of a 128-bit FP/SIMD register is expected"));
5528 goto failure;
5529 }
5530 info->reg.regno = val;
5531 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
5532 here; it is correct for the purpose of encoding/decoding since
5533 only the register number is explicitly encoded in the related
5534 instructions, although this appears a bit hacky. */
5535 info->qualifier = AARCH64_OPND_QLF_S_D;
5536 break;
5537
5538 case AARCH64_OPND_SVE_Zm3_INDEX:
5539 case AARCH64_OPND_SVE_Zm3_22_INDEX:
5540 case AARCH64_OPND_SVE_Zm4_INDEX:
5541 case AARCH64_OPND_SVE_Zn_INDEX:
5542 reg_type = REG_TYPE_ZN;
5543 goto vector_reg_index;
5544
5545 case AARCH64_OPND_Ed:
5546 case AARCH64_OPND_En:
5547 case AARCH64_OPND_Em:
5548 case AARCH64_OPND_SM3_IMM2:
5549 reg_type = REG_TYPE_VN;
5550 vector_reg_index:
5551 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5552 if (val == PARSE_FAIL)
5553 {
5554 first_error (_(get_reg_expected_msg (reg_type)));
5555 goto failure;
5556 }
5557 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
5558 goto failure;
5559
5560 info->reglane.regno = val;
5561 info->reglane.index = vectype.index;
5562 info->qualifier = vectype_to_qualifier (&vectype);
5563 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5564 goto failure;
5565 break;
5566
5567 case AARCH64_OPND_SVE_ZnxN:
5568 case AARCH64_OPND_SVE_ZtxN:
5569 reg_type = REG_TYPE_ZN;
5570 goto vector_reg_list;
5571
5572 case AARCH64_OPND_LVn:
5573 case AARCH64_OPND_LVt:
5574 case AARCH64_OPND_LVt_AL:
5575 case AARCH64_OPND_LEt:
5576 reg_type = REG_TYPE_VN;
5577 vector_reg_list:
5578 if (reg_type == REG_TYPE_ZN
5579 && get_opcode_dependent_value (opcode) == 1
5580 && *str != '{')
5581 {
5582 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5583 if (val == PARSE_FAIL)
5584 {
5585 first_error (_(get_reg_expected_msg (reg_type)));
5586 goto failure;
5587 }
5588 info->reglist.first_regno = val;
5589 info->reglist.num_regs = 1;
5590 }
5591 else
5592 {
5593 val = parse_vector_reg_list (&str, reg_type, &vectype);
5594 if (val == PARSE_FAIL)
5595 goto failure;
5596 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
5597 {
5598 set_fatal_syntax_error (_("invalid register list"));
5599 goto failure;
5600 }
5601 info->reglist.first_regno = (val >> 2) & 0x1f;
5602 info->reglist.num_regs = (val & 0x3) + 1;
5603 }
5604 if (operands[i] == AARCH64_OPND_LEt)
5605 {
5606 if (!(vectype.defined & NTA_HASINDEX))
5607 goto failure;
5608 info->reglist.has_index = 1;
5609 info->reglist.index = vectype.index;
5610 }
5611 else
5612 {
5613 if (vectype.defined & NTA_HASINDEX)
5614 goto failure;
5615 if (!(vectype.defined & NTA_HASTYPE))
5616 {
5617 if (reg_type == REG_TYPE_ZN)
5618 set_fatal_syntax_error (_("missing type suffix"));
5619 goto failure;
5620 }
5621 }
5622 info->qualifier = vectype_to_qualifier (&vectype);
5623 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5624 goto failure;
5625 break;
5626
5627 case AARCH64_OPND_CRn:
5628 case AARCH64_OPND_CRm:
5629 {
5630 char prefix = *(str++);
5631 if (prefix != 'c' && prefix != 'C')
5632 goto failure;
5633
5634 po_imm_nc_or_fail ();
5635 if (val > 15)
5636 {
5637 set_fatal_syntax_error (_(N_ ("C0 - C15 expected")));
5638 goto failure;
5639 }
5640 info->qualifier = AARCH64_OPND_QLF_CR;
5641 info->imm.value = val;
5642 break;
5643 }
5644
5645 case AARCH64_OPND_SHLL_IMM:
5646 case AARCH64_OPND_IMM_VLSR:
5647 po_imm_or_fail (1, 64);
5648 info->imm.value = val;
5649 break;
5650
5651 case AARCH64_OPND_CCMP_IMM:
5652 case AARCH64_OPND_SIMM5:
5653 case AARCH64_OPND_FBITS:
5654 case AARCH64_OPND_UIMM4:
5655 case AARCH64_OPND_UIMM3_OP1:
5656 case AARCH64_OPND_UIMM3_OP2:
5657 case AARCH64_OPND_IMM_VLSL:
5658 case AARCH64_OPND_IMM:
5659 case AARCH64_OPND_IMM_2:
5660 case AARCH64_OPND_WIDTH:
5661 case AARCH64_OPND_SVE_INV_LIMM:
5662 case AARCH64_OPND_SVE_LIMM:
5663 case AARCH64_OPND_SVE_LIMM_MOV:
5664 case AARCH64_OPND_SVE_SHLIMM_PRED:
5665 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
5666 case AARCH64_OPND_SVE_SHRIMM_PRED:
5667 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
5668 case AARCH64_OPND_SVE_SIMM5:
5669 case AARCH64_OPND_SVE_SIMM5B:
5670 case AARCH64_OPND_SVE_SIMM6:
5671 case AARCH64_OPND_SVE_SIMM8:
5672 case AARCH64_OPND_SVE_UIMM3:
5673 case AARCH64_OPND_SVE_UIMM7:
5674 case AARCH64_OPND_SVE_UIMM8:
5675 case AARCH64_OPND_SVE_UIMM8_53:
5676 case AARCH64_OPND_IMM_ROT1:
5677 case AARCH64_OPND_IMM_ROT2:
5678 case AARCH64_OPND_IMM_ROT3:
5679 case AARCH64_OPND_SVE_IMM_ROT1:
5680 case AARCH64_OPND_SVE_IMM_ROT2:
5681 po_imm_nc_or_fail ();
5682 info->imm.value = val;
5683 break;
5684
5685 case AARCH64_OPND_SVE_AIMM:
5686 case AARCH64_OPND_SVE_ASIMM:
5687 po_imm_nc_or_fail ();
5688 info->imm.value = val;
5689 skip_whitespace (str);
5690 if (skip_past_comma (&str))
5691 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5692 else
5693 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5694 break;
5695
5696 case AARCH64_OPND_SVE_PATTERN:
5697 po_enum_or_fail (aarch64_sve_pattern_array);
5698 info->imm.value = val;
5699 break;
5700
5701 case AARCH64_OPND_SVE_PATTERN_SCALED:
5702 po_enum_or_fail (aarch64_sve_pattern_array);
5703 info->imm.value = val;
5704 if (skip_past_comma (&str)
5705 && !parse_shift (&str, info, SHIFTED_MUL))
5706 goto failure;
5707 if (!info->shifter.operator_present)
5708 {
5709 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5710 info->shifter.kind = AARCH64_MOD_MUL;
5711 info->shifter.amount = 1;
5712 }
5713 break;
5714
5715 case AARCH64_OPND_SVE_PRFOP:
5716 po_enum_or_fail (aarch64_sve_prfop_array);
5717 info->imm.value = val;
5718 break;
5719
5720 case AARCH64_OPND_UIMM7:
5721 po_imm_or_fail (0, 127);
5722 info->imm.value = val;
5723 break;
5724
5725 case AARCH64_OPND_IDX:
5726 case AARCH64_OPND_MASK:
5727 case AARCH64_OPND_BIT_NUM:
5728 case AARCH64_OPND_IMMR:
5729 case AARCH64_OPND_IMMS:
5730 po_imm_or_fail (0, 63);
5731 info->imm.value = val;
5732 break;
5733
5734 case AARCH64_OPND_IMM0:
5735 po_imm_nc_or_fail ();
5736 if (val != 0)
5737 {
5738 set_fatal_syntax_error (_("immediate zero expected"));
5739 goto failure;
5740 }
5741 info->imm.value = 0;
5742 break;
5743
5744 case AARCH64_OPND_FPIMM0:
5745 {
5746 int qfloat;
5747 bfd_boolean res1 = FALSE, res2 = FALSE;
5748 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
5749 it is probably not worth the effort to support it. */
5750 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE,
5751 imm_reg_type))
5752 && (error_p ()
5753 || !(res2 = parse_constant_immediate (&str, &val,
5754 imm_reg_type))))
5755 goto failure;
5756 if ((res1 && qfloat == 0) || (res2 && val == 0))
5757 {
5758 info->imm.value = 0;
5759 info->imm.is_fp = 1;
5760 break;
5761 }
5762 set_fatal_syntax_error (_("immediate zero expected"));
5763 goto failure;
5764 }
5765
5766 case AARCH64_OPND_IMM_MOV:
5767 {
5768 char *saved = str;
5769 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
5770 reg_name_p (str, REG_TYPE_VN))
5771 goto failure;
5772 str = saved;
5773 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5774 GE_OPT_PREFIX, 1));
5775 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
5776 later. fix_mov_imm_insn will try to determine a machine
5777 instruction (MOVZ, MOVN or ORR) for it and will issue an error
5778 message if the immediate cannot be moved by a single
5779 instruction. */
5780 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5781 inst.base.operands[i].skip = 1;
5782 }
5783 break;
5784
5785 case AARCH64_OPND_SIMD_IMM:
5786 case AARCH64_OPND_SIMD_IMM_SFT:
5787 if (! parse_big_immediate (&str, &val, imm_reg_type))
5788 goto failure;
5789 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5790 /* addr_off_p */ 0,
5791 /* need_libopcodes_p */ 1,
5792 /* skip_p */ 1);
5793 /* Parse shift.
5794 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
5795 shift, we don't check it here; we leave the checking to
5796 the libopcodes (operand_general_constraint_met_p). By
5797 doing this, we achieve better diagnostics. */
5798 if (skip_past_comma (&str)
5799 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
5800 goto failure;
5801 if (!info->shifter.operator_present
5802 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
5803 {
5804 /* Default to LSL if not present. Libopcodes prefers shifter
5805 kind to be explicit. */
5806 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5807 info->shifter.kind = AARCH64_MOD_LSL;
5808 }
5809 break;
5810
5811 case AARCH64_OPND_FPIMM:
5812 case AARCH64_OPND_SIMD_FPIMM:
5813 case AARCH64_OPND_SVE_FPIMM8:
5814 {
5815 int qfloat;
5816 bfd_boolean dp_p;
5817
5818 dp_p = double_precision_operand_p (&inst.base.operands[0]);
5819 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type)
5820 || !aarch64_imm_float_p (qfloat))
5821 {
5822 if (!error_p ())
5823 set_fatal_syntax_error (_("invalid floating-point"
5824 " constant"));
5825 goto failure;
5826 }
5827 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
5828 inst.base.operands[i].imm.is_fp = 1;
5829 }
5830 break;
5831
5832 case AARCH64_OPND_SVE_I1_HALF_ONE:
5833 case AARCH64_OPND_SVE_I1_HALF_TWO:
5834 case AARCH64_OPND_SVE_I1_ZERO_ONE:
5835 {
5836 int qfloat;
5837 bfd_boolean dp_p;
5838
5839 dp_p = double_precision_operand_p (&inst.base.operands[0]);
5840 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type))
5841 {
5842 if (!error_p ())
5843 set_fatal_syntax_error (_("invalid floating-point"
5844 " constant"));
5845 goto failure;
5846 }
5847 inst.base.operands[i].imm.value = qfloat;
5848 inst.base.operands[i].imm.is_fp = 1;
5849 }
5850 break;
5851
5852 case AARCH64_OPND_LIMM:
5853 po_misc_or_fail (parse_shifter_operand (&str, info,
5854 SHIFTED_LOGIC_IMM));
5855 if (info->shifter.operator_present)
5856 {
5857 set_fatal_syntax_error
5858 (_("shift not allowed for bitmask immediate"));
5859 goto failure;
5860 }
5861 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5862 /* addr_off_p */ 0,
5863 /* need_libopcodes_p */ 1,
5864 /* skip_p */ 1);
5865 break;
5866
5867 case AARCH64_OPND_AIMM:
5868 if (opcode->op == OP_ADD)
5869 /* ADD may have relocation types. */
5870 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5871 SHIFTED_ARITH_IMM));
5872 else
5873 po_misc_or_fail (parse_shifter_operand (&str, info,
5874 SHIFTED_ARITH_IMM));
5875 switch (inst.reloc.type)
5876 {
5877 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5878 info->shifter.amount = 12;
5879 break;
5880 case BFD_RELOC_UNUSED:
5881 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5882 if (info->shifter.kind != AARCH64_MOD_NONE)
5883 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5884 inst.reloc.pc_rel = 0;
5885 break;
5886 default:
5887 break;
5888 }
5889 info->imm.value = 0;
5890 if (!info->shifter.operator_present)
5891 {
5892 /* Default to LSL if not present. Libopcodes prefers shifter
5893 kind to be explicit. */
5894 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5895 info->shifter.kind = AARCH64_MOD_LSL;
5896 }
5897 break;
5898
5899 case AARCH64_OPND_HALF:
5900 {
5901 /* #<imm16> or relocation. */
5902 int internal_fixup_p;
5903 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
5904 if (internal_fixup_p)
5905 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5906 skip_whitespace (str);
5907 if (skip_past_comma (&str))
5908 {
5909 /* {, LSL #<shift>} */
5910 if (! aarch64_gas_internal_fixup_p ())
5911 {
5912 set_fatal_syntax_error (_("can't mix relocation modifier "
5913 "with explicit shift"));
5914 goto failure;
5915 }
5916 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5917 }
5918 else
5919 inst.base.operands[i].shifter.amount = 0;
5920 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5921 inst.base.operands[i].imm.value = 0;
5922 if (! process_movw_reloc_info ())
5923 goto failure;
5924 }
5925 break;
5926
5927 case AARCH64_OPND_EXCEPTION:
5928 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp,
5929 imm_reg_type));
5930 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5931 /* addr_off_p */ 0,
5932 /* need_libopcodes_p */ 0,
5933 /* skip_p */ 1);
5934 break;
5935
5936 case AARCH64_OPND_NZCV:
5937 {
5938 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5939 if (nzcv != NULL)
5940 {
5941 str += 4;
5942 info->imm.value = nzcv->value;
5943 break;
5944 }
5945 po_imm_or_fail (0, 15);
5946 info->imm.value = val;
5947 }
5948 break;
5949
5950 case AARCH64_OPND_COND:
5951 case AARCH64_OPND_COND1:
5952 {
5953 char *start = str;
5954 do
5955 str++;
5956 while (ISALPHA (*str));
5957 info->cond = hash_find_n (aarch64_cond_hsh, start, str - start);
5958 if (info->cond == NULL)
5959 {
5960 set_syntax_error (_("invalid condition"));
5961 goto failure;
5962 }
5963 else if (operands[i] == AARCH64_OPND_COND1
5964 && (info->cond->value & 0xe) == 0xe)
5965 {
5966 /* Do not allow AL or NV. */
5967 set_default_error ();
5968 goto failure;
5969 }
5970 }
5971 break;
5972
5973 case AARCH64_OPND_ADDR_ADRP:
5974 po_misc_or_fail (parse_adrp (&str));
5975 /* Clear the value as operand needs to be relocated. */
5976 info->imm.value = 0;
5977 break;
5978
5979 case AARCH64_OPND_ADDR_PCREL14:
5980 case AARCH64_OPND_ADDR_PCREL19:
5981 case AARCH64_OPND_ADDR_PCREL21:
5982 case AARCH64_OPND_ADDR_PCREL26:
5983 po_misc_or_fail (parse_address (&str, info));
5984 if (!info->addr.pcrel)
5985 {
5986 set_syntax_error (_("invalid pc-relative address"));
5987 goto failure;
5988 }
5989 if (inst.gen_lit_pool
5990 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5991 {
5992 /* Only permit "=value" in the literal load instructions.
5993 The literal will be generated by programmer_friendly_fixup. */
5994 set_syntax_error (_("invalid use of \"=immediate\""));
5995 goto failure;
5996 }
5997 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5998 {
5999 set_syntax_error (_("unrecognized relocation suffix"));
6000 goto failure;
6001 }
6002 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
6003 {
6004 info->imm.value = inst.reloc.exp.X_add_number;
6005 inst.reloc.type = BFD_RELOC_UNUSED;
6006 }
6007 else
6008 {
6009 info->imm.value = 0;
6010 if (inst.reloc.type == BFD_RELOC_UNUSED)
6011 switch (opcode->iclass)
6012 {
6013 case compbranch:
6014 case condbranch:
6015 /* e.g. CBZ or B.COND */
6016 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
6017 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
6018 break;
6019 case testbranch:
6020 /* e.g. TBZ */
6021 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
6022 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
6023 break;
6024 case branch_imm:
6025 /* e.g. B or BL */
6026 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
6027 inst.reloc.type =
6028 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
6029 : BFD_RELOC_AARCH64_JUMP26;
6030 break;
6031 case loadlit:
6032 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
6033 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
6034 break;
6035 case pcreladdr:
6036 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
6037 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
6038 break;
6039 default:
6040 gas_assert (0);
6041 abort ();
6042 }
6043 inst.reloc.pc_rel = 1;
6044 }
6045 break;
6046
6047 case AARCH64_OPND_ADDR_SIMPLE:
6048 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
6049 {
6050 /* [<Xn|SP>{, #<simm>}] */
6051 char *start = str;
6052 /* First use the normal address-parsing routines, to get
6053 the usual syntax errors. */
6054 po_misc_or_fail (parse_address (&str, info));
6055 if (info->addr.pcrel || info->addr.offset.is_reg
6056 || !info->addr.preind || info->addr.postind
6057 || info->addr.writeback)
6058 {
6059 set_syntax_error (_("invalid addressing mode"));
6060 goto failure;
6061 }
6062
6063 /* Then retry, matching the specific syntax of these addresses. */
6064 str = start;
6065 po_char_or_fail ('[');
6066 po_reg_or_fail (REG_TYPE_R64_SP);
6067 /* Accept optional ", #0". */
6068 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
6069 && skip_past_char (&str, ','))
6070 {
6071 skip_past_char (&str, '#');
6072 if (! skip_past_char (&str, '0'))
6073 {
6074 set_fatal_syntax_error
6075 (_("the optional immediate offset can only be 0"));
6076 goto failure;
6077 }
6078 }
6079 po_char_or_fail (']');
6080 break;
6081 }
6082
6083 case AARCH64_OPND_ADDR_REGOFF:
6084 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
6085 po_misc_or_fail (parse_address (&str, info));
6086 regoff_addr:
6087 if (info->addr.pcrel || !info->addr.offset.is_reg
6088 || !info->addr.preind || info->addr.postind
6089 || info->addr.writeback)
6090 {
6091 set_syntax_error (_("invalid addressing mode"));
6092 goto failure;
6093 }
6094 if (!info->shifter.operator_present)
6095 {
6096 /* Default to LSL if not present. Libopcodes prefers shifter
6097 kind to be explicit. */
6098 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
6099 info->shifter.kind = AARCH64_MOD_LSL;
6100 }
6101 /* Qualifier to be deduced by libopcodes. */
6102 break;
6103
6104 case AARCH64_OPND_ADDR_SIMM7:
6105 po_misc_or_fail (parse_address (&str, info));
6106 if (info->addr.pcrel || info->addr.offset.is_reg
6107 || (!info->addr.preind && !info->addr.postind))
6108 {
6109 set_syntax_error (_("invalid addressing mode"));
6110 goto failure;
6111 }
6112 if (inst.reloc.type != BFD_RELOC_UNUSED)
6113 {
6114 set_syntax_error (_("relocation not allowed"));
6115 goto failure;
6116 }
6117 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6118 /* addr_off_p */ 1,
6119 /* need_libopcodes_p */ 1,
6120 /* skip_p */ 0);
6121 break;
6122
6123 case AARCH64_OPND_ADDR_SIMM9:
6124 case AARCH64_OPND_ADDR_SIMM9_2:
6125 po_misc_or_fail (parse_address (&str, info));
6126 if (info->addr.pcrel || info->addr.offset.is_reg
6127 || (!info->addr.preind && !info->addr.postind)
6128 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
6129 && info->addr.writeback))
6130 {
6131 set_syntax_error (_("invalid addressing mode"));
6132 goto failure;
6133 }
6134 if (inst.reloc.type != BFD_RELOC_UNUSED)
6135 {
6136 set_syntax_error (_("relocation not allowed"));
6137 goto failure;
6138 }
6139 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6140 /* addr_off_p */ 1,
6141 /* need_libopcodes_p */ 1,
6142 /* skip_p */ 0);
6143 break;
6144
6145 case AARCH64_OPND_ADDR_SIMM10:
6146 case AARCH64_OPND_ADDR_OFFSET:
6147 po_misc_or_fail (parse_address (&str, info));
6148 if (info->addr.pcrel || info->addr.offset.is_reg
6149 || !info->addr.preind || info->addr.postind)
6150 {
6151 set_syntax_error (_("invalid addressing mode"));
6152 goto failure;
6153 }
6154 if (inst.reloc.type != BFD_RELOC_UNUSED)
6155 {
6156 set_syntax_error (_("relocation not allowed"));
6157 goto failure;
6158 }
6159 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6160 /* addr_off_p */ 1,
6161 /* need_libopcodes_p */ 1,
6162 /* skip_p */ 0);
6163 break;
6164
6165 case AARCH64_OPND_ADDR_UIMM12:
6166 po_misc_or_fail (parse_address (&str, info));
6167 if (info->addr.pcrel || info->addr.offset.is_reg
6168 || !info->addr.preind || info->addr.writeback)
6169 {
6170 set_syntax_error (_("invalid addressing mode"));
6171 goto failure;
6172 }
6173 if (inst.reloc.type == BFD_RELOC_UNUSED)
6174 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
6175 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
6176 || (inst.reloc.type
6177 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
6178 || (inst.reloc.type
6179 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
6180 || (inst.reloc.type
6181 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
6182 || (inst.reloc.type
6183 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC))
6184 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
6185 /* Leave qualifier to be determined by libopcodes. */
6186 break;
6187
6188 case AARCH64_OPND_SIMD_ADDR_POST:
6189 /* [<Xn|SP>], <Xm|#<amount>> */
6190 po_misc_or_fail (parse_address (&str, info));
6191 if (!info->addr.postind || !info->addr.writeback)
6192 {
6193 set_syntax_error (_("invalid addressing mode"));
6194 goto failure;
6195 }
6196 if (!info->addr.offset.is_reg)
6197 {
6198 if (inst.reloc.exp.X_op == O_constant)
6199 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6200 else
6201 {
6202 set_fatal_syntax_error
6203 (_("writeback value must be an immediate constant"));
6204 goto failure;
6205 }
6206 }
6207 /* No qualifier. */
6208 break;
6209
6210 case AARCH64_OPND_SVE_ADDR_RI_S4x16:
6211 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
6212 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
6213 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
6214 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
6215 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
6216 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
6217 case AARCH64_OPND_SVE_ADDR_RI_U6:
6218 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
6219 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
6220 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
6221 /* [X<n>{, #imm, MUL VL}]
6222 [X<n>{, #imm}]
6223 but recognizing SVE registers. */
6224 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6225 &offset_qualifier));
6226 if (base_qualifier != AARCH64_OPND_QLF_X)
6227 {
6228 set_syntax_error (_("invalid addressing mode"));
6229 goto failure;
6230 }
6231 sve_regimm:
6232 if (info->addr.pcrel || info->addr.offset.is_reg
6233 || !info->addr.preind || info->addr.writeback)
6234 {
6235 set_syntax_error (_("invalid addressing mode"));
6236 goto failure;
6237 }
6238 if (inst.reloc.type != BFD_RELOC_UNUSED
6239 || inst.reloc.exp.X_op != O_constant)
6240 {
6241 /* Make sure this has priority over
6242 "invalid addressing mode". */
6243 set_fatal_syntax_error (_("constant offset required"));
6244 goto failure;
6245 }
6246 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6247 break;
6248
6249 case AARCH64_OPND_SVE_ADDR_R:
6250 /* [<Xn|SP>{, <R><m>}]
6251 but recognizing SVE registers. */
6252 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6253 &offset_qualifier));
6254 if (offset_qualifier == AARCH64_OPND_QLF_NIL)
6255 {
6256 offset_qualifier = AARCH64_OPND_QLF_X;
6257 info->addr.offset.is_reg = 1;
6258 info->addr.offset.regno = 31;
6259 }
6260 else if (base_qualifier != AARCH64_OPND_QLF_X
6261 || offset_qualifier != AARCH64_OPND_QLF_X)
6262 {
6263 set_syntax_error (_("invalid addressing mode"));
6264 goto failure;
6265 }
6266 goto regoff_addr;
6267
6268 case AARCH64_OPND_SVE_ADDR_RR:
6269 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
6270 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
6271 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
6272 case AARCH64_OPND_SVE_ADDR_RX:
6273 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
6274 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
6275 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
6276 /* [<Xn|SP>, <R><m>{, lsl #<amount>}]
6277 but recognizing SVE registers. */
6278 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6279 &offset_qualifier));
6280 if (base_qualifier != AARCH64_OPND_QLF_X
6281 || offset_qualifier != AARCH64_OPND_QLF_X)
6282 {
6283 set_syntax_error (_("invalid addressing mode"));
6284 goto failure;
6285 }
6286 goto regoff_addr;
6287
6288 case AARCH64_OPND_SVE_ADDR_RZ:
6289 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
6290 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
6291 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
6292 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
6293 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
6294 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
6295 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
6296 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
6297 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
6298 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
6299 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
6300 /* [<Xn|SP>, Z<m>.D{, LSL #<amount>}]
6301 [<Xn|SP>, Z<m>.<T>, <extend> {#<amount>}] */
6302 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6303 &offset_qualifier));
6304 if (base_qualifier != AARCH64_OPND_QLF_X
6305 || (offset_qualifier != AARCH64_OPND_QLF_S_S
6306 && offset_qualifier != AARCH64_OPND_QLF_S_D))
6307 {
6308 set_syntax_error (_("invalid addressing mode"));
6309 goto failure;
6310 }
6311 info->qualifier = offset_qualifier;
6312 goto regoff_addr;
6313
6314 case AARCH64_OPND_SVE_ADDR_ZI_U5:
6315 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
6316 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
6317 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
6318 /* [Z<n>.<T>{, #imm}] */
6319 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6320 &offset_qualifier));
6321 if (base_qualifier != AARCH64_OPND_QLF_S_S
6322 && base_qualifier != AARCH64_OPND_QLF_S_D)
6323 {
6324 set_syntax_error (_("invalid addressing mode"));
6325 goto failure;
6326 }
6327 info->qualifier = base_qualifier;
6328 goto sve_regimm;
6329
6330 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
6331 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
6332 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
6333 /* [Z<n>.<T>, Z<m>.<T>{, LSL #<amount>}]
6334 [Z<n>.D, Z<m>.D, <extend> {#<amount>}]
6335
6336 We don't reject:
6337
6338 [Z<n>.S, Z<m>.S, <extend> {#<amount>}]
6339
6340 here since we get better error messages by leaving it to
6341 the qualifier checking routines. */
6342 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6343 &offset_qualifier));
6344 if ((base_qualifier != AARCH64_OPND_QLF_S_S
6345 && base_qualifier != AARCH64_OPND_QLF_S_D)
6346 || offset_qualifier != base_qualifier)
6347 {
6348 set_syntax_error (_("invalid addressing mode"));
6349 goto failure;
6350 }
6351 info->qualifier = base_qualifier;
6352 goto regoff_addr;
6353
6354 case AARCH64_OPND_SYSREG:
6355 {
6356 uint32_t sysreg_flags;
6357 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0,
6358 &sysreg_flags)) == PARSE_FAIL)
6359 {
6360 set_syntax_error (_("unknown or missing system register name"));
6361 goto failure;
6362 }
6363 inst.base.operands[i].sysreg.value = val;
6364 inst.base.operands[i].sysreg.flags = sysreg_flags;
6365 break;
6366 }
6367
6368 case AARCH64_OPND_PSTATEFIELD:
6369 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1, NULL))
6370 == PARSE_FAIL)
6371 {
6372 set_syntax_error (_("unknown or missing PSTATE field name"));
6373 goto failure;
6374 }
6375 inst.base.operands[i].pstatefield = val;
6376 break;
6377
6378 case AARCH64_OPND_SYSREG_IC:
6379 inst.base.operands[i].sysins_op =
6380 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
6381 goto sys_reg_ins;
6382 case AARCH64_OPND_SYSREG_DC:
6383 inst.base.operands[i].sysins_op =
6384 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
6385 goto sys_reg_ins;
6386 case AARCH64_OPND_SYSREG_AT:
6387 inst.base.operands[i].sysins_op =
6388 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
6389 goto sys_reg_ins;
6390 case AARCH64_OPND_SYSREG_TLBI:
6391 inst.base.operands[i].sysins_op =
6392 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
6393 sys_reg_ins:
6394 if (inst.base.operands[i].sysins_op == NULL)
6395 {
6396 set_fatal_syntax_error ( _("unknown or missing operation name"));
6397 goto failure;
6398 }
6399 break;
6400
6401 case AARCH64_OPND_BARRIER:
6402 case AARCH64_OPND_BARRIER_ISB:
6403 val = parse_barrier (&str);
6404 if (val != PARSE_FAIL
6405 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
6406 {
6407 /* ISB only accepts options name 'sy'. */
6408 set_syntax_error
6409 (_("the specified option is not accepted in ISB"));
6410 /* Turn off backtrack as this optional operand is present. */
6411 backtrack_pos = 0;
6412 goto failure;
6413 }
6414 /* This is an extension to accept a 0..15 immediate. */
6415 if (val == PARSE_FAIL)
6416 po_imm_or_fail (0, 15);
6417 info->barrier = aarch64_barrier_options + val;
6418 break;
6419
6420 case AARCH64_OPND_PRFOP:
6421 val = parse_pldop (&str);
6422 /* This is an extension to accept a 0..31 immediate. */
6423 if (val == PARSE_FAIL)
6424 po_imm_or_fail (0, 31);
6425 inst.base.operands[i].prfop = aarch64_prfops + val;
6426 break;
6427
6428 case AARCH64_OPND_BARRIER_PSB:
6429 val = parse_barrier_psb (&str, &(info->hint_option));
6430 if (val == PARSE_FAIL)
6431 goto failure;
6432 break;
6433
6434 default:
6435 as_fatal (_("unhandled operand code %d"), operands[i]);
6436 }
6437
6438 /* If we get here, this operand was successfully parsed. */
6439 inst.base.operands[i].present = 1;
6440 continue;
6441
6442 failure:
6443 /* The parse routine should already have set the error, but in case
6444 not, set a default one here. */
6445 if (! error_p ())
6446 set_default_error ();
6447
6448 if (! backtrack_pos)
6449 goto parse_operands_return;
6450
6451 {
6452 /* We reach here because this operand is marked as optional, and
6453 either no operand was supplied or the operand was supplied but it
6454 was syntactically incorrect. In the latter case we report an
6455 error. In the former case we perform a few more checks before
6456 dropping through to the code to insert the default operand. */
6457
6458 char *tmp = backtrack_pos;
6459 char endchar = END_OF_INSN;
6460
6461 if (i != (aarch64_num_of_operands (opcode) - 1))
6462 endchar = ',';
6463 skip_past_char (&tmp, ',');
6464
6465 if (*tmp != endchar)
6466 /* The user has supplied an operand in the wrong format. */
6467 goto parse_operands_return;
6468
6469 /* Make sure there is not a comma before the optional operand.
6470 For example the fifth operand of 'sys' is optional:
6471
6472 sys #0,c0,c0,#0, <--- wrong
6473 sys #0,c0,c0,#0 <--- correct. */
6474 if (comma_skipped_p && i && endchar == END_OF_INSN)
6475 {
6476 set_fatal_syntax_error
6477 (_("unexpected comma before the omitted optional operand"));
6478 goto parse_operands_return;
6479 }
6480 }
6481
6482 /* Reaching here means we are dealing with an optional operand that is
6483 omitted from the assembly line. */
6484 gas_assert (optional_operand_p (opcode, i));
6485 info->present = 0;
6486 process_omitted_operand (operands[i], opcode, i, info);
6487
6488 /* Try again, skipping the optional operand at backtrack_pos. */
6489 str = backtrack_pos;
6490 backtrack_pos = 0;
6491
6492 /* Clear any error record after the omitted optional operand has been
6493 successfully handled. */
6494 clear_error ();
6495 }
6496
6497 /* Check if we have parsed all the operands. */
6498 if (*str != '\0' && ! error_p ())
6499 {
6500 /* Set I to the index of the last present operand; this is
6501 for the purpose of diagnostics. */
6502 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
6503 ;
6504 set_fatal_syntax_error
6505 (_("unexpected characters following instruction"));
6506 }
6507
6508 parse_operands_return:
6509
6510 if (error_p ())
6511 {
6512 DEBUG_TRACE ("parsing FAIL: %s - %s",
6513 operand_mismatch_kind_names[get_error_kind ()],
6514 get_error_message ());
6515 /* Record the operand error properly; this is useful when there
6516 are multiple instruction templates for a mnemonic name, so that
6517 later on, we can select the error that most closely describes
6518 the problem. */
6519 record_operand_error (opcode, i, get_error_kind (),
6520 get_error_message ());
6521 return FALSE;
6522 }
6523 else
6524 {
6525 DEBUG_TRACE ("parsing SUCCESS");
6526 return TRUE;
6527 }
6528 }
6529
6530 /* It does some fix-up to provide some programmer friendly feature while
6531 keeping the libopcodes happy, i.e. libopcodes only accepts
6532 the preferred architectural syntax.
6533 Return FALSE if there is any failure; otherwise return TRUE. */
6534
6535 static bfd_boolean
6536 programmer_friendly_fixup (aarch64_instruction *instr)
6537 {
6538 aarch64_inst *base = &instr->base;
6539 const aarch64_opcode *opcode = base->opcode;
6540 enum aarch64_op op = opcode->op;
6541 aarch64_opnd_info *operands = base->operands;
6542
6543 DEBUG_TRACE ("enter");
6544
6545 switch (opcode->iclass)
6546 {
6547 case testbranch:
6548 /* TBNZ Xn|Wn, #uimm6, label
6549 Test and Branch Not Zero: conditionally jumps to label if bit number
6550 uimm6 in register Xn is not zero. The bit number implies the width of
6551 the register, which may be written and should be disassembled as Wn if
6552 uimm is less than 32. */
6553 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
6554 {
6555 if (operands[1].imm.value >= 32)
6556 {
6557 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
6558 0, 31);
6559 return FALSE;
6560 }
6561 operands[0].qualifier = AARCH64_OPND_QLF_X;
6562 }
6563 break;
6564 case loadlit:
6565 /* LDR Wt, label | =value
6566 As a convenience assemblers will typically permit the notation
6567 "=value" in conjunction with the pc-relative literal load instructions
6568 to automatically place an immediate value or symbolic address in a
6569 nearby literal pool and generate a hidden label which references it.
6570 ISREG has been set to 0 in the case of =value. */
6571 if (instr->gen_lit_pool
6572 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
6573 {
6574 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
6575 if (op == OP_LDRSW_LIT)
6576 size = 4;
6577 if (instr->reloc.exp.X_op != O_constant
6578 && instr->reloc.exp.X_op != O_big
6579 && instr->reloc.exp.X_op != O_symbol)
6580 {
6581 record_operand_error (opcode, 1,
6582 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
6583 _("constant expression expected"));
6584 return FALSE;
6585 }
6586 if (! add_to_lit_pool (&instr->reloc.exp, size))
6587 {
6588 record_operand_error (opcode, 1,
6589 AARCH64_OPDE_OTHER_ERROR,
6590 _("literal pool insertion failed"));
6591 return FALSE;
6592 }
6593 }
6594 break;
6595 case log_shift:
6596 case bitfield:
6597 /* UXT[BHW] Wd, Wn
6598 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
6599 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
6600 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
6601 A programmer-friendly assembler should accept a destination Xd in
6602 place of Wd, however that is not the preferred form for disassembly.
6603 */
6604 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
6605 && operands[1].qualifier == AARCH64_OPND_QLF_W
6606 && operands[0].qualifier == AARCH64_OPND_QLF_X)
6607 operands[0].qualifier = AARCH64_OPND_QLF_W;
6608 break;
6609
6610 case addsub_ext:
6611 {
6612 /* In the 64-bit form, the final register operand is written as Wm
6613 for all but the (possibly omitted) UXTX/LSL and SXTX
6614 operators.
6615 As a programmer-friendly assembler, we accept e.g.
6616 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
6617 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
6618 int idx = aarch64_operand_index (opcode->operands,
6619 AARCH64_OPND_Rm_EXT);
6620 gas_assert (idx == 1 || idx == 2);
6621 if (operands[0].qualifier == AARCH64_OPND_QLF_X
6622 && operands[idx].qualifier == AARCH64_OPND_QLF_X
6623 && operands[idx].shifter.kind != AARCH64_MOD_LSL
6624 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
6625 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
6626 operands[idx].qualifier = AARCH64_OPND_QLF_W;
6627 }
6628 break;
6629
6630 default:
6631 break;
6632 }
6633
6634 DEBUG_TRACE ("exit with SUCCESS");
6635 return TRUE;
6636 }
6637
6638 /* Check for loads and stores that will cause unpredictable behavior. */
6639
6640 static void
6641 warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
6642 {
6643 aarch64_inst *base = &instr->base;
6644 const aarch64_opcode *opcode = base->opcode;
6645 const aarch64_opnd_info *opnds = base->operands;
6646 switch (opcode->iclass)
6647 {
6648 case ldst_pos:
6649 case ldst_imm9:
6650 case ldst_imm10:
6651 case ldst_unscaled:
6652 case ldst_unpriv:
6653 /* Loading/storing the base register is unpredictable if writeback. */
6654 if ((aarch64_get_operand_class (opnds[0].type)
6655 == AARCH64_OPND_CLASS_INT_REG)
6656 && opnds[0].reg.regno == opnds[1].addr.base_regno
6657 && opnds[1].addr.base_regno != REG_SP
6658 && opnds[1].addr.writeback)
6659 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6660 break;
6661 case ldstpair_off:
6662 case ldstnapair_offs:
6663 case ldstpair_indexed:
6664 /* Loading/storing the base register is unpredictable if writeback. */
6665 if ((aarch64_get_operand_class (opnds[0].type)
6666 == AARCH64_OPND_CLASS_INT_REG)
6667 && (opnds[0].reg.regno == opnds[2].addr.base_regno
6668 || opnds[1].reg.regno == opnds[2].addr.base_regno)
6669 && opnds[2].addr.base_regno != REG_SP
6670 && opnds[2].addr.writeback)
6671 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6672 /* Load operations must load different registers. */
6673 if ((opcode->opcode & (1 << 22))
6674 && opnds[0].reg.regno == opnds[1].reg.regno)
6675 as_warn (_("unpredictable load of register pair -- `%s'"), str);
6676 break;
6677 default:
6678 break;
6679 }
6680 }
6681
6682 /* A wrapper function to interface with libopcodes on encoding and
6683 record the error message if there is any.
6684
6685 Return TRUE on success; otherwise return FALSE. */
6686
6687 static bfd_boolean
6688 do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
6689 aarch64_insn *code)
6690 {
6691 aarch64_operand_error error_info;
6692 error_info.kind = AARCH64_OPDE_NIL;
6693 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
6694 return TRUE;
6695 else
6696 {
6697 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
6698 record_operand_error_info (opcode, &error_info);
6699 return FALSE;
6700 }
6701 }
6702
6703 #ifdef DEBUG_AARCH64
6704 static inline void
6705 dump_opcode_operands (const aarch64_opcode *opcode)
6706 {
6707 int i = 0;
6708 while (opcode->operands[i] != AARCH64_OPND_NIL)
6709 {
6710 aarch64_verbose ("\t\t opnd%d: %s", i,
6711 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
6712 ? aarch64_get_operand_name (opcode->operands[i])
6713 : aarch64_get_operand_desc (opcode->operands[i]));
6714 ++i;
6715 }
6716 }
6717 #endif /* DEBUG_AARCH64 */
6718
6719 /* This is the guts of the machine-dependent assembler. STR points to a
6720 machine dependent instruction. This function is supposed to emit
6721 the frags/bytes it assembles to. */
6722
6723 void
6724 md_assemble (char *str)
6725 {
6726 char *p = str;
6727 templates *template;
6728 aarch64_opcode *opcode;
6729 aarch64_inst *inst_base;
6730 unsigned saved_cond;
6731
6732 /* Align the previous label if needed. */
6733 if (last_label_seen != NULL)
6734 {
6735 symbol_set_frag (last_label_seen, frag_now);
6736 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
6737 S_SET_SEGMENT (last_label_seen, now_seg);
6738 }
6739
6740 inst.reloc.type = BFD_RELOC_UNUSED;
6741
6742 DEBUG_TRACE ("\n\n");
6743 DEBUG_TRACE ("==============================");
6744 DEBUG_TRACE ("Enter md_assemble with %s", str);
6745
6746 template = opcode_lookup (&p);
6747 if (!template)
6748 {
6749 /* It wasn't an instruction, but it might be a register alias of
6750 the form alias .req reg directive. */
6751 if (!create_register_alias (str, p))
6752 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
6753 str);
6754 return;
6755 }
6756
6757 skip_whitespace (p);
6758 if (*p == ',')
6759 {
6760 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
6761 get_mnemonic_name (str), str);
6762 return;
6763 }
6764
6765 init_operand_error_report ();
6766
6767 /* Sections are assumed to start aligned. In executable section, there is no
6768 MAP_DATA symbol pending. So we only align the address during
6769 MAP_DATA --> MAP_INSN transition.
6770 For other sections, this is not guaranteed. */
6771 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
6772 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
6773 frag_align_code (2, 0);
6774
6775 saved_cond = inst.cond;
6776 reset_aarch64_instruction (&inst);
6777 inst.cond = saved_cond;
6778
6779 /* Iterate through all opcode entries with the same mnemonic name. */
6780 do
6781 {
6782 opcode = template->opcode;
6783
6784 DEBUG_TRACE ("opcode %s found", opcode->name);
6785 #ifdef DEBUG_AARCH64
6786 if (debug_dump)
6787 dump_opcode_operands (opcode);
6788 #endif /* DEBUG_AARCH64 */
6789
6790 mapping_state (MAP_INSN);
6791
6792 inst_base = &inst.base;
6793 inst_base->opcode = opcode;
6794
6795 /* Truly conditionally executed instructions, e.g. b.cond. */
6796 if (opcode->flags & F_COND)
6797 {
6798 gas_assert (inst.cond != COND_ALWAYS);
6799 inst_base->cond = get_cond_from_value (inst.cond);
6800 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
6801 }
6802 else if (inst.cond != COND_ALWAYS)
6803 {
6804 /* It shouldn't arrive here, where the assembly looks like a
6805 conditional instruction but the found opcode is unconditional. */
6806 gas_assert (0);
6807 continue;
6808 }
6809
6810 if (parse_operands (p, opcode)
6811 && programmer_friendly_fixup (&inst)
6812 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
6813 {
6814 /* Check that this instruction is supported for this CPU. */
6815 if (!opcode->avariant
6816 || !AARCH64_CPU_HAS_ALL_FEATURES (cpu_variant, *opcode->avariant))
6817 {
6818 as_bad (_("selected processor does not support `%s'"), str);
6819 return;
6820 }
6821
6822 warn_unpredictable_ldst (&inst, str);
6823
6824 if (inst.reloc.type == BFD_RELOC_UNUSED
6825 || !inst.reloc.need_libopcodes_p)
6826 output_inst (NULL);
6827 else
6828 {
6829 /* If there is relocation generated for the instruction,
6830 store the instruction information for the future fix-up. */
6831 struct aarch64_inst *copy;
6832 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
6833 copy = XNEW (struct aarch64_inst);
6834 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
6835 output_inst (copy);
6836 }
6837 return;
6838 }
6839
6840 template = template->next;
6841 if (template != NULL)
6842 {
6843 reset_aarch64_instruction (&inst);
6844 inst.cond = saved_cond;
6845 }
6846 }
6847 while (template != NULL);
6848
6849 /* Issue the error messages if any. */
6850 output_operand_error_report (str);
6851 }
6852
6853 /* Various frobbings of labels and their addresses. */
6854
6855 void
6856 aarch64_start_line_hook (void)
6857 {
6858 last_label_seen = NULL;
6859 }
6860
6861 void
6862 aarch64_frob_label (symbolS * sym)
6863 {
6864 last_label_seen = sym;
6865
6866 dwarf2_emit_label (sym);
6867 }
6868
6869 int
6870 aarch64_data_in_code (void)
6871 {
6872 if (!strncmp (input_line_pointer + 1, "data:", 5))
6873 {
6874 *input_line_pointer = '/';
6875 input_line_pointer += 5;
6876 *input_line_pointer = 0;
6877 return 1;
6878 }
6879
6880 return 0;
6881 }
6882
6883 char *
6884 aarch64_canonicalize_symbol_name (char *name)
6885 {
6886 int len;
6887
6888 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
6889 *(name + len - 5) = 0;
6890
6891 return name;
6892 }
6893 \f
6894 /* Table of all register names defined by default. The user can
6895 define additional names with .req. Note that all register names
6896 should appear in both upper and lowercase variants. Some registers
6897 also have mixed-case names. */
6898
6899 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
6900 #define REGDEF_ALIAS(s, n, t) { #s, n, REG_TYPE_##t, FALSE}
6901 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
6902 #define REGSET16(p,t) \
6903 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
6904 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
6905 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
6906 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
6907 #define REGSET31(p,t) \
6908 REGSET16(p, t), \
6909 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
6910 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
6911 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
6912 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
6913 #define REGSET(p,t) \
6914 REGSET31(p,t), REGNUM(p,31,t)
6915
6916 /* These go into aarch64_reg_hsh hash-table. */
6917 static const reg_entry reg_names[] = {
6918 /* Integer registers. */
6919 REGSET31 (x, R_64), REGSET31 (X, R_64),
6920 REGSET31 (w, R_32), REGSET31 (W, R_32),
6921
6922 REGDEF_ALIAS (ip0, 16, R_64), REGDEF_ALIAS (IP0, 16, R_64),
6923 REGDEF_ALIAS (ip1, 17, R_64), REGDEF_ALIAS (IP1, 17, R_64),
6924 REGDEF_ALIAS (fp, 29, R_64), REGDEF_ALIAS (FP, 29, R_64),
6925 REGDEF_ALIAS (lr, 30, R_64), REGDEF_ALIAS (LR, 30, R_64),
6926 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
6927 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
6928
6929 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
6930 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
6931
6932 /* Floating-point single precision registers. */
6933 REGSET (s, FP_S), REGSET (S, FP_S),
6934
6935 /* Floating-point double precision registers. */
6936 REGSET (d, FP_D), REGSET (D, FP_D),
6937
6938 /* Floating-point half precision registers. */
6939 REGSET (h, FP_H), REGSET (H, FP_H),
6940
6941 /* Floating-point byte precision registers. */
6942 REGSET (b, FP_B), REGSET (B, FP_B),
6943
6944 /* Floating-point quad precision registers. */
6945 REGSET (q, FP_Q), REGSET (Q, FP_Q),
6946
6947 /* FP/SIMD registers. */
6948 REGSET (v, VN), REGSET (V, VN),
6949
6950 /* SVE vector registers. */
6951 REGSET (z, ZN), REGSET (Z, ZN),
6952
6953 /* SVE predicate registers. */
6954 REGSET16 (p, PN), REGSET16 (P, PN)
6955 };
6956
6957 #undef REGDEF
6958 #undef REGDEF_ALIAS
6959 #undef REGNUM
6960 #undef REGSET16
6961 #undef REGSET31
6962 #undef REGSET
6963
6964 #define N 1
6965 #define n 0
6966 #define Z 1
6967 #define z 0
6968 #define C 1
6969 #define c 0
6970 #define V 1
6971 #define v 0
6972 #define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
6973 static const asm_nzcv nzcv_names[] = {
6974 {"nzcv", B (n, z, c, v)},
6975 {"nzcV", B (n, z, c, V)},
6976 {"nzCv", B (n, z, C, v)},
6977 {"nzCV", B (n, z, C, V)},
6978 {"nZcv", B (n, Z, c, v)},
6979 {"nZcV", B (n, Z, c, V)},
6980 {"nZCv", B (n, Z, C, v)},
6981 {"nZCV", B (n, Z, C, V)},
6982 {"Nzcv", B (N, z, c, v)},
6983 {"NzcV", B (N, z, c, V)},
6984 {"NzCv", B (N, z, C, v)},
6985 {"NzCV", B (N, z, C, V)},
6986 {"NZcv", B (N, Z, c, v)},
6987 {"NZcV", B (N, Z, c, V)},
6988 {"NZCv", B (N, Z, C, v)},
6989 {"NZCV", B (N, Z, C, V)}
6990 };
6991
6992 #undef N
6993 #undef n
6994 #undef Z
6995 #undef z
6996 #undef C
6997 #undef c
6998 #undef V
6999 #undef v
7000 #undef B
7001 \f
7002 /* MD interface: bits in the object file. */
7003
7004 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
7005 for use in the a.out file, and stores them in the array pointed to by buf.
7006 This knows about the endian-ness of the target machine and does
7007 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
7008 2 (short) and 4 (long) Floating numbers are put out as a series of
7009 LITTLENUMS (shorts, here at least). */
7010
7011 void
7012 md_number_to_chars (char *buf, valueT val, int n)
7013 {
7014 if (target_big_endian)
7015 number_to_chars_bigendian (buf, val, n);
7016 else
7017 number_to_chars_littleendian (buf, val, n);
7018 }
7019
7020 /* MD interface: Sections. */
7021
7022 /* Estimate the size of a frag before relaxing. Assume everything fits in
7023 4 bytes. */
7024
7025 int
7026 md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
7027 {
7028 fragp->fr_var = 4;
7029 return 4;
7030 }
7031
7032 /* Round up a section size to the appropriate boundary. */
7033
7034 valueT
7035 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
7036 {
7037 return size;
7038 }
7039
7040 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
7041 of an rs_align_code fragment.
7042
7043 Here we fill the frag with the appropriate info for padding the
7044 output stream. The resulting frag will consist of a fixed (fr_fix)
7045 and of a repeating (fr_var) part.
7046
7047 The fixed content is always emitted before the repeating content and
7048 these two parts are used as follows in constructing the output:
7049 - the fixed part will be used to align to a valid instruction word
7050 boundary, in case that we start at a misaligned address; as no
7051 executable instruction can live at the misaligned location, we
7052 simply fill with zeros;
7053 - the variable part will be used to cover the remaining padding and
7054 we fill using the AArch64 NOP instruction.
7055
7056 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
7057 enough storage space for up to 3 bytes for padding the back to a valid
7058 instruction alignment and exactly 4 bytes to store the NOP pattern. */
7059
7060 void
7061 aarch64_handle_align (fragS * fragP)
7062 {
7063 /* NOP = d503201f */
7064 /* AArch64 instructions are always little-endian. */
7065 static unsigned char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
7066
7067 int bytes, fix, noop_size;
7068 char *p;
7069
7070 if (fragP->fr_type != rs_align_code)
7071 return;
7072
7073 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
7074 p = fragP->fr_literal + fragP->fr_fix;
7075
7076 #ifdef OBJ_ELF
7077 gas_assert (fragP->tc_frag_data.recorded);
7078 #endif
7079
7080 noop_size = sizeof (aarch64_noop);
7081
7082 fix = bytes & (noop_size - 1);
7083 if (fix)
7084 {
7085 #ifdef OBJ_ELF
7086 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
7087 #endif
7088 memset (p, 0, fix);
7089 p += fix;
7090 fragP->fr_fix += fix;
7091 }
7092
7093 if (noop_size)
7094 memcpy (p, aarch64_noop, noop_size);
7095 fragP->fr_var = noop_size;
7096 }
7097
7098 /* Perform target specific initialisation of a frag.
7099 Note - despite the name this initialisation is not done when the frag
7100 is created, but only when its type is assigned. A frag can be created
7101 and used a long time before its type is set, so beware of assuming that
7102 this initialisation is performed first. */
7103
7104 #ifndef OBJ_ELF
7105 void
7106 aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
7107 int max_chars ATTRIBUTE_UNUSED)
7108 {
7109 }
7110
7111 #else /* OBJ_ELF is defined. */
7112 void
7113 aarch64_init_frag (fragS * fragP, int max_chars)
7114 {
7115 /* Record a mapping symbol for alignment frags. We will delete this
7116 later if the alignment ends up empty. */
7117 if (!fragP->tc_frag_data.recorded)
7118 fragP->tc_frag_data.recorded = 1;
7119
7120 /* PR 21809: Do not set a mapping state for debug sections
7121 - it just confuses other tools. */
7122 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
7123 return;
7124
7125 switch (fragP->fr_type)
7126 {
7127 case rs_align_test:
7128 case rs_fill:
7129 mapping_state_2 (MAP_DATA, max_chars);
7130 break;
7131 case rs_align:
7132 /* PR 20364: We can get alignment frags in code sections,
7133 so do not just assume that we should use the MAP_DATA state. */
7134 mapping_state_2 (subseg_text_p (now_seg) ? MAP_INSN : MAP_DATA, max_chars);
7135 break;
7136 case rs_align_code:
7137 mapping_state_2 (MAP_INSN, max_chars);
7138 break;
7139 default:
7140 break;
7141 }
7142 }
7143 \f
7144 /* Initialize the DWARF-2 unwind information for this procedure. */
7145
7146 void
7147 tc_aarch64_frame_initial_instructions (void)
7148 {
7149 cfi_add_CFA_def_cfa (REG_SP, 0);
7150 }
7151 #endif /* OBJ_ELF */
7152
7153 /* Convert REGNAME to a DWARF-2 register number. */
7154
7155 int
7156 tc_aarch64_regname_to_dw2regnum (char *regname)
7157 {
7158 const reg_entry *reg = parse_reg (&regname);
7159 if (reg == NULL)
7160 return -1;
7161
7162 switch (reg->type)
7163 {
7164 case REG_TYPE_SP_32:
7165 case REG_TYPE_SP_64:
7166 case REG_TYPE_R_32:
7167 case REG_TYPE_R_64:
7168 return reg->number;
7169
7170 case REG_TYPE_FP_B:
7171 case REG_TYPE_FP_H:
7172 case REG_TYPE_FP_S:
7173 case REG_TYPE_FP_D:
7174 case REG_TYPE_FP_Q:
7175 return reg->number + 64;
7176
7177 default:
7178 break;
7179 }
7180 return -1;
7181 }
7182
7183 /* Implement DWARF2_ADDR_SIZE. */
7184
7185 int
7186 aarch64_dwarf2_addr_size (void)
7187 {
7188 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7189 if (ilp32_p)
7190 return 4;
7191 #endif
7192 return bfd_arch_bits_per_address (stdoutput) / 8;
7193 }
7194
7195 /* MD interface: Symbol and relocation handling. */
7196
7197 /* Return the address within the segment that a PC-relative fixup is
7198 relative to. For AArch64 PC-relative fixups applied to instructions
7199 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
7200
7201 long
7202 md_pcrel_from_section (fixS * fixP, segT seg)
7203 {
7204 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
7205
7206 /* If this is pc-relative and we are going to emit a relocation
7207 then we just want to put out any pipeline compensation that the linker
7208 will need. Otherwise we want to use the calculated base. */
7209 if (fixP->fx_pcrel
7210 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
7211 || aarch64_force_relocation (fixP)))
7212 base = 0;
7213
7214 /* AArch64 should be consistent for all pc-relative relocations. */
7215 return base + AARCH64_PCREL_OFFSET;
7216 }
7217
7218 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
7219 Otherwise we have no need to default values of symbols. */
7220
7221 symbolS *
7222 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
7223 {
7224 #ifdef OBJ_ELF
7225 if (name[0] == '_' && name[1] == 'G'
7226 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
7227 {
7228 if (!GOT_symbol)
7229 {
7230 if (symbol_find (name))
7231 as_bad (_("GOT already in the symbol table"));
7232
7233 GOT_symbol = symbol_new (name, undefined_section,
7234 (valueT) 0, &zero_address_frag);
7235 }
7236
7237 return GOT_symbol;
7238 }
7239 #endif
7240
7241 return 0;
7242 }
7243
7244 /* Return non-zero if the indicated VALUE has overflowed the maximum
7245 range expressible by a unsigned number with the indicated number of
7246 BITS. */
7247
7248 static bfd_boolean
7249 unsigned_overflow (valueT value, unsigned bits)
7250 {
7251 valueT lim;
7252 if (bits >= sizeof (valueT) * 8)
7253 return FALSE;
7254 lim = (valueT) 1 << bits;
7255 return (value >= lim);
7256 }
7257
7258
7259 /* Return non-zero if the indicated VALUE has overflowed the maximum
7260 range expressible by an signed number with the indicated number of
7261 BITS. */
7262
7263 static bfd_boolean
7264 signed_overflow (offsetT value, unsigned bits)
7265 {
7266 offsetT lim;
7267 if (bits >= sizeof (offsetT) * 8)
7268 return FALSE;
7269 lim = (offsetT) 1 << (bits - 1);
7270 return (value < -lim || value >= lim);
7271 }
7272
7273 /* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
7274 unsigned immediate offset load/store instruction, try to encode it as
7275 an unscaled, 9-bit, signed immediate offset load/store instruction.
7276 Return TRUE if it is successful; otherwise return FALSE.
7277
7278 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
7279 in response to the standard LDR/STR mnemonics when the immediate offset is
7280 unambiguous, i.e. when it is negative or unaligned. */
7281
7282 static bfd_boolean
7283 try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
7284 {
7285 int idx;
7286 enum aarch64_op new_op;
7287 const aarch64_opcode *new_opcode;
7288
7289 gas_assert (instr->opcode->iclass == ldst_pos);
7290
7291 switch (instr->opcode->op)
7292 {
7293 case OP_LDRB_POS:new_op = OP_LDURB; break;
7294 case OP_STRB_POS: new_op = OP_STURB; break;
7295 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
7296 case OP_LDRH_POS: new_op = OP_LDURH; break;
7297 case OP_STRH_POS: new_op = OP_STURH; break;
7298 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
7299 case OP_LDR_POS: new_op = OP_LDUR; break;
7300 case OP_STR_POS: new_op = OP_STUR; break;
7301 case OP_LDRF_POS: new_op = OP_LDURV; break;
7302 case OP_STRF_POS: new_op = OP_STURV; break;
7303 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
7304 case OP_PRFM_POS: new_op = OP_PRFUM; break;
7305 default: new_op = OP_NIL; break;
7306 }
7307
7308 if (new_op == OP_NIL)
7309 return FALSE;
7310
7311 new_opcode = aarch64_get_opcode (new_op);
7312 gas_assert (new_opcode != NULL);
7313
7314 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
7315 instr->opcode->op, new_opcode->op);
7316
7317 aarch64_replace_opcode (instr, new_opcode);
7318
7319 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
7320 qualifier matching may fail because the out-of-date qualifier will
7321 prevent the operand being updated with a new and correct qualifier. */
7322 idx = aarch64_operand_index (instr->opcode->operands,
7323 AARCH64_OPND_ADDR_SIMM9);
7324 gas_assert (idx == 1);
7325 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
7326
7327 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
7328
7329 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
7330 return FALSE;
7331
7332 return TRUE;
7333 }
7334
7335 /* Called by fix_insn to fix a MOV immediate alias instruction.
7336
7337 Operand for a generic move immediate instruction, which is an alias
7338 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
7339 a 32-bit/64-bit immediate value into general register. An assembler error
7340 shall result if the immediate cannot be created by a single one of these
7341 instructions. If there is a choice, then to ensure reversability an
7342 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
7343
7344 static void
7345 fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
7346 {
7347 const aarch64_opcode *opcode;
7348
7349 /* Need to check if the destination is SP/ZR. The check has to be done
7350 before any aarch64_replace_opcode. */
7351 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
7352 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
7353
7354 instr->operands[1].imm.value = value;
7355 instr->operands[1].skip = 0;
7356
7357 if (try_mov_wide_p)
7358 {
7359 /* Try the MOVZ alias. */
7360 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
7361 aarch64_replace_opcode (instr, opcode);
7362 if (aarch64_opcode_encode (instr->opcode, instr,
7363 &instr->value, NULL, NULL))
7364 {
7365 put_aarch64_insn (buf, instr->value);
7366 return;
7367 }
7368 /* Try the MOVK alias. */
7369 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
7370 aarch64_replace_opcode (instr, opcode);
7371 if (aarch64_opcode_encode (instr->opcode, instr,
7372 &instr->value, NULL, NULL))
7373 {
7374 put_aarch64_insn (buf, instr->value);
7375 return;
7376 }
7377 }
7378
7379 if (try_mov_bitmask_p)
7380 {
7381 /* Try the ORR alias. */
7382 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
7383 aarch64_replace_opcode (instr, opcode);
7384 if (aarch64_opcode_encode (instr->opcode, instr,
7385 &instr->value, NULL, NULL))
7386 {
7387 put_aarch64_insn (buf, instr->value);
7388 return;
7389 }
7390 }
7391
7392 as_bad_where (fixP->fx_file, fixP->fx_line,
7393 _("immediate cannot be moved by a single instruction"));
7394 }
7395
7396 /* An instruction operand which is immediate related may have symbol used
7397 in the assembly, e.g.
7398
7399 mov w0, u32
7400 .set u32, 0x00ffff00
7401
7402 At the time when the assembly instruction is parsed, a referenced symbol,
7403 like 'u32' in the above example may not have been seen; a fixS is created
7404 in such a case and is handled here after symbols have been resolved.
7405 Instruction is fixed up with VALUE using the information in *FIXP plus
7406 extra information in FLAGS.
7407
7408 This function is called by md_apply_fix to fix up instructions that need
7409 a fix-up described above but does not involve any linker-time relocation. */
7410
7411 static void
7412 fix_insn (fixS *fixP, uint32_t flags, offsetT value)
7413 {
7414 int idx;
7415 uint32_t insn;
7416 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7417 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
7418 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
7419
7420 if (new_inst)
7421 {
7422 /* Now the instruction is about to be fixed-up, so the operand that
7423 was previously marked as 'ignored' needs to be unmarked in order
7424 to get the encoding done properly. */
7425 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7426 new_inst->operands[idx].skip = 0;
7427 }
7428
7429 gas_assert (opnd != AARCH64_OPND_NIL);
7430
7431 switch (opnd)
7432 {
7433 case AARCH64_OPND_EXCEPTION:
7434 if (unsigned_overflow (value, 16))
7435 as_bad_where (fixP->fx_file, fixP->fx_line,
7436 _("immediate out of range"));
7437 insn = get_aarch64_insn (buf);
7438 insn |= encode_svc_imm (value);
7439 put_aarch64_insn (buf, insn);
7440 break;
7441
7442 case AARCH64_OPND_AIMM:
7443 /* ADD or SUB with immediate.
7444 NOTE this assumes we come here with a add/sub shifted reg encoding
7445 3 322|2222|2 2 2 21111 111111
7446 1 098|7654|3 2 1 09876 543210 98765 43210
7447 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
7448 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
7449 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
7450 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
7451 ->
7452 3 322|2222|2 2 221111111111
7453 1 098|7654|3 2 109876543210 98765 43210
7454 11000000 sf 001|0001|shift imm12 Rn Rd ADD
7455 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
7456 51000000 sf 101|0001|shift imm12 Rn Rd SUB
7457 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
7458 Fields sf Rn Rd are already set. */
7459 insn = get_aarch64_insn (buf);
7460 if (value < 0)
7461 {
7462 /* Add <-> sub. */
7463 insn = reencode_addsub_switch_add_sub (insn);
7464 value = -value;
7465 }
7466
7467 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
7468 && unsigned_overflow (value, 12))
7469 {
7470 /* Try to shift the value by 12 to make it fit. */
7471 if (((value >> 12) << 12) == value
7472 && ! unsigned_overflow (value, 12 + 12))
7473 {
7474 value >>= 12;
7475 insn |= encode_addsub_imm_shift_amount (1);
7476 }
7477 }
7478
7479 if (unsigned_overflow (value, 12))
7480 as_bad_where (fixP->fx_file, fixP->fx_line,
7481 _("immediate out of range"));
7482
7483 insn |= encode_addsub_imm (value);
7484
7485 put_aarch64_insn (buf, insn);
7486 break;
7487
7488 case AARCH64_OPND_SIMD_IMM:
7489 case AARCH64_OPND_SIMD_IMM_SFT:
7490 case AARCH64_OPND_LIMM:
7491 /* Bit mask immediate. */
7492 gas_assert (new_inst != NULL);
7493 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7494 new_inst->operands[idx].imm.value = value;
7495 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7496 &new_inst->value, NULL, NULL))
7497 put_aarch64_insn (buf, new_inst->value);
7498 else
7499 as_bad_where (fixP->fx_file, fixP->fx_line,
7500 _("invalid immediate"));
7501 break;
7502
7503 case AARCH64_OPND_HALF:
7504 /* 16-bit unsigned immediate. */
7505 if (unsigned_overflow (value, 16))
7506 as_bad_where (fixP->fx_file, fixP->fx_line,
7507 _("immediate out of range"));
7508 insn = get_aarch64_insn (buf);
7509 insn |= encode_movw_imm (value & 0xffff);
7510 put_aarch64_insn (buf, insn);
7511 break;
7512
7513 case AARCH64_OPND_IMM_MOV:
7514 /* Operand for a generic move immediate instruction, which is
7515 an alias instruction that generates a single MOVZ, MOVN or ORR
7516 instruction to loads a 32-bit/64-bit immediate value into general
7517 register. An assembler error shall result if the immediate cannot be
7518 created by a single one of these instructions. If there is a choice,
7519 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
7520 and MOVZ or MOVN to ORR. */
7521 gas_assert (new_inst != NULL);
7522 fix_mov_imm_insn (fixP, buf, new_inst, value);
7523 break;
7524
7525 case AARCH64_OPND_ADDR_SIMM7:
7526 case AARCH64_OPND_ADDR_SIMM9:
7527 case AARCH64_OPND_ADDR_SIMM9_2:
7528 case AARCH64_OPND_ADDR_SIMM10:
7529 case AARCH64_OPND_ADDR_UIMM12:
7530 /* Immediate offset in an address. */
7531 insn = get_aarch64_insn (buf);
7532
7533 gas_assert (new_inst != NULL && new_inst->value == insn);
7534 gas_assert (new_inst->opcode->operands[1] == opnd
7535 || new_inst->opcode->operands[2] == opnd);
7536
7537 /* Get the index of the address operand. */
7538 if (new_inst->opcode->operands[1] == opnd)
7539 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
7540 idx = 1;
7541 else
7542 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
7543 idx = 2;
7544
7545 /* Update the resolved offset value. */
7546 new_inst->operands[idx].addr.offset.imm = value;
7547
7548 /* Encode/fix-up. */
7549 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7550 &new_inst->value, NULL, NULL))
7551 {
7552 put_aarch64_insn (buf, new_inst->value);
7553 break;
7554 }
7555 else if (new_inst->opcode->iclass == ldst_pos
7556 && try_to_encode_as_unscaled_ldst (new_inst))
7557 {
7558 put_aarch64_insn (buf, new_inst->value);
7559 break;
7560 }
7561
7562 as_bad_where (fixP->fx_file, fixP->fx_line,
7563 _("immediate offset out of range"));
7564 break;
7565
7566 default:
7567 gas_assert (0);
7568 as_fatal (_("unhandled operand code %d"), opnd);
7569 }
7570 }
7571
7572 /* Apply a fixup (fixP) to segment data, once it has been determined
7573 by our caller that we have all the info we need to fix it up.
7574
7575 Parameter valP is the pointer to the value of the bits. */
7576
7577 void
7578 md_apply_fix (fixS * fixP, valueT * valP, segT seg)
7579 {
7580 offsetT value = *valP;
7581 uint32_t insn;
7582 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7583 int scale;
7584 unsigned flags = fixP->fx_addnumber;
7585
7586 DEBUG_TRACE ("\n\n");
7587 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
7588 DEBUG_TRACE ("Enter md_apply_fix");
7589
7590 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
7591
7592 /* Note whether this will delete the relocation. */
7593
7594 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
7595 fixP->fx_done = 1;
7596
7597 /* Process the relocations. */
7598 switch (fixP->fx_r_type)
7599 {
7600 case BFD_RELOC_NONE:
7601 /* This will need to go in the object file. */
7602 fixP->fx_done = 0;
7603 break;
7604
7605 case BFD_RELOC_8:
7606 case BFD_RELOC_8_PCREL:
7607 if (fixP->fx_done || !seg->use_rela_p)
7608 md_number_to_chars (buf, value, 1);
7609 break;
7610
7611 case BFD_RELOC_16:
7612 case BFD_RELOC_16_PCREL:
7613 if (fixP->fx_done || !seg->use_rela_p)
7614 md_number_to_chars (buf, value, 2);
7615 break;
7616
7617 case BFD_RELOC_32:
7618 case BFD_RELOC_32_PCREL:
7619 if (fixP->fx_done || !seg->use_rela_p)
7620 md_number_to_chars (buf, value, 4);
7621 break;
7622
7623 case BFD_RELOC_64:
7624 case BFD_RELOC_64_PCREL:
7625 if (fixP->fx_done || !seg->use_rela_p)
7626 md_number_to_chars (buf, value, 8);
7627 break;
7628
7629 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7630 /* We claim that these fixups have been processed here, even if
7631 in fact we generate an error because we do not have a reloc
7632 for them, so tc_gen_reloc() will reject them. */
7633 fixP->fx_done = 1;
7634 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
7635 {
7636 as_bad_where (fixP->fx_file, fixP->fx_line,
7637 _("undefined symbol %s used as an immediate value"),
7638 S_GET_NAME (fixP->fx_addsy));
7639 goto apply_fix_return;
7640 }
7641 fix_insn (fixP, flags, value);
7642 break;
7643
7644 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7645 if (fixP->fx_done || !seg->use_rela_p)
7646 {
7647 if (value & 3)
7648 as_bad_where (fixP->fx_file, fixP->fx_line,
7649 _("pc-relative load offset not word aligned"));
7650 if (signed_overflow (value, 21))
7651 as_bad_where (fixP->fx_file, fixP->fx_line,
7652 _("pc-relative load offset out of range"));
7653 insn = get_aarch64_insn (buf);
7654 insn |= encode_ld_lit_ofs_19 (value >> 2);
7655 put_aarch64_insn (buf, insn);
7656 }
7657 break;
7658
7659 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7660 if (fixP->fx_done || !seg->use_rela_p)
7661 {
7662 if (signed_overflow (value, 21))
7663 as_bad_where (fixP->fx_file, fixP->fx_line,
7664 _("pc-relative address offset out of range"));
7665 insn = get_aarch64_insn (buf);
7666 insn |= encode_adr_imm (value);
7667 put_aarch64_insn (buf, insn);
7668 }
7669 break;
7670
7671 case BFD_RELOC_AARCH64_BRANCH19:
7672 if (fixP->fx_done || !seg->use_rela_p)
7673 {
7674 if (value & 3)
7675 as_bad_where (fixP->fx_file, fixP->fx_line,
7676 _("conditional branch target not word aligned"));
7677 if (signed_overflow (value, 21))
7678 as_bad_where (fixP->fx_file, fixP->fx_line,
7679 _("conditional branch out of range"));
7680 insn = get_aarch64_insn (buf);
7681 insn |= encode_cond_branch_ofs_19 (value >> 2);
7682 put_aarch64_insn (buf, insn);
7683 }
7684 break;
7685
7686 case BFD_RELOC_AARCH64_TSTBR14:
7687 if (fixP->fx_done || !seg->use_rela_p)
7688 {
7689 if (value & 3)
7690 as_bad_where (fixP->fx_file, fixP->fx_line,
7691 _("conditional branch target not word aligned"));
7692 if (signed_overflow (value, 16))
7693 as_bad_where (fixP->fx_file, fixP->fx_line,
7694 _("conditional branch out of range"));
7695 insn = get_aarch64_insn (buf);
7696 insn |= encode_tst_branch_ofs_14 (value >> 2);
7697 put_aarch64_insn (buf, insn);
7698 }
7699 break;
7700
7701 case BFD_RELOC_AARCH64_CALL26:
7702 case BFD_RELOC_AARCH64_JUMP26:
7703 if (fixP->fx_done || !seg->use_rela_p)
7704 {
7705 if (value & 3)
7706 as_bad_where (fixP->fx_file, fixP->fx_line,
7707 _("branch target not word aligned"));
7708 if (signed_overflow (value, 28))
7709 as_bad_where (fixP->fx_file, fixP->fx_line,
7710 _("branch out of range"));
7711 insn = get_aarch64_insn (buf);
7712 insn |= encode_branch_ofs_26 (value >> 2);
7713 put_aarch64_insn (buf, insn);
7714 }
7715 break;
7716
7717 case BFD_RELOC_AARCH64_MOVW_G0:
7718 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7719 case BFD_RELOC_AARCH64_MOVW_G0_S:
7720 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7721 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
7722 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
7723 scale = 0;
7724 goto movw_common;
7725 case BFD_RELOC_AARCH64_MOVW_G1:
7726 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7727 case BFD_RELOC_AARCH64_MOVW_G1_S:
7728 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7729 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
7730 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
7731 scale = 16;
7732 goto movw_common;
7733 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7734 scale = 0;
7735 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7736 /* Should always be exported to object file, see
7737 aarch64_force_relocation(). */
7738 gas_assert (!fixP->fx_done);
7739 gas_assert (seg->use_rela_p);
7740 goto movw_common;
7741 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7742 scale = 16;
7743 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7744 /* Should always be exported to object file, see
7745 aarch64_force_relocation(). */
7746 gas_assert (!fixP->fx_done);
7747 gas_assert (seg->use_rela_p);
7748 goto movw_common;
7749 case BFD_RELOC_AARCH64_MOVW_G2:
7750 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7751 case BFD_RELOC_AARCH64_MOVW_G2_S:
7752 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
7753 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
7754 scale = 32;
7755 goto movw_common;
7756 case BFD_RELOC_AARCH64_MOVW_G3:
7757 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
7758 scale = 48;
7759 movw_common:
7760 if (fixP->fx_done || !seg->use_rela_p)
7761 {
7762 insn = get_aarch64_insn (buf);
7763
7764 if (!fixP->fx_done)
7765 {
7766 /* REL signed addend must fit in 16 bits */
7767 if (signed_overflow (value, 16))
7768 as_bad_where (fixP->fx_file, fixP->fx_line,
7769 _("offset out of range"));
7770 }
7771 else
7772 {
7773 /* Check for overflow and scale. */
7774 switch (fixP->fx_r_type)
7775 {
7776 case BFD_RELOC_AARCH64_MOVW_G0:
7777 case BFD_RELOC_AARCH64_MOVW_G1:
7778 case BFD_RELOC_AARCH64_MOVW_G2:
7779 case BFD_RELOC_AARCH64_MOVW_G3:
7780 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7781 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7782 if (unsigned_overflow (value, scale + 16))
7783 as_bad_where (fixP->fx_file, fixP->fx_line,
7784 _("unsigned value out of range"));
7785 break;
7786 case BFD_RELOC_AARCH64_MOVW_G0_S:
7787 case BFD_RELOC_AARCH64_MOVW_G1_S:
7788 case BFD_RELOC_AARCH64_MOVW_G2_S:
7789 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
7790 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
7791 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
7792 /* NOTE: We can only come here with movz or movn. */
7793 if (signed_overflow (value, scale + 16))
7794 as_bad_where (fixP->fx_file, fixP->fx_line,
7795 _("signed value out of range"));
7796 if (value < 0)
7797 {
7798 /* Force use of MOVN. */
7799 value = ~value;
7800 insn = reencode_movzn_to_movn (insn);
7801 }
7802 else
7803 {
7804 /* Force use of MOVZ. */
7805 insn = reencode_movzn_to_movz (insn);
7806 }
7807 break;
7808 default:
7809 /* Unchecked relocations. */
7810 break;
7811 }
7812 value >>= scale;
7813 }
7814
7815 /* Insert value into MOVN/MOVZ/MOVK instruction. */
7816 insn |= encode_movw_imm (value & 0xffff);
7817
7818 put_aarch64_insn (buf, insn);
7819 }
7820 break;
7821
7822 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
7823 fixP->fx_r_type = (ilp32_p
7824 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
7825 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7826 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7827 /* Should always be exported to object file, see
7828 aarch64_force_relocation(). */
7829 gas_assert (!fixP->fx_done);
7830 gas_assert (seg->use_rela_p);
7831 break;
7832
7833 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7834 fixP->fx_r_type = (ilp32_p
7835 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
7836 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12);
7837 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7838 /* Should always be exported to object file, see
7839 aarch64_force_relocation(). */
7840 gas_assert (!fixP->fx_done);
7841 gas_assert (seg->use_rela_p);
7842 break;
7843
7844 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7845 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7846 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7847 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7848 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7849 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7850 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7851 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7852 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7853 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7854 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7855 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7856 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7857 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7858 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7859 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7860 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7861 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
7862 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
7863 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7864 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7865 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7866 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7867 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7868 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7869 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7870 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7871 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7872 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7873 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7874 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
7875 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7876 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7877 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7878 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7879 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
7880 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
7881 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
7882 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
7883 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
7884 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
7885 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
7886 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
7887 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
7888 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7889 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
7890 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7891 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7892 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7893 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7894 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7895 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7896 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7897 /* Should always be exported to object file, see
7898 aarch64_force_relocation(). */
7899 gas_assert (!fixP->fx_done);
7900 gas_assert (seg->use_rela_p);
7901 break;
7902
7903 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
7904 /* Should always be exported to object file, see
7905 aarch64_force_relocation(). */
7906 fixP->fx_r_type = (ilp32_p
7907 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
7908 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
7909 gas_assert (!fixP->fx_done);
7910 gas_assert (seg->use_rela_p);
7911 break;
7912
7913 case BFD_RELOC_AARCH64_ADD_LO12:
7914 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7915 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7916 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7917 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7918 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7919 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7920 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7921 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7922 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7923 case BFD_RELOC_AARCH64_LDST128_LO12:
7924 case BFD_RELOC_AARCH64_LDST16_LO12:
7925 case BFD_RELOC_AARCH64_LDST32_LO12:
7926 case BFD_RELOC_AARCH64_LDST64_LO12:
7927 case BFD_RELOC_AARCH64_LDST8_LO12:
7928 /* Should always be exported to object file, see
7929 aarch64_force_relocation(). */
7930 gas_assert (!fixP->fx_done);
7931 gas_assert (seg->use_rela_p);
7932 break;
7933
7934 case BFD_RELOC_AARCH64_TLSDESC_ADD:
7935 case BFD_RELOC_AARCH64_TLSDESC_CALL:
7936 case BFD_RELOC_AARCH64_TLSDESC_LDR:
7937 break;
7938
7939 case BFD_RELOC_UNUSED:
7940 /* An error will already have been reported. */
7941 break;
7942
7943 default:
7944 as_bad_where (fixP->fx_file, fixP->fx_line,
7945 _("unexpected %s fixup"),
7946 bfd_get_reloc_code_name (fixP->fx_r_type));
7947 break;
7948 }
7949
7950 apply_fix_return:
7951 /* Free the allocated the struct aarch64_inst.
7952 N.B. currently there are very limited number of fix-up types actually use
7953 this field, so the impact on the performance should be minimal . */
7954 if (fixP->tc_fix_data.inst != NULL)
7955 free (fixP->tc_fix_data.inst);
7956
7957 return;
7958 }
7959
7960 /* Translate internal representation of relocation info to BFD target
7961 format. */
7962
7963 arelent *
7964 tc_gen_reloc (asection * section, fixS * fixp)
7965 {
7966 arelent *reloc;
7967 bfd_reloc_code_real_type code;
7968
7969 reloc = XNEW (arelent);
7970
7971 reloc->sym_ptr_ptr = XNEW (asymbol *);
7972 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
7973 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
7974
7975 if (fixp->fx_pcrel)
7976 {
7977 if (section->use_rela_p)
7978 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
7979 else
7980 fixp->fx_offset = reloc->address;
7981 }
7982 reloc->addend = fixp->fx_offset;
7983
7984 code = fixp->fx_r_type;
7985 switch (code)
7986 {
7987 case BFD_RELOC_16:
7988 if (fixp->fx_pcrel)
7989 code = BFD_RELOC_16_PCREL;
7990 break;
7991
7992 case BFD_RELOC_32:
7993 if (fixp->fx_pcrel)
7994 code = BFD_RELOC_32_PCREL;
7995 break;
7996
7997 case BFD_RELOC_64:
7998 if (fixp->fx_pcrel)
7999 code = BFD_RELOC_64_PCREL;
8000 break;
8001
8002 default:
8003 break;
8004 }
8005
8006 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
8007 if (reloc->howto == NULL)
8008 {
8009 as_bad_where (fixp->fx_file, fixp->fx_line,
8010 _
8011 ("cannot represent %s relocation in this object file format"),
8012 bfd_get_reloc_code_name (code));
8013 return NULL;
8014 }
8015
8016 return reloc;
8017 }
8018
8019 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
8020
8021 void
8022 cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
8023 {
8024 bfd_reloc_code_real_type type;
8025 int pcrel = 0;
8026
8027 /* Pick a reloc.
8028 FIXME: @@ Should look at CPU word size. */
8029 switch (size)
8030 {
8031 case 1:
8032 type = BFD_RELOC_8;
8033 break;
8034 case 2:
8035 type = BFD_RELOC_16;
8036 break;
8037 case 4:
8038 type = BFD_RELOC_32;
8039 break;
8040 case 8:
8041 type = BFD_RELOC_64;
8042 break;
8043 default:
8044 as_bad (_("cannot do %u-byte relocation"), size);
8045 type = BFD_RELOC_UNUSED;
8046 break;
8047 }
8048
8049 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
8050 }
8051
8052 int
8053 aarch64_force_relocation (struct fix *fixp)
8054 {
8055 switch (fixp->fx_r_type)
8056 {
8057 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
8058 /* Perform these "immediate" internal relocations
8059 even if the symbol is extern or weak. */
8060 return 0;
8061
8062 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
8063 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
8064 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
8065 /* Pseudo relocs that need to be fixed up according to
8066 ilp32_p. */
8067 return 0;
8068
8069 case BFD_RELOC_AARCH64_ADD_LO12:
8070 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
8071 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
8072 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
8073 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
8074 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
8075 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
8076 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
8077 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
8078 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
8079 case BFD_RELOC_AARCH64_LDST128_LO12:
8080 case BFD_RELOC_AARCH64_LDST16_LO12:
8081 case BFD_RELOC_AARCH64_LDST32_LO12:
8082 case BFD_RELOC_AARCH64_LDST64_LO12:
8083 case BFD_RELOC_AARCH64_LDST8_LO12:
8084 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
8085 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
8086 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
8087 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
8088 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
8089 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
8090 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
8091 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
8092 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
8093 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
8094 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
8095 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
8096 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
8097 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
8098 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
8099 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
8100 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
8101 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
8102 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
8103 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
8104 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
8105 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
8106 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
8107 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
8108 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
8109 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
8110 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
8111 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
8112 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
8113 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
8114 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
8115 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
8116 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
8117 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
8118 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
8119 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
8120 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
8121 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
8122 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
8123 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
8124 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
8125 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
8126 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
8127 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
8128 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
8129 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
8130 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
8131 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
8132 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
8133 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
8134 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
8135 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
8136 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
8137 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
8138 /* Always leave these relocations for the linker. */
8139 return 1;
8140
8141 default:
8142 break;
8143 }
8144
8145 return generic_force_reloc (fixp);
8146 }
8147
8148 #ifdef OBJ_ELF
8149
8150 /* Implement md_after_parse_args. This is the earliest time we need to decide
8151 ABI. If no -mabi specified, the ABI will be decided by target triplet. */
8152
8153 void
8154 aarch64_after_parse_args (void)
8155 {
8156 if (aarch64_abi != AARCH64_ABI_NONE)
8157 return;
8158
8159 /* DEFAULT_ARCH will have ":32" extension if it's configured for ILP32. */
8160 if (strlen (default_arch) > 7 && strcmp (default_arch + 7, ":32") == 0)
8161 aarch64_abi = AARCH64_ABI_ILP32;
8162 else
8163 aarch64_abi = AARCH64_ABI_LP64;
8164 }
8165
8166 const char *
8167 elf64_aarch64_target_format (void)
8168 {
8169 if (strcmp (TARGET_OS, "cloudabi") == 0)
8170 {
8171 /* FIXME: What to do for ilp32_p ? */
8172 return target_big_endian ? "elf64-bigaarch64-cloudabi" : "elf64-littleaarch64-cloudabi";
8173 }
8174 if (target_big_endian)
8175 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
8176 else
8177 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
8178 }
8179
8180 void
8181 aarch64elf_frob_symbol (symbolS * symp, int *puntp)
8182 {
8183 elf_frob_symbol (symp, puntp);
8184 }
8185 #endif
8186
8187 /* MD interface: Finalization. */
8188
8189 /* A good place to do this, although this was probably not intended
8190 for this kind of use. We need to dump the literal pool before
8191 references are made to a null symbol pointer. */
8192
8193 void
8194 aarch64_cleanup (void)
8195 {
8196 literal_pool *pool;
8197
8198 for (pool = list_of_pools; pool; pool = pool->next)
8199 {
8200 /* Put it at the end of the relevant section. */
8201 subseg_set (pool->section, pool->sub_section);
8202 s_ltorg (0);
8203 }
8204 }
8205
8206 #ifdef OBJ_ELF
8207 /* Remove any excess mapping symbols generated for alignment frags in
8208 SEC. We may have created a mapping symbol before a zero byte
8209 alignment; remove it if there's a mapping symbol after the
8210 alignment. */
8211 static void
8212 check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
8213 void *dummy ATTRIBUTE_UNUSED)
8214 {
8215 segment_info_type *seginfo = seg_info (sec);
8216 fragS *fragp;
8217
8218 if (seginfo == NULL || seginfo->frchainP == NULL)
8219 return;
8220
8221 for (fragp = seginfo->frchainP->frch_root;
8222 fragp != NULL; fragp = fragp->fr_next)
8223 {
8224 symbolS *sym = fragp->tc_frag_data.last_map;
8225 fragS *next = fragp->fr_next;
8226
8227 /* Variable-sized frags have been converted to fixed size by
8228 this point. But if this was variable-sized to start with,
8229 there will be a fixed-size frag after it. So don't handle
8230 next == NULL. */
8231 if (sym == NULL || next == NULL)
8232 continue;
8233
8234 if (S_GET_VALUE (sym) < next->fr_address)
8235 /* Not at the end of this frag. */
8236 continue;
8237 know (S_GET_VALUE (sym) == next->fr_address);
8238
8239 do
8240 {
8241 if (next->tc_frag_data.first_map != NULL)
8242 {
8243 /* Next frag starts with a mapping symbol. Discard this
8244 one. */
8245 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8246 break;
8247 }
8248
8249 if (next->fr_next == NULL)
8250 {
8251 /* This mapping symbol is at the end of the section. Discard
8252 it. */
8253 know (next->fr_fix == 0 && next->fr_var == 0);
8254 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8255 break;
8256 }
8257
8258 /* As long as we have empty frags without any mapping symbols,
8259 keep looking. */
8260 /* If the next frag is non-empty and does not start with a
8261 mapping symbol, then this mapping symbol is required. */
8262 if (next->fr_address != next->fr_next->fr_address)
8263 break;
8264
8265 next = next->fr_next;
8266 }
8267 while (next != NULL);
8268 }
8269 }
8270 #endif
8271
8272 /* Adjust the symbol table. */
8273
8274 void
8275 aarch64_adjust_symtab (void)
8276 {
8277 #ifdef OBJ_ELF
8278 /* Remove any overlapping mapping symbols generated by alignment frags. */
8279 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
8280 /* Now do generic ELF adjustments. */
8281 elf_adjust_symtab ();
8282 #endif
8283 }
8284
8285 static void
8286 checked_hash_insert (struct hash_control *table, const char *key, void *value)
8287 {
8288 const char *hash_err;
8289
8290 hash_err = hash_insert (table, key, value);
8291 if (hash_err)
8292 printf ("Internal Error: Can't hash %s\n", key);
8293 }
8294
8295 static void
8296 fill_instruction_hash_table (void)
8297 {
8298 aarch64_opcode *opcode = aarch64_opcode_table;
8299
8300 while (opcode->name != NULL)
8301 {
8302 templates *templ, *new_templ;
8303 templ = hash_find (aarch64_ops_hsh, opcode->name);
8304
8305 new_templ = XNEW (templates);
8306 new_templ->opcode = opcode;
8307 new_templ->next = NULL;
8308
8309 if (!templ)
8310 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
8311 else
8312 {
8313 new_templ->next = templ->next;
8314 templ->next = new_templ;
8315 }
8316 ++opcode;
8317 }
8318 }
8319
8320 static inline void
8321 convert_to_upper (char *dst, const char *src, size_t num)
8322 {
8323 unsigned int i;
8324 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
8325 *dst = TOUPPER (*src);
8326 *dst = '\0';
8327 }
8328
8329 /* Assume STR point to a lower-case string, allocate, convert and return
8330 the corresponding upper-case string. */
8331 static inline const char*
8332 get_upper_str (const char *str)
8333 {
8334 char *ret;
8335 size_t len = strlen (str);
8336 ret = XNEWVEC (char, len + 1);
8337 convert_to_upper (ret, str, len);
8338 return ret;
8339 }
8340
8341 /* MD interface: Initialization. */
8342
8343 void
8344 md_begin (void)
8345 {
8346 unsigned mach;
8347 unsigned int i;
8348
8349 if ((aarch64_ops_hsh = hash_new ()) == NULL
8350 || (aarch64_cond_hsh = hash_new ()) == NULL
8351 || (aarch64_shift_hsh = hash_new ()) == NULL
8352 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
8353 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
8354 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
8355 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
8356 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
8357 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
8358 || (aarch64_reg_hsh = hash_new ()) == NULL
8359 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
8360 || (aarch64_nzcv_hsh = hash_new ()) == NULL
8361 || (aarch64_pldop_hsh = hash_new ()) == NULL
8362 || (aarch64_hint_opt_hsh = hash_new ()) == NULL)
8363 as_fatal (_("virtual memory exhausted"));
8364
8365 fill_instruction_hash_table ();
8366
8367 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
8368 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
8369 (void *) (aarch64_sys_regs + i));
8370
8371 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
8372 checked_hash_insert (aarch64_pstatefield_hsh,
8373 aarch64_pstatefields[i].name,
8374 (void *) (aarch64_pstatefields + i));
8375
8376 for (i = 0; aarch64_sys_regs_ic[i].name != NULL; i++)
8377 checked_hash_insert (aarch64_sys_regs_ic_hsh,
8378 aarch64_sys_regs_ic[i].name,
8379 (void *) (aarch64_sys_regs_ic + i));
8380
8381 for (i = 0; aarch64_sys_regs_dc[i].name != NULL; i++)
8382 checked_hash_insert (aarch64_sys_regs_dc_hsh,
8383 aarch64_sys_regs_dc[i].name,
8384 (void *) (aarch64_sys_regs_dc + i));
8385
8386 for (i = 0; aarch64_sys_regs_at[i].name != NULL; i++)
8387 checked_hash_insert (aarch64_sys_regs_at_hsh,
8388 aarch64_sys_regs_at[i].name,
8389 (void *) (aarch64_sys_regs_at + i));
8390
8391 for (i = 0; aarch64_sys_regs_tlbi[i].name != NULL; i++)
8392 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
8393 aarch64_sys_regs_tlbi[i].name,
8394 (void *) (aarch64_sys_regs_tlbi + i));
8395
8396 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
8397 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
8398 (void *) (reg_names + i));
8399
8400 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
8401 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
8402 (void *) (nzcv_names + i));
8403
8404 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
8405 {
8406 const char *name = aarch64_operand_modifiers[i].name;
8407 checked_hash_insert (aarch64_shift_hsh, name,
8408 (void *) (aarch64_operand_modifiers + i));
8409 /* Also hash the name in the upper case. */
8410 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
8411 (void *) (aarch64_operand_modifiers + i));
8412 }
8413
8414 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
8415 {
8416 unsigned int j;
8417 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
8418 the same condition code. */
8419 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
8420 {
8421 const char *name = aarch64_conds[i].names[j];
8422 if (name == NULL)
8423 break;
8424 checked_hash_insert (aarch64_cond_hsh, name,
8425 (void *) (aarch64_conds + i));
8426 /* Also hash the name in the upper case. */
8427 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
8428 (void *) (aarch64_conds + i));
8429 }
8430 }
8431
8432 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
8433 {
8434 const char *name = aarch64_barrier_options[i].name;
8435 /* Skip xx00 - the unallocated values of option. */
8436 if ((i & 0x3) == 0)
8437 continue;
8438 checked_hash_insert (aarch64_barrier_opt_hsh, name,
8439 (void *) (aarch64_barrier_options + i));
8440 /* Also hash the name in the upper case. */
8441 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
8442 (void *) (aarch64_barrier_options + i));
8443 }
8444
8445 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
8446 {
8447 const char* name = aarch64_prfops[i].name;
8448 /* Skip the unallocated hint encodings. */
8449 if (name == NULL)
8450 continue;
8451 checked_hash_insert (aarch64_pldop_hsh, name,
8452 (void *) (aarch64_prfops + i));
8453 /* Also hash the name in the upper case. */
8454 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8455 (void *) (aarch64_prfops + i));
8456 }
8457
8458 for (i = 0; aarch64_hint_options[i].name != NULL; i++)
8459 {
8460 const char* name = aarch64_hint_options[i].name;
8461
8462 checked_hash_insert (aarch64_hint_opt_hsh, name,
8463 (void *) (aarch64_hint_options + i));
8464 /* Also hash the name in the upper case. */
8465 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8466 (void *) (aarch64_hint_options + i));
8467 }
8468
8469 /* Set the cpu variant based on the command-line options. */
8470 if (!mcpu_cpu_opt)
8471 mcpu_cpu_opt = march_cpu_opt;
8472
8473 if (!mcpu_cpu_opt)
8474 mcpu_cpu_opt = &cpu_default;
8475
8476 cpu_variant = *mcpu_cpu_opt;
8477
8478 /* Record the CPU type. */
8479 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
8480
8481 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
8482 }
8483
8484 /* Command line processing. */
8485
8486 const char *md_shortopts = "m:";
8487
8488 #ifdef AARCH64_BI_ENDIAN
8489 #define OPTION_EB (OPTION_MD_BASE + 0)
8490 #define OPTION_EL (OPTION_MD_BASE + 1)
8491 #else
8492 #if TARGET_BYTES_BIG_ENDIAN
8493 #define OPTION_EB (OPTION_MD_BASE + 0)
8494 #else
8495 #define OPTION_EL (OPTION_MD_BASE + 1)
8496 #endif
8497 #endif
8498
8499 struct option md_longopts[] = {
8500 #ifdef OPTION_EB
8501 {"EB", no_argument, NULL, OPTION_EB},
8502 #endif
8503 #ifdef OPTION_EL
8504 {"EL", no_argument, NULL, OPTION_EL},
8505 #endif
8506 {NULL, no_argument, NULL, 0}
8507 };
8508
8509 size_t md_longopts_size = sizeof (md_longopts);
8510
8511 struct aarch64_option_table
8512 {
8513 const char *option; /* Option name to match. */
8514 const char *help; /* Help information. */
8515 int *var; /* Variable to change. */
8516 int value; /* What to change it to. */
8517 char *deprecated; /* If non-null, print this message. */
8518 };
8519
8520 static struct aarch64_option_table aarch64_opts[] = {
8521 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
8522 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
8523 NULL},
8524 #ifdef DEBUG_AARCH64
8525 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
8526 #endif /* DEBUG_AARCH64 */
8527 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
8528 NULL},
8529 {"mno-verbose-error", N_("do not output verbose error messages"),
8530 &verbose_error_p, 0, NULL},
8531 {NULL, NULL, NULL, 0, NULL}
8532 };
8533
8534 struct aarch64_cpu_option_table
8535 {
8536 const char *name;
8537 const aarch64_feature_set value;
8538 /* The canonical name of the CPU, or NULL to use NAME converted to upper
8539 case. */
8540 const char *canonical_name;
8541 };
8542
8543 /* This list should, at a minimum, contain all the cpu names
8544 recognized by GCC. */
8545 static const struct aarch64_cpu_option_table aarch64_cpus[] = {
8546 {"all", AARCH64_ANY, NULL},
8547 {"cortex-a35", AARCH64_FEATURE (AARCH64_ARCH_V8,
8548 AARCH64_FEATURE_CRC), "Cortex-A35"},
8549 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
8550 AARCH64_FEATURE_CRC), "Cortex-A53"},
8551 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
8552 AARCH64_FEATURE_CRC), "Cortex-A57"},
8553 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
8554 AARCH64_FEATURE_CRC), "Cortex-A72"},
8555 {"cortex-a73", AARCH64_FEATURE (AARCH64_ARCH_V8,
8556 AARCH64_FEATURE_CRC), "Cortex-A73"},
8557 {"cortex-a55", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8558 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
8559 "Cortex-A55"},
8560 {"cortex-a75", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8561 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
8562 "Cortex-A75"},
8563 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
8564 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8565 "Samsung Exynos M1"},
8566 {"falkor", AARCH64_FEATURE (AARCH64_ARCH_V8,
8567 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
8568 | AARCH64_FEATURE_RDMA),
8569 "Qualcomm Falkor"},
8570 {"qdf24xx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8571 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
8572 | AARCH64_FEATURE_RDMA),
8573 "Qualcomm QDF24XX"},
8574 {"saphira", AARCH64_FEATURE (AARCH64_ARCH_V8_3,
8575 AARCH64_FEATURE_CRYPTO | AARCH64_FEATURE_PROFILE),
8576 "Qualcomm Saphira"},
8577 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8578 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8579 "Cavium ThunderX"},
8580 {"vulcan", AARCH64_FEATURE (AARCH64_ARCH_V8_1,
8581 AARCH64_FEATURE_CRYPTO),
8582 "Broadcom Vulcan"},
8583 /* The 'xgene-1' name is an older name for 'xgene1', which was used
8584 in earlier releases and is superseded by 'xgene1' in all
8585 tools. */
8586 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
8587 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
8588 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
8589 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
8590 {"generic", AARCH64_ARCH_V8, NULL},
8591
8592 {NULL, AARCH64_ARCH_NONE, NULL}
8593 };
8594
8595 struct aarch64_arch_option_table
8596 {
8597 const char *name;
8598 const aarch64_feature_set value;
8599 };
8600
8601 /* This list should, at a minimum, contain all the architecture names
8602 recognized by GCC. */
8603 static const struct aarch64_arch_option_table aarch64_archs[] = {
8604 {"all", AARCH64_ANY},
8605 {"armv8-a", AARCH64_ARCH_V8},
8606 {"armv8.1-a", AARCH64_ARCH_V8_1},
8607 {"armv8.2-a", AARCH64_ARCH_V8_2},
8608 {"armv8.3-a", AARCH64_ARCH_V8_3},
8609 {"armv8.4-a", AARCH64_ARCH_V8_4},
8610 {NULL, AARCH64_ARCH_NONE}
8611 };
8612
8613 /* ISA extensions. */
8614 struct aarch64_option_cpu_value_table
8615 {
8616 const char *name;
8617 const aarch64_feature_set value;
8618 const aarch64_feature_set require; /* Feature dependencies. */
8619 };
8620
8621 static const struct aarch64_option_cpu_value_table aarch64_features[] = {
8622 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0),
8623 AARCH64_ARCH_NONE},
8624 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO
8625 | AARCH64_FEATURE_AES
8626 | AARCH64_FEATURE_SHA2, 0),
8627 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
8628 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0),
8629 AARCH64_ARCH_NONE},
8630 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0),
8631 AARCH64_ARCH_NONE},
8632 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0),
8633 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
8634 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0),
8635 AARCH64_ARCH_NONE},
8636 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0),
8637 AARCH64_ARCH_NONE},
8638 {"ras", AARCH64_FEATURE (AARCH64_FEATURE_RAS, 0),
8639 AARCH64_ARCH_NONE},
8640 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_RDMA, 0),
8641 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
8642 {"fp16", AARCH64_FEATURE (AARCH64_FEATURE_F16, 0),
8643 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
8644 {"fp16fml", AARCH64_FEATURE (AARCH64_FEATURE_F16_FML, 0),
8645 AARCH64_FEATURE (AARCH64_FEATURE_FP
8646 | AARCH64_FEATURE_F16, 0)},
8647 {"profile", AARCH64_FEATURE (AARCH64_FEATURE_PROFILE, 0),
8648 AARCH64_ARCH_NONE},
8649 {"sve", AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0),
8650 AARCH64_FEATURE (AARCH64_FEATURE_F16
8651 | AARCH64_FEATURE_SIMD
8652 | AARCH64_FEATURE_COMPNUM, 0)},
8653 {"compnum", AARCH64_FEATURE (AARCH64_FEATURE_COMPNUM, 0),
8654 AARCH64_FEATURE (AARCH64_FEATURE_F16
8655 | AARCH64_FEATURE_SIMD, 0)},
8656 {"rcpc", AARCH64_FEATURE (AARCH64_FEATURE_RCPC, 0),
8657 AARCH64_ARCH_NONE},
8658 {"dotprod", AARCH64_FEATURE (AARCH64_FEATURE_DOTPROD, 0),
8659 AARCH64_ARCH_NONE},
8660 {"sha2", AARCH64_FEATURE (AARCH64_FEATURE_SHA2, 0),
8661 AARCH64_ARCH_NONE},
8662 {"aes", AARCH64_FEATURE (AARCH64_FEATURE_AES, 0),
8663 AARCH64_ARCH_NONE},
8664 {"sm4", AARCH64_FEATURE (AARCH64_FEATURE_SM4, 0),
8665 AARCH64_ARCH_NONE},
8666 {"sha3", AARCH64_FEATURE (AARCH64_FEATURE_SHA2
8667 | AARCH64_FEATURE_SHA3, 0),
8668 AARCH64_ARCH_NONE},
8669 {NULL, AARCH64_ARCH_NONE, AARCH64_ARCH_NONE},
8670 };
8671
8672 struct aarch64_long_option_table
8673 {
8674 const char *option; /* Substring to match. */
8675 const char *help; /* Help information. */
8676 int (*func) (const char *subopt); /* Function to decode sub-option. */
8677 char *deprecated; /* If non-null, print this message. */
8678 };
8679
8680 /* Transitive closure of features depending on set. */
8681 static aarch64_feature_set
8682 aarch64_feature_disable_set (aarch64_feature_set set)
8683 {
8684 const struct aarch64_option_cpu_value_table *opt;
8685 aarch64_feature_set prev = 0;
8686
8687 while (prev != set) {
8688 prev = set;
8689 for (opt = aarch64_features; opt->name != NULL; opt++)
8690 if (AARCH64_CPU_HAS_ANY_FEATURES (opt->require, set))
8691 AARCH64_MERGE_FEATURE_SETS (set, set, opt->value);
8692 }
8693 return set;
8694 }
8695
8696 /* Transitive closure of dependencies of set. */
8697 static aarch64_feature_set
8698 aarch64_feature_enable_set (aarch64_feature_set set)
8699 {
8700 const struct aarch64_option_cpu_value_table *opt;
8701 aarch64_feature_set prev = 0;
8702
8703 while (prev != set) {
8704 prev = set;
8705 for (opt = aarch64_features; opt->name != NULL; opt++)
8706 if (AARCH64_CPU_HAS_FEATURE (set, opt->value))
8707 AARCH64_MERGE_FEATURE_SETS (set, set, opt->require);
8708 }
8709 return set;
8710 }
8711
8712 static int
8713 aarch64_parse_features (const char *str, const aarch64_feature_set **opt_p,
8714 bfd_boolean ext_only)
8715 {
8716 /* We insist on extensions being added before being removed. We achieve
8717 this by using the ADDING_VALUE variable to indicate whether we are
8718 adding an extension (1) or removing it (0) and only allowing it to
8719 change in the order -1 -> 1 -> 0. */
8720 int adding_value = -1;
8721 aarch64_feature_set *ext_set = XNEW (aarch64_feature_set);
8722
8723 /* Copy the feature set, so that we can modify it. */
8724 *ext_set = **opt_p;
8725 *opt_p = ext_set;
8726
8727 while (str != NULL && *str != 0)
8728 {
8729 const struct aarch64_option_cpu_value_table *opt;
8730 const char *ext = NULL;
8731 int optlen;
8732
8733 if (!ext_only)
8734 {
8735 if (*str != '+')
8736 {
8737 as_bad (_("invalid architectural extension"));
8738 return 0;
8739 }
8740
8741 ext = strchr (++str, '+');
8742 }
8743
8744 if (ext != NULL)
8745 optlen = ext - str;
8746 else
8747 optlen = strlen (str);
8748
8749 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
8750 {
8751 if (adding_value != 0)
8752 adding_value = 0;
8753 optlen -= 2;
8754 str += 2;
8755 }
8756 else if (optlen > 0)
8757 {
8758 if (adding_value == -1)
8759 adding_value = 1;
8760 else if (adding_value != 1)
8761 {
8762 as_bad (_("must specify extensions to add before specifying "
8763 "those to remove"));
8764 return FALSE;
8765 }
8766 }
8767
8768 if (optlen == 0)
8769 {
8770 as_bad (_("missing architectural extension"));
8771 return 0;
8772 }
8773
8774 gas_assert (adding_value != -1);
8775
8776 for (opt = aarch64_features; opt->name != NULL; opt++)
8777 if (strncmp (opt->name, str, optlen) == 0)
8778 {
8779 aarch64_feature_set set;
8780
8781 /* Add or remove the extension. */
8782 if (adding_value)
8783 {
8784 set = aarch64_feature_enable_set (opt->value);
8785 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, set);
8786 }
8787 else
8788 {
8789 set = aarch64_feature_disable_set (opt->value);
8790 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, set);
8791 }
8792 break;
8793 }
8794
8795 if (opt->name == NULL)
8796 {
8797 as_bad (_("unknown architectural extension `%s'"), str);
8798 return 0;
8799 }
8800
8801 str = ext;
8802 };
8803
8804 return 1;
8805 }
8806
8807 static int
8808 aarch64_parse_cpu (const char *str)
8809 {
8810 const struct aarch64_cpu_option_table *opt;
8811 const char *ext = strchr (str, '+');
8812 size_t optlen;
8813
8814 if (ext != NULL)
8815 optlen = ext - str;
8816 else
8817 optlen = strlen (str);
8818
8819 if (optlen == 0)
8820 {
8821 as_bad (_("missing cpu name `%s'"), str);
8822 return 0;
8823 }
8824
8825 for (opt = aarch64_cpus; opt->name != NULL; opt++)
8826 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8827 {
8828 mcpu_cpu_opt = &opt->value;
8829 if (ext != NULL)
8830 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
8831
8832 return 1;
8833 }
8834
8835 as_bad (_("unknown cpu `%s'"), str);
8836 return 0;
8837 }
8838
8839 static int
8840 aarch64_parse_arch (const char *str)
8841 {
8842 const struct aarch64_arch_option_table *opt;
8843 const char *ext = strchr (str, '+');
8844 size_t optlen;
8845
8846 if (ext != NULL)
8847 optlen = ext - str;
8848 else
8849 optlen = strlen (str);
8850
8851 if (optlen == 0)
8852 {
8853 as_bad (_("missing architecture name `%s'"), str);
8854 return 0;
8855 }
8856
8857 for (opt = aarch64_archs; opt->name != NULL; opt++)
8858 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8859 {
8860 march_cpu_opt = &opt->value;
8861 if (ext != NULL)
8862 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
8863
8864 return 1;
8865 }
8866
8867 as_bad (_("unknown architecture `%s'\n"), str);
8868 return 0;
8869 }
8870
8871 /* ABIs. */
8872 struct aarch64_option_abi_value_table
8873 {
8874 const char *name;
8875 enum aarch64_abi_type value;
8876 };
8877
8878 static const struct aarch64_option_abi_value_table aarch64_abis[] = {
8879 {"ilp32", AARCH64_ABI_ILP32},
8880 {"lp64", AARCH64_ABI_LP64},
8881 };
8882
8883 static int
8884 aarch64_parse_abi (const char *str)
8885 {
8886 unsigned int i;
8887
8888 if (str[0] == '\0')
8889 {
8890 as_bad (_("missing abi name `%s'"), str);
8891 return 0;
8892 }
8893
8894 for (i = 0; i < ARRAY_SIZE (aarch64_abis); i++)
8895 if (strcmp (str, aarch64_abis[i].name) == 0)
8896 {
8897 aarch64_abi = aarch64_abis[i].value;
8898 return 1;
8899 }
8900
8901 as_bad (_("unknown abi `%s'\n"), str);
8902 return 0;
8903 }
8904
8905 static struct aarch64_long_option_table aarch64_long_opts[] = {
8906 #ifdef OBJ_ELF
8907 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
8908 aarch64_parse_abi, NULL},
8909 #endif /* OBJ_ELF */
8910 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
8911 aarch64_parse_cpu, NULL},
8912 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
8913 aarch64_parse_arch, NULL},
8914 {NULL, NULL, 0, NULL}
8915 };
8916
8917 int
8918 md_parse_option (int c, const char *arg)
8919 {
8920 struct aarch64_option_table *opt;
8921 struct aarch64_long_option_table *lopt;
8922
8923 switch (c)
8924 {
8925 #ifdef OPTION_EB
8926 case OPTION_EB:
8927 target_big_endian = 1;
8928 break;
8929 #endif
8930
8931 #ifdef OPTION_EL
8932 case OPTION_EL:
8933 target_big_endian = 0;
8934 break;
8935 #endif
8936
8937 case 'a':
8938 /* Listing option. Just ignore these, we don't support additional
8939 ones. */
8940 return 0;
8941
8942 default:
8943 for (opt = aarch64_opts; opt->option != NULL; opt++)
8944 {
8945 if (c == opt->option[0]
8946 && ((arg == NULL && opt->option[1] == 0)
8947 || streq (arg, opt->option + 1)))
8948 {
8949 /* If the option is deprecated, tell the user. */
8950 if (opt->deprecated != NULL)
8951 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
8952 arg ? arg : "", _(opt->deprecated));
8953
8954 if (opt->var != NULL)
8955 *opt->var = opt->value;
8956
8957 return 1;
8958 }
8959 }
8960
8961 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8962 {
8963 /* These options are expected to have an argument. */
8964 if (c == lopt->option[0]
8965 && arg != NULL
8966 && strncmp (arg, lopt->option + 1,
8967 strlen (lopt->option + 1)) == 0)
8968 {
8969 /* If the option is deprecated, tell the user. */
8970 if (lopt->deprecated != NULL)
8971 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
8972 _(lopt->deprecated));
8973
8974 /* Call the sup-option parser. */
8975 return lopt->func (arg + strlen (lopt->option) - 1);
8976 }
8977 }
8978
8979 return 0;
8980 }
8981
8982 return 1;
8983 }
8984
8985 void
8986 md_show_usage (FILE * fp)
8987 {
8988 struct aarch64_option_table *opt;
8989 struct aarch64_long_option_table *lopt;
8990
8991 fprintf (fp, _(" AArch64-specific assembler options:\n"));
8992
8993 for (opt = aarch64_opts; opt->option != NULL; opt++)
8994 if (opt->help != NULL)
8995 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
8996
8997 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8998 if (lopt->help != NULL)
8999 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
9000
9001 #ifdef OPTION_EB
9002 fprintf (fp, _("\
9003 -EB assemble code for a big-endian cpu\n"));
9004 #endif
9005
9006 #ifdef OPTION_EL
9007 fprintf (fp, _("\
9008 -EL assemble code for a little-endian cpu\n"));
9009 #endif
9010 }
9011
9012 /* Parse a .cpu directive. */
9013
9014 static void
9015 s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
9016 {
9017 const struct aarch64_cpu_option_table *opt;
9018 char saved_char;
9019 char *name;
9020 char *ext;
9021 size_t optlen;
9022
9023 name = input_line_pointer;
9024 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9025 input_line_pointer++;
9026 saved_char = *input_line_pointer;
9027 *input_line_pointer = 0;
9028
9029 ext = strchr (name, '+');
9030
9031 if (ext != NULL)
9032 optlen = ext - name;
9033 else
9034 optlen = strlen (name);
9035
9036 /* Skip the first "all" entry. */
9037 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
9038 if (strlen (opt->name) == optlen
9039 && strncmp (name, opt->name, optlen) == 0)
9040 {
9041 mcpu_cpu_opt = &opt->value;
9042 if (ext != NULL)
9043 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
9044 return;
9045
9046 cpu_variant = *mcpu_cpu_opt;
9047
9048 *input_line_pointer = saved_char;
9049 demand_empty_rest_of_line ();
9050 return;
9051 }
9052 as_bad (_("unknown cpu `%s'"), name);
9053 *input_line_pointer = saved_char;
9054 ignore_rest_of_line ();
9055 }
9056
9057
9058 /* Parse a .arch directive. */
9059
9060 static void
9061 s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
9062 {
9063 const struct aarch64_arch_option_table *opt;
9064 char saved_char;
9065 char *name;
9066 char *ext;
9067 size_t optlen;
9068
9069 name = input_line_pointer;
9070 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9071 input_line_pointer++;
9072 saved_char = *input_line_pointer;
9073 *input_line_pointer = 0;
9074
9075 ext = strchr (name, '+');
9076
9077 if (ext != NULL)
9078 optlen = ext - name;
9079 else
9080 optlen = strlen (name);
9081
9082 /* Skip the first "all" entry. */
9083 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
9084 if (strlen (opt->name) == optlen
9085 && strncmp (name, opt->name, optlen) == 0)
9086 {
9087 mcpu_cpu_opt = &opt->value;
9088 if (ext != NULL)
9089 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
9090 return;
9091
9092 cpu_variant = *mcpu_cpu_opt;
9093
9094 *input_line_pointer = saved_char;
9095 demand_empty_rest_of_line ();
9096 return;
9097 }
9098
9099 as_bad (_("unknown architecture `%s'\n"), name);
9100 *input_line_pointer = saved_char;
9101 ignore_rest_of_line ();
9102 }
9103
9104 /* Parse a .arch_extension directive. */
9105
9106 static void
9107 s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
9108 {
9109 char saved_char;
9110 char *ext = input_line_pointer;;
9111
9112 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9113 input_line_pointer++;
9114 saved_char = *input_line_pointer;
9115 *input_line_pointer = 0;
9116
9117 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
9118 return;
9119
9120 cpu_variant = *mcpu_cpu_opt;
9121
9122 *input_line_pointer = saved_char;
9123 demand_empty_rest_of_line ();
9124 }
9125
9126 /* Copy symbol information. */
9127
9128 void
9129 aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
9130 {
9131 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
9132 }
This page took 0.497156 seconds and 4 git commands to generate.