Allow integer immediates for AArch64 fmov instructions.
[deliverable/binutils-gdb.git] / gas / config / tc-aarch64.c
1 /* tc-aarch64.c -- Assemble for the AArch64 ISA
2
3 Copyright (C) 2009-2018 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22 #include "as.h"
23 #include <limits.h>
24 #include <stdarg.h>
25 #include "bfd_stdint.h"
26 #define NO_RELOC 0
27 #include "safe-ctype.h"
28 #include "subsegs.h"
29 #include "obstack.h"
30
31 #ifdef OBJ_ELF
32 #include "elf/aarch64.h"
33 #include "dw2gencfi.h"
34 #endif
35
36 #include "dwarf2dbg.h"
37
38 /* Types of processor to assemble for. */
39 #ifndef CPU_DEFAULT
40 #define CPU_DEFAULT AARCH64_ARCH_V8
41 #endif
42
43 #define streq(a, b) (strcmp (a, b) == 0)
44
45 #define END_OF_INSN '\0'
46
47 static aarch64_feature_set cpu_variant;
48
49 /* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52 static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53 static const aarch64_feature_set *march_cpu_opt = NULL;
54
55 /* Constants for known architecture features. */
56 static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
58 #ifdef OBJ_ELF
59 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
60 static symbolS *GOT_symbol;
61
62 /* Which ABI to use. */
63 enum aarch64_abi_type
64 {
65 AARCH64_ABI_NONE = 0,
66 AARCH64_ABI_LP64 = 1,
67 AARCH64_ABI_ILP32 = 2
68 };
69
70 #ifndef DEFAULT_ARCH
71 #define DEFAULT_ARCH "aarch64"
72 #endif
73
74 /* DEFAULT_ARCH is initialized in gas/configure.tgt. */
75 static const char *default_arch = DEFAULT_ARCH;
76
77 /* AArch64 ABI for the output file. */
78 static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_NONE;
79
80 /* When non-zero, program to a 32-bit model, in which the C data types
81 int, long and all pointer types are 32-bit objects (ILP32); or to a
82 64-bit model, in which the C int type is 32-bits but the C long type
83 and all pointer types are 64-bit objects (LP64). */
84 #define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
85 #endif
86
87 enum vector_el_type
88 {
89 NT_invtype = -1,
90 NT_b,
91 NT_h,
92 NT_s,
93 NT_d,
94 NT_q,
95 NT_zero,
96 NT_merge
97 };
98
99 /* Bits for DEFINED field in vector_type_el. */
100 #define NTA_HASTYPE 1
101 #define NTA_HASINDEX 2
102 #define NTA_HASVARWIDTH 4
103
104 struct vector_type_el
105 {
106 enum vector_el_type type;
107 unsigned char defined;
108 unsigned width;
109 int64_t index;
110 };
111
112 #define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
113
114 struct reloc
115 {
116 bfd_reloc_code_real_type type;
117 expressionS exp;
118 int pc_rel;
119 enum aarch64_opnd opnd;
120 uint32_t flags;
121 unsigned need_libopcodes_p : 1;
122 };
123
124 struct aarch64_instruction
125 {
126 /* libopcodes structure for instruction intermediate representation. */
127 aarch64_inst base;
128 /* Record assembly errors found during the parsing. */
129 struct
130 {
131 enum aarch64_operand_error_kind kind;
132 const char *error;
133 } parsing_error;
134 /* The condition that appears in the assembly line. */
135 int cond;
136 /* Relocation information (including the GAS internal fixup). */
137 struct reloc reloc;
138 /* Need to generate an immediate in the literal pool. */
139 unsigned gen_lit_pool : 1;
140 };
141
142 typedef struct aarch64_instruction aarch64_instruction;
143
144 static aarch64_instruction inst;
145
146 static bfd_boolean parse_operands (char *, const aarch64_opcode *);
147 static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
148
149 /* Diagnostics inline function utilities.
150
151 These are lightweight utilities which should only be called by parse_operands
152 and other parsers. GAS processes each assembly line by parsing it against
153 instruction template(s), in the case of multiple templates (for the same
154 mnemonic name), those templates are tried one by one until one succeeds or
155 all fail. An assembly line may fail a few templates before being
156 successfully parsed; an error saved here in most cases is not a user error
157 but an error indicating the current template is not the right template.
158 Therefore it is very important that errors can be saved at a low cost during
159 the parsing; we don't want to slow down the whole parsing by recording
160 non-user errors in detail.
161
162 Remember that the objective is to help GAS pick up the most appropriate
163 error message in the case of multiple templates, e.g. FMOV which has 8
164 templates. */
165
166 static inline void
167 clear_error (void)
168 {
169 inst.parsing_error.kind = AARCH64_OPDE_NIL;
170 inst.parsing_error.error = NULL;
171 }
172
173 static inline bfd_boolean
174 error_p (void)
175 {
176 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
177 }
178
179 static inline const char *
180 get_error_message (void)
181 {
182 return inst.parsing_error.error;
183 }
184
185 static inline enum aarch64_operand_error_kind
186 get_error_kind (void)
187 {
188 return inst.parsing_error.kind;
189 }
190
191 static inline void
192 set_error (enum aarch64_operand_error_kind kind, const char *error)
193 {
194 inst.parsing_error.kind = kind;
195 inst.parsing_error.error = error;
196 }
197
198 static inline void
199 set_recoverable_error (const char *error)
200 {
201 set_error (AARCH64_OPDE_RECOVERABLE, error);
202 }
203
204 /* Use the DESC field of the corresponding aarch64_operand entry to compose
205 the error message. */
206 static inline void
207 set_default_error (void)
208 {
209 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
210 }
211
212 static inline void
213 set_syntax_error (const char *error)
214 {
215 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
216 }
217
218 static inline void
219 set_first_syntax_error (const char *error)
220 {
221 if (! error_p ())
222 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
223 }
224
225 static inline void
226 set_fatal_syntax_error (const char *error)
227 {
228 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
229 }
230 \f
231 /* Number of littlenums required to hold an extended precision number. */
232 #define MAX_LITTLENUMS 6
233
234 /* Return value for certain parsers when the parsing fails; those parsers
235 return the information of the parsed result, e.g. register number, on
236 success. */
237 #define PARSE_FAIL -1
238
239 /* This is an invalid condition code that means no conditional field is
240 present. */
241 #define COND_ALWAYS 0x10
242
243 typedef struct
244 {
245 const char *template;
246 unsigned long value;
247 } asm_barrier_opt;
248
249 typedef struct
250 {
251 const char *template;
252 uint32_t value;
253 } asm_nzcv;
254
255 struct reloc_entry
256 {
257 char *name;
258 bfd_reloc_code_real_type reloc;
259 };
260
261 /* Macros to define the register types and masks for the purpose
262 of parsing. */
263
264 #undef AARCH64_REG_TYPES
265 #define AARCH64_REG_TYPES \
266 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
267 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
268 BASIC_REG_TYPE(SP_32) /* wsp */ \
269 BASIC_REG_TYPE(SP_64) /* sp */ \
270 BASIC_REG_TYPE(Z_32) /* wzr */ \
271 BASIC_REG_TYPE(Z_64) /* xzr */ \
272 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
273 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
274 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
275 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
276 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
277 BASIC_REG_TYPE(VN) /* v[0-31] */ \
278 BASIC_REG_TYPE(ZN) /* z[0-31] */ \
279 BASIC_REG_TYPE(PN) /* p[0-15] */ \
280 /* Typecheck: any 64-bit int reg (inc SP exc XZR). */ \
281 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
282 /* Typecheck: same, plus SVE registers. */ \
283 MULTI_REG_TYPE(SVE_BASE, REG_TYPE(R_64) | REG_TYPE(SP_64) \
284 | REG_TYPE(ZN)) \
285 /* Typecheck: x[0-30], w[0-30] or [xw]zr. */ \
286 MULTI_REG_TYPE(R_Z, REG_TYPE(R_32) | REG_TYPE(R_64) \
287 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
288 /* Typecheck: same, plus SVE registers. */ \
289 MULTI_REG_TYPE(SVE_OFFSET, REG_TYPE(R_32) | REG_TYPE(R_64) \
290 | REG_TYPE(Z_32) | REG_TYPE(Z_64) \
291 | REG_TYPE(ZN)) \
292 /* Typecheck: x[0-30], w[0-30] or {w}sp. */ \
293 MULTI_REG_TYPE(R_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
294 | REG_TYPE(SP_32) | REG_TYPE(SP_64)) \
295 /* Typecheck: any int (inc {W}SP inc [WX]ZR). */ \
296 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
297 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
298 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
299 /* Typecheck: any [BHSDQ]P FP. */ \
300 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
301 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
302 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR). */ \
303 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
304 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
305 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
306 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
307 /* Typecheck: as above, but also Zn, Pn, and {W}SP. This should only \
308 be used for SVE instructions, since Zn and Pn are valid symbols \
309 in other contexts. */ \
310 MULTI_REG_TYPE(R_Z_SP_BHSDQ_VZP, REG_TYPE(R_32) | REG_TYPE(R_64) \
311 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
312 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
313 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
314 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q) \
315 | REG_TYPE(ZN) | REG_TYPE(PN)) \
316 /* Any integer register; used for error messages only. */ \
317 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
318 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
319 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
320 /* Pseudo type to mark the end of the enumerator sequence. */ \
321 BASIC_REG_TYPE(MAX)
322
323 #undef BASIC_REG_TYPE
324 #define BASIC_REG_TYPE(T) REG_TYPE_##T,
325 #undef MULTI_REG_TYPE
326 #define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
327
328 /* Register type enumerators. */
329 typedef enum aarch64_reg_type_
330 {
331 /* A list of REG_TYPE_*. */
332 AARCH64_REG_TYPES
333 } aarch64_reg_type;
334
335 #undef BASIC_REG_TYPE
336 #define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
337 #undef REG_TYPE
338 #define REG_TYPE(T) (1 << REG_TYPE_##T)
339 #undef MULTI_REG_TYPE
340 #define MULTI_REG_TYPE(T,V) V,
341
342 /* Structure for a hash table entry for a register. */
343 typedef struct
344 {
345 const char *name;
346 unsigned char number;
347 ENUM_BITFIELD (aarch64_reg_type_) type : 8;
348 unsigned char builtin;
349 } reg_entry;
350
351 /* Values indexed by aarch64_reg_type to assist the type checking. */
352 static const unsigned reg_type_masks[] =
353 {
354 AARCH64_REG_TYPES
355 };
356
357 #undef BASIC_REG_TYPE
358 #undef REG_TYPE
359 #undef MULTI_REG_TYPE
360 #undef AARCH64_REG_TYPES
361
362 /* Diagnostics used when we don't get a register of the expected type.
363 Note: this has to synchronized with aarch64_reg_type definitions
364 above. */
365 static const char *
366 get_reg_expected_msg (aarch64_reg_type reg_type)
367 {
368 const char *msg;
369
370 switch (reg_type)
371 {
372 case REG_TYPE_R_32:
373 msg = N_("integer 32-bit register expected");
374 break;
375 case REG_TYPE_R_64:
376 msg = N_("integer 64-bit register expected");
377 break;
378 case REG_TYPE_R_N:
379 msg = N_("integer register expected");
380 break;
381 case REG_TYPE_R64_SP:
382 msg = N_("64-bit integer or SP register expected");
383 break;
384 case REG_TYPE_SVE_BASE:
385 msg = N_("base register expected");
386 break;
387 case REG_TYPE_R_Z:
388 msg = N_("integer or zero register expected");
389 break;
390 case REG_TYPE_SVE_OFFSET:
391 msg = N_("offset register expected");
392 break;
393 case REG_TYPE_R_SP:
394 msg = N_("integer or SP register expected");
395 break;
396 case REG_TYPE_R_Z_SP:
397 msg = N_("integer, zero or SP register expected");
398 break;
399 case REG_TYPE_FP_B:
400 msg = N_("8-bit SIMD scalar register expected");
401 break;
402 case REG_TYPE_FP_H:
403 msg = N_("16-bit SIMD scalar or floating-point half precision "
404 "register expected");
405 break;
406 case REG_TYPE_FP_S:
407 msg = N_("32-bit SIMD scalar or floating-point single precision "
408 "register expected");
409 break;
410 case REG_TYPE_FP_D:
411 msg = N_("64-bit SIMD scalar or floating-point double precision "
412 "register expected");
413 break;
414 case REG_TYPE_FP_Q:
415 msg = N_("128-bit SIMD scalar or floating-point quad precision "
416 "register expected");
417 break;
418 case REG_TYPE_R_Z_BHSDQ_V:
419 case REG_TYPE_R_Z_SP_BHSDQ_VZP:
420 msg = N_("register expected");
421 break;
422 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
423 msg = N_("SIMD scalar or floating-point register expected");
424 break;
425 case REG_TYPE_VN: /* any V reg */
426 msg = N_("vector register expected");
427 break;
428 case REG_TYPE_ZN:
429 msg = N_("SVE vector register expected");
430 break;
431 case REG_TYPE_PN:
432 msg = N_("SVE predicate register expected");
433 break;
434 default:
435 as_fatal (_("invalid register type %d"), reg_type);
436 }
437 return msg;
438 }
439
440 /* Some well known registers that we refer to directly elsewhere. */
441 #define REG_SP 31
442
443 /* Instructions take 4 bytes in the object file. */
444 #define INSN_SIZE 4
445
446 static struct hash_control *aarch64_ops_hsh;
447 static struct hash_control *aarch64_cond_hsh;
448 static struct hash_control *aarch64_shift_hsh;
449 static struct hash_control *aarch64_sys_regs_hsh;
450 static struct hash_control *aarch64_pstatefield_hsh;
451 static struct hash_control *aarch64_sys_regs_ic_hsh;
452 static struct hash_control *aarch64_sys_regs_dc_hsh;
453 static struct hash_control *aarch64_sys_regs_at_hsh;
454 static struct hash_control *aarch64_sys_regs_tlbi_hsh;
455 static struct hash_control *aarch64_reg_hsh;
456 static struct hash_control *aarch64_barrier_opt_hsh;
457 static struct hash_control *aarch64_nzcv_hsh;
458 static struct hash_control *aarch64_pldop_hsh;
459 static struct hash_control *aarch64_hint_opt_hsh;
460
461 /* Stuff needed to resolve the label ambiguity
462 As:
463 ...
464 label: <insn>
465 may differ from:
466 ...
467 label:
468 <insn> */
469
470 static symbolS *last_label_seen;
471
472 /* Literal pool structure. Held on a per-section
473 and per-sub-section basis. */
474
475 #define MAX_LITERAL_POOL_SIZE 1024
476 typedef struct literal_expression
477 {
478 expressionS exp;
479 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
480 LITTLENUM_TYPE * bignum;
481 } literal_expression;
482
483 typedef struct literal_pool
484 {
485 literal_expression literals[MAX_LITERAL_POOL_SIZE];
486 unsigned int next_free_entry;
487 unsigned int id;
488 symbolS *symbol;
489 segT section;
490 subsegT sub_section;
491 int size;
492 struct literal_pool *next;
493 } literal_pool;
494
495 /* Pointer to a linked list of literal pools. */
496 static literal_pool *list_of_pools = NULL;
497 \f
498 /* Pure syntax. */
499
500 /* This array holds the chars that always start a comment. If the
501 pre-processor is disabled, these aren't very useful. */
502 const char comment_chars[] = "";
503
504 /* This array holds the chars that only start a comment at the beginning of
505 a line. If the line seems to have the form '# 123 filename'
506 .line and .file directives will appear in the pre-processed output. */
507 /* Note that input_file.c hand checks for '#' at the beginning of the
508 first line of the input file. This is because the compiler outputs
509 #NO_APP at the beginning of its output. */
510 /* Also note that comments like this one will always work. */
511 const char line_comment_chars[] = "#";
512
513 const char line_separator_chars[] = ";";
514
515 /* Chars that can be used to separate mant
516 from exp in floating point numbers. */
517 const char EXP_CHARS[] = "eE";
518
519 /* Chars that mean this number is a floating point constant. */
520 /* As in 0f12.456 */
521 /* or 0d1.2345e12 */
522
523 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
524
525 /* Prefix character that indicates the start of an immediate value. */
526 #define is_immediate_prefix(C) ((C) == '#')
527
528 /* Separator character handling. */
529
530 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
531
532 static inline bfd_boolean
533 skip_past_char (char **str, char c)
534 {
535 if (**str == c)
536 {
537 (*str)++;
538 return TRUE;
539 }
540 else
541 return FALSE;
542 }
543
544 #define skip_past_comma(str) skip_past_char (str, ',')
545
546 /* Arithmetic expressions (possibly involving symbols). */
547
548 static bfd_boolean in_my_get_expression_p = FALSE;
549
550 /* Third argument to my_get_expression. */
551 #define GE_NO_PREFIX 0
552 #define GE_OPT_PREFIX 1
553
554 /* Return TRUE if the string pointed by *STR is successfully parsed
555 as an valid expression; *EP will be filled with the information of
556 such an expression. Otherwise return FALSE. */
557
558 static bfd_boolean
559 my_get_expression (expressionS * ep, char **str, int prefix_mode,
560 int reject_absent)
561 {
562 char *save_in;
563 segT seg;
564 int prefix_present_p = 0;
565
566 switch (prefix_mode)
567 {
568 case GE_NO_PREFIX:
569 break;
570 case GE_OPT_PREFIX:
571 if (is_immediate_prefix (**str))
572 {
573 (*str)++;
574 prefix_present_p = 1;
575 }
576 break;
577 default:
578 abort ();
579 }
580
581 memset (ep, 0, sizeof (expressionS));
582
583 save_in = input_line_pointer;
584 input_line_pointer = *str;
585 in_my_get_expression_p = TRUE;
586 seg = expression (ep);
587 in_my_get_expression_p = FALSE;
588
589 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
590 {
591 /* We found a bad expression in md_operand(). */
592 *str = input_line_pointer;
593 input_line_pointer = save_in;
594 if (prefix_present_p && ! error_p ())
595 set_fatal_syntax_error (_("bad expression"));
596 else
597 set_first_syntax_error (_("bad expression"));
598 return FALSE;
599 }
600
601 #ifdef OBJ_AOUT
602 if (seg != absolute_section
603 && seg != text_section
604 && seg != data_section
605 && seg != bss_section && seg != undefined_section)
606 {
607 set_syntax_error (_("bad segment"));
608 *str = input_line_pointer;
609 input_line_pointer = save_in;
610 return FALSE;
611 }
612 #else
613 (void) seg;
614 #endif
615
616 *str = input_line_pointer;
617 input_line_pointer = save_in;
618 return TRUE;
619 }
620
621 /* Turn a string in input_line_pointer into a floating point constant
622 of type TYPE, and store the appropriate bytes in *LITP. The number
623 of LITTLENUMS emitted is stored in *SIZEP. An error message is
624 returned, or NULL on OK. */
625
626 const char *
627 md_atof (int type, char *litP, int *sizeP)
628 {
629 return ieee_md_atof (type, litP, sizeP, target_big_endian);
630 }
631
632 /* We handle all bad expressions here, so that we can report the faulty
633 instruction in the error message. */
634 void
635 md_operand (expressionS * exp)
636 {
637 if (in_my_get_expression_p)
638 exp->X_op = O_illegal;
639 }
640
641 /* Immediate values. */
642
643 /* Errors may be set multiple times during parsing or bit encoding
644 (particularly in the Neon bits), but usually the earliest error which is set
645 will be the most meaningful. Avoid overwriting it with later (cascading)
646 errors by calling this function. */
647
648 static void
649 first_error (const char *error)
650 {
651 if (! error_p ())
652 set_syntax_error (error);
653 }
654
655 /* Similar to first_error, but this function accepts formatted error
656 message. */
657 static void
658 first_error_fmt (const char *format, ...)
659 {
660 va_list args;
661 enum
662 { size = 100 };
663 /* N.B. this single buffer will not cause error messages for different
664 instructions to pollute each other; this is because at the end of
665 processing of each assembly line, error message if any will be
666 collected by as_bad. */
667 static char buffer[size];
668
669 if (! error_p ())
670 {
671 int ret ATTRIBUTE_UNUSED;
672 va_start (args, format);
673 ret = vsnprintf (buffer, size, format, args);
674 know (ret <= size - 1 && ret >= 0);
675 va_end (args);
676 set_syntax_error (buffer);
677 }
678 }
679
680 /* Register parsing. */
681
682 /* Generic register parser which is called by other specialized
683 register parsers.
684 CCP points to what should be the beginning of a register name.
685 If it is indeed a valid register name, advance CCP over it and
686 return the reg_entry structure; otherwise return NULL.
687 It does not issue diagnostics. */
688
689 static reg_entry *
690 parse_reg (char **ccp)
691 {
692 char *start = *ccp;
693 char *p;
694 reg_entry *reg;
695
696 #ifdef REGISTER_PREFIX
697 if (*start != REGISTER_PREFIX)
698 return NULL;
699 start++;
700 #endif
701
702 p = start;
703 if (!ISALPHA (*p) || !is_name_beginner (*p))
704 return NULL;
705
706 do
707 p++;
708 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
709
710 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
711
712 if (!reg)
713 return NULL;
714
715 *ccp = p;
716 return reg;
717 }
718
719 /* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
720 return FALSE. */
721 static bfd_boolean
722 aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
723 {
724 return (reg_type_masks[type] & (1 << reg->type)) != 0;
725 }
726
727 /* Try to parse a base or offset register. Allow SVE base and offset
728 registers if REG_TYPE includes SVE registers. Return the register
729 entry on success, setting *QUALIFIER to the register qualifier.
730 Return null otherwise.
731
732 Note that this function does not issue any diagnostics. */
733
734 static const reg_entry *
735 aarch64_addr_reg_parse (char **ccp, aarch64_reg_type reg_type,
736 aarch64_opnd_qualifier_t *qualifier)
737 {
738 char *str = *ccp;
739 const reg_entry *reg = parse_reg (&str);
740
741 if (reg == NULL)
742 return NULL;
743
744 switch (reg->type)
745 {
746 case REG_TYPE_R_32:
747 case REG_TYPE_SP_32:
748 case REG_TYPE_Z_32:
749 *qualifier = AARCH64_OPND_QLF_W;
750 break;
751
752 case REG_TYPE_R_64:
753 case REG_TYPE_SP_64:
754 case REG_TYPE_Z_64:
755 *qualifier = AARCH64_OPND_QLF_X;
756 break;
757
758 case REG_TYPE_ZN:
759 if ((reg_type_masks[reg_type] & (1 << REG_TYPE_ZN)) == 0
760 || str[0] != '.')
761 return NULL;
762 switch (TOLOWER (str[1]))
763 {
764 case 's':
765 *qualifier = AARCH64_OPND_QLF_S_S;
766 break;
767 case 'd':
768 *qualifier = AARCH64_OPND_QLF_S_D;
769 break;
770 default:
771 return NULL;
772 }
773 str += 2;
774 break;
775
776 default:
777 return NULL;
778 }
779
780 *ccp = str;
781
782 return reg;
783 }
784
785 /* Try to parse a base or offset register. Return the register entry
786 on success, setting *QUALIFIER to the register qualifier. Return null
787 otherwise.
788
789 Note that this function does not issue any diagnostics. */
790
791 static const reg_entry *
792 aarch64_reg_parse_32_64 (char **ccp, aarch64_opnd_qualifier_t *qualifier)
793 {
794 return aarch64_addr_reg_parse (ccp, REG_TYPE_R_Z_SP, qualifier);
795 }
796
797 /* Parse the qualifier of a vector register or vector element of type
798 REG_TYPE. Fill in *PARSED_TYPE and return TRUE if the parsing
799 succeeds; otherwise return FALSE.
800
801 Accept only one occurrence of:
802 4b 8b 16b 2h 4h 8h 2s 4s 1d 2d
803 b h s d q */
804 static bfd_boolean
805 parse_vector_type_for_operand (aarch64_reg_type reg_type,
806 struct vector_type_el *parsed_type, char **str)
807 {
808 char *ptr = *str;
809 unsigned width;
810 unsigned element_size;
811 enum vector_el_type type;
812
813 /* skip '.' */
814 gas_assert (*ptr == '.');
815 ptr++;
816
817 if (reg_type == REG_TYPE_ZN || reg_type == REG_TYPE_PN || !ISDIGIT (*ptr))
818 {
819 width = 0;
820 goto elt_size;
821 }
822 width = strtoul (ptr, &ptr, 10);
823 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
824 {
825 first_error_fmt (_("bad size %d in vector width specifier"), width);
826 return FALSE;
827 }
828
829 elt_size:
830 switch (TOLOWER (*ptr))
831 {
832 case 'b':
833 type = NT_b;
834 element_size = 8;
835 break;
836 case 'h':
837 type = NT_h;
838 element_size = 16;
839 break;
840 case 's':
841 type = NT_s;
842 element_size = 32;
843 break;
844 case 'd':
845 type = NT_d;
846 element_size = 64;
847 break;
848 case 'q':
849 if (reg_type == REG_TYPE_ZN || width == 1)
850 {
851 type = NT_q;
852 element_size = 128;
853 break;
854 }
855 /* fall through. */
856 default:
857 if (*ptr != '\0')
858 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
859 else
860 first_error (_("missing element size"));
861 return FALSE;
862 }
863 if (width != 0 && width * element_size != 64
864 && width * element_size != 128
865 && !(width == 2 && element_size == 16)
866 && !(width == 4 && element_size == 8))
867 {
868 first_error_fmt (_
869 ("invalid element size %d and vector size combination %c"),
870 width, *ptr);
871 return FALSE;
872 }
873 ptr++;
874
875 parsed_type->type = type;
876 parsed_type->width = width;
877
878 *str = ptr;
879
880 return TRUE;
881 }
882
883 /* *STR contains an SVE zero/merge predication suffix. Parse it into
884 *PARSED_TYPE and point *STR at the end of the suffix. */
885
886 static bfd_boolean
887 parse_predication_for_operand (struct vector_type_el *parsed_type, char **str)
888 {
889 char *ptr = *str;
890
891 /* Skip '/'. */
892 gas_assert (*ptr == '/');
893 ptr++;
894 switch (TOLOWER (*ptr))
895 {
896 case 'z':
897 parsed_type->type = NT_zero;
898 break;
899 case 'm':
900 parsed_type->type = NT_merge;
901 break;
902 default:
903 if (*ptr != '\0' && *ptr != ',')
904 first_error_fmt (_("unexpected character `%c' in predication type"),
905 *ptr);
906 else
907 first_error (_("missing predication type"));
908 return FALSE;
909 }
910 parsed_type->width = 0;
911 *str = ptr + 1;
912 return TRUE;
913 }
914
915 /* Parse a register of the type TYPE.
916
917 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
918 name or the parsed register is not of TYPE.
919
920 Otherwise return the register number, and optionally fill in the actual
921 type of the register in *RTYPE when multiple alternatives were given, and
922 return the register shape and element index information in *TYPEINFO.
923
924 IN_REG_LIST should be set with TRUE if the caller is parsing a register
925 list. */
926
927 static int
928 parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
929 struct vector_type_el *typeinfo, bfd_boolean in_reg_list)
930 {
931 char *str = *ccp;
932 const reg_entry *reg = parse_reg (&str);
933 struct vector_type_el atype;
934 struct vector_type_el parsetype;
935 bfd_boolean is_typed_vecreg = FALSE;
936
937 atype.defined = 0;
938 atype.type = NT_invtype;
939 atype.width = -1;
940 atype.index = 0;
941
942 if (reg == NULL)
943 {
944 if (typeinfo)
945 *typeinfo = atype;
946 set_default_error ();
947 return PARSE_FAIL;
948 }
949
950 if (! aarch64_check_reg_type (reg, type))
951 {
952 DEBUG_TRACE ("reg type check failed");
953 set_default_error ();
954 return PARSE_FAIL;
955 }
956 type = reg->type;
957
958 if ((type == REG_TYPE_VN || type == REG_TYPE_ZN || type == REG_TYPE_PN)
959 && (*str == '.' || (type == REG_TYPE_PN && *str == '/')))
960 {
961 if (*str == '.')
962 {
963 if (!parse_vector_type_for_operand (type, &parsetype, &str))
964 return PARSE_FAIL;
965 }
966 else
967 {
968 if (!parse_predication_for_operand (&parsetype, &str))
969 return PARSE_FAIL;
970 }
971
972 /* Register if of the form Vn.[bhsdq]. */
973 is_typed_vecreg = TRUE;
974
975 if (type == REG_TYPE_ZN || type == REG_TYPE_PN)
976 {
977 /* The width is always variable; we don't allow an integer width
978 to be specified. */
979 gas_assert (parsetype.width == 0);
980 atype.defined |= NTA_HASVARWIDTH | NTA_HASTYPE;
981 }
982 else if (parsetype.width == 0)
983 /* Expect index. In the new scheme we cannot have
984 Vn.[bhsdq] represent a scalar. Therefore any
985 Vn.[bhsdq] should have an index following it.
986 Except in reglists of course. */
987 atype.defined |= NTA_HASINDEX;
988 else
989 atype.defined |= NTA_HASTYPE;
990
991 atype.type = parsetype.type;
992 atype.width = parsetype.width;
993 }
994
995 if (skip_past_char (&str, '['))
996 {
997 expressionS exp;
998
999 /* Reject Sn[index] syntax. */
1000 if (!is_typed_vecreg)
1001 {
1002 first_error (_("this type of register can't be indexed"));
1003 return PARSE_FAIL;
1004 }
1005
1006 if (in_reg_list)
1007 {
1008 first_error (_("index not allowed inside register list"));
1009 return PARSE_FAIL;
1010 }
1011
1012 atype.defined |= NTA_HASINDEX;
1013
1014 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1015
1016 if (exp.X_op != O_constant)
1017 {
1018 first_error (_("constant expression required"));
1019 return PARSE_FAIL;
1020 }
1021
1022 if (! skip_past_char (&str, ']'))
1023 return PARSE_FAIL;
1024
1025 atype.index = exp.X_add_number;
1026 }
1027 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
1028 {
1029 /* Indexed vector register expected. */
1030 first_error (_("indexed vector register expected"));
1031 return PARSE_FAIL;
1032 }
1033
1034 /* A vector reg Vn should be typed or indexed. */
1035 if (type == REG_TYPE_VN && atype.defined == 0)
1036 {
1037 first_error (_("invalid use of vector register"));
1038 }
1039
1040 if (typeinfo)
1041 *typeinfo = atype;
1042
1043 if (rtype)
1044 *rtype = type;
1045
1046 *ccp = str;
1047
1048 return reg->number;
1049 }
1050
1051 /* Parse register.
1052
1053 Return the register number on success; return PARSE_FAIL otherwise.
1054
1055 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
1056 the register (e.g. NEON double or quad reg when either has been requested).
1057
1058 If this is a NEON vector register with additional type information, fill
1059 in the struct pointed to by VECTYPE (if non-NULL).
1060
1061 This parser does not handle register list. */
1062
1063 static int
1064 aarch64_reg_parse (char **ccp, aarch64_reg_type type,
1065 aarch64_reg_type *rtype, struct vector_type_el *vectype)
1066 {
1067 struct vector_type_el atype;
1068 char *str = *ccp;
1069 int reg = parse_typed_reg (&str, type, rtype, &atype,
1070 /*in_reg_list= */ FALSE);
1071
1072 if (reg == PARSE_FAIL)
1073 return PARSE_FAIL;
1074
1075 if (vectype)
1076 *vectype = atype;
1077
1078 *ccp = str;
1079
1080 return reg;
1081 }
1082
1083 static inline bfd_boolean
1084 eq_vector_type_el (struct vector_type_el e1, struct vector_type_el e2)
1085 {
1086 return
1087 e1.type == e2.type
1088 && e1.defined == e2.defined
1089 && e1.width == e2.width && e1.index == e2.index;
1090 }
1091
1092 /* This function parses a list of vector registers of type TYPE.
1093 On success, it returns the parsed register list information in the
1094 following encoded format:
1095
1096 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1097 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1098
1099 The information of the register shape and/or index is returned in
1100 *VECTYPE.
1101
1102 It returns PARSE_FAIL if the register list is invalid.
1103
1104 The list contains one to four registers.
1105 Each register can be one of:
1106 <Vt>.<T>[<index>]
1107 <Vt>.<T>
1108 All <T> should be identical.
1109 All <index> should be identical.
1110 There are restrictions on <Vt> numbers which are checked later
1111 (by reg_list_valid_p). */
1112
1113 static int
1114 parse_vector_reg_list (char **ccp, aarch64_reg_type type,
1115 struct vector_type_el *vectype)
1116 {
1117 char *str = *ccp;
1118 int nb_regs;
1119 struct vector_type_el typeinfo, typeinfo_first;
1120 int val, val_range;
1121 int in_range;
1122 int ret_val;
1123 int i;
1124 bfd_boolean error = FALSE;
1125 bfd_boolean expect_index = FALSE;
1126
1127 if (*str != '{')
1128 {
1129 set_syntax_error (_("expecting {"));
1130 return PARSE_FAIL;
1131 }
1132 str++;
1133
1134 nb_regs = 0;
1135 typeinfo_first.defined = 0;
1136 typeinfo_first.type = NT_invtype;
1137 typeinfo_first.width = -1;
1138 typeinfo_first.index = 0;
1139 ret_val = 0;
1140 val = -1;
1141 val_range = -1;
1142 in_range = 0;
1143 do
1144 {
1145 if (in_range)
1146 {
1147 str++; /* skip over '-' */
1148 val_range = val;
1149 }
1150 val = parse_typed_reg (&str, type, NULL, &typeinfo,
1151 /*in_reg_list= */ TRUE);
1152 if (val == PARSE_FAIL)
1153 {
1154 set_first_syntax_error (_("invalid vector register in list"));
1155 error = TRUE;
1156 continue;
1157 }
1158 /* reject [bhsd]n */
1159 if (type == REG_TYPE_VN && typeinfo.defined == 0)
1160 {
1161 set_first_syntax_error (_("invalid scalar register in list"));
1162 error = TRUE;
1163 continue;
1164 }
1165
1166 if (typeinfo.defined & NTA_HASINDEX)
1167 expect_index = TRUE;
1168
1169 if (in_range)
1170 {
1171 if (val < val_range)
1172 {
1173 set_first_syntax_error
1174 (_("invalid range in vector register list"));
1175 error = TRUE;
1176 }
1177 val_range++;
1178 }
1179 else
1180 {
1181 val_range = val;
1182 if (nb_regs == 0)
1183 typeinfo_first = typeinfo;
1184 else if (! eq_vector_type_el (typeinfo_first, typeinfo))
1185 {
1186 set_first_syntax_error
1187 (_("type mismatch in vector register list"));
1188 error = TRUE;
1189 }
1190 }
1191 if (! error)
1192 for (i = val_range; i <= val; i++)
1193 {
1194 ret_val |= i << (5 * nb_regs);
1195 nb_regs++;
1196 }
1197 in_range = 0;
1198 }
1199 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1200
1201 skip_whitespace (str);
1202 if (*str != '}')
1203 {
1204 set_first_syntax_error (_("end of vector register list not found"));
1205 error = TRUE;
1206 }
1207 str++;
1208
1209 skip_whitespace (str);
1210
1211 if (expect_index)
1212 {
1213 if (skip_past_char (&str, '['))
1214 {
1215 expressionS exp;
1216
1217 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1218 if (exp.X_op != O_constant)
1219 {
1220 set_first_syntax_error (_("constant expression required."));
1221 error = TRUE;
1222 }
1223 if (! skip_past_char (&str, ']'))
1224 error = TRUE;
1225 else
1226 typeinfo_first.index = exp.X_add_number;
1227 }
1228 else
1229 {
1230 set_first_syntax_error (_("expected index"));
1231 error = TRUE;
1232 }
1233 }
1234
1235 if (nb_regs > 4)
1236 {
1237 set_first_syntax_error (_("too many registers in vector register list"));
1238 error = TRUE;
1239 }
1240 else if (nb_regs == 0)
1241 {
1242 set_first_syntax_error (_("empty vector register list"));
1243 error = TRUE;
1244 }
1245
1246 *ccp = str;
1247 if (! error)
1248 *vectype = typeinfo_first;
1249
1250 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1251 }
1252
1253 /* Directives: register aliases. */
1254
1255 static reg_entry *
1256 insert_reg_alias (char *str, int number, aarch64_reg_type type)
1257 {
1258 reg_entry *new;
1259 const char *name;
1260
1261 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1262 {
1263 if (new->builtin)
1264 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1265 str);
1266
1267 /* Only warn about a redefinition if it's not defined as the
1268 same register. */
1269 else if (new->number != number || new->type != type)
1270 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1271
1272 return NULL;
1273 }
1274
1275 name = xstrdup (str);
1276 new = XNEW (reg_entry);
1277
1278 new->name = name;
1279 new->number = number;
1280 new->type = type;
1281 new->builtin = FALSE;
1282
1283 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1284 abort ();
1285
1286 return new;
1287 }
1288
1289 /* Look for the .req directive. This is of the form:
1290
1291 new_register_name .req existing_register_name
1292
1293 If we find one, or if it looks sufficiently like one that we want to
1294 handle any error here, return TRUE. Otherwise return FALSE. */
1295
1296 static bfd_boolean
1297 create_register_alias (char *newname, char *p)
1298 {
1299 const reg_entry *old;
1300 char *oldname, *nbuf;
1301 size_t nlen;
1302
1303 /* The input scrubber ensures that whitespace after the mnemonic is
1304 collapsed to single spaces. */
1305 oldname = p;
1306 if (strncmp (oldname, " .req ", 6) != 0)
1307 return FALSE;
1308
1309 oldname += 6;
1310 if (*oldname == '\0')
1311 return FALSE;
1312
1313 old = hash_find (aarch64_reg_hsh, oldname);
1314 if (!old)
1315 {
1316 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1317 return TRUE;
1318 }
1319
1320 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1321 the desired alias name, and p points to its end. If not, then
1322 the desired alias name is in the global original_case_string. */
1323 #ifdef TC_CASE_SENSITIVE
1324 nlen = p - newname;
1325 #else
1326 newname = original_case_string;
1327 nlen = strlen (newname);
1328 #endif
1329
1330 nbuf = xmemdup0 (newname, nlen);
1331
1332 /* Create aliases under the new name as stated; an all-lowercase
1333 version of the new name; and an all-uppercase version of the new
1334 name. */
1335 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1336 {
1337 for (p = nbuf; *p; p++)
1338 *p = TOUPPER (*p);
1339
1340 if (strncmp (nbuf, newname, nlen))
1341 {
1342 /* If this attempt to create an additional alias fails, do not bother
1343 trying to create the all-lower case alias. We will fail and issue
1344 a second, duplicate error message. This situation arises when the
1345 programmer does something like:
1346 foo .req r0
1347 Foo .req r1
1348 The second .req creates the "Foo" alias but then fails to create
1349 the artificial FOO alias because it has already been created by the
1350 first .req. */
1351 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
1352 {
1353 free (nbuf);
1354 return TRUE;
1355 }
1356 }
1357
1358 for (p = nbuf; *p; p++)
1359 *p = TOLOWER (*p);
1360
1361 if (strncmp (nbuf, newname, nlen))
1362 insert_reg_alias (nbuf, old->number, old->type);
1363 }
1364
1365 free (nbuf);
1366 return TRUE;
1367 }
1368
1369 /* Should never be called, as .req goes between the alias and the
1370 register name, not at the beginning of the line. */
1371 static void
1372 s_req (int a ATTRIBUTE_UNUSED)
1373 {
1374 as_bad (_("invalid syntax for .req directive"));
1375 }
1376
1377 /* The .unreq directive deletes an alias which was previously defined
1378 by .req. For example:
1379
1380 my_alias .req r11
1381 .unreq my_alias */
1382
1383 static void
1384 s_unreq (int a ATTRIBUTE_UNUSED)
1385 {
1386 char *name;
1387 char saved_char;
1388
1389 name = input_line_pointer;
1390
1391 while (*input_line_pointer != 0
1392 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1393 ++input_line_pointer;
1394
1395 saved_char = *input_line_pointer;
1396 *input_line_pointer = 0;
1397
1398 if (!*name)
1399 as_bad (_("invalid syntax for .unreq directive"));
1400 else
1401 {
1402 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1403
1404 if (!reg)
1405 as_bad (_("unknown register alias '%s'"), name);
1406 else if (reg->builtin)
1407 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1408 name);
1409 else
1410 {
1411 char *p;
1412 char *nbuf;
1413
1414 hash_delete (aarch64_reg_hsh, name, FALSE);
1415 free ((char *) reg->name);
1416 free (reg);
1417
1418 /* Also locate the all upper case and all lower case versions.
1419 Do not complain if we cannot find one or the other as it
1420 was probably deleted above. */
1421
1422 nbuf = strdup (name);
1423 for (p = nbuf; *p; p++)
1424 *p = TOUPPER (*p);
1425 reg = hash_find (aarch64_reg_hsh, nbuf);
1426 if (reg)
1427 {
1428 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1429 free ((char *) reg->name);
1430 free (reg);
1431 }
1432
1433 for (p = nbuf; *p; p++)
1434 *p = TOLOWER (*p);
1435 reg = hash_find (aarch64_reg_hsh, nbuf);
1436 if (reg)
1437 {
1438 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1439 free ((char *) reg->name);
1440 free (reg);
1441 }
1442
1443 free (nbuf);
1444 }
1445 }
1446
1447 *input_line_pointer = saved_char;
1448 demand_empty_rest_of_line ();
1449 }
1450
1451 /* Directives: Instruction set selection. */
1452
1453 #ifdef OBJ_ELF
1454 /* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1455 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1456 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1457 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1458
1459 /* Create a new mapping symbol for the transition to STATE. */
1460
1461 static void
1462 make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1463 {
1464 symbolS *symbolP;
1465 const char *symname;
1466 int type;
1467
1468 switch (state)
1469 {
1470 case MAP_DATA:
1471 symname = "$d";
1472 type = BSF_NO_FLAGS;
1473 break;
1474 case MAP_INSN:
1475 symname = "$x";
1476 type = BSF_NO_FLAGS;
1477 break;
1478 default:
1479 abort ();
1480 }
1481
1482 symbolP = symbol_new (symname, now_seg, value, frag);
1483 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1484
1485 /* Save the mapping symbols for future reference. Also check that
1486 we do not place two mapping symbols at the same offset within a
1487 frag. We'll handle overlap between frags in
1488 check_mapping_symbols.
1489
1490 If .fill or other data filling directive generates zero sized data,
1491 the mapping symbol for the following code will have the same value
1492 as the one generated for the data filling directive. In this case,
1493 we replace the old symbol with the new one at the same address. */
1494 if (value == 0)
1495 {
1496 if (frag->tc_frag_data.first_map != NULL)
1497 {
1498 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1499 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1500 &symbol_lastP);
1501 }
1502 frag->tc_frag_data.first_map = symbolP;
1503 }
1504 if (frag->tc_frag_data.last_map != NULL)
1505 {
1506 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1507 S_GET_VALUE (symbolP));
1508 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1509 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1510 &symbol_lastP);
1511 }
1512 frag->tc_frag_data.last_map = symbolP;
1513 }
1514
1515 /* We must sometimes convert a region marked as code to data during
1516 code alignment, if an odd number of bytes have to be padded. The
1517 code mapping symbol is pushed to an aligned address. */
1518
1519 static void
1520 insert_data_mapping_symbol (enum mstate state,
1521 valueT value, fragS * frag, offsetT bytes)
1522 {
1523 /* If there was already a mapping symbol, remove it. */
1524 if (frag->tc_frag_data.last_map != NULL
1525 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1526 frag->fr_address + value)
1527 {
1528 symbolS *symp = frag->tc_frag_data.last_map;
1529
1530 if (value == 0)
1531 {
1532 know (frag->tc_frag_data.first_map == symp);
1533 frag->tc_frag_data.first_map = NULL;
1534 }
1535 frag->tc_frag_data.last_map = NULL;
1536 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1537 }
1538
1539 make_mapping_symbol (MAP_DATA, value, frag);
1540 make_mapping_symbol (state, value + bytes, frag);
1541 }
1542
1543 static void mapping_state_2 (enum mstate state, int max_chars);
1544
1545 /* Set the mapping state to STATE. Only call this when about to
1546 emit some STATE bytes to the file. */
1547
1548 void
1549 mapping_state (enum mstate state)
1550 {
1551 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1552
1553 if (state == MAP_INSN)
1554 /* AArch64 instructions require 4-byte alignment. When emitting
1555 instructions into any section, record the appropriate section
1556 alignment. */
1557 record_alignment (now_seg, 2);
1558
1559 if (mapstate == state)
1560 /* The mapping symbol has already been emitted.
1561 There is nothing else to do. */
1562 return;
1563
1564 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
1565 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1566 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
1567 evaluated later in the next else. */
1568 return;
1569 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1570 {
1571 /* Only add the symbol if the offset is > 0:
1572 if we're at the first frag, check it's size > 0;
1573 if we're not at the first frag, then for sure
1574 the offset is > 0. */
1575 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1576 const int add_symbol = (frag_now != frag_first)
1577 || (frag_now_fix () > 0);
1578
1579 if (add_symbol)
1580 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1581 }
1582 #undef TRANSITION
1583
1584 mapping_state_2 (state, 0);
1585 }
1586
1587 /* Same as mapping_state, but MAX_CHARS bytes have already been
1588 allocated. Put the mapping symbol that far back. */
1589
1590 static void
1591 mapping_state_2 (enum mstate state, int max_chars)
1592 {
1593 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1594
1595 if (!SEG_NORMAL (now_seg))
1596 return;
1597
1598 if (mapstate == state)
1599 /* The mapping symbol has already been emitted.
1600 There is nothing else to do. */
1601 return;
1602
1603 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1604 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1605 }
1606 #else
1607 #define mapping_state(x) /* nothing */
1608 #define mapping_state_2(x, y) /* nothing */
1609 #endif
1610
1611 /* Directives: sectioning and alignment. */
1612
1613 static void
1614 s_bss (int ignore ATTRIBUTE_UNUSED)
1615 {
1616 /* We don't support putting frags in the BSS segment, we fake it by
1617 marking in_bss, then looking at s_skip for clues. */
1618 subseg_set (bss_section, 0);
1619 demand_empty_rest_of_line ();
1620 mapping_state (MAP_DATA);
1621 }
1622
1623 static void
1624 s_even (int ignore ATTRIBUTE_UNUSED)
1625 {
1626 /* Never make frag if expect extra pass. */
1627 if (!need_pass_2)
1628 frag_align (1, 0, 0);
1629
1630 record_alignment (now_seg, 1);
1631
1632 demand_empty_rest_of_line ();
1633 }
1634
1635 /* Directives: Literal pools. */
1636
1637 static literal_pool *
1638 find_literal_pool (int size)
1639 {
1640 literal_pool *pool;
1641
1642 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1643 {
1644 if (pool->section == now_seg
1645 && pool->sub_section == now_subseg && pool->size == size)
1646 break;
1647 }
1648
1649 return pool;
1650 }
1651
1652 static literal_pool *
1653 find_or_make_literal_pool (int size)
1654 {
1655 /* Next literal pool ID number. */
1656 static unsigned int latest_pool_num = 1;
1657 literal_pool *pool;
1658
1659 pool = find_literal_pool (size);
1660
1661 if (pool == NULL)
1662 {
1663 /* Create a new pool. */
1664 pool = XNEW (literal_pool);
1665 if (!pool)
1666 return NULL;
1667
1668 /* Currently we always put the literal pool in the current text
1669 section. If we were generating "small" model code where we
1670 knew that all code and initialised data was within 1MB then
1671 we could output literals to mergeable, read-only data
1672 sections. */
1673
1674 pool->next_free_entry = 0;
1675 pool->section = now_seg;
1676 pool->sub_section = now_subseg;
1677 pool->size = size;
1678 pool->next = list_of_pools;
1679 pool->symbol = NULL;
1680
1681 /* Add it to the list. */
1682 list_of_pools = pool;
1683 }
1684
1685 /* New pools, and emptied pools, will have a NULL symbol. */
1686 if (pool->symbol == NULL)
1687 {
1688 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1689 (valueT) 0, &zero_address_frag);
1690 pool->id = latest_pool_num++;
1691 }
1692
1693 /* Done. */
1694 return pool;
1695 }
1696
1697 /* Add the literal of size SIZE in *EXP to the relevant literal pool.
1698 Return TRUE on success, otherwise return FALSE. */
1699 static bfd_boolean
1700 add_to_lit_pool (expressionS *exp, int size)
1701 {
1702 literal_pool *pool;
1703 unsigned int entry;
1704
1705 pool = find_or_make_literal_pool (size);
1706
1707 /* Check if this literal value is already in the pool. */
1708 for (entry = 0; entry < pool->next_free_entry; entry++)
1709 {
1710 expressionS * litexp = & pool->literals[entry].exp;
1711
1712 if ((litexp->X_op == exp->X_op)
1713 && (exp->X_op == O_constant)
1714 && (litexp->X_add_number == exp->X_add_number)
1715 && (litexp->X_unsigned == exp->X_unsigned))
1716 break;
1717
1718 if ((litexp->X_op == exp->X_op)
1719 && (exp->X_op == O_symbol)
1720 && (litexp->X_add_number == exp->X_add_number)
1721 && (litexp->X_add_symbol == exp->X_add_symbol)
1722 && (litexp->X_op_symbol == exp->X_op_symbol))
1723 break;
1724 }
1725
1726 /* Do we need to create a new entry? */
1727 if (entry == pool->next_free_entry)
1728 {
1729 if (entry >= MAX_LITERAL_POOL_SIZE)
1730 {
1731 set_syntax_error (_("literal pool overflow"));
1732 return FALSE;
1733 }
1734
1735 pool->literals[entry].exp = *exp;
1736 pool->next_free_entry += 1;
1737 if (exp->X_op == O_big)
1738 {
1739 /* PR 16688: Bignums are held in a single global array. We must
1740 copy and preserve that value now, before it is overwritten. */
1741 pool->literals[entry].bignum = XNEWVEC (LITTLENUM_TYPE,
1742 exp->X_add_number);
1743 memcpy (pool->literals[entry].bignum, generic_bignum,
1744 CHARS_PER_LITTLENUM * exp->X_add_number);
1745 }
1746 else
1747 pool->literals[entry].bignum = NULL;
1748 }
1749
1750 exp->X_op = O_symbol;
1751 exp->X_add_number = ((int) entry) * size;
1752 exp->X_add_symbol = pool->symbol;
1753
1754 return TRUE;
1755 }
1756
1757 /* Can't use symbol_new here, so have to create a symbol and then at
1758 a later date assign it a value. That's what these functions do. */
1759
1760 static void
1761 symbol_locate (symbolS * symbolP,
1762 const char *name,/* It is copied, the caller can modify. */
1763 segT segment, /* Segment identifier (SEG_<something>). */
1764 valueT valu, /* Symbol value. */
1765 fragS * frag) /* Associated fragment. */
1766 {
1767 size_t name_length;
1768 char *preserved_copy_of_name;
1769
1770 name_length = strlen (name) + 1; /* +1 for \0. */
1771 obstack_grow (&notes, name, name_length);
1772 preserved_copy_of_name = obstack_finish (&notes);
1773
1774 #ifdef tc_canonicalize_symbol_name
1775 preserved_copy_of_name =
1776 tc_canonicalize_symbol_name (preserved_copy_of_name);
1777 #endif
1778
1779 S_SET_NAME (symbolP, preserved_copy_of_name);
1780
1781 S_SET_SEGMENT (symbolP, segment);
1782 S_SET_VALUE (symbolP, valu);
1783 symbol_clear_list_pointers (symbolP);
1784
1785 symbol_set_frag (symbolP, frag);
1786
1787 /* Link to end of symbol chain. */
1788 {
1789 extern int symbol_table_frozen;
1790
1791 if (symbol_table_frozen)
1792 abort ();
1793 }
1794
1795 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1796
1797 obj_symbol_new_hook (symbolP);
1798
1799 #ifdef tc_symbol_new_hook
1800 tc_symbol_new_hook (symbolP);
1801 #endif
1802
1803 #ifdef DEBUG_SYMS
1804 verify_symbol_chain (symbol_rootP, symbol_lastP);
1805 #endif /* DEBUG_SYMS */
1806 }
1807
1808
1809 static void
1810 s_ltorg (int ignored ATTRIBUTE_UNUSED)
1811 {
1812 unsigned int entry;
1813 literal_pool *pool;
1814 char sym_name[20];
1815 int align;
1816
1817 for (align = 2; align <= 4; align++)
1818 {
1819 int size = 1 << align;
1820
1821 pool = find_literal_pool (size);
1822 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1823 continue;
1824
1825 /* Align pool as you have word accesses.
1826 Only make a frag if we have to. */
1827 if (!need_pass_2)
1828 frag_align (align, 0, 0);
1829
1830 mapping_state (MAP_DATA);
1831
1832 record_alignment (now_seg, align);
1833
1834 sprintf (sym_name, "$$lit_\002%x", pool->id);
1835
1836 symbol_locate (pool->symbol, sym_name, now_seg,
1837 (valueT) frag_now_fix (), frag_now);
1838 symbol_table_insert (pool->symbol);
1839
1840 for (entry = 0; entry < pool->next_free_entry; entry++)
1841 {
1842 expressionS * exp = & pool->literals[entry].exp;
1843
1844 if (exp->X_op == O_big)
1845 {
1846 /* PR 16688: Restore the global bignum value. */
1847 gas_assert (pool->literals[entry].bignum != NULL);
1848 memcpy (generic_bignum, pool->literals[entry].bignum,
1849 CHARS_PER_LITTLENUM * exp->X_add_number);
1850 }
1851
1852 /* First output the expression in the instruction to the pool. */
1853 emit_expr (exp, size); /* .word|.xword */
1854
1855 if (exp->X_op == O_big)
1856 {
1857 free (pool->literals[entry].bignum);
1858 pool->literals[entry].bignum = NULL;
1859 }
1860 }
1861
1862 /* Mark the pool as empty. */
1863 pool->next_free_entry = 0;
1864 pool->symbol = NULL;
1865 }
1866 }
1867
1868 #ifdef OBJ_ELF
1869 /* Forward declarations for functions below, in the MD interface
1870 section. */
1871 static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1872 static struct reloc_table_entry * find_reloc_table_entry (char **);
1873
1874 /* Directives: Data. */
1875 /* N.B. the support for relocation suffix in this directive needs to be
1876 implemented properly. */
1877
1878 static void
1879 s_aarch64_elf_cons (int nbytes)
1880 {
1881 expressionS exp;
1882
1883 #ifdef md_flush_pending_output
1884 md_flush_pending_output ();
1885 #endif
1886
1887 if (is_it_end_of_statement ())
1888 {
1889 demand_empty_rest_of_line ();
1890 return;
1891 }
1892
1893 #ifdef md_cons_align
1894 md_cons_align (nbytes);
1895 #endif
1896
1897 mapping_state (MAP_DATA);
1898 do
1899 {
1900 struct reloc_table_entry *reloc;
1901
1902 expression (&exp);
1903
1904 if (exp.X_op != O_symbol)
1905 emit_expr (&exp, (unsigned int) nbytes);
1906 else
1907 {
1908 skip_past_char (&input_line_pointer, '#');
1909 if (skip_past_char (&input_line_pointer, ':'))
1910 {
1911 reloc = find_reloc_table_entry (&input_line_pointer);
1912 if (reloc == NULL)
1913 as_bad (_("unrecognized relocation suffix"));
1914 else
1915 as_bad (_("unimplemented relocation suffix"));
1916 ignore_rest_of_line ();
1917 return;
1918 }
1919 else
1920 emit_expr (&exp, (unsigned int) nbytes);
1921 }
1922 }
1923 while (*input_line_pointer++ == ',');
1924
1925 /* Put terminator back into stream. */
1926 input_line_pointer--;
1927 demand_empty_rest_of_line ();
1928 }
1929
1930 #endif /* OBJ_ELF */
1931
1932 /* Output a 32-bit word, but mark as an instruction. */
1933
1934 static void
1935 s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1936 {
1937 expressionS exp;
1938
1939 #ifdef md_flush_pending_output
1940 md_flush_pending_output ();
1941 #endif
1942
1943 if (is_it_end_of_statement ())
1944 {
1945 demand_empty_rest_of_line ();
1946 return;
1947 }
1948
1949 /* Sections are assumed to start aligned. In executable section, there is no
1950 MAP_DATA symbol pending. So we only align the address during
1951 MAP_DATA --> MAP_INSN transition.
1952 For other sections, this is not guaranteed. */
1953 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1954 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
1955 frag_align_code (2, 0);
1956
1957 #ifdef OBJ_ELF
1958 mapping_state (MAP_INSN);
1959 #endif
1960
1961 do
1962 {
1963 expression (&exp);
1964 if (exp.X_op != O_constant)
1965 {
1966 as_bad (_("constant expression required"));
1967 ignore_rest_of_line ();
1968 return;
1969 }
1970
1971 if (target_big_endian)
1972 {
1973 unsigned int val = exp.X_add_number;
1974 exp.X_add_number = SWAP_32 (val);
1975 }
1976 emit_expr (&exp, 4);
1977 }
1978 while (*input_line_pointer++ == ',');
1979
1980 /* Put terminator back into stream. */
1981 input_line_pointer--;
1982 demand_empty_rest_of_line ();
1983 }
1984
1985 #ifdef OBJ_ELF
1986 /* Emit BFD_RELOC_AARCH64_TLSDESC_ADD on the next ADD instruction. */
1987
1988 static void
1989 s_tlsdescadd (int ignored ATTRIBUTE_UNUSED)
1990 {
1991 expressionS exp;
1992
1993 expression (&exp);
1994 frag_grow (4);
1995 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1996 BFD_RELOC_AARCH64_TLSDESC_ADD);
1997
1998 demand_empty_rest_of_line ();
1999 }
2000
2001 /* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
2002
2003 static void
2004 s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
2005 {
2006 expressionS exp;
2007
2008 /* Since we're just labelling the code, there's no need to define a
2009 mapping symbol. */
2010 expression (&exp);
2011 /* Make sure there is enough room in this frag for the following
2012 blr. This trick only works if the blr follows immediately after
2013 the .tlsdesc directive. */
2014 frag_grow (4);
2015 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2016 BFD_RELOC_AARCH64_TLSDESC_CALL);
2017
2018 demand_empty_rest_of_line ();
2019 }
2020
2021 /* Emit BFD_RELOC_AARCH64_TLSDESC_LDR on the next LDR instruction. */
2022
2023 static void
2024 s_tlsdescldr (int ignored ATTRIBUTE_UNUSED)
2025 {
2026 expressionS exp;
2027
2028 expression (&exp);
2029 frag_grow (4);
2030 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2031 BFD_RELOC_AARCH64_TLSDESC_LDR);
2032
2033 demand_empty_rest_of_line ();
2034 }
2035 #endif /* OBJ_ELF */
2036
2037 static void s_aarch64_arch (int);
2038 static void s_aarch64_cpu (int);
2039 static void s_aarch64_arch_extension (int);
2040
2041 /* This table describes all the machine specific pseudo-ops the assembler
2042 has to support. The fields are:
2043 pseudo-op name without dot
2044 function to call to execute this pseudo-op
2045 Integer arg to pass to the function. */
2046
2047 const pseudo_typeS md_pseudo_table[] = {
2048 /* Never called because '.req' does not start a line. */
2049 {"req", s_req, 0},
2050 {"unreq", s_unreq, 0},
2051 {"bss", s_bss, 0},
2052 {"even", s_even, 0},
2053 {"ltorg", s_ltorg, 0},
2054 {"pool", s_ltorg, 0},
2055 {"cpu", s_aarch64_cpu, 0},
2056 {"arch", s_aarch64_arch, 0},
2057 {"arch_extension", s_aarch64_arch_extension, 0},
2058 {"inst", s_aarch64_inst, 0},
2059 #ifdef OBJ_ELF
2060 {"tlsdescadd", s_tlsdescadd, 0},
2061 {"tlsdesccall", s_tlsdesccall, 0},
2062 {"tlsdescldr", s_tlsdescldr, 0},
2063 {"word", s_aarch64_elf_cons, 4},
2064 {"long", s_aarch64_elf_cons, 4},
2065 {"xword", s_aarch64_elf_cons, 8},
2066 {"dword", s_aarch64_elf_cons, 8},
2067 #endif
2068 {0, 0, 0}
2069 };
2070 \f
2071
2072 /* Check whether STR points to a register name followed by a comma or the
2073 end of line; REG_TYPE indicates which register types are checked
2074 against. Return TRUE if STR is such a register name; otherwise return
2075 FALSE. The function does not intend to produce any diagnostics, but since
2076 the register parser aarch64_reg_parse, which is called by this function,
2077 does produce diagnostics, we call clear_error to clear any diagnostics
2078 that may be generated by aarch64_reg_parse.
2079 Also, the function returns FALSE directly if there is any user error
2080 present at the function entry. This prevents the existing diagnostics
2081 state from being spoiled.
2082 The function currently serves parse_constant_immediate and
2083 parse_big_immediate only. */
2084 static bfd_boolean
2085 reg_name_p (char *str, aarch64_reg_type reg_type)
2086 {
2087 int reg;
2088
2089 /* Prevent the diagnostics state from being spoiled. */
2090 if (error_p ())
2091 return FALSE;
2092
2093 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
2094
2095 /* Clear the parsing error that may be set by the reg parser. */
2096 clear_error ();
2097
2098 if (reg == PARSE_FAIL)
2099 return FALSE;
2100
2101 skip_whitespace (str);
2102 if (*str == ',' || is_end_of_line[(unsigned int) *str])
2103 return TRUE;
2104
2105 return FALSE;
2106 }
2107
2108 /* Parser functions used exclusively in instruction operands. */
2109
2110 /* Parse an immediate expression which may not be constant.
2111
2112 To prevent the expression parser from pushing a register name
2113 into the symbol table as an undefined symbol, firstly a check is
2114 done to find out whether STR is a register of type REG_TYPE followed
2115 by a comma or the end of line. Return FALSE if STR is such a string. */
2116
2117 static bfd_boolean
2118 parse_immediate_expression (char **str, expressionS *exp,
2119 aarch64_reg_type reg_type)
2120 {
2121 if (reg_name_p (*str, reg_type))
2122 {
2123 set_recoverable_error (_("immediate operand required"));
2124 return FALSE;
2125 }
2126
2127 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2128
2129 if (exp->X_op == O_absent)
2130 {
2131 set_fatal_syntax_error (_("missing immediate expression"));
2132 return FALSE;
2133 }
2134
2135 return TRUE;
2136 }
2137
2138 /* Constant immediate-value read function for use in insn parsing.
2139 STR points to the beginning of the immediate (with the optional
2140 leading #); *VAL receives the value. REG_TYPE says which register
2141 names should be treated as registers rather than as symbolic immediates.
2142
2143 Return TRUE on success; otherwise return FALSE. */
2144
2145 static bfd_boolean
2146 parse_constant_immediate (char **str, int64_t *val, aarch64_reg_type reg_type)
2147 {
2148 expressionS exp;
2149
2150 if (! parse_immediate_expression (str, &exp, reg_type))
2151 return FALSE;
2152
2153 if (exp.X_op != O_constant)
2154 {
2155 set_syntax_error (_("constant expression required"));
2156 return FALSE;
2157 }
2158
2159 *val = exp.X_add_number;
2160 return TRUE;
2161 }
2162
2163 static uint32_t
2164 encode_imm_float_bits (uint32_t imm)
2165 {
2166 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2167 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2168 }
2169
2170 /* Return TRUE if the single-precision floating-point value encoded in IMM
2171 can be expressed in the AArch64 8-bit signed floating-point format with
2172 3-bit exponent and normalized 4 bits of precision; in other words, the
2173 floating-point value must be expressable as
2174 (+/-) n / 16 * power (2, r)
2175 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2176
2177 static bfd_boolean
2178 aarch64_imm_float_p (uint32_t imm)
2179 {
2180 /* If a single-precision floating-point value has the following bit
2181 pattern, it can be expressed in the AArch64 8-bit floating-point
2182 format:
2183
2184 3 32222222 2221111111111
2185 1 09876543 21098765432109876543210
2186 n Eeeeeexx xxxx0000000000000000000
2187
2188 where n, e and each x are either 0 or 1 independently, with
2189 E == ~ e. */
2190
2191 uint32_t pattern;
2192
2193 /* Prepare the pattern for 'Eeeeee'. */
2194 if (((imm >> 30) & 0x1) == 0)
2195 pattern = 0x3e000000;
2196 else
2197 pattern = 0x40000000;
2198
2199 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2200 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
2201 }
2202
2203 /* Return TRUE if the IEEE double value encoded in IMM can be expressed
2204 as an IEEE float without any loss of precision. Store the value in
2205 *FPWORD if so. */
2206
2207 static bfd_boolean
2208 can_convert_double_to_float (uint64_t imm, uint32_t *fpword)
2209 {
2210 /* If a double-precision floating-point value has the following bit
2211 pattern, it can be expressed in a float:
2212
2213 6 66655555555 5544 44444444 33333333 33222222 22221111 111111
2214 3 21098765432 1098 76543210 98765432 10987654 32109876 54321098 76543210
2215 n E~~~eeeeeee ssss ssssssss ssssssss SSS00000 00000000 00000000 00000000
2216
2217 -----------------------------> nEeeeeee esssssss ssssssss sssssSSS
2218 if Eeee_eeee != 1111_1111
2219
2220 where n, e, s and S are either 0 or 1 independently and where ~ is the
2221 inverse of E. */
2222
2223 uint32_t pattern;
2224 uint32_t high32 = imm >> 32;
2225 uint32_t low32 = imm;
2226
2227 /* Lower 29 bits need to be 0s. */
2228 if ((imm & 0x1fffffff) != 0)
2229 return FALSE;
2230
2231 /* Prepare the pattern for 'Eeeeeeeee'. */
2232 if (((high32 >> 30) & 0x1) == 0)
2233 pattern = 0x38000000;
2234 else
2235 pattern = 0x40000000;
2236
2237 /* Check E~~~. */
2238 if ((high32 & 0x78000000) != pattern)
2239 return FALSE;
2240
2241 /* Check Eeee_eeee != 1111_1111. */
2242 if ((high32 & 0x7ff00000) == 0x47f00000)
2243 return FALSE;
2244
2245 *fpword = ((high32 & 0xc0000000) /* 1 n bit and 1 E bit. */
2246 | ((high32 << 3) & 0x3ffffff8) /* 7 e and 20 s bits. */
2247 | (low32 >> 29)); /* 3 S bits. */
2248 return TRUE;
2249 }
2250
2251 /* Return true if we should treat OPERAND as a double-precision
2252 floating-point operand rather than a single-precision one. */
2253 static bfd_boolean
2254 double_precision_operand_p (const aarch64_opnd_info *operand)
2255 {
2256 /* Check for unsuffixed SVE registers, which are allowed
2257 for LDR and STR but not in instructions that require an
2258 immediate. We get better error messages if we arbitrarily
2259 pick one size, parse the immediate normally, and then
2260 report the match failure in the normal way. */
2261 return (operand->qualifier == AARCH64_OPND_QLF_NIL
2262 || aarch64_get_qualifier_esize (operand->qualifier) == 8);
2263 }
2264
2265 /* Parse a floating-point immediate. Return TRUE on success and return the
2266 value in *IMMED in the format of IEEE754 single-precision encoding.
2267 *CCP points to the start of the string; DP_P is TRUE when the immediate
2268 is expected to be in double-precision (N.B. this only matters when
2269 hexadecimal representation is involved). REG_TYPE says which register
2270 names should be treated as registers rather than as symbolic immediates.
2271
2272 This routine accepts any IEEE float; it is up to the callers to reject
2273 invalid ones. */
2274
2275 static bfd_boolean
2276 parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p,
2277 aarch64_reg_type reg_type)
2278 {
2279 char *str = *ccp;
2280 char *fpnum;
2281 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2282 int64_t val = 0;
2283 unsigned fpword = 0;
2284 bfd_boolean hex_p = FALSE;
2285
2286 skip_past_char (&str, '#');
2287
2288 fpnum = str;
2289 skip_whitespace (fpnum);
2290
2291 if (strncmp (fpnum, "0x", 2) == 0)
2292 {
2293 /* Support the hexadecimal representation of the IEEE754 encoding.
2294 Double-precision is expected when DP_P is TRUE, otherwise the
2295 representation should be in single-precision. */
2296 if (! parse_constant_immediate (&str, &val, reg_type))
2297 goto invalid_fp;
2298
2299 if (dp_p)
2300 {
2301 if (!can_convert_double_to_float (val, &fpword))
2302 goto invalid_fp;
2303 }
2304 else if ((uint64_t) val > 0xffffffff)
2305 goto invalid_fp;
2306 else
2307 fpword = val;
2308
2309 hex_p = TRUE;
2310 }
2311 else if (reg_name_p (str, reg_type))
2312 {
2313 set_recoverable_error (_("immediate operand required"));
2314 return FALSE;
2315 }
2316
2317 if (! hex_p)
2318 {
2319 int i;
2320
2321 if ((str = atof_ieee (str, 's', words)) == NULL)
2322 goto invalid_fp;
2323
2324 /* Our FP word must be 32 bits (single-precision FP). */
2325 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2326 {
2327 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2328 fpword |= words[i];
2329 }
2330 }
2331
2332 *immed = fpword;
2333 *ccp = str;
2334 return TRUE;
2335
2336 invalid_fp:
2337 set_fatal_syntax_error (_("invalid floating-point constant"));
2338 return FALSE;
2339 }
2340
2341 /* Less-generic immediate-value read function with the possibility of loading
2342 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2343 instructions.
2344
2345 To prevent the expression parser from pushing a register name into the
2346 symbol table as an undefined symbol, a check is firstly done to find
2347 out whether STR is a register of type REG_TYPE followed by a comma or
2348 the end of line. Return FALSE if STR is such a register. */
2349
2350 static bfd_boolean
2351 parse_big_immediate (char **str, int64_t *imm, aarch64_reg_type reg_type)
2352 {
2353 char *ptr = *str;
2354
2355 if (reg_name_p (ptr, reg_type))
2356 {
2357 set_syntax_error (_("immediate operand required"));
2358 return FALSE;
2359 }
2360
2361 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2362
2363 if (inst.reloc.exp.X_op == O_constant)
2364 *imm = inst.reloc.exp.X_add_number;
2365
2366 *str = ptr;
2367
2368 return TRUE;
2369 }
2370
2371 /* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2372 if NEED_LIBOPCODES is non-zero, the fixup will need
2373 assistance from the libopcodes. */
2374
2375 static inline void
2376 aarch64_set_gas_internal_fixup (struct reloc *reloc,
2377 const aarch64_opnd_info *operand,
2378 int need_libopcodes_p)
2379 {
2380 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2381 reloc->opnd = operand->type;
2382 if (need_libopcodes_p)
2383 reloc->need_libopcodes_p = 1;
2384 };
2385
2386 /* Return TRUE if the instruction needs to be fixed up later internally by
2387 the GAS; otherwise return FALSE. */
2388
2389 static inline bfd_boolean
2390 aarch64_gas_internal_fixup_p (void)
2391 {
2392 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2393 }
2394
2395 /* Assign the immediate value to the relevant field in *OPERAND if
2396 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2397 needs an internal fixup in a later stage.
2398 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2399 IMM.VALUE that may get assigned with the constant. */
2400 static inline void
2401 assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2402 aarch64_opnd_info *operand,
2403 int addr_off_p,
2404 int need_libopcodes_p,
2405 int skip_p)
2406 {
2407 if (reloc->exp.X_op == O_constant)
2408 {
2409 if (addr_off_p)
2410 operand->addr.offset.imm = reloc->exp.X_add_number;
2411 else
2412 operand->imm.value = reloc->exp.X_add_number;
2413 reloc->type = BFD_RELOC_UNUSED;
2414 }
2415 else
2416 {
2417 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2418 /* Tell libopcodes to ignore this operand or not. This is helpful
2419 when one of the operands needs to be fixed up later but we need
2420 libopcodes to check the other operands. */
2421 operand->skip = skip_p;
2422 }
2423 }
2424
2425 /* Relocation modifiers. Each entry in the table contains the textual
2426 name for the relocation which may be placed before a symbol used as
2427 a load/store offset, or add immediate. It must be surrounded by a
2428 leading and trailing colon, for example:
2429
2430 ldr x0, [x1, #:rello:varsym]
2431 add x0, x1, #:rello:varsym */
2432
2433 struct reloc_table_entry
2434 {
2435 const char *name;
2436 int pc_rel;
2437 bfd_reloc_code_real_type adr_type;
2438 bfd_reloc_code_real_type adrp_type;
2439 bfd_reloc_code_real_type movw_type;
2440 bfd_reloc_code_real_type add_type;
2441 bfd_reloc_code_real_type ldst_type;
2442 bfd_reloc_code_real_type ld_literal_type;
2443 };
2444
2445 static struct reloc_table_entry reloc_table[] = {
2446 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2447 {"lo12", 0,
2448 0, /* adr_type */
2449 0,
2450 0,
2451 BFD_RELOC_AARCH64_ADD_LO12,
2452 BFD_RELOC_AARCH64_LDST_LO12,
2453 0},
2454
2455 /* Higher 21 bits of pc-relative page offset: ADRP */
2456 {"pg_hi21", 1,
2457 0, /* adr_type */
2458 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2459 0,
2460 0,
2461 0,
2462 0},
2463
2464 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2465 {"pg_hi21_nc", 1,
2466 0, /* adr_type */
2467 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2468 0,
2469 0,
2470 0,
2471 0},
2472
2473 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2474 {"abs_g0", 0,
2475 0, /* adr_type */
2476 0,
2477 BFD_RELOC_AARCH64_MOVW_G0,
2478 0,
2479 0,
2480 0},
2481
2482 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2483 {"abs_g0_s", 0,
2484 0, /* adr_type */
2485 0,
2486 BFD_RELOC_AARCH64_MOVW_G0_S,
2487 0,
2488 0,
2489 0},
2490
2491 /* Less significant bits 0-15 of address/value: MOVK, no check */
2492 {"abs_g0_nc", 0,
2493 0, /* adr_type */
2494 0,
2495 BFD_RELOC_AARCH64_MOVW_G0_NC,
2496 0,
2497 0,
2498 0},
2499
2500 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2501 {"abs_g1", 0,
2502 0, /* adr_type */
2503 0,
2504 BFD_RELOC_AARCH64_MOVW_G1,
2505 0,
2506 0,
2507 0},
2508
2509 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2510 {"abs_g1_s", 0,
2511 0, /* adr_type */
2512 0,
2513 BFD_RELOC_AARCH64_MOVW_G1_S,
2514 0,
2515 0,
2516 0},
2517
2518 /* Less significant bits 16-31 of address/value: MOVK, no check */
2519 {"abs_g1_nc", 0,
2520 0, /* adr_type */
2521 0,
2522 BFD_RELOC_AARCH64_MOVW_G1_NC,
2523 0,
2524 0,
2525 0},
2526
2527 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2528 {"abs_g2", 0,
2529 0, /* adr_type */
2530 0,
2531 BFD_RELOC_AARCH64_MOVW_G2,
2532 0,
2533 0,
2534 0},
2535
2536 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2537 {"abs_g2_s", 0,
2538 0, /* adr_type */
2539 0,
2540 BFD_RELOC_AARCH64_MOVW_G2_S,
2541 0,
2542 0,
2543 0},
2544
2545 /* Less significant bits 32-47 of address/value: MOVK, no check */
2546 {"abs_g2_nc", 0,
2547 0, /* adr_type */
2548 0,
2549 BFD_RELOC_AARCH64_MOVW_G2_NC,
2550 0,
2551 0,
2552 0},
2553
2554 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2555 {"abs_g3", 0,
2556 0, /* adr_type */
2557 0,
2558 BFD_RELOC_AARCH64_MOVW_G3,
2559 0,
2560 0,
2561 0},
2562
2563 /* Most significant bits 0-15 of signed/unsigned address/value: MOVZ */
2564 {"prel_g0", 1,
2565 0, /* adr_type */
2566 0,
2567 BFD_RELOC_AARCH64_MOVW_PREL_G0,
2568 0,
2569 0,
2570 0},
2571
2572 /* Most significant bits 0-15 of signed/unsigned address/value: MOVK */
2573 {"prel_g0_nc", 1,
2574 0, /* adr_type */
2575 0,
2576 BFD_RELOC_AARCH64_MOVW_PREL_G0_NC,
2577 0,
2578 0,
2579 0},
2580
2581 /* Most significant bits 16-31 of signed/unsigned address/value: MOVZ */
2582 {"prel_g1", 1,
2583 0, /* adr_type */
2584 0,
2585 BFD_RELOC_AARCH64_MOVW_PREL_G1,
2586 0,
2587 0,
2588 0},
2589
2590 /* Most significant bits 16-31 of signed/unsigned address/value: MOVK */
2591 {"prel_g1_nc", 1,
2592 0, /* adr_type */
2593 0,
2594 BFD_RELOC_AARCH64_MOVW_PREL_G1_NC,
2595 0,
2596 0,
2597 0},
2598
2599 /* Most significant bits 32-47 of signed/unsigned address/value: MOVZ */
2600 {"prel_g2", 1,
2601 0, /* adr_type */
2602 0,
2603 BFD_RELOC_AARCH64_MOVW_PREL_G2,
2604 0,
2605 0,
2606 0},
2607
2608 /* Most significant bits 32-47 of signed/unsigned address/value: MOVK */
2609 {"prel_g2_nc", 1,
2610 0, /* adr_type */
2611 0,
2612 BFD_RELOC_AARCH64_MOVW_PREL_G2_NC,
2613 0,
2614 0,
2615 0},
2616
2617 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2618 {"prel_g3", 1,
2619 0, /* adr_type */
2620 0,
2621 BFD_RELOC_AARCH64_MOVW_PREL_G3,
2622 0,
2623 0,
2624 0},
2625
2626 /* Get to the page containing GOT entry for a symbol. */
2627 {"got", 1,
2628 0, /* adr_type */
2629 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2630 0,
2631 0,
2632 0,
2633 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2634
2635 /* 12 bit offset into the page containing GOT entry for that symbol. */
2636 {"got_lo12", 0,
2637 0, /* adr_type */
2638 0,
2639 0,
2640 0,
2641 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2642 0},
2643
2644 /* 0-15 bits of address/value: MOVk, no check. */
2645 {"gotoff_g0_nc", 0,
2646 0, /* adr_type */
2647 0,
2648 BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
2649 0,
2650 0,
2651 0},
2652
2653 /* Most significant bits 16-31 of address/value: MOVZ. */
2654 {"gotoff_g1", 0,
2655 0, /* adr_type */
2656 0,
2657 BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
2658 0,
2659 0,
2660 0},
2661
2662 /* 15 bit offset into the page containing GOT entry for that symbol. */
2663 {"gotoff_lo15", 0,
2664 0, /* adr_type */
2665 0,
2666 0,
2667 0,
2668 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2669 0},
2670
2671 /* Get to the page containing GOT TLS entry for a symbol */
2672 {"gottprel_g0_nc", 0,
2673 0, /* adr_type */
2674 0,
2675 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
2676 0,
2677 0,
2678 0},
2679
2680 /* Get to the page containing GOT TLS entry for a symbol */
2681 {"gottprel_g1", 0,
2682 0, /* adr_type */
2683 0,
2684 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
2685 0,
2686 0,
2687 0},
2688
2689 /* Get to the page containing GOT TLS entry for a symbol */
2690 {"tlsgd", 0,
2691 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
2692 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2693 0,
2694 0,
2695 0,
2696 0},
2697
2698 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2699 {"tlsgd_lo12", 0,
2700 0, /* adr_type */
2701 0,
2702 0,
2703 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
2704 0,
2705 0},
2706
2707 /* Lower 16 bits address/value: MOVk. */
2708 {"tlsgd_g0_nc", 0,
2709 0, /* adr_type */
2710 0,
2711 BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC,
2712 0,
2713 0,
2714 0},
2715
2716 /* Most significant bits 16-31 of address/value: MOVZ. */
2717 {"tlsgd_g1", 0,
2718 0, /* adr_type */
2719 0,
2720 BFD_RELOC_AARCH64_TLSGD_MOVW_G1,
2721 0,
2722 0,
2723 0},
2724
2725 /* Get to the page containing GOT TLS entry for a symbol */
2726 {"tlsdesc", 0,
2727 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
2728 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
2729 0,
2730 0,
2731 0,
2732 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
2733
2734 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2735 {"tlsdesc_lo12", 0,
2736 0, /* adr_type */
2737 0,
2738 0,
2739 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12,
2740 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2741 0},
2742
2743 /* Get to the page containing GOT TLS entry for a symbol.
2744 The same as GD, we allocate two consecutive GOT slots
2745 for module index and module offset, the only difference
2746 with GD is the module offset should be initialized to
2747 zero without any outstanding runtime relocation. */
2748 {"tlsldm", 0,
2749 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
2750 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
2751 0,
2752 0,
2753 0,
2754 0},
2755
2756 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2757 {"tlsldm_lo12_nc", 0,
2758 0, /* adr_type */
2759 0,
2760 0,
2761 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
2762 0,
2763 0},
2764
2765 /* 12 bit offset into the module TLS base address. */
2766 {"dtprel_lo12", 0,
2767 0, /* adr_type */
2768 0,
2769 0,
2770 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
2771 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
2772 0},
2773
2774 /* Same as dtprel_lo12, no overflow check. */
2775 {"dtprel_lo12_nc", 0,
2776 0, /* adr_type */
2777 0,
2778 0,
2779 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
2780 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
2781 0},
2782
2783 /* bits[23:12] of offset to the module TLS base address. */
2784 {"dtprel_hi12", 0,
2785 0, /* adr_type */
2786 0,
2787 0,
2788 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
2789 0,
2790 0},
2791
2792 /* bits[15:0] of offset to the module TLS base address. */
2793 {"dtprel_g0", 0,
2794 0, /* adr_type */
2795 0,
2796 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
2797 0,
2798 0,
2799 0},
2800
2801 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
2802 {"dtprel_g0_nc", 0,
2803 0, /* adr_type */
2804 0,
2805 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
2806 0,
2807 0,
2808 0},
2809
2810 /* bits[31:16] of offset to the module TLS base address. */
2811 {"dtprel_g1", 0,
2812 0, /* adr_type */
2813 0,
2814 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
2815 0,
2816 0,
2817 0},
2818
2819 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
2820 {"dtprel_g1_nc", 0,
2821 0, /* adr_type */
2822 0,
2823 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
2824 0,
2825 0,
2826 0},
2827
2828 /* bits[47:32] of offset to the module TLS base address. */
2829 {"dtprel_g2", 0,
2830 0, /* adr_type */
2831 0,
2832 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
2833 0,
2834 0,
2835 0},
2836
2837 /* Lower 16 bit offset into GOT entry for a symbol */
2838 {"tlsdesc_off_g0_nc", 0,
2839 0, /* adr_type */
2840 0,
2841 BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC,
2842 0,
2843 0,
2844 0},
2845
2846 /* Higher 16 bit offset into GOT entry for a symbol */
2847 {"tlsdesc_off_g1", 0,
2848 0, /* adr_type */
2849 0,
2850 BFD_RELOC_AARCH64_TLSDESC_OFF_G1,
2851 0,
2852 0,
2853 0},
2854
2855 /* Get to the page containing GOT TLS entry for a symbol */
2856 {"gottprel", 0,
2857 0, /* adr_type */
2858 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2859 0,
2860 0,
2861 0,
2862 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
2863
2864 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2865 {"gottprel_lo12", 0,
2866 0, /* adr_type */
2867 0,
2868 0,
2869 0,
2870 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2871 0},
2872
2873 /* Get tp offset for a symbol. */
2874 {"tprel", 0,
2875 0, /* adr_type */
2876 0,
2877 0,
2878 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2879 0,
2880 0},
2881
2882 /* Get tp offset for a symbol. */
2883 {"tprel_lo12", 0,
2884 0, /* adr_type */
2885 0,
2886 0,
2887 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2888 BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12,
2889 0},
2890
2891 /* Get tp offset for a symbol. */
2892 {"tprel_hi12", 0,
2893 0, /* adr_type */
2894 0,
2895 0,
2896 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
2897 0,
2898 0},
2899
2900 /* Get tp offset for a symbol. */
2901 {"tprel_lo12_nc", 0,
2902 0, /* adr_type */
2903 0,
2904 0,
2905 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
2906 BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC,
2907 0},
2908
2909 /* Most significant bits 32-47 of address/value: MOVZ. */
2910 {"tprel_g2", 0,
2911 0, /* adr_type */
2912 0,
2913 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2914 0,
2915 0,
2916 0},
2917
2918 /* Most significant bits 16-31 of address/value: MOVZ. */
2919 {"tprel_g1", 0,
2920 0, /* adr_type */
2921 0,
2922 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2923 0,
2924 0,
2925 0},
2926
2927 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2928 {"tprel_g1_nc", 0,
2929 0, /* adr_type */
2930 0,
2931 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2932 0,
2933 0,
2934 0},
2935
2936 /* Most significant bits 0-15 of address/value: MOVZ. */
2937 {"tprel_g0", 0,
2938 0, /* adr_type */
2939 0,
2940 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2941 0,
2942 0,
2943 0},
2944
2945 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2946 {"tprel_g0_nc", 0,
2947 0, /* adr_type */
2948 0,
2949 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2950 0,
2951 0,
2952 0},
2953
2954 /* 15bit offset from got entry to base address of GOT table. */
2955 {"gotpage_lo15", 0,
2956 0,
2957 0,
2958 0,
2959 0,
2960 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
2961 0},
2962
2963 /* 14bit offset from got entry to base address of GOT table. */
2964 {"gotpage_lo14", 0,
2965 0,
2966 0,
2967 0,
2968 0,
2969 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
2970 0},
2971 };
2972
2973 /* Given the address of a pointer pointing to the textual name of a
2974 relocation as may appear in assembler source, attempt to find its
2975 details in reloc_table. The pointer will be updated to the character
2976 after the trailing colon. On failure, NULL will be returned;
2977 otherwise return the reloc_table_entry. */
2978
2979 static struct reloc_table_entry *
2980 find_reloc_table_entry (char **str)
2981 {
2982 unsigned int i;
2983 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2984 {
2985 int length = strlen (reloc_table[i].name);
2986
2987 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2988 && (*str)[length] == ':')
2989 {
2990 *str += (length + 1);
2991 return &reloc_table[i];
2992 }
2993 }
2994
2995 return NULL;
2996 }
2997
2998 /* Mode argument to parse_shift and parser_shifter_operand. */
2999 enum parse_shift_mode
3000 {
3001 SHIFTED_NONE, /* no shifter allowed */
3002 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
3003 "#imm{,lsl #n}" */
3004 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
3005 "#imm" */
3006 SHIFTED_LSL, /* bare "lsl #n" */
3007 SHIFTED_MUL, /* bare "mul #n" */
3008 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
3009 SHIFTED_MUL_VL, /* "mul vl" */
3010 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
3011 };
3012
3013 /* Parse a <shift> operator on an AArch64 data processing instruction.
3014 Return TRUE on success; otherwise return FALSE. */
3015 static bfd_boolean
3016 parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
3017 {
3018 const struct aarch64_name_value_pair *shift_op;
3019 enum aarch64_modifier_kind kind;
3020 expressionS exp;
3021 int exp_has_prefix;
3022 char *s = *str;
3023 char *p = s;
3024
3025 for (p = *str; ISALPHA (*p); p++)
3026 ;
3027
3028 if (p == *str)
3029 {
3030 set_syntax_error (_("shift expression expected"));
3031 return FALSE;
3032 }
3033
3034 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
3035
3036 if (shift_op == NULL)
3037 {
3038 set_syntax_error (_("shift operator expected"));
3039 return FALSE;
3040 }
3041
3042 kind = aarch64_get_operand_modifier (shift_op);
3043
3044 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
3045 {
3046 set_syntax_error (_("invalid use of 'MSL'"));
3047 return FALSE;
3048 }
3049
3050 if (kind == AARCH64_MOD_MUL
3051 && mode != SHIFTED_MUL
3052 && mode != SHIFTED_MUL_VL)
3053 {
3054 set_syntax_error (_("invalid use of 'MUL'"));
3055 return FALSE;
3056 }
3057
3058 switch (mode)
3059 {
3060 case SHIFTED_LOGIC_IMM:
3061 if (aarch64_extend_operator_p (kind))
3062 {
3063 set_syntax_error (_("extending shift is not permitted"));
3064 return FALSE;
3065 }
3066 break;
3067
3068 case SHIFTED_ARITH_IMM:
3069 if (kind == AARCH64_MOD_ROR)
3070 {
3071 set_syntax_error (_("'ROR' shift is not permitted"));
3072 return FALSE;
3073 }
3074 break;
3075
3076 case SHIFTED_LSL:
3077 if (kind != AARCH64_MOD_LSL)
3078 {
3079 set_syntax_error (_("only 'LSL' shift is permitted"));
3080 return FALSE;
3081 }
3082 break;
3083
3084 case SHIFTED_MUL:
3085 if (kind != AARCH64_MOD_MUL)
3086 {
3087 set_syntax_error (_("only 'MUL' is permitted"));
3088 return FALSE;
3089 }
3090 break;
3091
3092 case SHIFTED_MUL_VL:
3093 /* "MUL VL" consists of two separate tokens. Require the first
3094 token to be "MUL" and look for a following "VL". */
3095 if (kind == AARCH64_MOD_MUL)
3096 {
3097 skip_whitespace (p);
3098 if (strncasecmp (p, "vl", 2) == 0 && !ISALPHA (p[2]))
3099 {
3100 p += 2;
3101 kind = AARCH64_MOD_MUL_VL;
3102 break;
3103 }
3104 }
3105 set_syntax_error (_("only 'MUL VL' is permitted"));
3106 return FALSE;
3107
3108 case SHIFTED_REG_OFFSET:
3109 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
3110 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
3111 {
3112 set_fatal_syntax_error
3113 (_("invalid shift for the register offset addressing mode"));
3114 return FALSE;
3115 }
3116 break;
3117
3118 case SHIFTED_LSL_MSL:
3119 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
3120 {
3121 set_syntax_error (_("invalid shift operator"));
3122 return FALSE;
3123 }
3124 break;
3125
3126 default:
3127 abort ();
3128 }
3129
3130 /* Whitespace can appear here if the next thing is a bare digit. */
3131 skip_whitespace (p);
3132
3133 /* Parse shift amount. */
3134 exp_has_prefix = 0;
3135 if ((mode == SHIFTED_REG_OFFSET && *p == ']') || kind == AARCH64_MOD_MUL_VL)
3136 exp.X_op = O_absent;
3137 else
3138 {
3139 if (is_immediate_prefix (*p))
3140 {
3141 p++;
3142 exp_has_prefix = 1;
3143 }
3144 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
3145 }
3146 if (kind == AARCH64_MOD_MUL_VL)
3147 /* For consistency, give MUL VL the same shift amount as an implicit
3148 MUL #1. */
3149 operand->shifter.amount = 1;
3150 else if (exp.X_op == O_absent)
3151 {
3152 if (!aarch64_extend_operator_p (kind) || exp_has_prefix)
3153 {
3154 set_syntax_error (_("missing shift amount"));
3155 return FALSE;
3156 }
3157 operand->shifter.amount = 0;
3158 }
3159 else if (exp.X_op != O_constant)
3160 {
3161 set_syntax_error (_("constant shift amount required"));
3162 return FALSE;
3163 }
3164 /* For parsing purposes, MUL #n has no inherent range. The range
3165 depends on the operand and will be checked by operand-specific
3166 routines. */
3167 else if (kind != AARCH64_MOD_MUL
3168 && (exp.X_add_number < 0 || exp.X_add_number > 63))
3169 {
3170 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
3171 return FALSE;
3172 }
3173 else
3174 {
3175 operand->shifter.amount = exp.X_add_number;
3176 operand->shifter.amount_present = 1;
3177 }
3178
3179 operand->shifter.operator_present = 1;
3180 operand->shifter.kind = kind;
3181
3182 *str = p;
3183 return TRUE;
3184 }
3185
3186 /* Parse a <shifter_operand> for a data processing instruction:
3187
3188 #<immediate>
3189 #<immediate>, LSL #imm
3190
3191 Validation of immediate operands is deferred to md_apply_fix.
3192
3193 Return TRUE on success; otherwise return FALSE. */
3194
3195 static bfd_boolean
3196 parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
3197 enum parse_shift_mode mode)
3198 {
3199 char *p;
3200
3201 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
3202 return FALSE;
3203
3204 p = *str;
3205
3206 /* Accept an immediate expression. */
3207 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
3208 return FALSE;
3209
3210 /* Accept optional LSL for arithmetic immediate values. */
3211 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
3212 if (! parse_shift (&p, operand, SHIFTED_LSL))
3213 return FALSE;
3214
3215 /* Not accept any shifter for logical immediate values. */
3216 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
3217 && parse_shift (&p, operand, mode))
3218 {
3219 set_syntax_error (_("unexpected shift operator"));
3220 return FALSE;
3221 }
3222
3223 *str = p;
3224 return TRUE;
3225 }
3226
3227 /* Parse a <shifter_operand> for a data processing instruction:
3228
3229 <Rm>
3230 <Rm>, <shift>
3231 #<immediate>
3232 #<immediate>, LSL #imm
3233
3234 where <shift> is handled by parse_shift above, and the last two
3235 cases are handled by the function above.
3236
3237 Validation of immediate operands is deferred to md_apply_fix.
3238
3239 Return TRUE on success; otherwise return FALSE. */
3240
3241 static bfd_boolean
3242 parse_shifter_operand (char **str, aarch64_opnd_info *operand,
3243 enum parse_shift_mode mode)
3244 {
3245 const reg_entry *reg;
3246 aarch64_opnd_qualifier_t qualifier;
3247 enum aarch64_operand_class opd_class
3248 = aarch64_get_operand_class (operand->type);
3249
3250 reg = aarch64_reg_parse_32_64 (str, &qualifier);
3251 if (reg)
3252 {
3253 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
3254 {
3255 set_syntax_error (_("unexpected register in the immediate operand"));
3256 return FALSE;
3257 }
3258
3259 if (!aarch64_check_reg_type (reg, REG_TYPE_R_Z))
3260 {
3261 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_Z)));
3262 return FALSE;
3263 }
3264
3265 operand->reg.regno = reg->number;
3266 operand->qualifier = qualifier;
3267
3268 /* Accept optional shift operation on register. */
3269 if (! skip_past_comma (str))
3270 return TRUE;
3271
3272 if (! parse_shift (str, operand, mode))
3273 return FALSE;
3274
3275 return TRUE;
3276 }
3277 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
3278 {
3279 set_syntax_error
3280 (_("integer register expected in the extended/shifted operand "
3281 "register"));
3282 return FALSE;
3283 }
3284
3285 /* We have a shifted immediate variable. */
3286 return parse_shifter_operand_imm (str, operand, mode);
3287 }
3288
3289 /* Return TRUE on success; return FALSE otherwise. */
3290
3291 static bfd_boolean
3292 parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
3293 enum parse_shift_mode mode)
3294 {
3295 char *p = *str;
3296
3297 /* Determine if we have the sequence of characters #: or just :
3298 coming next. If we do, then we check for a :rello: relocation
3299 modifier. If we don't, punt the whole lot to
3300 parse_shifter_operand. */
3301
3302 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3303 {
3304 struct reloc_table_entry *entry;
3305
3306 if (p[0] == '#')
3307 p += 2;
3308 else
3309 p++;
3310 *str = p;
3311
3312 /* Try to parse a relocation. Anything else is an error. */
3313 if (!(entry = find_reloc_table_entry (str)))
3314 {
3315 set_syntax_error (_("unknown relocation modifier"));
3316 return FALSE;
3317 }
3318
3319 if (entry->add_type == 0)
3320 {
3321 set_syntax_error
3322 (_("this relocation modifier is not allowed on this instruction"));
3323 return FALSE;
3324 }
3325
3326 /* Save str before we decompose it. */
3327 p = *str;
3328
3329 /* Next, we parse the expression. */
3330 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
3331 return FALSE;
3332
3333 /* Record the relocation type (use the ADD variant here). */
3334 inst.reloc.type = entry->add_type;
3335 inst.reloc.pc_rel = entry->pc_rel;
3336
3337 /* If str is empty, we've reached the end, stop here. */
3338 if (**str == '\0')
3339 return TRUE;
3340
3341 /* Otherwise, we have a shifted reloc modifier, so rewind to
3342 recover the variable name and continue parsing for the shifter. */
3343 *str = p;
3344 return parse_shifter_operand_imm (str, operand, mode);
3345 }
3346
3347 return parse_shifter_operand (str, operand, mode);
3348 }
3349
3350 /* Parse all forms of an address expression. Information is written
3351 to *OPERAND and/or inst.reloc.
3352
3353 The A64 instruction set has the following addressing modes:
3354
3355 Offset
3356 [base] // in SIMD ld/st structure
3357 [base{,#0}] // in ld/st exclusive
3358 [base{,#imm}]
3359 [base,Xm{,LSL #imm}]
3360 [base,Xm,SXTX {#imm}]
3361 [base,Wm,(S|U)XTW {#imm}]
3362 Pre-indexed
3363 [base,#imm]!
3364 Post-indexed
3365 [base],#imm
3366 [base],Xm // in SIMD ld/st structure
3367 PC-relative (literal)
3368 label
3369 SVE:
3370 [base,#imm,MUL VL]
3371 [base,Zm.D{,LSL #imm}]
3372 [base,Zm.S,(S|U)XTW {#imm}]
3373 [base,Zm.D,(S|U)XTW {#imm}] // ignores top 32 bits of Zm.D elements
3374 [Zn.S,#imm]
3375 [Zn.D,#imm]
3376 [Zn.S,Zm.S{,LSL #imm}] // in ADR
3377 [Zn.D,Zm.D{,LSL #imm}] // in ADR
3378 [Zn.D,Zm.D,(S|U)XTW {#imm}] // in ADR
3379
3380 (As a convenience, the notation "=immediate" is permitted in conjunction
3381 with the pc-relative literal load instructions to automatically place an
3382 immediate value or symbolic address in a nearby literal pool and generate
3383 a hidden label which references it.)
3384
3385 Upon a successful parsing, the address structure in *OPERAND will be
3386 filled in the following way:
3387
3388 .base_regno = <base>
3389 .offset.is_reg // 1 if the offset is a register
3390 .offset.imm = <imm>
3391 .offset.regno = <Rm>
3392
3393 For different addressing modes defined in the A64 ISA:
3394
3395 Offset
3396 .pcrel=0; .preind=1; .postind=0; .writeback=0
3397 Pre-indexed
3398 .pcrel=0; .preind=1; .postind=0; .writeback=1
3399 Post-indexed
3400 .pcrel=0; .preind=0; .postind=1; .writeback=1
3401 PC-relative (literal)
3402 .pcrel=1; .preind=1; .postind=0; .writeback=0
3403
3404 The shift/extension information, if any, will be stored in .shifter.
3405 The base and offset qualifiers will be stored in *BASE_QUALIFIER and
3406 *OFFSET_QUALIFIER respectively, with NIL being used if there's no
3407 corresponding register.
3408
3409 BASE_TYPE says which types of base register should be accepted and
3410 OFFSET_TYPE says the same for offset registers. IMM_SHIFT_MODE
3411 is the type of shifter that is allowed for immediate offsets,
3412 or SHIFTED_NONE if none.
3413
3414 In all other respects, it is the caller's responsibility to check
3415 for addressing modes not supported by the instruction, and to set
3416 inst.reloc.type. */
3417
3418 static bfd_boolean
3419 parse_address_main (char **str, aarch64_opnd_info *operand,
3420 aarch64_opnd_qualifier_t *base_qualifier,
3421 aarch64_opnd_qualifier_t *offset_qualifier,
3422 aarch64_reg_type base_type, aarch64_reg_type offset_type,
3423 enum parse_shift_mode imm_shift_mode)
3424 {
3425 char *p = *str;
3426 const reg_entry *reg;
3427 expressionS *exp = &inst.reloc.exp;
3428
3429 *base_qualifier = AARCH64_OPND_QLF_NIL;
3430 *offset_qualifier = AARCH64_OPND_QLF_NIL;
3431 if (! skip_past_char (&p, '['))
3432 {
3433 /* =immediate or label. */
3434 operand->addr.pcrel = 1;
3435 operand->addr.preind = 1;
3436
3437 /* #:<reloc_op>:<symbol> */
3438 skip_past_char (&p, '#');
3439 if (skip_past_char (&p, ':'))
3440 {
3441 bfd_reloc_code_real_type ty;
3442 struct reloc_table_entry *entry;
3443
3444 /* Try to parse a relocation modifier. Anything else is
3445 an error. */
3446 entry = find_reloc_table_entry (&p);
3447 if (! entry)
3448 {
3449 set_syntax_error (_("unknown relocation modifier"));
3450 return FALSE;
3451 }
3452
3453 switch (operand->type)
3454 {
3455 case AARCH64_OPND_ADDR_PCREL21:
3456 /* adr */
3457 ty = entry->adr_type;
3458 break;
3459
3460 default:
3461 ty = entry->ld_literal_type;
3462 break;
3463 }
3464
3465 if (ty == 0)
3466 {
3467 set_syntax_error
3468 (_("this relocation modifier is not allowed on this "
3469 "instruction"));
3470 return FALSE;
3471 }
3472
3473 /* #:<reloc_op>: */
3474 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3475 {
3476 set_syntax_error (_("invalid relocation expression"));
3477 return FALSE;
3478 }
3479
3480 /* #:<reloc_op>:<expr> */
3481 /* Record the relocation type. */
3482 inst.reloc.type = ty;
3483 inst.reloc.pc_rel = entry->pc_rel;
3484 }
3485 else
3486 {
3487
3488 if (skip_past_char (&p, '='))
3489 /* =immediate; need to generate the literal in the literal pool. */
3490 inst.gen_lit_pool = 1;
3491
3492 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3493 {
3494 set_syntax_error (_("invalid address"));
3495 return FALSE;
3496 }
3497 }
3498
3499 *str = p;
3500 return TRUE;
3501 }
3502
3503 /* [ */
3504
3505 reg = aarch64_addr_reg_parse (&p, base_type, base_qualifier);
3506 if (!reg || !aarch64_check_reg_type (reg, base_type))
3507 {
3508 set_syntax_error (_(get_reg_expected_msg (base_type)));
3509 return FALSE;
3510 }
3511 operand->addr.base_regno = reg->number;
3512
3513 /* [Xn */
3514 if (skip_past_comma (&p))
3515 {
3516 /* [Xn, */
3517 operand->addr.preind = 1;
3518
3519 reg = aarch64_addr_reg_parse (&p, offset_type, offset_qualifier);
3520 if (reg)
3521 {
3522 if (!aarch64_check_reg_type (reg, offset_type))
3523 {
3524 set_syntax_error (_(get_reg_expected_msg (offset_type)));
3525 return FALSE;
3526 }
3527
3528 /* [Xn,Rm */
3529 operand->addr.offset.regno = reg->number;
3530 operand->addr.offset.is_reg = 1;
3531 /* Shifted index. */
3532 if (skip_past_comma (&p))
3533 {
3534 /* [Xn,Rm, */
3535 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3536 /* Use the diagnostics set in parse_shift, so not set new
3537 error message here. */
3538 return FALSE;
3539 }
3540 /* We only accept:
3541 [base,Xm{,LSL #imm}]
3542 [base,Xm,SXTX {#imm}]
3543 [base,Wm,(S|U)XTW {#imm}] */
3544 if (operand->shifter.kind == AARCH64_MOD_NONE
3545 || operand->shifter.kind == AARCH64_MOD_LSL
3546 || operand->shifter.kind == AARCH64_MOD_SXTX)
3547 {
3548 if (*offset_qualifier == AARCH64_OPND_QLF_W)
3549 {
3550 set_syntax_error (_("invalid use of 32-bit register offset"));
3551 return FALSE;
3552 }
3553 if (aarch64_get_qualifier_esize (*base_qualifier)
3554 != aarch64_get_qualifier_esize (*offset_qualifier))
3555 {
3556 set_syntax_error (_("offset has different size from base"));
3557 return FALSE;
3558 }
3559 }
3560 else if (*offset_qualifier == AARCH64_OPND_QLF_X)
3561 {
3562 set_syntax_error (_("invalid use of 64-bit register offset"));
3563 return FALSE;
3564 }
3565 }
3566 else
3567 {
3568 /* [Xn,#:<reloc_op>:<symbol> */
3569 skip_past_char (&p, '#');
3570 if (skip_past_char (&p, ':'))
3571 {
3572 struct reloc_table_entry *entry;
3573
3574 /* Try to parse a relocation modifier. Anything else is
3575 an error. */
3576 if (!(entry = find_reloc_table_entry (&p)))
3577 {
3578 set_syntax_error (_("unknown relocation modifier"));
3579 return FALSE;
3580 }
3581
3582 if (entry->ldst_type == 0)
3583 {
3584 set_syntax_error
3585 (_("this relocation modifier is not allowed on this "
3586 "instruction"));
3587 return FALSE;
3588 }
3589
3590 /* [Xn,#:<reloc_op>: */
3591 /* We now have the group relocation table entry corresponding to
3592 the name in the assembler source. Next, we parse the
3593 expression. */
3594 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3595 {
3596 set_syntax_error (_("invalid relocation expression"));
3597 return FALSE;
3598 }
3599
3600 /* [Xn,#:<reloc_op>:<expr> */
3601 /* Record the load/store relocation type. */
3602 inst.reloc.type = entry->ldst_type;
3603 inst.reloc.pc_rel = entry->pc_rel;
3604 }
3605 else
3606 {
3607 if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3608 {
3609 set_syntax_error (_("invalid expression in the address"));
3610 return FALSE;
3611 }
3612 /* [Xn,<expr> */
3613 if (imm_shift_mode != SHIFTED_NONE && skip_past_comma (&p))
3614 /* [Xn,<expr>,<shifter> */
3615 if (! parse_shift (&p, operand, imm_shift_mode))
3616 return FALSE;
3617 }
3618 }
3619 }
3620
3621 if (! skip_past_char (&p, ']'))
3622 {
3623 set_syntax_error (_("']' expected"));
3624 return FALSE;
3625 }
3626
3627 if (skip_past_char (&p, '!'))
3628 {
3629 if (operand->addr.preind && operand->addr.offset.is_reg)
3630 {
3631 set_syntax_error (_("register offset not allowed in pre-indexed "
3632 "addressing mode"));
3633 return FALSE;
3634 }
3635 /* [Xn]! */
3636 operand->addr.writeback = 1;
3637 }
3638 else if (skip_past_comma (&p))
3639 {
3640 /* [Xn], */
3641 operand->addr.postind = 1;
3642 operand->addr.writeback = 1;
3643
3644 if (operand->addr.preind)
3645 {
3646 set_syntax_error (_("cannot combine pre- and post-indexing"));
3647 return FALSE;
3648 }
3649
3650 reg = aarch64_reg_parse_32_64 (&p, offset_qualifier);
3651 if (reg)
3652 {
3653 /* [Xn],Xm */
3654 if (!aarch64_check_reg_type (reg, REG_TYPE_R_64))
3655 {
3656 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
3657 return FALSE;
3658 }
3659
3660 operand->addr.offset.regno = reg->number;
3661 operand->addr.offset.is_reg = 1;
3662 }
3663 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3664 {
3665 /* [Xn],#expr */
3666 set_syntax_error (_("invalid expression in the address"));
3667 return FALSE;
3668 }
3669 }
3670
3671 /* If at this point neither .preind nor .postind is set, we have a
3672 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3673 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3674 {
3675 if (operand->addr.writeback)
3676 {
3677 /* Reject [Rn]! */
3678 set_syntax_error (_("missing offset in the pre-indexed address"));
3679 return FALSE;
3680 }
3681
3682 operand->addr.preind = 1;
3683 inst.reloc.exp.X_op = O_constant;
3684 inst.reloc.exp.X_add_number = 0;
3685 }
3686
3687 *str = p;
3688 return TRUE;
3689 }
3690
3691 /* Parse a base AArch64 address (as opposed to an SVE one). Return TRUE
3692 on success. */
3693 static bfd_boolean
3694 parse_address (char **str, aarch64_opnd_info *operand)
3695 {
3696 aarch64_opnd_qualifier_t base_qualifier, offset_qualifier;
3697 return parse_address_main (str, operand, &base_qualifier, &offset_qualifier,
3698 REG_TYPE_R64_SP, REG_TYPE_R_Z, SHIFTED_NONE);
3699 }
3700
3701 /* Parse an address in which SVE vector registers and MUL VL are allowed.
3702 The arguments have the same meaning as for parse_address_main.
3703 Return TRUE on success. */
3704 static bfd_boolean
3705 parse_sve_address (char **str, aarch64_opnd_info *operand,
3706 aarch64_opnd_qualifier_t *base_qualifier,
3707 aarch64_opnd_qualifier_t *offset_qualifier)
3708 {
3709 return parse_address_main (str, operand, base_qualifier, offset_qualifier,
3710 REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET,
3711 SHIFTED_MUL_VL);
3712 }
3713
3714 /* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3715 Return TRUE on success; otherwise return FALSE. */
3716 static bfd_boolean
3717 parse_half (char **str, int *internal_fixup_p)
3718 {
3719 char *p = *str;
3720
3721 skip_past_char (&p, '#');
3722
3723 gas_assert (internal_fixup_p);
3724 *internal_fixup_p = 0;
3725
3726 if (*p == ':')
3727 {
3728 struct reloc_table_entry *entry;
3729
3730 /* Try to parse a relocation. Anything else is an error. */
3731 ++p;
3732 if (!(entry = find_reloc_table_entry (&p)))
3733 {
3734 set_syntax_error (_("unknown relocation modifier"));
3735 return FALSE;
3736 }
3737
3738 if (entry->movw_type == 0)
3739 {
3740 set_syntax_error
3741 (_("this relocation modifier is not allowed on this instruction"));
3742 return FALSE;
3743 }
3744
3745 inst.reloc.type = entry->movw_type;
3746 }
3747 else
3748 *internal_fixup_p = 1;
3749
3750 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3751 return FALSE;
3752
3753 *str = p;
3754 return TRUE;
3755 }
3756
3757 /* Parse an operand for an ADRP instruction:
3758 ADRP <Xd>, <label>
3759 Return TRUE on success; otherwise return FALSE. */
3760
3761 static bfd_boolean
3762 parse_adrp (char **str)
3763 {
3764 char *p;
3765
3766 p = *str;
3767 if (*p == ':')
3768 {
3769 struct reloc_table_entry *entry;
3770
3771 /* Try to parse a relocation. Anything else is an error. */
3772 ++p;
3773 if (!(entry = find_reloc_table_entry (&p)))
3774 {
3775 set_syntax_error (_("unknown relocation modifier"));
3776 return FALSE;
3777 }
3778
3779 if (entry->adrp_type == 0)
3780 {
3781 set_syntax_error
3782 (_("this relocation modifier is not allowed on this instruction"));
3783 return FALSE;
3784 }
3785
3786 inst.reloc.type = entry->adrp_type;
3787 }
3788 else
3789 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3790
3791 inst.reloc.pc_rel = 1;
3792
3793 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3794 return FALSE;
3795
3796 *str = p;
3797 return TRUE;
3798 }
3799
3800 /* Miscellaneous. */
3801
3802 /* Parse a symbolic operand such as "pow2" at *STR. ARRAY is an array
3803 of SIZE tokens in which index I gives the token for field value I,
3804 or is null if field value I is invalid. REG_TYPE says which register
3805 names should be treated as registers rather than as symbolic immediates.
3806
3807 Return true on success, moving *STR past the operand and storing the
3808 field value in *VAL. */
3809
3810 static int
3811 parse_enum_string (char **str, int64_t *val, const char *const *array,
3812 size_t size, aarch64_reg_type reg_type)
3813 {
3814 expressionS exp;
3815 char *p, *q;
3816 size_t i;
3817
3818 /* Match C-like tokens. */
3819 p = q = *str;
3820 while (ISALNUM (*q))
3821 q++;
3822
3823 for (i = 0; i < size; ++i)
3824 if (array[i]
3825 && strncasecmp (array[i], p, q - p) == 0
3826 && array[i][q - p] == 0)
3827 {
3828 *val = i;
3829 *str = q;
3830 return TRUE;
3831 }
3832
3833 if (!parse_immediate_expression (&p, &exp, reg_type))
3834 return FALSE;
3835
3836 if (exp.X_op == O_constant
3837 && (uint64_t) exp.X_add_number < size)
3838 {
3839 *val = exp.X_add_number;
3840 *str = p;
3841 return TRUE;
3842 }
3843
3844 /* Use the default error for this operand. */
3845 return FALSE;
3846 }
3847
3848 /* Parse an option for a preload instruction. Returns the encoding for the
3849 option, or PARSE_FAIL. */
3850
3851 static int
3852 parse_pldop (char **str)
3853 {
3854 char *p, *q;
3855 const struct aarch64_name_value_pair *o;
3856
3857 p = q = *str;
3858 while (ISALNUM (*q))
3859 q++;
3860
3861 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3862 if (!o)
3863 return PARSE_FAIL;
3864
3865 *str = q;
3866 return o->value;
3867 }
3868
3869 /* Parse an option for a barrier instruction. Returns the encoding for the
3870 option, or PARSE_FAIL. */
3871
3872 static int
3873 parse_barrier (char **str)
3874 {
3875 char *p, *q;
3876 const asm_barrier_opt *o;
3877
3878 p = q = *str;
3879 while (ISALPHA (*q))
3880 q++;
3881
3882 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3883 if (!o)
3884 return PARSE_FAIL;
3885
3886 *str = q;
3887 return o->value;
3888 }
3889
3890 /* Parse an operand for a PSB barrier. Set *HINT_OPT to the hint-option record
3891 return 0 if successful. Otherwise return PARSE_FAIL. */
3892
3893 static int
3894 parse_barrier_psb (char **str,
3895 const struct aarch64_name_value_pair ** hint_opt)
3896 {
3897 char *p, *q;
3898 const struct aarch64_name_value_pair *o;
3899
3900 p = q = *str;
3901 while (ISALPHA (*q))
3902 q++;
3903
3904 o = hash_find_n (aarch64_hint_opt_hsh, p, q - p);
3905 if (!o)
3906 {
3907 set_fatal_syntax_error
3908 ( _("unknown or missing option to PSB"));
3909 return PARSE_FAIL;
3910 }
3911
3912 if (o->value != 0x11)
3913 {
3914 /* PSB only accepts option name 'CSYNC'. */
3915 set_syntax_error
3916 (_("the specified option is not accepted for PSB"));
3917 return PARSE_FAIL;
3918 }
3919
3920 *str = q;
3921 *hint_opt = o;
3922 return 0;
3923 }
3924
3925 /* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
3926 Returns the encoding for the option, or PARSE_FAIL.
3927
3928 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
3929 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
3930
3931 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
3932 field, otherwise as a system register.
3933 */
3934
3935 static int
3936 parse_sys_reg (char **str, struct hash_control *sys_regs,
3937 int imple_defined_p, int pstatefield_p)
3938 {
3939 char *p, *q;
3940 char buf[32];
3941 const aarch64_sys_reg *o;
3942 int value;
3943
3944 p = buf;
3945 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3946 if (p < buf + 31)
3947 *p++ = TOLOWER (*q);
3948 *p = '\0';
3949 /* Assert that BUF be large enough. */
3950 gas_assert (p - buf == q - *str);
3951
3952 o = hash_find (sys_regs, buf);
3953 if (!o)
3954 {
3955 if (!imple_defined_p)
3956 return PARSE_FAIL;
3957 else
3958 {
3959 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
3960 unsigned int op0, op1, cn, cm, op2;
3961
3962 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3963 != 5)
3964 return PARSE_FAIL;
3965 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
3966 return PARSE_FAIL;
3967 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3968 }
3969 }
3970 else
3971 {
3972 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
3973 as_bad (_("selected processor does not support PSTATE field "
3974 "name '%s'"), buf);
3975 if (!pstatefield_p && !aarch64_sys_reg_supported_p (cpu_variant, o))
3976 as_bad (_("selected processor does not support system register "
3977 "name '%s'"), buf);
3978 if (aarch64_sys_reg_deprecated_p (o))
3979 as_warn (_("system register name '%s' is deprecated and may be "
3980 "removed in a future release"), buf);
3981 value = o->value;
3982 }
3983
3984 *str = q;
3985 return value;
3986 }
3987
3988 /* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3989 for the option, or NULL. */
3990
3991 static const aarch64_sys_ins_reg *
3992 parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3993 {
3994 char *p, *q;
3995 char buf[32];
3996 const aarch64_sys_ins_reg *o;
3997
3998 p = buf;
3999 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
4000 if (p < buf + 31)
4001 *p++ = TOLOWER (*q);
4002 *p = '\0';
4003
4004 o = hash_find (sys_ins_regs, buf);
4005 if (!o)
4006 return NULL;
4007
4008 if (!aarch64_sys_ins_reg_supported_p (cpu_variant, o))
4009 as_bad (_("selected processor does not support system register "
4010 "name '%s'"), buf);
4011
4012 *str = q;
4013 return o;
4014 }
4015 \f
4016 #define po_char_or_fail(chr) do { \
4017 if (! skip_past_char (&str, chr)) \
4018 goto failure; \
4019 } while (0)
4020
4021 #define po_reg_or_fail(regtype) do { \
4022 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
4023 if (val == PARSE_FAIL) \
4024 { \
4025 set_default_error (); \
4026 goto failure; \
4027 } \
4028 } while (0)
4029
4030 #define po_int_reg_or_fail(reg_type) do { \
4031 reg = aarch64_reg_parse_32_64 (&str, &qualifier); \
4032 if (!reg || !aarch64_check_reg_type (reg, reg_type)) \
4033 { \
4034 set_default_error (); \
4035 goto failure; \
4036 } \
4037 info->reg.regno = reg->number; \
4038 info->qualifier = qualifier; \
4039 } while (0)
4040
4041 #define po_imm_nc_or_fail() do { \
4042 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
4043 goto failure; \
4044 } while (0)
4045
4046 #define po_imm_or_fail(min, max) do { \
4047 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
4048 goto failure; \
4049 if (val < min || val > max) \
4050 { \
4051 set_fatal_syntax_error (_("immediate value out of range "\
4052 #min " to "#max)); \
4053 goto failure; \
4054 } \
4055 } while (0)
4056
4057 #define po_enum_or_fail(array) do { \
4058 if (!parse_enum_string (&str, &val, array, \
4059 ARRAY_SIZE (array), imm_reg_type)) \
4060 goto failure; \
4061 } while (0)
4062
4063 #define po_misc_or_fail(expr) do { \
4064 if (!expr) \
4065 goto failure; \
4066 } while (0)
4067 \f
4068 /* encode the 12-bit imm field of Add/sub immediate */
4069 static inline uint32_t
4070 encode_addsub_imm (uint32_t imm)
4071 {
4072 return imm << 10;
4073 }
4074
4075 /* encode the shift amount field of Add/sub immediate */
4076 static inline uint32_t
4077 encode_addsub_imm_shift_amount (uint32_t cnt)
4078 {
4079 return cnt << 22;
4080 }
4081
4082
4083 /* encode the imm field of Adr instruction */
4084 static inline uint32_t
4085 encode_adr_imm (uint32_t imm)
4086 {
4087 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
4088 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
4089 }
4090
4091 /* encode the immediate field of Move wide immediate */
4092 static inline uint32_t
4093 encode_movw_imm (uint32_t imm)
4094 {
4095 return imm << 5;
4096 }
4097
4098 /* encode the 26-bit offset of unconditional branch */
4099 static inline uint32_t
4100 encode_branch_ofs_26 (uint32_t ofs)
4101 {
4102 return ofs & ((1 << 26) - 1);
4103 }
4104
4105 /* encode the 19-bit offset of conditional branch and compare & branch */
4106 static inline uint32_t
4107 encode_cond_branch_ofs_19 (uint32_t ofs)
4108 {
4109 return (ofs & ((1 << 19) - 1)) << 5;
4110 }
4111
4112 /* encode the 19-bit offset of ld literal */
4113 static inline uint32_t
4114 encode_ld_lit_ofs_19 (uint32_t ofs)
4115 {
4116 return (ofs & ((1 << 19) - 1)) << 5;
4117 }
4118
4119 /* Encode the 14-bit offset of test & branch. */
4120 static inline uint32_t
4121 encode_tst_branch_ofs_14 (uint32_t ofs)
4122 {
4123 return (ofs & ((1 << 14) - 1)) << 5;
4124 }
4125
4126 /* Encode the 16-bit imm field of svc/hvc/smc. */
4127 static inline uint32_t
4128 encode_svc_imm (uint32_t imm)
4129 {
4130 return imm << 5;
4131 }
4132
4133 /* Reencode add(s) to sub(s), or sub(s) to add(s). */
4134 static inline uint32_t
4135 reencode_addsub_switch_add_sub (uint32_t opcode)
4136 {
4137 return opcode ^ (1 << 30);
4138 }
4139
4140 static inline uint32_t
4141 reencode_movzn_to_movz (uint32_t opcode)
4142 {
4143 return opcode | (1 << 30);
4144 }
4145
4146 static inline uint32_t
4147 reencode_movzn_to_movn (uint32_t opcode)
4148 {
4149 return opcode & ~(1 << 30);
4150 }
4151
4152 /* Overall per-instruction processing. */
4153
4154 /* We need to be able to fix up arbitrary expressions in some statements.
4155 This is so that we can handle symbols that are an arbitrary distance from
4156 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
4157 which returns part of an address in a form which will be valid for
4158 a data instruction. We do this by pushing the expression into a symbol
4159 in the expr_section, and creating a fix for that. */
4160
4161 static fixS *
4162 fix_new_aarch64 (fragS * frag,
4163 int where,
4164 short int size, expressionS * exp, int pc_rel, int reloc)
4165 {
4166 fixS *new_fix;
4167
4168 switch (exp->X_op)
4169 {
4170 case O_constant:
4171 case O_symbol:
4172 case O_add:
4173 case O_subtract:
4174 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
4175 break;
4176
4177 default:
4178 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
4179 pc_rel, reloc);
4180 break;
4181 }
4182 return new_fix;
4183 }
4184 \f
4185 /* Diagnostics on operands errors. */
4186
4187 /* By default, output verbose error message.
4188 Disable the verbose error message by -mno-verbose-error. */
4189 static int verbose_error_p = 1;
4190
4191 #ifdef DEBUG_AARCH64
4192 /* N.B. this is only for the purpose of debugging. */
4193 const char* operand_mismatch_kind_names[] =
4194 {
4195 "AARCH64_OPDE_NIL",
4196 "AARCH64_OPDE_RECOVERABLE",
4197 "AARCH64_OPDE_SYNTAX_ERROR",
4198 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
4199 "AARCH64_OPDE_INVALID_VARIANT",
4200 "AARCH64_OPDE_OUT_OF_RANGE",
4201 "AARCH64_OPDE_UNALIGNED",
4202 "AARCH64_OPDE_REG_LIST",
4203 "AARCH64_OPDE_OTHER_ERROR",
4204 };
4205 #endif /* DEBUG_AARCH64 */
4206
4207 /* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
4208
4209 When multiple errors of different kinds are found in the same assembly
4210 line, only the error of the highest severity will be picked up for
4211 issuing the diagnostics. */
4212
4213 static inline bfd_boolean
4214 operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
4215 enum aarch64_operand_error_kind rhs)
4216 {
4217 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
4218 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
4219 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
4220 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
4221 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
4222 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
4223 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
4224 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
4225 return lhs > rhs;
4226 }
4227
4228 /* Helper routine to get the mnemonic name from the assembly instruction
4229 line; should only be called for the diagnosis purpose, as there is
4230 string copy operation involved, which may affect the runtime
4231 performance if used in elsewhere. */
4232
4233 static const char*
4234 get_mnemonic_name (const char *str)
4235 {
4236 static char mnemonic[32];
4237 char *ptr;
4238
4239 /* Get the first 15 bytes and assume that the full name is included. */
4240 strncpy (mnemonic, str, 31);
4241 mnemonic[31] = '\0';
4242
4243 /* Scan up to the end of the mnemonic, which must end in white space,
4244 '.', or end of string. */
4245 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
4246 ;
4247
4248 *ptr = '\0';
4249
4250 /* Append '...' to the truncated long name. */
4251 if (ptr - mnemonic == 31)
4252 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
4253
4254 return mnemonic;
4255 }
4256
4257 static void
4258 reset_aarch64_instruction (aarch64_instruction *instruction)
4259 {
4260 memset (instruction, '\0', sizeof (aarch64_instruction));
4261 instruction->reloc.type = BFD_RELOC_UNUSED;
4262 }
4263
4264 /* Data structures storing one user error in the assembly code related to
4265 operands. */
4266
4267 struct operand_error_record
4268 {
4269 const aarch64_opcode *opcode;
4270 aarch64_operand_error detail;
4271 struct operand_error_record *next;
4272 };
4273
4274 typedef struct operand_error_record operand_error_record;
4275
4276 struct operand_errors
4277 {
4278 operand_error_record *head;
4279 operand_error_record *tail;
4280 };
4281
4282 typedef struct operand_errors operand_errors;
4283
4284 /* Top-level data structure reporting user errors for the current line of
4285 the assembly code.
4286 The way md_assemble works is that all opcodes sharing the same mnemonic
4287 name are iterated to find a match to the assembly line. In this data
4288 structure, each of the such opcodes will have one operand_error_record
4289 allocated and inserted. In other words, excessive errors related with
4290 a single opcode are disregarded. */
4291 operand_errors operand_error_report;
4292
4293 /* Free record nodes. */
4294 static operand_error_record *free_opnd_error_record_nodes = NULL;
4295
4296 /* Initialize the data structure that stores the operand mismatch
4297 information on assembling one line of the assembly code. */
4298 static void
4299 init_operand_error_report (void)
4300 {
4301 if (operand_error_report.head != NULL)
4302 {
4303 gas_assert (operand_error_report.tail != NULL);
4304 operand_error_report.tail->next = free_opnd_error_record_nodes;
4305 free_opnd_error_record_nodes = operand_error_report.head;
4306 operand_error_report.head = NULL;
4307 operand_error_report.tail = NULL;
4308 return;
4309 }
4310 gas_assert (operand_error_report.tail == NULL);
4311 }
4312
4313 /* Return TRUE if some operand error has been recorded during the
4314 parsing of the current assembly line using the opcode *OPCODE;
4315 otherwise return FALSE. */
4316 static inline bfd_boolean
4317 opcode_has_operand_error_p (const aarch64_opcode *opcode)
4318 {
4319 operand_error_record *record = operand_error_report.head;
4320 return record && record->opcode == opcode;
4321 }
4322
4323 /* Add the error record *NEW_RECORD to operand_error_report. The record's
4324 OPCODE field is initialized with OPCODE.
4325 N.B. only one record for each opcode, i.e. the maximum of one error is
4326 recorded for each instruction template. */
4327
4328 static void
4329 add_operand_error_record (const operand_error_record* new_record)
4330 {
4331 const aarch64_opcode *opcode = new_record->opcode;
4332 operand_error_record* record = operand_error_report.head;
4333
4334 /* The record may have been created for this opcode. If not, we need
4335 to prepare one. */
4336 if (! opcode_has_operand_error_p (opcode))
4337 {
4338 /* Get one empty record. */
4339 if (free_opnd_error_record_nodes == NULL)
4340 {
4341 record = XNEW (operand_error_record);
4342 }
4343 else
4344 {
4345 record = free_opnd_error_record_nodes;
4346 free_opnd_error_record_nodes = record->next;
4347 }
4348 record->opcode = opcode;
4349 /* Insert at the head. */
4350 record->next = operand_error_report.head;
4351 operand_error_report.head = record;
4352 if (operand_error_report.tail == NULL)
4353 operand_error_report.tail = record;
4354 }
4355 else if (record->detail.kind != AARCH64_OPDE_NIL
4356 && record->detail.index <= new_record->detail.index
4357 && operand_error_higher_severity_p (record->detail.kind,
4358 new_record->detail.kind))
4359 {
4360 /* In the case of multiple errors found on operands related with a
4361 single opcode, only record the error of the leftmost operand and
4362 only if the error is of higher severity. */
4363 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
4364 " the existing error %s on operand %d",
4365 operand_mismatch_kind_names[new_record->detail.kind],
4366 new_record->detail.index,
4367 operand_mismatch_kind_names[record->detail.kind],
4368 record->detail.index);
4369 return;
4370 }
4371
4372 record->detail = new_record->detail;
4373 }
4374
4375 static inline void
4376 record_operand_error_info (const aarch64_opcode *opcode,
4377 aarch64_operand_error *error_info)
4378 {
4379 operand_error_record record;
4380 record.opcode = opcode;
4381 record.detail = *error_info;
4382 add_operand_error_record (&record);
4383 }
4384
4385 /* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
4386 error message *ERROR, for operand IDX (count from 0). */
4387
4388 static void
4389 record_operand_error (const aarch64_opcode *opcode, int idx,
4390 enum aarch64_operand_error_kind kind,
4391 const char* error)
4392 {
4393 aarch64_operand_error info;
4394 memset(&info, 0, sizeof (info));
4395 info.index = idx;
4396 info.kind = kind;
4397 info.error = error;
4398 record_operand_error_info (opcode, &info);
4399 }
4400
4401 static void
4402 record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
4403 enum aarch64_operand_error_kind kind,
4404 const char* error, const int *extra_data)
4405 {
4406 aarch64_operand_error info;
4407 info.index = idx;
4408 info.kind = kind;
4409 info.error = error;
4410 info.data[0] = extra_data[0];
4411 info.data[1] = extra_data[1];
4412 info.data[2] = extra_data[2];
4413 record_operand_error_info (opcode, &info);
4414 }
4415
4416 static void
4417 record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
4418 const char* error, int lower_bound,
4419 int upper_bound)
4420 {
4421 int data[3] = {lower_bound, upper_bound, 0};
4422 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
4423 error, data);
4424 }
4425
4426 /* Remove the operand error record for *OPCODE. */
4427 static void ATTRIBUTE_UNUSED
4428 remove_operand_error_record (const aarch64_opcode *opcode)
4429 {
4430 if (opcode_has_operand_error_p (opcode))
4431 {
4432 operand_error_record* record = operand_error_report.head;
4433 gas_assert (record != NULL && operand_error_report.tail != NULL);
4434 operand_error_report.head = record->next;
4435 record->next = free_opnd_error_record_nodes;
4436 free_opnd_error_record_nodes = record;
4437 if (operand_error_report.head == NULL)
4438 {
4439 gas_assert (operand_error_report.tail == record);
4440 operand_error_report.tail = NULL;
4441 }
4442 }
4443 }
4444
4445 /* Given the instruction in *INSTR, return the index of the best matched
4446 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
4447
4448 Return -1 if there is no qualifier sequence; return the first match
4449 if there is multiple matches found. */
4450
4451 static int
4452 find_best_match (const aarch64_inst *instr,
4453 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
4454 {
4455 int i, num_opnds, max_num_matched, idx;
4456
4457 num_opnds = aarch64_num_of_operands (instr->opcode);
4458 if (num_opnds == 0)
4459 {
4460 DEBUG_TRACE ("no operand");
4461 return -1;
4462 }
4463
4464 max_num_matched = 0;
4465 idx = 0;
4466
4467 /* For each pattern. */
4468 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4469 {
4470 int j, num_matched;
4471 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
4472
4473 /* Most opcodes has much fewer patterns in the list. */
4474 if (empty_qualifier_sequence_p (qualifiers))
4475 {
4476 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
4477 break;
4478 }
4479
4480 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
4481 if (*qualifiers == instr->operands[j].qualifier)
4482 ++num_matched;
4483
4484 if (num_matched > max_num_matched)
4485 {
4486 max_num_matched = num_matched;
4487 idx = i;
4488 }
4489 }
4490
4491 DEBUG_TRACE ("return with %d", idx);
4492 return idx;
4493 }
4494
4495 /* Assign qualifiers in the qualifier sequence (headed by QUALIFIERS) to the
4496 corresponding operands in *INSTR. */
4497
4498 static inline void
4499 assign_qualifier_sequence (aarch64_inst *instr,
4500 const aarch64_opnd_qualifier_t *qualifiers)
4501 {
4502 int i = 0;
4503 int num_opnds = aarch64_num_of_operands (instr->opcode);
4504 gas_assert (num_opnds);
4505 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4506 instr->operands[i].qualifier = *qualifiers;
4507 }
4508
4509 /* Print operands for the diagnosis purpose. */
4510
4511 static void
4512 print_operands (char *buf, const aarch64_opcode *opcode,
4513 const aarch64_opnd_info *opnds)
4514 {
4515 int i;
4516
4517 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4518 {
4519 char str[128];
4520
4521 /* We regard the opcode operand info more, however we also look into
4522 the inst->operands to support the disassembling of the optional
4523 operand.
4524 The two operand code should be the same in all cases, apart from
4525 when the operand can be optional. */
4526 if (opcode->operands[i] == AARCH64_OPND_NIL
4527 || opnds[i].type == AARCH64_OPND_NIL)
4528 break;
4529
4530 /* Generate the operand string in STR. */
4531 aarch64_print_operand (str, sizeof (str), 0, opcode, opnds, i, NULL, NULL);
4532
4533 /* Delimiter. */
4534 if (str[0] != '\0')
4535 strcat (buf, i == 0 ? " " : ", ");
4536
4537 /* Append the operand string. */
4538 strcat (buf, str);
4539 }
4540 }
4541
4542 /* Send to stderr a string as information. */
4543
4544 static void
4545 output_info (const char *format, ...)
4546 {
4547 const char *file;
4548 unsigned int line;
4549 va_list args;
4550
4551 file = as_where (&line);
4552 if (file)
4553 {
4554 if (line != 0)
4555 fprintf (stderr, "%s:%u: ", file, line);
4556 else
4557 fprintf (stderr, "%s: ", file);
4558 }
4559 fprintf (stderr, _("Info: "));
4560 va_start (args, format);
4561 vfprintf (stderr, format, args);
4562 va_end (args);
4563 (void) putc ('\n', stderr);
4564 }
4565
4566 /* Output one operand error record. */
4567
4568 static void
4569 output_operand_error_record (const operand_error_record *record, char *str)
4570 {
4571 const aarch64_operand_error *detail = &record->detail;
4572 int idx = detail->index;
4573 const aarch64_opcode *opcode = record->opcode;
4574 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
4575 : AARCH64_OPND_NIL);
4576
4577 switch (detail->kind)
4578 {
4579 case AARCH64_OPDE_NIL:
4580 gas_assert (0);
4581 break;
4582
4583 case AARCH64_OPDE_SYNTAX_ERROR:
4584 case AARCH64_OPDE_RECOVERABLE:
4585 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4586 case AARCH64_OPDE_OTHER_ERROR:
4587 /* Use the prepared error message if there is, otherwise use the
4588 operand description string to describe the error. */
4589 if (detail->error != NULL)
4590 {
4591 if (idx < 0)
4592 as_bad (_("%s -- `%s'"), detail->error, str);
4593 else
4594 as_bad (_("%s at operand %d -- `%s'"),
4595 detail->error, idx + 1, str);
4596 }
4597 else
4598 {
4599 gas_assert (idx >= 0);
4600 as_bad (_("operand %d must be %s -- `%s'"), idx + 1,
4601 aarch64_get_operand_desc (opd_code), str);
4602 }
4603 break;
4604
4605 case AARCH64_OPDE_INVALID_VARIANT:
4606 as_bad (_("operand mismatch -- `%s'"), str);
4607 if (verbose_error_p)
4608 {
4609 /* We will try to correct the erroneous instruction and also provide
4610 more information e.g. all other valid variants.
4611
4612 The string representation of the corrected instruction and other
4613 valid variants are generated by
4614
4615 1) obtaining the intermediate representation of the erroneous
4616 instruction;
4617 2) manipulating the IR, e.g. replacing the operand qualifier;
4618 3) printing out the instruction by calling the printer functions
4619 shared with the disassembler.
4620
4621 The limitation of this method is that the exact input assembly
4622 line cannot be accurately reproduced in some cases, for example an
4623 optional operand present in the actual assembly line will be
4624 omitted in the output; likewise for the optional syntax rules,
4625 e.g. the # before the immediate. Another limitation is that the
4626 assembly symbols and relocation operations in the assembly line
4627 currently cannot be printed out in the error report. Last but not
4628 least, when there is other error(s) co-exist with this error, the
4629 'corrected' instruction may be still incorrect, e.g. given
4630 'ldnp h0,h1,[x0,#6]!'
4631 this diagnosis will provide the version:
4632 'ldnp s0,s1,[x0,#6]!'
4633 which is still not right. */
4634 size_t len = strlen (get_mnemonic_name (str));
4635 int i, qlf_idx;
4636 bfd_boolean result;
4637 char buf[2048];
4638 aarch64_inst *inst_base = &inst.base;
4639 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4640
4641 /* Init inst. */
4642 reset_aarch64_instruction (&inst);
4643 inst_base->opcode = opcode;
4644
4645 /* Reset the error report so that there is no side effect on the
4646 following operand parsing. */
4647 init_operand_error_report ();
4648
4649 /* Fill inst. */
4650 result = parse_operands (str + len, opcode)
4651 && programmer_friendly_fixup (&inst);
4652 gas_assert (result);
4653 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4654 NULL, NULL);
4655 gas_assert (!result);
4656
4657 /* Find the most matched qualifier sequence. */
4658 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4659 gas_assert (qlf_idx > -1);
4660
4661 /* Assign the qualifiers. */
4662 assign_qualifier_sequence (inst_base,
4663 opcode->qualifiers_list[qlf_idx]);
4664
4665 /* Print the hint. */
4666 output_info (_(" did you mean this?"));
4667 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
4668 print_operands (buf, opcode, inst_base->operands);
4669 output_info (_(" %s"), buf);
4670
4671 /* Print out other variant(s) if there is any. */
4672 if (qlf_idx != 0 ||
4673 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4674 output_info (_(" other valid variant(s):"));
4675
4676 /* For each pattern. */
4677 qualifiers_list = opcode->qualifiers_list;
4678 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4679 {
4680 /* Most opcodes has much fewer patterns in the list.
4681 First NIL qualifier indicates the end in the list. */
4682 if (empty_qualifier_sequence_p (*qualifiers_list))
4683 break;
4684
4685 if (i != qlf_idx)
4686 {
4687 /* Mnemonics name. */
4688 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
4689
4690 /* Assign the qualifiers. */
4691 assign_qualifier_sequence (inst_base, *qualifiers_list);
4692
4693 /* Print instruction. */
4694 print_operands (buf, opcode, inst_base->operands);
4695
4696 output_info (_(" %s"), buf);
4697 }
4698 }
4699 }
4700 break;
4701
4702 case AARCH64_OPDE_UNTIED_OPERAND:
4703 as_bad (_("operand %d must be the same register as operand 1 -- `%s'"),
4704 detail->index + 1, str);
4705 break;
4706
4707 case AARCH64_OPDE_OUT_OF_RANGE:
4708 if (detail->data[0] != detail->data[1])
4709 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4710 detail->error ? detail->error : _("immediate value"),
4711 detail->data[0], detail->data[1], idx + 1, str);
4712 else
4713 as_bad (_("%s must be %d at operand %d -- `%s'"),
4714 detail->error ? detail->error : _("immediate value"),
4715 detail->data[0], idx + 1, str);
4716 break;
4717
4718 case AARCH64_OPDE_REG_LIST:
4719 if (detail->data[0] == 1)
4720 as_bad (_("invalid number of registers in the list; "
4721 "only 1 register is expected at operand %d -- `%s'"),
4722 idx + 1, str);
4723 else
4724 as_bad (_("invalid number of registers in the list; "
4725 "%d registers are expected at operand %d -- `%s'"),
4726 detail->data[0], idx + 1, str);
4727 break;
4728
4729 case AARCH64_OPDE_UNALIGNED:
4730 as_bad (_("immediate value must be a multiple of "
4731 "%d at operand %d -- `%s'"),
4732 detail->data[0], idx + 1, str);
4733 break;
4734
4735 default:
4736 gas_assert (0);
4737 break;
4738 }
4739 }
4740
4741 /* Process and output the error message about the operand mismatching.
4742
4743 When this function is called, the operand error information had
4744 been collected for an assembly line and there will be multiple
4745 errors in the case of multiple instruction templates; output the
4746 error message that most closely describes the problem. */
4747
4748 static void
4749 output_operand_error_report (char *str)
4750 {
4751 int largest_error_pos;
4752 const char *msg = NULL;
4753 enum aarch64_operand_error_kind kind;
4754 operand_error_record *curr;
4755 operand_error_record *head = operand_error_report.head;
4756 operand_error_record *record = NULL;
4757
4758 /* No error to report. */
4759 if (head == NULL)
4760 return;
4761
4762 gas_assert (head != NULL && operand_error_report.tail != NULL);
4763
4764 /* Only one error. */
4765 if (head == operand_error_report.tail)
4766 {
4767 DEBUG_TRACE ("single opcode entry with error kind: %s",
4768 operand_mismatch_kind_names[head->detail.kind]);
4769 output_operand_error_record (head, str);
4770 return;
4771 }
4772
4773 /* Find the error kind of the highest severity. */
4774 DEBUG_TRACE ("multiple opcode entries with error kind");
4775 kind = AARCH64_OPDE_NIL;
4776 for (curr = head; curr != NULL; curr = curr->next)
4777 {
4778 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4779 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4780 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4781 kind = curr->detail.kind;
4782 }
4783 gas_assert (kind != AARCH64_OPDE_NIL);
4784
4785 /* Pick up one of errors of KIND to report. */
4786 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4787 for (curr = head; curr != NULL; curr = curr->next)
4788 {
4789 if (curr->detail.kind != kind)
4790 continue;
4791 /* If there are multiple errors, pick up the one with the highest
4792 mismatching operand index. In the case of multiple errors with
4793 the equally highest operand index, pick up the first one or the
4794 first one with non-NULL error message. */
4795 if (curr->detail.index > largest_error_pos
4796 || (curr->detail.index == largest_error_pos && msg == NULL
4797 && curr->detail.error != NULL))
4798 {
4799 largest_error_pos = curr->detail.index;
4800 record = curr;
4801 msg = record->detail.error;
4802 }
4803 }
4804
4805 gas_assert (largest_error_pos != -2 && record != NULL);
4806 DEBUG_TRACE ("Pick up error kind %s to report",
4807 operand_mismatch_kind_names[record->detail.kind]);
4808
4809 /* Output. */
4810 output_operand_error_record (record, str);
4811 }
4812 \f
4813 /* Write an AARCH64 instruction to buf - always little-endian. */
4814 static void
4815 put_aarch64_insn (char *buf, uint32_t insn)
4816 {
4817 unsigned char *where = (unsigned char *) buf;
4818 where[0] = insn;
4819 where[1] = insn >> 8;
4820 where[2] = insn >> 16;
4821 where[3] = insn >> 24;
4822 }
4823
4824 static uint32_t
4825 get_aarch64_insn (char *buf)
4826 {
4827 unsigned char *where = (unsigned char *) buf;
4828 uint32_t result;
4829 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4830 return result;
4831 }
4832
4833 static void
4834 output_inst (struct aarch64_inst *new_inst)
4835 {
4836 char *to = NULL;
4837
4838 to = frag_more (INSN_SIZE);
4839
4840 frag_now->tc_frag_data.recorded = 1;
4841
4842 put_aarch64_insn (to, inst.base.value);
4843
4844 if (inst.reloc.type != BFD_RELOC_UNUSED)
4845 {
4846 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4847 INSN_SIZE, &inst.reloc.exp,
4848 inst.reloc.pc_rel,
4849 inst.reloc.type);
4850 DEBUG_TRACE ("Prepared relocation fix up");
4851 /* Don't check the addend value against the instruction size,
4852 that's the job of our code in md_apply_fix(). */
4853 fixp->fx_no_overflow = 1;
4854 if (new_inst != NULL)
4855 fixp->tc_fix_data.inst = new_inst;
4856 if (aarch64_gas_internal_fixup_p ())
4857 {
4858 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4859 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4860 fixp->fx_addnumber = inst.reloc.flags;
4861 }
4862 }
4863
4864 dwarf2_emit_insn (INSN_SIZE);
4865 }
4866
4867 /* Link together opcodes of the same name. */
4868
4869 struct templates
4870 {
4871 aarch64_opcode *opcode;
4872 struct templates *next;
4873 };
4874
4875 typedef struct templates templates;
4876
4877 static templates *
4878 lookup_mnemonic (const char *start, int len)
4879 {
4880 templates *templ = NULL;
4881
4882 templ = hash_find_n (aarch64_ops_hsh, start, len);
4883 return templ;
4884 }
4885
4886 /* Subroutine of md_assemble, responsible for looking up the primary
4887 opcode from the mnemonic the user wrote. STR points to the
4888 beginning of the mnemonic. */
4889
4890 static templates *
4891 opcode_lookup (char **str)
4892 {
4893 char *end, *base, *dot;
4894 const aarch64_cond *cond;
4895 char condname[16];
4896 int len;
4897
4898 /* Scan up to the end of the mnemonic, which must end in white space,
4899 '.', or end of string. */
4900 dot = 0;
4901 for (base = end = *str; is_part_of_name(*end); end++)
4902 if (*end == '.' && !dot)
4903 dot = end;
4904
4905 if (end == base || dot == base)
4906 return 0;
4907
4908 inst.cond = COND_ALWAYS;
4909
4910 /* Handle a possible condition. */
4911 if (dot)
4912 {
4913 cond = hash_find_n (aarch64_cond_hsh, dot + 1, end - dot - 1);
4914 if (cond)
4915 {
4916 inst.cond = cond->value;
4917 *str = end;
4918 }
4919 else
4920 {
4921 *str = dot;
4922 return 0;
4923 }
4924 len = dot - base;
4925 }
4926 else
4927 {
4928 *str = end;
4929 len = end - base;
4930 }
4931
4932 if (inst.cond == COND_ALWAYS)
4933 {
4934 /* Look for unaffixed mnemonic. */
4935 return lookup_mnemonic (base, len);
4936 }
4937 else if (len <= 13)
4938 {
4939 /* append ".c" to mnemonic if conditional */
4940 memcpy (condname, base, len);
4941 memcpy (condname + len, ".c", 2);
4942 base = condname;
4943 len += 2;
4944 return lookup_mnemonic (base, len);
4945 }
4946
4947 return NULL;
4948 }
4949
4950 /* Internal helper routine converting a vector_type_el structure *VECTYPE
4951 to a corresponding operand qualifier. */
4952
4953 static inline aarch64_opnd_qualifier_t
4954 vectype_to_qualifier (const struct vector_type_el *vectype)
4955 {
4956 /* Element size in bytes indexed by vector_el_type. */
4957 const unsigned char ele_size[5]
4958 = {1, 2, 4, 8, 16};
4959 const unsigned int ele_base [5] =
4960 {
4961 AARCH64_OPND_QLF_V_4B,
4962 AARCH64_OPND_QLF_V_2H,
4963 AARCH64_OPND_QLF_V_2S,
4964 AARCH64_OPND_QLF_V_1D,
4965 AARCH64_OPND_QLF_V_1Q
4966 };
4967
4968 if (!vectype->defined || vectype->type == NT_invtype)
4969 goto vectype_conversion_fail;
4970
4971 if (vectype->type == NT_zero)
4972 return AARCH64_OPND_QLF_P_Z;
4973 if (vectype->type == NT_merge)
4974 return AARCH64_OPND_QLF_P_M;
4975
4976 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4977
4978 if (vectype->defined & (NTA_HASINDEX | NTA_HASVARWIDTH))
4979 {
4980 /* Special case S_4B. */
4981 if (vectype->type == NT_b && vectype->width == 4)
4982 return AARCH64_OPND_QLF_S_4B;
4983
4984 /* Vector element register. */
4985 return AARCH64_OPND_QLF_S_B + vectype->type;
4986 }
4987 else
4988 {
4989 /* Vector register. */
4990 int reg_size = ele_size[vectype->type] * vectype->width;
4991 unsigned offset;
4992 unsigned shift;
4993 if (reg_size != 16 && reg_size != 8 && reg_size != 4)
4994 goto vectype_conversion_fail;
4995
4996 /* The conversion is by calculating the offset from the base operand
4997 qualifier for the vector type. The operand qualifiers are regular
4998 enough that the offset can established by shifting the vector width by
4999 a vector-type dependent amount. */
5000 shift = 0;
5001 if (vectype->type == NT_b)
5002 shift = 3;
5003 else if (vectype->type == NT_h || vectype->type == NT_s)
5004 shift = 2;
5005 else if (vectype->type >= NT_d)
5006 shift = 1;
5007 else
5008 gas_assert (0);
5009
5010 offset = ele_base [vectype->type] + (vectype->width >> shift);
5011 gas_assert (AARCH64_OPND_QLF_V_4B <= offset
5012 && offset <= AARCH64_OPND_QLF_V_1Q);
5013 return offset;
5014 }
5015
5016 vectype_conversion_fail:
5017 first_error (_("bad vector arrangement type"));
5018 return AARCH64_OPND_QLF_NIL;
5019 }
5020
5021 /* Process an optional operand that is found omitted from the assembly line.
5022 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
5023 instruction's opcode entry while IDX is the index of this omitted operand.
5024 */
5025
5026 static void
5027 process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
5028 int idx, aarch64_opnd_info *operand)
5029 {
5030 aarch64_insn default_value = get_optional_operand_default_value (opcode);
5031 gas_assert (optional_operand_p (opcode, idx));
5032 gas_assert (!operand->present);
5033
5034 switch (type)
5035 {
5036 case AARCH64_OPND_Rd:
5037 case AARCH64_OPND_Rn:
5038 case AARCH64_OPND_Rm:
5039 case AARCH64_OPND_Rt:
5040 case AARCH64_OPND_Rt2:
5041 case AARCH64_OPND_Rs:
5042 case AARCH64_OPND_Ra:
5043 case AARCH64_OPND_Rt_SYS:
5044 case AARCH64_OPND_Rd_SP:
5045 case AARCH64_OPND_Rn_SP:
5046 case AARCH64_OPND_Rm_SP:
5047 case AARCH64_OPND_Fd:
5048 case AARCH64_OPND_Fn:
5049 case AARCH64_OPND_Fm:
5050 case AARCH64_OPND_Fa:
5051 case AARCH64_OPND_Ft:
5052 case AARCH64_OPND_Ft2:
5053 case AARCH64_OPND_Sd:
5054 case AARCH64_OPND_Sn:
5055 case AARCH64_OPND_Sm:
5056 case AARCH64_OPND_Va:
5057 case AARCH64_OPND_Vd:
5058 case AARCH64_OPND_Vn:
5059 case AARCH64_OPND_Vm:
5060 case AARCH64_OPND_VdD1:
5061 case AARCH64_OPND_VnD1:
5062 operand->reg.regno = default_value;
5063 break;
5064
5065 case AARCH64_OPND_Ed:
5066 case AARCH64_OPND_En:
5067 case AARCH64_OPND_Em:
5068 case AARCH64_OPND_SM3_IMM2:
5069 operand->reglane.regno = default_value;
5070 break;
5071
5072 case AARCH64_OPND_IDX:
5073 case AARCH64_OPND_BIT_NUM:
5074 case AARCH64_OPND_IMMR:
5075 case AARCH64_OPND_IMMS:
5076 case AARCH64_OPND_SHLL_IMM:
5077 case AARCH64_OPND_IMM_VLSL:
5078 case AARCH64_OPND_IMM_VLSR:
5079 case AARCH64_OPND_CCMP_IMM:
5080 case AARCH64_OPND_FBITS:
5081 case AARCH64_OPND_UIMM4:
5082 case AARCH64_OPND_UIMM3_OP1:
5083 case AARCH64_OPND_UIMM3_OP2:
5084 case AARCH64_OPND_IMM:
5085 case AARCH64_OPND_IMM_2:
5086 case AARCH64_OPND_WIDTH:
5087 case AARCH64_OPND_UIMM7:
5088 case AARCH64_OPND_NZCV:
5089 case AARCH64_OPND_SVE_PATTERN:
5090 case AARCH64_OPND_SVE_PRFOP:
5091 operand->imm.value = default_value;
5092 break;
5093
5094 case AARCH64_OPND_SVE_PATTERN_SCALED:
5095 operand->imm.value = default_value;
5096 operand->shifter.kind = AARCH64_MOD_MUL;
5097 operand->shifter.amount = 1;
5098 break;
5099
5100 case AARCH64_OPND_EXCEPTION:
5101 inst.reloc.type = BFD_RELOC_UNUSED;
5102 break;
5103
5104 case AARCH64_OPND_BARRIER_ISB:
5105 operand->barrier = aarch64_barrier_options + default_value;
5106
5107 default:
5108 break;
5109 }
5110 }
5111
5112 /* Process the relocation type for move wide instructions.
5113 Return TRUE on success; otherwise return FALSE. */
5114
5115 static bfd_boolean
5116 process_movw_reloc_info (void)
5117 {
5118 int is32;
5119 unsigned shift;
5120
5121 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
5122
5123 if (inst.base.opcode->op == OP_MOVK)
5124 switch (inst.reloc.type)
5125 {
5126 case BFD_RELOC_AARCH64_MOVW_G0_S:
5127 case BFD_RELOC_AARCH64_MOVW_G1_S:
5128 case BFD_RELOC_AARCH64_MOVW_G2_S:
5129 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5130 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5131 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5132 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5133 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5134 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5135 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5136 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5137 set_syntax_error
5138 (_("the specified relocation type is not allowed for MOVK"));
5139 return FALSE;
5140 default:
5141 break;
5142 }
5143
5144 switch (inst.reloc.type)
5145 {
5146 case BFD_RELOC_AARCH64_MOVW_G0:
5147 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5148 case BFD_RELOC_AARCH64_MOVW_G0_S:
5149 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5150 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5151 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5152 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5153 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5154 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5155 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5156 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5157 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5158 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5159 shift = 0;
5160 break;
5161 case BFD_RELOC_AARCH64_MOVW_G1:
5162 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5163 case BFD_RELOC_AARCH64_MOVW_G1_S:
5164 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5165 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5166 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5167 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5168 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5169 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5170 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5171 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5172 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5173 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5174 shift = 16;
5175 break;
5176 case BFD_RELOC_AARCH64_MOVW_G2:
5177 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5178 case BFD_RELOC_AARCH64_MOVW_G2_S:
5179 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5180 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5181 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5182 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5183 if (is32)
5184 {
5185 set_fatal_syntax_error
5186 (_("the specified relocation type is not allowed for 32-bit "
5187 "register"));
5188 return FALSE;
5189 }
5190 shift = 32;
5191 break;
5192 case BFD_RELOC_AARCH64_MOVW_G3:
5193 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5194 if (is32)
5195 {
5196 set_fatal_syntax_error
5197 (_("the specified relocation type is not allowed for 32-bit "
5198 "register"));
5199 return FALSE;
5200 }
5201 shift = 48;
5202 break;
5203 default:
5204 /* More cases should be added when more MOVW-related relocation types
5205 are supported in GAS. */
5206 gas_assert (aarch64_gas_internal_fixup_p ());
5207 /* The shift amount should have already been set by the parser. */
5208 return TRUE;
5209 }
5210 inst.base.operands[1].shifter.amount = shift;
5211 return TRUE;
5212 }
5213
5214 /* A primitive log calculator. */
5215
5216 static inline unsigned int
5217 get_logsz (unsigned int size)
5218 {
5219 const unsigned char ls[16] =
5220 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
5221 if (size > 16)
5222 {
5223 gas_assert (0);
5224 return -1;
5225 }
5226 gas_assert (ls[size - 1] != (unsigned char)-1);
5227 return ls[size - 1];
5228 }
5229
5230 /* Determine and return the real reloc type code for an instruction
5231 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
5232
5233 static inline bfd_reloc_code_real_type
5234 ldst_lo12_determine_real_reloc_type (void)
5235 {
5236 unsigned logsz;
5237 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
5238 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
5239
5240 const bfd_reloc_code_real_type reloc_ldst_lo12[5][5] = {
5241 {
5242 BFD_RELOC_AARCH64_LDST8_LO12,
5243 BFD_RELOC_AARCH64_LDST16_LO12,
5244 BFD_RELOC_AARCH64_LDST32_LO12,
5245 BFD_RELOC_AARCH64_LDST64_LO12,
5246 BFD_RELOC_AARCH64_LDST128_LO12
5247 },
5248 {
5249 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
5250 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
5251 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
5252 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
5253 BFD_RELOC_AARCH64_NONE
5254 },
5255 {
5256 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
5257 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
5258 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
5259 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
5260 BFD_RELOC_AARCH64_NONE
5261 },
5262 {
5263 BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12,
5264 BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12,
5265 BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12,
5266 BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12,
5267 BFD_RELOC_AARCH64_NONE
5268 },
5269 {
5270 BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC,
5271 BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC,
5272 BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC,
5273 BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC,
5274 BFD_RELOC_AARCH64_NONE
5275 }
5276 };
5277
5278 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
5279 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5280 || (inst.reloc.type
5281 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
5282 || (inst.reloc.type
5283 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
5284 || (inst.reloc.type
5285 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC));
5286 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
5287
5288 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
5289 opd1_qlf =
5290 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
5291 1, opd0_qlf, 0);
5292 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
5293
5294 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
5295 if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5296 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC
5297 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12
5298 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC)
5299 gas_assert (logsz <= 3);
5300 else
5301 gas_assert (logsz <= 4);
5302
5303 /* In reloc.c, these pseudo relocation types should be defined in similar
5304 order as above reloc_ldst_lo12 array. Because the array index calculation
5305 below relies on this. */
5306 return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
5307 }
5308
5309 /* Check whether a register list REGINFO is valid. The registers must be
5310 numbered in increasing order (modulo 32), in increments of one or two.
5311
5312 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
5313 increments of two.
5314
5315 Return FALSE if such a register list is invalid, otherwise return TRUE. */
5316
5317 static bfd_boolean
5318 reg_list_valid_p (uint32_t reginfo, int accept_alternate)
5319 {
5320 uint32_t i, nb_regs, prev_regno, incr;
5321
5322 nb_regs = 1 + (reginfo & 0x3);
5323 reginfo >>= 2;
5324 prev_regno = reginfo & 0x1f;
5325 incr = accept_alternate ? 2 : 1;
5326
5327 for (i = 1; i < nb_regs; ++i)
5328 {
5329 uint32_t curr_regno;
5330 reginfo >>= 5;
5331 curr_regno = reginfo & 0x1f;
5332 if (curr_regno != ((prev_regno + incr) & 0x1f))
5333 return FALSE;
5334 prev_regno = curr_regno;
5335 }
5336
5337 return TRUE;
5338 }
5339
5340 /* Generic instruction operand parser. This does no encoding and no
5341 semantic validation; it merely squirrels values away in the inst
5342 structure. Returns TRUE or FALSE depending on whether the
5343 specified grammar matched. */
5344
5345 static bfd_boolean
5346 parse_operands (char *str, const aarch64_opcode *opcode)
5347 {
5348 int i;
5349 char *backtrack_pos = 0;
5350 const enum aarch64_opnd *operands = opcode->operands;
5351 aarch64_reg_type imm_reg_type;
5352
5353 clear_error ();
5354 skip_whitespace (str);
5355
5356 if (AARCH64_CPU_HAS_FEATURE (AARCH64_FEATURE_SVE, *opcode->avariant))
5357 imm_reg_type = REG_TYPE_R_Z_SP_BHSDQ_VZP;
5358 else
5359 imm_reg_type = REG_TYPE_R_Z_BHSDQ_V;
5360
5361 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
5362 {
5363 int64_t val;
5364 const reg_entry *reg;
5365 int comma_skipped_p = 0;
5366 aarch64_reg_type rtype;
5367 struct vector_type_el vectype;
5368 aarch64_opnd_qualifier_t qualifier, base_qualifier, offset_qualifier;
5369 aarch64_opnd_info *info = &inst.base.operands[i];
5370 aarch64_reg_type reg_type;
5371
5372 DEBUG_TRACE ("parse operand %d", i);
5373
5374 /* Assign the operand code. */
5375 info->type = operands[i];
5376
5377 if (optional_operand_p (opcode, i))
5378 {
5379 /* Remember where we are in case we need to backtrack. */
5380 gas_assert (!backtrack_pos);
5381 backtrack_pos = str;
5382 }
5383
5384 /* Expect comma between operands; the backtrack mechanism will take
5385 care of cases of omitted optional operand. */
5386 if (i > 0 && ! skip_past_char (&str, ','))
5387 {
5388 set_syntax_error (_("comma expected between operands"));
5389 goto failure;
5390 }
5391 else
5392 comma_skipped_p = 1;
5393
5394 switch (operands[i])
5395 {
5396 case AARCH64_OPND_Rd:
5397 case AARCH64_OPND_Rn:
5398 case AARCH64_OPND_Rm:
5399 case AARCH64_OPND_Rt:
5400 case AARCH64_OPND_Rt2:
5401 case AARCH64_OPND_Rs:
5402 case AARCH64_OPND_Ra:
5403 case AARCH64_OPND_Rt_SYS:
5404 case AARCH64_OPND_PAIRREG:
5405 case AARCH64_OPND_SVE_Rm:
5406 po_int_reg_or_fail (REG_TYPE_R_Z);
5407 break;
5408
5409 case AARCH64_OPND_Rd_SP:
5410 case AARCH64_OPND_Rn_SP:
5411 case AARCH64_OPND_SVE_Rn_SP:
5412 case AARCH64_OPND_Rm_SP:
5413 po_int_reg_or_fail (REG_TYPE_R_SP);
5414 break;
5415
5416 case AARCH64_OPND_Rm_EXT:
5417 case AARCH64_OPND_Rm_SFT:
5418 po_misc_or_fail (parse_shifter_operand
5419 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
5420 ? SHIFTED_ARITH_IMM
5421 : SHIFTED_LOGIC_IMM)));
5422 if (!info->shifter.operator_present)
5423 {
5424 /* Default to LSL if not present. Libopcodes prefers shifter
5425 kind to be explicit. */
5426 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5427 info->shifter.kind = AARCH64_MOD_LSL;
5428 /* For Rm_EXT, libopcodes will carry out further check on whether
5429 or not stack pointer is used in the instruction (Recall that
5430 "the extend operator is not optional unless at least one of
5431 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
5432 }
5433 break;
5434
5435 case AARCH64_OPND_Fd:
5436 case AARCH64_OPND_Fn:
5437 case AARCH64_OPND_Fm:
5438 case AARCH64_OPND_Fa:
5439 case AARCH64_OPND_Ft:
5440 case AARCH64_OPND_Ft2:
5441 case AARCH64_OPND_Sd:
5442 case AARCH64_OPND_Sn:
5443 case AARCH64_OPND_Sm:
5444 case AARCH64_OPND_SVE_VZn:
5445 case AARCH64_OPND_SVE_Vd:
5446 case AARCH64_OPND_SVE_Vm:
5447 case AARCH64_OPND_SVE_Vn:
5448 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
5449 if (val == PARSE_FAIL)
5450 {
5451 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
5452 goto failure;
5453 }
5454 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
5455
5456 info->reg.regno = val;
5457 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
5458 break;
5459
5460 case AARCH64_OPND_SVE_Pd:
5461 case AARCH64_OPND_SVE_Pg3:
5462 case AARCH64_OPND_SVE_Pg4_5:
5463 case AARCH64_OPND_SVE_Pg4_10:
5464 case AARCH64_OPND_SVE_Pg4_16:
5465 case AARCH64_OPND_SVE_Pm:
5466 case AARCH64_OPND_SVE_Pn:
5467 case AARCH64_OPND_SVE_Pt:
5468 reg_type = REG_TYPE_PN;
5469 goto vector_reg;
5470
5471 case AARCH64_OPND_SVE_Za_5:
5472 case AARCH64_OPND_SVE_Za_16:
5473 case AARCH64_OPND_SVE_Zd:
5474 case AARCH64_OPND_SVE_Zm_5:
5475 case AARCH64_OPND_SVE_Zm_16:
5476 case AARCH64_OPND_SVE_Zn:
5477 case AARCH64_OPND_SVE_Zt:
5478 reg_type = REG_TYPE_ZN;
5479 goto vector_reg;
5480
5481 case AARCH64_OPND_Va:
5482 case AARCH64_OPND_Vd:
5483 case AARCH64_OPND_Vn:
5484 case AARCH64_OPND_Vm:
5485 reg_type = REG_TYPE_VN;
5486 vector_reg:
5487 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5488 if (val == PARSE_FAIL)
5489 {
5490 first_error (_(get_reg_expected_msg (reg_type)));
5491 goto failure;
5492 }
5493 if (vectype.defined & NTA_HASINDEX)
5494 goto failure;
5495
5496 info->reg.regno = val;
5497 if ((reg_type == REG_TYPE_PN || reg_type == REG_TYPE_ZN)
5498 && vectype.type == NT_invtype)
5499 /* Unqualified Pn and Zn registers are allowed in certain
5500 contexts. Rely on F_STRICT qualifier checking to catch
5501 invalid uses. */
5502 info->qualifier = AARCH64_OPND_QLF_NIL;
5503 else
5504 {
5505 info->qualifier = vectype_to_qualifier (&vectype);
5506 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5507 goto failure;
5508 }
5509 break;
5510
5511 case AARCH64_OPND_VdD1:
5512 case AARCH64_OPND_VnD1:
5513 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5514 if (val == PARSE_FAIL)
5515 {
5516 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5517 goto failure;
5518 }
5519 if (vectype.type != NT_d || vectype.index != 1)
5520 {
5521 set_fatal_syntax_error
5522 (_("the top half of a 128-bit FP/SIMD register is expected"));
5523 goto failure;
5524 }
5525 info->reg.regno = val;
5526 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
5527 here; it is correct for the purpose of encoding/decoding since
5528 only the register number is explicitly encoded in the related
5529 instructions, although this appears a bit hacky. */
5530 info->qualifier = AARCH64_OPND_QLF_S_D;
5531 break;
5532
5533 case AARCH64_OPND_SVE_Zm3_INDEX:
5534 case AARCH64_OPND_SVE_Zm3_22_INDEX:
5535 case AARCH64_OPND_SVE_Zm4_INDEX:
5536 case AARCH64_OPND_SVE_Zn_INDEX:
5537 reg_type = REG_TYPE_ZN;
5538 goto vector_reg_index;
5539
5540 case AARCH64_OPND_Ed:
5541 case AARCH64_OPND_En:
5542 case AARCH64_OPND_Em:
5543 case AARCH64_OPND_SM3_IMM2:
5544 reg_type = REG_TYPE_VN;
5545 vector_reg_index:
5546 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5547 if (val == PARSE_FAIL)
5548 {
5549 first_error (_(get_reg_expected_msg (reg_type)));
5550 goto failure;
5551 }
5552 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
5553 goto failure;
5554
5555 info->reglane.regno = val;
5556 info->reglane.index = vectype.index;
5557 info->qualifier = vectype_to_qualifier (&vectype);
5558 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5559 goto failure;
5560 break;
5561
5562 case AARCH64_OPND_SVE_ZnxN:
5563 case AARCH64_OPND_SVE_ZtxN:
5564 reg_type = REG_TYPE_ZN;
5565 goto vector_reg_list;
5566
5567 case AARCH64_OPND_LVn:
5568 case AARCH64_OPND_LVt:
5569 case AARCH64_OPND_LVt_AL:
5570 case AARCH64_OPND_LEt:
5571 reg_type = REG_TYPE_VN;
5572 vector_reg_list:
5573 if (reg_type == REG_TYPE_ZN
5574 && get_opcode_dependent_value (opcode) == 1
5575 && *str != '{')
5576 {
5577 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5578 if (val == PARSE_FAIL)
5579 {
5580 first_error (_(get_reg_expected_msg (reg_type)));
5581 goto failure;
5582 }
5583 info->reglist.first_regno = val;
5584 info->reglist.num_regs = 1;
5585 }
5586 else
5587 {
5588 val = parse_vector_reg_list (&str, reg_type, &vectype);
5589 if (val == PARSE_FAIL)
5590 goto failure;
5591 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
5592 {
5593 set_fatal_syntax_error (_("invalid register list"));
5594 goto failure;
5595 }
5596 info->reglist.first_regno = (val >> 2) & 0x1f;
5597 info->reglist.num_regs = (val & 0x3) + 1;
5598 }
5599 if (operands[i] == AARCH64_OPND_LEt)
5600 {
5601 if (!(vectype.defined & NTA_HASINDEX))
5602 goto failure;
5603 info->reglist.has_index = 1;
5604 info->reglist.index = vectype.index;
5605 }
5606 else
5607 {
5608 if (vectype.defined & NTA_HASINDEX)
5609 goto failure;
5610 if (!(vectype.defined & NTA_HASTYPE))
5611 {
5612 if (reg_type == REG_TYPE_ZN)
5613 set_fatal_syntax_error (_("missing type suffix"));
5614 goto failure;
5615 }
5616 }
5617 info->qualifier = vectype_to_qualifier (&vectype);
5618 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5619 goto failure;
5620 break;
5621
5622 case AARCH64_OPND_CRn:
5623 case AARCH64_OPND_CRm:
5624 {
5625 char prefix = *(str++);
5626 if (prefix != 'c' && prefix != 'C')
5627 goto failure;
5628
5629 po_imm_nc_or_fail ();
5630 if (val > 15)
5631 {
5632 set_fatal_syntax_error (_(N_ ("C0 - C15 expected")));
5633 goto failure;
5634 }
5635 info->qualifier = AARCH64_OPND_QLF_CR;
5636 info->imm.value = val;
5637 break;
5638 }
5639
5640 case AARCH64_OPND_SHLL_IMM:
5641 case AARCH64_OPND_IMM_VLSR:
5642 po_imm_or_fail (1, 64);
5643 info->imm.value = val;
5644 break;
5645
5646 case AARCH64_OPND_CCMP_IMM:
5647 case AARCH64_OPND_SIMM5:
5648 case AARCH64_OPND_FBITS:
5649 case AARCH64_OPND_UIMM4:
5650 case AARCH64_OPND_UIMM3_OP1:
5651 case AARCH64_OPND_UIMM3_OP2:
5652 case AARCH64_OPND_IMM_VLSL:
5653 case AARCH64_OPND_IMM:
5654 case AARCH64_OPND_IMM_2:
5655 case AARCH64_OPND_WIDTH:
5656 case AARCH64_OPND_SVE_INV_LIMM:
5657 case AARCH64_OPND_SVE_LIMM:
5658 case AARCH64_OPND_SVE_LIMM_MOV:
5659 case AARCH64_OPND_SVE_SHLIMM_PRED:
5660 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
5661 case AARCH64_OPND_SVE_SHRIMM_PRED:
5662 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
5663 case AARCH64_OPND_SVE_SIMM5:
5664 case AARCH64_OPND_SVE_SIMM5B:
5665 case AARCH64_OPND_SVE_SIMM6:
5666 case AARCH64_OPND_SVE_SIMM8:
5667 case AARCH64_OPND_SVE_UIMM3:
5668 case AARCH64_OPND_SVE_UIMM7:
5669 case AARCH64_OPND_SVE_UIMM8:
5670 case AARCH64_OPND_SVE_UIMM8_53:
5671 case AARCH64_OPND_IMM_ROT1:
5672 case AARCH64_OPND_IMM_ROT2:
5673 case AARCH64_OPND_IMM_ROT3:
5674 case AARCH64_OPND_SVE_IMM_ROT1:
5675 case AARCH64_OPND_SVE_IMM_ROT2:
5676 po_imm_nc_or_fail ();
5677 info->imm.value = val;
5678 break;
5679
5680 case AARCH64_OPND_SVE_AIMM:
5681 case AARCH64_OPND_SVE_ASIMM:
5682 po_imm_nc_or_fail ();
5683 info->imm.value = val;
5684 skip_whitespace (str);
5685 if (skip_past_comma (&str))
5686 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5687 else
5688 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5689 break;
5690
5691 case AARCH64_OPND_SVE_PATTERN:
5692 po_enum_or_fail (aarch64_sve_pattern_array);
5693 info->imm.value = val;
5694 break;
5695
5696 case AARCH64_OPND_SVE_PATTERN_SCALED:
5697 po_enum_or_fail (aarch64_sve_pattern_array);
5698 info->imm.value = val;
5699 if (skip_past_comma (&str)
5700 && !parse_shift (&str, info, SHIFTED_MUL))
5701 goto failure;
5702 if (!info->shifter.operator_present)
5703 {
5704 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5705 info->shifter.kind = AARCH64_MOD_MUL;
5706 info->shifter.amount = 1;
5707 }
5708 break;
5709
5710 case AARCH64_OPND_SVE_PRFOP:
5711 po_enum_or_fail (aarch64_sve_prfop_array);
5712 info->imm.value = val;
5713 break;
5714
5715 case AARCH64_OPND_UIMM7:
5716 po_imm_or_fail (0, 127);
5717 info->imm.value = val;
5718 break;
5719
5720 case AARCH64_OPND_IDX:
5721 case AARCH64_OPND_MASK:
5722 case AARCH64_OPND_BIT_NUM:
5723 case AARCH64_OPND_IMMR:
5724 case AARCH64_OPND_IMMS:
5725 po_imm_or_fail (0, 63);
5726 info->imm.value = val;
5727 break;
5728
5729 case AARCH64_OPND_IMM0:
5730 po_imm_nc_or_fail ();
5731 if (val != 0)
5732 {
5733 set_fatal_syntax_error (_("immediate zero expected"));
5734 goto failure;
5735 }
5736 info->imm.value = 0;
5737 break;
5738
5739 case AARCH64_OPND_FPIMM0:
5740 {
5741 int qfloat;
5742 bfd_boolean res1 = FALSE, res2 = FALSE;
5743 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
5744 it is probably not worth the effort to support it. */
5745 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE,
5746 imm_reg_type))
5747 && (error_p ()
5748 || !(res2 = parse_constant_immediate (&str, &val,
5749 imm_reg_type))))
5750 goto failure;
5751 if ((res1 && qfloat == 0) || (res2 && val == 0))
5752 {
5753 info->imm.value = 0;
5754 info->imm.is_fp = 1;
5755 break;
5756 }
5757 set_fatal_syntax_error (_("immediate zero expected"));
5758 goto failure;
5759 }
5760
5761 case AARCH64_OPND_IMM_MOV:
5762 {
5763 char *saved = str;
5764 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
5765 reg_name_p (str, REG_TYPE_VN))
5766 goto failure;
5767 str = saved;
5768 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5769 GE_OPT_PREFIX, 1));
5770 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
5771 later. fix_mov_imm_insn will try to determine a machine
5772 instruction (MOVZ, MOVN or ORR) for it and will issue an error
5773 message if the immediate cannot be moved by a single
5774 instruction. */
5775 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5776 inst.base.operands[i].skip = 1;
5777 }
5778 break;
5779
5780 case AARCH64_OPND_SIMD_IMM:
5781 case AARCH64_OPND_SIMD_IMM_SFT:
5782 if (! parse_big_immediate (&str, &val, imm_reg_type))
5783 goto failure;
5784 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5785 /* addr_off_p */ 0,
5786 /* need_libopcodes_p */ 1,
5787 /* skip_p */ 1);
5788 /* Parse shift.
5789 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
5790 shift, we don't check it here; we leave the checking to
5791 the libopcodes (operand_general_constraint_met_p). By
5792 doing this, we achieve better diagnostics. */
5793 if (skip_past_comma (&str)
5794 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
5795 goto failure;
5796 if (!info->shifter.operator_present
5797 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
5798 {
5799 /* Default to LSL if not present. Libopcodes prefers shifter
5800 kind to be explicit. */
5801 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5802 info->shifter.kind = AARCH64_MOD_LSL;
5803 }
5804 break;
5805
5806 case AARCH64_OPND_FPIMM:
5807 case AARCH64_OPND_SIMD_FPIMM:
5808 case AARCH64_OPND_SVE_FPIMM8:
5809 {
5810 int qfloat;
5811 bfd_boolean dp_p;
5812
5813 dp_p = double_precision_operand_p (&inst.base.operands[0]);
5814 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type)
5815 || !aarch64_imm_float_p (qfloat))
5816 {
5817 if (!error_p ())
5818 set_fatal_syntax_error (_("invalid floating-point"
5819 " constant"));
5820 goto failure;
5821 }
5822 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
5823 inst.base.operands[i].imm.is_fp = 1;
5824 }
5825 break;
5826
5827 case AARCH64_OPND_SVE_I1_HALF_ONE:
5828 case AARCH64_OPND_SVE_I1_HALF_TWO:
5829 case AARCH64_OPND_SVE_I1_ZERO_ONE:
5830 {
5831 int qfloat;
5832 bfd_boolean dp_p;
5833
5834 dp_p = double_precision_operand_p (&inst.base.operands[0]);
5835 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type))
5836 {
5837 if (!error_p ())
5838 set_fatal_syntax_error (_("invalid floating-point"
5839 " constant"));
5840 goto failure;
5841 }
5842 inst.base.operands[i].imm.value = qfloat;
5843 inst.base.operands[i].imm.is_fp = 1;
5844 }
5845 break;
5846
5847 case AARCH64_OPND_LIMM:
5848 po_misc_or_fail (parse_shifter_operand (&str, info,
5849 SHIFTED_LOGIC_IMM));
5850 if (info->shifter.operator_present)
5851 {
5852 set_fatal_syntax_error
5853 (_("shift not allowed for bitmask immediate"));
5854 goto failure;
5855 }
5856 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5857 /* addr_off_p */ 0,
5858 /* need_libopcodes_p */ 1,
5859 /* skip_p */ 1);
5860 break;
5861
5862 case AARCH64_OPND_AIMM:
5863 if (opcode->op == OP_ADD)
5864 /* ADD may have relocation types. */
5865 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5866 SHIFTED_ARITH_IMM));
5867 else
5868 po_misc_or_fail (parse_shifter_operand (&str, info,
5869 SHIFTED_ARITH_IMM));
5870 switch (inst.reloc.type)
5871 {
5872 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5873 info->shifter.amount = 12;
5874 break;
5875 case BFD_RELOC_UNUSED:
5876 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5877 if (info->shifter.kind != AARCH64_MOD_NONE)
5878 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5879 inst.reloc.pc_rel = 0;
5880 break;
5881 default:
5882 break;
5883 }
5884 info->imm.value = 0;
5885 if (!info->shifter.operator_present)
5886 {
5887 /* Default to LSL if not present. Libopcodes prefers shifter
5888 kind to be explicit. */
5889 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5890 info->shifter.kind = AARCH64_MOD_LSL;
5891 }
5892 break;
5893
5894 case AARCH64_OPND_HALF:
5895 {
5896 /* #<imm16> or relocation. */
5897 int internal_fixup_p;
5898 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
5899 if (internal_fixup_p)
5900 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5901 skip_whitespace (str);
5902 if (skip_past_comma (&str))
5903 {
5904 /* {, LSL #<shift>} */
5905 if (! aarch64_gas_internal_fixup_p ())
5906 {
5907 set_fatal_syntax_error (_("can't mix relocation modifier "
5908 "with explicit shift"));
5909 goto failure;
5910 }
5911 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5912 }
5913 else
5914 inst.base.operands[i].shifter.amount = 0;
5915 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5916 inst.base.operands[i].imm.value = 0;
5917 if (! process_movw_reloc_info ())
5918 goto failure;
5919 }
5920 break;
5921
5922 case AARCH64_OPND_EXCEPTION:
5923 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp,
5924 imm_reg_type));
5925 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5926 /* addr_off_p */ 0,
5927 /* need_libopcodes_p */ 0,
5928 /* skip_p */ 1);
5929 break;
5930
5931 case AARCH64_OPND_NZCV:
5932 {
5933 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5934 if (nzcv != NULL)
5935 {
5936 str += 4;
5937 info->imm.value = nzcv->value;
5938 break;
5939 }
5940 po_imm_or_fail (0, 15);
5941 info->imm.value = val;
5942 }
5943 break;
5944
5945 case AARCH64_OPND_COND:
5946 case AARCH64_OPND_COND1:
5947 {
5948 char *start = str;
5949 do
5950 str++;
5951 while (ISALPHA (*str));
5952 info->cond = hash_find_n (aarch64_cond_hsh, start, str - start);
5953 if (info->cond == NULL)
5954 {
5955 set_syntax_error (_("invalid condition"));
5956 goto failure;
5957 }
5958 else if (operands[i] == AARCH64_OPND_COND1
5959 && (info->cond->value & 0xe) == 0xe)
5960 {
5961 /* Do not allow AL or NV. */
5962 set_default_error ();
5963 goto failure;
5964 }
5965 }
5966 break;
5967
5968 case AARCH64_OPND_ADDR_ADRP:
5969 po_misc_or_fail (parse_adrp (&str));
5970 /* Clear the value as operand needs to be relocated. */
5971 info->imm.value = 0;
5972 break;
5973
5974 case AARCH64_OPND_ADDR_PCREL14:
5975 case AARCH64_OPND_ADDR_PCREL19:
5976 case AARCH64_OPND_ADDR_PCREL21:
5977 case AARCH64_OPND_ADDR_PCREL26:
5978 po_misc_or_fail (parse_address (&str, info));
5979 if (!info->addr.pcrel)
5980 {
5981 set_syntax_error (_("invalid pc-relative address"));
5982 goto failure;
5983 }
5984 if (inst.gen_lit_pool
5985 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5986 {
5987 /* Only permit "=value" in the literal load instructions.
5988 The literal will be generated by programmer_friendly_fixup. */
5989 set_syntax_error (_("invalid use of \"=immediate\""));
5990 goto failure;
5991 }
5992 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5993 {
5994 set_syntax_error (_("unrecognized relocation suffix"));
5995 goto failure;
5996 }
5997 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
5998 {
5999 info->imm.value = inst.reloc.exp.X_add_number;
6000 inst.reloc.type = BFD_RELOC_UNUSED;
6001 }
6002 else
6003 {
6004 info->imm.value = 0;
6005 if (inst.reloc.type == BFD_RELOC_UNUSED)
6006 switch (opcode->iclass)
6007 {
6008 case compbranch:
6009 case condbranch:
6010 /* e.g. CBZ or B.COND */
6011 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
6012 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
6013 break;
6014 case testbranch:
6015 /* e.g. TBZ */
6016 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
6017 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
6018 break;
6019 case branch_imm:
6020 /* e.g. B or BL */
6021 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
6022 inst.reloc.type =
6023 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
6024 : BFD_RELOC_AARCH64_JUMP26;
6025 break;
6026 case loadlit:
6027 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
6028 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
6029 break;
6030 case pcreladdr:
6031 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
6032 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
6033 break;
6034 default:
6035 gas_assert (0);
6036 abort ();
6037 }
6038 inst.reloc.pc_rel = 1;
6039 }
6040 break;
6041
6042 case AARCH64_OPND_ADDR_SIMPLE:
6043 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
6044 {
6045 /* [<Xn|SP>{, #<simm>}] */
6046 char *start = str;
6047 /* First use the normal address-parsing routines, to get
6048 the usual syntax errors. */
6049 po_misc_or_fail (parse_address (&str, info));
6050 if (info->addr.pcrel || info->addr.offset.is_reg
6051 || !info->addr.preind || info->addr.postind
6052 || info->addr.writeback)
6053 {
6054 set_syntax_error (_("invalid addressing mode"));
6055 goto failure;
6056 }
6057
6058 /* Then retry, matching the specific syntax of these addresses. */
6059 str = start;
6060 po_char_or_fail ('[');
6061 po_reg_or_fail (REG_TYPE_R64_SP);
6062 /* Accept optional ", #0". */
6063 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
6064 && skip_past_char (&str, ','))
6065 {
6066 skip_past_char (&str, '#');
6067 if (! skip_past_char (&str, '0'))
6068 {
6069 set_fatal_syntax_error
6070 (_("the optional immediate offset can only be 0"));
6071 goto failure;
6072 }
6073 }
6074 po_char_or_fail (']');
6075 break;
6076 }
6077
6078 case AARCH64_OPND_ADDR_REGOFF:
6079 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
6080 po_misc_or_fail (parse_address (&str, info));
6081 regoff_addr:
6082 if (info->addr.pcrel || !info->addr.offset.is_reg
6083 || !info->addr.preind || info->addr.postind
6084 || info->addr.writeback)
6085 {
6086 set_syntax_error (_("invalid addressing mode"));
6087 goto failure;
6088 }
6089 if (!info->shifter.operator_present)
6090 {
6091 /* Default to LSL if not present. Libopcodes prefers shifter
6092 kind to be explicit. */
6093 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
6094 info->shifter.kind = AARCH64_MOD_LSL;
6095 }
6096 /* Qualifier to be deduced by libopcodes. */
6097 break;
6098
6099 case AARCH64_OPND_ADDR_SIMM7:
6100 po_misc_or_fail (parse_address (&str, info));
6101 if (info->addr.pcrel || info->addr.offset.is_reg
6102 || (!info->addr.preind && !info->addr.postind))
6103 {
6104 set_syntax_error (_("invalid addressing mode"));
6105 goto failure;
6106 }
6107 if (inst.reloc.type != BFD_RELOC_UNUSED)
6108 {
6109 set_syntax_error (_("relocation not allowed"));
6110 goto failure;
6111 }
6112 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6113 /* addr_off_p */ 1,
6114 /* need_libopcodes_p */ 1,
6115 /* skip_p */ 0);
6116 break;
6117
6118 case AARCH64_OPND_ADDR_SIMM9:
6119 case AARCH64_OPND_ADDR_SIMM9_2:
6120 po_misc_or_fail (parse_address (&str, info));
6121 if (info->addr.pcrel || info->addr.offset.is_reg
6122 || (!info->addr.preind && !info->addr.postind)
6123 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
6124 && info->addr.writeback))
6125 {
6126 set_syntax_error (_("invalid addressing mode"));
6127 goto failure;
6128 }
6129 if (inst.reloc.type != BFD_RELOC_UNUSED)
6130 {
6131 set_syntax_error (_("relocation not allowed"));
6132 goto failure;
6133 }
6134 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6135 /* addr_off_p */ 1,
6136 /* need_libopcodes_p */ 1,
6137 /* skip_p */ 0);
6138 break;
6139
6140 case AARCH64_OPND_ADDR_SIMM10:
6141 case AARCH64_OPND_ADDR_OFFSET:
6142 po_misc_or_fail (parse_address (&str, info));
6143 if (info->addr.pcrel || info->addr.offset.is_reg
6144 || !info->addr.preind || info->addr.postind)
6145 {
6146 set_syntax_error (_("invalid addressing mode"));
6147 goto failure;
6148 }
6149 if (inst.reloc.type != BFD_RELOC_UNUSED)
6150 {
6151 set_syntax_error (_("relocation not allowed"));
6152 goto failure;
6153 }
6154 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6155 /* addr_off_p */ 1,
6156 /* need_libopcodes_p */ 1,
6157 /* skip_p */ 0);
6158 break;
6159
6160 case AARCH64_OPND_ADDR_UIMM12:
6161 po_misc_or_fail (parse_address (&str, info));
6162 if (info->addr.pcrel || info->addr.offset.is_reg
6163 || !info->addr.preind || info->addr.writeback)
6164 {
6165 set_syntax_error (_("invalid addressing mode"));
6166 goto failure;
6167 }
6168 if (inst.reloc.type == BFD_RELOC_UNUSED)
6169 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
6170 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
6171 || (inst.reloc.type
6172 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
6173 || (inst.reloc.type
6174 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
6175 || (inst.reloc.type
6176 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
6177 || (inst.reloc.type
6178 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC))
6179 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
6180 /* Leave qualifier to be determined by libopcodes. */
6181 break;
6182
6183 case AARCH64_OPND_SIMD_ADDR_POST:
6184 /* [<Xn|SP>], <Xm|#<amount>> */
6185 po_misc_or_fail (parse_address (&str, info));
6186 if (!info->addr.postind || !info->addr.writeback)
6187 {
6188 set_syntax_error (_("invalid addressing mode"));
6189 goto failure;
6190 }
6191 if (!info->addr.offset.is_reg)
6192 {
6193 if (inst.reloc.exp.X_op == O_constant)
6194 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6195 else
6196 {
6197 set_fatal_syntax_error
6198 (_("writeback value must be an immediate constant"));
6199 goto failure;
6200 }
6201 }
6202 /* No qualifier. */
6203 break;
6204
6205 case AARCH64_OPND_SVE_ADDR_RI_S4x16:
6206 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
6207 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
6208 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
6209 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
6210 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
6211 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
6212 case AARCH64_OPND_SVE_ADDR_RI_U6:
6213 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
6214 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
6215 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
6216 /* [X<n>{, #imm, MUL VL}]
6217 [X<n>{, #imm}]
6218 but recognizing SVE registers. */
6219 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6220 &offset_qualifier));
6221 if (base_qualifier != AARCH64_OPND_QLF_X)
6222 {
6223 set_syntax_error (_("invalid addressing mode"));
6224 goto failure;
6225 }
6226 sve_regimm:
6227 if (info->addr.pcrel || info->addr.offset.is_reg
6228 || !info->addr.preind || info->addr.writeback)
6229 {
6230 set_syntax_error (_("invalid addressing mode"));
6231 goto failure;
6232 }
6233 if (inst.reloc.type != BFD_RELOC_UNUSED
6234 || inst.reloc.exp.X_op != O_constant)
6235 {
6236 /* Make sure this has priority over
6237 "invalid addressing mode". */
6238 set_fatal_syntax_error (_("constant offset required"));
6239 goto failure;
6240 }
6241 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6242 break;
6243
6244 case AARCH64_OPND_SVE_ADDR_R:
6245 /* [<Xn|SP>{, <R><m>}]
6246 but recognizing SVE registers. */
6247 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6248 &offset_qualifier));
6249 if (offset_qualifier == AARCH64_OPND_QLF_NIL)
6250 {
6251 offset_qualifier = AARCH64_OPND_QLF_X;
6252 info->addr.offset.is_reg = 1;
6253 info->addr.offset.regno = 31;
6254 }
6255 else if (base_qualifier != AARCH64_OPND_QLF_X
6256 || offset_qualifier != AARCH64_OPND_QLF_X)
6257 {
6258 set_syntax_error (_("invalid addressing mode"));
6259 goto failure;
6260 }
6261 goto regoff_addr;
6262
6263 case AARCH64_OPND_SVE_ADDR_RR:
6264 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
6265 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
6266 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
6267 case AARCH64_OPND_SVE_ADDR_RX:
6268 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
6269 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
6270 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
6271 /* [<Xn|SP>, <R><m>{, lsl #<amount>}]
6272 but recognizing SVE registers. */
6273 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6274 &offset_qualifier));
6275 if (base_qualifier != AARCH64_OPND_QLF_X
6276 || offset_qualifier != AARCH64_OPND_QLF_X)
6277 {
6278 set_syntax_error (_("invalid addressing mode"));
6279 goto failure;
6280 }
6281 goto regoff_addr;
6282
6283 case AARCH64_OPND_SVE_ADDR_RZ:
6284 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
6285 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
6286 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
6287 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
6288 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
6289 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
6290 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
6291 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
6292 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
6293 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
6294 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
6295 /* [<Xn|SP>, Z<m>.D{, LSL #<amount>}]
6296 [<Xn|SP>, Z<m>.<T>, <extend> {#<amount>}] */
6297 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6298 &offset_qualifier));
6299 if (base_qualifier != AARCH64_OPND_QLF_X
6300 || (offset_qualifier != AARCH64_OPND_QLF_S_S
6301 && offset_qualifier != AARCH64_OPND_QLF_S_D))
6302 {
6303 set_syntax_error (_("invalid addressing mode"));
6304 goto failure;
6305 }
6306 info->qualifier = offset_qualifier;
6307 goto regoff_addr;
6308
6309 case AARCH64_OPND_SVE_ADDR_ZI_U5:
6310 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
6311 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
6312 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
6313 /* [Z<n>.<T>{, #imm}] */
6314 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6315 &offset_qualifier));
6316 if (base_qualifier != AARCH64_OPND_QLF_S_S
6317 && base_qualifier != AARCH64_OPND_QLF_S_D)
6318 {
6319 set_syntax_error (_("invalid addressing mode"));
6320 goto failure;
6321 }
6322 info->qualifier = base_qualifier;
6323 goto sve_regimm;
6324
6325 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
6326 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
6327 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
6328 /* [Z<n>.<T>, Z<m>.<T>{, LSL #<amount>}]
6329 [Z<n>.D, Z<m>.D, <extend> {#<amount>}]
6330
6331 We don't reject:
6332
6333 [Z<n>.S, Z<m>.S, <extend> {#<amount>}]
6334
6335 here since we get better error messages by leaving it to
6336 the qualifier checking routines. */
6337 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6338 &offset_qualifier));
6339 if ((base_qualifier != AARCH64_OPND_QLF_S_S
6340 && base_qualifier != AARCH64_OPND_QLF_S_D)
6341 || offset_qualifier != base_qualifier)
6342 {
6343 set_syntax_error (_("invalid addressing mode"));
6344 goto failure;
6345 }
6346 info->qualifier = base_qualifier;
6347 goto regoff_addr;
6348
6349 case AARCH64_OPND_SYSREG:
6350 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0))
6351 == PARSE_FAIL)
6352 {
6353 set_syntax_error (_("unknown or missing system register name"));
6354 goto failure;
6355 }
6356 inst.base.operands[i].sysreg = val;
6357 break;
6358
6359 case AARCH64_OPND_PSTATEFIELD:
6360 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1))
6361 == PARSE_FAIL)
6362 {
6363 set_syntax_error (_("unknown or missing PSTATE field name"));
6364 goto failure;
6365 }
6366 inst.base.operands[i].pstatefield = val;
6367 break;
6368
6369 case AARCH64_OPND_SYSREG_IC:
6370 inst.base.operands[i].sysins_op =
6371 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
6372 goto sys_reg_ins;
6373 case AARCH64_OPND_SYSREG_DC:
6374 inst.base.operands[i].sysins_op =
6375 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
6376 goto sys_reg_ins;
6377 case AARCH64_OPND_SYSREG_AT:
6378 inst.base.operands[i].sysins_op =
6379 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
6380 goto sys_reg_ins;
6381 case AARCH64_OPND_SYSREG_TLBI:
6382 inst.base.operands[i].sysins_op =
6383 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
6384 sys_reg_ins:
6385 if (inst.base.operands[i].sysins_op == NULL)
6386 {
6387 set_fatal_syntax_error ( _("unknown or missing operation name"));
6388 goto failure;
6389 }
6390 break;
6391
6392 case AARCH64_OPND_BARRIER:
6393 case AARCH64_OPND_BARRIER_ISB:
6394 val = parse_barrier (&str);
6395 if (val != PARSE_FAIL
6396 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
6397 {
6398 /* ISB only accepts options name 'sy'. */
6399 set_syntax_error
6400 (_("the specified option is not accepted in ISB"));
6401 /* Turn off backtrack as this optional operand is present. */
6402 backtrack_pos = 0;
6403 goto failure;
6404 }
6405 /* This is an extension to accept a 0..15 immediate. */
6406 if (val == PARSE_FAIL)
6407 po_imm_or_fail (0, 15);
6408 info->barrier = aarch64_barrier_options + val;
6409 break;
6410
6411 case AARCH64_OPND_PRFOP:
6412 val = parse_pldop (&str);
6413 /* This is an extension to accept a 0..31 immediate. */
6414 if (val == PARSE_FAIL)
6415 po_imm_or_fail (0, 31);
6416 inst.base.operands[i].prfop = aarch64_prfops + val;
6417 break;
6418
6419 case AARCH64_OPND_BARRIER_PSB:
6420 val = parse_barrier_psb (&str, &(info->hint_option));
6421 if (val == PARSE_FAIL)
6422 goto failure;
6423 break;
6424
6425 default:
6426 as_fatal (_("unhandled operand code %d"), operands[i]);
6427 }
6428
6429 /* If we get here, this operand was successfully parsed. */
6430 inst.base.operands[i].present = 1;
6431 continue;
6432
6433 failure:
6434 /* The parse routine should already have set the error, but in case
6435 not, set a default one here. */
6436 if (! error_p ())
6437 set_default_error ();
6438
6439 if (! backtrack_pos)
6440 goto parse_operands_return;
6441
6442 {
6443 /* We reach here because this operand is marked as optional, and
6444 either no operand was supplied or the operand was supplied but it
6445 was syntactically incorrect. In the latter case we report an
6446 error. In the former case we perform a few more checks before
6447 dropping through to the code to insert the default operand. */
6448
6449 char *tmp = backtrack_pos;
6450 char endchar = END_OF_INSN;
6451
6452 if (i != (aarch64_num_of_operands (opcode) - 1))
6453 endchar = ',';
6454 skip_past_char (&tmp, ',');
6455
6456 if (*tmp != endchar)
6457 /* The user has supplied an operand in the wrong format. */
6458 goto parse_operands_return;
6459
6460 /* Make sure there is not a comma before the optional operand.
6461 For example the fifth operand of 'sys' is optional:
6462
6463 sys #0,c0,c0,#0, <--- wrong
6464 sys #0,c0,c0,#0 <--- correct. */
6465 if (comma_skipped_p && i && endchar == END_OF_INSN)
6466 {
6467 set_fatal_syntax_error
6468 (_("unexpected comma before the omitted optional operand"));
6469 goto parse_operands_return;
6470 }
6471 }
6472
6473 /* Reaching here means we are dealing with an optional operand that is
6474 omitted from the assembly line. */
6475 gas_assert (optional_operand_p (opcode, i));
6476 info->present = 0;
6477 process_omitted_operand (operands[i], opcode, i, info);
6478
6479 /* Try again, skipping the optional operand at backtrack_pos. */
6480 str = backtrack_pos;
6481 backtrack_pos = 0;
6482
6483 /* Clear any error record after the omitted optional operand has been
6484 successfully handled. */
6485 clear_error ();
6486 }
6487
6488 /* Check if we have parsed all the operands. */
6489 if (*str != '\0' && ! error_p ())
6490 {
6491 /* Set I to the index of the last present operand; this is
6492 for the purpose of diagnostics. */
6493 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
6494 ;
6495 set_fatal_syntax_error
6496 (_("unexpected characters following instruction"));
6497 }
6498
6499 parse_operands_return:
6500
6501 if (error_p ())
6502 {
6503 DEBUG_TRACE ("parsing FAIL: %s - %s",
6504 operand_mismatch_kind_names[get_error_kind ()],
6505 get_error_message ());
6506 /* Record the operand error properly; this is useful when there
6507 are multiple instruction templates for a mnemonic name, so that
6508 later on, we can select the error that most closely describes
6509 the problem. */
6510 record_operand_error (opcode, i, get_error_kind (),
6511 get_error_message ());
6512 return FALSE;
6513 }
6514 else
6515 {
6516 DEBUG_TRACE ("parsing SUCCESS");
6517 return TRUE;
6518 }
6519 }
6520
6521 /* It does some fix-up to provide some programmer friendly feature while
6522 keeping the libopcodes happy, i.e. libopcodes only accepts
6523 the preferred architectural syntax.
6524 Return FALSE if there is any failure; otherwise return TRUE. */
6525
6526 static bfd_boolean
6527 programmer_friendly_fixup (aarch64_instruction *instr)
6528 {
6529 aarch64_inst *base = &instr->base;
6530 const aarch64_opcode *opcode = base->opcode;
6531 enum aarch64_op op = opcode->op;
6532 aarch64_opnd_info *operands = base->operands;
6533
6534 DEBUG_TRACE ("enter");
6535
6536 switch (opcode->iclass)
6537 {
6538 case testbranch:
6539 /* TBNZ Xn|Wn, #uimm6, label
6540 Test and Branch Not Zero: conditionally jumps to label if bit number
6541 uimm6 in register Xn is not zero. The bit number implies the width of
6542 the register, which may be written and should be disassembled as Wn if
6543 uimm is less than 32. */
6544 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
6545 {
6546 if (operands[1].imm.value >= 32)
6547 {
6548 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
6549 0, 31);
6550 return FALSE;
6551 }
6552 operands[0].qualifier = AARCH64_OPND_QLF_X;
6553 }
6554 break;
6555 case loadlit:
6556 /* LDR Wt, label | =value
6557 As a convenience assemblers will typically permit the notation
6558 "=value" in conjunction with the pc-relative literal load instructions
6559 to automatically place an immediate value or symbolic address in a
6560 nearby literal pool and generate a hidden label which references it.
6561 ISREG has been set to 0 in the case of =value. */
6562 if (instr->gen_lit_pool
6563 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
6564 {
6565 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
6566 if (op == OP_LDRSW_LIT)
6567 size = 4;
6568 if (instr->reloc.exp.X_op != O_constant
6569 && instr->reloc.exp.X_op != O_big
6570 && instr->reloc.exp.X_op != O_symbol)
6571 {
6572 record_operand_error (opcode, 1,
6573 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
6574 _("constant expression expected"));
6575 return FALSE;
6576 }
6577 if (! add_to_lit_pool (&instr->reloc.exp, size))
6578 {
6579 record_operand_error (opcode, 1,
6580 AARCH64_OPDE_OTHER_ERROR,
6581 _("literal pool insertion failed"));
6582 return FALSE;
6583 }
6584 }
6585 break;
6586 case log_shift:
6587 case bitfield:
6588 /* UXT[BHW] Wd, Wn
6589 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
6590 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
6591 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
6592 A programmer-friendly assembler should accept a destination Xd in
6593 place of Wd, however that is not the preferred form for disassembly.
6594 */
6595 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
6596 && operands[1].qualifier == AARCH64_OPND_QLF_W
6597 && operands[0].qualifier == AARCH64_OPND_QLF_X)
6598 operands[0].qualifier = AARCH64_OPND_QLF_W;
6599 break;
6600
6601 case addsub_ext:
6602 {
6603 /* In the 64-bit form, the final register operand is written as Wm
6604 for all but the (possibly omitted) UXTX/LSL and SXTX
6605 operators.
6606 As a programmer-friendly assembler, we accept e.g.
6607 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
6608 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
6609 int idx = aarch64_operand_index (opcode->operands,
6610 AARCH64_OPND_Rm_EXT);
6611 gas_assert (idx == 1 || idx == 2);
6612 if (operands[0].qualifier == AARCH64_OPND_QLF_X
6613 && operands[idx].qualifier == AARCH64_OPND_QLF_X
6614 && operands[idx].shifter.kind != AARCH64_MOD_LSL
6615 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
6616 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
6617 operands[idx].qualifier = AARCH64_OPND_QLF_W;
6618 }
6619 break;
6620
6621 default:
6622 break;
6623 }
6624
6625 DEBUG_TRACE ("exit with SUCCESS");
6626 return TRUE;
6627 }
6628
6629 /* Check for loads and stores that will cause unpredictable behavior. */
6630
6631 static void
6632 warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
6633 {
6634 aarch64_inst *base = &instr->base;
6635 const aarch64_opcode *opcode = base->opcode;
6636 const aarch64_opnd_info *opnds = base->operands;
6637 switch (opcode->iclass)
6638 {
6639 case ldst_pos:
6640 case ldst_imm9:
6641 case ldst_imm10:
6642 case ldst_unscaled:
6643 case ldst_unpriv:
6644 /* Loading/storing the base register is unpredictable if writeback. */
6645 if ((aarch64_get_operand_class (opnds[0].type)
6646 == AARCH64_OPND_CLASS_INT_REG)
6647 && opnds[0].reg.regno == opnds[1].addr.base_regno
6648 && opnds[1].addr.base_regno != REG_SP
6649 && opnds[1].addr.writeback)
6650 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6651 break;
6652 case ldstpair_off:
6653 case ldstnapair_offs:
6654 case ldstpair_indexed:
6655 /* Loading/storing the base register is unpredictable if writeback. */
6656 if ((aarch64_get_operand_class (opnds[0].type)
6657 == AARCH64_OPND_CLASS_INT_REG)
6658 && (opnds[0].reg.regno == opnds[2].addr.base_regno
6659 || opnds[1].reg.regno == opnds[2].addr.base_regno)
6660 && opnds[2].addr.base_regno != REG_SP
6661 && opnds[2].addr.writeback)
6662 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6663 /* Load operations must load different registers. */
6664 if ((opcode->opcode & (1 << 22))
6665 && opnds[0].reg.regno == opnds[1].reg.regno)
6666 as_warn (_("unpredictable load of register pair -- `%s'"), str);
6667 break;
6668 default:
6669 break;
6670 }
6671 }
6672
6673 /* A wrapper function to interface with libopcodes on encoding and
6674 record the error message if there is any.
6675
6676 Return TRUE on success; otherwise return FALSE. */
6677
6678 static bfd_boolean
6679 do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
6680 aarch64_insn *code)
6681 {
6682 aarch64_operand_error error_info;
6683 error_info.kind = AARCH64_OPDE_NIL;
6684 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
6685 return TRUE;
6686 else
6687 {
6688 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
6689 record_operand_error_info (opcode, &error_info);
6690 return FALSE;
6691 }
6692 }
6693
6694 #ifdef DEBUG_AARCH64
6695 static inline void
6696 dump_opcode_operands (const aarch64_opcode *opcode)
6697 {
6698 int i = 0;
6699 while (opcode->operands[i] != AARCH64_OPND_NIL)
6700 {
6701 aarch64_verbose ("\t\t opnd%d: %s", i,
6702 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
6703 ? aarch64_get_operand_name (opcode->operands[i])
6704 : aarch64_get_operand_desc (opcode->operands[i]));
6705 ++i;
6706 }
6707 }
6708 #endif /* DEBUG_AARCH64 */
6709
6710 /* This is the guts of the machine-dependent assembler. STR points to a
6711 machine dependent instruction. This function is supposed to emit
6712 the frags/bytes it assembles to. */
6713
6714 void
6715 md_assemble (char *str)
6716 {
6717 char *p = str;
6718 templates *template;
6719 aarch64_opcode *opcode;
6720 aarch64_inst *inst_base;
6721 unsigned saved_cond;
6722
6723 /* Align the previous label if needed. */
6724 if (last_label_seen != NULL)
6725 {
6726 symbol_set_frag (last_label_seen, frag_now);
6727 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
6728 S_SET_SEGMENT (last_label_seen, now_seg);
6729 }
6730
6731 inst.reloc.type = BFD_RELOC_UNUSED;
6732
6733 DEBUG_TRACE ("\n\n");
6734 DEBUG_TRACE ("==============================");
6735 DEBUG_TRACE ("Enter md_assemble with %s", str);
6736
6737 template = opcode_lookup (&p);
6738 if (!template)
6739 {
6740 /* It wasn't an instruction, but it might be a register alias of
6741 the form alias .req reg directive. */
6742 if (!create_register_alias (str, p))
6743 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
6744 str);
6745 return;
6746 }
6747
6748 skip_whitespace (p);
6749 if (*p == ',')
6750 {
6751 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
6752 get_mnemonic_name (str), str);
6753 return;
6754 }
6755
6756 init_operand_error_report ();
6757
6758 /* Sections are assumed to start aligned. In executable section, there is no
6759 MAP_DATA symbol pending. So we only align the address during
6760 MAP_DATA --> MAP_INSN transition.
6761 For other sections, this is not guaranteed. */
6762 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
6763 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
6764 frag_align_code (2, 0);
6765
6766 saved_cond = inst.cond;
6767 reset_aarch64_instruction (&inst);
6768 inst.cond = saved_cond;
6769
6770 /* Iterate through all opcode entries with the same mnemonic name. */
6771 do
6772 {
6773 opcode = template->opcode;
6774
6775 DEBUG_TRACE ("opcode %s found", opcode->name);
6776 #ifdef DEBUG_AARCH64
6777 if (debug_dump)
6778 dump_opcode_operands (opcode);
6779 #endif /* DEBUG_AARCH64 */
6780
6781 mapping_state (MAP_INSN);
6782
6783 inst_base = &inst.base;
6784 inst_base->opcode = opcode;
6785
6786 /* Truly conditionally executed instructions, e.g. b.cond. */
6787 if (opcode->flags & F_COND)
6788 {
6789 gas_assert (inst.cond != COND_ALWAYS);
6790 inst_base->cond = get_cond_from_value (inst.cond);
6791 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
6792 }
6793 else if (inst.cond != COND_ALWAYS)
6794 {
6795 /* It shouldn't arrive here, where the assembly looks like a
6796 conditional instruction but the found opcode is unconditional. */
6797 gas_assert (0);
6798 continue;
6799 }
6800
6801 if (parse_operands (p, opcode)
6802 && programmer_friendly_fixup (&inst)
6803 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
6804 {
6805 /* Check that this instruction is supported for this CPU. */
6806 if (!opcode->avariant
6807 || !AARCH64_CPU_HAS_ALL_FEATURES (cpu_variant, *opcode->avariant))
6808 {
6809 as_bad (_("selected processor does not support `%s'"), str);
6810 return;
6811 }
6812
6813 warn_unpredictable_ldst (&inst, str);
6814
6815 if (inst.reloc.type == BFD_RELOC_UNUSED
6816 || !inst.reloc.need_libopcodes_p)
6817 output_inst (NULL);
6818 else
6819 {
6820 /* If there is relocation generated for the instruction,
6821 store the instruction information for the future fix-up. */
6822 struct aarch64_inst *copy;
6823 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
6824 copy = XNEW (struct aarch64_inst);
6825 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
6826 output_inst (copy);
6827 }
6828 return;
6829 }
6830
6831 template = template->next;
6832 if (template != NULL)
6833 {
6834 reset_aarch64_instruction (&inst);
6835 inst.cond = saved_cond;
6836 }
6837 }
6838 while (template != NULL);
6839
6840 /* Issue the error messages if any. */
6841 output_operand_error_report (str);
6842 }
6843
6844 /* Various frobbings of labels and their addresses. */
6845
6846 void
6847 aarch64_start_line_hook (void)
6848 {
6849 last_label_seen = NULL;
6850 }
6851
6852 void
6853 aarch64_frob_label (symbolS * sym)
6854 {
6855 last_label_seen = sym;
6856
6857 dwarf2_emit_label (sym);
6858 }
6859
6860 int
6861 aarch64_data_in_code (void)
6862 {
6863 if (!strncmp (input_line_pointer + 1, "data:", 5))
6864 {
6865 *input_line_pointer = '/';
6866 input_line_pointer += 5;
6867 *input_line_pointer = 0;
6868 return 1;
6869 }
6870
6871 return 0;
6872 }
6873
6874 char *
6875 aarch64_canonicalize_symbol_name (char *name)
6876 {
6877 int len;
6878
6879 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
6880 *(name + len - 5) = 0;
6881
6882 return name;
6883 }
6884 \f
6885 /* Table of all register names defined by default. The user can
6886 define additional names with .req. Note that all register names
6887 should appear in both upper and lowercase variants. Some registers
6888 also have mixed-case names. */
6889
6890 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
6891 #define REGDEF_ALIAS(s, n, t) { #s, n, REG_TYPE_##t, FALSE}
6892 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
6893 #define REGSET16(p,t) \
6894 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
6895 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
6896 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
6897 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
6898 #define REGSET31(p,t) \
6899 REGSET16(p, t), \
6900 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
6901 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
6902 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
6903 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
6904 #define REGSET(p,t) \
6905 REGSET31(p,t), REGNUM(p,31,t)
6906
6907 /* These go into aarch64_reg_hsh hash-table. */
6908 static const reg_entry reg_names[] = {
6909 /* Integer registers. */
6910 REGSET31 (x, R_64), REGSET31 (X, R_64),
6911 REGSET31 (w, R_32), REGSET31 (W, R_32),
6912
6913 REGDEF_ALIAS (ip0, 16, R_64), REGDEF_ALIAS (IP0, 16, R_64),
6914 REGDEF_ALIAS (ip1, 17, R_64), REGDEF_ALIAS (IP1, 17, R_64),
6915 REGDEF_ALIAS (fp, 29, R_64), REGDEF_ALIAS (FP, 29, R_64),
6916 REGDEF_ALIAS (lr, 30, R_64), REGDEF_ALIAS (LR, 30, R_64),
6917 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
6918 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
6919
6920 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
6921 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
6922
6923 /* Floating-point single precision registers. */
6924 REGSET (s, FP_S), REGSET (S, FP_S),
6925
6926 /* Floating-point double precision registers. */
6927 REGSET (d, FP_D), REGSET (D, FP_D),
6928
6929 /* Floating-point half precision registers. */
6930 REGSET (h, FP_H), REGSET (H, FP_H),
6931
6932 /* Floating-point byte precision registers. */
6933 REGSET (b, FP_B), REGSET (B, FP_B),
6934
6935 /* Floating-point quad precision registers. */
6936 REGSET (q, FP_Q), REGSET (Q, FP_Q),
6937
6938 /* FP/SIMD registers. */
6939 REGSET (v, VN), REGSET (V, VN),
6940
6941 /* SVE vector registers. */
6942 REGSET (z, ZN), REGSET (Z, ZN),
6943
6944 /* SVE predicate registers. */
6945 REGSET16 (p, PN), REGSET16 (P, PN)
6946 };
6947
6948 #undef REGDEF
6949 #undef REGDEF_ALIAS
6950 #undef REGNUM
6951 #undef REGSET16
6952 #undef REGSET31
6953 #undef REGSET
6954
6955 #define N 1
6956 #define n 0
6957 #define Z 1
6958 #define z 0
6959 #define C 1
6960 #define c 0
6961 #define V 1
6962 #define v 0
6963 #define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
6964 static const asm_nzcv nzcv_names[] = {
6965 {"nzcv", B (n, z, c, v)},
6966 {"nzcV", B (n, z, c, V)},
6967 {"nzCv", B (n, z, C, v)},
6968 {"nzCV", B (n, z, C, V)},
6969 {"nZcv", B (n, Z, c, v)},
6970 {"nZcV", B (n, Z, c, V)},
6971 {"nZCv", B (n, Z, C, v)},
6972 {"nZCV", B (n, Z, C, V)},
6973 {"Nzcv", B (N, z, c, v)},
6974 {"NzcV", B (N, z, c, V)},
6975 {"NzCv", B (N, z, C, v)},
6976 {"NzCV", B (N, z, C, V)},
6977 {"NZcv", B (N, Z, c, v)},
6978 {"NZcV", B (N, Z, c, V)},
6979 {"NZCv", B (N, Z, C, v)},
6980 {"NZCV", B (N, Z, C, V)}
6981 };
6982
6983 #undef N
6984 #undef n
6985 #undef Z
6986 #undef z
6987 #undef C
6988 #undef c
6989 #undef V
6990 #undef v
6991 #undef B
6992 \f
6993 /* MD interface: bits in the object file. */
6994
6995 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
6996 for use in the a.out file, and stores them in the array pointed to by buf.
6997 This knows about the endian-ness of the target machine and does
6998 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
6999 2 (short) and 4 (long) Floating numbers are put out as a series of
7000 LITTLENUMS (shorts, here at least). */
7001
7002 void
7003 md_number_to_chars (char *buf, valueT val, int n)
7004 {
7005 if (target_big_endian)
7006 number_to_chars_bigendian (buf, val, n);
7007 else
7008 number_to_chars_littleendian (buf, val, n);
7009 }
7010
7011 /* MD interface: Sections. */
7012
7013 /* Estimate the size of a frag before relaxing. Assume everything fits in
7014 4 bytes. */
7015
7016 int
7017 md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
7018 {
7019 fragp->fr_var = 4;
7020 return 4;
7021 }
7022
7023 /* Round up a section size to the appropriate boundary. */
7024
7025 valueT
7026 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
7027 {
7028 return size;
7029 }
7030
7031 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
7032 of an rs_align_code fragment.
7033
7034 Here we fill the frag with the appropriate info for padding the
7035 output stream. The resulting frag will consist of a fixed (fr_fix)
7036 and of a repeating (fr_var) part.
7037
7038 The fixed content is always emitted before the repeating content and
7039 these two parts are used as follows in constructing the output:
7040 - the fixed part will be used to align to a valid instruction word
7041 boundary, in case that we start at a misaligned address; as no
7042 executable instruction can live at the misaligned location, we
7043 simply fill with zeros;
7044 - the variable part will be used to cover the remaining padding and
7045 we fill using the AArch64 NOP instruction.
7046
7047 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
7048 enough storage space for up to 3 bytes for padding the back to a valid
7049 instruction alignment and exactly 4 bytes to store the NOP pattern. */
7050
7051 void
7052 aarch64_handle_align (fragS * fragP)
7053 {
7054 /* NOP = d503201f */
7055 /* AArch64 instructions are always little-endian. */
7056 static unsigned char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
7057
7058 int bytes, fix, noop_size;
7059 char *p;
7060
7061 if (fragP->fr_type != rs_align_code)
7062 return;
7063
7064 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
7065 p = fragP->fr_literal + fragP->fr_fix;
7066
7067 #ifdef OBJ_ELF
7068 gas_assert (fragP->tc_frag_data.recorded);
7069 #endif
7070
7071 noop_size = sizeof (aarch64_noop);
7072
7073 fix = bytes & (noop_size - 1);
7074 if (fix)
7075 {
7076 #ifdef OBJ_ELF
7077 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
7078 #endif
7079 memset (p, 0, fix);
7080 p += fix;
7081 fragP->fr_fix += fix;
7082 }
7083
7084 if (noop_size)
7085 memcpy (p, aarch64_noop, noop_size);
7086 fragP->fr_var = noop_size;
7087 }
7088
7089 /* Perform target specific initialisation of a frag.
7090 Note - despite the name this initialisation is not done when the frag
7091 is created, but only when its type is assigned. A frag can be created
7092 and used a long time before its type is set, so beware of assuming that
7093 this initialisation is performed first. */
7094
7095 #ifndef OBJ_ELF
7096 void
7097 aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
7098 int max_chars ATTRIBUTE_UNUSED)
7099 {
7100 }
7101
7102 #else /* OBJ_ELF is defined. */
7103 void
7104 aarch64_init_frag (fragS * fragP, int max_chars)
7105 {
7106 /* Record a mapping symbol for alignment frags. We will delete this
7107 later if the alignment ends up empty. */
7108 if (!fragP->tc_frag_data.recorded)
7109 fragP->tc_frag_data.recorded = 1;
7110
7111 /* PR 21809: Do not set a mapping state for debug sections
7112 - it just confuses other tools. */
7113 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
7114 return;
7115
7116 switch (fragP->fr_type)
7117 {
7118 case rs_align_test:
7119 case rs_fill:
7120 mapping_state_2 (MAP_DATA, max_chars);
7121 break;
7122 case rs_align:
7123 /* PR 20364: We can get alignment frags in code sections,
7124 so do not just assume that we should use the MAP_DATA state. */
7125 mapping_state_2 (subseg_text_p (now_seg) ? MAP_INSN : MAP_DATA, max_chars);
7126 break;
7127 case rs_align_code:
7128 mapping_state_2 (MAP_INSN, max_chars);
7129 break;
7130 default:
7131 break;
7132 }
7133 }
7134 \f
7135 /* Initialize the DWARF-2 unwind information for this procedure. */
7136
7137 void
7138 tc_aarch64_frame_initial_instructions (void)
7139 {
7140 cfi_add_CFA_def_cfa (REG_SP, 0);
7141 }
7142 #endif /* OBJ_ELF */
7143
7144 /* Convert REGNAME to a DWARF-2 register number. */
7145
7146 int
7147 tc_aarch64_regname_to_dw2regnum (char *regname)
7148 {
7149 const reg_entry *reg = parse_reg (&regname);
7150 if (reg == NULL)
7151 return -1;
7152
7153 switch (reg->type)
7154 {
7155 case REG_TYPE_SP_32:
7156 case REG_TYPE_SP_64:
7157 case REG_TYPE_R_32:
7158 case REG_TYPE_R_64:
7159 return reg->number;
7160
7161 case REG_TYPE_FP_B:
7162 case REG_TYPE_FP_H:
7163 case REG_TYPE_FP_S:
7164 case REG_TYPE_FP_D:
7165 case REG_TYPE_FP_Q:
7166 return reg->number + 64;
7167
7168 default:
7169 break;
7170 }
7171 return -1;
7172 }
7173
7174 /* Implement DWARF2_ADDR_SIZE. */
7175
7176 int
7177 aarch64_dwarf2_addr_size (void)
7178 {
7179 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7180 if (ilp32_p)
7181 return 4;
7182 #endif
7183 return bfd_arch_bits_per_address (stdoutput) / 8;
7184 }
7185
7186 /* MD interface: Symbol and relocation handling. */
7187
7188 /* Return the address within the segment that a PC-relative fixup is
7189 relative to. For AArch64 PC-relative fixups applied to instructions
7190 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
7191
7192 long
7193 md_pcrel_from_section (fixS * fixP, segT seg)
7194 {
7195 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
7196
7197 /* If this is pc-relative and we are going to emit a relocation
7198 then we just want to put out any pipeline compensation that the linker
7199 will need. Otherwise we want to use the calculated base. */
7200 if (fixP->fx_pcrel
7201 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
7202 || aarch64_force_relocation (fixP)))
7203 base = 0;
7204
7205 /* AArch64 should be consistent for all pc-relative relocations. */
7206 return base + AARCH64_PCREL_OFFSET;
7207 }
7208
7209 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
7210 Otherwise we have no need to default values of symbols. */
7211
7212 symbolS *
7213 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
7214 {
7215 #ifdef OBJ_ELF
7216 if (name[0] == '_' && name[1] == 'G'
7217 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
7218 {
7219 if (!GOT_symbol)
7220 {
7221 if (symbol_find (name))
7222 as_bad (_("GOT already in the symbol table"));
7223
7224 GOT_symbol = symbol_new (name, undefined_section,
7225 (valueT) 0, &zero_address_frag);
7226 }
7227
7228 return GOT_symbol;
7229 }
7230 #endif
7231
7232 return 0;
7233 }
7234
7235 /* Return non-zero if the indicated VALUE has overflowed the maximum
7236 range expressible by a unsigned number with the indicated number of
7237 BITS. */
7238
7239 static bfd_boolean
7240 unsigned_overflow (valueT value, unsigned bits)
7241 {
7242 valueT lim;
7243 if (bits >= sizeof (valueT) * 8)
7244 return FALSE;
7245 lim = (valueT) 1 << bits;
7246 return (value >= lim);
7247 }
7248
7249
7250 /* Return non-zero if the indicated VALUE has overflowed the maximum
7251 range expressible by an signed number with the indicated number of
7252 BITS. */
7253
7254 static bfd_boolean
7255 signed_overflow (offsetT value, unsigned bits)
7256 {
7257 offsetT lim;
7258 if (bits >= sizeof (offsetT) * 8)
7259 return FALSE;
7260 lim = (offsetT) 1 << (bits - 1);
7261 return (value < -lim || value >= lim);
7262 }
7263
7264 /* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
7265 unsigned immediate offset load/store instruction, try to encode it as
7266 an unscaled, 9-bit, signed immediate offset load/store instruction.
7267 Return TRUE if it is successful; otherwise return FALSE.
7268
7269 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
7270 in response to the standard LDR/STR mnemonics when the immediate offset is
7271 unambiguous, i.e. when it is negative or unaligned. */
7272
7273 static bfd_boolean
7274 try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
7275 {
7276 int idx;
7277 enum aarch64_op new_op;
7278 const aarch64_opcode *new_opcode;
7279
7280 gas_assert (instr->opcode->iclass == ldst_pos);
7281
7282 switch (instr->opcode->op)
7283 {
7284 case OP_LDRB_POS:new_op = OP_LDURB; break;
7285 case OP_STRB_POS: new_op = OP_STURB; break;
7286 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
7287 case OP_LDRH_POS: new_op = OP_LDURH; break;
7288 case OP_STRH_POS: new_op = OP_STURH; break;
7289 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
7290 case OP_LDR_POS: new_op = OP_LDUR; break;
7291 case OP_STR_POS: new_op = OP_STUR; break;
7292 case OP_LDRF_POS: new_op = OP_LDURV; break;
7293 case OP_STRF_POS: new_op = OP_STURV; break;
7294 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
7295 case OP_PRFM_POS: new_op = OP_PRFUM; break;
7296 default: new_op = OP_NIL; break;
7297 }
7298
7299 if (new_op == OP_NIL)
7300 return FALSE;
7301
7302 new_opcode = aarch64_get_opcode (new_op);
7303 gas_assert (new_opcode != NULL);
7304
7305 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
7306 instr->opcode->op, new_opcode->op);
7307
7308 aarch64_replace_opcode (instr, new_opcode);
7309
7310 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
7311 qualifier matching may fail because the out-of-date qualifier will
7312 prevent the operand being updated with a new and correct qualifier. */
7313 idx = aarch64_operand_index (instr->opcode->operands,
7314 AARCH64_OPND_ADDR_SIMM9);
7315 gas_assert (idx == 1);
7316 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
7317
7318 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
7319
7320 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
7321 return FALSE;
7322
7323 return TRUE;
7324 }
7325
7326 /* Called by fix_insn to fix a MOV immediate alias instruction.
7327
7328 Operand for a generic move immediate instruction, which is an alias
7329 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
7330 a 32-bit/64-bit immediate value into general register. An assembler error
7331 shall result if the immediate cannot be created by a single one of these
7332 instructions. If there is a choice, then to ensure reversability an
7333 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
7334
7335 static void
7336 fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
7337 {
7338 const aarch64_opcode *opcode;
7339
7340 /* Need to check if the destination is SP/ZR. The check has to be done
7341 before any aarch64_replace_opcode. */
7342 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
7343 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
7344
7345 instr->operands[1].imm.value = value;
7346 instr->operands[1].skip = 0;
7347
7348 if (try_mov_wide_p)
7349 {
7350 /* Try the MOVZ alias. */
7351 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
7352 aarch64_replace_opcode (instr, opcode);
7353 if (aarch64_opcode_encode (instr->opcode, instr,
7354 &instr->value, NULL, NULL))
7355 {
7356 put_aarch64_insn (buf, instr->value);
7357 return;
7358 }
7359 /* Try the MOVK alias. */
7360 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
7361 aarch64_replace_opcode (instr, opcode);
7362 if (aarch64_opcode_encode (instr->opcode, instr,
7363 &instr->value, NULL, NULL))
7364 {
7365 put_aarch64_insn (buf, instr->value);
7366 return;
7367 }
7368 }
7369
7370 if (try_mov_bitmask_p)
7371 {
7372 /* Try the ORR alias. */
7373 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
7374 aarch64_replace_opcode (instr, opcode);
7375 if (aarch64_opcode_encode (instr->opcode, instr,
7376 &instr->value, NULL, NULL))
7377 {
7378 put_aarch64_insn (buf, instr->value);
7379 return;
7380 }
7381 }
7382
7383 as_bad_where (fixP->fx_file, fixP->fx_line,
7384 _("immediate cannot be moved by a single instruction"));
7385 }
7386
7387 /* An instruction operand which is immediate related may have symbol used
7388 in the assembly, e.g.
7389
7390 mov w0, u32
7391 .set u32, 0x00ffff00
7392
7393 At the time when the assembly instruction is parsed, a referenced symbol,
7394 like 'u32' in the above example may not have been seen; a fixS is created
7395 in such a case and is handled here after symbols have been resolved.
7396 Instruction is fixed up with VALUE using the information in *FIXP plus
7397 extra information in FLAGS.
7398
7399 This function is called by md_apply_fix to fix up instructions that need
7400 a fix-up described above but does not involve any linker-time relocation. */
7401
7402 static void
7403 fix_insn (fixS *fixP, uint32_t flags, offsetT value)
7404 {
7405 int idx;
7406 uint32_t insn;
7407 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7408 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
7409 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
7410
7411 if (new_inst)
7412 {
7413 /* Now the instruction is about to be fixed-up, so the operand that
7414 was previously marked as 'ignored' needs to be unmarked in order
7415 to get the encoding done properly. */
7416 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7417 new_inst->operands[idx].skip = 0;
7418 }
7419
7420 gas_assert (opnd != AARCH64_OPND_NIL);
7421
7422 switch (opnd)
7423 {
7424 case AARCH64_OPND_EXCEPTION:
7425 if (unsigned_overflow (value, 16))
7426 as_bad_where (fixP->fx_file, fixP->fx_line,
7427 _("immediate out of range"));
7428 insn = get_aarch64_insn (buf);
7429 insn |= encode_svc_imm (value);
7430 put_aarch64_insn (buf, insn);
7431 break;
7432
7433 case AARCH64_OPND_AIMM:
7434 /* ADD or SUB with immediate.
7435 NOTE this assumes we come here with a add/sub shifted reg encoding
7436 3 322|2222|2 2 2 21111 111111
7437 1 098|7654|3 2 1 09876 543210 98765 43210
7438 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
7439 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
7440 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
7441 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
7442 ->
7443 3 322|2222|2 2 221111111111
7444 1 098|7654|3 2 109876543210 98765 43210
7445 11000000 sf 001|0001|shift imm12 Rn Rd ADD
7446 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
7447 51000000 sf 101|0001|shift imm12 Rn Rd SUB
7448 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
7449 Fields sf Rn Rd are already set. */
7450 insn = get_aarch64_insn (buf);
7451 if (value < 0)
7452 {
7453 /* Add <-> sub. */
7454 insn = reencode_addsub_switch_add_sub (insn);
7455 value = -value;
7456 }
7457
7458 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
7459 && unsigned_overflow (value, 12))
7460 {
7461 /* Try to shift the value by 12 to make it fit. */
7462 if (((value >> 12) << 12) == value
7463 && ! unsigned_overflow (value, 12 + 12))
7464 {
7465 value >>= 12;
7466 insn |= encode_addsub_imm_shift_amount (1);
7467 }
7468 }
7469
7470 if (unsigned_overflow (value, 12))
7471 as_bad_where (fixP->fx_file, fixP->fx_line,
7472 _("immediate out of range"));
7473
7474 insn |= encode_addsub_imm (value);
7475
7476 put_aarch64_insn (buf, insn);
7477 break;
7478
7479 case AARCH64_OPND_SIMD_IMM:
7480 case AARCH64_OPND_SIMD_IMM_SFT:
7481 case AARCH64_OPND_LIMM:
7482 /* Bit mask immediate. */
7483 gas_assert (new_inst != NULL);
7484 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7485 new_inst->operands[idx].imm.value = value;
7486 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7487 &new_inst->value, NULL, NULL))
7488 put_aarch64_insn (buf, new_inst->value);
7489 else
7490 as_bad_where (fixP->fx_file, fixP->fx_line,
7491 _("invalid immediate"));
7492 break;
7493
7494 case AARCH64_OPND_HALF:
7495 /* 16-bit unsigned immediate. */
7496 if (unsigned_overflow (value, 16))
7497 as_bad_where (fixP->fx_file, fixP->fx_line,
7498 _("immediate out of range"));
7499 insn = get_aarch64_insn (buf);
7500 insn |= encode_movw_imm (value & 0xffff);
7501 put_aarch64_insn (buf, insn);
7502 break;
7503
7504 case AARCH64_OPND_IMM_MOV:
7505 /* Operand for a generic move immediate instruction, which is
7506 an alias instruction that generates a single MOVZ, MOVN or ORR
7507 instruction to loads a 32-bit/64-bit immediate value into general
7508 register. An assembler error shall result if the immediate cannot be
7509 created by a single one of these instructions. If there is a choice,
7510 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
7511 and MOVZ or MOVN to ORR. */
7512 gas_assert (new_inst != NULL);
7513 fix_mov_imm_insn (fixP, buf, new_inst, value);
7514 break;
7515
7516 case AARCH64_OPND_ADDR_SIMM7:
7517 case AARCH64_OPND_ADDR_SIMM9:
7518 case AARCH64_OPND_ADDR_SIMM9_2:
7519 case AARCH64_OPND_ADDR_SIMM10:
7520 case AARCH64_OPND_ADDR_UIMM12:
7521 /* Immediate offset in an address. */
7522 insn = get_aarch64_insn (buf);
7523
7524 gas_assert (new_inst != NULL && new_inst->value == insn);
7525 gas_assert (new_inst->opcode->operands[1] == opnd
7526 || new_inst->opcode->operands[2] == opnd);
7527
7528 /* Get the index of the address operand. */
7529 if (new_inst->opcode->operands[1] == opnd)
7530 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
7531 idx = 1;
7532 else
7533 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
7534 idx = 2;
7535
7536 /* Update the resolved offset value. */
7537 new_inst->operands[idx].addr.offset.imm = value;
7538
7539 /* Encode/fix-up. */
7540 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7541 &new_inst->value, NULL, NULL))
7542 {
7543 put_aarch64_insn (buf, new_inst->value);
7544 break;
7545 }
7546 else if (new_inst->opcode->iclass == ldst_pos
7547 && try_to_encode_as_unscaled_ldst (new_inst))
7548 {
7549 put_aarch64_insn (buf, new_inst->value);
7550 break;
7551 }
7552
7553 as_bad_where (fixP->fx_file, fixP->fx_line,
7554 _("immediate offset out of range"));
7555 break;
7556
7557 default:
7558 gas_assert (0);
7559 as_fatal (_("unhandled operand code %d"), opnd);
7560 }
7561 }
7562
7563 /* Apply a fixup (fixP) to segment data, once it has been determined
7564 by our caller that we have all the info we need to fix it up.
7565
7566 Parameter valP is the pointer to the value of the bits. */
7567
7568 void
7569 md_apply_fix (fixS * fixP, valueT * valP, segT seg)
7570 {
7571 offsetT value = *valP;
7572 uint32_t insn;
7573 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7574 int scale;
7575 unsigned flags = fixP->fx_addnumber;
7576
7577 DEBUG_TRACE ("\n\n");
7578 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
7579 DEBUG_TRACE ("Enter md_apply_fix");
7580
7581 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
7582
7583 /* Note whether this will delete the relocation. */
7584
7585 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
7586 fixP->fx_done = 1;
7587
7588 /* Process the relocations. */
7589 switch (fixP->fx_r_type)
7590 {
7591 case BFD_RELOC_NONE:
7592 /* This will need to go in the object file. */
7593 fixP->fx_done = 0;
7594 break;
7595
7596 case BFD_RELOC_8:
7597 case BFD_RELOC_8_PCREL:
7598 if (fixP->fx_done || !seg->use_rela_p)
7599 md_number_to_chars (buf, value, 1);
7600 break;
7601
7602 case BFD_RELOC_16:
7603 case BFD_RELOC_16_PCREL:
7604 if (fixP->fx_done || !seg->use_rela_p)
7605 md_number_to_chars (buf, value, 2);
7606 break;
7607
7608 case BFD_RELOC_32:
7609 case BFD_RELOC_32_PCREL:
7610 if (fixP->fx_done || !seg->use_rela_p)
7611 md_number_to_chars (buf, value, 4);
7612 break;
7613
7614 case BFD_RELOC_64:
7615 case BFD_RELOC_64_PCREL:
7616 if (fixP->fx_done || !seg->use_rela_p)
7617 md_number_to_chars (buf, value, 8);
7618 break;
7619
7620 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7621 /* We claim that these fixups have been processed here, even if
7622 in fact we generate an error because we do not have a reloc
7623 for them, so tc_gen_reloc() will reject them. */
7624 fixP->fx_done = 1;
7625 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
7626 {
7627 as_bad_where (fixP->fx_file, fixP->fx_line,
7628 _("undefined symbol %s used as an immediate value"),
7629 S_GET_NAME (fixP->fx_addsy));
7630 goto apply_fix_return;
7631 }
7632 fix_insn (fixP, flags, value);
7633 break;
7634
7635 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7636 if (fixP->fx_done || !seg->use_rela_p)
7637 {
7638 if (value & 3)
7639 as_bad_where (fixP->fx_file, fixP->fx_line,
7640 _("pc-relative load offset not word aligned"));
7641 if (signed_overflow (value, 21))
7642 as_bad_where (fixP->fx_file, fixP->fx_line,
7643 _("pc-relative load offset out of range"));
7644 insn = get_aarch64_insn (buf);
7645 insn |= encode_ld_lit_ofs_19 (value >> 2);
7646 put_aarch64_insn (buf, insn);
7647 }
7648 break;
7649
7650 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7651 if (fixP->fx_done || !seg->use_rela_p)
7652 {
7653 if (signed_overflow (value, 21))
7654 as_bad_where (fixP->fx_file, fixP->fx_line,
7655 _("pc-relative address offset out of range"));
7656 insn = get_aarch64_insn (buf);
7657 insn |= encode_adr_imm (value);
7658 put_aarch64_insn (buf, insn);
7659 }
7660 break;
7661
7662 case BFD_RELOC_AARCH64_BRANCH19:
7663 if (fixP->fx_done || !seg->use_rela_p)
7664 {
7665 if (value & 3)
7666 as_bad_where (fixP->fx_file, fixP->fx_line,
7667 _("conditional branch target not word aligned"));
7668 if (signed_overflow (value, 21))
7669 as_bad_where (fixP->fx_file, fixP->fx_line,
7670 _("conditional branch out of range"));
7671 insn = get_aarch64_insn (buf);
7672 insn |= encode_cond_branch_ofs_19 (value >> 2);
7673 put_aarch64_insn (buf, insn);
7674 }
7675 break;
7676
7677 case BFD_RELOC_AARCH64_TSTBR14:
7678 if (fixP->fx_done || !seg->use_rela_p)
7679 {
7680 if (value & 3)
7681 as_bad_where (fixP->fx_file, fixP->fx_line,
7682 _("conditional branch target not word aligned"));
7683 if (signed_overflow (value, 16))
7684 as_bad_where (fixP->fx_file, fixP->fx_line,
7685 _("conditional branch out of range"));
7686 insn = get_aarch64_insn (buf);
7687 insn |= encode_tst_branch_ofs_14 (value >> 2);
7688 put_aarch64_insn (buf, insn);
7689 }
7690 break;
7691
7692 case BFD_RELOC_AARCH64_CALL26:
7693 case BFD_RELOC_AARCH64_JUMP26:
7694 if (fixP->fx_done || !seg->use_rela_p)
7695 {
7696 if (value & 3)
7697 as_bad_where (fixP->fx_file, fixP->fx_line,
7698 _("branch target not word aligned"));
7699 if (signed_overflow (value, 28))
7700 as_bad_where (fixP->fx_file, fixP->fx_line,
7701 _("branch out of range"));
7702 insn = get_aarch64_insn (buf);
7703 insn |= encode_branch_ofs_26 (value >> 2);
7704 put_aarch64_insn (buf, insn);
7705 }
7706 break;
7707
7708 case BFD_RELOC_AARCH64_MOVW_G0:
7709 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7710 case BFD_RELOC_AARCH64_MOVW_G0_S:
7711 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7712 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
7713 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
7714 scale = 0;
7715 goto movw_common;
7716 case BFD_RELOC_AARCH64_MOVW_G1:
7717 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7718 case BFD_RELOC_AARCH64_MOVW_G1_S:
7719 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7720 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
7721 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
7722 scale = 16;
7723 goto movw_common;
7724 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7725 scale = 0;
7726 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7727 /* Should always be exported to object file, see
7728 aarch64_force_relocation(). */
7729 gas_assert (!fixP->fx_done);
7730 gas_assert (seg->use_rela_p);
7731 goto movw_common;
7732 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7733 scale = 16;
7734 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7735 /* Should always be exported to object file, see
7736 aarch64_force_relocation(). */
7737 gas_assert (!fixP->fx_done);
7738 gas_assert (seg->use_rela_p);
7739 goto movw_common;
7740 case BFD_RELOC_AARCH64_MOVW_G2:
7741 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7742 case BFD_RELOC_AARCH64_MOVW_G2_S:
7743 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
7744 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
7745 scale = 32;
7746 goto movw_common;
7747 case BFD_RELOC_AARCH64_MOVW_G3:
7748 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
7749 scale = 48;
7750 movw_common:
7751 if (fixP->fx_done || !seg->use_rela_p)
7752 {
7753 insn = get_aarch64_insn (buf);
7754
7755 if (!fixP->fx_done)
7756 {
7757 /* REL signed addend must fit in 16 bits */
7758 if (signed_overflow (value, 16))
7759 as_bad_where (fixP->fx_file, fixP->fx_line,
7760 _("offset out of range"));
7761 }
7762 else
7763 {
7764 /* Check for overflow and scale. */
7765 switch (fixP->fx_r_type)
7766 {
7767 case BFD_RELOC_AARCH64_MOVW_G0:
7768 case BFD_RELOC_AARCH64_MOVW_G1:
7769 case BFD_RELOC_AARCH64_MOVW_G2:
7770 case BFD_RELOC_AARCH64_MOVW_G3:
7771 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7772 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7773 if (unsigned_overflow (value, scale + 16))
7774 as_bad_where (fixP->fx_file, fixP->fx_line,
7775 _("unsigned value out of range"));
7776 break;
7777 case BFD_RELOC_AARCH64_MOVW_G0_S:
7778 case BFD_RELOC_AARCH64_MOVW_G1_S:
7779 case BFD_RELOC_AARCH64_MOVW_G2_S:
7780 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
7781 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
7782 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
7783 /* NOTE: We can only come here with movz or movn. */
7784 if (signed_overflow (value, scale + 16))
7785 as_bad_where (fixP->fx_file, fixP->fx_line,
7786 _("signed value out of range"));
7787 if (value < 0)
7788 {
7789 /* Force use of MOVN. */
7790 value = ~value;
7791 insn = reencode_movzn_to_movn (insn);
7792 }
7793 else
7794 {
7795 /* Force use of MOVZ. */
7796 insn = reencode_movzn_to_movz (insn);
7797 }
7798 break;
7799 default:
7800 /* Unchecked relocations. */
7801 break;
7802 }
7803 value >>= scale;
7804 }
7805
7806 /* Insert value into MOVN/MOVZ/MOVK instruction. */
7807 insn |= encode_movw_imm (value & 0xffff);
7808
7809 put_aarch64_insn (buf, insn);
7810 }
7811 break;
7812
7813 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
7814 fixP->fx_r_type = (ilp32_p
7815 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
7816 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7817 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7818 /* Should always be exported to object file, see
7819 aarch64_force_relocation(). */
7820 gas_assert (!fixP->fx_done);
7821 gas_assert (seg->use_rela_p);
7822 break;
7823
7824 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7825 fixP->fx_r_type = (ilp32_p
7826 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
7827 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12);
7828 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7829 /* Should always be exported to object file, see
7830 aarch64_force_relocation(). */
7831 gas_assert (!fixP->fx_done);
7832 gas_assert (seg->use_rela_p);
7833 break;
7834
7835 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7836 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7837 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7838 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7839 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7840 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7841 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7842 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7843 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7844 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7845 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7846 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7847 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7848 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7849 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7850 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7851 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7852 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
7853 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
7854 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7855 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7856 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7857 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7858 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7859 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7860 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7861 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7862 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7863 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7864 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7865 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
7866 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7867 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7868 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7869 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7870 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
7871 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
7872 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
7873 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
7874 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
7875 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
7876 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
7877 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
7878 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
7879 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7880 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
7881 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7882 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7883 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7884 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7885 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7886 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7887 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7888 /* Should always be exported to object file, see
7889 aarch64_force_relocation(). */
7890 gas_assert (!fixP->fx_done);
7891 gas_assert (seg->use_rela_p);
7892 break;
7893
7894 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
7895 /* Should always be exported to object file, see
7896 aarch64_force_relocation(). */
7897 fixP->fx_r_type = (ilp32_p
7898 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
7899 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
7900 gas_assert (!fixP->fx_done);
7901 gas_assert (seg->use_rela_p);
7902 break;
7903
7904 case BFD_RELOC_AARCH64_ADD_LO12:
7905 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7906 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7907 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7908 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7909 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7910 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7911 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7912 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7913 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7914 case BFD_RELOC_AARCH64_LDST128_LO12:
7915 case BFD_RELOC_AARCH64_LDST16_LO12:
7916 case BFD_RELOC_AARCH64_LDST32_LO12:
7917 case BFD_RELOC_AARCH64_LDST64_LO12:
7918 case BFD_RELOC_AARCH64_LDST8_LO12:
7919 /* Should always be exported to object file, see
7920 aarch64_force_relocation(). */
7921 gas_assert (!fixP->fx_done);
7922 gas_assert (seg->use_rela_p);
7923 break;
7924
7925 case BFD_RELOC_AARCH64_TLSDESC_ADD:
7926 case BFD_RELOC_AARCH64_TLSDESC_CALL:
7927 case BFD_RELOC_AARCH64_TLSDESC_LDR:
7928 break;
7929
7930 case BFD_RELOC_UNUSED:
7931 /* An error will already have been reported. */
7932 break;
7933
7934 default:
7935 as_bad_where (fixP->fx_file, fixP->fx_line,
7936 _("unexpected %s fixup"),
7937 bfd_get_reloc_code_name (fixP->fx_r_type));
7938 break;
7939 }
7940
7941 apply_fix_return:
7942 /* Free the allocated the struct aarch64_inst.
7943 N.B. currently there are very limited number of fix-up types actually use
7944 this field, so the impact on the performance should be minimal . */
7945 if (fixP->tc_fix_data.inst != NULL)
7946 free (fixP->tc_fix_data.inst);
7947
7948 return;
7949 }
7950
7951 /* Translate internal representation of relocation info to BFD target
7952 format. */
7953
7954 arelent *
7955 tc_gen_reloc (asection * section, fixS * fixp)
7956 {
7957 arelent *reloc;
7958 bfd_reloc_code_real_type code;
7959
7960 reloc = XNEW (arelent);
7961
7962 reloc->sym_ptr_ptr = XNEW (asymbol *);
7963 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
7964 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
7965
7966 if (fixp->fx_pcrel)
7967 {
7968 if (section->use_rela_p)
7969 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
7970 else
7971 fixp->fx_offset = reloc->address;
7972 }
7973 reloc->addend = fixp->fx_offset;
7974
7975 code = fixp->fx_r_type;
7976 switch (code)
7977 {
7978 case BFD_RELOC_16:
7979 if (fixp->fx_pcrel)
7980 code = BFD_RELOC_16_PCREL;
7981 break;
7982
7983 case BFD_RELOC_32:
7984 if (fixp->fx_pcrel)
7985 code = BFD_RELOC_32_PCREL;
7986 break;
7987
7988 case BFD_RELOC_64:
7989 if (fixp->fx_pcrel)
7990 code = BFD_RELOC_64_PCREL;
7991 break;
7992
7993 default:
7994 break;
7995 }
7996
7997 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
7998 if (reloc->howto == NULL)
7999 {
8000 as_bad_where (fixp->fx_file, fixp->fx_line,
8001 _
8002 ("cannot represent %s relocation in this object file format"),
8003 bfd_get_reloc_code_name (code));
8004 return NULL;
8005 }
8006
8007 return reloc;
8008 }
8009
8010 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
8011
8012 void
8013 cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
8014 {
8015 bfd_reloc_code_real_type type;
8016 int pcrel = 0;
8017
8018 /* Pick a reloc.
8019 FIXME: @@ Should look at CPU word size. */
8020 switch (size)
8021 {
8022 case 1:
8023 type = BFD_RELOC_8;
8024 break;
8025 case 2:
8026 type = BFD_RELOC_16;
8027 break;
8028 case 4:
8029 type = BFD_RELOC_32;
8030 break;
8031 case 8:
8032 type = BFD_RELOC_64;
8033 break;
8034 default:
8035 as_bad (_("cannot do %u-byte relocation"), size);
8036 type = BFD_RELOC_UNUSED;
8037 break;
8038 }
8039
8040 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
8041 }
8042
8043 int
8044 aarch64_force_relocation (struct fix *fixp)
8045 {
8046 switch (fixp->fx_r_type)
8047 {
8048 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
8049 /* Perform these "immediate" internal relocations
8050 even if the symbol is extern or weak. */
8051 return 0;
8052
8053 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
8054 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
8055 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
8056 /* Pseudo relocs that need to be fixed up according to
8057 ilp32_p. */
8058 return 0;
8059
8060 case BFD_RELOC_AARCH64_ADD_LO12:
8061 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
8062 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
8063 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
8064 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
8065 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
8066 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
8067 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
8068 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
8069 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
8070 case BFD_RELOC_AARCH64_LDST128_LO12:
8071 case BFD_RELOC_AARCH64_LDST16_LO12:
8072 case BFD_RELOC_AARCH64_LDST32_LO12:
8073 case BFD_RELOC_AARCH64_LDST64_LO12:
8074 case BFD_RELOC_AARCH64_LDST8_LO12:
8075 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
8076 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
8077 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
8078 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
8079 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
8080 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
8081 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
8082 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
8083 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
8084 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
8085 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
8086 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
8087 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
8088 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
8089 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
8090 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
8091 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
8092 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
8093 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
8094 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
8095 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
8096 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
8097 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
8098 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
8099 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
8100 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
8101 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
8102 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
8103 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
8104 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
8105 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
8106 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
8107 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
8108 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
8109 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
8110 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
8111 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
8112 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
8113 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
8114 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
8115 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
8116 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
8117 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
8118 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
8119 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
8120 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
8121 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
8122 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
8123 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
8124 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
8125 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
8126 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
8127 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
8128 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
8129 /* Always leave these relocations for the linker. */
8130 return 1;
8131
8132 default:
8133 break;
8134 }
8135
8136 return generic_force_reloc (fixp);
8137 }
8138
8139 #ifdef OBJ_ELF
8140
8141 /* Implement md_after_parse_args. This is the earliest time we need to decide
8142 ABI. If no -mabi specified, the ABI will be decided by target triplet. */
8143
8144 void
8145 aarch64_after_parse_args (void)
8146 {
8147 if (aarch64_abi != AARCH64_ABI_NONE)
8148 return;
8149
8150 /* DEFAULT_ARCH will have ":32" extension if it's configured for ILP32. */
8151 if (strlen (default_arch) > 7 && strcmp (default_arch + 7, ":32") == 0)
8152 aarch64_abi = AARCH64_ABI_ILP32;
8153 else
8154 aarch64_abi = AARCH64_ABI_LP64;
8155 }
8156
8157 const char *
8158 elf64_aarch64_target_format (void)
8159 {
8160 if (strcmp (TARGET_OS, "cloudabi") == 0)
8161 {
8162 /* FIXME: What to do for ilp32_p ? */
8163 return target_big_endian ? "elf64-bigaarch64-cloudabi" : "elf64-littleaarch64-cloudabi";
8164 }
8165 if (target_big_endian)
8166 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
8167 else
8168 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
8169 }
8170
8171 void
8172 aarch64elf_frob_symbol (symbolS * symp, int *puntp)
8173 {
8174 elf_frob_symbol (symp, puntp);
8175 }
8176 #endif
8177
8178 /* MD interface: Finalization. */
8179
8180 /* A good place to do this, although this was probably not intended
8181 for this kind of use. We need to dump the literal pool before
8182 references are made to a null symbol pointer. */
8183
8184 void
8185 aarch64_cleanup (void)
8186 {
8187 literal_pool *pool;
8188
8189 for (pool = list_of_pools; pool; pool = pool->next)
8190 {
8191 /* Put it at the end of the relevant section. */
8192 subseg_set (pool->section, pool->sub_section);
8193 s_ltorg (0);
8194 }
8195 }
8196
8197 #ifdef OBJ_ELF
8198 /* Remove any excess mapping symbols generated for alignment frags in
8199 SEC. We may have created a mapping symbol before a zero byte
8200 alignment; remove it if there's a mapping symbol after the
8201 alignment. */
8202 static void
8203 check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
8204 void *dummy ATTRIBUTE_UNUSED)
8205 {
8206 segment_info_type *seginfo = seg_info (sec);
8207 fragS *fragp;
8208
8209 if (seginfo == NULL || seginfo->frchainP == NULL)
8210 return;
8211
8212 for (fragp = seginfo->frchainP->frch_root;
8213 fragp != NULL; fragp = fragp->fr_next)
8214 {
8215 symbolS *sym = fragp->tc_frag_data.last_map;
8216 fragS *next = fragp->fr_next;
8217
8218 /* Variable-sized frags have been converted to fixed size by
8219 this point. But if this was variable-sized to start with,
8220 there will be a fixed-size frag after it. So don't handle
8221 next == NULL. */
8222 if (sym == NULL || next == NULL)
8223 continue;
8224
8225 if (S_GET_VALUE (sym) < next->fr_address)
8226 /* Not at the end of this frag. */
8227 continue;
8228 know (S_GET_VALUE (sym) == next->fr_address);
8229
8230 do
8231 {
8232 if (next->tc_frag_data.first_map != NULL)
8233 {
8234 /* Next frag starts with a mapping symbol. Discard this
8235 one. */
8236 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8237 break;
8238 }
8239
8240 if (next->fr_next == NULL)
8241 {
8242 /* This mapping symbol is at the end of the section. Discard
8243 it. */
8244 know (next->fr_fix == 0 && next->fr_var == 0);
8245 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8246 break;
8247 }
8248
8249 /* As long as we have empty frags without any mapping symbols,
8250 keep looking. */
8251 /* If the next frag is non-empty and does not start with a
8252 mapping symbol, then this mapping symbol is required. */
8253 if (next->fr_address != next->fr_next->fr_address)
8254 break;
8255
8256 next = next->fr_next;
8257 }
8258 while (next != NULL);
8259 }
8260 }
8261 #endif
8262
8263 /* Adjust the symbol table. */
8264
8265 void
8266 aarch64_adjust_symtab (void)
8267 {
8268 #ifdef OBJ_ELF
8269 /* Remove any overlapping mapping symbols generated by alignment frags. */
8270 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
8271 /* Now do generic ELF adjustments. */
8272 elf_adjust_symtab ();
8273 #endif
8274 }
8275
8276 static void
8277 checked_hash_insert (struct hash_control *table, const char *key, void *value)
8278 {
8279 const char *hash_err;
8280
8281 hash_err = hash_insert (table, key, value);
8282 if (hash_err)
8283 printf ("Internal Error: Can't hash %s\n", key);
8284 }
8285
8286 static void
8287 fill_instruction_hash_table (void)
8288 {
8289 aarch64_opcode *opcode = aarch64_opcode_table;
8290
8291 while (opcode->name != NULL)
8292 {
8293 templates *templ, *new_templ;
8294 templ = hash_find (aarch64_ops_hsh, opcode->name);
8295
8296 new_templ = XNEW (templates);
8297 new_templ->opcode = opcode;
8298 new_templ->next = NULL;
8299
8300 if (!templ)
8301 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
8302 else
8303 {
8304 new_templ->next = templ->next;
8305 templ->next = new_templ;
8306 }
8307 ++opcode;
8308 }
8309 }
8310
8311 static inline void
8312 convert_to_upper (char *dst, const char *src, size_t num)
8313 {
8314 unsigned int i;
8315 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
8316 *dst = TOUPPER (*src);
8317 *dst = '\0';
8318 }
8319
8320 /* Assume STR point to a lower-case string, allocate, convert and return
8321 the corresponding upper-case string. */
8322 static inline const char*
8323 get_upper_str (const char *str)
8324 {
8325 char *ret;
8326 size_t len = strlen (str);
8327 ret = XNEWVEC (char, len + 1);
8328 convert_to_upper (ret, str, len);
8329 return ret;
8330 }
8331
8332 /* MD interface: Initialization. */
8333
8334 void
8335 md_begin (void)
8336 {
8337 unsigned mach;
8338 unsigned int i;
8339
8340 if ((aarch64_ops_hsh = hash_new ()) == NULL
8341 || (aarch64_cond_hsh = hash_new ()) == NULL
8342 || (aarch64_shift_hsh = hash_new ()) == NULL
8343 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
8344 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
8345 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
8346 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
8347 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
8348 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
8349 || (aarch64_reg_hsh = hash_new ()) == NULL
8350 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
8351 || (aarch64_nzcv_hsh = hash_new ()) == NULL
8352 || (aarch64_pldop_hsh = hash_new ()) == NULL
8353 || (aarch64_hint_opt_hsh = hash_new ()) == NULL)
8354 as_fatal (_("virtual memory exhausted"));
8355
8356 fill_instruction_hash_table ();
8357
8358 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
8359 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
8360 (void *) (aarch64_sys_regs + i));
8361
8362 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
8363 checked_hash_insert (aarch64_pstatefield_hsh,
8364 aarch64_pstatefields[i].name,
8365 (void *) (aarch64_pstatefields + i));
8366
8367 for (i = 0; aarch64_sys_regs_ic[i].name != NULL; i++)
8368 checked_hash_insert (aarch64_sys_regs_ic_hsh,
8369 aarch64_sys_regs_ic[i].name,
8370 (void *) (aarch64_sys_regs_ic + i));
8371
8372 for (i = 0; aarch64_sys_regs_dc[i].name != NULL; i++)
8373 checked_hash_insert (aarch64_sys_regs_dc_hsh,
8374 aarch64_sys_regs_dc[i].name,
8375 (void *) (aarch64_sys_regs_dc + i));
8376
8377 for (i = 0; aarch64_sys_regs_at[i].name != NULL; i++)
8378 checked_hash_insert (aarch64_sys_regs_at_hsh,
8379 aarch64_sys_regs_at[i].name,
8380 (void *) (aarch64_sys_regs_at + i));
8381
8382 for (i = 0; aarch64_sys_regs_tlbi[i].name != NULL; i++)
8383 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
8384 aarch64_sys_regs_tlbi[i].name,
8385 (void *) (aarch64_sys_regs_tlbi + i));
8386
8387 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
8388 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
8389 (void *) (reg_names + i));
8390
8391 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
8392 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
8393 (void *) (nzcv_names + i));
8394
8395 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
8396 {
8397 const char *name = aarch64_operand_modifiers[i].name;
8398 checked_hash_insert (aarch64_shift_hsh, name,
8399 (void *) (aarch64_operand_modifiers + i));
8400 /* Also hash the name in the upper case. */
8401 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
8402 (void *) (aarch64_operand_modifiers + i));
8403 }
8404
8405 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
8406 {
8407 unsigned int j;
8408 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
8409 the same condition code. */
8410 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
8411 {
8412 const char *name = aarch64_conds[i].names[j];
8413 if (name == NULL)
8414 break;
8415 checked_hash_insert (aarch64_cond_hsh, name,
8416 (void *) (aarch64_conds + i));
8417 /* Also hash the name in the upper case. */
8418 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
8419 (void *) (aarch64_conds + i));
8420 }
8421 }
8422
8423 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
8424 {
8425 const char *name = aarch64_barrier_options[i].name;
8426 /* Skip xx00 - the unallocated values of option. */
8427 if ((i & 0x3) == 0)
8428 continue;
8429 checked_hash_insert (aarch64_barrier_opt_hsh, name,
8430 (void *) (aarch64_barrier_options + i));
8431 /* Also hash the name in the upper case. */
8432 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
8433 (void *) (aarch64_barrier_options + i));
8434 }
8435
8436 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
8437 {
8438 const char* name = aarch64_prfops[i].name;
8439 /* Skip the unallocated hint encodings. */
8440 if (name == NULL)
8441 continue;
8442 checked_hash_insert (aarch64_pldop_hsh, name,
8443 (void *) (aarch64_prfops + i));
8444 /* Also hash the name in the upper case. */
8445 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8446 (void *) (aarch64_prfops + i));
8447 }
8448
8449 for (i = 0; aarch64_hint_options[i].name != NULL; i++)
8450 {
8451 const char* name = aarch64_hint_options[i].name;
8452
8453 checked_hash_insert (aarch64_hint_opt_hsh, name,
8454 (void *) (aarch64_hint_options + i));
8455 /* Also hash the name in the upper case. */
8456 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8457 (void *) (aarch64_hint_options + i));
8458 }
8459
8460 /* Set the cpu variant based on the command-line options. */
8461 if (!mcpu_cpu_opt)
8462 mcpu_cpu_opt = march_cpu_opt;
8463
8464 if (!mcpu_cpu_opt)
8465 mcpu_cpu_opt = &cpu_default;
8466
8467 cpu_variant = *mcpu_cpu_opt;
8468
8469 /* Record the CPU type. */
8470 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
8471
8472 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
8473 }
8474
8475 /* Command line processing. */
8476
8477 const char *md_shortopts = "m:";
8478
8479 #ifdef AARCH64_BI_ENDIAN
8480 #define OPTION_EB (OPTION_MD_BASE + 0)
8481 #define OPTION_EL (OPTION_MD_BASE + 1)
8482 #else
8483 #if TARGET_BYTES_BIG_ENDIAN
8484 #define OPTION_EB (OPTION_MD_BASE + 0)
8485 #else
8486 #define OPTION_EL (OPTION_MD_BASE + 1)
8487 #endif
8488 #endif
8489
8490 struct option md_longopts[] = {
8491 #ifdef OPTION_EB
8492 {"EB", no_argument, NULL, OPTION_EB},
8493 #endif
8494 #ifdef OPTION_EL
8495 {"EL", no_argument, NULL, OPTION_EL},
8496 #endif
8497 {NULL, no_argument, NULL, 0}
8498 };
8499
8500 size_t md_longopts_size = sizeof (md_longopts);
8501
8502 struct aarch64_option_table
8503 {
8504 const char *option; /* Option name to match. */
8505 const char *help; /* Help information. */
8506 int *var; /* Variable to change. */
8507 int value; /* What to change it to. */
8508 char *deprecated; /* If non-null, print this message. */
8509 };
8510
8511 static struct aarch64_option_table aarch64_opts[] = {
8512 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
8513 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
8514 NULL},
8515 #ifdef DEBUG_AARCH64
8516 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
8517 #endif /* DEBUG_AARCH64 */
8518 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
8519 NULL},
8520 {"mno-verbose-error", N_("do not output verbose error messages"),
8521 &verbose_error_p, 0, NULL},
8522 {NULL, NULL, NULL, 0, NULL}
8523 };
8524
8525 struct aarch64_cpu_option_table
8526 {
8527 const char *name;
8528 const aarch64_feature_set value;
8529 /* The canonical name of the CPU, or NULL to use NAME converted to upper
8530 case. */
8531 const char *canonical_name;
8532 };
8533
8534 /* This list should, at a minimum, contain all the cpu names
8535 recognized by GCC. */
8536 static const struct aarch64_cpu_option_table aarch64_cpus[] = {
8537 {"all", AARCH64_ANY, NULL},
8538 {"cortex-a35", AARCH64_FEATURE (AARCH64_ARCH_V8,
8539 AARCH64_FEATURE_CRC), "Cortex-A35"},
8540 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
8541 AARCH64_FEATURE_CRC), "Cortex-A53"},
8542 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
8543 AARCH64_FEATURE_CRC), "Cortex-A57"},
8544 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
8545 AARCH64_FEATURE_CRC), "Cortex-A72"},
8546 {"cortex-a73", AARCH64_FEATURE (AARCH64_ARCH_V8,
8547 AARCH64_FEATURE_CRC), "Cortex-A73"},
8548 {"cortex-a55", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8549 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
8550 "Cortex-A55"},
8551 {"cortex-a75", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8552 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
8553 "Cortex-A75"},
8554 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
8555 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8556 "Samsung Exynos M1"},
8557 {"falkor", AARCH64_FEATURE (AARCH64_ARCH_V8,
8558 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
8559 | AARCH64_FEATURE_RDMA),
8560 "Qualcomm Falkor"},
8561 {"qdf24xx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8562 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
8563 | AARCH64_FEATURE_RDMA),
8564 "Qualcomm QDF24XX"},
8565 {"saphira", AARCH64_FEATURE (AARCH64_ARCH_V8_3,
8566 AARCH64_FEATURE_CRYPTO | AARCH64_FEATURE_PROFILE),
8567 "Qualcomm Saphira"},
8568 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8569 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8570 "Cavium ThunderX"},
8571 {"vulcan", AARCH64_FEATURE (AARCH64_ARCH_V8_1,
8572 AARCH64_FEATURE_CRYPTO),
8573 "Broadcom Vulcan"},
8574 /* The 'xgene-1' name is an older name for 'xgene1', which was used
8575 in earlier releases and is superseded by 'xgene1' in all
8576 tools. */
8577 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
8578 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
8579 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
8580 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
8581 {"generic", AARCH64_ARCH_V8, NULL},
8582
8583 {NULL, AARCH64_ARCH_NONE, NULL}
8584 };
8585
8586 struct aarch64_arch_option_table
8587 {
8588 const char *name;
8589 const aarch64_feature_set value;
8590 };
8591
8592 /* This list should, at a minimum, contain all the architecture names
8593 recognized by GCC. */
8594 static const struct aarch64_arch_option_table aarch64_archs[] = {
8595 {"all", AARCH64_ANY},
8596 {"armv8-a", AARCH64_ARCH_V8},
8597 {"armv8.1-a", AARCH64_ARCH_V8_1},
8598 {"armv8.2-a", AARCH64_ARCH_V8_2},
8599 {"armv8.3-a", AARCH64_ARCH_V8_3},
8600 {"armv8.4-a", AARCH64_ARCH_V8_4},
8601 {NULL, AARCH64_ARCH_NONE}
8602 };
8603
8604 /* ISA extensions. */
8605 struct aarch64_option_cpu_value_table
8606 {
8607 const char *name;
8608 const aarch64_feature_set value;
8609 const aarch64_feature_set require; /* Feature dependencies. */
8610 };
8611
8612 static const struct aarch64_option_cpu_value_table aarch64_features[] = {
8613 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0),
8614 AARCH64_ARCH_NONE},
8615 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO
8616 | AARCH64_FEATURE_AES
8617 | AARCH64_FEATURE_SHA2, 0),
8618 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
8619 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0),
8620 AARCH64_ARCH_NONE},
8621 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0),
8622 AARCH64_ARCH_NONE},
8623 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0),
8624 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
8625 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0),
8626 AARCH64_ARCH_NONE},
8627 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0),
8628 AARCH64_ARCH_NONE},
8629 {"ras", AARCH64_FEATURE (AARCH64_FEATURE_RAS, 0),
8630 AARCH64_ARCH_NONE},
8631 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_RDMA, 0),
8632 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
8633 {"fp16", AARCH64_FEATURE (AARCH64_FEATURE_F16, 0),
8634 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
8635 {"fp16fml", AARCH64_FEATURE (AARCH64_FEATURE_F16_FML, 0),
8636 AARCH64_FEATURE (AARCH64_FEATURE_FP
8637 | AARCH64_FEATURE_F16, 0)},
8638 {"profile", AARCH64_FEATURE (AARCH64_FEATURE_PROFILE, 0),
8639 AARCH64_ARCH_NONE},
8640 {"sve", AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0),
8641 AARCH64_FEATURE (AARCH64_FEATURE_F16
8642 | AARCH64_FEATURE_SIMD
8643 | AARCH64_FEATURE_COMPNUM, 0)},
8644 {"compnum", AARCH64_FEATURE (AARCH64_FEATURE_COMPNUM, 0),
8645 AARCH64_FEATURE (AARCH64_FEATURE_F16
8646 | AARCH64_FEATURE_SIMD, 0)},
8647 {"rcpc", AARCH64_FEATURE (AARCH64_FEATURE_RCPC, 0),
8648 AARCH64_ARCH_NONE},
8649 {"dotprod", AARCH64_FEATURE (AARCH64_FEATURE_DOTPROD, 0),
8650 AARCH64_ARCH_NONE},
8651 {"sha2", AARCH64_FEATURE (AARCH64_FEATURE_SHA2, 0),
8652 AARCH64_ARCH_NONE},
8653 {"aes", AARCH64_FEATURE (AARCH64_FEATURE_AES, 0),
8654 AARCH64_ARCH_NONE},
8655 {"sm4", AARCH64_FEATURE (AARCH64_FEATURE_SM4, 0),
8656 AARCH64_ARCH_NONE},
8657 {"sha3", AARCH64_FEATURE (AARCH64_FEATURE_SHA2
8658 | AARCH64_FEATURE_SHA3, 0),
8659 AARCH64_ARCH_NONE},
8660 {NULL, AARCH64_ARCH_NONE, AARCH64_ARCH_NONE},
8661 };
8662
8663 struct aarch64_long_option_table
8664 {
8665 const char *option; /* Substring to match. */
8666 const char *help; /* Help information. */
8667 int (*func) (const char *subopt); /* Function to decode sub-option. */
8668 char *deprecated; /* If non-null, print this message. */
8669 };
8670
8671 /* Transitive closure of features depending on set. */
8672 static aarch64_feature_set
8673 aarch64_feature_disable_set (aarch64_feature_set set)
8674 {
8675 const struct aarch64_option_cpu_value_table *opt;
8676 aarch64_feature_set prev = 0;
8677
8678 while (prev != set) {
8679 prev = set;
8680 for (opt = aarch64_features; opt->name != NULL; opt++)
8681 if (AARCH64_CPU_HAS_ANY_FEATURES (opt->require, set))
8682 AARCH64_MERGE_FEATURE_SETS (set, set, opt->value);
8683 }
8684 return set;
8685 }
8686
8687 /* Transitive closure of dependencies of set. */
8688 static aarch64_feature_set
8689 aarch64_feature_enable_set (aarch64_feature_set set)
8690 {
8691 const struct aarch64_option_cpu_value_table *opt;
8692 aarch64_feature_set prev = 0;
8693
8694 while (prev != set) {
8695 prev = set;
8696 for (opt = aarch64_features; opt->name != NULL; opt++)
8697 if (AARCH64_CPU_HAS_FEATURE (set, opt->value))
8698 AARCH64_MERGE_FEATURE_SETS (set, set, opt->require);
8699 }
8700 return set;
8701 }
8702
8703 static int
8704 aarch64_parse_features (const char *str, const aarch64_feature_set **opt_p,
8705 bfd_boolean ext_only)
8706 {
8707 /* We insist on extensions being added before being removed. We achieve
8708 this by using the ADDING_VALUE variable to indicate whether we are
8709 adding an extension (1) or removing it (0) and only allowing it to
8710 change in the order -1 -> 1 -> 0. */
8711 int adding_value = -1;
8712 aarch64_feature_set *ext_set = XNEW (aarch64_feature_set);
8713
8714 /* Copy the feature set, so that we can modify it. */
8715 *ext_set = **opt_p;
8716 *opt_p = ext_set;
8717
8718 while (str != NULL && *str != 0)
8719 {
8720 const struct aarch64_option_cpu_value_table *opt;
8721 const char *ext = NULL;
8722 int optlen;
8723
8724 if (!ext_only)
8725 {
8726 if (*str != '+')
8727 {
8728 as_bad (_("invalid architectural extension"));
8729 return 0;
8730 }
8731
8732 ext = strchr (++str, '+');
8733 }
8734
8735 if (ext != NULL)
8736 optlen = ext - str;
8737 else
8738 optlen = strlen (str);
8739
8740 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
8741 {
8742 if (adding_value != 0)
8743 adding_value = 0;
8744 optlen -= 2;
8745 str += 2;
8746 }
8747 else if (optlen > 0)
8748 {
8749 if (adding_value == -1)
8750 adding_value = 1;
8751 else if (adding_value != 1)
8752 {
8753 as_bad (_("must specify extensions to add before specifying "
8754 "those to remove"));
8755 return FALSE;
8756 }
8757 }
8758
8759 if (optlen == 0)
8760 {
8761 as_bad (_("missing architectural extension"));
8762 return 0;
8763 }
8764
8765 gas_assert (adding_value != -1);
8766
8767 for (opt = aarch64_features; opt->name != NULL; opt++)
8768 if (strncmp (opt->name, str, optlen) == 0)
8769 {
8770 aarch64_feature_set set;
8771
8772 /* Add or remove the extension. */
8773 if (adding_value)
8774 {
8775 set = aarch64_feature_enable_set (opt->value);
8776 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, set);
8777 }
8778 else
8779 {
8780 set = aarch64_feature_disable_set (opt->value);
8781 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, set);
8782 }
8783 break;
8784 }
8785
8786 if (opt->name == NULL)
8787 {
8788 as_bad (_("unknown architectural extension `%s'"), str);
8789 return 0;
8790 }
8791
8792 str = ext;
8793 };
8794
8795 return 1;
8796 }
8797
8798 static int
8799 aarch64_parse_cpu (const char *str)
8800 {
8801 const struct aarch64_cpu_option_table *opt;
8802 const char *ext = strchr (str, '+');
8803 size_t optlen;
8804
8805 if (ext != NULL)
8806 optlen = ext - str;
8807 else
8808 optlen = strlen (str);
8809
8810 if (optlen == 0)
8811 {
8812 as_bad (_("missing cpu name `%s'"), str);
8813 return 0;
8814 }
8815
8816 for (opt = aarch64_cpus; opt->name != NULL; opt++)
8817 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8818 {
8819 mcpu_cpu_opt = &opt->value;
8820 if (ext != NULL)
8821 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
8822
8823 return 1;
8824 }
8825
8826 as_bad (_("unknown cpu `%s'"), str);
8827 return 0;
8828 }
8829
8830 static int
8831 aarch64_parse_arch (const char *str)
8832 {
8833 const struct aarch64_arch_option_table *opt;
8834 const char *ext = strchr (str, '+');
8835 size_t optlen;
8836
8837 if (ext != NULL)
8838 optlen = ext - str;
8839 else
8840 optlen = strlen (str);
8841
8842 if (optlen == 0)
8843 {
8844 as_bad (_("missing architecture name `%s'"), str);
8845 return 0;
8846 }
8847
8848 for (opt = aarch64_archs; opt->name != NULL; opt++)
8849 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8850 {
8851 march_cpu_opt = &opt->value;
8852 if (ext != NULL)
8853 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
8854
8855 return 1;
8856 }
8857
8858 as_bad (_("unknown architecture `%s'\n"), str);
8859 return 0;
8860 }
8861
8862 /* ABIs. */
8863 struct aarch64_option_abi_value_table
8864 {
8865 const char *name;
8866 enum aarch64_abi_type value;
8867 };
8868
8869 static const struct aarch64_option_abi_value_table aarch64_abis[] = {
8870 {"ilp32", AARCH64_ABI_ILP32},
8871 {"lp64", AARCH64_ABI_LP64},
8872 };
8873
8874 static int
8875 aarch64_parse_abi (const char *str)
8876 {
8877 unsigned int i;
8878
8879 if (str[0] == '\0')
8880 {
8881 as_bad (_("missing abi name `%s'"), str);
8882 return 0;
8883 }
8884
8885 for (i = 0; i < ARRAY_SIZE (aarch64_abis); i++)
8886 if (strcmp (str, aarch64_abis[i].name) == 0)
8887 {
8888 aarch64_abi = aarch64_abis[i].value;
8889 return 1;
8890 }
8891
8892 as_bad (_("unknown abi `%s'\n"), str);
8893 return 0;
8894 }
8895
8896 static struct aarch64_long_option_table aarch64_long_opts[] = {
8897 #ifdef OBJ_ELF
8898 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
8899 aarch64_parse_abi, NULL},
8900 #endif /* OBJ_ELF */
8901 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
8902 aarch64_parse_cpu, NULL},
8903 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
8904 aarch64_parse_arch, NULL},
8905 {NULL, NULL, 0, NULL}
8906 };
8907
8908 int
8909 md_parse_option (int c, const char *arg)
8910 {
8911 struct aarch64_option_table *opt;
8912 struct aarch64_long_option_table *lopt;
8913
8914 switch (c)
8915 {
8916 #ifdef OPTION_EB
8917 case OPTION_EB:
8918 target_big_endian = 1;
8919 break;
8920 #endif
8921
8922 #ifdef OPTION_EL
8923 case OPTION_EL:
8924 target_big_endian = 0;
8925 break;
8926 #endif
8927
8928 case 'a':
8929 /* Listing option. Just ignore these, we don't support additional
8930 ones. */
8931 return 0;
8932
8933 default:
8934 for (opt = aarch64_opts; opt->option != NULL; opt++)
8935 {
8936 if (c == opt->option[0]
8937 && ((arg == NULL && opt->option[1] == 0)
8938 || streq (arg, opt->option + 1)))
8939 {
8940 /* If the option is deprecated, tell the user. */
8941 if (opt->deprecated != NULL)
8942 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
8943 arg ? arg : "", _(opt->deprecated));
8944
8945 if (opt->var != NULL)
8946 *opt->var = opt->value;
8947
8948 return 1;
8949 }
8950 }
8951
8952 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8953 {
8954 /* These options are expected to have an argument. */
8955 if (c == lopt->option[0]
8956 && arg != NULL
8957 && strncmp (arg, lopt->option + 1,
8958 strlen (lopt->option + 1)) == 0)
8959 {
8960 /* If the option is deprecated, tell the user. */
8961 if (lopt->deprecated != NULL)
8962 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
8963 _(lopt->deprecated));
8964
8965 /* Call the sup-option parser. */
8966 return lopt->func (arg + strlen (lopt->option) - 1);
8967 }
8968 }
8969
8970 return 0;
8971 }
8972
8973 return 1;
8974 }
8975
8976 void
8977 md_show_usage (FILE * fp)
8978 {
8979 struct aarch64_option_table *opt;
8980 struct aarch64_long_option_table *lopt;
8981
8982 fprintf (fp, _(" AArch64-specific assembler options:\n"));
8983
8984 for (opt = aarch64_opts; opt->option != NULL; opt++)
8985 if (opt->help != NULL)
8986 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
8987
8988 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8989 if (lopt->help != NULL)
8990 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
8991
8992 #ifdef OPTION_EB
8993 fprintf (fp, _("\
8994 -EB assemble code for a big-endian cpu\n"));
8995 #endif
8996
8997 #ifdef OPTION_EL
8998 fprintf (fp, _("\
8999 -EL assemble code for a little-endian cpu\n"));
9000 #endif
9001 }
9002
9003 /* Parse a .cpu directive. */
9004
9005 static void
9006 s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
9007 {
9008 const struct aarch64_cpu_option_table *opt;
9009 char saved_char;
9010 char *name;
9011 char *ext;
9012 size_t optlen;
9013
9014 name = input_line_pointer;
9015 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9016 input_line_pointer++;
9017 saved_char = *input_line_pointer;
9018 *input_line_pointer = 0;
9019
9020 ext = strchr (name, '+');
9021
9022 if (ext != NULL)
9023 optlen = ext - name;
9024 else
9025 optlen = strlen (name);
9026
9027 /* Skip the first "all" entry. */
9028 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
9029 if (strlen (opt->name) == optlen
9030 && strncmp (name, opt->name, optlen) == 0)
9031 {
9032 mcpu_cpu_opt = &opt->value;
9033 if (ext != NULL)
9034 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
9035 return;
9036
9037 cpu_variant = *mcpu_cpu_opt;
9038
9039 *input_line_pointer = saved_char;
9040 demand_empty_rest_of_line ();
9041 return;
9042 }
9043 as_bad (_("unknown cpu `%s'"), name);
9044 *input_line_pointer = saved_char;
9045 ignore_rest_of_line ();
9046 }
9047
9048
9049 /* Parse a .arch directive. */
9050
9051 static void
9052 s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
9053 {
9054 const struct aarch64_arch_option_table *opt;
9055 char saved_char;
9056 char *name;
9057 char *ext;
9058 size_t optlen;
9059
9060 name = input_line_pointer;
9061 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9062 input_line_pointer++;
9063 saved_char = *input_line_pointer;
9064 *input_line_pointer = 0;
9065
9066 ext = strchr (name, '+');
9067
9068 if (ext != NULL)
9069 optlen = ext - name;
9070 else
9071 optlen = strlen (name);
9072
9073 /* Skip the first "all" entry. */
9074 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
9075 if (strlen (opt->name) == optlen
9076 && strncmp (name, opt->name, optlen) == 0)
9077 {
9078 mcpu_cpu_opt = &opt->value;
9079 if (ext != NULL)
9080 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
9081 return;
9082
9083 cpu_variant = *mcpu_cpu_opt;
9084
9085 *input_line_pointer = saved_char;
9086 demand_empty_rest_of_line ();
9087 return;
9088 }
9089
9090 as_bad (_("unknown architecture `%s'\n"), name);
9091 *input_line_pointer = saved_char;
9092 ignore_rest_of_line ();
9093 }
9094
9095 /* Parse a .arch_extension directive. */
9096
9097 static void
9098 s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
9099 {
9100 char saved_char;
9101 char *ext = input_line_pointer;;
9102
9103 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9104 input_line_pointer++;
9105 saved_char = *input_line_pointer;
9106 *input_line_pointer = 0;
9107
9108 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
9109 return;
9110
9111 cpu_variant = *mcpu_cpu_opt;
9112
9113 *input_line_pointer = saved_char;
9114 demand_empty_rest_of_line ();
9115 }
9116
9117 /* Copy symbol information. */
9118
9119 void
9120 aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
9121 {
9122 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
9123 }
This page took 0.384573 seconds and 5 git commands to generate.