[AArch64][SVE 31/32] Add SVE instructions
[deliverable/binutils-gdb.git] / gas / config / tc-aarch64.c
1 /* tc-aarch64.c -- Assemble for the AArch64 ISA
2
3 Copyright (C) 2009-2016 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22 #include "as.h"
23 #include <limits.h>
24 #include <stdarg.h>
25 #include "bfd_stdint.h"
26 #define NO_RELOC 0
27 #include "safe-ctype.h"
28 #include "subsegs.h"
29 #include "obstack.h"
30
31 #ifdef OBJ_ELF
32 #include "elf/aarch64.h"
33 #include "dw2gencfi.h"
34 #endif
35
36 #include "dwarf2dbg.h"
37
38 /* Types of processor to assemble for. */
39 #ifndef CPU_DEFAULT
40 #define CPU_DEFAULT AARCH64_ARCH_V8
41 #endif
42
43 #define streq(a, b) (strcmp (a, b) == 0)
44
45 #define END_OF_INSN '\0'
46
47 static aarch64_feature_set cpu_variant;
48
49 /* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52 static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53 static const aarch64_feature_set *march_cpu_opt = NULL;
54
55 /* Constants for known architecture features. */
56 static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
58 #ifdef OBJ_ELF
59 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
60 static symbolS *GOT_symbol;
61
62 /* Which ABI to use. */
63 enum aarch64_abi_type
64 {
65 AARCH64_ABI_LP64 = 0,
66 AARCH64_ABI_ILP32 = 1
67 };
68
69 /* AArch64 ABI for the output file. */
70 static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_LP64;
71
72 /* When non-zero, program to a 32-bit model, in which the C data types
73 int, long and all pointer types are 32-bit objects (ILP32); or to a
74 64-bit model, in which the C int type is 32-bits but the C long type
75 and all pointer types are 64-bit objects (LP64). */
76 #define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
77 #endif
78
79 enum vector_el_type
80 {
81 NT_invtype = -1,
82 NT_b,
83 NT_h,
84 NT_s,
85 NT_d,
86 NT_q,
87 NT_zero,
88 NT_merge
89 };
90
91 /* Bits for DEFINED field in vector_type_el. */
92 #define NTA_HASTYPE 1
93 #define NTA_HASINDEX 2
94 #define NTA_HASVARWIDTH 4
95
96 struct vector_type_el
97 {
98 enum vector_el_type type;
99 unsigned char defined;
100 unsigned width;
101 int64_t index;
102 };
103
104 #define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
105
106 struct reloc
107 {
108 bfd_reloc_code_real_type type;
109 expressionS exp;
110 int pc_rel;
111 enum aarch64_opnd opnd;
112 uint32_t flags;
113 unsigned need_libopcodes_p : 1;
114 };
115
116 struct aarch64_instruction
117 {
118 /* libopcodes structure for instruction intermediate representation. */
119 aarch64_inst base;
120 /* Record assembly errors found during the parsing. */
121 struct
122 {
123 enum aarch64_operand_error_kind kind;
124 const char *error;
125 } parsing_error;
126 /* The condition that appears in the assembly line. */
127 int cond;
128 /* Relocation information (including the GAS internal fixup). */
129 struct reloc reloc;
130 /* Need to generate an immediate in the literal pool. */
131 unsigned gen_lit_pool : 1;
132 };
133
134 typedef struct aarch64_instruction aarch64_instruction;
135
136 static aarch64_instruction inst;
137
138 static bfd_boolean parse_operands (char *, const aarch64_opcode *);
139 static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
140
141 /* Diagnostics inline function utilites.
142
143 These are lightweight utlities which should only be called by parse_operands
144 and other parsers. GAS processes each assembly line by parsing it against
145 instruction template(s), in the case of multiple templates (for the same
146 mnemonic name), those templates are tried one by one until one succeeds or
147 all fail. An assembly line may fail a few templates before being
148 successfully parsed; an error saved here in most cases is not a user error
149 but an error indicating the current template is not the right template.
150 Therefore it is very important that errors can be saved at a low cost during
151 the parsing; we don't want to slow down the whole parsing by recording
152 non-user errors in detail.
153
154 Remember that the objective is to help GAS pick up the most approapriate
155 error message in the case of multiple templates, e.g. FMOV which has 8
156 templates. */
157
158 static inline void
159 clear_error (void)
160 {
161 inst.parsing_error.kind = AARCH64_OPDE_NIL;
162 inst.parsing_error.error = NULL;
163 }
164
165 static inline bfd_boolean
166 error_p (void)
167 {
168 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
169 }
170
171 static inline const char *
172 get_error_message (void)
173 {
174 return inst.parsing_error.error;
175 }
176
177 static inline enum aarch64_operand_error_kind
178 get_error_kind (void)
179 {
180 return inst.parsing_error.kind;
181 }
182
183 static inline void
184 set_error (enum aarch64_operand_error_kind kind, const char *error)
185 {
186 inst.parsing_error.kind = kind;
187 inst.parsing_error.error = error;
188 }
189
190 static inline void
191 set_recoverable_error (const char *error)
192 {
193 set_error (AARCH64_OPDE_RECOVERABLE, error);
194 }
195
196 /* Use the DESC field of the corresponding aarch64_operand entry to compose
197 the error message. */
198 static inline void
199 set_default_error (void)
200 {
201 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
202 }
203
204 static inline void
205 set_syntax_error (const char *error)
206 {
207 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
208 }
209
210 static inline void
211 set_first_syntax_error (const char *error)
212 {
213 if (! error_p ())
214 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
215 }
216
217 static inline void
218 set_fatal_syntax_error (const char *error)
219 {
220 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
221 }
222 \f
223 /* Number of littlenums required to hold an extended precision number. */
224 #define MAX_LITTLENUMS 6
225
226 /* Return value for certain parsers when the parsing fails; those parsers
227 return the information of the parsed result, e.g. register number, on
228 success. */
229 #define PARSE_FAIL -1
230
231 /* This is an invalid condition code that means no conditional field is
232 present. */
233 #define COND_ALWAYS 0x10
234
235 typedef struct
236 {
237 const char *template;
238 unsigned long value;
239 } asm_barrier_opt;
240
241 typedef struct
242 {
243 const char *template;
244 uint32_t value;
245 } asm_nzcv;
246
247 struct reloc_entry
248 {
249 char *name;
250 bfd_reloc_code_real_type reloc;
251 };
252
253 /* Macros to define the register types and masks for the purpose
254 of parsing. */
255
256 #undef AARCH64_REG_TYPES
257 #define AARCH64_REG_TYPES \
258 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
259 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
260 BASIC_REG_TYPE(SP_32) /* wsp */ \
261 BASIC_REG_TYPE(SP_64) /* sp */ \
262 BASIC_REG_TYPE(Z_32) /* wzr */ \
263 BASIC_REG_TYPE(Z_64) /* xzr */ \
264 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
265 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
266 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
267 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
268 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
269 BASIC_REG_TYPE(CN) /* c[0-7] */ \
270 BASIC_REG_TYPE(VN) /* v[0-31] */ \
271 BASIC_REG_TYPE(ZN) /* z[0-31] */ \
272 BASIC_REG_TYPE(PN) /* p[0-15] */ \
273 /* Typecheck: any 64-bit int reg (inc SP exc XZR). */ \
274 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
275 /* Typecheck: same, plus SVE registers. */ \
276 MULTI_REG_TYPE(SVE_BASE, REG_TYPE(R_64) | REG_TYPE(SP_64) \
277 | REG_TYPE(ZN)) \
278 /* Typecheck: x[0-30], w[0-30] or [xw]zr. */ \
279 MULTI_REG_TYPE(R_Z, REG_TYPE(R_32) | REG_TYPE(R_64) \
280 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
281 /* Typecheck: same, plus SVE registers. */ \
282 MULTI_REG_TYPE(SVE_OFFSET, REG_TYPE(R_32) | REG_TYPE(R_64) \
283 | REG_TYPE(Z_32) | REG_TYPE(Z_64) \
284 | REG_TYPE(ZN)) \
285 /* Typecheck: x[0-30], w[0-30] or {w}sp. */ \
286 MULTI_REG_TYPE(R_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
287 | REG_TYPE(SP_32) | REG_TYPE(SP_64)) \
288 /* Typecheck: any int (inc {W}SP inc [WX]ZR). */ \
289 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
290 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
291 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
292 /* Typecheck: any [BHSDQ]P FP. */ \
293 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
294 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
295 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR). */ \
296 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
297 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
298 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
299 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
300 /* Typecheck: as above, but also Zn and Pn. This should only be \
301 used for SVE instructions, since Zn and Pn are valid symbols \
302 in other contexts. */ \
303 MULTI_REG_TYPE(R_Z_BHSDQ_VZP, REG_TYPE(R_32) | REG_TYPE(R_64) \
304 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
305 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
306 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q) \
307 | REG_TYPE(ZN) | REG_TYPE(PN)) \
308 /* Any integer register; used for error messages only. */ \
309 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
310 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
311 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
312 /* Pseudo type to mark the end of the enumerator sequence. */ \
313 BASIC_REG_TYPE(MAX)
314
315 #undef BASIC_REG_TYPE
316 #define BASIC_REG_TYPE(T) REG_TYPE_##T,
317 #undef MULTI_REG_TYPE
318 #define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
319
320 /* Register type enumerators. */
321 typedef enum aarch64_reg_type_
322 {
323 /* A list of REG_TYPE_*. */
324 AARCH64_REG_TYPES
325 } aarch64_reg_type;
326
327 #undef BASIC_REG_TYPE
328 #define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
329 #undef REG_TYPE
330 #define REG_TYPE(T) (1 << REG_TYPE_##T)
331 #undef MULTI_REG_TYPE
332 #define MULTI_REG_TYPE(T,V) V,
333
334 /* Structure for a hash table entry for a register. */
335 typedef struct
336 {
337 const char *name;
338 unsigned char number;
339 ENUM_BITFIELD (aarch64_reg_type_) type : 8;
340 unsigned char builtin;
341 } reg_entry;
342
343 /* Values indexed by aarch64_reg_type to assist the type checking. */
344 static const unsigned reg_type_masks[] =
345 {
346 AARCH64_REG_TYPES
347 };
348
349 #undef BASIC_REG_TYPE
350 #undef REG_TYPE
351 #undef MULTI_REG_TYPE
352 #undef AARCH64_REG_TYPES
353
354 /* Diagnostics used when we don't get a register of the expected type.
355 Note: this has to synchronized with aarch64_reg_type definitions
356 above. */
357 static const char *
358 get_reg_expected_msg (aarch64_reg_type reg_type)
359 {
360 const char *msg;
361
362 switch (reg_type)
363 {
364 case REG_TYPE_R_32:
365 msg = N_("integer 32-bit register expected");
366 break;
367 case REG_TYPE_R_64:
368 msg = N_("integer 64-bit register expected");
369 break;
370 case REG_TYPE_R_N:
371 msg = N_("integer register expected");
372 break;
373 case REG_TYPE_R64_SP:
374 msg = N_("64-bit integer or SP register expected");
375 break;
376 case REG_TYPE_SVE_BASE:
377 msg = N_("base register expected");
378 break;
379 case REG_TYPE_R_Z:
380 msg = N_("integer or zero register expected");
381 break;
382 case REG_TYPE_SVE_OFFSET:
383 msg = N_("offset register expected");
384 break;
385 case REG_TYPE_R_SP:
386 msg = N_("integer or SP register expected");
387 break;
388 case REG_TYPE_R_Z_SP:
389 msg = N_("integer, zero or SP register expected");
390 break;
391 case REG_TYPE_FP_B:
392 msg = N_("8-bit SIMD scalar register expected");
393 break;
394 case REG_TYPE_FP_H:
395 msg = N_("16-bit SIMD scalar or floating-point half precision "
396 "register expected");
397 break;
398 case REG_TYPE_FP_S:
399 msg = N_("32-bit SIMD scalar or floating-point single precision "
400 "register expected");
401 break;
402 case REG_TYPE_FP_D:
403 msg = N_("64-bit SIMD scalar or floating-point double precision "
404 "register expected");
405 break;
406 case REG_TYPE_FP_Q:
407 msg = N_("128-bit SIMD scalar or floating-point quad precision "
408 "register expected");
409 break;
410 case REG_TYPE_CN:
411 msg = N_("C0 - C15 expected");
412 break;
413 case REG_TYPE_R_Z_BHSDQ_V:
414 case REG_TYPE_R_Z_BHSDQ_VZP:
415 msg = N_("register expected");
416 break;
417 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
418 msg = N_("SIMD scalar or floating-point register expected");
419 break;
420 case REG_TYPE_VN: /* any V reg */
421 msg = N_("vector register expected");
422 break;
423 case REG_TYPE_ZN:
424 msg = N_("SVE vector register expected");
425 break;
426 case REG_TYPE_PN:
427 msg = N_("SVE predicate register expected");
428 break;
429 default:
430 as_fatal (_("invalid register type %d"), reg_type);
431 }
432 return msg;
433 }
434
435 /* Some well known registers that we refer to directly elsewhere. */
436 #define REG_SP 31
437
438 /* Instructions take 4 bytes in the object file. */
439 #define INSN_SIZE 4
440
441 static struct hash_control *aarch64_ops_hsh;
442 static struct hash_control *aarch64_cond_hsh;
443 static struct hash_control *aarch64_shift_hsh;
444 static struct hash_control *aarch64_sys_regs_hsh;
445 static struct hash_control *aarch64_pstatefield_hsh;
446 static struct hash_control *aarch64_sys_regs_ic_hsh;
447 static struct hash_control *aarch64_sys_regs_dc_hsh;
448 static struct hash_control *aarch64_sys_regs_at_hsh;
449 static struct hash_control *aarch64_sys_regs_tlbi_hsh;
450 static struct hash_control *aarch64_reg_hsh;
451 static struct hash_control *aarch64_barrier_opt_hsh;
452 static struct hash_control *aarch64_nzcv_hsh;
453 static struct hash_control *aarch64_pldop_hsh;
454 static struct hash_control *aarch64_hint_opt_hsh;
455
456 /* Stuff needed to resolve the label ambiguity
457 As:
458 ...
459 label: <insn>
460 may differ from:
461 ...
462 label:
463 <insn> */
464
465 static symbolS *last_label_seen;
466
467 /* Literal pool structure. Held on a per-section
468 and per-sub-section basis. */
469
470 #define MAX_LITERAL_POOL_SIZE 1024
471 typedef struct literal_expression
472 {
473 expressionS exp;
474 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
475 LITTLENUM_TYPE * bignum;
476 } literal_expression;
477
478 typedef struct literal_pool
479 {
480 literal_expression literals[MAX_LITERAL_POOL_SIZE];
481 unsigned int next_free_entry;
482 unsigned int id;
483 symbolS *symbol;
484 segT section;
485 subsegT sub_section;
486 int size;
487 struct literal_pool *next;
488 } literal_pool;
489
490 /* Pointer to a linked list of literal pools. */
491 static literal_pool *list_of_pools = NULL;
492 \f
493 /* Pure syntax. */
494
495 /* This array holds the chars that always start a comment. If the
496 pre-processor is disabled, these aren't very useful. */
497 const char comment_chars[] = "";
498
499 /* This array holds the chars that only start a comment at the beginning of
500 a line. If the line seems to have the form '# 123 filename'
501 .line and .file directives will appear in the pre-processed output. */
502 /* Note that input_file.c hand checks for '#' at the beginning of the
503 first line of the input file. This is because the compiler outputs
504 #NO_APP at the beginning of its output. */
505 /* Also note that comments like this one will always work. */
506 const char line_comment_chars[] = "#";
507
508 const char line_separator_chars[] = ";";
509
510 /* Chars that can be used to separate mant
511 from exp in floating point numbers. */
512 const char EXP_CHARS[] = "eE";
513
514 /* Chars that mean this number is a floating point constant. */
515 /* As in 0f12.456 */
516 /* or 0d1.2345e12 */
517
518 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
519
520 /* Prefix character that indicates the start of an immediate value. */
521 #define is_immediate_prefix(C) ((C) == '#')
522
523 /* Separator character handling. */
524
525 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
526
527 static inline bfd_boolean
528 skip_past_char (char **str, char c)
529 {
530 if (**str == c)
531 {
532 (*str)++;
533 return TRUE;
534 }
535 else
536 return FALSE;
537 }
538
539 #define skip_past_comma(str) skip_past_char (str, ',')
540
541 /* Arithmetic expressions (possibly involving symbols). */
542
543 static bfd_boolean in_my_get_expression_p = FALSE;
544
545 /* Third argument to my_get_expression. */
546 #define GE_NO_PREFIX 0
547 #define GE_OPT_PREFIX 1
548
549 /* Return TRUE if the string pointed by *STR is successfully parsed
550 as an valid expression; *EP will be filled with the information of
551 such an expression. Otherwise return FALSE. */
552
553 static bfd_boolean
554 my_get_expression (expressionS * ep, char **str, int prefix_mode,
555 int reject_absent)
556 {
557 char *save_in;
558 segT seg;
559 int prefix_present_p = 0;
560
561 switch (prefix_mode)
562 {
563 case GE_NO_PREFIX:
564 break;
565 case GE_OPT_PREFIX:
566 if (is_immediate_prefix (**str))
567 {
568 (*str)++;
569 prefix_present_p = 1;
570 }
571 break;
572 default:
573 abort ();
574 }
575
576 memset (ep, 0, sizeof (expressionS));
577
578 save_in = input_line_pointer;
579 input_line_pointer = *str;
580 in_my_get_expression_p = TRUE;
581 seg = expression (ep);
582 in_my_get_expression_p = FALSE;
583
584 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
585 {
586 /* We found a bad expression in md_operand(). */
587 *str = input_line_pointer;
588 input_line_pointer = save_in;
589 if (prefix_present_p && ! error_p ())
590 set_fatal_syntax_error (_("bad expression"));
591 else
592 set_first_syntax_error (_("bad expression"));
593 return FALSE;
594 }
595
596 #ifdef OBJ_AOUT
597 if (seg != absolute_section
598 && seg != text_section
599 && seg != data_section
600 && seg != bss_section && seg != undefined_section)
601 {
602 set_syntax_error (_("bad segment"));
603 *str = input_line_pointer;
604 input_line_pointer = save_in;
605 return FALSE;
606 }
607 #else
608 (void) seg;
609 #endif
610
611 *str = input_line_pointer;
612 input_line_pointer = save_in;
613 return TRUE;
614 }
615
616 /* Turn a string in input_line_pointer into a floating point constant
617 of type TYPE, and store the appropriate bytes in *LITP. The number
618 of LITTLENUMS emitted is stored in *SIZEP. An error message is
619 returned, or NULL on OK. */
620
621 const char *
622 md_atof (int type, char *litP, int *sizeP)
623 {
624 return ieee_md_atof (type, litP, sizeP, target_big_endian);
625 }
626
627 /* We handle all bad expressions here, so that we can report the faulty
628 instruction in the error message. */
629 void
630 md_operand (expressionS * exp)
631 {
632 if (in_my_get_expression_p)
633 exp->X_op = O_illegal;
634 }
635
636 /* Immediate values. */
637
638 /* Errors may be set multiple times during parsing or bit encoding
639 (particularly in the Neon bits), but usually the earliest error which is set
640 will be the most meaningful. Avoid overwriting it with later (cascading)
641 errors by calling this function. */
642
643 static void
644 first_error (const char *error)
645 {
646 if (! error_p ())
647 set_syntax_error (error);
648 }
649
650 /* Similiar to first_error, but this function accepts formatted error
651 message. */
652 static void
653 first_error_fmt (const char *format, ...)
654 {
655 va_list args;
656 enum
657 { size = 100 };
658 /* N.B. this single buffer will not cause error messages for different
659 instructions to pollute each other; this is because at the end of
660 processing of each assembly line, error message if any will be
661 collected by as_bad. */
662 static char buffer[size];
663
664 if (! error_p ())
665 {
666 int ret ATTRIBUTE_UNUSED;
667 va_start (args, format);
668 ret = vsnprintf (buffer, size, format, args);
669 know (ret <= size - 1 && ret >= 0);
670 va_end (args);
671 set_syntax_error (buffer);
672 }
673 }
674
675 /* Register parsing. */
676
677 /* Generic register parser which is called by other specialized
678 register parsers.
679 CCP points to what should be the beginning of a register name.
680 If it is indeed a valid register name, advance CCP over it and
681 return the reg_entry structure; otherwise return NULL.
682 It does not issue diagnostics. */
683
684 static reg_entry *
685 parse_reg (char **ccp)
686 {
687 char *start = *ccp;
688 char *p;
689 reg_entry *reg;
690
691 #ifdef REGISTER_PREFIX
692 if (*start != REGISTER_PREFIX)
693 return NULL;
694 start++;
695 #endif
696
697 p = start;
698 if (!ISALPHA (*p) || !is_name_beginner (*p))
699 return NULL;
700
701 do
702 p++;
703 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
704
705 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
706
707 if (!reg)
708 return NULL;
709
710 *ccp = p;
711 return reg;
712 }
713
714 /* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
715 return FALSE. */
716 static bfd_boolean
717 aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
718 {
719 return (reg_type_masks[type] & (1 << reg->type)) != 0;
720 }
721
722 /* Try to parse a base or offset register. Allow SVE base and offset
723 registers if REG_TYPE includes SVE registers. Return the register
724 entry on success, setting *QUALIFIER to the register qualifier.
725 Return null otherwise.
726
727 Note that this function does not issue any diagnostics. */
728
729 static const reg_entry *
730 aarch64_addr_reg_parse (char **ccp, aarch64_reg_type reg_type,
731 aarch64_opnd_qualifier_t *qualifier)
732 {
733 char *str = *ccp;
734 const reg_entry *reg = parse_reg (&str);
735
736 if (reg == NULL)
737 return NULL;
738
739 switch (reg->type)
740 {
741 case REG_TYPE_R_32:
742 case REG_TYPE_SP_32:
743 case REG_TYPE_Z_32:
744 *qualifier = AARCH64_OPND_QLF_W;
745 break;
746
747 case REG_TYPE_R_64:
748 case REG_TYPE_SP_64:
749 case REG_TYPE_Z_64:
750 *qualifier = AARCH64_OPND_QLF_X;
751 break;
752
753 case REG_TYPE_ZN:
754 if ((reg_type_masks[reg_type] & (1 << REG_TYPE_ZN)) == 0
755 || str[0] != '.')
756 return NULL;
757 switch (TOLOWER (str[1]))
758 {
759 case 's':
760 *qualifier = AARCH64_OPND_QLF_S_S;
761 break;
762 case 'd':
763 *qualifier = AARCH64_OPND_QLF_S_D;
764 break;
765 default:
766 return NULL;
767 }
768 str += 2;
769 break;
770
771 default:
772 return NULL;
773 }
774
775 *ccp = str;
776
777 return reg;
778 }
779
780 /* Try to parse a base or offset register. Return the register entry
781 on success, setting *QUALIFIER to the register qualifier. Return null
782 otherwise.
783
784 Note that this function does not issue any diagnostics. */
785
786 static const reg_entry *
787 aarch64_reg_parse_32_64 (char **ccp, aarch64_opnd_qualifier_t *qualifier)
788 {
789 return aarch64_addr_reg_parse (ccp, REG_TYPE_R_Z_SP, qualifier);
790 }
791
792 /* Parse the qualifier of a vector register or vector element of type
793 REG_TYPE. Fill in *PARSED_TYPE and return TRUE if the parsing
794 succeeds; otherwise return FALSE.
795
796 Accept only one occurrence of:
797 8b 16b 2h 4h 8h 2s 4s 1d 2d
798 b h s d q */
799 static bfd_boolean
800 parse_vector_type_for_operand (aarch64_reg_type reg_type,
801 struct vector_type_el *parsed_type, char **str)
802 {
803 char *ptr = *str;
804 unsigned width;
805 unsigned element_size;
806 enum vector_el_type type;
807
808 /* skip '.' */
809 gas_assert (*ptr == '.');
810 ptr++;
811
812 if (reg_type == REG_TYPE_ZN || reg_type == REG_TYPE_PN || !ISDIGIT (*ptr))
813 {
814 width = 0;
815 goto elt_size;
816 }
817 width = strtoul (ptr, &ptr, 10);
818 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
819 {
820 first_error_fmt (_("bad size %d in vector width specifier"), width);
821 return FALSE;
822 }
823
824 elt_size:
825 switch (TOLOWER (*ptr))
826 {
827 case 'b':
828 type = NT_b;
829 element_size = 8;
830 break;
831 case 'h':
832 type = NT_h;
833 element_size = 16;
834 break;
835 case 's':
836 type = NT_s;
837 element_size = 32;
838 break;
839 case 'd':
840 type = NT_d;
841 element_size = 64;
842 break;
843 case 'q':
844 if (width == 1)
845 {
846 type = NT_q;
847 element_size = 128;
848 break;
849 }
850 /* fall through. */
851 default:
852 if (*ptr != '\0')
853 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
854 else
855 first_error (_("missing element size"));
856 return FALSE;
857 }
858 if (width != 0 && width * element_size != 64 && width * element_size != 128
859 && !(width == 2 && element_size == 16))
860 {
861 first_error_fmt (_
862 ("invalid element size %d and vector size combination %c"),
863 width, *ptr);
864 return FALSE;
865 }
866 ptr++;
867
868 parsed_type->type = type;
869 parsed_type->width = width;
870
871 *str = ptr;
872
873 return TRUE;
874 }
875
876 /* *STR contains an SVE zero/merge predication suffix. Parse it into
877 *PARSED_TYPE and point *STR at the end of the suffix. */
878
879 static bfd_boolean
880 parse_predication_for_operand (struct vector_type_el *parsed_type, char **str)
881 {
882 char *ptr = *str;
883
884 /* Skip '/'. */
885 gas_assert (*ptr == '/');
886 ptr++;
887 switch (TOLOWER (*ptr))
888 {
889 case 'z':
890 parsed_type->type = NT_zero;
891 break;
892 case 'm':
893 parsed_type->type = NT_merge;
894 break;
895 default:
896 if (*ptr != '\0' && *ptr != ',')
897 first_error_fmt (_("unexpected character `%c' in predication type"),
898 *ptr);
899 else
900 first_error (_("missing predication type"));
901 return FALSE;
902 }
903 parsed_type->width = 0;
904 *str = ptr + 1;
905 return TRUE;
906 }
907
908 /* Parse a register of the type TYPE.
909
910 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
911 name or the parsed register is not of TYPE.
912
913 Otherwise return the register number, and optionally fill in the actual
914 type of the register in *RTYPE when multiple alternatives were given, and
915 return the register shape and element index information in *TYPEINFO.
916
917 IN_REG_LIST should be set with TRUE if the caller is parsing a register
918 list. */
919
920 static int
921 parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
922 struct vector_type_el *typeinfo, bfd_boolean in_reg_list)
923 {
924 char *str = *ccp;
925 const reg_entry *reg = parse_reg (&str);
926 struct vector_type_el atype;
927 struct vector_type_el parsetype;
928 bfd_boolean is_typed_vecreg = FALSE;
929
930 atype.defined = 0;
931 atype.type = NT_invtype;
932 atype.width = -1;
933 atype.index = 0;
934
935 if (reg == NULL)
936 {
937 if (typeinfo)
938 *typeinfo = atype;
939 set_default_error ();
940 return PARSE_FAIL;
941 }
942
943 if (! aarch64_check_reg_type (reg, type))
944 {
945 DEBUG_TRACE ("reg type check failed");
946 set_default_error ();
947 return PARSE_FAIL;
948 }
949 type = reg->type;
950
951 if ((type == REG_TYPE_VN || type == REG_TYPE_ZN || type == REG_TYPE_PN)
952 && (*str == '.' || (type == REG_TYPE_PN && *str == '/')))
953 {
954 if (*str == '.')
955 {
956 if (!parse_vector_type_for_operand (type, &parsetype, &str))
957 return PARSE_FAIL;
958 }
959 else
960 {
961 if (!parse_predication_for_operand (&parsetype, &str))
962 return PARSE_FAIL;
963 }
964
965 /* Register if of the form Vn.[bhsdq]. */
966 is_typed_vecreg = TRUE;
967
968 if (type == REG_TYPE_ZN || type == REG_TYPE_PN)
969 {
970 /* The width is always variable; we don't allow an integer width
971 to be specified. */
972 gas_assert (parsetype.width == 0);
973 atype.defined |= NTA_HASVARWIDTH | NTA_HASTYPE;
974 }
975 else if (parsetype.width == 0)
976 /* Expect index. In the new scheme we cannot have
977 Vn.[bhsdq] represent a scalar. Therefore any
978 Vn.[bhsdq] should have an index following it.
979 Except in reglists ofcourse. */
980 atype.defined |= NTA_HASINDEX;
981 else
982 atype.defined |= NTA_HASTYPE;
983
984 atype.type = parsetype.type;
985 atype.width = parsetype.width;
986 }
987
988 if (skip_past_char (&str, '['))
989 {
990 expressionS exp;
991
992 /* Reject Sn[index] syntax. */
993 if (!is_typed_vecreg)
994 {
995 first_error (_("this type of register can't be indexed"));
996 return PARSE_FAIL;
997 }
998
999 if (in_reg_list == TRUE)
1000 {
1001 first_error (_("index not allowed inside register list"));
1002 return PARSE_FAIL;
1003 }
1004
1005 atype.defined |= NTA_HASINDEX;
1006
1007 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1008
1009 if (exp.X_op != O_constant)
1010 {
1011 first_error (_("constant expression required"));
1012 return PARSE_FAIL;
1013 }
1014
1015 if (! skip_past_char (&str, ']'))
1016 return PARSE_FAIL;
1017
1018 atype.index = exp.X_add_number;
1019 }
1020 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
1021 {
1022 /* Indexed vector register expected. */
1023 first_error (_("indexed vector register expected"));
1024 return PARSE_FAIL;
1025 }
1026
1027 /* A vector reg Vn should be typed or indexed. */
1028 if (type == REG_TYPE_VN && atype.defined == 0)
1029 {
1030 first_error (_("invalid use of vector register"));
1031 }
1032
1033 if (typeinfo)
1034 *typeinfo = atype;
1035
1036 if (rtype)
1037 *rtype = type;
1038
1039 *ccp = str;
1040
1041 return reg->number;
1042 }
1043
1044 /* Parse register.
1045
1046 Return the register number on success; return PARSE_FAIL otherwise.
1047
1048 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
1049 the register (e.g. NEON double or quad reg when either has been requested).
1050
1051 If this is a NEON vector register with additional type information, fill
1052 in the struct pointed to by VECTYPE (if non-NULL).
1053
1054 This parser does not handle register list. */
1055
1056 static int
1057 aarch64_reg_parse (char **ccp, aarch64_reg_type type,
1058 aarch64_reg_type *rtype, struct vector_type_el *vectype)
1059 {
1060 struct vector_type_el atype;
1061 char *str = *ccp;
1062 int reg = parse_typed_reg (&str, type, rtype, &atype,
1063 /*in_reg_list= */ FALSE);
1064
1065 if (reg == PARSE_FAIL)
1066 return PARSE_FAIL;
1067
1068 if (vectype)
1069 *vectype = atype;
1070
1071 *ccp = str;
1072
1073 return reg;
1074 }
1075
1076 static inline bfd_boolean
1077 eq_vector_type_el (struct vector_type_el e1, struct vector_type_el e2)
1078 {
1079 return
1080 e1.type == e2.type
1081 && e1.defined == e2.defined
1082 && e1.width == e2.width && e1.index == e2.index;
1083 }
1084
1085 /* This function parses a list of vector registers of type TYPE.
1086 On success, it returns the parsed register list information in the
1087 following encoded format:
1088
1089 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1090 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1091
1092 The information of the register shape and/or index is returned in
1093 *VECTYPE.
1094
1095 It returns PARSE_FAIL if the register list is invalid.
1096
1097 The list contains one to four registers.
1098 Each register can be one of:
1099 <Vt>.<T>[<index>]
1100 <Vt>.<T>
1101 All <T> should be identical.
1102 All <index> should be identical.
1103 There are restrictions on <Vt> numbers which are checked later
1104 (by reg_list_valid_p). */
1105
1106 static int
1107 parse_vector_reg_list (char **ccp, aarch64_reg_type type,
1108 struct vector_type_el *vectype)
1109 {
1110 char *str = *ccp;
1111 int nb_regs;
1112 struct vector_type_el typeinfo, typeinfo_first;
1113 int val, val_range;
1114 int in_range;
1115 int ret_val;
1116 int i;
1117 bfd_boolean error = FALSE;
1118 bfd_boolean expect_index = FALSE;
1119
1120 if (*str != '{')
1121 {
1122 set_syntax_error (_("expecting {"));
1123 return PARSE_FAIL;
1124 }
1125 str++;
1126
1127 nb_regs = 0;
1128 typeinfo_first.defined = 0;
1129 typeinfo_first.type = NT_invtype;
1130 typeinfo_first.width = -1;
1131 typeinfo_first.index = 0;
1132 ret_val = 0;
1133 val = -1;
1134 val_range = -1;
1135 in_range = 0;
1136 do
1137 {
1138 if (in_range)
1139 {
1140 str++; /* skip over '-' */
1141 val_range = val;
1142 }
1143 val = parse_typed_reg (&str, type, NULL, &typeinfo,
1144 /*in_reg_list= */ TRUE);
1145 if (val == PARSE_FAIL)
1146 {
1147 set_first_syntax_error (_("invalid vector register in list"));
1148 error = TRUE;
1149 continue;
1150 }
1151 /* reject [bhsd]n */
1152 if (type == REG_TYPE_VN && typeinfo.defined == 0)
1153 {
1154 set_first_syntax_error (_("invalid scalar register in list"));
1155 error = TRUE;
1156 continue;
1157 }
1158
1159 if (typeinfo.defined & NTA_HASINDEX)
1160 expect_index = TRUE;
1161
1162 if (in_range)
1163 {
1164 if (val < val_range)
1165 {
1166 set_first_syntax_error
1167 (_("invalid range in vector register list"));
1168 error = TRUE;
1169 }
1170 val_range++;
1171 }
1172 else
1173 {
1174 val_range = val;
1175 if (nb_regs == 0)
1176 typeinfo_first = typeinfo;
1177 else if (! eq_vector_type_el (typeinfo_first, typeinfo))
1178 {
1179 set_first_syntax_error
1180 (_("type mismatch in vector register list"));
1181 error = TRUE;
1182 }
1183 }
1184 if (! error)
1185 for (i = val_range; i <= val; i++)
1186 {
1187 ret_val |= i << (5 * nb_regs);
1188 nb_regs++;
1189 }
1190 in_range = 0;
1191 }
1192 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1193
1194 skip_whitespace (str);
1195 if (*str != '}')
1196 {
1197 set_first_syntax_error (_("end of vector register list not found"));
1198 error = TRUE;
1199 }
1200 str++;
1201
1202 skip_whitespace (str);
1203
1204 if (expect_index)
1205 {
1206 if (skip_past_char (&str, '['))
1207 {
1208 expressionS exp;
1209
1210 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1211 if (exp.X_op != O_constant)
1212 {
1213 set_first_syntax_error (_("constant expression required."));
1214 error = TRUE;
1215 }
1216 if (! skip_past_char (&str, ']'))
1217 error = TRUE;
1218 else
1219 typeinfo_first.index = exp.X_add_number;
1220 }
1221 else
1222 {
1223 set_first_syntax_error (_("expected index"));
1224 error = TRUE;
1225 }
1226 }
1227
1228 if (nb_regs > 4)
1229 {
1230 set_first_syntax_error (_("too many registers in vector register list"));
1231 error = TRUE;
1232 }
1233 else if (nb_regs == 0)
1234 {
1235 set_first_syntax_error (_("empty vector register list"));
1236 error = TRUE;
1237 }
1238
1239 *ccp = str;
1240 if (! error)
1241 *vectype = typeinfo_first;
1242
1243 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1244 }
1245
1246 /* Directives: register aliases. */
1247
1248 static reg_entry *
1249 insert_reg_alias (char *str, int number, aarch64_reg_type type)
1250 {
1251 reg_entry *new;
1252 const char *name;
1253
1254 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1255 {
1256 if (new->builtin)
1257 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1258 str);
1259
1260 /* Only warn about a redefinition if it's not defined as the
1261 same register. */
1262 else if (new->number != number || new->type != type)
1263 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1264
1265 return NULL;
1266 }
1267
1268 name = xstrdup (str);
1269 new = XNEW (reg_entry);
1270
1271 new->name = name;
1272 new->number = number;
1273 new->type = type;
1274 new->builtin = FALSE;
1275
1276 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1277 abort ();
1278
1279 return new;
1280 }
1281
1282 /* Look for the .req directive. This is of the form:
1283
1284 new_register_name .req existing_register_name
1285
1286 If we find one, or if it looks sufficiently like one that we want to
1287 handle any error here, return TRUE. Otherwise return FALSE. */
1288
1289 static bfd_boolean
1290 create_register_alias (char *newname, char *p)
1291 {
1292 const reg_entry *old;
1293 char *oldname, *nbuf;
1294 size_t nlen;
1295
1296 /* The input scrubber ensures that whitespace after the mnemonic is
1297 collapsed to single spaces. */
1298 oldname = p;
1299 if (strncmp (oldname, " .req ", 6) != 0)
1300 return FALSE;
1301
1302 oldname += 6;
1303 if (*oldname == '\0')
1304 return FALSE;
1305
1306 old = hash_find (aarch64_reg_hsh, oldname);
1307 if (!old)
1308 {
1309 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1310 return TRUE;
1311 }
1312
1313 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1314 the desired alias name, and p points to its end. If not, then
1315 the desired alias name is in the global original_case_string. */
1316 #ifdef TC_CASE_SENSITIVE
1317 nlen = p - newname;
1318 #else
1319 newname = original_case_string;
1320 nlen = strlen (newname);
1321 #endif
1322
1323 nbuf = xmemdup0 (newname, nlen);
1324
1325 /* Create aliases under the new name as stated; an all-lowercase
1326 version of the new name; and an all-uppercase version of the new
1327 name. */
1328 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1329 {
1330 for (p = nbuf; *p; p++)
1331 *p = TOUPPER (*p);
1332
1333 if (strncmp (nbuf, newname, nlen))
1334 {
1335 /* If this attempt to create an additional alias fails, do not bother
1336 trying to create the all-lower case alias. We will fail and issue
1337 a second, duplicate error message. This situation arises when the
1338 programmer does something like:
1339 foo .req r0
1340 Foo .req r1
1341 The second .req creates the "Foo" alias but then fails to create
1342 the artificial FOO alias because it has already been created by the
1343 first .req. */
1344 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
1345 {
1346 free (nbuf);
1347 return TRUE;
1348 }
1349 }
1350
1351 for (p = nbuf; *p; p++)
1352 *p = TOLOWER (*p);
1353
1354 if (strncmp (nbuf, newname, nlen))
1355 insert_reg_alias (nbuf, old->number, old->type);
1356 }
1357
1358 free (nbuf);
1359 return TRUE;
1360 }
1361
1362 /* Should never be called, as .req goes between the alias and the
1363 register name, not at the beginning of the line. */
1364 static void
1365 s_req (int a ATTRIBUTE_UNUSED)
1366 {
1367 as_bad (_("invalid syntax for .req directive"));
1368 }
1369
1370 /* The .unreq directive deletes an alias which was previously defined
1371 by .req. For example:
1372
1373 my_alias .req r11
1374 .unreq my_alias */
1375
1376 static void
1377 s_unreq (int a ATTRIBUTE_UNUSED)
1378 {
1379 char *name;
1380 char saved_char;
1381
1382 name = input_line_pointer;
1383
1384 while (*input_line_pointer != 0
1385 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1386 ++input_line_pointer;
1387
1388 saved_char = *input_line_pointer;
1389 *input_line_pointer = 0;
1390
1391 if (!*name)
1392 as_bad (_("invalid syntax for .unreq directive"));
1393 else
1394 {
1395 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1396
1397 if (!reg)
1398 as_bad (_("unknown register alias '%s'"), name);
1399 else if (reg->builtin)
1400 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1401 name);
1402 else
1403 {
1404 char *p;
1405 char *nbuf;
1406
1407 hash_delete (aarch64_reg_hsh, name, FALSE);
1408 free ((char *) reg->name);
1409 free (reg);
1410
1411 /* Also locate the all upper case and all lower case versions.
1412 Do not complain if we cannot find one or the other as it
1413 was probably deleted above. */
1414
1415 nbuf = strdup (name);
1416 for (p = nbuf; *p; p++)
1417 *p = TOUPPER (*p);
1418 reg = hash_find (aarch64_reg_hsh, nbuf);
1419 if (reg)
1420 {
1421 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1422 free ((char *) reg->name);
1423 free (reg);
1424 }
1425
1426 for (p = nbuf; *p; p++)
1427 *p = TOLOWER (*p);
1428 reg = hash_find (aarch64_reg_hsh, nbuf);
1429 if (reg)
1430 {
1431 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1432 free ((char *) reg->name);
1433 free (reg);
1434 }
1435
1436 free (nbuf);
1437 }
1438 }
1439
1440 *input_line_pointer = saved_char;
1441 demand_empty_rest_of_line ();
1442 }
1443
1444 /* Directives: Instruction set selection. */
1445
1446 #ifdef OBJ_ELF
1447 /* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1448 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1449 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1450 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1451
1452 /* Create a new mapping symbol for the transition to STATE. */
1453
1454 static void
1455 make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1456 {
1457 symbolS *symbolP;
1458 const char *symname;
1459 int type;
1460
1461 switch (state)
1462 {
1463 case MAP_DATA:
1464 symname = "$d";
1465 type = BSF_NO_FLAGS;
1466 break;
1467 case MAP_INSN:
1468 symname = "$x";
1469 type = BSF_NO_FLAGS;
1470 break;
1471 default:
1472 abort ();
1473 }
1474
1475 symbolP = symbol_new (symname, now_seg, value, frag);
1476 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1477
1478 /* Save the mapping symbols for future reference. Also check that
1479 we do not place two mapping symbols at the same offset within a
1480 frag. We'll handle overlap between frags in
1481 check_mapping_symbols.
1482
1483 If .fill or other data filling directive generates zero sized data,
1484 the mapping symbol for the following code will have the same value
1485 as the one generated for the data filling directive. In this case,
1486 we replace the old symbol with the new one at the same address. */
1487 if (value == 0)
1488 {
1489 if (frag->tc_frag_data.first_map != NULL)
1490 {
1491 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1492 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1493 &symbol_lastP);
1494 }
1495 frag->tc_frag_data.first_map = symbolP;
1496 }
1497 if (frag->tc_frag_data.last_map != NULL)
1498 {
1499 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1500 S_GET_VALUE (symbolP));
1501 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1502 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1503 &symbol_lastP);
1504 }
1505 frag->tc_frag_data.last_map = symbolP;
1506 }
1507
1508 /* We must sometimes convert a region marked as code to data during
1509 code alignment, if an odd number of bytes have to be padded. The
1510 code mapping symbol is pushed to an aligned address. */
1511
1512 static void
1513 insert_data_mapping_symbol (enum mstate state,
1514 valueT value, fragS * frag, offsetT bytes)
1515 {
1516 /* If there was already a mapping symbol, remove it. */
1517 if (frag->tc_frag_data.last_map != NULL
1518 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1519 frag->fr_address + value)
1520 {
1521 symbolS *symp = frag->tc_frag_data.last_map;
1522
1523 if (value == 0)
1524 {
1525 know (frag->tc_frag_data.first_map == symp);
1526 frag->tc_frag_data.first_map = NULL;
1527 }
1528 frag->tc_frag_data.last_map = NULL;
1529 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1530 }
1531
1532 make_mapping_symbol (MAP_DATA, value, frag);
1533 make_mapping_symbol (state, value + bytes, frag);
1534 }
1535
1536 static void mapping_state_2 (enum mstate state, int max_chars);
1537
1538 /* Set the mapping state to STATE. Only call this when about to
1539 emit some STATE bytes to the file. */
1540
1541 void
1542 mapping_state (enum mstate state)
1543 {
1544 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1545
1546 if (state == MAP_INSN)
1547 /* AArch64 instructions require 4-byte alignment. When emitting
1548 instructions into any section, record the appropriate section
1549 alignment. */
1550 record_alignment (now_seg, 2);
1551
1552 if (mapstate == state)
1553 /* The mapping symbol has already been emitted.
1554 There is nothing else to do. */
1555 return;
1556
1557 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
1558 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1559 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
1560 evaluated later in the next else. */
1561 return;
1562 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1563 {
1564 /* Only add the symbol if the offset is > 0:
1565 if we're at the first frag, check it's size > 0;
1566 if we're not at the first frag, then for sure
1567 the offset is > 0. */
1568 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1569 const int add_symbol = (frag_now != frag_first)
1570 || (frag_now_fix () > 0);
1571
1572 if (add_symbol)
1573 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1574 }
1575 #undef TRANSITION
1576
1577 mapping_state_2 (state, 0);
1578 }
1579
1580 /* Same as mapping_state, but MAX_CHARS bytes have already been
1581 allocated. Put the mapping symbol that far back. */
1582
1583 static void
1584 mapping_state_2 (enum mstate state, int max_chars)
1585 {
1586 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1587
1588 if (!SEG_NORMAL (now_seg))
1589 return;
1590
1591 if (mapstate == state)
1592 /* The mapping symbol has already been emitted.
1593 There is nothing else to do. */
1594 return;
1595
1596 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1597 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1598 }
1599 #else
1600 #define mapping_state(x) /* nothing */
1601 #define mapping_state_2(x, y) /* nothing */
1602 #endif
1603
1604 /* Directives: sectioning and alignment. */
1605
1606 static void
1607 s_bss (int ignore ATTRIBUTE_UNUSED)
1608 {
1609 /* We don't support putting frags in the BSS segment, we fake it by
1610 marking in_bss, then looking at s_skip for clues. */
1611 subseg_set (bss_section, 0);
1612 demand_empty_rest_of_line ();
1613 mapping_state (MAP_DATA);
1614 }
1615
1616 static void
1617 s_even (int ignore ATTRIBUTE_UNUSED)
1618 {
1619 /* Never make frag if expect extra pass. */
1620 if (!need_pass_2)
1621 frag_align (1, 0, 0);
1622
1623 record_alignment (now_seg, 1);
1624
1625 demand_empty_rest_of_line ();
1626 }
1627
1628 /* Directives: Literal pools. */
1629
1630 static literal_pool *
1631 find_literal_pool (int size)
1632 {
1633 literal_pool *pool;
1634
1635 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1636 {
1637 if (pool->section == now_seg
1638 && pool->sub_section == now_subseg && pool->size == size)
1639 break;
1640 }
1641
1642 return pool;
1643 }
1644
1645 static literal_pool *
1646 find_or_make_literal_pool (int size)
1647 {
1648 /* Next literal pool ID number. */
1649 static unsigned int latest_pool_num = 1;
1650 literal_pool *pool;
1651
1652 pool = find_literal_pool (size);
1653
1654 if (pool == NULL)
1655 {
1656 /* Create a new pool. */
1657 pool = XNEW (literal_pool);
1658 if (!pool)
1659 return NULL;
1660
1661 /* Currently we always put the literal pool in the current text
1662 section. If we were generating "small" model code where we
1663 knew that all code and initialised data was within 1MB then
1664 we could output literals to mergeable, read-only data
1665 sections. */
1666
1667 pool->next_free_entry = 0;
1668 pool->section = now_seg;
1669 pool->sub_section = now_subseg;
1670 pool->size = size;
1671 pool->next = list_of_pools;
1672 pool->symbol = NULL;
1673
1674 /* Add it to the list. */
1675 list_of_pools = pool;
1676 }
1677
1678 /* New pools, and emptied pools, will have a NULL symbol. */
1679 if (pool->symbol == NULL)
1680 {
1681 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1682 (valueT) 0, &zero_address_frag);
1683 pool->id = latest_pool_num++;
1684 }
1685
1686 /* Done. */
1687 return pool;
1688 }
1689
1690 /* Add the literal of size SIZE in *EXP to the relevant literal pool.
1691 Return TRUE on success, otherwise return FALSE. */
1692 static bfd_boolean
1693 add_to_lit_pool (expressionS *exp, int size)
1694 {
1695 literal_pool *pool;
1696 unsigned int entry;
1697
1698 pool = find_or_make_literal_pool (size);
1699
1700 /* Check if this literal value is already in the pool. */
1701 for (entry = 0; entry < pool->next_free_entry; entry++)
1702 {
1703 expressionS * litexp = & pool->literals[entry].exp;
1704
1705 if ((litexp->X_op == exp->X_op)
1706 && (exp->X_op == O_constant)
1707 && (litexp->X_add_number == exp->X_add_number)
1708 && (litexp->X_unsigned == exp->X_unsigned))
1709 break;
1710
1711 if ((litexp->X_op == exp->X_op)
1712 && (exp->X_op == O_symbol)
1713 && (litexp->X_add_number == exp->X_add_number)
1714 && (litexp->X_add_symbol == exp->X_add_symbol)
1715 && (litexp->X_op_symbol == exp->X_op_symbol))
1716 break;
1717 }
1718
1719 /* Do we need to create a new entry? */
1720 if (entry == pool->next_free_entry)
1721 {
1722 if (entry >= MAX_LITERAL_POOL_SIZE)
1723 {
1724 set_syntax_error (_("literal pool overflow"));
1725 return FALSE;
1726 }
1727
1728 pool->literals[entry].exp = *exp;
1729 pool->next_free_entry += 1;
1730 if (exp->X_op == O_big)
1731 {
1732 /* PR 16688: Bignums are held in a single global array. We must
1733 copy and preserve that value now, before it is overwritten. */
1734 pool->literals[entry].bignum = XNEWVEC (LITTLENUM_TYPE,
1735 exp->X_add_number);
1736 memcpy (pool->literals[entry].bignum, generic_bignum,
1737 CHARS_PER_LITTLENUM * exp->X_add_number);
1738 }
1739 else
1740 pool->literals[entry].bignum = NULL;
1741 }
1742
1743 exp->X_op = O_symbol;
1744 exp->X_add_number = ((int) entry) * size;
1745 exp->X_add_symbol = pool->symbol;
1746
1747 return TRUE;
1748 }
1749
1750 /* Can't use symbol_new here, so have to create a symbol and then at
1751 a later date assign it a value. Thats what these functions do. */
1752
1753 static void
1754 symbol_locate (symbolS * symbolP,
1755 const char *name,/* It is copied, the caller can modify. */
1756 segT segment, /* Segment identifier (SEG_<something>). */
1757 valueT valu, /* Symbol value. */
1758 fragS * frag) /* Associated fragment. */
1759 {
1760 size_t name_length;
1761 char *preserved_copy_of_name;
1762
1763 name_length = strlen (name) + 1; /* +1 for \0. */
1764 obstack_grow (&notes, name, name_length);
1765 preserved_copy_of_name = obstack_finish (&notes);
1766
1767 #ifdef tc_canonicalize_symbol_name
1768 preserved_copy_of_name =
1769 tc_canonicalize_symbol_name (preserved_copy_of_name);
1770 #endif
1771
1772 S_SET_NAME (symbolP, preserved_copy_of_name);
1773
1774 S_SET_SEGMENT (symbolP, segment);
1775 S_SET_VALUE (symbolP, valu);
1776 symbol_clear_list_pointers (symbolP);
1777
1778 symbol_set_frag (symbolP, frag);
1779
1780 /* Link to end of symbol chain. */
1781 {
1782 extern int symbol_table_frozen;
1783
1784 if (symbol_table_frozen)
1785 abort ();
1786 }
1787
1788 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1789
1790 obj_symbol_new_hook (symbolP);
1791
1792 #ifdef tc_symbol_new_hook
1793 tc_symbol_new_hook (symbolP);
1794 #endif
1795
1796 #ifdef DEBUG_SYMS
1797 verify_symbol_chain (symbol_rootP, symbol_lastP);
1798 #endif /* DEBUG_SYMS */
1799 }
1800
1801
1802 static void
1803 s_ltorg (int ignored ATTRIBUTE_UNUSED)
1804 {
1805 unsigned int entry;
1806 literal_pool *pool;
1807 char sym_name[20];
1808 int align;
1809
1810 for (align = 2; align <= 4; align++)
1811 {
1812 int size = 1 << align;
1813
1814 pool = find_literal_pool (size);
1815 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1816 continue;
1817
1818 /* Align pool as you have word accesses.
1819 Only make a frag if we have to. */
1820 if (!need_pass_2)
1821 frag_align (align, 0, 0);
1822
1823 mapping_state (MAP_DATA);
1824
1825 record_alignment (now_seg, align);
1826
1827 sprintf (sym_name, "$$lit_\002%x", pool->id);
1828
1829 symbol_locate (pool->symbol, sym_name, now_seg,
1830 (valueT) frag_now_fix (), frag_now);
1831 symbol_table_insert (pool->symbol);
1832
1833 for (entry = 0; entry < pool->next_free_entry; entry++)
1834 {
1835 expressionS * exp = & pool->literals[entry].exp;
1836
1837 if (exp->X_op == O_big)
1838 {
1839 /* PR 16688: Restore the global bignum value. */
1840 gas_assert (pool->literals[entry].bignum != NULL);
1841 memcpy (generic_bignum, pool->literals[entry].bignum,
1842 CHARS_PER_LITTLENUM * exp->X_add_number);
1843 }
1844
1845 /* First output the expression in the instruction to the pool. */
1846 emit_expr (exp, size); /* .word|.xword */
1847
1848 if (exp->X_op == O_big)
1849 {
1850 free (pool->literals[entry].bignum);
1851 pool->literals[entry].bignum = NULL;
1852 }
1853 }
1854
1855 /* Mark the pool as empty. */
1856 pool->next_free_entry = 0;
1857 pool->symbol = NULL;
1858 }
1859 }
1860
1861 #ifdef OBJ_ELF
1862 /* Forward declarations for functions below, in the MD interface
1863 section. */
1864 static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1865 static struct reloc_table_entry * find_reloc_table_entry (char **);
1866
1867 /* Directives: Data. */
1868 /* N.B. the support for relocation suffix in this directive needs to be
1869 implemented properly. */
1870
1871 static void
1872 s_aarch64_elf_cons (int nbytes)
1873 {
1874 expressionS exp;
1875
1876 #ifdef md_flush_pending_output
1877 md_flush_pending_output ();
1878 #endif
1879
1880 if (is_it_end_of_statement ())
1881 {
1882 demand_empty_rest_of_line ();
1883 return;
1884 }
1885
1886 #ifdef md_cons_align
1887 md_cons_align (nbytes);
1888 #endif
1889
1890 mapping_state (MAP_DATA);
1891 do
1892 {
1893 struct reloc_table_entry *reloc;
1894
1895 expression (&exp);
1896
1897 if (exp.X_op != O_symbol)
1898 emit_expr (&exp, (unsigned int) nbytes);
1899 else
1900 {
1901 skip_past_char (&input_line_pointer, '#');
1902 if (skip_past_char (&input_line_pointer, ':'))
1903 {
1904 reloc = find_reloc_table_entry (&input_line_pointer);
1905 if (reloc == NULL)
1906 as_bad (_("unrecognized relocation suffix"));
1907 else
1908 as_bad (_("unimplemented relocation suffix"));
1909 ignore_rest_of_line ();
1910 return;
1911 }
1912 else
1913 emit_expr (&exp, (unsigned int) nbytes);
1914 }
1915 }
1916 while (*input_line_pointer++ == ',');
1917
1918 /* Put terminator back into stream. */
1919 input_line_pointer--;
1920 demand_empty_rest_of_line ();
1921 }
1922
1923 #endif /* OBJ_ELF */
1924
1925 /* Output a 32-bit word, but mark as an instruction. */
1926
1927 static void
1928 s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1929 {
1930 expressionS exp;
1931
1932 #ifdef md_flush_pending_output
1933 md_flush_pending_output ();
1934 #endif
1935
1936 if (is_it_end_of_statement ())
1937 {
1938 demand_empty_rest_of_line ();
1939 return;
1940 }
1941
1942 /* Sections are assumed to start aligned. In executable section, there is no
1943 MAP_DATA symbol pending. So we only align the address during
1944 MAP_DATA --> MAP_INSN transition.
1945 For other sections, this is not guaranteed. */
1946 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1947 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
1948 frag_align_code (2, 0);
1949
1950 #ifdef OBJ_ELF
1951 mapping_state (MAP_INSN);
1952 #endif
1953
1954 do
1955 {
1956 expression (&exp);
1957 if (exp.X_op != O_constant)
1958 {
1959 as_bad (_("constant expression required"));
1960 ignore_rest_of_line ();
1961 return;
1962 }
1963
1964 if (target_big_endian)
1965 {
1966 unsigned int val = exp.X_add_number;
1967 exp.X_add_number = SWAP_32 (val);
1968 }
1969 emit_expr (&exp, 4);
1970 }
1971 while (*input_line_pointer++ == ',');
1972
1973 /* Put terminator back into stream. */
1974 input_line_pointer--;
1975 demand_empty_rest_of_line ();
1976 }
1977
1978 #ifdef OBJ_ELF
1979 /* Emit BFD_RELOC_AARCH64_TLSDESC_ADD on the next ADD instruction. */
1980
1981 static void
1982 s_tlsdescadd (int ignored ATTRIBUTE_UNUSED)
1983 {
1984 expressionS exp;
1985
1986 expression (&exp);
1987 frag_grow (4);
1988 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1989 BFD_RELOC_AARCH64_TLSDESC_ADD);
1990
1991 demand_empty_rest_of_line ();
1992 }
1993
1994 /* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
1995
1996 static void
1997 s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
1998 {
1999 expressionS exp;
2000
2001 /* Since we're just labelling the code, there's no need to define a
2002 mapping symbol. */
2003 expression (&exp);
2004 /* Make sure there is enough room in this frag for the following
2005 blr. This trick only works if the blr follows immediately after
2006 the .tlsdesc directive. */
2007 frag_grow (4);
2008 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2009 BFD_RELOC_AARCH64_TLSDESC_CALL);
2010
2011 demand_empty_rest_of_line ();
2012 }
2013
2014 /* Emit BFD_RELOC_AARCH64_TLSDESC_LDR on the next LDR instruction. */
2015
2016 static void
2017 s_tlsdescldr (int ignored ATTRIBUTE_UNUSED)
2018 {
2019 expressionS exp;
2020
2021 expression (&exp);
2022 frag_grow (4);
2023 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2024 BFD_RELOC_AARCH64_TLSDESC_LDR);
2025
2026 demand_empty_rest_of_line ();
2027 }
2028 #endif /* OBJ_ELF */
2029
2030 static void s_aarch64_arch (int);
2031 static void s_aarch64_cpu (int);
2032 static void s_aarch64_arch_extension (int);
2033
2034 /* This table describes all the machine specific pseudo-ops the assembler
2035 has to support. The fields are:
2036 pseudo-op name without dot
2037 function to call to execute this pseudo-op
2038 Integer arg to pass to the function. */
2039
2040 const pseudo_typeS md_pseudo_table[] = {
2041 /* Never called because '.req' does not start a line. */
2042 {"req", s_req, 0},
2043 {"unreq", s_unreq, 0},
2044 {"bss", s_bss, 0},
2045 {"even", s_even, 0},
2046 {"ltorg", s_ltorg, 0},
2047 {"pool", s_ltorg, 0},
2048 {"cpu", s_aarch64_cpu, 0},
2049 {"arch", s_aarch64_arch, 0},
2050 {"arch_extension", s_aarch64_arch_extension, 0},
2051 {"inst", s_aarch64_inst, 0},
2052 #ifdef OBJ_ELF
2053 {"tlsdescadd", s_tlsdescadd, 0},
2054 {"tlsdesccall", s_tlsdesccall, 0},
2055 {"tlsdescldr", s_tlsdescldr, 0},
2056 {"word", s_aarch64_elf_cons, 4},
2057 {"long", s_aarch64_elf_cons, 4},
2058 {"xword", s_aarch64_elf_cons, 8},
2059 {"dword", s_aarch64_elf_cons, 8},
2060 #endif
2061 {0, 0, 0}
2062 };
2063 \f
2064
2065 /* Check whether STR points to a register name followed by a comma or the
2066 end of line; REG_TYPE indicates which register types are checked
2067 against. Return TRUE if STR is such a register name; otherwise return
2068 FALSE. The function does not intend to produce any diagnostics, but since
2069 the register parser aarch64_reg_parse, which is called by this function,
2070 does produce diagnostics, we call clear_error to clear any diagnostics
2071 that may be generated by aarch64_reg_parse.
2072 Also, the function returns FALSE directly if there is any user error
2073 present at the function entry. This prevents the existing diagnostics
2074 state from being spoiled.
2075 The function currently serves parse_constant_immediate and
2076 parse_big_immediate only. */
2077 static bfd_boolean
2078 reg_name_p (char *str, aarch64_reg_type reg_type)
2079 {
2080 int reg;
2081
2082 /* Prevent the diagnostics state from being spoiled. */
2083 if (error_p ())
2084 return FALSE;
2085
2086 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
2087
2088 /* Clear the parsing error that may be set by the reg parser. */
2089 clear_error ();
2090
2091 if (reg == PARSE_FAIL)
2092 return FALSE;
2093
2094 skip_whitespace (str);
2095 if (*str == ',' || is_end_of_line[(unsigned int) *str])
2096 return TRUE;
2097
2098 return FALSE;
2099 }
2100
2101 /* Parser functions used exclusively in instruction operands. */
2102
2103 /* Parse an immediate expression which may not be constant.
2104
2105 To prevent the expression parser from pushing a register name
2106 into the symbol table as an undefined symbol, firstly a check is
2107 done to find out whether STR is a register of type REG_TYPE followed
2108 by a comma or the end of line. Return FALSE if STR is such a string. */
2109
2110 static bfd_boolean
2111 parse_immediate_expression (char **str, expressionS *exp,
2112 aarch64_reg_type reg_type)
2113 {
2114 if (reg_name_p (*str, reg_type))
2115 {
2116 set_recoverable_error (_("immediate operand required"));
2117 return FALSE;
2118 }
2119
2120 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2121
2122 if (exp->X_op == O_absent)
2123 {
2124 set_fatal_syntax_error (_("missing immediate expression"));
2125 return FALSE;
2126 }
2127
2128 return TRUE;
2129 }
2130
2131 /* Constant immediate-value read function for use in insn parsing.
2132 STR points to the beginning of the immediate (with the optional
2133 leading #); *VAL receives the value. REG_TYPE says which register
2134 names should be treated as registers rather than as symbolic immediates.
2135
2136 Return TRUE on success; otherwise return FALSE. */
2137
2138 static bfd_boolean
2139 parse_constant_immediate (char **str, int64_t *val, aarch64_reg_type reg_type)
2140 {
2141 expressionS exp;
2142
2143 if (! parse_immediate_expression (str, &exp, reg_type))
2144 return FALSE;
2145
2146 if (exp.X_op != O_constant)
2147 {
2148 set_syntax_error (_("constant expression required"));
2149 return FALSE;
2150 }
2151
2152 *val = exp.X_add_number;
2153 return TRUE;
2154 }
2155
2156 static uint32_t
2157 encode_imm_float_bits (uint32_t imm)
2158 {
2159 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2160 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2161 }
2162
2163 /* Return TRUE if the single-precision floating-point value encoded in IMM
2164 can be expressed in the AArch64 8-bit signed floating-point format with
2165 3-bit exponent and normalized 4 bits of precision; in other words, the
2166 floating-point value must be expressable as
2167 (+/-) n / 16 * power (2, r)
2168 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2169
2170 static bfd_boolean
2171 aarch64_imm_float_p (uint32_t imm)
2172 {
2173 /* If a single-precision floating-point value has the following bit
2174 pattern, it can be expressed in the AArch64 8-bit floating-point
2175 format:
2176
2177 3 32222222 2221111111111
2178 1 09876543 21098765432109876543210
2179 n Eeeeeexx xxxx0000000000000000000
2180
2181 where n, e and each x are either 0 or 1 independently, with
2182 E == ~ e. */
2183
2184 uint32_t pattern;
2185
2186 /* Prepare the pattern for 'Eeeeee'. */
2187 if (((imm >> 30) & 0x1) == 0)
2188 pattern = 0x3e000000;
2189 else
2190 pattern = 0x40000000;
2191
2192 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2193 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
2194 }
2195
2196 /* Return TRUE if the IEEE double value encoded in IMM can be expressed
2197 as an IEEE float without any loss of precision. Store the value in
2198 *FPWORD if so. */
2199
2200 static bfd_boolean
2201 can_convert_double_to_float (uint64_t imm, uint32_t *fpword)
2202 {
2203 /* If a double-precision floating-point value has the following bit
2204 pattern, it can be expressed in a float:
2205
2206 6 66655555555 5544 44444444 33333333 33222222 22221111 111111
2207 3 21098765432 1098 76543210 98765432 10987654 32109876 54321098 76543210
2208 n E~~~eeeeeee ssss ssssssss ssssssss SSS00000 00000000 00000000 00000000
2209
2210 -----------------------------> nEeeeeee esssssss ssssssss sssssSSS
2211 if Eeee_eeee != 1111_1111
2212
2213 where n, e, s and S are either 0 or 1 independently and where ~ is the
2214 inverse of E. */
2215
2216 uint32_t pattern;
2217 uint32_t high32 = imm >> 32;
2218 uint32_t low32 = imm;
2219
2220 /* Lower 29 bits need to be 0s. */
2221 if ((imm & 0x1fffffff) != 0)
2222 return FALSE;
2223
2224 /* Prepare the pattern for 'Eeeeeeeee'. */
2225 if (((high32 >> 30) & 0x1) == 0)
2226 pattern = 0x38000000;
2227 else
2228 pattern = 0x40000000;
2229
2230 /* Check E~~~. */
2231 if ((high32 & 0x78000000) != pattern)
2232 return FALSE;
2233
2234 /* Check Eeee_eeee != 1111_1111. */
2235 if ((high32 & 0x7ff00000) == 0x47f00000)
2236 return FALSE;
2237
2238 *fpword = ((high32 & 0xc0000000) /* 1 n bit and 1 E bit. */
2239 | ((high32 << 3) & 0x3ffffff8) /* 7 e and 20 s bits. */
2240 | (low32 >> 29)); /* 3 S bits. */
2241 return TRUE;
2242 }
2243
2244 /* Return true if we should treat OPERAND as a double-precision
2245 floating-point operand rather than a single-precision one. */
2246 static bfd_boolean
2247 double_precision_operand_p (const aarch64_opnd_info *operand)
2248 {
2249 /* Check for unsuffixed SVE registers, which are allowed
2250 for LDR and STR but not in instructions that require an
2251 immediate. We get better error messages if we arbitrarily
2252 pick one size, parse the immediate normally, and then
2253 report the match failure in the normal way. */
2254 return (operand->qualifier == AARCH64_OPND_QLF_NIL
2255 || aarch64_get_qualifier_esize (operand->qualifier) == 8);
2256 }
2257
2258 /* Parse a floating-point immediate. Return TRUE on success and return the
2259 value in *IMMED in the format of IEEE754 single-precision encoding.
2260 *CCP points to the start of the string; DP_P is TRUE when the immediate
2261 is expected to be in double-precision (N.B. this only matters when
2262 hexadecimal representation is involved). REG_TYPE says which register
2263 names should be treated as registers rather than as symbolic immediates.
2264
2265 This routine accepts any IEEE float; it is up to the callers to reject
2266 invalid ones. */
2267
2268 static bfd_boolean
2269 parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p,
2270 aarch64_reg_type reg_type)
2271 {
2272 char *str = *ccp;
2273 char *fpnum;
2274 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2275 int found_fpchar = 0;
2276 int64_t val = 0;
2277 unsigned fpword = 0;
2278 bfd_boolean hex_p = FALSE;
2279
2280 skip_past_char (&str, '#');
2281
2282 fpnum = str;
2283 skip_whitespace (fpnum);
2284
2285 if (strncmp (fpnum, "0x", 2) == 0)
2286 {
2287 /* Support the hexadecimal representation of the IEEE754 encoding.
2288 Double-precision is expected when DP_P is TRUE, otherwise the
2289 representation should be in single-precision. */
2290 if (! parse_constant_immediate (&str, &val, reg_type))
2291 goto invalid_fp;
2292
2293 if (dp_p)
2294 {
2295 if (!can_convert_double_to_float (val, &fpword))
2296 goto invalid_fp;
2297 }
2298 else if ((uint64_t) val > 0xffffffff)
2299 goto invalid_fp;
2300 else
2301 fpword = val;
2302
2303 hex_p = TRUE;
2304 }
2305 else
2306 {
2307 if (reg_name_p (str, reg_type))
2308 {
2309 set_recoverable_error (_("immediate operand required"));
2310 return FALSE;
2311 }
2312
2313 /* We must not accidentally parse an integer as a floating-point number.
2314 Make sure that the value we parse is not an integer by checking for
2315 special characters '.' or 'e'. */
2316 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
2317 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
2318 {
2319 found_fpchar = 1;
2320 break;
2321 }
2322
2323 if (!found_fpchar)
2324 return FALSE;
2325 }
2326
2327 if (! hex_p)
2328 {
2329 int i;
2330
2331 if ((str = atof_ieee (str, 's', words)) == NULL)
2332 goto invalid_fp;
2333
2334 /* Our FP word must be 32 bits (single-precision FP). */
2335 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2336 {
2337 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2338 fpword |= words[i];
2339 }
2340 }
2341
2342 *immed = fpword;
2343 *ccp = str;
2344 return TRUE;
2345
2346 invalid_fp:
2347 set_fatal_syntax_error (_("invalid floating-point constant"));
2348 return FALSE;
2349 }
2350
2351 /* Less-generic immediate-value read function with the possibility of loading
2352 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2353 instructions.
2354
2355 To prevent the expression parser from pushing a register name into the
2356 symbol table as an undefined symbol, a check is firstly done to find
2357 out whether STR is a register of type REG_TYPE followed by a comma or
2358 the end of line. Return FALSE if STR is such a register. */
2359
2360 static bfd_boolean
2361 parse_big_immediate (char **str, int64_t *imm, aarch64_reg_type reg_type)
2362 {
2363 char *ptr = *str;
2364
2365 if (reg_name_p (ptr, reg_type))
2366 {
2367 set_syntax_error (_("immediate operand required"));
2368 return FALSE;
2369 }
2370
2371 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2372
2373 if (inst.reloc.exp.X_op == O_constant)
2374 *imm = inst.reloc.exp.X_add_number;
2375
2376 *str = ptr;
2377
2378 return TRUE;
2379 }
2380
2381 /* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2382 if NEED_LIBOPCODES is non-zero, the fixup will need
2383 assistance from the libopcodes. */
2384
2385 static inline void
2386 aarch64_set_gas_internal_fixup (struct reloc *reloc,
2387 const aarch64_opnd_info *operand,
2388 int need_libopcodes_p)
2389 {
2390 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2391 reloc->opnd = operand->type;
2392 if (need_libopcodes_p)
2393 reloc->need_libopcodes_p = 1;
2394 };
2395
2396 /* Return TRUE if the instruction needs to be fixed up later internally by
2397 the GAS; otherwise return FALSE. */
2398
2399 static inline bfd_boolean
2400 aarch64_gas_internal_fixup_p (void)
2401 {
2402 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2403 }
2404
2405 /* Assign the immediate value to the relavant field in *OPERAND if
2406 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2407 needs an internal fixup in a later stage.
2408 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2409 IMM.VALUE that may get assigned with the constant. */
2410 static inline void
2411 assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2412 aarch64_opnd_info *operand,
2413 int addr_off_p,
2414 int need_libopcodes_p,
2415 int skip_p)
2416 {
2417 if (reloc->exp.X_op == O_constant)
2418 {
2419 if (addr_off_p)
2420 operand->addr.offset.imm = reloc->exp.X_add_number;
2421 else
2422 operand->imm.value = reloc->exp.X_add_number;
2423 reloc->type = BFD_RELOC_UNUSED;
2424 }
2425 else
2426 {
2427 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2428 /* Tell libopcodes to ignore this operand or not. This is helpful
2429 when one of the operands needs to be fixed up later but we need
2430 libopcodes to check the other operands. */
2431 operand->skip = skip_p;
2432 }
2433 }
2434
2435 /* Relocation modifiers. Each entry in the table contains the textual
2436 name for the relocation which may be placed before a symbol used as
2437 a load/store offset, or add immediate. It must be surrounded by a
2438 leading and trailing colon, for example:
2439
2440 ldr x0, [x1, #:rello:varsym]
2441 add x0, x1, #:rello:varsym */
2442
2443 struct reloc_table_entry
2444 {
2445 const char *name;
2446 int pc_rel;
2447 bfd_reloc_code_real_type adr_type;
2448 bfd_reloc_code_real_type adrp_type;
2449 bfd_reloc_code_real_type movw_type;
2450 bfd_reloc_code_real_type add_type;
2451 bfd_reloc_code_real_type ldst_type;
2452 bfd_reloc_code_real_type ld_literal_type;
2453 };
2454
2455 static struct reloc_table_entry reloc_table[] = {
2456 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2457 {"lo12", 0,
2458 0, /* adr_type */
2459 0,
2460 0,
2461 BFD_RELOC_AARCH64_ADD_LO12,
2462 BFD_RELOC_AARCH64_LDST_LO12,
2463 0},
2464
2465 /* Higher 21 bits of pc-relative page offset: ADRP */
2466 {"pg_hi21", 1,
2467 0, /* adr_type */
2468 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2469 0,
2470 0,
2471 0,
2472 0},
2473
2474 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2475 {"pg_hi21_nc", 1,
2476 0, /* adr_type */
2477 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2478 0,
2479 0,
2480 0,
2481 0},
2482
2483 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2484 {"abs_g0", 0,
2485 0, /* adr_type */
2486 0,
2487 BFD_RELOC_AARCH64_MOVW_G0,
2488 0,
2489 0,
2490 0},
2491
2492 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2493 {"abs_g0_s", 0,
2494 0, /* adr_type */
2495 0,
2496 BFD_RELOC_AARCH64_MOVW_G0_S,
2497 0,
2498 0,
2499 0},
2500
2501 /* Less significant bits 0-15 of address/value: MOVK, no check */
2502 {"abs_g0_nc", 0,
2503 0, /* adr_type */
2504 0,
2505 BFD_RELOC_AARCH64_MOVW_G0_NC,
2506 0,
2507 0,
2508 0},
2509
2510 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2511 {"abs_g1", 0,
2512 0, /* adr_type */
2513 0,
2514 BFD_RELOC_AARCH64_MOVW_G1,
2515 0,
2516 0,
2517 0},
2518
2519 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2520 {"abs_g1_s", 0,
2521 0, /* adr_type */
2522 0,
2523 BFD_RELOC_AARCH64_MOVW_G1_S,
2524 0,
2525 0,
2526 0},
2527
2528 /* Less significant bits 16-31 of address/value: MOVK, no check */
2529 {"abs_g1_nc", 0,
2530 0, /* adr_type */
2531 0,
2532 BFD_RELOC_AARCH64_MOVW_G1_NC,
2533 0,
2534 0,
2535 0},
2536
2537 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2538 {"abs_g2", 0,
2539 0, /* adr_type */
2540 0,
2541 BFD_RELOC_AARCH64_MOVW_G2,
2542 0,
2543 0,
2544 0},
2545
2546 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2547 {"abs_g2_s", 0,
2548 0, /* adr_type */
2549 0,
2550 BFD_RELOC_AARCH64_MOVW_G2_S,
2551 0,
2552 0,
2553 0},
2554
2555 /* Less significant bits 32-47 of address/value: MOVK, no check */
2556 {"abs_g2_nc", 0,
2557 0, /* adr_type */
2558 0,
2559 BFD_RELOC_AARCH64_MOVW_G2_NC,
2560 0,
2561 0,
2562 0},
2563
2564 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2565 {"abs_g3", 0,
2566 0, /* adr_type */
2567 0,
2568 BFD_RELOC_AARCH64_MOVW_G3,
2569 0,
2570 0,
2571 0},
2572
2573 /* Get to the page containing GOT entry for a symbol. */
2574 {"got", 1,
2575 0, /* adr_type */
2576 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2577 0,
2578 0,
2579 0,
2580 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2581
2582 /* 12 bit offset into the page containing GOT entry for that symbol. */
2583 {"got_lo12", 0,
2584 0, /* adr_type */
2585 0,
2586 0,
2587 0,
2588 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2589 0},
2590
2591 /* 0-15 bits of address/value: MOVk, no check. */
2592 {"gotoff_g0_nc", 0,
2593 0, /* adr_type */
2594 0,
2595 BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
2596 0,
2597 0,
2598 0},
2599
2600 /* Most significant bits 16-31 of address/value: MOVZ. */
2601 {"gotoff_g1", 0,
2602 0, /* adr_type */
2603 0,
2604 BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
2605 0,
2606 0,
2607 0},
2608
2609 /* 15 bit offset into the page containing GOT entry for that symbol. */
2610 {"gotoff_lo15", 0,
2611 0, /* adr_type */
2612 0,
2613 0,
2614 0,
2615 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2616 0},
2617
2618 /* Get to the page containing GOT TLS entry for a symbol */
2619 {"gottprel_g0_nc", 0,
2620 0, /* adr_type */
2621 0,
2622 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
2623 0,
2624 0,
2625 0},
2626
2627 /* Get to the page containing GOT TLS entry for a symbol */
2628 {"gottprel_g1", 0,
2629 0, /* adr_type */
2630 0,
2631 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
2632 0,
2633 0,
2634 0},
2635
2636 /* Get to the page containing GOT TLS entry for a symbol */
2637 {"tlsgd", 0,
2638 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
2639 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2640 0,
2641 0,
2642 0,
2643 0},
2644
2645 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2646 {"tlsgd_lo12", 0,
2647 0, /* adr_type */
2648 0,
2649 0,
2650 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
2651 0,
2652 0},
2653
2654 /* Lower 16 bits address/value: MOVk. */
2655 {"tlsgd_g0_nc", 0,
2656 0, /* adr_type */
2657 0,
2658 BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC,
2659 0,
2660 0,
2661 0},
2662
2663 /* Most significant bits 16-31 of address/value: MOVZ. */
2664 {"tlsgd_g1", 0,
2665 0, /* adr_type */
2666 0,
2667 BFD_RELOC_AARCH64_TLSGD_MOVW_G1,
2668 0,
2669 0,
2670 0},
2671
2672 /* Get to the page containing GOT TLS entry for a symbol */
2673 {"tlsdesc", 0,
2674 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
2675 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
2676 0,
2677 0,
2678 0,
2679 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
2680
2681 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2682 {"tlsdesc_lo12", 0,
2683 0, /* adr_type */
2684 0,
2685 0,
2686 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC,
2687 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2688 0},
2689
2690 /* Get to the page containing GOT TLS entry for a symbol.
2691 The same as GD, we allocate two consecutive GOT slots
2692 for module index and module offset, the only difference
2693 with GD is the module offset should be intialized to
2694 zero without any outstanding runtime relocation. */
2695 {"tlsldm", 0,
2696 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
2697 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
2698 0,
2699 0,
2700 0,
2701 0},
2702
2703 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2704 {"tlsldm_lo12_nc", 0,
2705 0, /* adr_type */
2706 0,
2707 0,
2708 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
2709 0,
2710 0},
2711
2712 /* 12 bit offset into the module TLS base address. */
2713 {"dtprel_lo12", 0,
2714 0, /* adr_type */
2715 0,
2716 0,
2717 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
2718 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
2719 0},
2720
2721 /* Same as dtprel_lo12, no overflow check. */
2722 {"dtprel_lo12_nc", 0,
2723 0, /* adr_type */
2724 0,
2725 0,
2726 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
2727 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
2728 0},
2729
2730 /* bits[23:12] of offset to the module TLS base address. */
2731 {"dtprel_hi12", 0,
2732 0, /* adr_type */
2733 0,
2734 0,
2735 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
2736 0,
2737 0},
2738
2739 /* bits[15:0] of offset to the module TLS base address. */
2740 {"dtprel_g0", 0,
2741 0, /* adr_type */
2742 0,
2743 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
2744 0,
2745 0,
2746 0},
2747
2748 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
2749 {"dtprel_g0_nc", 0,
2750 0, /* adr_type */
2751 0,
2752 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
2753 0,
2754 0,
2755 0},
2756
2757 /* bits[31:16] of offset to the module TLS base address. */
2758 {"dtprel_g1", 0,
2759 0, /* adr_type */
2760 0,
2761 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
2762 0,
2763 0,
2764 0},
2765
2766 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
2767 {"dtprel_g1_nc", 0,
2768 0, /* adr_type */
2769 0,
2770 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
2771 0,
2772 0,
2773 0},
2774
2775 /* bits[47:32] of offset to the module TLS base address. */
2776 {"dtprel_g2", 0,
2777 0, /* adr_type */
2778 0,
2779 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
2780 0,
2781 0,
2782 0},
2783
2784 /* Lower 16 bit offset into GOT entry for a symbol */
2785 {"tlsdesc_off_g0_nc", 0,
2786 0, /* adr_type */
2787 0,
2788 BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC,
2789 0,
2790 0,
2791 0},
2792
2793 /* Higher 16 bit offset into GOT entry for a symbol */
2794 {"tlsdesc_off_g1", 0,
2795 0, /* adr_type */
2796 0,
2797 BFD_RELOC_AARCH64_TLSDESC_OFF_G1,
2798 0,
2799 0,
2800 0},
2801
2802 /* Get to the page containing GOT TLS entry for a symbol */
2803 {"gottprel", 0,
2804 0, /* adr_type */
2805 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2806 0,
2807 0,
2808 0,
2809 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
2810
2811 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2812 {"gottprel_lo12", 0,
2813 0, /* adr_type */
2814 0,
2815 0,
2816 0,
2817 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2818 0},
2819
2820 /* Get tp offset for a symbol. */
2821 {"tprel", 0,
2822 0, /* adr_type */
2823 0,
2824 0,
2825 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2826 0,
2827 0},
2828
2829 /* Get tp offset for a symbol. */
2830 {"tprel_lo12", 0,
2831 0, /* adr_type */
2832 0,
2833 0,
2834 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2835 0,
2836 0},
2837
2838 /* Get tp offset for a symbol. */
2839 {"tprel_hi12", 0,
2840 0, /* adr_type */
2841 0,
2842 0,
2843 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
2844 0,
2845 0},
2846
2847 /* Get tp offset for a symbol. */
2848 {"tprel_lo12_nc", 0,
2849 0, /* adr_type */
2850 0,
2851 0,
2852 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
2853 0,
2854 0},
2855
2856 /* Most significant bits 32-47 of address/value: MOVZ. */
2857 {"tprel_g2", 0,
2858 0, /* adr_type */
2859 0,
2860 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2861 0,
2862 0,
2863 0},
2864
2865 /* Most significant bits 16-31 of address/value: MOVZ. */
2866 {"tprel_g1", 0,
2867 0, /* adr_type */
2868 0,
2869 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2870 0,
2871 0,
2872 0},
2873
2874 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2875 {"tprel_g1_nc", 0,
2876 0, /* adr_type */
2877 0,
2878 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2879 0,
2880 0,
2881 0},
2882
2883 /* Most significant bits 0-15 of address/value: MOVZ. */
2884 {"tprel_g0", 0,
2885 0, /* adr_type */
2886 0,
2887 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2888 0,
2889 0,
2890 0},
2891
2892 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2893 {"tprel_g0_nc", 0,
2894 0, /* adr_type */
2895 0,
2896 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2897 0,
2898 0,
2899 0},
2900
2901 /* 15bit offset from got entry to base address of GOT table. */
2902 {"gotpage_lo15", 0,
2903 0,
2904 0,
2905 0,
2906 0,
2907 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
2908 0},
2909
2910 /* 14bit offset from got entry to base address of GOT table. */
2911 {"gotpage_lo14", 0,
2912 0,
2913 0,
2914 0,
2915 0,
2916 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
2917 0},
2918 };
2919
2920 /* Given the address of a pointer pointing to the textual name of a
2921 relocation as may appear in assembler source, attempt to find its
2922 details in reloc_table. The pointer will be updated to the character
2923 after the trailing colon. On failure, NULL will be returned;
2924 otherwise return the reloc_table_entry. */
2925
2926 static struct reloc_table_entry *
2927 find_reloc_table_entry (char **str)
2928 {
2929 unsigned int i;
2930 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2931 {
2932 int length = strlen (reloc_table[i].name);
2933
2934 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2935 && (*str)[length] == ':')
2936 {
2937 *str += (length + 1);
2938 return &reloc_table[i];
2939 }
2940 }
2941
2942 return NULL;
2943 }
2944
2945 /* Mode argument to parse_shift and parser_shifter_operand. */
2946 enum parse_shift_mode
2947 {
2948 SHIFTED_NONE, /* no shifter allowed */
2949 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
2950 "#imm{,lsl #n}" */
2951 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
2952 "#imm" */
2953 SHIFTED_LSL, /* bare "lsl #n" */
2954 SHIFTED_MUL, /* bare "mul #n" */
2955 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
2956 SHIFTED_MUL_VL, /* "mul vl" */
2957 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
2958 };
2959
2960 /* Parse a <shift> operator on an AArch64 data processing instruction.
2961 Return TRUE on success; otherwise return FALSE. */
2962 static bfd_boolean
2963 parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
2964 {
2965 const struct aarch64_name_value_pair *shift_op;
2966 enum aarch64_modifier_kind kind;
2967 expressionS exp;
2968 int exp_has_prefix;
2969 char *s = *str;
2970 char *p = s;
2971
2972 for (p = *str; ISALPHA (*p); p++)
2973 ;
2974
2975 if (p == *str)
2976 {
2977 set_syntax_error (_("shift expression expected"));
2978 return FALSE;
2979 }
2980
2981 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
2982
2983 if (shift_op == NULL)
2984 {
2985 set_syntax_error (_("shift operator expected"));
2986 return FALSE;
2987 }
2988
2989 kind = aarch64_get_operand_modifier (shift_op);
2990
2991 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
2992 {
2993 set_syntax_error (_("invalid use of 'MSL'"));
2994 return FALSE;
2995 }
2996
2997 if (kind == AARCH64_MOD_MUL
2998 && mode != SHIFTED_MUL
2999 && mode != SHIFTED_MUL_VL)
3000 {
3001 set_syntax_error (_("invalid use of 'MUL'"));
3002 return FALSE;
3003 }
3004
3005 switch (mode)
3006 {
3007 case SHIFTED_LOGIC_IMM:
3008 if (aarch64_extend_operator_p (kind) == TRUE)
3009 {
3010 set_syntax_error (_("extending shift is not permitted"));
3011 return FALSE;
3012 }
3013 break;
3014
3015 case SHIFTED_ARITH_IMM:
3016 if (kind == AARCH64_MOD_ROR)
3017 {
3018 set_syntax_error (_("'ROR' shift is not permitted"));
3019 return FALSE;
3020 }
3021 break;
3022
3023 case SHIFTED_LSL:
3024 if (kind != AARCH64_MOD_LSL)
3025 {
3026 set_syntax_error (_("only 'LSL' shift is permitted"));
3027 return FALSE;
3028 }
3029 break;
3030
3031 case SHIFTED_MUL:
3032 if (kind != AARCH64_MOD_MUL)
3033 {
3034 set_syntax_error (_("only 'MUL' is permitted"));
3035 return FALSE;
3036 }
3037 break;
3038
3039 case SHIFTED_MUL_VL:
3040 /* "MUL VL" consists of two separate tokens. Require the first
3041 token to be "MUL" and look for a following "VL". */
3042 if (kind == AARCH64_MOD_MUL)
3043 {
3044 skip_whitespace (p);
3045 if (strncasecmp (p, "vl", 2) == 0 && !ISALPHA (p[2]))
3046 {
3047 p += 2;
3048 kind = AARCH64_MOD_MUL_VL;
3049 break;
3050 }
3051 }
3052 set_syntax_error (_("only 'MUL VL' is permitted"));
3053 return FALSE;
3054
3055 case SHIFTED_REG_OFFSET:
3056 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
3057 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
3058 {
3059 set_fatal_syntax_error
3060 (_("invalid shift for the register offset addressing mode"));
3061 return FALSE;
3062 }
3063 break;
3064
3065 case SHIFTED_LSL_MSL:
3066 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
3067 {
3068 set_syntax_error (_("invalid shift operator"));
3069 return FALSE;
3070 }
3071 break;
3072
3073 default:
3074 abort ();
3075 }
3076
3077 /* Whitespace can appear here if the next thing is a bare digit. */
3078 skip_whitespace (p);
3079
3080 /* Parse shift amount. */
3081 exp_has_prefix = 0;
3082 if ((mode == SHIFTED_REG_OFFSET && *p == ']') || kind == AARCH64_MOD_MUL_VL)
3083 exp.X_op = O_absent;
3084 else
3085 {
3086 if (is_immediate_prefix (*p))
3087 {
3088 p++;
3089 exp_has_prefix = 1;
3090 }
3091 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
3092 }
3093 if (kind == AARCH64_MOD_MUL_VL)
3094 /* For consistency, give MUL VL the same shift amount as an implicit
3095 MUL #1. */
3096 operand->shifter.amount = 1;
3097 else if (exp.X_op == O_absent)
3098 {
3099 if (aarch64_extend_operator_p (kind) == FALSE || exp_has_prefix)
3100 {
3101 set_syntax_error (_("missing shift amount"));
3102 return FALSE;
3103 }
3104 operand->shifter.amount = 0;
3105 }
3106 else if (exp.X_op != O_constant)
3107 {
3108 set_syntax_error (_("constant shift amount required"));
3109 return FALSE;
3110 }
3111 /* For parsing purposes, MUL #n has no inherent range. The range
3112 depends on the operand and will be checked by operand-specific
3113 routines. */
3114 else if (kind != AARCH64_MOD_MUL
3115 && (exp.X_add_number < 0 || exp.X_add_number > 63))
3116 {
3117 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
3118 return FALSE;
3119 }
3120 else
3121 {
3122 operand->shifter.amount = exp.X_add_number;
3123 operand->shifter.amount_present = 1;
3124 }
3125
3126 operand->shifter.operator_present = 1;
3127 operand->shifter.kind = kind;
3128
3129 *str = p;
3130 return TRUE;
3131 }
3132
3133 /* Parse a <shifter_operand> for a data processing instruction:
3134
3135 #<immediate>
3136 #<immediate>, LSL #imm
3137
3138 Validation of immediate operands is deferred to md_apply_fix.
3139
3140 Return TRUE on success; otherwise return FALSE. */
3141
3142 static bfd_boolean
3143 parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
3144 enum parse_shift_mode mode)
3145 {
3146 char *p;
3147
3148 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
3149 return FALSE;
3150
3151 p = *str;
3152
3153 /* Accept an immediate expression. */
3154 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
3155 return FALSE;
3156
3157 /* Accept optional LSL for arithmetic immediate values. */
3158 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
3159 if (! parse_shift (&p, operand, SHIFTED_LSL))
3160 return FALSE;
3161
3162 /* Not accept any shifter for logical immediate values. */
3163 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
3164 && parse_shift (&p, operand, mode))
3165 {
3166 set_syntax_error (_("unexpected shift operator"));
3167 return FALSE;
3168 }
3169
3170 *str = p;
3171 return TRUE;
3172 }
3173
3174 /* Parse a <shifter_operand> for a data processing instruction:
3175
3176 <Rm>
3177 <Rm>, <shift>
3178 #<immediate>
3179 #<immediate>, LSL #imm
3180
3181 where <shift> is handled by parse_shift above, and the last two
3182 cases are handled by the function above.
3183
3184 Validation of immediate operands is deferred to md_apply_fix.
3185
3186 Return TRUE on success; otherwise return FALSE. */
3187
3188 static bfd_boolean
3189 parse_shifter_operand (char **str, aarch64_opnd_info *operand,
3190 enum parse_shift_mode mode)
3191 {
3192 const reg_entry *reg;
3193 aarch64_opnd_qualifier_t qualifier;
3194 enum aarch64_operand_class opd_class
3195 = aarch64_get_operand_class (operand->type);
3196
3197 reg = aarch64_reg_parse_32_64 (str, &qualifier);
3198 if (reg)
3199 {
3200 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
3201 {
3202 set_syntax_error (_("unexpected register in the immediate operand"));
3203 return FALSE;
3204 }
3205
3206 if (!aarch64_check_reg_type (reg, REG_TYPE_R_Z))
3207 {
3208 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_Z)));
3209 return FALSE;
3210 }
3211
3212 operand->reg.regno = reg->number;
3213 operand->qualifier = qualifier;
3214
3215 /* Accept optional shift operation on register. */
3216 if (! skip_past_comma (str))
3217 return TRUE;
3218
3219 if (! parse_shift (str, operand, mode))
3220 return FALSE;
3221
3222 return TRUE;
3223 }
3224 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
3225 {
3226 set_syntax_error
3227 (_("integer register expected in the extended/shifted operand "
3228 "register"));
3229 return FALSE;
3230 }
3231
3232 /* We have a shifted immediate variable. */
3233 return parse_shifter_operand_imm (str, operand, mode);
3234 }
3235
3236 /* Return TRUE on success; return FALSE otherwise. */
3237
3238 static bfd_boolean
3239 parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
3240 enum parse_shift_mode mode)
3241 {
3242 char *p = *str;
3243
3244 /* Determine if we have the sequence of characters #: or just :
3245 coming next. If we do, then we check for a :rello: relocation
3246 modifier. If we don't, punt the whole lot to
3247 parse_shifter_operand. */
3248
3249 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3250 {
3251 struct reloc_table_entry *entry;
3252
3253 if (p[0] == '#')
3254 p += 2;
3255 else
3256 p++;
3257 *str = p;
3258
3259 /* Try to parse a relocation. Anything else is an error. */
3260 if (!(entry = find_reloc_table_entry (str)))
3261 {
3262 set_syntax_error (_("unknown relocation modifier"));
3263 return FALSE;
3264 }
3265
3266 if (entry->add_type == 0)
3267 {
3268 set_syntax_error
3269 (_("this relocation modifier is not allowed on this instruction"));
3270 return FALSE;
3271 }
3272
3273 /* Save str before we decompose it. */
3274 p = *str;
3275
3276 /* Next, we parse the expression. */
3277 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
3278 return FALSE;
3279
3280 /* Record the relocation type (use the ADD variant here). */
3281 inst.reloc.type = entry->add_type;
3282 inst.reloc.pc_rel = entry->pc_rel;
3283
3284 /* If str is empty, we've reached the end, stop here. */
3285 if (**str == '\0')
3286 return TRUE;
3287
3288 /* Otherwise, we have a shifted reloc modifier, so rewind to
3289 recover the variable name and continue parsing for the shifter. */
3290 *str = p;
3291 return parse_shifter_operand_imm (str, operand, mode);
3292 }
3293
3294 return parse_shifter_operand (str, operand, mode);
3295 }
3296
3297 /* Parse all forms of an address expression. Information is written
3298 to *OPERAND and/or inst.reloc.
3299
3300 The A64 instruction set has the following addressing modes:
3301
3302 Offset
3303 [base] // in SIMD ld/st structure
3304 [base{,#0}] // in ld/st exclusive
3305 [base{,#imm}]
3306 [base,Xm{,LSL #imm}]
3307 [base,Xm,SXTX {#imm}]
3308 [base,Wm,(S|U)XTW {#imm}]
3309 Pre-indexed
3310 [base,#imm]!
3311 Post-indexed
3312 [base],#imm
3313 [base],Xm // in SIMD ld/st structure
3314 PC-relative (literal)
3315 label
3316 SVE:
3317 [base,#imm,MUL VL]
3318 [base,Zm.D{,LSL #imm}]
3319 [base,Zm.S,(S|U)XTW {#imm}]
3320 [base,Zm.D,(S|U)XTW {#imm}] // ignores top 32 bits of Zm.D elements
3321 [Zn.S,#imm]
3322 [Zn.D,#imm]
3323 [Zn.S,Zm.S{,LSL #imm}] // in ADR
3324 [Zn.D,Zm.D{,LSL #imm}] // in ADR
3325 [Zn.D,Zm.D,(S|U)XTW {#imm}] // in ADR
3326
3327 (As a convenience, the notation "=immediate" is permitted in conjunction
3328 with the pc-relative literal load instructions to automatically place an
3329 immediate value or symbolic address in a nearby literal pool and generate
3330 a hidden label which references it.)
3331
3332 Upon a successful parsing, the address structure in *OPERAND will be
3333 filled in the following way:
3334
3335 .base_regno = <base>
3336 .offset.is_reg // 1 if the offset is a register
3337 .offset.imm = <imm>
3338 .offset.regno = <Rm>
3339
3340 For different addressing modes defined in the A64 ISA:
3341
3342 Offset
3343 .pcrel=0; .preind=1; .postind=0; .writeback=0
3344 Pre-indexed
3345 .pcrel=0; .preind=1; .postind=0; .writeback=1
3346 Post-indexed
3347 .pcrel=0; .preind=0; .postind=1; .writeback=1
3348 PC-relative (literal)
3349 .pcrel=1; .preind=1; .postind=0; .writeback=0
3350
3351 The shift/extension information, if any, will be stored in .shifter.
3352 The base and offset qualifiers will be stored in *BASE_QUALIFIER and
3353 *OFFSET_QUALIFIER respectively, with NIL being used if there's no
3354 corresponding register.
3355
3356 BASE_TYPE says which types of base register should be accepted and
3357 OFFSET_TYPE says the same for offset registers. IMM_SHIFT_MODE
3358 is the type of shifter that is allowed for immediate offsets,
3359 or SHIFTED_NONE if none.
3360
3361 In all other respects, it is the caller's responsibility to check
3362 for addressing modes not supported by the instruction, and to set
3363 inst.reloc.type. */
3364
3365 static bfd_boolean
3366 parse_address_main (char **str, aarch64_opnd_info *operand,
3367 aarch64_opnd_qualifier_t *base_qualifier,
3368 aarch64_opnd_qualifier_t *offset_qualifier,
3369 aarch64_reg_type base_type, aarch64_reg_type offset_type,
3370 enum parse_shift_mode imm_shift_mode)
3371 {
3372 char *p = *str;
3373 const reg_entry *reg;
3374 expressionS *exp = &inst.reloc.exp;
3375
3376 *base_qualifier = AARCH64_OPND_QLF_NIL;
3377 *offset_qualifier = AARCH64_OPND_QLF_NIL;
3378 if (! skip_past_char (&p, '['))
3379 {
3380 /* =immediate or label. */
3381 operand->addr.pcrel = 1;
3382 operand->addr.preind = 1;
3383
3384 /* #:<reloc_op>:<symbol> */
3385 skip_past_char (&p, '#');
3386 if (skip_past_char (&p, ':'))
3387 {
3388 bfd_reloc_code_real_type ty;
3389 struct reloc_table_entry *entry;
3390
3391 /* Try to parse a relocation modifier. Anything else is
3392 an error. */
3393 entry = find_reloc_table_entry (&p);
3394 if (! entry)
3395 {
3396 set_syntax_error (_("unknown relocation modifier"));
3397 return FALSE;
3398 }
3399
3400 switch (operand->type)
3401 {
3402 case AARCH64_OPND_ADDR_PCREL21:
3403 /* adr */
3404 ty = entry->adr_type;
3405 break;
3406
3407 default:
3408 ty = entry->ld_literal_type;
3409 break;
3410 }
3411
3412 if (ty == 0)
3413 {
3414 set_syntax_error
3415 (_("this relocation modifier is not allowed on this "
3416 "instruction"));
3417 return FALSE;
3418 }
3419
3420 /* #:<reloc_op>: */
3421 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3422 {
3423 set_syntax_error (_("invalid relocation expression"));
3424 return FALSE;
3425 }
3426
3427 /* #:<reloc_op>:<expr> */
3428 /* Record the relocation type. */
3429 inst.reloc.type = ty;
3430 inst.reloc.pc_rel = entry->pc_rel;
3431 }
3432 else
3433 {
3434
3435 if (skip_past_char (&p, '='))
3436 /* =immediate; need to generate the literal in the literal pool. */
3437 inst.gen_lit_pool = 1;
3438
3439 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3440 {
3441 set_syntax_error (_("invalid address"));
3442 return FALSE;
3443 }
3444 }
3445
3446 *str = p;
3447 return TRUE;
3448 }
3449
3450 /* [ */
3451
3452 reg = aarch64_addr_reg_parse (&p, base_type, base_qualifier);
3453 if (!reg || !aarch64_check_reg_type (reg, base_type))
3454 {
3455 set_syntax_error (_(get_reg_expected_msg (base_type)));
3456 return FALSE;
3457 }
3458 operand->addr.base_regno = reg->number;
3459
3460 /* [Xn */
3461 if (skip_past_comma (&p))
3462 {
3463 /* [Xn, */
3464 operand->addr.preind = 1;
3465
3466 reg = aarch64_addr_reg_parse (&p, offset_type, offset_qualifier);
3467 if (reg)
3468 {
3469 if (!aarch64_check_reg_type (reg, offset_type))
3470 {
3471 set_syntax_error (_(get_reg_expected_msg (offset_type)));
3472 return FALSE;
3473 }
3474
3475 /* [Xn,Rm */
3476 operand->addr.offset.regno = reg->number;
3477 operand->addr.offset.is_reg = 1;
3478 /* Shifted index. */
3479 if (skip_past_comma (&p))
3480 {
3481 /* [Xn,Rm, */
3482 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3483 /* Use the diagnostics set in parse_shift, so not set new
3484 error message here. */
3485 return FALSE;
3486 }
3487 /* We only accept:
3488 [base,Xm{,LSL #imm}]
3489 [base,Xm,SXTX {#imm}]
3490 [base,Wm,(S|U)XTW {#imm}] */
3491 if (operand->shifter.kind == AARCH64_MOD_NONE
3492 || operand->shifter.kind == AARCH64_MOD_LSL
3493 || operand->shifter.kind == AARCH64_MOD_SXTX)
3494 {
3495 if (*offset_qualifier == AARCH64_OPND_QLF_W)
3496 {
3497 set_syntax_error (_("invalid use of 32-bit register offset"));
3498 return FALSE;
3499 }
3500 if (aarch64_get_qualifier_esize (*base_qualifier)
3501 != aarch64_get_qualifier_esize (*offset_qualifier))
3502 {
3503 set_syntax_error (_("offset has different size from base"));
3504 return FALSE;
3505 }
3506 }
3507 else if (*offset_qualifier == AARCH64_OPND_QLF_X)
3508 {
3509 set_syntax_error (_("invalid use of 64-bit register offset"));
3510 return FALSE;
3511 }
3512 }
3513 else
3514 {
3515 /* [Xn,#:<reloc_op>:<symbol> */
3516 skip_past_char (&p, '#');
3517 if (skip_past_char (&p, ':'))
3518 {
3519 struct reloc_table_entry *entry;
3520
3521 /* Try to parse a relocation modifier. Anything else is
3522 an error. */
3523 if (!(entry = find_reloc_table_entry (&p)))
3524 {
3525 set_syntax_error (_("unknown relocation modifier"));
3526 return FALSE;
3527 }
3528
3529 if (entry->ldst_type == 0)
3530 {
3531 set_syntax_error
3532 (_("this relocation modifier is not allowed on this "
3533 "instruction"));
3534 return FALSE;
3535 }
3536
3537 /* [Xn,#:<reloc_op>: */
3538 /* We now have the group relocation table entry corresponding to
3539 the name in the assembler source. Next, we parse the
3540 expression. */
3541 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3542 {
3543 set_syntax_error (_("invalid relocation expression"));
3544 return FALSE;
3545 }
3546
3547 /* [Xn,#:<reloc_op>:<expr> */
3548 /* Record the load/store relocation type. */
3549 inst.reloc.type = entry->ldst_type;
3550 inst.reloc.pc_rel = entry->pc_rel;
3551 }
3552 else
3553 {
3554 if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3555 {
3556 set_syntax_error (_("invalid expression in the address"));
3557 return FALSE;
3558 }
3559 /* [Xn,<expr> */
3560 if (imm_shift_mode != SHIFTED_NONE && skip_past_comma (&p))
3561 /* [Xn,<expr>,<shifter> */
3562 if (! parse_shift (&p, operand, imm_shift_mode))
3563 return FALSE;
3564 }
3565 }
3566 }
3567
3568 if (! skip_past_char (&p, ']'))
3569 {
3570 set_syntax_error (_("']' expected"));
3571 return FALSE;
3572 }
3573
3574 if (skip_past_char (&p, '!'))
3575 {
3576 if (operand->addr.preind && operand->addr.offset.is_reg)
3577 {
3578 set_syntax_error (_("register offset not allowed in pre-indexed "
3579 "addressing mode"));
3580 return FALSE;
3581 }
3582 /* [Xn]! */
3583 operand->addr.writeback = 1;
3584 }
3585 else if (skip_past_comma (&p))
3586 {
3587 /* [Xn], */
3588 operand->addr.postind = 1;
3589 operand->addr.writeback = 1;
3590
3591 if (operand->addr.preind)
3592 {
3593 set_syntax_error (_("cannot combine pre- and post-indexing"));
3594 return FALSE;
3595 }
3596
3597 reg = aarch64_reg_parse_32_64 (&p, offset_qualifier);
3598 if (reg)
3599 {
3600 /* [Xn],Xm */
3601 if (!aarch64_check_reg_type (reg, REG_TYPE_R_64))
3602 {
3603 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
3604 return FALSE;
3605 }
3606
3607 operand->addr.offset.regno = reg->number;
3608 operand->addr.offset.is_reg = 1;
3609 }
3610 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3611 {
3612 /* [Xn],#expr */
3613 set_syntax_error (_("invalid expression in the address"));
3614 return FALSE;
3615 }
3616 }
3617
3618 /* If at this point neither .preind nor .postind is set, we have a
3619 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3620 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3621 {
3622 if (operand->addr.writeback)
3623 {
3624 /* Reject [Rn]! */
3625 set_syntax_error (_("missing offset in the pre-indexed address"));
3626 return FALSE;
3627 }
3628 operand->addr.preind = 1;
3629 inst.reloc.exp.X_op = O_constant;
3630 inst.reloc.exp.X_add_number = 0;
3631 }
3632
3633 *str = p;
3634 return TRUE;
3635 }
3636
3637 /* Parse a base AArch64 address (as opposed to an SVE one). Return TRUE
3638 on success. */
3639 static bfd_boolean
3640 parse_address (char **str, aarch64_opnd_info *operand)
3641 {
3642 aarch64_opnd_qualifier_t base_qualifier, offset_qualifier;
3643 return parse_address_main (str, operand, &base_qualifier, &offset_qualifier,
3644 REG_TYPE_R64_SP, REG_TYPE_R_Z, SHIFTED_NONE);
3645 }
3646
3647 /* Parse an address in which SVE vector registers and MUL VL are allowed.
3648 The arguments have the same meaning as for parse_address_main.
3649 Return TRUE on success. */
3650 static bfd_boolean
3651 parse_sve_address (char **str, aarch64_opnd_info *operand,
3652 aarch64_opnd_qualifier_t *base_qualifier,
3653 aarch64_opnd_qualifier_t *offset_qualifier)
3654 {
3655 return parse_address_main (str, operand, base_qualifier, offset_qualifier,
3656 REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET,
3657 SHIFTED_MUL_VL);
3658 }
3659
3660 /* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3661 Return TRUE on success; otherwise return FALSE. */
3662 static bfd_boolean
3663 parse_half (char **str, int *internal_fixup_p)
3664 {
3665 char *p = *str;
3666
3667 skip_past_char (&p, '#');
3668
3669 gas_assert (internal_fixup_p);
3670 *internal_fixup_p = 0;
3671
3672 if (*p == ':')
3673 {
3674 struct reloc_table_entry *entry;
3675
3676 /* Try to parse a relocation. Anything else is an error. */
3677 ++p;
3678 if (!(entry = find_reloc_table_entry (&p)))
3679 {
3680 set_syntax_error (_("unknown relocation modifier"));
3681 return FALSE;
3682 }
3683
3684 if (entry->movw_type == 0)
3685 {
3686 set_syntax_error
3687 (_("this relocation modifier is not allowed on this instruction"));
3688 return FALSE;
3689 }
3690
3691 inst.reloc.type = entry->movw_type;
3692 }
3693 else
3694 *internal_fixup_p = 1;
3695
3696 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3697 return FALSE;
3698
3699 *str = p;
3700 return TRUE;
3701 }
3702
3703 /* Parse an operand for an ADRP instruction:
3704 ADRP <Xd>, <label>
3705 Return TRUE on success; otherwise return FALSE. */
3706
3707 static bfd_boolean
3708 parse_adrp (char **str)
3709 {
3710 char *p;
3711
3712 p = *str;
3713 if (*p == ':')
3714 {
3715 struct reloc_table_entry *entry;
3716
3717 /* Try to parse a relocation. Anything else is an error. */
3718 ++p;
3719 if (!(entry = find_reloc_table_entry (&p)))
3720 {
3721 set_syntax_error (_("unknown relocation modifier"));
3722 return FALSE;
3723 }
3724
3725 if (entry->adrp_type == 0)
3726 {
3727 set_syntax_error
3728 (_("this relocation modifier is not allowed on this instruction"));
3729 return FALSE;
3730 }
3731
3732 inst.reloc.type = entry->adrp_type;
3733 }
3734 else
3735 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3736
3737 inst.reloc.pc_rel = 1;
3738
3739 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3740 return FALSE;
3741
3742 *str = p;
3743 return TRUE;
3744 }
3745
3746 /* Miscellaneous. */
3747
3748 /* Parse a symbolic operand such as "pow2" at *STR. ARRAY is an array
3749 of SIZE tokens in which index I gives the token for field value I,
3750 or is null if field value I is invalid. REG_TYPE says which register
3751 names should be treated as registers rather than as symbolic immediates.
3752
3753 Return true on success, moving *STR past the operand and storing the
3754 field value in *VAL. */
3755
3756 static int
3757 parse_enum_string (char **str, int64_t *val, const char *const *array,
3758 size_t size, aarch64_reg_type reg_type)
3759 {
3760 expressionS exp;
3761 char *p, *q;
3762 size_t i;
3763
3764 /* Match C-like tokens. */
3765 p = q = *str;
3766 while (ISALNUM (*q))
3767 q++;
3768
3769 for (i = 0; i < size; ++i)
3770 if (array[i]
3771 && strncasecmp (array[i], p, q - p) == 0
3772 && array[i][q - p] == 0)
3773 {
3774 *val = i;
3775 *str = q;
3776 return TRUE;
3777 }
3778
3779 if (!parse_immediate_expression (&p, &exp, reg_type))
3780 return FALSE;
3781
3782 if (exp.X_op == O_constant
3783 && (uint64_t) exp.X_add_number < size)
3784 {
3785 *val = exp.X_add_number;
3786 *str = p;
3787 return TRUE;
3788 }
3789
3790 /* Use the default error for this operand. */
3791 return FALSE;
3792 }
3793
3794 /* Parse an option for a preload instruction. Returns the encoding for the
3795 option, or PARSE_FAIL. */
3796
3797 static int
3798 parse_pldop (char **str)
3799 {
3800 char *p, *q;
3801 const struct aarch64_name_value_pair *o;
3802
3803 p = q = *str;
3804 while (ISALNUM (*q))
3805 q++;
3806
3807 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3808 if (!o)
3809 return PARSE_FAIL;
3810
3811 *str = q;
3812 return o->value;
3813 }
3814
3815 /* Parse an option for a barrier instruction. Returns the encoding for the
3816 option, or PARSE_FAIL. */
3817
3818 static int
3819 parse_barrier (char **str)
3820 {
3821 char *p, *q;
3822 const asm_barrier_opt *o;
3823
3824 p = q = *str;
3825 while (ISALPHA (*q))
3826 q++;
3827
3828 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3829 if (!o)
3830 return PARSE_FAIL;
3831
3832 *str = q;
3833 return o->value;
3834 }
3835
3836 /* Parse an operand for a PSB barrier. Set *HINT_OPT to the hint-option record
3837 return 0 if successful. Otherwise return PARSE_FAIL. */
3838
3839 static int
3840 parse_barrier_psb (char **str,
3841 const struct aarch64_name_value_pair ** hint_opt)
3842 {
3843 char *p, *q;
3844 const struct aarch64_name_value_pair *o;
3845
3846 p = q = *str;
3847 while (ISALPHA (*q))
3848 q++;
3849
3850 o = hash_find_n (aarch64_hint_opt_hsh, p, q - p);
3851 if (!o)
3852 {
3853 set_fatal_syntax_error
3854 ( _("unknown or missing option to PSB"));
3855 return PARSE_FAIL;
3856 }
3857
3858 if (o->value != 0x11)
3859 {
3860 /* PSB only accepts option name 'CSYNC'. */
3861 set_syntax_error
3862 (_("the specified option is not accepted for PSB"));
3863 return PARSE_FAIL;
3864 }
3865
3866 *str = q;
3867 *hint_opt = o;
3868 return 0;
3869 }
3870
3871 /* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
3872 Returns the encoding for the option, or PARSE_FAIL.
3873
3874 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
3875 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
3876
3877 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
3878 field, otherwise as a system register.
3879 */
3880
3881 static int
3882 parse_sys_reg (char **str, struct hash_control *sys_regs,
3883 int imple_defined_p, int pstatefield_p)
3884 {
3885 char *p, *q;
3886 char buf[32];
3887 const aarch64_sys_reg *o;
3888 int value;
3889
3890 p = buf;
3891 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3892 if (p < buf + 31)
3893 *p++ = TOLOWER (*q);
3894 *p = '\0';
3895 /* Assert that BUF be large enough. */
3896 gas_assert (p - buf == q - *str);
3897
3898 o = hash_find (sys_regs, buf);
3899 if (!o)
3900 {
3901 if (!imple_defined_p)
3902 return PARSE_FAIL;
3903 else
3904 {
3905 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
3906 unsigned int op0, op1, cn, cm, op2;
3907
3908 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3909 != 5)
3910 return PARSE_FAIL;
3911 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
3912 return PARSE_FAIL;
3913 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3914 }
3915 }
3916 else
3917 {
3918 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
3919 as_bad (_("selected processor does not support PSTATE field "
3920 "name '%s'"), buf);
3921 if (!pstatefield_p && !aarch64_sys_reg_supported_p (cpu_variant, o))
3922 as_bad (_("selected processor does not support system register "
3923 "name '%s'"), buf);
3924 if (aarch64_sys_reg_deprecated_p (o))
3925 as_warn (_("system register name '%s' is deprecated and may be "
3926 "removed in a future release"), buf);
3927 value = o->value;
3928 }
3929
3930 *str = q;
3931 return value;
3932 }
3933
3934 /* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3935 for the option, or NULL. */
3936
3937 static const aarch64_sys_ins_reg *
3938 parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3939 {
3940 char *p, *q;
3941 char buf[32];
3942 const aarch64_sys_ins_reg *o;
3943
3944 p = buf;
3945 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3946 if (p < buf + 31)
3947 *p++ = TOLOWER (*q);
3948 *p = '\0';
3949
3950 o = hash_find (sys_ins_regs, buf);
3951 if (!o)
3952 return NULL;
3953
3954 if (!aarch64_sys_ins_reg_supported_p (cpu_variant, o))
3955 as_bad (_("selected processor does not support system register "
3956 "name '%s'"), buf);
3957
3958 *str = q;
3959 return o;
3960 }
3961 \f
3962 #define po_char_or_fail(chr) do { \
3963 if (! skip_past_char (&str, chr)) \
3964 goto failure; \
3965 } while (0)
3966
3967 #define po_reg_or_fail(regtype) do { \
3968 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
3969 if (val == PARSE_FAIL) \
3970 { \
3971 set_default_error (); \
3972 goto failure; \
3973 } \
3974 } while (0)
3975
3976 #define po_int_reg_or_fail(reg_type) do { \
3977 reg = aarch64_reg_parse_32_64 (&str, &qualifier); \
3978 if (!reg || !aarch64_check_reg_type (reg, reg_type)) \
3979 { \
3980 set_default_error (); \
3981 goto failure; \
3982 } \
3983 info->reg.regno = reg->number; \
3984 info->qualifier = qualifier; \
3985 } while (0)
3986
3987 #define po_imm_nc_or_fail() do { \
3988 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
3989 goto failure; \
3990 } while (0)
3991
3992 #define po_imm_or_fail(min, max) do { \
3993 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
3994 goto failure; \
3995 if (val < min || val > max) \
3996 { \
3997 set_fatal_syntax_error (_("immediate value out of range "\
3998 #min " to "#max)); \
3999 goto failure; \
4000 } \
4001 } while (0)
4002
4003 #define po_enum_or_fail(array) do { \
4004 if (!parse_enum_string (&str, &val, array, \
4005 ARRAY_SIZE (array), imm_reg_type)) \
4006 goto failure; \
4007 } while (0)
4008
4009 #define po_misc_or_fail(expr) do { \
4010 if (!expr) \
4011 goto failure; \
4012 } while (0)
4013 \f
4014 /* encode the 12-bit imm field of Add/sub immediate */
4015 static inline uint32_t
4016 encode_addsub_imm (uint32_t imm)
4017 {
4018 return imm << 10;
4019 }
4020
4021 /* encode the shift amount field of Add/sub immediate */
4022 static inline uint32_t
4023 encode_addsub_imm_shift_amount (uint32_t cnt)
4024 {
4025 return cnt << 22;
4026 }
4027
4028
4029 /* encode the imm field of Adr instruction */
4030 static inline uint32_t
4031 encode_adr_imm (uint32_t imm)
4032 {
4033 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
4034 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
4035 }
4036
4037 /* encode the immediate field of Move wide immediate */
4038 static inline uint32_t
4039 encode_movw_imm (uint32_t imm)
4040 {
4041 return imm << 5;
4042 }
4043
4044 /* encode the 26-bit offset of unconditional branch */
4045 static inline uint32_t
4046 encode_branch_ofs_26 (uint32_t ofs)
4047 {
4048 return ofs & ((1 << 26) - 1);
4049 }
4050
4051 /* encode the 19-bit offset of conditional branch and compare & branch */
4052 static inline uint32_t
4053 encode_cond_branch_ofs_19 (uint32_t ofs)
4054 {
4055 return (ofs & ((1 << 19) - 1)) << 5;
4056 }
4057
4058 /* encode the 19-bit offset of ld literal */
4059 static inline uint32_t
4060 encode_ld_lit_ofs_19 (uint32_t ofs)
4061 {
4062 return (ofs & ((1 << 19) - 1)) << 5;
4063 }
4064
4065 /* Encode the 14-bit offset of test & branch. */
4066 static inline uint32_t
4067 encode_tst_branch_ofs_14 (uint32_t ofs)
4068 {
4069 return (ofs & ((1 << 14) - 1)) << 5;
4070 }
4071
4072 /* Encode the 16-bit imm field of svc/hvc/smc. */
4073 static inline uint32_t
4074 encode_svc_imm (uint32_t imm)
4075 {
4076 return imm << 5;
4077 }
4078
4079 /* Reencode add(s) to sub(s), or sub(s) to add(s). */
4080 static inline uint32_t
4081 reencode_addsub_switch_add_sub (uint32_t opcode)
4082 {
4083 return opcode ^ (1 << 30);
4084 }
4085
4086 static inline uint32_t
4087 reencode_movzn_to_movz (uint32_t opcode)
4088 {
4089 return opcode | (1 << 30);
4090 }
4091
4092 static inline uint32_t
4093 reencode_movzn_to_movn (uint32_t opcode)
4094 {
4095 return opcode & ~(1 << 30);
4096 }
4097
4098 /* Overall per-instruction processing. */
4099
4100 /* We need to be able to fix up arbitrary expressions in some statements.
4101 This is so that we can handle symbols that are an arbitrary distance from
4102 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
4103 which returns part of an address in a form which will be valid for
4104 a data instruction. We do this by pushing the expression into a symbol
4105 in the expr_section, and creating a fix for that. */
4106
4107 static fixS *
4108 fix_new_aarch64 (fragS * frag,
4109 int where,
4110 short int size, expressionS * exp, int pc_rel, int reloc)
4111 {
4112 fixS *new_fix;
4113
4114 switch (exp->X_op)
4115 {
4116 case O_constant:
4117 case O_symbol:
4118 case O_add:
4119 case O_subtract:
4120 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
4121 break;
4122
4123 default:
4124 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
4125 pc_rel, reloc);
4126 break;
4127 }
4128 return new_fix;
4129 }
4130 \f
4131 /* Diagnostics on operands errors. */
4132
4133 /* By default, output verbose error message.
4134 Disable the verbose error message by -mno-verbose-error. */
4135 static int verbose_error_p = 1;
4136
4137 #ifdef DEBUG_AARCH64
4138 /* N.B. this is only for the purpose of debugging. */
4139 const char* operand_mismatch_kind_names[] =
4140 {
4141 "AARCH64_OPDE_NIL",
4142 "AARCH64_OPDE_RECOVERABLE",
4143 "AARCH64_OPDE_SYNTAX_ERROR",
4144 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
4145 "AARCH64_OPDE_INVALID_VARIANT",
4146 "AARCH64_OPDE_OUT_OF_RANGE",
4147 "AARCH64_OPDE_UNALIGNED",
4148 "AARCH64_OPDE_REG_LIST",
4149 "AARCH64_OPDE_OTHER_ERROR",
4150 };
4151 #endif /* DEBUG_AARCH64 */
4152
4153 /* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
4154
4155 When multiple errors of different kinds are found in the same assembly
4156 line, only the error of the highest severity will be picked up for
4157 issuing the diagnostics. */
4158
4159 static inline bfd_boolean
4160 operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
4161 enum aarch64_operand_error_kind rhs)
4162 {
4163 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
4164 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
4165 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
4166 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
4167 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
4168 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
4169 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
4170 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
4171 return lhs > rhs;
4172 }
4173
4174 /* Helper routine to get the mnemonic name from the assembly instruction
4175 line; should only be called for the diagnosis purpose, as there is
4176 string copy operation involved, which may affect the runtime
4177 performance if used in elsewhere. */
4178
4179 static const char*
4180 get_mnemonic_name (const char *str)
4181 {
4182 static char mnemonic[32];
4183 char *ptr;
4184
4185 /* Get the first 15 bytes and assume that the full name is included. */
4186 strncpy (mnemonic, str, 31);
4187 mnemonic[31] = '\0';
4188
4189 /* Scan up to the end of the mnemonic, which must end in white space,
4190 '.', or end of string. */
4191 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
4192 ;
4193
4194 *ptr = '\0';
4195
4196 /* Append '...' to the truncated long name. */
4197 if (ptr - mnemonic == 31)
4198 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
4199
4200 return mnemonic;
4201 }
4202
4203 static void
4204 reset_aarch64_instruction (aarch64_instruction *instruction)
4205 {
4206 memset (instruction, '\0', sizeof (aarch64_instruction));
4207 instruction->reloc.type = BFD_RELOC_UNUSED;
4208 }
4209
4210 /* Data strutures storing one user error in the assembly code related to
4211 operands. */
4212
4213 struct operand_error_record
4214 {
4215 const aarch64_opcode *opcode;
4216 aarch64_operand_error detail;
4217 struct operand_error_record *next;
4218 };
4219
4220 typedef struct operand_error_record operand_error_record;
4221
4222 struct operand_errors
4223 {
4224 operand_error_record *head;
4225 operand_error_record *tail;
4226 };
4227
4228 typedef struct operand_errors operand_errors;
4229
4230 /* Top-level data structure reporting user errors for the current line of
4231 the assembly code.
4232 The way md_assemble works is that all opcodes sharing the same mnemonic
4233 name are iterated to find a match to the assembly line. In this data
4234 structure, each of the such opcodes will have one operand_error_record
4235 allocated and inserted. In other words, excessive errors related with
4236 a single opcode are disregarded. */
4237 operand_errors operand_error_report;
4238
4239 /* Free record nodes. */
4240 static operand_error_record *free_opnd_error_record_nodes = NULL;
4241
4242 /* Initialize the data structure that stores the operand mismatch
4243 information on assembling one line of the assembly code. */
4244 static void
4245 init_operand_error_report (void)
4246 {
4247 if (operand_error_report.head != NULL)
4248 {
4249 gas_assert (operand_error_report.tail != NULL);
4250 operand_error_report.tail->next = free_opnd_error_record_nodes;
4251 free_opnd_error_record_nodes = operand_error_report.head;
4252 operand_error_report.head = NULL;
4253 operand_error_report.tail = NULL;
4254 return;
4255 }
4256 gas_assert (operand_error_report.tail == NULL);
4257 }
4258
4259 /* Return TRUE if some operand error has been recorded during the
4260 parsing of the current assembly line using the opcode *OPCODE;
4261 otherwise return FALSE. */
4262 static inline bfd_boolean
4263 opcode_has_operand_error_p (const aarch64_opcode *opcode)
4264 {
4265 operand_error_record *record = operand_error_report.head;
4266 return record && record->opcode == opcode;
4267 }
4268
4269 /* Add the error record *NEW_RECORD to operand_error_report. The record's
4270 OPCODE field is initialized with OPCODE.
4271 N.B. only one record for each opcode, i.e. the maximum of one error is
4272 recorded for each instruction template. */
4273
4274 static void
4275 add_operand_error_record (const operand_error_record* new_record)
4276 {
4277 const aarch64_opcode *opcode = new_record->opcode;
4278 operand_error_record* record = operand_error_report.head;
4279
4280 /* The record may have been created for this opcode. If not, we need
4281 to prepare one. */
4282 if (! opcode_has_operand_error_p (opcode))
4283 {
4284 /* Get one empty record. */
4285 if (free_opnd_error_record_nodes == NULL)
4286 {
4287 record = XNEW (operand_error_record);
4288 }
4289 else
4290 {
4291 record = free_opnd_error_record_nodes;
4292 free_opnd_error_record_nodes = record->next;
4293 }
4294 record->opcode = opcode;
4295 /* Insert at the head. */
4296 record->next = operand_error_report.head;
4297 operand_error_report.head = record;
4298 if (operand_error_report.tail == NULL)
4299 operand_error_report.tail = record;
4300 }
4301 else if (record->detail.kind != AARCH64_OPDE_NIL
4302 && record->detail.index <= new_record->detail.index
4303 && operand_error_higher_severity_p (record->detail.kind,
4304 new_record->detail.kind))
4305 {
4306 /* In the case of multiple errors found on operands related with a
4307 single opcode, only record the error of the leftmost operand and
4308 only if the error is of higher severity. */
4309 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
4310 " the existing error %s on operand %d",
4311 operand_mismatch_kind_names[new_record->detail.kind],
4312 new_record->detail.index,
4313 operand_mismatch_kind_names[record->detail.kind],
4314 record->detail.index);
4315 return;
4316 }
4317
4318 record->detail = new_record->detail;
4319 }
4320
4321 static inline void
4322 record_operand_error_info (const aarch64_opcode *opcode,
4323 aarch64_operand_error *error_info)
4324 {
4325 operand_error_record record;
4326 record.opcode = opcode;
4327 record.detail = *error_info;
4328 add_operand_error_record (&record);
4329 }
4330
4331 /* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
4332 error message *ERROR, for operand IDX (count from 0). */
4333
4334 static void
4335 record_operand_error (const aarch64_opcode *opcode, int idx,
4336 enum aarch64_operand_error_kind kind,
4337 const char* error)
4338 {
4339 aarch64_operand_error info;
4340 memset(&info, 0, sizeof (info));
4341 info.index = idx;
4342 info.kind = kind;
4343 info.error = error;
4344 record_operand_error_info (opcode, &info);
4345 }
4346
4347 static void
4348 record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
4349 enum aarch64_operand_error_kind kind,
4350 const char* error, const int *extra_data)
4351 {
4352 aarch64_operand_error info;
4353 info.index = idx;
4354 info.kind = kind;
4355 info.error = error;
4356 info.data[0] = extra_data[0];
4357 info.data[1] = extra_data[1];
4358 info.data[2] = extra_data[2];
4359 record_operand_error_info (opcode, &info);
4360 }
4361
4362 static void
4363 record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
4364 const char* error, int lower_bound,
4365 int upper_bound)
4366 {
4367 int data[3] = {lower_bound, upper_bound, 0};
4368 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
4369 error, data);
4370 }
4371
4372 /* Remove the operand error record for *OPCODE. */
4373 static void ATTRIBUTE_UNUSED
4374 remove_operand_error_record (const aarch64_opcode *opcode)
4375 {
4376 if (opcode_has_operand_error_p (opcode))
4377 {
4378 operand_error_record* record = operand_error_report.head;
4379 gas_assert (record != NULL && operand_error_report.tail != NULL);
4380 operand_error_report.head = record->next;
4381 record->next = free_opnd_error_record_nodes;
4382 free_opnd_error_record_nodes = record;
4383 if (operand_error_report.head == NULL)
4384 {
4385 gas_assert (operand_error_report.tail == record);
4386 operand_error_report.tail = NULL;
4387 }
4388 }
4389 }
4390
4391 /* Given the instruction in *INSTR, return the index of the best matched
4392 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
4393
4394 Return -1 if there is no qualifier sequence; return the first match
4395 if there is multiple matches found. */
4396
4397 static int
4398 find_best_match (const aarch64_inst *instr,
4399 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
4400 {
4401 int i, num_opnds, max_num_matched, idx;
4402
4403 num_opnds = aarch64_num_of_operands (instr->opcode);
4404 if (num_opnds == 0)
4405 {
4406 DEBUG_TRACE ("no operand");
4407 return -1;
4408 }
4409
4410 max_num_matched = 0;
4411 idx = 0;
4412
4413 /* For each pattern. */
4414 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4415 {
4416 int j, num_matched;
4417 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
4418
4419 /* Most opcodes has much fewer patterns in the list. */
4420 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
4421 {
4422 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
4423 break;
4424 }
4425
4426 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
4427 if (*qualifiers == instr->operands[j].qualifier)
4428 ++num_matched;
4429
4430 if (num_matched > max_num_matched)
4431 {
4432 max_num_matched = num_matched;
4433 idx = i;
4434 }
4435 }
4436
4437 DEBUG_TRACE ("return with %d", idx);
4438 return idx;
4439 }
4440
4441 /* Assign qualifiers in the qualifier seqence (headed by QUALIFIERS) to the
4442 corresponding operands in *INSTR. */
4443
4444 static inline void
4445 assign_qualifier_sequence (aarch64_inst *instr,
4446 const aarch64_opnd_qualifier_t *qualifiers)
4447 {
4448 int i = 0;
4449 int num_opnds = aarch64_num_of_operands (instr->opcode);
4450 gas_assert (num_opnds);
4451 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4452 instr->operands[i].qualifier = *qualifiers;
4453 }
4454
4455 /* Print operands for the diagnosis purpose. */
4456
4457 static void
4458 print_operands (char *buf, const aarch64_opcode *opcode,
4459 const aarch64_opnd_info *opnds)
4460 {
4461 int i;
4462
4463 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4464 {
4465 char str[128];
4466
4467 /* We regard the opcode operand info more, however we also look into
4468 the inst->operands to support the disassembling of the optional
4469 operand.
4470 The two operand code should be the same in all cases, apart from
4471 when the operand can be optional. */
4472 if (opcode->operands[i] == AARCH64_OPND_NIL
4473 || opnds[i].type == AARCH64_OPND_NIL)
4474 break;
4475
4476 /* Generate the operand string in STR. */
4477 aarch64_print_operand (str, sizeof (str), 0, opcode, opnds, i, NULL, NULL);
4478
4479 /* Delimiter. */
4480 if (str[0] != '\0')
4481 strcat (buf, i == 0 ? " " : ",");
4482
4483 /* Append the operand string. */
4484 strcat (buf, str);
4485 }
4486 }
4487
4488 /* Send to stderr a string as information. */
4489
4490 static void
4491 output_info (const char *format, ...)
4492 {
4493 const char *file;
4494 unsigned int line;
4495 va_list args;
4496
4497 file = as_where (&line);
4498 if (file)
4499 {
4500 if (line != 0)
4501 fprintf (stderr, "%s:%u: ", file, line);
4502 else
4503 fprintf (stderr, "%s: ", file);
4504 }
4505 fprintf (stderr, _("Info: "));
4506 va_start (args, format);
4507 vfprintf (stderr, format, args);
4508 va_end (args);
4509 (void) putc ('\n', stderr);
4510 }
4511
4512 /* Output one operand error record. */
4513
4514 static void
4515 output_operand_error_record (const operand_error_record *record, char *str)
4516 {
4517 const aarch64_operand_error *detail = &record->detail;
4518 int idx = detail->index;
4519 const aarch64_opcode *opcode = record->opcode;
4520 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
4521 : AARCH64_OPND_NIL);
4522
4523 switch (detail->kind)
4524 {
4525 case AARCH64_OPDE_NIL:
4526 gas_assert (0);
4527 break;
4528
4529 case AARCH64_OPDE_SYNTAX_ERROR:
4530 case AARCH64_OPDE_RECOVERABLE:
4531 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4532 case AARCH64_OPDE_OTHER_ERROR:
4533 /* Use the prepared error message if there is, otherwise use the
4534 operand description string to describe the error. */
4535 if (detail->error != NULL)
4536 {
4537 if (idx < 0)
4538 as_bad (_("%s -- `%s'"), detail->error, str);
4539 else
4540 as_bad (_("%s at operand %d -- `%s'"),
4541 detail->error, idx + 1, str);
4542 }
4543 else
4544 {
4545 gas_assert (idx >= 0);
4546 as_bad (_("operand %d should be %s -- `%s'"), idx + 1,
4547 aarch64_get_operand_desc (opd_code), str);
4548 }
4549 break;
4550
4551 case AARCH64_OPDE_INVALID_VARIANT:
4552 as_bad (_("operand mismatch -- `%s'"), str);
4553 if (verbose_error_p)
4554 {
4555 /* We will try to correct the erroneous instruction and also provide
4556 more information e.g. all other valid variants.
4557
4558 The string representation of the corrected instruction and other
4559 valid variants are generated by
4560
4561 1) obtaining the intermediate representation of the erroneous
4562 instruction;
4563 2) manipulating the IR, e.g. replacing the operand qualifier;
4564 3) printing out the instruction by calling the printer functions
4565 shared with the disassembler.
4566
4567 The limitation of this method is that the exact input assembly
4568 line cannot be accurately reproduced in some cases, for example an
4569 optional operand present in the actual assembly line will be
4570 omitted in the output; likewise for the optional syntax rules,
4571 e.g. the # before the immediate. Another limitation is that the
4572 assembly symbols and relocation operations in the assembly line
4573 currently cannot be printed out in the error report. Last but not
4574 least, when there is other error(s) co-exist with this error, the
4575 'corrected' instruction may be still incorrect, e.g. given
4576 'ldnp h0,h1,[x0,#6]!'
4577 this diagnosis will provide the version:
4578 'ldnp s0,s1,[x0,#6]!'
4579 which is still not right. */
4580 size_t len = strlen (get_mnemonic_name (str));
4581 int i, qlf_idx;
4582 bfd_boolean result;
4583 char buf[2048];
4584 aarch64_inst *inst_base = &inst.base;
4585 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4586
4587 /* Init inst. */
4588 reset_aarch64_instruction (&inst);
4589 inst_base->opcode = opcode;
4590
4591 /* Reset the error report so that there is no side effect on the
4592 following operand parsing. */
4593 init_operand_error_report ();
4594
4595 /* Fill inst. */
4596 result = parse_operands (str + len, opcode)
4597 && programmer_friendly_fixup (&inst);
4598 gas_assert (result);
4599 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4600 NULL, NULL);
4601 gas_assert (!result);
4602
4603 /* Find the most matched qualifier sequence. */
4604 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4605 gas_assert (qlf_idx > -1);
4606
4607 /* Assign the qualifiers. */
4608 assign_qualifier_sequence (inst_base,
4609 opcode->qualifiers_list[qlf_idx]);
4610
4611 /* Print the hint. */
4612 output_info (_(" did you mean this?"));
4613 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
4614 print_operands (buf, opcode, inst_base->operands);
4615 output_info (_(" %s"), buf);
4616
4617 /* Print out other variant(s) if there is any. */
4618 if (qlf_idx != 0 ||
4619 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4620 output_info (_(" other valid variant(s):"));
4621
4622 /* For each pattern. */
4623 qualifiers_list = opcode->qualifiers_list;
4624 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4625 {
4626 /* Most opcodes has much fewer patterns in the list.
4627 First NIL qualifier indicates the end in the list. */
4628 if (empty_qualifier_sequence_p (*qualifiers_list) == TRUE)
4629 break;
4630
4631 if (i != qlf_idx)
4632 {
4633 /* Mnemonics name. */
4634 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
4635
4636 /* Assign the qualifiers. */
4637 assign_qualifier_sequence (inst_base, *qualifiers_list);
4638
4639 /* Print instruction. */
4640 print_operands (buf, opcode, inst_base->operands);
4641
4642 output_info (_(" %s"), buf);
4643 }
4644 }
4645 }
4646 break;
4647
4648 case AARCH64_OPDE_UNTIED_OPERAND:
4649 as_bad (_("operand %d must be the same register as operand 1 -- `%s'"),
4650 detail->index + 1, str);
4651 break;
4652
4653 case AARCH64_OPDE_OUT_OF_RANGE:
4654 if (detail->data[0] != detail->data[1])
4655 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4656 detail->error ? detail->error : _("immediate value"),
4657 detail->data[0], detail->data[1], idx + 1, str);
4658 else
4659 as_bad (_("%s expected to be %d at operand %d -- `%s'"),
4660 detail->error ? detail->error : _("immediate value"),
4661 detail->data[0], idx + 1, str);
4662 break;
4663
4664 case AARCH64_OPDE_REG_LIST:
4665 if (detail->data[0] == 1)
4666 as_bad (_("invalid number of registers in the list; "
4667 "only 1 register is expected at operand %d -- `%s'"),
4668 idx + 1, str);
4669 else
4670 as_bad (_("invalid number of registers in the list; "
4671 "%d registers are expected at operand %d -- `%s'"),
4672 detail->data[0], idx + 1, str);
4673 break;
4674
4675 case AARCH64_OPDE_UNALIGNED:
4676 as_bad (_("immediate value should be a multiple of "
4677 "%d at operand %d -- `%s'"),
4678 detail->data[0], idx + 1, str);
4679 break;
4680
4681 default:
4682 gas_assert (0);
4683 break;
4684 }
4685 }
4686
4687 /* Process and output the error message about the operand mismatching.
4688
4689 When this function is called, the operand error information had
4690 been collected for an assembly line and there will be multiple
4691 errors in the case of mulitple instruction templates; output the
4692 error message that most closely describes the problem. */
4693
4694 static void
4695 output_operand_error_report (char *str)
4696 {
4697 int largest_error_pos;
4698 const char *msg = NULL;
4699 enum aarch64_operand_error_kind kind;
4700 operand_error_record *curr;
4701 operand_error_record *head = operand_error_report.head;
4702 operand_error_record *record = NULL;
4703
4704 /* No error to report. */
4705 if (head == NULL)
4706 return;
4707
4708 gas_assert (head != NULL && operand_error_report.tail != NULL);
4709
4710 /* Only one error. */
4711 if (head == operand_error_report.tail)
4712 {
4713 DEBUG_TRACE ("single opcode entry with error kind: %s",
4714 operand_mismatch_kind_names[head->detail.kind]);
4715 output_operand_error_record (head, str);
4716 return;
4717 }
4718
4719 /* Find the error kind of the highest severity. */
4720 DEBUG_TRACE ("multiple opcode entres with error kind");
4721 kind = AARCH64_OPDE_NIL;
4722 for (curr = head; curr != NULL; curr = curr->next)
4723 {
4724 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4725 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4726 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4727 kind = curr->detail.kind;
4728 }
4729 gas_assert (kind != AARCH64_OPDE_NIL);
4730
4731 /* Pick up one of errors of KIND to report. */
4732 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4733 for (curr = head; curr != NULL; curr = curr->next)
4734 {
4735 if (curr->detail.kind != kind)
4736 continue;
4737 /* If there are multiple errors, pick up the one with the highest
4738 mismatching operand index. In the case of multiple errors with
4739 the equally highest operand index, pick up the first one or the
4740 first one with non-NULL error message. */
4741 if (curr->detail.index > largest_error_pos
4742 || (curr->detail.index == largest_error_pos && msg == NULL
4743 && curr->detail.error != NULL))
4744 {
4745 largest_error_pos = curr->detail.index;
4746 record = curr;
4747 msg = record->detail.error;
4748 }
4749 }
4750
4751 gas_assert (largest_error_pos != -2 && record != NULL);
4752 DEBUG_TRACE ("Pick up error kind %s to report",
4753 operand_mismatch_kind_names[record->detail.kind]);
4754
4755 /* Output. */
4756 output_operand_error_record (record, str);
4757 }
4758 \f
4759 /* Write an AARCH64 instruction to buf - always little-endian. */
4760 static void
4761 put_aarch64_insn (char *buf, uint32_t insn)
4762 {
4763 unsigned char *where = (unsigned char *) buf;
4764 where[0] = insn;
4765 where[1] = insn >> 8;
4766 where[2] = insn >> 16;
4767 where[3] = insn >> 24;
4768 }
4769
4770 static uint32_t
4771 get_aarch64_insn (char *buf)
4772 {
4773 unsigned char *where = (unsigned char *) buf;
4774 uint32_t result;
4775 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4776 return result;
4777 }
4778
4779 static void
4780 output_inst (struct aarch64_inst *new_inst)
4781 {
4782 char *to = NULL;
4783
4784 to = frag_more (INSN_SIZE);
4785
4786 frag_now->tc_frag_data.recorded = 1;
4787
4788 put_aarch64_insn (to, inst.base.value);
4789
4790 if (inst.reloc.type != BFD_RELOC_UNUSED)
4791 {
4792 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4793 INSN_SIZE, &inst.reloc.exp,
4794 inst.reloc.pc_rel,
4795 inst.reloc.type);
4796 DEBUG_TRACE ("Prepared relocation fix up");
4797 /* Don't check the addend value against the instruction size,
4798 that's the job of our code in md_apply_fix(). */
4799 fixp->fx_no_overflow = 1;
4800 if (new_inst != NULL)
4801 fixp->tc_fix_data.inst = new_inst;
4802 if (aarch64_gas_internal_fixup_p ())
4803 {
4804 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4805 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4806 fixp->fx_addnumber = inst.reloc.flags;
4807 }
4808 }
4809
4810 dwarf2_emit_insn (INSN_SIZE);
4811 }
4812
4813 /* Link together opcodes of the same name. */
4814
4815 struct templates
4816 {
4817 aarch64_opcode *opcode;
4818 struct templates *next;
4819 };
4820
4821 typedef struct templates templates;
4822
4823 static templates *
4824 lookup_mnemonic (const char *start, int len)
4825 {
4826 templates *templ = NULL;
4827
4828 templ = hash_find_n (aarch64_ops_hsh, start, len);
4829 return templ;
4830 }
4831
4832 /* Subroutine of md_assemble, responsible for looking up the primary
4833 opcode from the mnemonic the user wrote. STR points to the
4834 beginning of the mnemonic. */
4835
4836 static templates *
4837 opcode_lookup (char **str)
4838 {
4839 char *end, *base;
4840 const aarch64_cond *cond;
4841 char condname[16];
4842 int len;
4843
4844 /* Scan up to the end of the mnemonic, which must end in white space,
4845 '.', or end of string. */
4846 for (base = end = *str; is_part_of_name(*end); end++)
4847 if (*end == '.')
4848 break;
4849
4850 if (end == base)
4851 return 0;
4852
4853 inst.cond = COND_ALWAYS;
4854
4855 /* Handle a possible condition. */
4856 if (end[0] == '.')
4857 {
4858 cond = hash_find_n (aarch64_cond_hsh, end + 1, 2);
4859 if (cond)
4860 {
4861 inst.cond = cond->value;
4862 *str = end + 3;
4863 }
4864 else
4865 {
4866 *str = end;
4867 return 0;
4868 }
4869 }
4870 else
4871 *str = end;
4872
4873 len = end - base;
4874
4875 if (inst.cond == COND_ALWAYS)
4876 {
4877 /* Look for unaffixed mnemonic. */
4878 return lookup_mnemonic (base, len);
4879 }
4880 else if (len <= 13)
4881 {
4882 /* append ".c" to mnemonic if conditional */
4883 memcpy (condname, base, len);
4884 memcpy (condname + len, ".c", 2);
4885 base = condname;
4886 len += 2;
4887 return lookup_mnemonic (base, len);
4888 }
4889
4890 return NULL;
4891 }
4892
4893 /* Internal helper routine converting a vector_type_el structure *VECTYPE
4894 to a corresponding operand qualifier. */
4895
4896 static inline aarch64_opnd_qualifier_t
4897 vectype_to_qualifier (const struct vector_type_el *vectype)
4898 {
4899 /* Element size in bytes indexed by vector_el_type. */
4900 const unsigned char ele_size[5]
4901 = {1, 2, 4, 8, 16};
4902 const unsigned int ele_base [5] =
4903 {
4904 AARCH64_OPND_QLF_V_8B,
4905 AARCH64_OPND_QLF_V_2H,
4906 AARCH64_OPND_QLF_V_2S,
4907 AARCH64_OPND_QLF_V_1D,
4908 AARCH64_OPND_QLF_V_1Q
4909 };
4910
4911 if (!vectype->defined || vectype->type == NT_invtype)
4912 goto vectype_conversion_fail;
4913
4914 if (vectype->type == NT_zero)
4915 return AARCH64_OPND_QLF_P_Z;
4916 if (vectype->type == NT_merge)
4917 return AARCH64_OPND_QLF_P_M;
4918
4919 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4920
4921 if (vectype->defined & (NTA_HASINDEX | NTA_HASVARWIDTH))
4922 /* Vector element register. */
4923 return AARCH64_OPND_QLF_S_B + vectype->type;
4924 else
4925 {
4926 /* Vector register. */
4927 int reg_size = ele_size[vectype->type] * vectype->width;
4928 unsigned offset;
4929 unsigned shift;
4930 if (reg_size != 16 && reg_size != 8 && reg_size != 4)
4931 goto vectype_conversion_fail;
4932
4933 /* The conversion is by calculating the offset from the base operand
4934 qualifier for the vector type. The operand qualifiers are regular
4935 enough that the offset can established by shifting the vector width by
4936 a vector-type dependent amount. */
4937 shift = 0;
4938 if (vectype->type == NT_b)
4939 shift = 4;
4940 else if (vectype->type == NT_h || vectype->type == NT_s)
4941 shift = 2;
4942 else if (vectype->type >= NT_d)
4943 shift = 1;
4944 else
4945 gas_assert (0);
4946
4947 offset = ele_base [vectype->type] + (vectype->width >> shift);
4948 gas_assert (AARCH64_OPND_QLF_V_8B <= offset
4949 && offset <= AARCH64_OPND_QLF_V_1Q);
4950 return offset;
4951 }
4952
4953 vectype_conversion_fail:
4954 first_error (_("bad vector arrangement type"));
4955 return AARCH64_OPND_QLF_NIL;
4956 }
4957
4958 /* Process an optional operand that is found omitted from the assembly line.
4959 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
4960 instruction's opcode entry while IDX is the index of this omitted operand.
4961 */
4962
4963 static void
4964 process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
4965 int idx, aarch64_opnd_info *operand)
4966 {
4967 aarch64_insn default_value = get_optional_operand_default_value (opcode);
4968 gas_assert (optional_operand_p (opcode, idx));
4969 gas_assert (!operand->present);
4970
4971 switch (type)
4972 {
4973 case AARCH64_OPND_Rd:
4974 case AARCH64_OPND_Rn:
4975 case AARCH64_OPND_Rm:
4976 case AARCH64_OPND_Rt:
4977 case AARCH64_OPND_Rt2:
4978 case AARCH64_OPND_Rs:
4979 case AARCH64_OPND_Ra:
4980 case AARCH64_OPND_Rt_SYS:
4981 case AARCH64_OPND_Rd_SP:
4982 case AARCH64_OPND_Rn_SP:
4983 case AARCH64_OPND_Fd:
4984 case AARCH64_OPND_Fn:
4985 case AARCH64_OPND_Fm:
4986 case AARCH64_OPND_Fa:
4987 case AARCH64_OPND_Ft:
4988 case AARCH64_OPND_Ft2:
4989 case AARCH64_OPND_Sd:
4990 case AARCH64_OPND_Sn:
4991 case AARCH64_OPND_Sm:
4992 case AARCH64_OPND_Vd:
4993 case AARCH64_OPND_Vn:
4994 case AARCH64_OPND_Vm:
4995 case AARCH64_OPND_VdD1:
4996 case AARCH64_OPND_VnD1:
4997 operand->reg.regno = default_value;
4998 break;
4999
5000 case AARCH64_OPND_Ed:
5001 case AARCH64_OPND_En:
5002 case AARCH64_OPND_Em:
5003 operand->reglane.regno = default_value;
5004 break;
5005
5006 case AARCH64_OPND_IDX:
5007 case AARCH64_OPND_BIT_NUM:
5008 case AARCH64_OPND_IMMR:
5009 case AARCH64_OPND_IMMS:
5010 case AARCH64_OPND_SHLL_IMM:
5011 case AARCH64_OPND_IMM_VLSL:
5012 case AARCH64_OPND_IMM_VLSR:
5013 case AARCH64_OPND_CCMP_IMM:
5014 case AARCH64_OPND_FBITS:
5015 case AARCH64_OPND_UIMM4:
5016 case AARCH64_OPND_UIMM3_OP1:
5017 case AARCH64_OPND_UIMM3_OP2:
5018 case AARCH64_OPND_IMM:
5019 case AARCH64_OPND_WIDTH:
5020 case AARCH64_OPND_UIMM7:
5021 case AARCH64_OPND_NZCV:
5022 case AARCH64_OPND_SVE_PATTERN:
5023 case AARCH64_OPND_SVE_PRFOP:
5024 operand->imm.value = default_value;
5025 break;
5026
5027 case AARCH64_OPND_SVE_PATTERN_SCALED:
5028 operand->imm.value = default_value;
5029 operand->shifter.kind = AARCH64_MOD_MUL;
5030 operand->shifter.amount = 1;
5031 break;
5032
5033 case AARCH64_OPND_EXCEPTION:
5034 inst.reloc.type = BFD_RELOC_UNUSED;
5035 break;
5036
5037 case AARCH64_OPND_BARRIER_ISB:
5038 operand->barrier = aarch64_barrier_options + default_value;
5039
5040 default:
5041 break;
5042 }
5043 }
5044
5045 /* Process the relocation type for move wide instructions.
5046 Return TRUE on success; otherwise return FALSE. */
5047
5048 static bfd_boolean
5049 process_movw_reloc_info (void)
5050 {
5051 int is32;
5052 unsigned shift;
5053
5054 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
5055
5056 if (inst.base.opcode->op == OP_MOVK)
5057 switch (inst.reloc.type)
5058 {
5059 case BFD_RELOC_AARCH64_MOVW_G0_S:
5060 case BFD_RELOC_AARCH64_MOVW_G1_S:
5061 case BFD_RELOC_AARCH64_MOVW_G2_S:
5062 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5063 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5064 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5065 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5066 set_syntax_error
5067 (_("the specified relocation type is not allowed for MOVK"));
5068 return FALSE;
5069 default:
5070 break;
5071 }
5072
5073 switch (inst.reloc.type)
5074 {
5075 case BFD_RELOC_AARCH64_MOVW_G0:
5076 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5077 case BFD_RELOC_AARCH64_MOVW_G0_S:
5078 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5079 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5080 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5081 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5082 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5083 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5084 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5085 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5086 shift = 0;
5087 break;
5088 case BFD_RELOC_AARCH64_MOVW_G1:
5089 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5090 case BFD_RELOC_AARCH64_MOVW_G1_S:
5091 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5092 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5093 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5094 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5095 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5096 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5097 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5098 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5099 shift = 16;
5100 break;
5101 case BFD_RELOC_AARCH64_MOVW_G2:
5102 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5103 case BFD_RELOC_AARCH64_MOVW_G2_S:
5104 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5105 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5106 if (is32)
5107 {
5108 set_fatal_syntax_error
5109 (_("the specified relocation type is not allowed for 32-bit "
5110 "register"));
5111 return FALSE;
5112 }
5113 shift = 32;
5114 break;
5115 case BFD_RELOC_AARCH64_MOVW_G3:
5116 if (is32)
5117 {
5118 set_fatal_syntax_error
5119 (_("the specified relocation type is not allowed for 32-bit "
5120 "register"));
5121 return FALSE;
5122 }
5123 shift = 48;
5124 break;
5125 default:
5126 /* More cases should be added when more MOVW-related relocation types
5127 are supported in GAS. */
5128 gas_assert (aarch64_gas_internal_fixup_p ());
5129 /* The shift amount should have already been set by the parser. */
5130 return TRUE;
5131 }
5132 inst.base.operands[1].shifter.amount = shift;
5133 return TRUE;
5134 }
5135
5136 /* A primitive log caculator. */
5137
5138 static inline unsigned int
5139 get_logsz (unsigned int size)
5140 {
5141 const unsigned char ls[16] =
5142 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
5143 if (size > 16)
5144 {
5145 gas_assert (0);
5146 return -1;
5147 }
5148 gas_assert (ls[size - 1] != (unsigned char)-1);
5149 return ls[size - 1];
5150 }
5151
5152 /* Determine and return the real reloc type code for an instruction
5153 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
5154
5155 static inline bfd_reloc_code_real_type
5156 ldst_lo12_determine_real_reloc_type (void)
5157 {
5158 unsigned logsz;
5159 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
5160 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
5161
5162 const bfd_reloc_code_real_type reloc_ldst_lo12[3][5] = {
5163 {
5164 BFD_RELOC_AARCH64_LDST8_LO12,
5165 BFD_RELOC_AARCH64_LDST16_LO12,
5166 BFD_RELOC_AARCH64_LDST32_LO12,
5167 BFD_RELOC_AARCH64_LDST64_LO12,
5168 BFD_RELOC_AARCH64_LDST128_LO12
5169 },
5170 {
5171 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
5172 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
5173 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
5174 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
5175 BFD_RELOC_AARCH64_NONE
5176 },
5177 {
5178 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
5179 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
5180 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
5181 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
5182 BFD_RELOC_AARCH64_NONE
5183 }
5184 };
5185
5186 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
5187 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5188 || (inst.reloc.type
5189 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC));
5190 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
5191
5192 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
5193 opd1_qlf =
5194 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
5195 1, opd0_qlf, 0);
5196 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
5197
5198 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
5199 if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5200 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
5201 gas_assert (logsz <= 3);
5202 else
5203 gas_assert (logsz <= 4);
5204
5205 /* In reloc.c, these pseudo relocation types should be defined in similar
5206 order as above reloc_ldst_lo12 array. Because the array index calcuation
5207 below relies on this. */
5208 return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
5209 }
5210
5211 /* Check whether a register list REGINFO is valid. The registers must be
5212 numbered in increasing order (modulo 32), in increments of one or two.
5213
5214 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
5215 increments of two.
5216
5217 Return FALSE if such a register list is invalid, otherwise return TRUE. */
5218
5219 static bfd_boolean
5220 reg_list_valid_p (uint32_t reginfo, int accept_alternate)
5221 {
5222 uint32_t i, nb_regs, prev_regno, incr;
5223
5224 nb_regs = 1 + (reginfo & 0x3);
5225 reginfo >>= 2;
5226 prev_regno = reginfo & 0x1f;
5227 incr = accept_alternate ? 2 : 1;
5228
5229 for (i = 1; i < nb_regs; ++i)
5230 {
5231 uint32_t curr_regno;
5232 reginfo >>= 5;
5233 curr_regno = reginfo & 0x1f;
5234 if (curr_regno != ((prev_regno + incr) & 0x1f))
5235 return FALSE;
5236 prev_regno = curr_regno;
5237 }
5238
5239 return TRUE;
5240 }
5241
5242 /* Generic instruction operand parser. This does no encoding and no
5243 semantic validation; it merely squirrels values away in the inst
5244 structure. Returns TRUE or FALSE depending on whether the
5245 specified grammar matched. */
5246
5247 static bfd_boolean
5248 parse_operands (char *str, const aarch64_opcode *opcode)
5249 {
5250 int i;
5251 char *backtrack_pos = 0;
5252 const enum aarch64_opnd *operands = opcode->operands;
5253 aarch64_reg_type imm_reg_type;
5254
5255 clear_error ();
5256 skip_whitespace (str);
5257
5258 if (AARCH64_CPU_HAS_FEATURE (AARCH64_FEATURE_SVE, *opcode->avariant))
5259 imm_reg_type = REG_TYPE_R_Z_BHSDQ_VZP;
5260 else
5261 imm_reg_type = REG_TYPE_R_Z_BHSDQ_V;
5262
5263 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
5264 {
5265 int64_t val;
5266 const reg_entry *reg;
5267 int comma_skipped_p = 0;
5268 aarch64_reg_type rtype;
5269 struct vector_type_el vectype;
5270 aarch64_opnd_qualifier_t qualifier, base_qualifier, offset_qualifier;
5271 aarch64_opnd_info *info = &inst.base.operands[i];
5272 aarch64_reg_type reg_type;
5273
5274 DEBUG_TRACE ("parse operand %d", i);
5275
5276 /* Assign the operand code. */
5277 info->type = operands[i];
5278
5279 if (optional_operand_p (opcode, i))
5280 {
5281 /* Remember where we are in case we need to backtrack. */
5282 gas_assert (!backtrack_pos);
5283 backtrack_pos = str;
5284 }
5285
5286 /* Expect comma between operands; the backtrack mechanizm will take
5287 care of cases of omitted optional operand. */
5288 if (i > 0 && ! skip_past_char (&str, ','))
5289 {
5290 set_syntax_error (_("comma expected between operands"));
5291 goto failure;
5292 }
5293 else
5294 comma_skipped_p = 1;
5295
5296 switch (operands[i])
5297 {
5298 case AARCH64_OPND_Rd:
5299 case AARCH64_OPND_Rn:
5300 case AARCH64_OPND_Rm:
5301 case AARCH64_OPND_Rt:
5302 case AARCH64_OPND_Rt2:
5303 case AARCH64_OPND_Rs:
5304 case AARCH64_OPND_Ra:
5305 case AARCH64_OPND_Rt_SYS:
5306 case AARCH64_OPND_PAIRREG:
5307 case AARCH64_OPND_SVE_Rm:
5308 po_int_reg_or_fail (REG_TYPE_R_Z);
5309 break;
5310
5311 case AARCH64_OPND_Rd_SP:
5312 case AARCH64_OPND_Rn_SP:
5313 case AARCH64_OPND_SVE_Rn_SP:
5314 po_int_reg_or_fail (REG_TYPE_R_SP);
5315 break;
5316
5317 case AARCH64_OPND_Rm_EXT:
5318 case AARCH64_OPND_Rm_SFT:
5319 po_misc_or_fail (parse_shifter_operand
5320 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
5321 ? SHIFTED_ARITH_IMM
5322 : SHIFTED_LOGIC_IMM)));
5323 if (!info->shifter.operator_present)
5324 {
5325 /* Default to LSL if not present. Libopcodes prefers shifter
5326 kind to be explicit. */
5327 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5328 info->shifter.kind = AARCH64_MOD_LSL;
5329 /* For Rm_EXT, libopcodes will carry out further check on whether
5330 or not stack pointer is used in the instruction (Recall that
5331 "the extend operator is not optional unless at least one of
5332 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
5333 }
5334 break;
5335
5336 case AARCH64_OPND_Fd:
5337 case AARCH64_OPND_Fn:
5338 case AARCH64_OPND_Fm:
5339 case AARCH64_OPND_Fa:
5340 case AARCH64_OPND_Ft:
5341 case AARCH64_OPND_Ft2:
5342 case AARCH64_OPND_Sd:
5343 case AARCH64_OPND_Sn:
5344 case AARCH64_OPND_Sm:
5345 case AARCH64_OPND_SVE_VZn:
5346 case AARCH64_OPND_SVE_Vd:
5347 case AARCH64_OPND_SVE_Vm:
5348 case AARCH64_OPND_SVE_Vn:
5349 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
5350 if (val == PARSE_FAIL)
5351 {
5352 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
5353 goto failure;
5354 }
5355 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
5356
5357 info->reg.regno = val;
5358 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
5359 break;
5360
5361 case AARCH64_OPND_SVE_Pd:
5362 case AARCH64_OPND_SVE_Pg3:
5363 case AARCH64_OPND_SVE_Pg4_5:
5364 case AARCH64_OPND_SVE_Pg4_10:
5365 case AARCH64_OPND_SVE_Pg4_16:
5366 case AARCH64_OPND_SVE_Pm:
5367 case AARCH64_OPND_SVE_Pn:
5368 case AARCH64_OPND_SVE_Pt:
5369 reg_type = REG_TYPE_PN;
5370 goto vector_reg;
5371
5372 case AARCH64_OPND_SVE_Za_5:
5373 case AARCH64_OPND_SVE_Za_16:
5374 case AARCH64_OPND_SVE_Zd:
5375 case AARCH64_OPND_SVE_Zm_5:
5376 case AARCH64_OPND_SVE_Zm_16:
5377 case AARCH64_OPND_SVE_Zn:
5378 case AARCH64_OPND_SVE_Zt:
5379 reg_type = REG_TYPE_ZN;
5380 goto vector_reg;
5381
5382 case AARCH64_OPND_Vd:
5383 case AARCH64_OPND_Vn:
5384 case AARCH64_OPND_Vm:
5385 reg_type = REG_TYPE_VN;
5386 vector_reg:
5387 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5388 if (val == PARSE_FAIL)
5389 {
5390 first_error (_(get_reg_expected_msg (reg_type)));
5391 goto failure;
5392 }
5393 if (vectype.defined & NTA_HASINDEX)
5394 goto failure;
5395
5396 info->reg.regno = val;
5397 if ((reg_type == REG_TYPE_PN || reg_type == REG_TYPE_ZN)
5398 && vectype.type == NT_invtype)
5399 /* Unqualified Pn and Zn registers are allowed in certain
5400 contexts. Rely on F_STRICT qualifier checking to catch
5401 invalid uses. */
5402 info->qualifier = AARCH64_OPND_QLF_NIL;
5403 else
5404 {
5405 info->qualifier = vectype_to_qualifier (&vectype);
5406 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5407 goto failure;
5408 }
5409 break;
5410
5411 case AARCH64_OPND_VdD1:
5412 case AARCH64_OPND_VnD1:
5413 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5414 if (val == PARSE_FAIL)
5415 {
5416 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5417 goto failure;
5418 }
5419 if (vectype.type != NT_d || vectype.index != 1)
5420 {
5421 set_fatal_syntax_error
5422 (_("the top half of a 128-bit FP/SIMD register is expected"));
5423 goto failure;
5424 }
5425 info->reg.regno = val;
5426 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
5427 here; it is correct for the purpose of encoding/decoding since
5428 only the register number is explicitly encoded in the related
5429 instructions, although this appears a bit hacky. */
5430 info->qualifier = AARCH64_OPND_QLF_S_D;
5431 break;
5432
5433 case AARCH64_OPND_SVE_Zn_INDEX:
5434 reg_type = REG_TYPE_ZN;
5435 goto vector_reg_index;
5436
5437 case AARCH64_OPND_Ed:
5438 case AARCH64_OPND_En:
5439 case AARCH64_OPND_Em:
5440 reg_type = REG_TYPE_VN;
5441 vector_reg_index:
5442 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5443 if (val == PARSE_FAIL)
5444 {
5445 first_error (_(get_reg_expected_msg (reg_type)));
5446 goto failure;
5447 }
5448 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
5449 goto failure;
5450
5451 info->reglane.regno = val;
5452 info->reglane.index = vectype.index;
5453 info->qualifier = vectype_to_qualifier (&vectype);
5454 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5455 goto failure;
5456 break;
5457
5458 case AARCH64_OPND_SVE_ZnxN:
5459 case AARCH64_OPND_SVE_ZtxN:
5460 reg_type = REG_TYPE_ZN;
5461 goto vector_reg_list;
5462
5463 case AARCH64_OPND_LVn:
5464 case AARCH64_OPND_LVt:
5465 case AARCH64_OPND_LVt_AL:
5466 case AARCH64_OPND_LEt:
5467 reg_type = REG_TYPE_VN;
5468 vector_reg_list:
5469 if (reg_type == REG_TYPE_ZN
5470 && get_opcode_dependent_value (opcode) == 1
5471 && *str != '{')
5472 {
5473 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5474 if (val == PARSE_FAIL)
5475 {
5476 first_error (_(get_reg_expected_msg (reg_type)));
5477 goto failure;
5478 }
5479 info->reglist.first_regno = val;
5480 info->reglist.num_regs = 1;
5481 }
5482 else
5483 {
5484 val = parse_vector_reg_list (&str, reg_type, &vectype);
5485 if (val == PARSE_FAIL)
5486 goto failure;
5487 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
5488 {
5489 set_fatal_syntax_error (_("invalid register list"));
5490 goto failure;
5491 }
5492 info->reglist.first_regno = (val >> 2) & 0x1f;
5493 info->reglist.num_regs = (val & 0x3) + 1;
5494 }
5495 if (operands[i] == AARCH64_OPND_LEt)
5496 {
5497 if (!(vectype.defined & NTA_HASINDEX))
5498 goto failure;
5499 info->reglist.has_index = 1;
5500 info->reglist.index = vectype.index;
5501 }
5502 else
5503 {
5504 if (vectype.defined & NTA_HASINDEX)
5505 goto failure;
5506 if (!(vectype.defined & NTA_HASTYPE))
5507 {
5508 if (reg_type == REG_TYPE_ZN)
5509 set_fatal_syntax_error (_("missing type suffix"));
5510 goto failure;
5511 }
5512 }
5513 info->qualifier = vectype_to_qualifier (&vectype);
5514 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5515 goto failure;
5516 break;
5517
5518 case AARCH64_OPND_Cn:
5519 case AARCH64_OPND_Cm:
5520 po_reg_or_fail (REG_TYPE_CN);
5521 if (val > 15)
5522 {
5523 set_fatal_syntax_error (_(get_reg_expected_msg (REG_TYPE_CN)));
5524 goto failure;
5525 }
5526 inst.base.operands[i].reg.regno = val;
5527 break;
5528
5529 case AARCH64_OPND_SHLL_IMM:
5530 case AARCH64_OPND_IMM_VLSR:
5531 po_imm_or_fail (1, 64);
5532 info->imm.value = val;
5533 break;
5534
5535 case AARCH64_OPND_CCMP_IMM:
5536 case AARCH64_OPND_SIMM5:
5537 case AARCH64_OPND_FBITS:
5538 case AARCH64_OPND_UIMM4:
5539 case AARCH64_OPND_UIMM3_OP1:
5540 case AARCH64_OPND_UIMM3_OP2:
5541 case AARCH64_OPND_IMM_VLSL:
5542 case AARCH64_OPND_IMM:
5543 case AARCH64_OPND_WIDTH:
5544 case AARCH64_OPND_SVE_INV_LIMM:
5545 case AARCH64_OPND_SVE_LIMM:
5546 case AARCH64_OPND_SVE_LIMM_MOV:
5547 case AARCH64_OPND_SVE_SHLIMM_PRED:
5548 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
5549 case AARCH64_OPND_SVE_SHRIMM_PRED:
5550 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
5551 case AARCH64_OPND_SVE_SIMM5:
5552 case AARCH64_OPND_SVE_SIMM5B:
5553 case AARCH64_OPND_SVE_SIMM6:
5554 case AARCH64_OPND_SVE_SIMM8:
5555 case AARCH64_OPND_SVE_UIMM3:
5556 case AARCH64_OPND_SVE_UIMM7:
5557 case AARCH64_OPND_SVE_UIMM8:
5558 case AARCH64_OPND_SVE_UIMM8_53:
5559 po_imm_nc_or_fail ();
5560 info->imm.value = val;
5561 break;
5562
5563 case AARCH64_OPND_SVE_AIMM:
5564 case AARCH64_OPND_SVE_ASIMM:
5565 po_imm_nc_or_fail ();
5566 info->imm.value = val;
5567 skip_whitespace (str);
5568 if (skip_past_comma (&str))
5569 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5570 else
5571 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5572 break;
5573
5574 case AARCH64_OPND_SVE_PATTERN:
5575 po_enum_or_fail (aarch64_sve_pattern_array);
5576 info->imm.value = val;
5577 break;
5578
5579 case AARCH64_OPND_SVE_PATTERN_SCALED:
5580 po_enum_or_fail (aarch64_sve_pattern_array);
5581 info->imm.value = val;
5582 if (skip_past_comma (&str)
5583 && !parse_shift (&str, info, SHIFTED_MUL))
5584 goto failure;
5585 if (!info->shifter.operator_present)
5586 {
5587 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5588 info->shifter.kind = AARCH64_MOD_MUL;
5589 info->shifter.amount = 1;
5590 }
5591 break;
5592
5593 case AARCH64_OPND_SVE_PRFOP:
5594 po_enum_or_fail (aarch64_sve_prfop_array);
5595 info->imm.value = val;
5596 break;
5597
5598 case AARCH64_OPND_UIMM7:
5599 po_imm_or_fail (0, 127);
5600 info->imm.value = val;
5601 break;
5602
5603 case AARCH64_OPND_IDX:
5604 case AARCH64_OPND_BIT_NUM:
5605 case AARCH64_OPND_IMMR:
5606 case AARCH64_OPND_IMMS:
5607 po_imm_or_fail (0, 63);
5608 info->imm.value = val;
5609 break;
5610
5611 case AARCH64_OPND_IMM0:
5612 po_imm_nc_or_fail ();
5613 if (val != 0)
5614 {
5615 set_fatal_syntax_error (_("immediate zero expected"));
5616 goto failure;
5617 }
5618 info->imm.value = 0;
5619 break;
5620
5621 case AARCH64_OPND_FPIMM0:
5622 {
5623 int qfloat;
5624 bfd_boolean res1 = FALSE, res2 = FALSE;
5625 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
5626 it is probably not worth the effort to support it. */
5627 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE,
5628 imm_reg_type))
5629 && (error_p ()
5630 || !(res2 = parse_constant_immediate (&str, &val,
5631 imm_reg_type))))
5632 goto failure;
5633 if ((res1 && qfloat == 0) || (res2 && val == 0))
5634 {
5635 info->imm.value = 0;
5636 info->imm.is_fp = 1;
5637 break;
5638 }
5639 set_fatal_syntax_error (_("immediate zero expected"));
5640 goto failure;
5641 }
5642
5643 case AARCH64_OPND_IMM_MOV:
5644 {
5645 char *saved = str;
5646 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
5647 reg_name_p (str, REG_TYPE_VN))
5648 goto failure;
5649 str = saved;
5650 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5651 GE_OPT_PREFIX, 1));
5652 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
5653 later. fix_mov_imm_insn will try to determine a machine
5654 instruction (MOVZ, MOVN or ORR) for it and will issue an error
5655 message if the immediate cannot be moved by a single
5656 instruction. */
5657 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5658 inst.base.operands[i].skip = 1;
5659 }
5660 break;
5661
5662 case AARCH64_OPND_SIMD_IMM:
5663 case AARCH64_OPND_SIMD_IMM_SFT:
5664 if (! parse_big_immediate (&str, &val, imm_reg_type))
5665 goto failure;
5666 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5667 /* addr_off_p */ 0,
5668 /* need_libopcodes_p */ 1,
5669 /* skip_p */ 1);
5670 /* Parse shift.
5671 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
5672 shift, we don't check it here; we leave the checking to
5673 the libopcodes (operand_general_constraint_met_p). By
5674 doing this, we achieve better diagnostics. */
5675 if (skip_past_comma (&str)
5676 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
5677 goto failure;
5678 if (!info->shifter.operator_present
5679 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
5680 {
5681 /* Default to LSL if not present. Libopcodes prefers shifter
5682 kind to be explicit. */
5683 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5684 info->shifter.kind = AARCH64_MOD_LSL;
5685 }
5686 break;
5687
5688 case AARCH64_OPND_FPIMM:
5689 case AARCH64_OPND_SIMD_FPIMM:
5690 case AARCH64_OPND_SVE_FPIMM8:
5691 {
5692 int qfloat;
5693 bfd_boolean dp_p;
5694
5695 dp_p = double_precision_operand_p (&inst.base.operands[0]);
5696 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type)
5697 || !aarch64_imm_float_p (qfloat))
5698 {
5699 if (!error_p ())
5700 set_fatal_syntax_error (_("invalid floating-point"
5701 " constant"));
5702 goto failure;
5703 }
5704 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
5705 inst.base.operands[i].imm.is_fp = 1;
5706 }
5707 break;
5708
5709 case AARCH64_OPND_SVE_I1_HALF_ONE:
5710 case AARCH64_OPND_SVE_I1_HALF_TWO:
5711 case AARCH64_OPND_SVE_I1_ZERO_ONE:
5712 {
5713 int qfloat;
5714 bfd_boolean dp_p;
5715
5716 dp_p = double_precision_operand_p (&inst.base.operands[0]);
5717 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type))
5718 {
5719 if (!error_p ())
5720 set_fatal_syntax_error (_("invalid floating-point"
5721 " constant"));
5722 goto failure;
5723 }
5724 inst.base.operands[i].imm.value = qfloat;
5725 inst.base.operands[i].imm.is_fp = 1;
5726 }
5727 break;
5728
5729 case AARCH64_OPND_LIMM:
5730 po_misc_or_fail (parse_shifter_operand (&str, info,
5731 SHIFTED_LOGIC_IMM));
5732 if (info->shifter.operator_present)
5733 {
5734 set_fatal_syntax_error
5735 (_("shift not allowed for bitmask immediate"));
5736 goto failure;
5737 }
5738 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5739 /* addr_off_p */ 0,
5740 /* need_libopcodes_p */ 1,
5741 /* skip_p */ 1);
5742 break;
5743
5744 case AARCH64_OPND_AIMM:
5745 if (opcode->op == OP_ADD)
5746 /* ADD may have relocation types. */
5747 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5748 SHIFTED_ARITH_IMM));
5749 else
5750 po_misc_or_fail (parse_shifter_operand (&str, info,
5751 SHIFTED_ARITH_IMM));
5752 switch (inst.reloc.type)
5753 {
5754 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5755 info->shifter.amount = 12;
5756 break;
5757 case BFD_RELOC_UNUSED:
5758 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5759 if (info->shifter.kind != AARCH64_MOD_NONE)
5760 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5761 inst.reloc.pc_rel = 0;
5762 break;
5763 default:
5764 break;
5765 }
5766 info->imm.value = 0;
5767 if (!info->shifter.operator_present)
5768 {
5769 /* Default to LSL if not present. Libopcodes prefers shifter
5770 kind to be explicit. */
5771 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5772 info->shifter.kind = AARCH64_MOD_LSL;
5773 }
5774 break;
5775
5776 case AARCH64_OPND_HALF:
5777 {
5778 /* #<imm16> or relocation. */
5779 int internal_fixup_p;
5780 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
5781 if (internal_fixup_p)
5782 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5783 skip_whitespace (str);
5784 if (skip_past_comma (&str))
5785 {
5786 /* {, LSL #<shift>} */
5787 if (! aarch64_gas_internal_fixup_p ())
5788 {
5789 set_fatal_syntax_error (_("can't mix relocation modifier "
5790 "with explicit shift"));
5791 goto failure;
5792 }
5793 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5794 }
5795 else
5796 inst.base.operands[i].shifter.amount = 0;
5797 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5798 inst.base.operands[i].imm.value = 0;
5799 if (! process_movw_reloc_info ())
5800 goto failure;
5801 }
5802 break;
5803
5804 case AARCH64_OPND_EXCEPTION:
5805 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp,
5806 imm_reg_type));
5807 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5808 /* addr_off_p */ 0,
5809 /* need_libopcodes_p */ 0,
5810 /* skip_p */ 1);
5811 break;
5812
5813 case AARCH64_OPND_NZCV:
5814 {
5815 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5816 if (nzcv != NULL)
5817 {
5818 str += 4;
5819 info->imm.value = nzcv->value;
5820 break;
5821 }
5822 po_imm_or_fail (0, 15);
5823 info->imm.value = val;
5824 }
5825 break;
5826
5827 case AARCH64_OPND_COND:
5828 case AARCH64_OPND_COND1:
5829 info->cond = hash_find_n (aarch64_cond_hsh, str, 2);
5830 str += 2;
5831 if (info->cond == NULL)
5832 {
5833 set_syntax_error (_("invalid condition"));
5834 goto failure;
5835 }
5836 else if (operands[i] == AARCH64_OPND_COND1
5837 && (info->cond->value & 0xe) == 0xe)
5838 {
5839 /* Not allow AL or NV. */
5840 set_default_error ();
5841 goto failure;
5842 }
5843 break;
5844
5845 case AARCH64_OPND_ADDR_ADRP:
5846 po_misc_or_fail (parse_adrp (&str));
5847 /* Clear the value as operand needs to be relocated. */
5848 info->imm.value = 0;
5849 break;
5850
5851 case AARCH64_OPND_ADDR_PCREL14:
5852 case AARCH64_OPND_ADDR_PCREL19:
5853 case AARCH64_OPND_ADDR_PCREL21:
5854 case AARCH64_OPND_ADDR_PCREL26:
5855 po_misc_or_fail (parse_address (&str, info));
5856 if (!info->addr.pcrel)
5857 {
5858 set_syntax_error (_("invalid pc-relative address"));
5859 goto failure;
5860 }
5861 if (inst.gen_lit_pool
5862 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5863 {
5864 /* Only permit "=value" in the literal load instructions.
5865 The literal will be generated by programmer_friendly_fixup. */
5866 set_syntax_error (_("invalid use of \"=immediate\""));
5867 goto failure;
5868 }
5869 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5870 {
5871 set_syntax_error (_("unrecognized relocation suffix"));
5872 goto failure;
5873 }
5874 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
5875 {
5876 info->imm.value = inst.reloc.exp.X_add_number;
5877 inst.reloc.type = BFD_RELOC_UNUSED;
5878 }
5879 else
5880 {
5881 info->imm.value = 0;
5882 if (inst.reloc.type == BFD_RELOC_UNUSED)
5883 switch (opcode->iclass)
5884 {
5885 case compbranch:
5886 case condbranch:
5887 /* e.g. CBZ or B.COND */
5888 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5889 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
5890 break;
5891 case testbranch:
5892 /* e.g. TBZ */
5893 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
5894 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
5895 break;
5896 case branch_imm:
5897 /* e.g. B or BL */
5898 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
5899 inst.reloc.type =
5900 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
5901 : BFD_RELOC_AARCH64_JUMP26;
5902 break;
5903 case loadlit:
5904 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5905 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
5906 break;
5907 case pcreladdr:
5908 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
5909 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
5910 break;
5911 default:
5912 gas_assert (0);
5913 abort ();
5914 }
5915 inst.reloc.pc_rel = 1;
5916 }
5917 break;
5918
5919 case AARCH64_OPND_ADDR_SIMPLE:
5920 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
5921 {
5922 /* [<Xn|SP>{, #<simm>}] */
5923 char *start = str;
5924 /* First use the normal address-parsing routines, to get
5925 the usual syntax errors. */
5926 po_misc_or_fail (parse_address (&str, info));
5927 if (info->addr.pcrel || info->addr.offset.is_reg
5928 || !info->addr.preind || info->addr.postind
5929 || info->addr.writeback)
5930 {
5931 set_syntax_error (_("invalid addressing mode"));
5932 goto failure;
5933 }
5934
5935 /* Then retry, matching the specific syntax of these addresses. */
5936 str = start;
5937 po_char_or_fail ('[');
5938 po_reg_or_fail (REG_TYPE_R64_SP);
5939 /* Accept optional ", #0". */
5940 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
5941 && skip_past_char (&str, ','))
5942 {
5943 skip_past_char (&str, '#');
5944 if (! skip_past_char (&str, '0'))
5945 {
5946 set_fatal_syntax_error
5947 (_("the optional immediate offset can only be 0"));
5948 goto failure;
5949 }
5950 }
5951 po_char_or_fail (']');
5952 break;
5953 }
5954
5955 case AARCH64_OPND_ADDR_REGOFF:
5956 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
5957 po_misc_or_fail (parse_address (&str, info));
5958 regoff_addr:
5959 if (info->addr.pcrel || !info->addr.offset.is_reg
5960 || !info->addr.preind || info->addr.postind
5961 || info->addr.writeback)
5962 {
5963 set_syntax_error (_("invalid addressing mode"));
5964 goto failure;
5965 }
5966 if (!info->shifter.operator_present)
5967 {
5968 /* Default to LSL if not present. Libopcodes prefers shifter
5969 kind to be explicit. */
5970 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5971 info->shifter.kind = AARCH64_MOD_LSL;
5972 }
5973 /* Qualifier to be deduced by libopcodes. */
5974 break;
5975
5976 case AARCH64_OPND_ADDR_SIMM7:
5977 po_misc_or_fail (parse_address (&str, info));
5978 if (info->addr.pcrel || info->addr.offset.is_reg
5979 || (!info->addr.preind && !info->addr.postind))
5980 {
5981 set_syntax_error (_("invalid addressing mode"));
5982 goto failure;
5983 }
5984 if (inst.reloc.type != BFD_RELOC_UNUSED)
5985 {
5986 set_syntax_error (_("relocation not allowed"));
5987 goto failure;
5988 }
5989 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5990 /* addr_off_p */ 1,
5991 /* need_libopcodes_p */ 1,
5992 /* skip_p */ 0);
5993 break;
5994
5995 case AARCH64_OPND_ADDR_SIMM9:
5996 case AARCH64_OPND_ADDR_SIMM9_2:
5997 po_misc_or_fail (parse_address (&str, info));
5998 if (info->addr.pcrel || info->addr.offset.is_reg
5999 || (!info->addr.preind && !info->addr.postind)
6000 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
6001 && info->addr.writeback))
6002 {
6003 set_syntax_error (_("invalid addressing mode"));
6004 goto failure;
6005 }
6006 if (inst.reloc.type != BFD_RELOC_UNUSED)
6007 {
6008 set_syntax_error (_("relocation not allowed"));
6009 goto failure;
6010 }
6011 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6012 /* addr_off_p */ 1,
6013 /* need_libopcodes_p */ 1,
6014 /* skip_p */ 0);
6015 break;
6016
6017 case AARCH64_OPND_ADDR_UIMM12:
6018 po_misc_or_fail (parse_address (&str, info));
6019 if (info->addr.pcrel || info->addr.offset.is_reg
6020 || !info->addr.preind || info->addr.writeback)
6021 {
6022 set_syntax_error (_("invalid addressing mode"));
6023 goto failure;
6024 }
6025 if (inst.reloc.type == BFD_RELOC_UNUSED)
6026 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
6027 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
6028 || (inst.reloc.type
6029 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
6030 || (inst.reloc.type
6031 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC))
6032 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
6033 /* Leave qualifier to be determined by libopcodes. */
6034 break;
6035
6036 case AARCH64_OPND_SIMD_ADDR_POST:
6037 /* [<Xn|SP>], <Xm|#<amount>> */
6038 po_misc_or_fail (parse_address (&str, info));
6039 if (!info->addr.postind || !info->addr.writeback)
6040 {
6041 set_syntax_error (_("invalid addressing mode"));
6042 goto failure;
6043 }
6044 if (!info->addr.offset.is_reg)
6045 {
6046 if (inst.reloc.exp.X_op == O_constant)
6047 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6048 else
6049 {
6050 set_fatal_syntax_error
6051 (_("writeback value should be an immediate constant"));
6052 goto failure;
6053 }
6054 }
6055 /* No qualifier. */
6056 break;
6057
6058 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
6059 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
6060 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
6061 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
6062 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
6063 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
6064 case AARCH64_OPND_SVE_ADDR_RI_U6:
6065 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
6066 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
6067 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
6068 /* [X<n>{, #imm, MUL VL}]
6069 [X<n>{, #imm}]
6070 but recognizing SVE registers. */
6071 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6072 &offset_qualifier));
6073 if (base_qualifier != AARCH64_OPND_QLF_X)
6074 {
6075 set_syntax_error (_("invalid addressing mode"));
6076 goto failure;
6077 }
6078 sve_regimm:
6079 if (info->addr.pcrel || info->addr.offset.is_reg
6080 || !info->addr.preind || info->addr.writeback)
6081 {
6082 set_syntax_error (_("invalid addressing mode"));
6083 goto failure;
6084 }
6085 if (inst.reloc.type != BFD_RELOC_UNUSED
6086 || inst.reloc.exp.X_op != O_constant)
6087 {
6088 /* Make sure this has priority over
6089 "invalid addressing mode". */
6090 set_fatal_syntax_error (_("constant offset required"));
6091 goto failure;
6092 }
6093 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6094 break;
6095
6096 case AARCH64_OPND_SVE_ADDR_RR:
6097 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
6098 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
6099 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
6100 case AARCH64_OPND_SVE_ADDR_RX:
6101 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
6102 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
6103 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
6104 /* [<Xn|SP>, <R><m>{, lsl #<amount>}]
6105 but recognizing SVE registers. */
6106 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6107 &offset_qualifier));
6108 if (base_qualifier != AARCH64_OPND_QLF_X
6109 || offset_qualifier != AARCH64_OPND_QLF_X)
6110 {
6111 set_syntax_error (_("invalid addressing mode"));
6112 goto failure;
6113 }
6114 goto regoff_addr;
6115
6116 case AARCH64_OPND_SVE_ADDR_RZ:
6117 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
6118 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
6119 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
6120 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
6121 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
6122 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
6123 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
6124 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
6125 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
6126 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
6127 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
6128 /* [<Xn|SP>, Z<m>.D{, LSL #<amount>}]
6129 [<Xn|SP>, Z<m>.<T>, <extend> {#<amount>}] */
6130 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6131 &offset_qualifier));
6132 if (base_qualifier != AARCH64_OPND_QLF_X
6133 || (offset_qualifier != AARCH64_OPND_QLF_S_S
6134 && offset_qualifier != AARCH64_OPND_QLF_S_D))
6135 {
6136 set_syntax_error (_("invalid addressing mode"));
6137 goto failure;
6138 }
6139 info->qualifier = offset_qualifier;
6140 goto regoff_addr;
6141
6142 case AARCH64_OPND_SVE_ADDR_ZI_U5:
6143 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
6144 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
6145 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
6146 /* [Z<n>.<T>{, #imm}] */
6147 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6148 &offset_qualifier));
6149 if (base_qualifier != AARCH64_OPND_QLF_S_S
6150 && base_qualifier != AARCH64_OPND_QLF_S_D)
6151 {
6152 set_syntax_error (_("invalid addressing mode"));
6153 goto failure;
6154 }
6155 info->qualifier = base_qualifier;
6156 goto sve_regimm;
6157
6158 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
6159 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
6160 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
6161 /* [Z<n>.<T>, Z<m>.<T>{, LSL #<amount>}]
6162 [Z<n>.D, Z<m>.D, <extend> {#<amount>}]
6163
6164 We don't reject:
6165
6166 [Z<n>.S, Z<m>.S, <extend> {#<amount>}]
6167
6168 here since we get better error messages by leaving it to
6169 the qualifier checking routines. */
6170 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6171 &offset_qualifier));
6172 if ((base_qualifier != AARCH64_OPND_QLF_S_S
6173 && base_qualifier != AARCH64_OPND_QLF_S_D)
6174 || offset_qualifier != base_qualifier)
6175 {
6176 set_syntax_error (_("invalid addressing mode"));
6177 goto failure;
6178 }
6179 info->qualifier = base_qualifier;
6180 goto regoff_addr;
6181
6182 case AARCH64_OPND_SYSREG:
6183 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0))
6184 == PARSE_FAIL)
6185 {
6186 set_syntax_error (_("unknown or missing system register name"));
6187 goto failure;
6188 }
6189 inst.base.operands[i].sysreg = val;
6190 break;
6191
6192 case AARCH64_OPND_PSTATEFIELD:
6193 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1))
6194 == PARSE_FAIL)
6195 {
6196 set_syntax_error (_("unknown or missing PSTATE field name"));
6197 goto failure;
6198 }
6199 inst.base.operands[i].pstatefield = val;
6200 break;
6201
6202 case AARCH64_OPND_SYSREG_IC:
6203 inst.base.operands[i].sysins_op =
6204 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
6205 goto sys_reg_ins;
6206 case AARCH64_OPND_SYSREG_DC:
6207 inst.base.operands[i].sysins_op =
6208 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
6209 goto sys_reg_ins;
6210 case AARCH64_OPND_SYSREG_AT:
6211 inst.base.operands[i].sysins_op =
6212 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
6213 goto sys_reg_ins;
6214 case AARCH64_OPND_SYSREG_TLBI:
6215 inst.base.operands[i].sysins_op =
6216 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
6217 sys_reg_ins:
6218 if (inst.base.operands[i].sysins_op == NULL)
6219 {
6220 set_fatal_syntax_error ( _("unknown or missing operation name"));
6221 goto failure;
6222 }
6223 break;
6224
6225 case AARCH64_OPND_BARRIER:
6226 case AARCH64_OPND_BARRIER_ISB:
6227 val = parse_barrier (&str);
6228 if (val != PARSE_FAIL
6229 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
6230 {
6231 /* ISB only accepts options name 'sy'. */
6232 set_syntax_error
6233 (_("the specified option is not accepted in ISB"));
6234 /* Turn off backtrack as this optional operand is present. */
6235 backtrack_pos = 0;
6236 goto failure;
6237 }
6238 /* This is an extension to accept a 0..15 immediate. */
6239 if (val == PARSE_FAIL)
6240 po_imm_or_fail (0, 15);
6241 info->barrier = aarch64_barrier_options + val;
6242 break;
6243
6244 case AARCH64_OPND_PRFOP:
6245 val = parse_pldop (&str);
6246 /* This is an extension to accept a 0..31 immediate. */
6247 if (val == PARSE_FAIL)
6248 po_imm_or_fail (0, 31);
6249 inst.base.operands[i].prfop = aarch64_prfops + val;
6250 break;
6251
6252 case AARCH64_OPND_BARRIER_PSB:
6253 val = parse_barrier_psb (&str, &(info->hint_option));
6254 if (val == PARSE_FAIL)
6255 goto failure;
6256 break;
6257
6258 default:
6259 as_fatal (_("unhandled operand code %d"), operands[i]);
6260 }
6261
6262 /* If we get here, this operand was successfully parsed. */
6263 inst.base.operands[i].present = 1;
6264 continue;
6265
6266 failure:
6267 /* The parse routine should already have set the error, but in case
6268 not, set a default one here. */
6269 if (! error_p ())
6270 set_default_error ();
6271
6272 if (! backtrack_pos)
6273 goto parse_operands_return;
6274
6275 {
6276 /* We reach here because this operand is marked as optional, and
6277 either no operand was supplied or the operand was supplied but it
6278 was syntactically incorrect. In the latter case we report an
6279 error. In the former case we perform a few more checks before
6280 dropping through to the code to insert the default operand. */
6281
6282 char *tmp = backtrack_pos;
6283 char endchar = END_OF_INSN;
6284
6285 if (i != (aarch64_num_of_operands (opcode) - 1))
6286 endchar = ',';
6287 skip_past_char (&tmp, ',');
6288
6289 if (*tmp != endchar)
6290 /* The user has supplied an operand in the wrong format. */
6291 goto parse_operands_return;
6292
6293 /* Make sure there is not a comma before the optional operand.
6294 For example the fifth operand of 'sys' is optional:
6295
6296 sys #0,c0,c0,#0, <--- wrong
6297 sys #0,c0,c0,#0 <--- correct. */
6298 if (comma_skipped_p && i && endchar == END_OF_INSN)
6299 {
6300 set_fatal_syntax_error
6301 (_("unexpected comma before the omitted optional operand"));
6302 goto parse_operands_return;
6303 }
6304 }
6305
6306 /* Reaching here means we are dealing with an optional operand that is
6307 omitted from the assembly line. */
6308 gas_assert (optional_operand_p (opcode, i));
6309 info->present = 0;
6310 process_omitted_operand (operands[i], opcode, i, info);
6311
6312 /* Try again, skipping the optional operand at backtrack_pos. */
6313 str = backtrack_pos;
6314 backtrack_pos = 0;
6315
6316 /* Clear any error record after the omitted optional operand has been
6317 successfully handled. */
6318 clear_error ();
6319 }
6320
6321 /* Check if we have parsed all the operands. */
6322 if (*str != '\0' && ! error_p ())
6323 {
6324 /* Set I to the index of the last present operand; this is
6325 for the purpose of diagnostics. */
6326 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
6327 ;
6328 set_fatal_syntax_error
6329 (_("unexpected characters following instruction"));
6330 }
6331
6332 parse_operands_return:
6333
6334 if (error_p ())
6335 {
6336 DEBUG_TRACE ("parsing FAIL: %s - %s",
6337 operand_mismatch_kind_names[get_error_kind ()],
6338 get_error_message ());
6339 /* Record the operand error properly; this is useful when there
6340 are multiple instruction templates for a mnemonic name, so that
6341 later on, we can select the error that most closely describes
6342 the problem. */
6343 record_operand_error (opcode, i, get_error_kind (),
6344 get_error_message ());
6345 return FALSE;
6346 }
6347 else
6348 {
6349 DEBUG_TRACE ("parsing SUCCESS");
6350 return TRUE;
6351 }
6352 }
6353
6354 /* It does some fix-up to provide some programmer friendly feature while
6355 keeping the libopcodes happy, i.e. libopcodes only accepts
6356 the preferred architectural syntax.
6357 Return FALSE if there is any failure; otherwise return TRUE. */
6358
6359 static bfd_boolean
6360 programmer_friendly_fixup (aarch64_instruction *instr)
6361 {
6362 aarch64_inst *base = &instr->base;
6363 const aarch64_opcode *opcode = base->opcode;
6364 enum aarch64_op op = opcode->op;
6365 aarch64_opnd_info *operands = base->operands;
6366
6367 DEBUG_TRACE ("enter");
6368
6369 switch (opcode->iclass)
6370 {
6371 case testbranch:
6372 /* TBNZ Xn|Wn, #uimm6, label
6373 Test and Branch Not Zero: conditionally jumps to label if bit number
6374 uimm6 in register Xn is not zero. The bit number implies the width of
6375 the register, which may be written and should be disassembled as Wn if
6376 uimm is less than 32. */
6377 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
6378 {
6379 if (operands[1].imm.value >= 32)
6380 {
6381 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
6382 0, 31);
6383 return FALSE;
6384 }
6385 operands[0].qualifier = AARCH64_OPND_QLF_X;
6386 }
6387 break;
6388 case loadlit:
6389 /* LDR Wt, label | =value
6390 As a convenience assemblers will typically permit the notation
6391 "=value" in conjunction with the pc-relative literal load instructions
6392 to automatically place an immediate value or symbolic address in a
6393 nearby literal pool and generate a hidden label which references it.
6394 ISREG has been set to 0 in the case of =value. */
6395 if (instr->gen_lit_pool
6396 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
6397 {
6398 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
6399 if (op == OP_LDRSW_LIT)
6400 size = 4;
6401 if (instr->reloc.exp.X_op != O_constant
6402 && instr->reloc.exp.X_op != O_big
6403 && instr->reloc.exp.X_op != O_symbol)
6404 {
6405 record_operand_error (opcode, 1,
6406 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
6407 _("constant expression expected"));
6408 return FALSE;
6409 }
6410 if (! add_to_lit_pool (&instr->reloc.exp, size))
6411 {
6412 record_operand_error (opcode, 1,
6413 AARCH64_OPDE_OTHER_ERROR,
6414 _("literal pool insertion failed"));
6415 return FALSE;
6416 }
6417 }
6418 break;
6419 case log_shift:
6420 case bitfield:
6421 /* UXT[BHW] Wd, Wn
6422 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
6423 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
6424 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
6425 A programmer-friendly assembler should accept a destination Xd in
6426 place of Wd, however that is not the preferred form for disassembly.
6427 */
6428 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
6429 && operands[1].qualifier == AARCH64_OPND_QLF_W
6430 && operands[0].qualifier == AARCH64_OPND_QLF_X)
6431 operands[0].qualifier = AARCH64_OPND_QLF_W;
6432 break;
6433
6434 case addsub_ext:
6435 {
6436 /* In the 64-bit form, the final register operand is written as Wm
6437 for all but the (possibly omitted) UXTX/LSL and SXTX
6438 operators.
6439 As a programmer-friendly assembler, we accept e.g.
6440 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
6441 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
6442 int idx = aarch64_operand_index (opcode->operands,
6443 AARCH64_OPND_Rm_EXT);
6444 gas_assert (idx == 1 || idx == 2);
6445 if (operands[0].qualifier == AARCH64_OPND_QLF_X
6446 && operands[idx].qualifier == AARCH64_OPND_QLF_X
6447 && operands[idx].shifter.kind != AARCH64_MOD_LSL
6448 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
6449 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
6450 operands[idx].qualifier = AARCH64_OPND_QLF_W;
6451 }
6452 break;
6453
6454 default:
6455 break;
6456 }
6457
6458 DEBUG_TRACE ("exit with SUCCESS");
6459 return TRUE;
6460 }
6461
6462 /* Check for loads and stores that will cause unpredictable behavior. */
6463
6464 static void
6465 warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
6466 {
6467 aarch64_inst *base = &instr->base;
6468 const aarch64_opcode *opcode = base->opcode;
6469 const aarch64_opnd_info *opnds = base->operands;
6470 switch (opcode->iclass)
6471 {
6472 case ldst_pos:
6473 case ldst_imm9:
6474 case ldst_unscaled:
6475 case ldst_unpriv:
6476 /* Loading/storing the base register is unpredictable if writeback. */
6477 if ((aarch64_get_operand_class (opnds[0].type)
6478 == AARCH64_OPND_CLASS_INT_REG)
6479 && opnds[0].reg.regno == opnds[1].addr.base_regno
6480 && opnds[1].addr.base_regno != REG_SP
6481 && opnds[1].addr.writeback)
6482 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6483 break;
6484 case ldstpair_off:
6485 case ldstnapair_offs:
6486 case ldstpair_indexed:
6487 /* Loading/storing the base register is unpredictable if writeback. */
6488 if ((aarch64_get_operand_class (opnds[0].type)
6489 == AARCH64_OPND_CLASS_INT_REG)
6490 && (opnds[0].reg.regno == opnds[2].addr.base_regno
6491 || opnds[1].reg.regno == opnds[2].addr.base_regno)
6492 && opnds[2].addr.base_regno != REG_SP
6493 && opnds[2].addr.writeback)
6494 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6495 /* Load operations must load different registers. */
6496 if ((opcode->opcode & (1 << 22))
6497 && opnds[0].reg.regno == opnds[1].reg.regno)
6498 as_warn (_("unpredictable load of register pair -- `%s'"), str);
6499 break;
6500 default:
6501 break;
6502 }
6503 }
6504
6505 /* A wrapper function to interface with libopcodes on encoding and
6506 record the error message if there is any.
6507
6508 Return TRUE on success; otherwise return FALSE. */
6509
6510 static bfd_boolean
6511 do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
6512 aarch64_insn *code)
6513 {
6514 aarch64_operand_error error_info;
6515 error_info.kind = AARCH64_OPDE_NIL;
6516 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
6517 return TRUE;
6518 else
6519 {
6520 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
6521 record_operand_error_info (opcode, &error_info);
6522 return FALSE;
6523 }
6524 }
6525
6526 #ifdef DEBUG_AARCH64
6527 static inline void
6528 dump_opcode_operands (const aarch64_opcode *opcode)
6529 {
6530 int i = 0;
6531 while (opcode->operands[i] != AARCH64_OPND_NIL)
6532 {
6533 aarch64_verbose ("\t\t opnd%d: %s", i,
6534 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
6535 ? aarch64_get_operand_name (opcode->operands[i])
6536 : aarch64_get_operand_desc (opcode->operands[i]));
6537 ++i;
6538 }
6539 }
6540 #endif /* DEBUG_AARCH64 */
6541
6542 /* This is the guts of the machine-dependent assembler. STR points to a
6543 machine dependent instruction. This function is supposed to emit
6544 the frags/bytes it assembles to. */
6545
6546 void
6547 md_assemble (char *str)
6548 {
6549 char *p = str;
6550 templates *template;
6551 aarch64_opcode *opcode;
6552 aarch64_inst *inst_base;
6553 unsigned saved_cond;
6554
6555 /* Align the previous label if needed. */
6556 if (last_label_seen != NULL)
6557 {
6558 symbol_set_frag (last_label_seen, frag_now);
6559 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
6560 S_SET_SEGMENT (last_label_seen, now_seg);
6561 }
6562
6563 inst.reloc.type = BFD_RELOC_UNUSED;
6564
6565 DEBUG_TRACE ("\n\n");
6566 DEBUG_TRACE ("==============================");
6567 DEBUG_TRACE ("Enter md_assemble with %s", str);
6568
6569 template = opcode_lookup (&p);
6570 if (!template)
6571 {
6572 /* It wasn't an instruction, but it might be a register alias of
6573 the form alias .req reg directive. */
6574 if (!create_register_alias (str, p))
6575 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
6576 str);
6577 return;
6578 }
6579
6580 skip_whitespace (p);
6581 if (*p == ',')
6582 {
6583 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
6584 get_mnemonic_name (str), str);
6585 return;
6586 }
6587
6588 init_operand_error_report ();
6589
6590 /* Sections are assumed to start aligned. In executable section, there is no
6591 MAP_DATA symbol pending. So we only align the address during
6592 MAP_DATA --> MAP_INSN transition.
6593 For other sections, this is not guaranteed. */
6594 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
6595 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
6596 frag_align_code (2, 0);
6597
6598 saved_cond = inst.cond;
6599 reset_aarch64_instruction (&inst);
6600 inst.cond = saved_cond;
6601
6602 /* Iterate through all opcode entries with the same mnemonic name. */
6603 do
6604 {
6605 opcode = template->opcode;
6606
6607 DEBUG_TRACE ("opcode %s found", opcode->name);
6608 #ifdef DEBUG_AARCH64
6609 if (debug_dump)
6610 dump_opcode_operands (opcode);
6611 #endif /* DEBUG_AARCH64 */
6612
6613 mapping_state (MAP_INSN);
6614
6615 inst_base = &inst.base;
6616 inst_base->opcode = opcode;
6617
6618 /* Truly conditionally executed instructions, e.g. b.cond. */
6619 if (opcode->flags & F_COND)
6620 {
6621 gas_assert (inst.cond != COND_ALWAYS);
6622 inst_base->cond = get_cond_from_value (inst.cond);
6623 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
6624 }
6625 else if (inst.cond != COND_ALWAYS)
6626 {
6627 /* It shouldn't arrive here, where the assembly looks like a
6628 conditional instruction but the found opcode is unconditional. */
6629 gas_assert (0);
6630 continue;
6631 }
6632
6633 if (parse_operands (p, opcode)
6634 && programmer_friendly_fixup (&inst)
6635 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
6636 {
6637 /* Check that this instruction is supported for this CPU. */
6638 if (!opcode->avariant
6639 || !AARCH64_CPU_HAS_ALL_FEATURES (cpu_variant, *opcode->avariant))
6640 {
6641 as_bad (_("selected processor does not support `%s'"), str);
6642 return;
6643 }
6644
6645 warn_unpredictable_ldst (&inst, str);
6646
6647 if (inst.reloc.type == BFD_RELOC_UNUSED
6648 || !inst.reloc.need_libopcodes_p)
6649 output_inst (NULL);
6650 else
6651 {
6652 /* If there is relocation generated for the instruction,
6653 store the instruction information for the future fix-up. */
6654 struct aarch64_inst *copy;
6655 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
6656 copy = XNEW (struct aarch64_inst);
6657 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
6658 output_inst (copy);
6659 }
6660 return;
6661 }
6662
6663 template = template->next;
6664 if (template != NULL)
6665 {
6666 reset_aarch64_instruction (&inst);
6667 inst.cond = saved_cond;
6668 }
6669 }
6670 while (template != NULL);
6671
6672 /* Issue the error messages if any. */
6673 output_operand_error_report (str);
6674 }
6675
6676 /* Various frobbings of labels and their addresses. */
6677
6678 void
6679 aarch64_start_line_hook (void)
6680 {
6681 last_label_seen = NULL;
6682 }
6683
6684 void
6685 aarch64_frob_label (symbolS * sym)
6686 {
6687 last_label_seen = sym;
6688
6689 dwarf2_emit_label (sym);
6690 }
6691
6692 int
6693 aarch64_data_in_code (void)
6694 {
6695 if (!strncmp (input_line_pointer + 1, "data:", 5))
6696 {
6697 *input_line_pointer = '/';
6698 input_line_pointer += 5;
6699 *input_line_pointer = 0;
6700 return 1;
6701 }
6702
6703 return 0;
6704 }
6705
6706 char *
6707 aarch64_canonicalize_symbol_name (char *name)
6708 {
6709 int len;
6710
6711 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
6712 *(name + len - 5) = 0;
6713
6714 return name;
6715 }
6716 \f
6717 /* Table of all register names defined by default. The user can
6718 define additional names with .req. Note that all register names
6719 should appear in both upper and lowercase variants. Some registers
6720 also have mixed-case names. */
6721
6722 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
6723 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
6724 #define REGSET16(p,t) \
6725 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
6726 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
6727 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
6728 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
6729 #define REGSET31(p,t) \
6730 REGSET16(p, t), \
6731 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
6732 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
6733 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
6734 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
6735 #define REGSET(p,t) \
6736 REGSET31(p,t), REGNUM(p,31,t)
6737
6738 /* These go into aarch64_reg_hsh hash-table. */
6739 static const reg_entry reg_names[] = {
6740 /* Integer registers. */
6741 REGSET31 (x, R_64), REGSET31 (X, R_64),
6742 REGSET31 (w, R_32), REGSET31 (W, R_32),
6743
6744 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
6745 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
6746
6747 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
6748 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
6749
6750 /* Coprocessor register numbers. */
6751 REGSET (c, CN), REGSET (C, CN),
6752
6753 /* Floating-point single precision registers. */
6754 REGSET (s, FP_S), REGSET (S, FP_S),
6755
6756 /* Floating-point double precision registers. */
6757 REGSET (d, FP_D), REGSET (D, FP_D),
6758
6759 /* Floating-point half precision registers. */
6760 REGSET (h, FP_H), REGSET (H, FP_H),
6761
6762 /* Floating-point byte precision registers. */
6763 REGSET (b, FP_B), REGSET (B, FP_B),
6764
6765 /* Floating-point quad precision registers. */
6766 REGSET (q, FP_Q), REGSET (Q, FP_Q),
6767
6768 /* FP/SIMD registers. */
6769 REGSET (v, VN), REGSET (V, VN),
6770
6771 /* SVE vector registers. */
6772 REGSET (z, ZN), REGSET (Z, ZN),
6773
6774 /* SVE predicate registers. */
6775 REGSET16 (p, PN), REGSET16 (P, PN)
6776 };
6777
6778 #undef REGDEF
6779 #undef REGNUM
6780 #undef REGSET16
6781 #undef REGSET31
6782 #undef REGSET
6783
6784 #define N 1
6785 #define n 0
6786 #define Z 1
6787 #define z 0
6788 #define C 1
6789 #define c 0
6790 #define V 1
6791 #define v 0
6792 #define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
6793 static const asm_nzcv nzcv_names[] = {
6794 {"nzcv", B (n, z, c, v)},
6795 {"nzcV", B (n, z, c, V)},
6796 {"nzCv", B (n, z, C, v)},
6797 {"nzCV", B (n, z, C, V)},
6798 {"nZcv", B (n, Z, c, v)},
6799 {"nZcV", B (n, Z, c, V)},
6800 {"nZCv", B (n, Z, C, v)},
6801 {"nZCV", B (n, Z, C, V)},
6802 {"Nzcv", B (N, z, c, v)},
6803 {"NzcV", B (N, z, c, V)},
6804 {"NzCv", B (N, z, C, v)},
6805 {"NzCV", B (N, z, C, V)},
6806 {"NZcv", B (N, Z, c, v)},
6807 {"NZcV", B (N, Z, c, V)},
6808 {"NZCv", B (N, Z, C, v)},
6809 {"NZCV", B (N, Z, C, V)}
6810 };
6811
6812 #undef N
6813 #undef n
6814 #undef Z
6815 #undef z
6816 #undef C
6817 #undef c
6818 #undef V
6819 #undef v
6820 #undef B
6821 \f
6822 /* MD interface: bits in the object file. */
6823
6824 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
6825 for use in the a.out file, and stores them in the array pointed to by buf.
6826 This knows about the endian-ness of the target machine and does
6827 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
6828 2 (short) and 4 (long) Floating numbers are put out as a series of
6829 LITTLENUMS (shorts, here at least). */
6830
6831 void
6832 md_number_to_chars (char *buf, valueT val, int n)
6833 {
6834 if (target_big_endian)
6835 number_to_chars_bigendian (buf, val, n);
6836 else
6837 number_to_chars_littleendian (buf, val, n);
6838 }
6839
6840 /* MD interface: Sections. */
6841
6842 /* Estimate the size of a frag before relaxing. Assume everything fits in
6843 4 bytes. */
6844
6845 int
6846 md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
6847 {
6848 fragp->fr_var = 4;
6849 return 4;
6850 }
6851
6852 /* Round up a section size to the appropriate boundary. */
6853
6854 valueT
6855 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
6856 {
6857 return size;
6858 }
6859
6860 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
6861 of an rs_align_code fragment.
6862
6863 Here we fill the frag with the appropriate info for padding the
6864 output stream. The resulting frag will consist of a fixed (fr_fix)
6865 and of a repeating (fr_var) part.
6866
6867 The fixed content is always emitted before the repeating content and
6868 these two parts are used as follows in constructing the output:
6869 - the fixed part will be used to align to a valid instruction word
6870 boundary, in case that we start at a misaligned address; as no
6871 executable instruction can live at the misaligned location, we
6872 simply fill with zeros;
6873 - the variable part will be used to cover the remaining padding and
6874 we fill using the AArch64 NOP instruction.
6875
6876 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
6877 enough storage space for up to 3 bytes for padding the back to a valid
6878 instruction alignment and exactly 4 bytes to store the NOP pattern. */
6879
6880 void
6881 aarch64_handle_align (fragS * fragP)
6882 {
6883 /* NOP = d503201f */
6884 /* AArch64 instructions are always little-endian. */
6885 static unsigned char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
6886
6887 int bytes, fix, noop_size;
6888 char *p;
6889
6890 if (fragP->fr_type != rs_align_code)
6891 return;
6892
6893 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
6894 p = fragP->fr_literal + fragP->fr_fix;
6895
6896 #ifdef OBJ_ELF
6897 gas_assert (fragP->tc_frag_data.recorded);
6898 #endif
6899
6900 noop_size = sizeof (aarch64_noop);
6901
6902 fix = bytes & (noop_size - 1);
6903 if (fix)
6904 {
6905 #ifdef OBJ_ELF
6906 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
6907 #endif
6908 memset (p, 0, fix);
6909 p += fix;
6910 fragP->fr_fix += fix;
6911 }
6912
6913 if (noop_size)
6914 memcpy (p, aarch64_noop, noop_size);
6915 fragP->fr_var = noop_size;
6916 }
6917
6918 /* Perform target specific initialisation of a frag.
6919 Note - despite the name this initialisation is not done when the frag
6920 is created, but only when its type is assigned. A frag can be created
6921 and used a long time before its type is set, so beware of assuming that
6922 this initialisationis performed first. */
6923
6924 #ifndef OBJ_ELF
6925 void
6926 aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
6927 int max_chars ATTRIBUTE_UNUSED)
6928 {
6929 }
6930
6931 #else /* OBJ_ELF is defined. */
6932 void
6933 aarch64_init_frag (fragS * fragP, int max_chars)
6934 {
6935 /* Record a mapping symbol for alignment frags. We will delete this
6936 later if the alignment ends up empty. */
6937 if (!fragP->tc_frag_data.recorded)
6938 fragP->tc_frag_data.recorded = 1;
6939
6940 switch (fragP->fr_type)
6941 {
6942 case rs_align_test:
6943 case rs_fill:
6944 mapping_state_2 (MAP_DATA, max_chars);
6945 break;
6946 case rs_align:
6947 /* PR 20364: We can get alignment frags in code sections,
6948 so do not just assume that we should use the MAP_DATA state. */
6949 mapping_state_2 (subseg_text_p (now_seg) ? MAP_INSN : MAP_DATA, max_chars);
6950 break;
6951 case rs_align_code:
6952 mapping_state_2 (MAP_INSN, max_chars);
6953 break;
6954 default:
6955 break;
6956 }
6957 }
6958 \f
6959 /* Initialize the DWARF-2 unwind information for this procedure. */
6960
6961 void
6962 tc_aarch64_frame_initial_instructions (void)
6963 {
6964 cfi_add_CFA_def_cfa (REG_SP, 0);
6965 }
6966 #endif /* OBJ_ELF */
6967
6968 /* Convert REGNAME to a DWARF-2 register number. */
6969
6970 int
6971 tc_aarch64_regname_to_dw2regnum (char *regname)
6972 {
6973 const reg_entry *reg = parse_reg (&regname);
6974 if (reg == NULL)
6975 return -1;
6976
6977 switch (reg->type)
6978 {
6979 case REG_TYPE_SP_32:
6980 case REG_TYPE_SP_64:
6981 case REG_TYPE_R_32:
6982 case REG_TYPE_R_64:
6983 return reg->number;
6984
6985 case REG_TYPE_FP_B:
6986 case REG_TYPE_FP_H:
6987 case REG_TYPE_FP_S:
6988 case REG_TYPE_FP_D:
6989 case REG_TYPE_FP_Q:
6990 return reg->number + 64;
6991
6992 default:
6993 break;
6994 }
6995 return -1;
6996 }
6997
6998 /* Implement DWARF2_ADDR_SIZE. */
6999
7000 int
7001 aarch64_dwarf2_addr_size (void)
7002 {
7003 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7004 if (ilp32_p)
7005 return 4;
7006 #endif
7007 return bfd_arch_bits_per_address (stdoutput) / 8;
7008 }
7009
7010 /* MD interface: Symbol and relocation handling. */
7011
7012 /* Return the address within the segment that a PC-relative fixup is
7013 relative to. For AArch64 PC-relative fixups applied to instructions
7014 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
7015
7016 long
7017 md_pcrel_from_section (fixS * fixP, segT seg)
7018 {
7019 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
7020
7021 /* If this is pc-relative and we are going to emit a relocation
7022 then we just want to put out any pipeline compensation that the linker
7023 will need. Otherwise we want to use the calculated base. */
7024 if (fixP->fx_pcrel
7025 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
7026 || aarch64_force_relocation (fixP)))
7027 base = 0;
7028
7029 /* AArch64 should be consistent for all pc-relative relocations. */
7030 return base + AARCH64_PCREL_OFFSET;
7031 }
7032
7033 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
7034 Otherwise we have no need to default values of symbols. */
7035
7036 symbolS *
7037 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
7038 {
7039 #ifdef OBJ_ELF
7040 if (name[0] == '_' && name[1] == 'G'
7041 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
7042 {
7043 if (!GOT_symbol)
7044 {
7045 if (symbol_find (name))
7046 as_bad (_("GOT already in the symbol table"));
7047
7048 GOT_symbol = symbol_new (name, undefined_section,
7049 (valueT) 0, &zero_address_frag);
7050 }
7051
7052 return GOT_symbol;
7053 }
7054 #endif
7055
7056 return 0;
7057 }
7058
7059 /* Return non-zero if the indicated VALUE has overflowed the maximum
7060 range expressible by a unsigned number with the indicated number of
7061 BITS. */
7062
7063 static bfd_boolean
7064 unsigned_overflow (valueT value, unsigned bits)
7065 {
7066 valueT lim;
7067 if (bits >= sizeof (valueT) * 8)
7068 return FALSE;
7069 lim = (valueT) 1 << bits;
7070 return (value >= lim);
7071 }
7072
7073
7074 /* Return non-zero if the indicated VALUE has overflowed the maximum
7075 range expressible by an signed number with the indicated number of
7076 BITS. */
7077
7078 static bfd_boolean
7079 signed_overflow (offsetT value, unsigned bits)
7080 {
7081 offsetT lim;
7082 if (bits >= sizeof (offsetT) * 8)
7083 return FALSE;
7084 lim = (offsetT) 1 << (bits - 1);
7085 return (value < -lim || value >= lim);
7086 }
7087
7088 /* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
7089 unsigned immediate offset load/store instruction, try to encode it as
7090 an unscaled, 9-bit, signed immediate offset load/store instruction.
7091 Return TRUE if it is successful; otherwise return FALSE.
7092
7093 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
7094 in response to the standard LDR/STR mnemonics when the immediate offset is
7095 unambiguous, i.e. when it is negative or unaligned. */
7096
7097 static bfd_boolean
7098 try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
7099 {
7100 int idx;
7101 enum aarch64_op new_op;
7102 const aarch64_opcode *new_opcode;
7103
7104 gas_assert (instr->opcode->iclass == ldst_pos);
7105
7106 switch (instr->opcode->op)
7107 {
7108 case OP_LDRB_POS:new_op = OP_LDURB; break;
7109 case OP_STRB_POS: new_op = OP_STURB; break;
7110 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
7111 case OP_LDRH_POS: new_op = OP_LDURH; break;
7112 case OP_STRH_POS: new_op = OP_STURH; break;
7113 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
7114 case OP_LDR_POS: new_op = OP_LDUR; break;
7115 case OP_STR_POS: new_op = OP_STUR; break;
7116 case OP_LDRF_POS: new_op = OP_LDURV; break;
7117 case OP_STRF_POS: new_op = OP_STURV; break;
7118 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
7119 case OP_PRFM_POS: new_op = OP_PRFUM; break;
7120 default: new_op = OP_NIL; break;
7121 }
7122
7123 if (new_op == OP_NIL)
7124 return FALSE;
7125
7126 new_opcode = aarch64_get_opcode (new_op);
7127 gas_assert (new_opcode != NULL);
7128
7129 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
7130 instr->opcode->op, new_opcode->op);
7131
7132 aarch64_replace_opcode (instr, new_opcode);
7133
7134 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
7135 qualifier matching may fail because the out-of-date qualifier will
7136 prevent the operand being updated with a new and correct qualifier. */
7137 idx = aarch64_operand_index (instr->opcode->operands,
7138 AARCH64_OPND_ADDR_SIMM9);
7139 gas_assert (idx == 1);
7140 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
7141
7142 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
7143
7144 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
7145 return FALSE;
7146
7147 return TRUE;
7148 }
7149
7150 /* Called by fix_insn to fix a MOV immediate alias instruction.
7151
7152 Operand for a generic move immediate instruction, which is an alias
7153 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
7154 a 32-bit/64-bit immediate value into general register. An assembler error
7155 shall result if the immediate cannot be created by a single one of these
7156 instructions. If there is a choice, then to ensure reversability an
7157 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
7158
7159 static void
7160 fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
7161 {
7162 const aarch64_opcode *opcode;
7163
7164 /* Need to check if the destination is SP/ZR. The check has to be done
7165 before any aarch64_replace_opcode. */
7166 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
7167 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
7168
7169 instr->operands[1].imm.value = value;
7170 instr->operands[1].skip = 0;
7171
7172 if (try_mov_wide_p)
7173 {
7174 /* Try the MOVZ alias. */
7175 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
7176 aarch64_replace_opcode (instr, opcode);
7177 if (aarch64_opcode_encode (instr->opcode, instr,
7178 &instr->value, NULL, NULL))
7179 {
7180 put_aarch64_insn (buf, instr->value);
7181 return;
7182 }
7183 /* Try the MOVK alias. */
7184 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
7185 aarch64_replace_opcode (instr, opcode);
7186 if (aarch64_opcode_encode (instr->opcode, instr,
7187 &instr->value, NULL, NULL))
7188 {
7189 put_aarch64_insn (buf, instr->value);
7190 return;
7191 }
7192 }
7193
7194 if (try_mov_bitmask_p)
7195 {
7196 /* Try the ORR alias. */
7197 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
7198 aarch64_replace_opcode (instr, opcode);
7199 if (aarch64_opcode_encode (instr->opcode, instr,
7200 &instr->value, NULL, NULL))
7201 {
7202 put_aarch64_insn (buf, instr->value);
7203 return;
7204 }
7205 }
7206
7207 as_bad_where (fixP->fx_file, fixP->fx_line,
7208 _("immediate cannot be moved by a single instruction"));
7209 }
7210
7211 /* An instruction operand which is immediate related may have symbol used
7212 in the assembly, e.g.
7213
7214 mov w0, u32
7215 .set u32, 0x00ffff00
7216
7217 At the time when the assembly instruction is parsed, a referenced symbol,
7218 like 'u32' in the above example may not have been seen; a fixS is created
7219 in such a case and is handled here after symbols have been resolved.
7220 Instruction is fixed up with VALUE using the information in *FIXP plus
7221 extra information in FLAGS.
7222
7223 This function is called by md_apply_fix to fix up instructions that need
7224 a fix-up described above but does not involve any linker-time relocation. */
7225
7226 static void
7227 fix_insn (fixS *fixP, uint32_t flags, offsetT value)
7228 {
7229 int idx;
7230 uint32_t insn;
7231 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7232 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
7233 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
7234
7235 if (new_inst)
7236 {
7237 /* Now the instruction is about to be fixed-up, so the operand that
7238 was previously marked as 'ignored' needs to be unmarked in order
7239 to get the encoding done properly. */
7240 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7241 new_inst->operands[idx].skip = 0;
7242 }
7243
7244 gas_assert (opnd != AARCH64_OPND_NIL);
7245
7246 switch (opnd)
7247 {
7248 case AARCH64_OPND_EXCEPTION:
7249 if (unsigned_overflow (value, 16))
7250 as_bad_where (fixP->fx_file, fixP->fx_line,
7251 _("immediate out of range"));
7252 insn = get_aarch64_insn (buf);
7253 insn |= encode_svc_imm (value);
7254 put_aarch64_insn (buf, insn);
7255 break;
7256
7257 case AARCH64_OPND_AIMM:
7258 /* ADD or SUB with immediate.
7259 NOTE this assumes we come here with a add/sub shifted reg encoding
7260 3 322|2222|2 2 2 21111 111111
7261 1 098|7654|3 2 1 09876 543210 98765 43210
7262 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
7263 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
7264 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
7265 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
7266 ->
7267 3 322|2222|2 2 221111111111
7268 1 098|7654|3 2 109876543210 98765 43210
7269 11000000 sf 001|0001|shift imm12 Rn Rd ADD
7270 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
7271 51000000 sf 101|0001|shift imm12 Rn Rd SUB
7272 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
7273 Fields sf Rn Rd are already set. */
7274 insn = get_aarch64_insn (buf);
7275 if (value < 0)
7276 {
7277 /* Add <-> sub. */
7278 insn = reencode_addsub_switch_add_sub (insn);
7279 value = -value;
7280 }
7281
7282 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
7283 && unsigned_overflow (value, 12))
7284 {
7285 /* Try to shift the value by 12 to make it fit. */
7286 if (((value >> 12) << 12) == value
7287 && ! unsigned_overflow (value, 12 + 12))
7288 {
7289 value >>= 12;
7290 insn |= encode_addsub_imm_shift_amount (1);
7291 }
7292 }
7293
7294 if (unsigned_overflow (value, 12))
7295 as_bad_where (fixP->fx_file, fixP->fx_line,
7296 _("immediate out of range"));
7297
7298 insn |= encode_addsub_imm (value);
7299
7300 put_aarch64_insn (buf, insn);
7301 break;
7302
7303 case AARCH64_OPND_SIMD_IMM:
7304 case AARCH64_OPND_SIMD_IMM_SFT:
7305 case AARCH64_OPND_LIMM:
7306 /* Bit mask immediate. */
7307 gas_assert (new_inst != NULL);
7308 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7309 new_inst->operands[idx].imm.value = value;
7310 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7311 &new_inst->value, NULL, NULL))
7312 put_aarch64_insn (buf, new_inst->value);
7313 else
7314 as_bad_where (fixP->fx_file, fixP->fx_line,
7315 _("invalid immediate"));
7316 break;
7317
7318 case AARCH64_OPND_HALF:
7319 /* 16-bit unsigned immediate. */
7320 if (unsigned_overflow (value, 16))
7321 as_bad_where (fixP->fx_file, fixP->fx_line,
7322 _("immediate out of range"));
7323 insn = get_aarch64_insn (buf);
7324 insn |= encode_movw_imm (value & 0xffff);
7325 put_aarch64_insn (buf, insn);
7326 break;
7327
7328 case AARCH64_OPND_IMM_MOV:
7329 /* Operand for a generic move immediate instruction, which is
7330 an alias instruction that generates a single MOVZ, MOVN or ORR
7331 instruction to loads a 32-bit/64-bit immediate value into general
7332 register. An assembler error shall result if the immediate cannot be
7333 created by a single one of these instructions. If there is a choice,
7334 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
7335 and MOVZ or MOVN to ORR. */
7336 gas_assert (new_inst != NULL);
7337 fix_mov_imm_insn (fixP, buf, new_inst, value);
7338 break;
7339
7340 case AARCH64_OPND_ADDR_SIMM7:
7341 case AARCH64_OPND_ADDR_SIMM9:
7342 case AARCH64_OPND_ADDR_SIMM9_2:
7343 case AARCH64_OPND_ADDR_UIMM12:
7344 /* Immediate offset in an address. */
7345 insn = get_aarch64_insn (buf);
7346
7347 gas_assert (new_inst != NULL && new_inst->value == insn);
7348 gas_assert (new_inst->opcode->operands[1] == opnd
7349 || new_inst->opcode->operands[2] == opnd);
7350
7351 /* Get the index of the address operand. */
7352 if (new_inst->opcode->operands[1] == opnd)
7353 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
7354 idx = 1;
7355 else
7356 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
7357 idx = 2;
7358
7359 /* Update the resolved offset value. */
7360 new_inst->operands[idx].addr.offset.imm = value;
7361
7362 /* Encode/fix-up. */
7363 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7364 &new_inst->value, NULL, NULL))
7365 {
7366 put_aarch64_insn (buf, new_inst->value);
7367 break;
7368 }
7369 else if (new_inst->opcode->iclass == ldst_pos
7370 && try_to_encode_as_unscaled_ldst (new_inst))
7371 {
7372 put_aarch64_insn (buf, new_inst->value);
7373 break;
7374 }
7375
7376 as_bad_where (fixP->fx_file, fixP->fx_line,
7377 _("immediate offset out of range"));
7378 break;
7379
7380 default:
7381 gas_assert (0);
7382 as_fatal (_("unhandled operand code %d"), opnd);
7383 }
7384 }
7385
7386 /* Apply a fixup (fixP) to segment data, once it has been determined
7387 by our caller that we have all the info we need to fix it up.
7388
7389 Parameter valP is the pointer to the value of the bits. */
7390
7391 void
7392 md_apply_fix (fixS * fixP, valueT * valP, segT seg)
7393 {
7394 offsetT value = *valP;
7395 uint32_t insn;
7396 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7397 int scale;
7398 unsigned flags = fixP->fx_addnumber;
7399
7400 DEBUG_TRACE ("\n\n");
7401 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
7402 DEBUG_TRACE ("Enter md_apply_fix");
7403
7404 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
7405
7406 /* Note whether this will delete the relocation. */
7407
7408 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
7409 fixP->fx_done = 1;
7410
7411 /* Process the relocations. */
7412 switch (fixP->fx_r_type)
7413 {
7414 case BFD_RELOC_NONE:
7415 /* This will need to go in the object file. */
7416 fixP->fx_done = 0;
7417 break;
7418
7419 case BFD_RELOC_8:
7420 case BFD_RELOC_8_PCREL:
7421 if (fixP->fx_done || !seg->use_rela_p)
7422 md_number_to_chars (buf, value, 1);
7423 break;
7424
7425 case BFD_RELOC_16:
7426 case BFD_RELOC_16_PCREL:
7427 if (fixP->fx_done || !seg->use_rela_p)
7428 md_number_to_chars (buf, value, 2);
7429 break;
7430
7431 case BFD_RELOC_32:
7432 case BFD_RELOC_32_PCREL:
7433 if (fixP->fx_done || !seg->use_rela_p)
7434 md_number_to_chars (buf, value, 4);
7435 break;
7436
7437 case BFD_RELOC_64:
7438 case BFD_RELOC_64_PCREL:
7439 if (fixP->fx_done || !seg->use_rela_p)
7440 md_number_to_chars (buf, value, 8);
7441 break;
7442
7443 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7444 /* We claim that these fixups have been processed here, even if
7445 in fact we generate an error because we do not have a reloc
7446 for them, so tc_gen_reloc() will reject them. */
7447 fixP->fx_done = 1;
7448 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
7449 {
7450 as_bad_where (fixP->fx_file, fixP->fx_line,
7451 _("undefined symbol %s used as an immediate value"),
7452 S_GET_NAME (fixP->fx_addsy));
7453 goto apply_fix_return;
7454 }
7455 fix_insn (fixP, flags, value);
7456 break;
7457
7458 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7459 if (fixP->fx_done || !seg->use_rela_p)
7460 {
7461 if (value & 3)
7462 as_bad_where (fixP->fx_file, fixP->fx_line,
7463 _("pc-relative load offset not word aligned"));
7464 if (signed_overflow (value, 21))
7465 as_bad_where (fixP->fx_file, fixP->fx_line,
7466 _("pc-relative load offset out of range"));
7467 insn = get_aarch64_insn (buf);
7468 insn |= encode_ld_lit_ofs_19 (value >> 2);
7469 put_aarch64_insn (buf, insn);
7470 }
7471 break;
7472
7473 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7474 if (fixP->fx_done || !seg->use_rela_p)
7475 {
7476 if (signed_overflow (value, 21))
7477 as_bad_where (fixP->fx_file, fixP->fx_line,
7478 _("pc-relative address offset out of range"));
7479 insn = get_aarch64_insn (buf);
7480 insn |= encode_adr_imm (value);
7481 put_aarch64_insn (buf, insn);
7482 }
7483 break;
7484
7485 case BFD_RELOC_AARCH64_BRANCH19:
7486 if (fixP->fx_done || !seg->use_rela_p)
7487 {
7488 if (value & 3)
7489 as_bad_where (fixP->fx_file, fixP->fx_line,
7490 _("conditional branch target not word aligned"));
7491 if (signed_overflow (value, 21))
7492 as_bad_where (fixP->fx_file, fixP->fx_line,
7493 _("conditional branch out of range"));
7494 insn = get_aarch64_insn (buf);
7495 insn |= encode_cond_branch_ofs_19 (value >> 2);
7496 put_aarch64_insn (buf, insn);
7497 }
7498 break;
7499
7500 case BFD_RELOC_AARCH64_TSTBR14:
7501 if (fixP->fx_done || !seg->use_rela_p)
7502 {
7503 if (value & 3)
7504 as_bad_where (fixP->fx_file, fixP->fx_line,
7505 _("conditional branch target not word aligned"));
7506 if (signed_overflow (value, 16))
7507 as_bad_where (fixP->fx_file, fixP->fx_line,
7508 _("conditional branch out of range"));
7509 insn = get_aarch64_insn (buf);
7510 insn |= encode_tst_branch_ofs_14 (value >> 2);
7511 put_aarch64_insn (buf, insn);
7512 }
7513 break;
7514
7515 case BFD_RELOC_AARCH64_CALL26:
7516 case BFD_RELOC_AARCH64_JUMP26:
7517 if (fixP->fx_done || !seg->use_rela_p)
7518 {
7519 if (value & 3)
7520 as_bad_where (fixP->fx_file, fixP->fx_line,
7521 _("branch target not word aligned"));
7522 if (signed_overflow (value, 28))
7523 as_bad_where (fixP->fx_file, fixP->fx_line,
7524 _("branch out of range"));
7525 insn = get_aarch64_insn (buf);
7526 insn |= encode_branch_ofs_26 (value >> 2);
7527 put_aarch64_insn (buf, insn);
7528 }
7529 break;
7530
7531 case BFD_RELOC_AARCH64_MOVW_G0:
7532 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7533 case BFD_RELOC_AARCH64_MOVW_G0_S:
7534 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7535 scale = 0;
7536 goto movw_common;
7537 case BFD_RELOC_AARCH64_MOVW_G1:
7538 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7539 case BFD_RELOC_AARCH64_MOVW_G1_S:
7540 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7541 scale = 16;
7542 goto movw_common;
7543 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7544 scale = 0;
7545 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7546 /* Should always be exported to object file, see
7547 aarch64_force_relocation(). */
7548 gas_assert (!fixP->fx_done);
7549 gas_assert (seg->use_rela_p);
7550 goto movw_common;
7551 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7552 scale = 16;
7553 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7554 /* Should always be exported to object file, see
7555 aarch64_force_relocation(). */
7556 gas_assert (!fixP->fx_done);
7557 gas_assert (seg->use_rela_p);
7558 goto movw_common;
7559 case BFD_RELOC_AARCH64_MOVW_G2:
7560 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7561 case BFD_RELOC_AARCH64_MOVW_G2_S:
7562 scale = 32;
7563 goto movw_common;
7564 case BFD_RELOC_AARCH64_MOVW_G3:
7565 scale = 48;
7566 movw_common:
7567 if (fixP->fx_done || !seg->use_rela_p)
7568 {
7569 insn = get_aarch64_insn (buf);
7570
7571 if (!fixP->fx_done)
7572 {
7573 /* REL signed addend must fit in 16 bits */
7574 if (signed_overflow (value, 16))
7575 as_bad_where (fixP->fx_file, fixP->fx_line,
7576 _("offset out of range"));
7577 }
7578 else
7579 {
7580 /* Check for overflow and scale. */
7581 switch (fixP->fx_r_type)
7582 {
7583 case BFD_RELOC_AARCH64_MOVW_G0:
7584 case BFD_RELOC_AARCH64_MOVW_G1:
7585 case BFD_RELOC_AARCH64_MOVW_G2:
7586 case BFD_RELOC_AARCH64_MOVW_G3:
7587 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7588 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7589 if (unsigned_overflow (value, scale + 16))
7590 as_bad_where (fixP->fx_file, fixP->fx_line,
7591 _("unsigned value out of range"));
7592 break;
7593 case BFD_RELOC_AARCH64_MOVW_G0_S:
7594 case BFD_RELOC_AARCH64_MOVW_G1_S:
7595 case BFD_RELOC_AARCH64_MOVW_G2_S:
7596 /* NOTE: We can only come here with movz or movn. */
7597 if (signed_overflow (value, scale + 16))
7598 as_bad_where (fixP->fx_file, fixP->fx_line,
7599 _("signed value out of range"));
7600 if (value < 0)
7601 {
7602 /* Force use of MOVN. */
7603 value = ~value;
7604 insn = reencode_movzn_to_movn (insn);
7605 }
7606 else
7607 {
7608 /* Force use of MOVZ. */
7609 insn = reencode_movzn_to_movz (insn);
7610 }
7611 break;
7612 default:
7613 /* Unchecked relocations. */
7614 break;
7615 }
7616 value >>= scale;
7617 }
7618
7619 /* Insert value into MOVN/MOVZ/MOVK instruction. */
7620 insn |= encode_movw_imm (value & 0xffff);
7621
7622 put_aarch64_insn (buf, insn);
7623 }
7624 break;
7625
7626 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
7627 fixP->fx_r_type = (ilp32_p
7628 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
7629 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7630 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7631 /* Should always be exported to object file, see
7632 aarch64_force_relocation(). */
7633 gas_assert (!fixP->fx_done);
7634 gas_assert (seg->use_rela_p);
7635 break;
7636
7637 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7638 fixP->fx_r_type = (ilp32_p
7639 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
7640 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC);
7641 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7642 /* Should always be exported to object file, see
7643 aarch64_force_relocation(). */
7644 gas_assert (!fixP->fx_done);
7645 gas_assert (seg->use_rela_p);
7646 break;
7647
7648 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7649 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7650 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7651 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7652 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
7653 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7654 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7655 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7656 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7657 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7658 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7659 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7660 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7661 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7662 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7663 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7664 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7665 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
7666 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
7667 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7668 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7669 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7670 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7671 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7672 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7673 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7674 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7675 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7676 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7677 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7678 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
7679 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7680 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7681 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7682 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7683 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
7684 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7685 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
7686 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7687 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7688 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7689 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7690 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7691 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7692 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7693 /* Should always be exported to object file, see
7694 aarch64_force_relocation(). */
7695 gas_assert (!fixP->fx_done);
7696 gas_assert (seg->use_rela_p);
7697 break;
7698
7699 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
7700 /* Should always be exported to object file, see
7701 aarch64_force_relocation(). */
7702 fixP->fx_r_type = (ilp32_p
7703 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
7704 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
7705 gas_assert (!fixP->fx_done);
7706 gas_assert (seg->use_rela_p);
7707 break;
7708
7709 case BFD_RELOC_AARCH64_ADD_LO12:
7710 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7711 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7712 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7713 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7714 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7715 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7716 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7717 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7718 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7719 case BFD_RELOC_AARCH64_LDST128_LO12:
7720 case BFD_RELOC_AARCH64_LDST16_LO12:
7721 case BFD_RELOC_AARCH64_LDST32_LO12:
7722 case BFD_RELOC_AARCH64_LDST64_LO12:
7723 case BFD_RELOC_AARCH64_LDST8_LO12:
7724 /* Should always be exported to object file, see
7725 aarch64_force_relocation(). */
7726 gas_assert (!fixP->fx_done);
7727 gas_assert (seg->use_rela_p);
7728 break;
7729
7730 case BFD_RELOC_AARCH64_TLSDESC_ADD:
7731 case BFD_RELOC_AARCH64_TLSDESC_CALL:
7732 case BFD_RELOC_AARCH64_TLSDESC_LDR:
7733 break;
7734
7735 case BFD_RELOC_UNUSED:
7736 /* An error will already have been reported. */
7737 break;
7738
7739 default:
7740 as_bad_where (fixP->fx_file, fixP->fx_line,
7741 _("unexpected %s fixup"),
7742 bfd_get_reloc_code_name (fixP->fx_r_type));
7743 break;
7744 }
7745
7746 apply_fix_return:
7747 /* Free the allocated the struct aarch64_inst.
7748 N.B. currently there are very limited number of fix-up types actually use
7749 this field, so the impact on the performance should be minimal . */
7750 if (fixP->tc_fix_data.inst != NULL)
7751 free (fixP->tc_fix_data.inst);
7752
7753 return;
7754 }
7755
7756 /* Translate internal representation of relocation info to BFD target
7757 format. */
7758
7759 arelent *
7760 tc_gen_reloc (asection * section, fixS * fixp)
7761 {
7762 arelent *reloc;
7763 bfd_reloc_code_real_type code;
7764
7765 reloc = XNEW (arelent);
7766
7767 reloc->sym_ptr_ptr = XNEW (asymbol *);
7768 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
7769 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
7770
7771 if (fixp->fx_pcrel)
7772 {
7773 if (section->use_rela_p)
7774 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
7775 else
7776 fixp->fx_offset = reloc->address;
7777 }
7778 reloc->addend = fixp->fx_offset;
7779
7780 code = fixp->fx_r_type;
7781 switch (code)
7782 {
7783 case BFD_RELOC_16:
7784 if (fixp->fx_pcrel)
7785 code = BFD_RELOC_16_PCREL;
7786 break;
7787
7788 case BFD_RELOC_32:
7789 if (fixp->fx_pcrel)
7790 code = BFD_RELOC_32_PCREL;
7791 break;
7792
7793 case BFD_RELOC_64:
7794 if (fixp->fx_pcrel)
7795 code = BFD_RELOC_64_PCREL;
7796 break;
7797
7798 default:
7799 break;
7800 }
7801
7802 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
7803 if (reloc->howto == NULL)
7804 {
7805 as_bad_where (fixp->fx_file, fixp->fx_line,
7806 _
7807 ("cannot represent %s relocation in this object file format"),
7808 bfd_get_reloc_code_name (code));
7809 return NULL;
7810 }
7811
7812 return reloc;
7813 }
7814
7815 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
7816
7817 void
7818 cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
7819 {
7820 bfd_reloc_code_real_type type;
7821 int pcrel = 0;
7822
7823 /* Pick a reloc.
7824 FIXME: @@ Should look at CPU word size. */
7825 switch (size)
7826 {
7827 case 1:
7828 type = BFD_RELOC_8;
7829 break;
7830 case 2:
7831 type = BFD_RELOC_16;
7832 break;
7833 case 4:
7834 type = BFD_RELOC_32;
7835 break;
7836 case 8:
7837 type = BFD_RELOC_64;
7838 break;
7839 default:
7840 as_bad (_("cannot do %u-byte relocation"), size);
7841 type = BFD_RELOC_UNUSED;
7842 break;
7843 }
7844
7845 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
7846 }
7847
7848 int
7849 aarch64_force_relocation (struct fix *fixp)
7850 {
7851 switch (fixp->fx_r_type)
7852 {
7853 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7854 /* Perform these "immediate" internal relocations
7855 even if the symbol is extern or weak. */
7856 return 0;
7857
7858 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
7859 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7860 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
7861 /* Pseudo relocs that need to be fixed up according to
7862 ilp32_p. */
7863 return 0;
7864
7865 case BFD_RELOC_AARCH64_ADD_LO12:
7866 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7867 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7868 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7869 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7870 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7871 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7872 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7873 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7874 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7875 case BFD_RELOC_AARCH64_LDST128_LO12:
7876 case BFD_RELOC_AARCH64_LDST16_LO12:
7877 case BFD_RELOC_AARCH64_LDST32_LO12:
7878 case BFD_RELOC_AARCH64_LDST64_LO12:
7879 case BFD_RELOC_AARCH64_LDST8_LO12:
7880 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7881 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7882 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7883 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7884 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
7885 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7886 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7887 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7888 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7889 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7890 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7891 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7892 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7893 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7894 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7895 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7896 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7897 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7898 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7899 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
7900 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
7901 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7902 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7903 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7904 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7905 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7906 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7907 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7908 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7909 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7910 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7911 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7912 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
7913 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7914 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7915 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7916 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7917 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
7918 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7919 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
7920 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7921 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7922 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7923 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7924 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7925 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7926 /* Always leave these relocations for the linker. */
7927 return 1;
7928
7929 default:
7930 break;
7931 }
7932
7933 return generic_force_reloc (fixp);
7934 }
7935
7936 #ifdef OBJ_ELF
7937
7938 const char *
7939 elf64_aarch64_target_format (void)
7940 {
7941 if (strcmp (TARGET_OS, "cloudabi") == 0)
7942 {
7943 /* FIXME: What to do for ilp32_p ? */
7944 return target_big_endian ? "elf64-bigaarch64-cloudabi" : "elf64-littleaarch64-cloudabi";
7945 }
7946 if (target_big_endian)
7947 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
7948 else
7949 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
7950 }
7951
7952 void
7953 aarch64elf_frob_symbol (symbolS * symp, int *puntp)
7954 {
7955 elf_frob_symbol (symp, puntp);
7956 }
7957 #endif
7958
7959 /* MD interface: Finalization. */
7960
7961 /* A good place to do this, although this was probably not intended
7962 for this kind of use. We need to dump the literal pool before
7963 references are made to a null symbol pointer. */
7964
7965 void
7966 aarch64_cleanup (void)
7967 {
7968 literal_pool *pool;
7969
7970 for (pool = list_of_pools; pool; pool = pool->next)
7971 {
7972 /* Put it at the end of the relevant section. */
7973 subseg_set (pool->section, pool->sub_section);
7974 s_ltorg (0);
7975 }
7976 }
7977
7978 #ifdef OBJ_ELF
7979 /* Remove any excess mapping symbols generated for alignment frags in
7980 SEC. We may have created a mapping symbol before a zero byte
7981 alignment; remove it if there's a mapping symbol after the
7982 alignment. */
7983 static void
7984 check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
7985 void *dummy ATTRIBUTE_UNUSED)
7986 {
7987 segment_info_type *seginfo = seg_info (sec);
7988 fragS *fragp;
7989
7990 if (seginfo == NULL || seginfo->frchainP == NULL)
7991 return;
7992
7993 for (fragp = seginfo->frchainP->frch_root;
7994 fragp != NULL; fragp = fragp->fr_next)
7995 {
7996 symbolS *sym = fragp->tc_frag_data.last_map;
7997 fragS *next = fragp->fr_next;
7998
7999 /* Variable-sized frags have been converted to fixed size by
8000 this point. But if this was variable-sized to start with,
8001 there will be a fixed-size frag after it. So don't handle
8002 next == NULL. */
8003 if (sym == NULL || next == NULL)
8004 continue;
8005
8006 if (S_GET_VALUE (sym) < next->fr_address)
8007 /* Not at the end of this frag. */
8008 continue;
8009 know (S_GET_VALUE (sym) == next->fr_address);
8010
8011 do
8012 {
8013 if (next->tc_frag_data.first_map != NULL)
8014 {
8015 /* Next frag starts with a mapping symbol. Discard this
8016 one. */
8017 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8018 break;
8019 }
8020
8021 if (next->fr_next == NULL)
8022 {
8023 /* This mapping symbol is at the end of the section. Discard
8024 it. */
8025 know (next->fr_fix == 0 && next->fr_var == 0);
8026 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8027 break;
8028 }
8029
8030 /* As long as we have empty frags without any mapping symbols,
8031 keep looking. */
8032 /* If the next frag is non-empty and does not start with a
8033 mapping symbol, then this mapping symbol is required. */
8034 if (next->fr_address != next->fr_next->fr_address)
8035 break;
8036
8037 next = next->fr_next;
8038 }
8039 while (next != NULL);
8040 }
8041 }
8042 #endif
8043
8044 /* Adjust the symbol table. */
8045
8046 void
8047 aarch64_adjust_symtab (void)
8048 {
8049 #ifdef OBJ_ELF
8050 /* Remove any overlapping mapping symbols generated by alignment frags. */
8051 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
8052 /* Now do generic ELF adjustments. */
8053 elf_adjust_symtab ();
8054 #endif
8055 }
8056
8057 static void
8058 checked_hash_insert (struct hash_control *table, const char *key, void *value)
8059 {
8060 const char *hash_err;
8061
8062 hash_err = hash_insert (table, key, value);
8063 if (hash_err)
8064 printf ("Internal Error: Can't hash %s\n", key);
8065 }
8066
8067 static void
8068 fill_instruction_hash_table (void)
8069 {
8070 aarch64_opcode *opcode = aarch64_opcode_table;
8071
8072 while (opcode->name != NULL)
8073 {
8074 templates *templ, *new_templ;
8075 templ = hash_find (aarch64_ops_hsh, opcode->name);
8076
8077 new_templ = XNEW (templates);
8078 new_templ->opcode = opcode;
8079 new_templ->next = NULL;
8080
8081 if (!templ)
8082 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
8083 else
8084 {
8085 new_templ->next = templ->next;
8086 templ->next = new_templ;
8087 }
8088 ++opcode;
8089 }
8090 }
8091
8092 static inline void
8093 convert_to_upper (char *dst, const char *src, size_t num)
8094 {
8095 unsigned int i;
8096 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
8097 *dst = TOUPPER (*src);
8098 *dst = '\0';
8099 }
8100
8101 /* Assume STR point to a lower-case string, allocate, convert and return
8102 the corresponding upper-case string. */
8103 static inline const char*
8104 get_upper_str (const char *str)
8105 {
8106 char *ret;
8107 size_t len = strlen (str);
8108 ret = XNEWVEC (char, len + 1);
8109 convert_to_upper (ret, str, len);
8110 return ret;
8111 }
8112
8113 /* MD interface: Initialization. */
8114
8115 void
8116 md_begin (void)
8117 {
8118 unsigned mach;
8119 unsigned int i;
8120
8121 if ((aarch64_ops_hsh = hash_new ()) == NULL
8122 || (aarch64_cond_hsh = hash_new ()) == NULL
8123 || (aarch64_shift_hsh = hash_new ()) == NULL
8124 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
8125 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
8126 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
8127 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
8128 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
8129 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
8130 || (aarch64_reg_hsh = hash_new ()) == NULL
8131 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
8132 || (aarch64_nzcv_hsh = hash_new ()) == NULL
8133 || (aarch64_pldop_hsh = hash_new ()) == NULL
8134 || (aarch64_hint_opt_hsh = hash_new ()) == NULL)
8135 as_fatal (_("virtual memory exhausted"));
8136
8137 fill_instruction_hash_table ();
8138
8139 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
8140 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
8141 (void *) (aarch64_sys_regs + i));
8142
8143 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
8144 checked_hash_insert (aarch64_pstatefield_hsh,
8145 aarch64_pstatefields[i].name,
8146 (void *) (aarch64_pstatefields + i));
8147
8148 for (i = 0; aarch64_sys_regs_ic[i].name != NULL; i++)
8149 checked_hash_insert (aarch64_sys_regs_ic_hsh,
8150 aarch64_sys_regs_ic[i].name,
8151 (void *) (aarch64_sys_regs_ic + i));
8152
8153 for (i = 0; aarch64_sys_regs_dc[i].name != NULL; i++)
8154 checked_hash_insert (aarch64_sys_regs_dc_hsh,
8155 aarch64_sys_regs_dc[i].name,
8156 (void *) (aarch64_sys_regs_dc + i));
8157
8158 for (i = 0; aarch64_sys_regs_at[i].name != NULL; i++)
8159 checked_hash_insert (aarch64_sys_regs_at_hsh,
8160 aarch64_sys_regs_at[i].name,
8161 (void *) (aarch64_sys_regs_at + i));
8162
8163 for (i = 0; aarch64_sys_regs_tlbi[i].name != NULL; i++)
8164 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
8165 aarch64_sys_regs_tlbi[i].name,
8166 (void *) (aarch64_sys_regs_tlbi + i));
8167
8168 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
8169 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
8170 (void *) (reg_names + i));
8171
8172 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
8173 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
8174 (void *) (nzcv_names + i));
8175
8176 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
8177 {
8178 const char *name = aarch64_operand_modifiers[i].name;
8179 checked_hash_insert (aarch64_shift_hsh, name,
8180 (void *) (aarch64_operand_modifiers + i));
8181 /* Also hash the name in the upper case. */
8182 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
8183 (void *) (aarch64_operand_modifiers + i));
8184 }
8185
8186 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
8187 {
8188 unsigned int j;
8189 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
8190 the same condition code. */
8191 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
8192 {
8193 const char *name = aarch64_conds[i].names[j];
8194 if (name == NULL)
8195 break;
8196 checked_hash_insert (aarch64_cond_hsh, name,
8197 (void *) (aarch64_conds + i));
8198 /* Also hash the name in the upper case. */
8199 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
8200 (void *) (aarch64_conds + i));
8201 }
8202 }
8203
8204 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
8205 {
8206 const char *name = aarch64_barrier_options[i].name;
8207 /* Skip xx00 - the unallocated values of option. */
8208 if ((i & 0x3) == 0)
8209 continue;
8210 checked_hash_insert (aarch64_barrier_opt_hsh, name,
8211 (void *) (aarch64_barrier_options + i));
8212 /* Also hash the name in the upper case. */
8213 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
8214 (void *) (aarch64_barrier_options + i));
8215 }
8216
8217 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
8218 {
8219 const char* name = aarch64_prfops[i].name;
8220 /* Skip the unallocated hint encodings. */
8221 if (name == NULL)
8222 continue;
8223 checked_hash_insert (aarch64_pldop_hsh, name,
8224 (void *) (aarch64_prfops + i));
8225 /* Also hash the name in the upper case. */
8226 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8227 (void *) (aarch64_prfops + i));
8228 }
8229
8230 for (i = 0; aarch64_hint_options[i].name != NULL; i++)
8231 {
8232 const char* name = aarch64_hint_options[i].name;
8233
8234 checked_hash_insert (aarch64_hint_opt_hsh, name,
8235 (void *) (aarch64_hint_options + i));
8236 /* Also hash the name in the upper case. */
8237 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8238 (void *) (aarch64_hint_options + i));
8239 }
8240
8241 /* Set the cpu variant based on the command-line options. */
8242 if (!mcpu_cpu_opt)
8243 mcpu_cpu_opt = march_cpu_opt;
8244
8245 if (!mcpu_cpu_opt)
8246 mcpu_cpu_opt = &cpu_default;
8247
8248 cpu_variant = *mcpu_cpu_opt;
8249
8250 /* Record the CPU type. */
8251 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
8252
8253 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
8254 }
8255
8256 /* Command line processing. */
8257
8258 const char *md_shortopts = "m:";
8259
8260 #ifdef AARCH64_BI_ENDIAN
8261 #define OPTION_EB (OPTION_MD_BASE + 0)
8262 #define OPTION_EL (OPTION_MD_BASE + 1)
8263 #else
8264 #if TARGET_BYTES_BIG_ENDIAN
8265 #define OPTION_EB (OPTION_MD_BASE + 0)
8266 #else
8267 #define OPTION_EL (OPTION_MD_BASE + 1)
8268 #endif
8269 #endif
8270
8271 struct option md_longopts[] = {
8272 #ifdef OPTION_EB
8273 {"EB", no_argument, NULL, OPTION_EB},
8274 #endif
8275 #ifdef OPTION_EL
8276 {"EL", no_argument, NULL, OPTION_EL},
8277 #endif
8278 {NULL, no_argument, NULL, 0}
8279 };
8280
8281 size_t md_longopts_size = sizeof (md_longopts);
8282
8283 struct aarch64_option_table
8284 {
8285 const char *option; /* Option name to match. */
8286 const char *help; /* Help information. */
8287 int *var; /* Variable to change. */
8288 int value; /* What to change it to. */
8289 char *deprecated; /* If non-null, print this message. */
8290 };
8291
8292 static struct aarch64_option_table aarch64_opts[] = {
8293 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
8294 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
8295 NULL},
8296 #ifdef DEBUG_AARCH64
8297 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
8298 #endif /* DEBUG_AARCH64 */
8299 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
8300 NULL},
8301 {"mno-verbose-error", N_("do not output verbose error messages"),
8302 &verbose_error_p, 0, NULL},
8303 {NULL, NULL, NULL, 0, NULL}
8304 };
8305
8306 struct aarch64_cpu_option_table
8307 {
8308 const char *name;
8309 const aarch64_feature_set value;
8310 /* The canonical name of the CPU, or NULL to use NAME converted to upper
8311 case. */
8312 const char *canonical_name;
8313 };
8314
8315 /* This list should, at a minimum, contain all the cpu names
8316 recognized by GCC. */
8317 static const struct aarch64_cpu_option_table aarch64_cpus[] = {
8318 {"all", AARCH64_ANY, NULL},
8319 {"cortex-a35", AARCH64_FEATURE (AARCH64_ARCH_V8,
8320 AARCH64_FEATURE_CRC), "Cortex-A35"},
8321 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
8322 AARCH64_FEATURE_CRC), "Cortex-A53"},
8323 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
8324 AARCH64_FEATURE_CRC), "Cortex-A57"},
8325 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
8326 AARCH64_FEATURE_CRC), "Cortex-A72"},
8327 {"cortex-a73", AARCH64_FEATURE (AARCH64_ARCH_V8,
8328 AARCH64_FEATURE_CRC), "Cortex-A73"},
8329 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
8330 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8331 "Samsung Exynos M1"},
8332 {"qdf24xx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8333 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8334 "Qualcomm QDF24XX"},
8335 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8336 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8337 "Cavium ThunderX"},
8338 {"vulcan", AARCH64_FEATURE (AARCH64_ARCH_V8_1,
8339 AARCH64_FEATURE_CRYPTO),
8340 "Broadcom Vulcan"},
8341 /* The 'xgene-1' name is an older name for 'xgene1', which was used
8342 in earlier releases and is superseded by 'xgene1' in all
8343 tools. */
8344 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
8345 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
8346 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
8347 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
8348 {"generic", AARCH64_ARCH_V8, NULL},
8349
8350 {NULL, AARCH64_ARCH_NONE, NULL}
8351 };
8352
8353 struct aarch64_arch_option_table
8354 {
8355 const char *name;
8356 const aarch64_feature_set value;
8357 };
8358
8359 /* This list should, at a minimum, contain all the architecture names
8360 recognized by GCC. */
8361 static const struct aarch64_arch_option_table aarch64_archs[] = {
8362 {"all", AARCH64_ANY},
8363 {"armv8-a", AARCH64_ARCH_V8},
8364 {"armv8.1-a", AARCH64_ARCH_V8_1},
8365 {"armv8.2-a", AARCH64_ARCH_V8_2},
8366 {NULL, AARCH64_ARCH_NONE}
8367 };
8368
8369 /* ISA extensions. */
8370 struct aarch64_option_cpu_value_table
8371 {
8372 const char *name;
8373 const aarch64_feature_set value;
8374 const aarch64_feature_set require; /* Feature dependencies. */
8375 };
8376
8377 static const struct aarch64_option_cpu_value_table aarch64_features[] = {
8378 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0),
8379 AARCH64_ARCH_NONE},
8380 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0),
8381 AARCH64_ARCH_NONE},
8382 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0),
8383 AARCH64_ARCH_NONE},
8384 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0),
8385 AARCH64_ARCH_NONE},
8386 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0),
8387 AARCH64_ARCH_NONE},
8388 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0),
8389 AARCH64_ARCH_NONE},
8390 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0),
8391 AARCH64_ARCH_NONE},
8392 {"ras", AARCH64_FEATURE (AARCH64_FEATURE_RAS, 0),
8393 AARCH64_ARCH_NONE},
8394 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_RDMA, 0),
8395 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
8396 {"fp16", AARCH64_FEATURE (AARCH64_FEATURE_F16, 0),
8397 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
8398 {"profile", AARCH64_FEATURE (AARCH64_FEATURE_PROFILE, 0),
8399 AARCH64_ARCH_NONE},
8400 {"sve", AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0),
8401 AARCH64_FEATURE (AARCH64_FEATURE_FP
8402 | AARCH64_FEATURE_SIMD, 0)},
8403 {NULL, AARCH64_ARCH_NONE, AARCH64_ARCH_NONE},
8404 };
8405
8406 struct aarch64_long_option_table
8407 {
8408 const char *option; /* Substring to match. */
8409 const char *help; /* Help information. */
8410 int (*func) (const char *subopt); /* Function to decode sub-option. */
8411 char *deprecated; /* If non-null, print this message. */
8412 };
8413
8414 /* Transitive closure of features depending on set. */
8415 static aarch64_feature_set
8416 aarch64_feature_disable_set (aarch64_feature_set set)
8417 {
8418 const struct aarch64_option_cpu_value_table *opt;
8419 aarch64_feature_set prev = 0;
8420
8421 while (prev != set) {
8422 prev = set;
8423 for (opt = aarch64_features; opt->name != NULL; opt++)
8424 if (AARCH64_CPU_HAS_ANY_FEATURES (opt->require, set))
8425 AARCH64_MERGE_FEATURE_SETS (set, set, opt->value);
8426 }
8427 return set;
8428 }
8429
8430 /* Transitive closure of dependencies of set. */
8431 static aarch64_feature_set
8432 aarch64_feature_enable_set (aarch64_feature_set set)
8433 {
8434 const struct aarch64_option_cpu_value_table *opt;
8435 aarch64_feature_set prev = 0;
8436
8437 while (prev != set) {
8438 prev = set;
8439 for (opt = aarch64_features; opt->name != NULL; opt++)
8440 if (AARCH64_CPU_HAS_FEATURE (set, opt->value))
8441 AARCH64_MERGE_FEATURE_SETS (set, set, opt->require);
8442 }
8443 return set;
8444 }
8445
8446 static int
8447 aarch64_parse_features (const char *str, const aarch64_feature_set **opt_p,
8448 bfd_boolean ext_only)
8449 {
8450 /* We insist on extensions being added before being removed. We achieve
8451 this by using the ADDING_VALUE variable to indicate whether we are
8452 adding an extension (1) or removing it (0) and only allowing it to
8453 change in the order -1 -> 1 -> 0. */
8454 int adding_value = -1;
8455 aarch64_feature_set *ext_set = XNEW (aarch64_feature_set);
8456
8457 /* Copy the feature set, so that we can modify it. */
8458 *ext_set = **opt_p;
8459 *opt_p = ext_set;
8460
8461 while (str != NULL && *str != 0)
8462 {
8463 const struct aarch64_option_cpu_value_table *opt;
8464 const char *ext = NULL;
8465 int optlen;
8466
8467 if (!ext_only)
8468 {
8469 if (*str != '+')
8470 {
8471 as_bad (_("invalid architectural extension"));
8472 return 0;
8473 }
8474
8475 ext = strchr (++str, '+');
8476 }
8477
8478 if (ext != NULL)
8479 optlen = ext - str;
8480 else
8481 optlen = strlen (str);
8482
8483 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
8484 {
8485 if (adding_value != 0)
8486 adding_value = 0;
8487 optlen -= 2;
8488 str += 2;
8489 }
8490 else if (optlen > 0)
8491 {
8492 if (adding_value == -1)
8493 adding_value = 1;
8494 else if (adding_value != 1)
8495 {
8496 as_bad (_("must specify extensions to add before specifying "
8497 "those to remove"));
8498 return FALSE;
8499 }
8500 }
8501
8502 if (optlen == 0)
8503 {
8504 as_bad (_("missing architectural extension"));
8505 return 0;
8506 }
8507
8508 gas_assert (adding_value != -1);
8509
8510 for (opt = aarch64_features; opt->name != NULL; opt++)
8511 if (strncmp (opt->name, str, optlen) == 0)
8512 {
8513 aarch64_feature_set set;
8514
8515 /* Add or remove the extension. */
8516 if (adding_value)
8517 {
8518 set = aarch64_feature_enable_set (opt->value);
8519 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, set);
8520 }
8521 else
8522 {
8523 set = aarch64_feature_disable_set (opt->value);
8524 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, set);
8525 }
8526 break;
8527 }
8528
8529 if (opt->name == NULL)
8530 {
8531 as_bad (_("unknown architectural extension `%s'"), str);
8532 return 0;
8533 }
8534
8535 str = ext;
8536 };
8537
8538 return 1;
8539 }
8540
8541 static int
8542 aarch64_parse_cpu (const char *str)
8543 {
8544 const struct aarch64_cpu_option_table *opt;
8545 const char *ext = strchr (str, '+');
8546 size_t optlen;
8547
8548 if (ext != NULL)
8549 optlen = ext - str;
8550 else
8551 optlen = strlen (str);
8552
8553 if (optlen == 0)
8554 {
8555 as_bad (_("missing cpu name `%s'"), str);
8556 return 0;
8557 }
8558
8559 for (opt = aarch64_cpus; opt->name != NULL; opt++)
8560 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8561 {
8562 mcpu_cpu_opt = &opt->value;
8563 if (ext != NULL)
8564 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
8565
8566 return 1;
8567 }
8568
8569 as_bad (_("unknown cpu `%s'"), str);
8570 return 0;
8571 }
8572
8573 static int
8574 aarch64_parse_arch (const char *str)
8575 {
8576 const struct aarch64_arch_option_table *opt;
8577 const char *ext = strchr (str, '+');
8578 size_t optlen;
8579
8580 if (ext != NULL)
8581 optlen = ext - str;
8582 else
8583 optlen = strlen (str);
8584
8585 if (optlen == 0)
8586 {
8587 as_bad (_("missing architecture name `%s'"), str);
8588 return 0;
8589 }
8590
8591 for (opt = aarch64_archs; opt->name != NULL; opt++)
8592 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8593 {
8594 march_cpu_opt = &opt->value;
8595 if (ext != NULL)
8596 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
8597
8598 return 1;
8599 }
8600
8601 as_bad (_("unknown architecture `%s'\n"), str);
8602 return 0;
8603 }
8604
8605 /* ABIs. */
8606 struct aarch64_option_abi_value_table
8607 {
8608 const char *name;
8609 enum aarch64_abi_type value;
8610 };
8611
8612 static const struct aarch64_option_abi_value_table aarch64_abis[] = {
8613 {"ilp32", AARCH64_ABI_ILP32},
8614 {"lp64", AARCH64_ABI_LP64},
8615 };
8616
8617 static int
8618 aarch64_parse_abi (const char *str)
8619 {
8620 unsigned int i;
8621
8622 if (str[0] == '\0')
8623 {
8624 as_bad (_("missing abi name `%s'"), str);
8625 return 0;
8626 }
8627
8628 for (i = 0; i < ARRAY_SIZE (aarch64_abis); i++)
8629 if (strcmp (str, aarch64_abis[i].name) == 0)
8630 {
8631 aarch64_abi = aarch64_abis[i].value;
8632 return 1;
8633 }
8634
8635 as_bad (_("unknown abi `%s'\n"), str);
8636 return 0;
8637 }
8638
8639 static struct aarch64_long_option_table aarch64_long_opts[] = {
8640 #ifdef OBJ_ELF
8641 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
8642 aarch64_parse_abi, NULL},
8643 #endif /* OBJ_ELF */
8644 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
8645 aarch64_parse_cpu, NULL},
8646 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
8647 aarch64_parse_arch, NULL},
8648 {NULL, NULL, 0, NULL}
8649 };
8650
8651 int
8652 md_parse_option (int c, const char *arg)
8653 {
8654 struct aarch64_option_table *opt;
8655 struct aarch64_long_option_table *lopt;
8656
8657 switch (c)
8658 {
8659 #ifdef OPTION_EB
8660 case OPTION_EB:
8661 target_big_endian = 1;
8662 break;
8663 #endif
8664
8665 #ifdef OPTION_EL
8666 case OPTION_EL:
8667 target_big_endian = 0;
8668 break;
8669 #endif
8670
8671 case 'a':
8672 /* Listing option. Just ignore these, we don't support additional
8673 ones. */
8674 return 0;
8675
8676 default:
8677 for (opt = aarch64_opts; opt->option != NULL; opt++)
8678 {
8679 if (c == opt->option[0]
8680 && ((arg == NULL && opt->option[1] == 0)
8681 || streq (arg, opt->option + 1)))
8682 {
8683 /* If the option is deprecated, tell the user. */
8684 if (opt->deprecated != NULL)
8685 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
8686 arg ? arg : "", _(opt->deprecated));
8687
8688 if (opt->var != NULL)
8689 *opt->var = opt->value;
8690
8691 return 1;
8692 }
8693 }
8694
8695 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8696 {
8697 /* These options are expected to have an argument. */
8698 if (c == lopt->option[0]
8699 && arg != NULL
8700 && strncmp (arg, lopt->option + 1,
8701 strlen (lopt->option + 1)) == 0)
8702 {
8703 /* If the option is deprecated, tell the user. */
8704 if (lopt->deprecated != NULL)
8705 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
8706 _(lopt->deprecated));
8707
8708 /* Call the sup-option parser. */
8709 return lopt->func (arg + strlen (lopt->option) - 1);
8710 }
8711 }
8712
8713 return 0;
8714 }
8715
8716 return 1;
8717 }
8718
8719 void
8720 md_show_usage (FILE * fp)
8721 {
8722 struct aarch64_option_table *opt;
8723 struct aarch64_long_option_table *lopt;
8724
8725 fprintf (fp, _(" AArch64-specific assembler options:\n"));
8726
8727 for (opt = aarch64_opts; opt->option != NULL; opt++)
8728 if (opt->help != NULL)
8729 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
8730
8731 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8732 if (lopt->help != NULL)
8733 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
8734
8735 #ifdef OPTION_EB
8736 fprintf (fp, _("\
8737 -EB assemble code for a big-endian cpu\n"));
8738 #endif
8739
8740 #ifdef OPTION_EL
8741 fprintf (fp, _("\
8742 -EL assemble code for a little-endian cpu\n"));
8743 #endif
8744 }
8745
8746 /* Parse a .cpu directive. */
8747
8748 static void
8749 s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
8750 {
8751 const struct aarch64_cpu_option_table *opt;
8752 char saved_char;
8753 char *name;
8754 char *ext;
8755 size_t optlen;
8756
8757 name = input_line_pointer;
8758 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8759 input_line_pointer++;
8760 saved_char = *input_line_pointer;
8761 *input_line_pointer = 0;
8762
8763 ext = strchr (name, '+');
8764
8765 if (ext != NULL)
8766 optlen = ext - name;
8767 else
8768 optlen = strlen (name);
8769
8770 /* Skip the first "all" entry. */
8771 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
8772 if (strlen (opt->name) == optlen
8773 && strncmp (name, opt->name, optlen) == 0)
8774 {
8775 mcpu_cpu_opt = &opt->value;
8776 if (ext != NULL)
8777 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
8778 return;
8779
8780 cpu_variant = *mcpu_cpu_opt;
8781
8782 *input_line_pointer = saved_char;
8783 demand_empty_rest_of_line ();
8784 return;
8785 }
8786 as_bad (_("unknown cpu `%s'"), name);
8787 *input_line_pointer = saved_char;
8788 ignore_rest_of_line ();
8789 }
8790
8791
8792 /* Parse a .arch directive. */
8793
8794 static void
8795 s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
8796 {
8797 const struct aarch64_arch_option_table *opt;
8798 char saved_char;
8799 char *name;
8800 char *ext;
8801 size_t optlen;
8802
8803 name = input_line_pointer;
8804 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8805 input_line_pointer++;
8806 saved_char = *input_line_pointer;
8807 *input_line_pointer = 0;
8808
8809 ext = strchr (name, '+');
8810
8811 if (ext != NULL)
8812 optlen = ext - name;
8813 else
8814 optlen = strlen (name);
8815
8816 /* Skip the first "all" entry. */
8817 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
8818 if (strlen (opt->name) == optlen
8819 && strncmp (name, opt->name, optlen) == 0)
8820 {
8821 mcpu_cpu_opt = &opt->value;
8822 if (ext != NULL)
8823 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
8824 return;
8825
8826 cpu_variant = *mcpu_cpu_opt;
8827
8828 *input_line_pointer = saved_char;
8829 demand_empty_rest_of_line ();
8830 return;
8831 }
8832
8833 as_bad (_("unknown architecture `%s'\n"), name);
8834 *input_line_pointer = saved_char;
8835 ignore_rest_of_line ();
8836 }
8837
8838 /* Parse a .arch_extension directive. */
8839
8840 static void
8841 s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
8842 {
8843 char saved_char;
8844 char *ext = input_line_pointer;;
8845
8846 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8847 input_line_pointer++;
8848 saved_char = *input_line_pointer;
8849 *input_line_pointer = 0;
8850
8851 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
8852 return;
8853
8854 cpu_variant = *mcpu_cpu_opt;
8855
8856 *input_line_pointer = saved_char;
8857 demand_empty_rest_of_line ();
8858 }
8859
8860 /* Copy symbol information. */
8861
8862 void
8863 aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
8864 {
8865 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
8866 }
This page took 0.220609 seconds and 5 git commands to generate.