[AArch64] Add support for :tlsdesc: and TLSDESC_ADR_PREL21
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2015 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 #endif /* OBJ_ELF */
79
80 /* Results from operand parsing worker functions. */
81
82 typedef enum
83 {
84 PARSE_OPERAND_SUCCESS,
85 PARSE_OPERAND_FAIL,
86 PARSE_OPERAND_FAIL_NO_BACKTRACK
87 } parse_operand_result;
88
89 enum arm_float_abi
90 {
91 ARM_FLOAT_ABI_HARD,
92 ARM_FLOAT_ABI_SOFTFP,
93 ARM_FLOAT_ABI_SOFT
94 };
95
96 /* Types of processor to assemble for. */
97 #ifndef CPU_DEFAULT
98 /* The code that was here used to select a default CPU depending on compiler
99 pre-defines which were only present when doing native builds, thus
100 changing gas' default behaviour depending upon the build host.
101
102 If you have a target that requires a default CPU option then the you
103 should define CPU_DEFAULT here. */
104 #endif
105
106 #ifndef FPU_DEFAULT
107 # ifdef TE_LINUX
108 # define FPU_DEFAULT FPU_ARCH_FPA
109 # elif defined (TE_NetBSD)
110 # ifdef OBJ_ELF
111 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
112 # else
113 /* Legacy a.out format. */
114 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
115 # endif
116 # elif defined (TE_VXWORKS)
117 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
118 # else
119 /* For backwards compatibility, default to FPA. */
120 # define FPU_DEFAULT FPU_ARCH_FPA
121 # endif
122 #endif /* ifndef FPU_DEFAULT */
123
124 #define streq(a, b) (strcmp (a, b) == 0)
125
126 static arm_feature_set cpu_variant;
127 static arm_feature_set arm_arch_used;
128 static arm_feature_set thumb_arch_used;
129
130 /* Flags stored in private area of BFD structure. */
131 static int uses_apcs_26 = FALSE;
132 static int atpcs = FALSE;
133 static int support_interwork = FALSE;
134 static int uses_apcs_float = FALSE;
135 static int pic_code = FALSE;
136 static int fix_v4bx = FALSE;
137 /* Warn on using deprecated features. */
138 static int warn_on_deprecated = TRUE;
139
140 /* Understand CodeComposer Studio assembly syntax. */
141 bfd_boolean codecomposer_syntax = FALSE;
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_v8 = ARM_FEATURE (ARM_EXT_V8, 0);
199 static const arm_feature_set arm_ext_m =
200 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
201 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
202 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
203 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
204 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
205 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
206
207 static const arm_feature_set arm_arch_any = ARM_ANY;
208 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
209 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
210 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
211 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
212
213 static const arm_feature_set arm_cext_iwmmxt2 =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
215 static const arm_feature_set arm_cext_iwmmxt =
216 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
217 static const arm_feature_set arm_cext_xscale =
218 ARM_FEATURE (0, ARM_CEXT_XSCALE);
219 static const arm_feature_set arm_cext_maverick =
220 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
221 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
222 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
223 static const arm_feature_set fpu_vfp_ext_v1xd =
224 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
225 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
226 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
227 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
228 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
229 static const arm_feature_set fpu_vfp_ext_d32 =
230 ARM_FEATURE (0, FPU_VFP_EXT_D32);
231 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
232 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
233 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
234 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
235 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
236 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
237 static const arm_feature_set fpu_vfp_ext_armv8 =
238 ARM_FEATURE (0, FPU_VFP_EXT_ARMV8);
239 static const arm_feature_set fpu_vfp_ext_armv8xd =
240 ARM_FEATURE (0, FPU_VFP_EXT_ARMV8xD);
241 static const arm_feature_set fpu_neon_ext_armv8 =
242 ARM_FEATURE (0, FPU_NEON_EXT_ARMV8);
243 static const arm_feature_set fpu_crypto_ext_armv8 =
244 ARM_FEATURE (0, FPU_CRYPTO_EXT_ARMV8);
245 static const arm_feature_set crc_ext_armv8 =
246 ARM_FEATURE (0, CRC_EXT_ARMV8);
247
248 static int mfloat_abi_opt = -1;
249 /* Record user cpu selection for object attributes. */
250 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
251 /* Must be long enough to hold any of the names in arm_cpus. */
252 static char selected_cpu_name[16];
253
254 extern FLONUM_TYPE generic_floating_point_number;
255
256 /* Return if no cpu was selected on command-line. */
257 static bfd_boolean
258 no_cpu_selected (void)
259 {
260 return selected_cpu.core == arm_arch_none.core
261 && selected_cpu.coproc == arm_arch_none.coproc;
262 }
263
264 #ifdef OBJ_ELF
265 # ifdef EABI_DEFAULT
266 static int meabi_flags = EABI_DEFAULT;
267 # else
268 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
269 # endif
270
271 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
272
273 bfd_boolean
274 arm_is_eabi (void)
275 {
276 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
277 }
278 #endif
279
280 #ifdef OBJ_ELF
281 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
282 symbolS * GOT_symbol;
283 #endif
284
285 /* 0: assemble for ARM,
286 1: assemble for Thumb,
287 2: assemble for Thumb even though target CPU does not support thumb
288 instructions. */
289 static int thumb_mode = 0;
290 /* A value distinct from the possible values for thumb_mode that we
291 can use to record whether thumb_mode has been copied into the
292 tc_frag_data field of a frag. */
293 #define MODE_RECORDED (1 << 4)
294
295 /* Specifies the intrinsic IT insn behavior mode. */
296 enum implicit_it_mode
297 {
298 IMPLICIT_IT_MODE_NEVER = 0x00,
299 IMPLICIT_IT_MODE_ARM = 0x01,
300 IMPLICIT_IT_MODE_THUMB = 0x02,
301 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
302 };
303 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
304
305 /* If unified_syntax is true, we are processing the new unified
306 ARM/Thumb syntax. Important differences from the old ARM mode:
307
308 - Immediate operands do not require a # prefix.
309 - Conditional affixes always appear at the end of the
310 instruction. (For backward compatibility, those instructions
311 that formerly had them in the middle, continue to accept them
312 there.)
313 - The IT instruction may appear, and if it does is validated
314 against subsequent conditional affixes. It does not generate
315 machine code.
316
317 Important differences from the old Thumb mode:
318
319 - Immediate operands do not require a # prefix.
320 - Most of the V6T2 instructions are only available in unified mode.
321 - The .N and .W suffixes are recognized and honored (it is an error
322 if they cannot be honored).
323 - All instructions set the flags if and only if they have an 's' affix.
324 - Conditional affixes may be used. They are validated against
325 preceding IT instructions. Unlike ARM mode, you cannot use a
326 conditional affix except in the scope of an IT instruction. */
327
328 static bfd_boolean unified_syntax = FALSE;
329
330 /* An immediate operand can start with #, and ld*, st*, pld operands
331 can contain [ and ]. We need to tell APP not to elide whitespace
332 before a [, which can appear as the first operand for pld.
333 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
334 const char arm_symbol_chars[] = "#[]{}";
335
336 enum neon_el_type
337 {
338 NT_invtype,
339 NT_untyped,
340 NT_integer,
341 NT_float,
342 NT_poly,
343 NT_signed,
344 NT_unsigned
345 };
346
347 struct neon_type_el
348 {
349 enum neon_el_type type;
350 unsigned size;
351 };
352
353 #define NEON_MAX_TYPE_ELS 4
354
355 struct neon_type
356 {
357 struct neon_type_el el[NEON_MAX_TYPE_ELS];
358 unsigned elems;
359 };
360
361 enum it_instruction_type
362 {
363 OUTSIDE_IT_INSN,
364 INSIDE_IT_INSN,
365 INSIDE_IT_LAST_INSN,
366 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
367 if inside, should be the last one. */
368 NEUTRAL_IT_INSN, /* This could be either inside or outside,
369 i.e. BKPT and NOP. */
370 IT_INSN /* The IT insn has been parsed. */
371 };
372
373 /* The maximum number of operands we need. */
374 #define ARM_IT_MAX_OPERANDS 6
375
376 struct arm_it
377 {
378 const char * error;
379 unsigned long instruction;
380 int size;
381 int size_req;
382 int cond;
383 /* "uncond_value" is set to the value in place of the conditional field in
384 unconditional versions of the instruction, or -1 if nothing is
385 appropriate. */
386 int uncond_value;
387 struct neon_type vectype;
388 /* This does not indicate an actual NEON instruction, only that
389 the mnemonic accepts neon-style type suffixes. */
390 int is_neon;
391 /* Set to the opcode if the instruction needs relaxation.
392 Zero if the instruction is not relaxed. */
393 unsigned long relax;
394 struct
395 {
396 bfd_reloc_code_real_type type;
397 expressionS exp;
398 int pc_rel;
399 } reloc;
400
401 enum it_instruction_type it_insn_type;
402
403 struct
404 {
405 unsigned reg;
406 signed int imm;
407 struct neon_type_el vectype;
408 unsigned present : 1; /* Operand present. */
409 unsigned isreg : 1; /* Operand was a register. */
410 unsigned immisreg : 1; /* .imm field is a second register. */
411 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
412 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
413 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
414 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
415 instructions. This allows us to disambiguate ARM <-> vector insns. */
416 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
417 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
418 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
419 unsigned issingle : 1; /* Operand is VFP single-precision register. */
420 unsigned hasreloc : 1; /* Operand has relocation suffix. */
421 unsigned writeback : 1; /* Operand has trailing ! */
422 unsigned preind : 1; /* Preindexed address. */
423 unsigned postind : 1; /* Postindexed address. */
424 unsigned negative : 1; /* Index register was negated. */
425 unsigned shifted : 1; /* Shift applied to operation. */
426 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
427 } operands[ARM_IT_MAX_OPERANDS];
428 };
429
430 static struct arm_it inst;
431
432 #define NUM_FLOAT_VALS 8
433
434 const char * fp_const[] =
435 {
436 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
437 };
438
439 /* Number of littlenums required to hold an extended precision number. */
440 #define MAX_LITTLENUMS 6
441
442 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
443
444 #define FAIL (-1)
445 #define SUCCESS (0)
446
447 #define SUFF_S 1
448 #define SUFF_D 2
449 #define SUFF_E 3
450 #define SUFF_P 4
451
452 #define CP_T_X 0x00008000
453 #define CP_T_Y 0x00400000
454
455 #define CONDS_BIT 0x00100000
456 #define LOAD_BIT 0x00100000
457
458 #define DOUBLE_LOAD_FLAG 0x00000001
459
460 struct asm_cond
461 {
462 const char * template_name;
463 unsigned long value;
464 };
465
466 #define COND_ALWAYS 0xE
467
468 struct asm_psr
469 {
470 const char * template_name;
471 unsigned long field;
472 };
473
474 struct asm_barrier_opt
475 {
476 const char * template_name;
477 unsigned long value;
478 const arm_feature_set arch;
479 };
480
481 /* The bit that distinguishes CPSR and SPSR. */
482 #define SPSR_BIT (1 << 22)
483
484 /* The individual PSR flag bits. */
485 #define PSR_c (1 << 16)
486 #define PSR_x (1 << 17)
487 #define PSR_s (1 << 18)
488 #define PSR_f (1 << 19)
489
490 struct reloc_entry
491 {
492 char * name;
493 bfd_reloc_code_real_type reloc;
494 };
495
496 enum vfp_reg_pos
497 {
498 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
499 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
500 };
501
502 enum vfp_ldstm_type
503 {
504 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
505 };
506
507 /* Bits for DEFINED field in neon_typed_alias. */
508 #define NTA_HASTYPE 1
509 #define NTA_HASINDEX 2
510
511 struct neon_typed_alias
512 {
513 unsigned char defined;
514 unsigned char index;
515 struct neon_type_el eltype;
516 };
517
518 /* ARM register categories. This includes coprocessor numbers and various
519 architecture extensions' registers. */
520 enum arm_reg_type
521 {
522 REG_TYPE_RN,
523 REG_TYPE_CP,
524 REG_TYPE_CN,
525 REG_TYPE_FN,
526 REG_TYPE_VFS,
527 REG_TYPE_VFD,
528 REG_TYPE_NQ,
529 REG_TYPE_VFSD,
530 REG_TYPE_NDQ,
531 REG_TYPE_NSDQ,
532 REG_TYPE_VFC,
533 REG_TYPE_MVF,
534 REG_TYPE_MVD,
535 REG_TYPE_MVFX,
536 REG_TYPE_MVDX,
537 REG_TYPE_MVAX,
538 REG_TYPE_DSPSC,
539 REG_TYPE_MMXWR,
540 REG_TYPE_MMXWC,
541 REG_TYPE_MMXWCG,
542 REG_TYPE_XSCALE,
543 REG_TYPE_RNB
544 };
545
546 /* Structure for a hash table entry for a register.
547 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
548 information which states whether a vector type or index is specified (for a
549 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
550 struct reg_entry
551 {
552 const char * name;
553 unsigned int number;
554 unsigned char type;
555 unsigned char builtin;
556 struct neon_typed_alias * neon;
557 };
558
559 /* Diagnostics used when we don't get a register of the expected type. */
560 const char * const reg_expected_msgs[] =
561 {
562 N_("ARM register expected"),
563 N_("bad or missing co-processor number"),
564 N_("co-processor register expected"),
565 N_("FPA register expected"),
566 N_("VFP single precision register expected"),
567 N_("VFP/Neon double precision register expected"),
568 N_("Neon quad precision register expected"),
569 N_("VFP single or double precision register expected"),
570 N_("Neon double or quad precision register expected"),
571 N_("VFP single, double or Neon quad precision register expected"),
572 N_("VFP system register expected"),
573 N_("Maverick MVF register expected"),
574 N_("Maverick MVD register expected"),
575 N_("Maverick MVFX register expected"),
576 N_("Maverick MVDX register expected"),
577 N_("Maverick MVAX register expected"),
578 N_("Maverick DSPSC register expected"),
579 N_("iWMMXt data register expected"),
580 N_("iWMMXt control register expected"),
581 N_("iWMMXt scalar register expected"),
582 N_("XScale accumulator register expected"),
583 };
584
585 /* Some well known registers that we refer to directly elsewhere. */
586 #define REG_R12 12
587 #define REG_SP 13
588 #define REG_LR 14
589 #define REG_PC 15
590
591 /* ARM instructions take 4bytes in the object file, Thumb instructions
592 take 2: */
593 #define INSN_SIZE 4
594
595 struct asm_opcode
596 {
597 /* Basic string to match. */
598 const char * template_name;
599
600 /* Parameters to instruction. */
601 unsigned int operands[8];
602
603 /* Conditional tag - see opcode_lookup. */
604 unsigned int tag : 4;
605
606 /* Basic instruction code. */
607 unsigned int avalue : 28;
608
609 /* Thumb-format instruction code. */
610 unsigned int tvalue;
611
612 /* Which architecture variant provides this instruction. */
613 const arm_feature_set * avariant;
614 const arm_feature_set * tvariant;
615
616 /* Function to call to encode instruction in ARM format. */
617 void (* aencode) (void);
618
619 /* Function to call to encode instruction in Thumb format. */
620 void (* tencode) (void);
621 };
622
623 /* Defines for various bits that we will want to toggle. */
624 #define INST_IMMEDIATE 0x02000000
625 #define OFFSET_REG 0x02000000
626 #define HWOFFSET_IMM 0x00400000
627 #define SHIFT_BY_REG 0x00000010
628 #define PRE_INDEX 0x01000000
629 #define INDEX_UP 0x00800000
630 #define WRITE_BACK 0x00200000
631 #define LDM_TYPE_2_OR_3 0x00400000
632 #define CPSI_MMOD 0x00020000
633
634 #define LITERAL_MASK 0xf000f000
635 #define OPCODE_MASK 0xfe1fffff
636 #define V4_STR_BIT 0x00000020
637 #define VLDR_VMOV_SAME 0x0040f000
638
639 #define T2_SUBS_PC_LR 0xf3de8f00
640
641 #define DATA_OP_SHIFT 21
642
643 #define T2_OPCODE_MASK 0xfe1fffff
644 #define T2_DATA_OP_SHIFT 21
645
646 #define A_COND_MASK 0xf0000000
647 #define A_PUSH_POP_OP_MASK 0x0fff0000
648
649 /* Opcodes for pushing/poping registers to/from the stack. */
650 #define A1_OPCODE_PUSH 0x092d0000
651 #define A2_OPCODE_PUSH 0x052d0004
652 #define A2_OPCODE_POP 0x049d0004
653
654 /* Codes to distinguish the arithmetic instructions. */
655 #define OPCODE_AND 0
656 #define OPCODE_EOR 1
657 #define OPCODE_SUB 2
658 #define OPCODE_RSB 3
659 #define OPCODE_ADD 4
660 #define OPCODE_ADC 5
661 #define OPCODE_SBC 6
662 #define OPCODE_RSC 7
663 #define OPCODE_TST 8
664 #define OPCODE_TEQ 9
665 #define OPCODE_CMP 10
666 #define OPCODE_CMN 11
667 #define OPCODE_ORR 12
668 #define OPCODE_MOV 13
669 #define OPCODE_BIC 14
670 #define OPCODE_MVN 15
671
672 #define T2_OPCODE_AND 0
673 #define T2_OPCODE_BIC 1
674 #define T2_OPCODE_ORR 2
675 #define T2_OPCODE_ORN 3
676 #define T2_OPCODE_EOR 4
677 #define T2_OPCODE_ADD 8
678 #define T2_OPCODE_ADC 10
679 #define T2_OPCODE_SBC 11
680 #define T2_OPCODE_SUB 13
681 #define T2_OPCODE_RSB 14
682
683 #define T_OPCODE_MUL 0x4340
684 #define T_OPCODE_TST 0x4200
685 #define T_OPCODE_CMN 0x42c0
686 #define T_OPCODE_NEG 0x4240
687 #define T_OPCODE_MVN 0x43c0
688
689 #define T_OPCODE_ADD_R3 0x1800
690 #define T_OPCODE_SUB_R3 0x1a00
691 #define T_OPCODE_ADD_HI 0x4400
692 #define T_OPCODE_ADD_ST 0xb000
693 #define T_OPCODE_SUB_ST 0xb080
694 #define T_OPCODE_ADD_SP 0xa800
695 #define T_OPCODE_ADD_PC 0xa000
696 #define T_OPCODE_ADD_I8 0x3000
697 #define T_OPCODE_SUB_I8 0x3800
698 #define T_OPCODE_ADD_I3 0x1c00
699 #define T_OPCODE_SUB_I3 0x1e00
700
701 #define T_OPCODE_ASR_R 0x4100
702 #define T_OPCODE_LSL_R 0x4080
703 #define T_OPCODE_LSR_R 0x40c0
704 #define T_OPCODE_ROR_R 0x41c0
705 #define T_OPCODE_ASR_I 0x1000
706 #define T_OPCODE_LSL_I 0x0000
707 #define T_OPCODE_LSR_I 0x0800
708
709 #define T_OPCODE_MOV_I8 0x2000
710 #define T_OPCODE_CMP_I8 0x2800
711 #define T_OPCODE_CMP_LR 0x4280
712 #define T_OPCODE_MOV_HR 0x4600
713 #define T_OPCODE_CMP_HR 0x4500
714
715 #define T_OPCODE_LDR_PC 0x4800
716 #define T_OPCODE_LDR_SP 0x9800
717 #define T_OPCODE_STR_SP 0x9000
718 #define T_OPCODE_LDR_IW 0x6800
719 #define T_OPCODE_STR_IW 0x6000
720 #define T_OPCODE_LDR_IH 0x8800
721 #define T_OPCODE_STR_IH 0x8000
722 #define T_OPCODE_LDR_IB 0x7800
723 #define T_OPCODE_STR_IB 0x7000
724 #define T_OPCODE_LDR_RW 0x5800
725 #define T_OPCODE_STR_RW 0x5000
726 #define T_OPCODE_LDR_RH 0x5a00
727 #define T_OPCODE_STR_RH 0x5200
728 #define T_OPCODE_LDR_RB 0x5c00
729 #define T_OPCODE_STR_RB 0x5400
730
731 #define T_OPCODE_PUSH 0xb400
732 #define T_OPCODE_POP 0xbc00
733
734 #define T_OPCODE_BRANCH 0xe000
735
736 #define THUMB_SIZE 2 /* Size of thumb instruction. */
737 #define THUMB_PP_PC_LR 0x0100
738 #define THUMB_LOAD_BIT 0x0800
739 #define THUMB2_LOAD_BIT 0x00100000
740
741 #define BAD_ARGS _("bad arguments to instruction")
742 #define BAD_SP _("r13 not allowed here")
743 #define BAD_PC _("r15 not allowed here")
744 #define BAD_COND _("instruction cannot be conditional")
745 #define BAD_OVERLAP _("registers may not be the same")
746 #define BAD_HIREG _("lo register required")
747 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
748 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
749 #define BAD_BRANCH _("branch must be last instruction in IT block")
750 #define BAD_NOT_IT _("instruction not allowed in IT block")
751 #define BAD_FPU _("selected FPU does not support instruction")
752 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
753 #define BAD_IT_COND _("incorrect condition in IT block")
754 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
755 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
756 #define BAD_PC_ADDRESSING \
757 _("cannot use register index with PC-relative addressing")
758 #define BAD_PC_WRITEBACK \
759 _("cannot use writeback with PC-relative addressing")
760 #define BAD_RANGE _("branch out of range")
761 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
762
763 static struct hash_control * arm_ops_hsh;
764 static struct hash_control * arm_cond_hsh;
765 static struct hash_control * arm_shift_hsh;
766 static struct hash_control * arm_psr_hsh;
767 static struct hash_control * arm_v7m_psr_hsh;
768 static struct hash_control * arm_reg_hsh;
769 static struct hash_control * arm_reloc_hsh;
770 static struct hash_control * arm_barrier_opt_hsh;
771
772 /* Stuff needed to resolve the label ambiguity
773 As:
774 ...
775 label: <insn>
776 may differ from:
777 ...
778 label:
779 <insn> */
780
781 symbolS * last_label_seen;
782 static int label_is_thumb_function_name = FALSE;
783
784 /* Literal pool structure. Held on a per-section
785 and per-sub-section basis. */
786
787 #define MAX_LITERAL_POOL_SIZE 1024
788 typedef struct literal_pool
789 {
790 expressionS literals [MAX_LITERAL_POOL_SIZE];
791 unsigned int next_free_entry;
792 unsigned int id;
793 symbolS * symbol;
794 segT section;
795 subsegT sub_section;
796 #ifdef OBJ_ELF
797 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
798 #endif
799 struct literal_pool * next;
800 unsigned int alignment;
801 } literal_pool;
802
803 /* Pointer to a linked list of literal pools. */
804 literal_pool * list_of_pools = NULL;
805
806 typedef enum asmfunc_states
807 {
808 OUTSIDE_ASMFUNC,
809 WAITING_ASMFUNC_NAME,
810 WAITING_ENDASMFUNC
811 } asmfunc_states;
812
813 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
814
815 #ifdef OBJ_ELF
816 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
817 #else
818 static struct current_it now_it;
819 #endif
820
821 static inline int
822 now_it_compatible (int cond)
823 {
824 return (cond & ~1) == (now_it.cc & ~1);
825 }
826
827 static inline int
828 conditional_insn (void)
829 {
830 return inst.cond != COND_ALWAYS;
831 }
832
833 static int in_it_block (void);
834
835 static int handle_it_state (void);
836
837 static void force_automatic_it_block_close (void);
838
839 static void it_fsm_post_encode (void);
840
841 #define set_it_insn_type(type) \
842 do \
843 { \
844 inst.it_insn_type = type; \
845 if (handle_it_state () == FAIL) \
846 return; \
847 } \
848 while (0)
849
850 #define set_it_insn_type_nonvoid(type, failret) \
851 do \
852 { \
853 inst.it_insn_type = type; \
854 if (handle_it_state () == FAIL) \
855 return failret; \
856 } \
857 while(0)
858
859 #define set_it_insn_type_last() \
860 do \
861 { \
862 if (inst.cond == COND_ALWAYS) \
863 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
864 else \
865 set_it_insn_type (INSIDE_IT_LAST_INSN); \
866 } \
867 while (0)
868
869 /* Pure syntax. */
870
871 /* This array holds the chars that always start a comment. If the
872 pre-processor is disabled, these aren't very useful. */
873 char arm_comment_chars[] = "@";
874
875 /* This array holds the chars that only start a comment at the beginning of
876 a line. If the line seems to have the form '# 123 filename'
877 .line and .file directives will appear in the pre-processed output. */
878 /* Note that input_file.c hand checks for '#' at the beginning of the
879 first line of the input file. This is because the compiler outputs
880 #NO_APP at the beginning of its output. */
881 /* Also note that comments like this one will always work. */
882 const char line_comment_chars[] = "#";
883
884 char arm_line_separator_chars[] = ";";
885
886 /* Chars that can be used to separate mant
887 from exp in floating point numbers. */
888 const char EXP_CHARS[] = "eE";
889
890 /* Chars that mean this number is a floating point constant. */
891 /* As in 0f12.456 */
892 /* or 0d1.2345e12 */
893
894 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
895
896 /* Prefix characters that indicate the start of an immediate
897 value. */
898 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
899
900 /* Separator character handling. */
901
902 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
903
904 static inline int
905 skip_past_char (char ** str, char c)
906 {
907 /* PR gas/14987: Allow for whitespace before the expected character. */
908 skip_whitespace (*str);
909
910 if (**str == c)
911 {
912 (*str)++;
913 return SUCCESS;
914 }
915 else
916 return FAIL;
917 }
918
919 #define skip_past_comma(str) skip_past_char (str, ',')
920
921 /* Arithmetic expressions (possibly involving symbols). */
922
923 /* Return TRUE if anything in the expression is a bignum. */
924
925 static int
926 walk_no_bignums (symbolS * sp)
927 {
928 if (symbol_get_value_expression (sp)->X_op == O_big)
929 return 1;
930
931 if (symbol_get_value_expression (sp)->X_add_symbol)
932 {
933 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
934 || (symbol_get_value_expression (sp)->X_op_symbol
935 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
936 }
937
938 return 0;
939 }
940
941 static int in_my_get_expression = 0;
942
943 /* Third argument to my_get_expression. */
944 #define GE_NO_PREFIX 0
945 #define GE_IMM_PREFIX 1
946 #define GE_OPT_PREFIX 2
947 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
948 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
949 #define GE_OPT_PREFIX_BIG 3
950
951 static int
952 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
953 {
954 char * save_in;
955 segT seg;
956
957 /* In unified syntax, all prefixes are optional. */
958 if (unified_syntax)
959 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
960 : GE_OPT_PREFIX;
961
962 switch (prefix_mode)
963 {
964 case GE_NO_PREFIX: break;
965 case GE_IMM_PREFIX:
966 if (!is_immediate_prefix (**str))
967 {
968 inst.error = _("immediate expression requires a # prefix");
969 return FAIL;
970 }
971 (*str)++;
972 break;
973 case GE_OPT_PREFIX:
974 case GE_OPT_PREFIX_BIG:
975 if (is_immediate_prefix (**str))
976 (*str)++;
977 break;
978 default: abort ();
979 }
980
981 memset (ep, 0, sizeof (expressionS));
982
983 save_in = input_line_pointer;
984 input_line_pointer = *str;
985 in_my_get_expression = 1;
986 seg = expression (ep);
987 in_my_get_expression = 0;
988
989 if (ep->X_op == O_illegal || ep->X_op == O_absent)
990 {
991 /* We found a bad or missing expression in md_operand(). */
992 *str = input_line_pointer;
993 input_line_pointer = save_in;
994 if (inst.error == NULL)
995 inst.error = (ep->X_op == O_absent
996 ? _("missing expression") :_("bad expression"));
997 return 1;
998 }
999
1000 #ifdef OBJ_AOUT
1001 if (seg != absolute_section
1002 && seg != text_section
1003 && seg != data_section
1004 && seg != bss_section
1005 && seg != undefined_section)
1006 {
1007 inst.error = _("bad segment");
1008 *str = input_line_pointer;
1009 input_line_pointer = save_in;
1010 return 1;
1011 }
1012 #else
1013 (void) seg;
1014 #endif
1015
1016 /* Get rid of any bignums now, so that we don't generate an error for which
1017 we can't establish a line number later on. Big numbers are never valid
1018 in instructions, which is where this routine is always called. */
1019 if (prefix_mode != GE_OPT_PREFIX_BIG
1020 && (ep->X_op == O_big
1021 || (ep->X_add_symbol
1022 && (walk_no_bignums (ep->X_add_symbol)
1023 || (ep->X_op_symbol
1024 && walk_no_bignums (ep->X_op_symbol))))))
1025 {
1026 inst.error = _("invalid constant");
1027 *str = input_line_pointer;
1028 input_line_pointer = save_in;
1029 return 1;
1030 }
1031
1032 *str = input_line_pointer;
1033 input_line_pointer = save_in;
1034 return 0;
1035 }
1036
1037 /* Turn a string in input_line_pointer into a floating point constant
1038 of type TYPE, and store the appropriate bytes in *LITP. The number
1039 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1040 returned, or NULL on OK.
1041
1042 Note that fp constants aren't represent in the normal way on the ARM.
1043 In big endian mode, things are as expected. However, in little endian
1044 mode fp constants are big-endian word-wise, and little-endian byte-wise
1045 within the words. For example, (double) 1.1 in big endian mode is
1046 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1047 the byte sequence 99 99 f1 3f 9a 99 99 99.
1048
1049 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1050
1051 char *
1052 md_atof (int type, char * litP, int * sizeP)
1053 {
1054 int prec;
1055 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1056 char *t;
1057 int i;
1058
1059 switch (type)
1060 {
1061 case 'f':
1062 case 'F':
1063 case 's':
1064 case 'S':
1065 prec = 2;
1066 break;
1067
1068 case 'd':
1069 case 'D':
1070 case 'r':
1071 case 'R':
1072 prec = 4;
1073 break;
1074
1075 case 'x':
1076 case 'X':
1077 prec = 5;
1078 break;
1079
1080 case 'p':
1081 case 'P':
1082 prec = 5;
1083 break;
1084
1085 default:
1086 *sizeP = 0;
1087 return _("Unrecognized or unsupported floating point constant");
1088 }
1089
1090 t = atof_ieee (input_line_pointer, type, words);
1091 if (t)
1092 input_line_pointer = t;
1093 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1094
1095 if (target_big_endian)
1096 {
1097 for (i = 0; i < prec; i++)
1098 {
1099 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1100 litP += sizeof (LITTLENUM_TYPE);
1101 }
1102 }
1103 else
1104 {
1105 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1106 for (i = prec - 1; i >= 0; i--)
1107 {
1108 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1109 litP += sizeof (LITTLENUM_TYPE);
1110 }
1111 else
1112 /* For a 4 byte float the order of elements in `words' is 1 0.
1113 For an 8 byte float the order is 1 0 3 2. */
1114 for (i = 0; i < prec; i += 2)
1115 {
1116 md_number_to_chars (litP, (valueT) words[i + 1],
1117 sizeof (LITTLENUM_TYPE));
1118 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1119 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1120 litP += 2 * sizeof (LITTLENUM_TYPE);
1121 }
1122 }
1123
1124 return NULL;
1125 }
1126
1127 /* We handle all bad expressions here, so that we can report the faulty
1128 instruction in the error message. */
1129 void
1130 md_operand (expressionS * exp)
1131 {
1132 if (in_my_get_expression)
1133 exp->X_op = O_illegal;
1134 }
1135
1136 /* Immediate values. */
1137
1138 /* Generic immediate-value read function for use in directives.
1139 Accepts anything that 'expression' can fold to a constant.
1140 *val receives the number. */
1141 #ifdef OBJ_ELF
1142 static int
1143 immediate_for_directive (int *val)
1144 {
1145 expressionS exp;
1146 exp.X_op = O_illegal;
1147
1148 if (is_immediate_prefix (*input_line_pointer))
1149 {
1150 input_line_pointer++;
1151 expression (&exp);
1152 }
1153
1154 if (exp.X_op != O_constant)
1155 {
1156 as_bad (_("expected #constant"));
1157 ignore_rest_of_line ();
1158 return FAIL;
1159 }
1160 *val = exp.X_add_number;
1161 return SUCCESS;
1162 }
1163 #endif
1164
1165 /* Register parsing. */
1166
1167 /* Generic register parser. CCP points to what should be the
1168 beginning of a register name. If it is indeed a valid register
1169 name, advance CCP over it and return the reg_entry structure;
1170 otherwise return NULL. Does not issue diagnostics. */
1171
1172 static struct reg_entry *
1173 arm_reg_parse_multi (char **ccp)
1174 {
1175 char *start = *ccp;
1176 char *p;
1177 struct reg_entry *reg;
1178
1179 skip_whitespace (start);
1180
1181 #ifdef REGISTER_PREFIX
1182 if (*start != REGISTER_PREFIX)
1183 return NULL;
1184 start++;
1185 #endif
1186 #ifdef OPTIONAL_REGISTER_PREFIX
1187 if (*start == OPTIONAL_REGISTER_PREFIX)
1188 start++;
1189 #endif
1190
1191 p = start;
1192 if (!ISALPHA (*p) || !is_name_beginner (*p))
1193 return NULL;
1194
1195 do
1196 p++;
1197 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1198
1199 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1200
1201 if (!reg)
1202 return NULL;
1203
1204 *ccp = p;
1205 return reg;
1206 }
1207
1208 static int
1209 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1210 enum arm_reg_type type)
1211 {
1212 /* Alternative syntaxes are accepted for a few register classes. */
1213 switch (type)
1214 {
1215 case REG_TYPE_MVF:
1216 case REG_TYPE_MVD:
1217 case REG_TYPE_MVFX:
1218 case REG_TYPE_MVDX:
1219 /* Generic coprocessor register names are allowed for these. */
1220 if (reg && reg->type == REG_TYPE_CN)
1221 return reg->number;
1222 break;
1223
1224 case REG_TYPE_CP:
1225 /* For backward compatibility, a bare number is valid here. */
1226 {
1227 unsigned long processor = strtoul (start, ccp, 10);
1228 if (*ccp != start && processor <= 15)
1229 return processor;
1230 }
1231
1232 case REG_TYPE_MMXWC:
1233 /* WC includes WCG. ??? I'm not sure this is true for all
1234 instructions that take WC registers. */
1235 if (reg && reg->type == REG_TYPE_MMXWCG)
1236 return reg->number;
1237 break;
1238
1239 default:
1240 break;
1241 }
1242
1243 return FAIL;
1244 }
1245
1246 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1247 return value is the register number or FAIL. */
1248
1249 static int
1250 arm_reg_parse (char **ccp, enum arm_reg_type type)
1251 {
1252 char *start = *ccp;
1253 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1254 int ret;
1255
1256 /* Do not allow a scalar (reg+index) to parse as a register. */
1257 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1258 return FAIL;
1259
1260 if (reg && reg->type == type)
1261 return reg->number;
1262
1263 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1264 return ret;
1265
1266 *ccp = start;
1267 return FAIL;
1268 }
1269
1270 /* Parse a Neon type specifier. *STR should point at the leading '.'
1271 character. Does no verification at this stage that the type fits the opcode
1272 properly. E.g.,
1273
1274 .i32.i32.s16
1275 .s32.f32
1276 .u16
1277
1278 Can all be legally parsed by this function.
1279
1280 Fills in neon_type struct pointer with parsed information, and updates STR
1281 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1282 type, FAIL if not. */
1283
1284 static int
1285 parse_neon_type (struct neon_type *type, char **str)
1286 {
1287 char *ptr = *str;
1288
1289 if (type)
1290 type->elems = 0;
1291
1292 while (type->elems < NEON_MAX_TYPE_ELS)
1293 {
1294 enum neon_el_type thistype = NT_untyped;
1295 unsigned thissize = -1u;
1296
1297 if (*ptr != '.')
1298 break;
1299
1300 ptr++;
1301
1302 /* Just a size without an explicit type. */
1303 if (ISDIGIT (*ptr))
1304 goto parsesize;
1305
1306 switch (TOLOWER (*ptr))
1307 {
1308 case 'i': thistype = NT_integer; break;
1309 case 'f': thistype = NT_float; break;
1310 case 'p': thistype = NT_poly; break;
1311 case 's': thistype = NT_signed; break;
1312 case 'u': thistype = NT_unsigned; break;
1313 case 'd':
1314 thistype = NT_float;
1315 thissize = 64;
1316 ptr++;
1317 goto done;
1318 default:
1319 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1320 return FAIL;
1321 }
1322
1323 ptr++;
1324
1325 /* .f is an abbreviation for .f32. */
1326 if (thistype == NT_float && !ISDIGIT (*ptr))
1327 thissize = 32;
1328 else
1329 {
1330 parsesize:
1331 thissize = strtoul (ptr, &ptr, 10);
1332
1333 if (thissize != 8 && thissize != 16 && thissize != 32
1334 && thissize != 64)
1335 {
1336 as_bad (_("bad size %d in type specifier"), thissize);
1337 return FAIL;
1338 }
1339 }
1340
1341 done:
1342 if (type)
1343 {
1344 type->el[type->elems].type = thistype;
1345 type->el[type->elems].size = thissize;
1346 type->elems++;
1347 }
1348 }
1349
1350 /* Empty/missing type is not a successful parse. */
1351 if (type->elems == 0)
1352 return FAIL;
1353
1354 *str = ptr;
1355
1356 return SUCCESS;
1357 }
1358
1359 /* Errors may be set multiple times during parsing or bit encoding
1360 (particularly in the Neon bits), but usually the earliest error which is set
1361 will be the most meaningful. Avoid overwriting it with later (cascading)
1362 errors by calling this function. */
1363
1364 static void
1365 first_error (const char *err)
1366 {
1367 if (!inst.error)
1368 inst.error = err;
1369 }
1370
1371 /* Parse a single type, e.g. ".s32", leading period included. */
1372 static int
1373 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1374 {
1375 char *str = *ccp;
1376 struct neon_type optype;
1377
1378 if (*str == '.')
1379 {
1380 if (parse_neon_type (&optype, &str) == SUCCESS)
1381 {
1382 if (optype.elems == 1)
1383 *vectype = optype.el[0];
1384 else
1385 {
1386 first_error (_("only one type should be specified for operand"));
1387 return FAIL;
1388 }
1389 }
1390 else
1391 {
1392 first_error (_("vector type expected"));
1393 return FAIL;
1394 }
1395 }
1396 else
1397 return FAIL;
1398
1399 *ccp = str;
1400
1401 return SUCCESS;
1402 }
1403
1404 /* Special meanings for indices (which have a range of 0-7), which will fit into
1405 a 4-bit integer. */
1406
1407 #define NEON_ALL_LANES 15
1408 #define NEON_INTERLEAVE_LANES 14
1409
1410 /* Parse either a register or a scalar, with an optional type. Return the
1411 register number, and optionally fill in the actual type of the register
1412 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1413 type/index information in *TYPEINFO. */
1414
1415 static int
1416 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1417 enum arm_reg_type *rtype,
1418 struct neon_typed_alias *typeinfo)
1419 {
1420 char *str = *ccp;
1421 struct reg_entry *reg = arm_reg_parse_multi (&str);
1422 struct neon_typed_alias atype;
1423 struct neon_type_el parsetype;
1424
1425 atype.defined = 0;
1426 atype.index = -1;
1427 atype.eltype.type = NT_invtype;
1428 atype.eltype.size = -1;
1429
1430 /* Try alternate syntax for some types of register. Note these are mutually
1431 exclusive with the Neon syntax extensions. */
1432 if (reg == NULL)
1433 {
1434 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1435 if (altreg != FAIL)
1436 *ccp = str;
1437 if (typeinfo)
1438 *typeinfo = atype;
1439 return altreg;
1440 }
1441
1442 /* Undo polymorphism when a set of register types may be accepted. */
1443 if ((type == REG_TYPE_NDQ
1444 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1445 || (type == REG_TYPE_VFSD
1446 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1447 || (type == REG_TYPE_NSDQ
1448 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1449 || reg->type == REG_TYPE_NQ))
1450 || (type == REG_TYPE_MMXWC
1451 && (reg->type == REG_TYPE_MMXWCG)))
1452 type = (enum arm_reg_type) reg->type;
1453
1454 if (type != reg->type)
1455 return FAIL;
1456
1457 if (reg->neon)
1458 atype = *reg->neon;
1459
1460 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1461 {
1462 if ((atype.defined & NTA_HASTYPE) != 0)
1463 {
1464 first_error (_("can't redefine type for operand"));
1465 return FAIL;
1466 }
1467 atype.defined |= NTA_HASTYPE;
1468 atype.eltype = parsetype;
1469 }
1470
1471 if (skip_past_char (&str, '[') == SUCCESS)
1472 {
1473 if (type != REG_TYPE_VFD)
1474 {
1475 first_error (_("only D registers may be indexed"));
1476 return FAIL;
1477 }
1478
1479 if ((atype.defined & NTA_HASINDEX) != 0)
1480 {
1481 first_error (_("can't change index for operand"));
1482 return FAIL;
1483 }
1484
1485 atype.defined |= NTA_HASINDEX;
1486
1487 if (skip_past_char (&str, ']') == SUCCESS)
1488 atype.index = NEON_ALL_LANES;
1489 else
1490 {
1491 expressionS exp;
1492
1493 my_get_expression (&exp, &str, GE_NO_PREFIX);
1494
1495 if (exp.X_op != O_constant)
1496 {
1497 first_error (_("constant expression required"));
1498 return FAIL;
1499 }
1500
1501 if (skip_past_char (&str, ']') == FAIL)
1502 return FAIL;
1503
1504 atype.index = exp.X_add_number;
1505 }
1506 }
1507
1508 if (typeinfo)
1509 *typeinfo = atype;
1510
1511 if (rtype)
1512 *rtype = type;
1513
1514 *ccp = str;
1515
1516 return reg->number;
1517 }
1518
1519 /* Like arm_reg_parse, but allow allow the following extra features:
1520 - If RTYPE is non-zero, return the (possibly restricted) type of the
1521 register (e.g. Neon double or quad reg when either has been requested).
1522 - If this is a Neon vector type with additional type information, fill
1523 in the struct pointed to by VECTYPE (if non-NULL).
1524 This function will fault on encountering a scalar. */
1525
1526 static int
1527 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1528 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1529 {
1530 struct neon_typed_alias atype;
1531 char *str = *ccp;
1532 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1533
1534 if (reg == FAIL)
1535 return FAIL;
1536
1537 /* Do not allow regname(... to parse as a register. */
1538 if (*str == '(')
1539 return FAIL;
1540
1541 /* Do not allow a scalar (reg+index) to parse as a register. */
1542 if ((atype.defined & NTA_HASINDEX) != 0)
1543 {
1544 first_error (_("register operand expected, but got scalar"));
1545 return FAIL;
1546 }
1547
1548 if (vectype)
1549 *vectype = atype.eltype;
1550
1551 *ccp = str;
1552
1553 return reg;
1554 }
1555
1556 #define NEON_SCALAR_REG(X) ((X) >> 4)
1557 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1558
1559 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1560 have enough information to be able to do a good job bounds-checking. So, we
1561 just do easy checks here, and do further checks later. */
1562
1563 static int
1564 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1565 {
1566 int reg;
1567 char *str = *ccp;
1568 struct neon_typed_alias atype;
1569
1570 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1571
1572 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1573 return FAIL;
1574
1575 if (atype.index == NEON_ALL_LANES)
1576 {
1577 first_error (_("scalar must have an index"));
1578 return FAIL;
1579 }
1580 else if (atype.index >= 64 / elsize)
1581 {
1582 first_error (_("scalar index out of range"));
1583 return FAIL;
1584 }
1585
1586 if (type)
1587 *type = atype.eltype;
1588
1589 *ccp = str;
1590
1591 return reg * 16 + atype.index;
1592 }
1593
1594 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1595
1596 static long
1597 parse_reg_list (char ** strp)
1598 {
1599 char * str = * strp;
1600 long range = 0;
1601 int another_range;
1602
1603 /* We come back here if we get ranges concatenated by '+' or '|'. */
1604 do
1605 {
1606 skip_whitespace (str);
1607
1608 another_range = 0;
1609
1610 if (*str == '{')
1611 {
1612 int in_range = 0;
1613 int cur_reg = -1;
1614
1615 str++;
1616 do
1617 {
1618 int reg;
1619
1620 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1621 {
1622 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1623 return FAIL;
1624 }
1625
1626 if (in_range)
1627 {
1628 int i;
1629
1630 if (reg <= cur_reg)
1631 {
1632 first_error (_("bad range in register list"));
1633 return FAIL;
1634 }
1635
1636 for (i = cur_reg + 1; i < reg; i++)
1637 {
1638 if (range & (1 << i))
1639 as_tsktsk
1640 (_("Warning: duplicated register (r%d) in register list"),
1641 i);
1642 else
1643 range |= 1 << i;
1644 }
1645 in_range = 0;
1646 }
1647
1648 if (range & (1 << reg))
1649 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1650 reg);
1651 else if (reg <= cur_reg)
1652 as_tsktsk (_("Warning: register range not in ascending order"));
1653
1654 range |= 1 << reg;
1655 cur_reg = reg;
1656 }
1657 while (skip_past_comma (&str) != FAIL
1658 || (in_range = 1, *str++ == '-'));
1659 str--;
1660
1661 if (skip_past_char (&str, '}') == FAIL)
1662 {
1663 first_error (_("missing `}'"));
1664 return FAIL;
1665 }
1666 }
1667 else
1668 {
1669 expressionS exp;
1670
1671 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1672 return FAIL;
1673
1674 if (exp.X_op == O_constant)
1675 {
1676 if (exp.X_add_number
1677 != (exp.X_add_number & 0x0000ffff))
1678 {
1679 inst.error = _("invalid register mask");
1680 return FAIL;
1681 }
1682
1683 if ((range & exp.X_add_number) != 0)
1684 {
1685 int regno = range & exp.X_add_number;
1686
1687 regno &= -regno;
1688 regno = (1 << regno) - 1;
1689 as_tsktsk
1690 (_("Warning: duplicated register (r%d) in register list"),
1691 regno);
1692 }
1693
1694 range |= exp.X_add_number;
1695 }
1696 else
1697 {
1698 if (inst.reloc.type != 0)
1699 {
1700 inst.error = _("expression too complex");
1701 return FAIL;
1702 }
1703
1704 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1705 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1706 inst.reloc.pc_rel = 0;
1707 }
1708 }
1709
1710 if (*str == '|' || *str == '+')
1711 {
1712 str++;
1713 another_range = 1;
1714 }
1715 }
1716 while (another_range);
1717
1718 *strp = str;
1719 return range;
1720 }
1721
1722 /* Types of registers in a list. */
1723
1724 enum reg_list_els
1725 {
1726 REGLIST_VFP_S,
1727 REGLIST_VFP_D,
1728 REGLIST_NEON_D
1729 };
1730
1731 /* Parse a VFP register list. If the string is invalid return FAIL.
1732 Otherwise return the number of registers, and set PBASE to the first
1733 register. Parses registers of type ETYPE.
1734 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1735 - Q registers can be used to specify pairs of D registers
1736 - { } can be omitted from around a singleton register list
1737 FIXME: This is not implemented, as it would require backtracking in
1738 some cases, e.g.:
1739 vtbl.8 d3,d4,d5
1740 This could be done (the meaning isn't really ambiguous), but doesn't
1741 fit in well with the current parsing framework.
1742 - 32 D registers may be used (also true for VFPv3).
1743 FIXME: Types are ignored in these register lists, which is probably a
1744 bug. */
1745
1746 static int
1747 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1748 {
1749 char *str = *ccp;
1750 int base_reg;
1751 int new_base;
1752 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1753 int max_regs = 0;
1754 int count = 0;
1755 int warned = 0;
1756 unsigned long mask = 0;
1757 int i;
1758
1759 if (skip_past_char (&str, '{') == FAIL)
1760 {
1761 inst.error = _("expecting {");
1762 return FAIL;
1763 }
1764
1765 switch (etype)
1766 {
1767 case REGLIST_VFP_S:
1768 regtype = REG_TYPE_VFS;
1769 max_regs = 32;
1770 break;
1771
1772 case REGLIST_VFP_D:
1773 regtype = REG_TYPE_VFD;
1774 break;
1775
1776 case REGLIST_NEON_D:
1777 regtype = REG_TYPE_NDQ;
1778 break;
1779 }
1780
1781 if (etype != REGLIST_VFP_S)
1782 {
1783 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1784 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1785 {
1786 max_regs = 32;
1787 if (thumb_mode)
1788 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1789 fpu_vfp_ext_d32);
1790 else
1791 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1792 fpu_vfp_ext_d32);
1793 }
1794 else
1795 max_regs = 16;
1796 }
1797
1798 base_reg = max_regs;
1799
1800 do
1801 {
1802 int setmask = 1, addregs = 1;
1803
1804 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1805
1806 if (new_base == FAIL)
1807 {
1808 first_error (_(reg_expected_msgs[regtype]));
1809 return FAIL;
1810 }
1811
1812 if (new_base >= max_regs)
1813 {
1814 first_error (_("register out of range in list"));
1815 return FAIL;
1816 }
1817
1818 /* Note: a value of 2 * n is returned for the register Q<n>. */
1819 if (regtype == REG_TYPE_NQ)
1820 {
1821 setmask = 3;
1822 addregs = 2;
1823 }
1824
1825 if (new_base < base_reg)
1826 base_reg = new_base;
1827
1828 if (mask & (setmask << new_base))
1829 {
1830 first_error (_("invalid register list"));
1831 return FAIL;
1832 }
1833
1834 if ((mask >> new_base) != 0 && ! warned)
1835 {
1836 as_tsktsk (_("register list not in ascending order"));
1837 warned = 1;
1838 }
1839
1840 mask |= setmask << new_base;
1841 count += addregs;
1842
1843 if (*str == '-') /* We have the start of a range expression */
1844 {
1845 int high_range;
1846
1847 str++;
1848
1849 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1850 == FAIL)
1851 {
1852 inst.error = gettext (reg_expected_msgs[regtype]);
1853 return FAIL;
1854 }
1855
1856 if (high_range >= max_regs)
1857 {
1858 first_error (_("register out of range in list"));
1859 return FAIL;
1860 }
1861
1862 if (regtype == REG_TYPE_NQ)
1863 high_range = high_range + 1;
1864
1865 if (high_range <= new_base)
1866 {
1867 inst.error = _("register range not in ascending order");
1868 return FAIL;
1869 }
1870
1871 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1872 {
1873 if (mask & (setmask << new_base))
1874 {
1875 inst.error = _("invalid register list");
1876 return FAIL;
1877 }
1878
1879 mask |= setmask << new_base;
1880 count += addregs;
1881 }
1882 }
1883 }
1884 while (skip_past_comma (&str) != FAIL);
1885
1886 str++;
1887
1888 /* Sanity check -- should have raised a parse error above. */
1889 if (count == 0 || count > max_regs)
1890 abort ();
1891
1892 *pbase = base_reg;
1893
1894 /* Final test -- the registers must be consecutive. */
1895 mask >>= base_reg;
1896 for (i = 0; i < count; i++)
1897 {
1898 if ((mask & (1u << i)) == 0)
1899 {
1900 inst.error = _("non-contiguous register range");
1901 return FAIL;
1902 }
1903 }
1904
1905 *ccp = str;
1906
1907 return count;
1908 }
1909
1910 /* True if two alias types are the same. */
1911
1912 static bfd_boolean
1913 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1914 {
1915 if (!a && !b)
1916 return TRUE;
1917
1918 if (!a || !b)
1919 return FALSE;
1920
1921 if (a->defined != b->defined)
1922 return FALSE;
1923
1924 if ((a->defined & NTA_HASTYPE) != 0
1925 && (a->eltype.type != b->eltype.type
1926 || a->eltype.size != b->eltype.size))
1927 return FALSE;
1928
1929 if ((a->defined & NTA_HASINDEX) != 0
1930 && (a->index != b->index))
1931 return FALSE;
1932
1933 return TRUE;
1934 }
1935
1936 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1937 The base register is put in *PBASE.
1938 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1939 the return value.
1940 The register stride (minus one) is put in bit 4 of the return value.
1941 Bits [6:5] encode the list length (minus one).
1942 The type of the list elements is put in *ELTYPE, if non-NULL. */
1943
1944 #define NEON_LANE(X) ((X) & 0xf)
1945 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1946 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1947
1948 static int
1949 parse_neon_el_struct_list (char **str, unsigned *pbase,
1950 struct neon_type_el *eltype)
1951 {
1952 char *ptr = *str;
1953 int base_reg = -1;
1954 int reg_incr = -1;
1955 int count = 0;
1956 int lane = -1;
1957 int leading_brace = 0;
1958 enum arm_reg_type rtype = REG_TYPE_NDQ;
1959 const char *const incr_error = _("register stride must be 1 or 2");
1960 const char *const type_error = _("mismatched element/structure types in list");
1961 struct neon_typed_alias firsttype;
1962
1963 if (skip_past_char (&ptr, '{') == SUCCESS)
1964 leading_brace = 1;
1965
1966 do
1967 {
1968 struct neon_typed_alias atype;
1969 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1970
1971 if (getreg == FAIL)
1972 {
1973 first_error (_(reg_expected_msgs[rtype]));
1974 return FAIL;
1975 }
1976
1977 if (base_reg == -1)
1978 {
1979 base_reg = getreg;
1980 if (rtype == REG_TYPE_NQ)
1981 {
1982 reg_incr = 1;
1983 }
1984 firsttype = atype;
1985 }
1986 else if (reg_incr == -1)
1987 {
1988 reg_incr = getreg - base_reg;
1989 if (reg_incr < 1 || reg_incr > 2)
1990 {
1991 first_error (_(incr_error));
1992 return FAIL;
1993 }
1994 }
1995 else if (getreg != base_reg + reg_incr * count)
1996 {
1997 first_error (_(incr_error));
1998 return FAIL;
1999 }
2000
2001 if (! neon_alias_types_same (&atype, &firsttype))
2002 {
2003 first_error (_(type_error));
2004 return FAIL;
2005 }
2006
2007 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2008 modes. */
2009 if (ptr[0] == '-')
2010 {
2011 struct neon_typed_alias htype;
2012 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2013 if (lane == -1)
2014 lane = NEON_INTERLEAVE_LANES;
2015 else if (lane != NEON_INTERLEAVE_LANES)
2016 {
2017 first_error (_(type_error));
2018 return FAIL;
2019 }
2020 if (reg_incr == -1)
2021 reg_incr = 1;
2022 else if (reg_incr != 1)
2023 {
2024 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2025 return FAIL;
2026 }
2027 ptr++;
2028 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2029 if (hireg == FAIL)
2030 {
2031 first_error (_(reg_expected_msgs[rtype]));
2032 return FAIL;
2033 }
2034 if (! neon_alias_types_same (&htype, &firsttype))
2035 {
2036 first_error (_(type_error));
2037 return FAIL;
2038 }
2039 count += hireg + dregs - getreg;
2040 continue;
2041 }
2042
2043 /* If we're using Q registers, we can't use [] or [n] syntax. */
2044 if (rtype == REG_TYPE_NQ)
2045 {
2046 count += 2;
2047 continue;
2048 }
2049
2050 if ((atype.defined & NTA_HASINDEX) != 0)
2051 {
2052 if (lane == -1)
2053 lane = atype.index;
2054 else if (lane != atype.index)
2055 {
2056 first_error (_(type_error));
2057 return FAIL;
2058 }
2059 }
2060 else if (lane == -1)
2061 lane = NEON_INTERLEAVE_LANES;
2062 else if (lane != NEON_INTERLEAVE_LANES)
2063 {
2064 first_error (_(type_error));
2065 return FAIL;
2066 }
2067 count++;
2068 }
2069 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2070
2071 /* No lane set by [x]. We must be interleaving structures. */
2072 if (lane == -1)
2073 lane = NEON_INTERLEAVE_LANES;
2074
2075 /* Sanity check. */
2076 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2077 || (count > 1 && reg_incr == -1))
2078 {
2079 first_error (_("error parsing element/structure list"));
2080 return FAIL;
2081 }
2082
2083 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2084 {
2085 first_error (_("expected }"));
2086 return FAIL;
2087 }
2088
2089 if (reg_incr == -1)
2090 reg_incr = 1;
2091
2092 if (eltype)
2093 *eltype = firsttype.eltype;
2094
2095 *pbase = base_reg;
2096 *str = ptr;
2097
2098 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2099 }
2100
2101 /* Parse an explicit relocation suffix on an expression. This is
2102 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2103 arm_reloc_hsh contains no entries, so this function can only
2104 succeed if there is no () after the word. Returns -1 on error,
2105 BFD_RELOC_UNUSED if there wasn't any suffix. */
2106
2107 static int
2108 parse_reloc (char **str)
2109 {
2110 struct reloc_entry *r;
2111 char *p, *q;
2112
2113 if (**str != '(')
2114 return BFD_RELOC_UNUSED;
2115
2116 p = *str + 1;
2117 q = p;
2118
2119 while (*q && *q != ')' && *q != ',')
2120 q++;
2121 if (*q != ')')
2122 return -1;
2123
2124 if ((r = (struct reloc_entry *)
2125 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2126 return -1;
2127
2128 *str = q + 1;
2129 return r->reloc;
2130 }
2131
2132 /* Directives: register aliases. */
2133
2134 static struct reg_entry *
2135 insert_reg_alias (char *str, unsigned number, int type)
2136 {
2137 struct reg_entry *new_reg;
2138 const char *name;
2139
2140 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2141 {
2142 if (new_reg->builtin)
2143 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2144
2145 /* Only warn about a redefinition if it's not defined as the
2146 same register. */
2147 else if (new_reg->number != number || new_reg->type != type)
2148 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2149
2150 return NULL;
2151 }
2152
2153 name = xstrdup (str);
2154 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2155
2156 new_reg->name = name;
2157 new_reg->number = number;
2158 new_reg->type = type;
2159 new_reg->builtin = FALSE;
2160 new_reg->neon = NULL;
2161
2162 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2163 abort ();
2164
2165 return new_reg;
2166 }
2167
2168 static void
2169 insert_neon_reg_alias (char *str, int number, int type,
2170 struct neon_typed_alias *atype)
2171 {
2172 struct reg_entry *reg = insert_reg_alias (str, number, type);
2173
2174 if (!reg)
2175 {
2176 first_error (_("attempt to redefine typed alias"));
2177 return;
2178 }
2179
2180 if (atype)
2181 {
2182 reg->neon = (struct neon_typed_alias *)
2183 xmalloc (sizeof (struct neon_typed_alias));
2184 *reg->neon = *atype;
2185 }
2186 }
2187
2188 /* Look for the .req directive. This is of the form:
2189
2190 new_register_name .req existing_register_name
2191
2192 If we find one, or if it looks sufficiently like one that we want to
2193 handle any error here, return TRUE. Otherwise return FALSE. */
2194
2195 static bfd_boolean
2196 create_register_alias (char * newname, char *p)
2197 {
2198 struct reg_entry *old;
2199 char *oldname, *nbuf;
2200 size_t nlen;
2201
2202 /* The input scrubber ensures that whitespace after the mnemonic is
2203 collapsed to single spaces. */
2204 oldname = p;
2205 if (strncmp (oldname, " .req ", 6) != 0)
2206 return FALSE;
2207
2208 oldname += 6;
2209 if (*oldname == '\0')
2210 return FALSE;
2211
2212 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2213 if (!old)
2214 {
2215 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2216 return TRUE;
2217 }
2218
2219 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2220 the desired alias name, and p points to its end. If not, then
2221 the desired alias name is in the global original_case_string. */
2222 #ifdef TC_CASE_SENSITIVE
2223 nlen = p - newname;
2224 #else
2225 newname = original_case_string;
2226 nlen = strlen (newname);
2227 #endif
2228
2229 nbuf = (char *) alloca (nlen + 1);
2230 memcpy (nbuf, newname, nlen);
2231 nbuf[nlen] = '\0';
2232
2233 /* Create aliases under the new name as stated; an all-lowercase
2234 version of the new name; and an all-uppercase version of the new
2235 name. */
2236 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2237 {
2238 for (p = nbuf; *p; p++)
2239 *p = TOUPPER (*p);
2240
2241 if (strncmp (nbuf, newname, nlen))
2242 {
2243 /* If this attempt to create an additional alias fails, do not bother
2244 trying to create the all-lower case alias. We will fail and issue
2245 a second, duplicate error message. This situation arises when the
2246 programmer does something like:
2247 foo .req r0
2248 Foo .req r1
2249 The second .req creates the "Foo" alias but then fails to create
2250 the artificial FOO alias because it has already been created by the
2251 first .req. */
2252 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2253 return TRUE;
2254 }
2255
2256 for (p = nbuf; *p; p++)
2257 *p = TOLOWER (*p);
2258
2259 if (strncmp (nbuf, newname, nlen))
2260 insert_reg_alias (nbuf, old->number, old->type);
2261 }
2262
2263 return TRUE;
2264 }
2265
2266 /* Create a Neon typed/indexed register alias using directives, e.g.:
2267 X .dn d5.s32[1]
2268 Y .qn 6.s16
2269 Z .dn d7
2270 T .dn Z[0]
2271 These typed registers can be used instead of the types specified after the
2272 Neon mnemonic, so long as all operands given have types. Types can also be
2273 specified directly, e.g.:
2274 vadd d0.s32, d1.s32, d2.s32 */
2275
2276 static bfd_boolean
2277 create_neon_reg_alias (char *newname, char *p)
2278 {
2279 enum arm_reg_type basetype;
2280 struct reg_entry *basereg;
2281 struct reg_entry mybasereg;
2282 struct neon_type ntype;
2283 struct neon_typed_alias typeinfo;
2284 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2285 int namelen;
2286
2287 typeinfo.defined = 0;
2288 typeinfo.eltype.type = NT_invtype;
2289 typeinfo.eltype.size = -1;
2290 typeinfo.index = -1;
2291
2292 nameend = p;
2293
2294 if (strncmp (p, " .dn ", 5) == 0)
2295 basetype = REG_TYPE_VFD;
2296 else if (strncmp (p, " .qn ", 5) == 0)
2297 basetype = REG_TYPE_NQ;
2298 else
2299 return FALSE;
2300
2301 p += 5;
2302
2303 if (*p == '\0')
2304 return FALSE;
2305
2306 basereg = arm_reg_parse_multi (&p);
2307
2308 if (basereg && basereg->type != basetype)
2309 {
2310 as_bad (_("bad type for register"));
2311 return FALSE;
2312 }
2313
2314 if (basereg == NULL)
2315 {
2316 expressionS exp;
2317 /* Try parsing as an integer. */
2318 my_get_expression (&exp, &p, GE_NO_PREFIX);
2319 if (exp.X_op != O_constant)
2320 {
2321 as_bad (_("expression must be constant"));
2322 return FALSE;
2323 }
2324 basereg = &mybasereg;
2325 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2326 : exp.X_add_number;
2327 basereg->neon = 0;
2328 }
2329
2330 if (basereg->neon)
2331 typeinfo = *basereg->neon;
2332
2333 if (parse_neon_type (&ntype, &p) == SUCCESS)
2334 {
2335 /* We got a type. */
2336 if (typeinfo.defined & NTA_HASTYPE)
2337 {
2338 as_bad (_("can't redefine the type of a register alias"));
2339 return FALSE;
2340 }
2341
2342 typeinfo.defined |= NTA_HASTYPE;
2343 if (ntype.elems != 1)
2344 {
2345 as_bad (_("you must specify a single type only"));
2346 return FALSE;
2347 }
2348 typeinfo.eltype = ntype.el[0];
2349 }
2350
2351 if (skip_past_char (&p, '[') == SUCCESS)
2352 {
2353 expressionS exp;
2354 /* We got a scalar index. */
2355
2356 if (typeinfo.defined & NTA_HASINDEX)
2357 {
2358 as_bad (_("can't redefine the index of a scalar alias"));
2359 return FALSE;
2360 }
2361
2362 my_get_expression (&exp, &p, GE_NO_PREFIX);
2363
2364 if (exp.X_op != O_constant)
2365 {
2366 as_bad (_("scalar index must be constant"));
2367 return FALSE;
2368 }
2369
2370 typeinfo.defined |= NTA_HASINDEX;
2371 typeinfo.index = exp.X_add_number;
2372
2373 if (skip_past_char (&p, ']') == FAIL)
2374 {
2375 as_bad (_("expecting ]"));
2376 return FALSE;
2377 }
2378 }
2379
2380 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2381 the desired alias name, and p points to its end. If not, then
2382 the desired alias name is in the global original_case_string. */
2383 #ifdef TC_CASE_SENSITIVE
2384 namelen = nameend - newname;
2385 #else
2386 newname = original_case_string;
2387 namelen = strlen (newname);
2388 #endif
2389
2390 namebuf = (char *) alloca (namelen + 1);
2391 strncpy (namebuf, newname, namelen);
2392 namebuf[namelen] = '\0';
2393
2394 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2395 typeinfo.defined != 0 ? &typeinfo : NULL);
2396
2397 /* Insert name in all uppercase. */
2398 for (p = namebuf; *p; p++)
2399 *p = TOUPPER (*p);
2400
2401 if (strncmp (namebuf, newname, namelen))
2402 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2403 typeinfo.defined != 0 ? &typeinfo : NULL);
2404
2405 /* Insert name in all lowercase. */
2406 for (p = namebuf; *p; p++)
2407 *p = TOLOWER (*p);
2408
2409 if (strncmp (namebuf, newname, namelen))
2410 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2411 typeinfo.defined != 0 ? &typeinfo : NULL);
2412
2413 return TRUE;
2414 }
2415
2416 /* Should never be called, as .req goes between the alias and the
2417 register name, not at the beginning of the line. */
2418
2419 static void
2420 s_req (int a ATTRIBUTE_UNUSED)
2421 {
2422 as_bad (_("invalid syntax for .req directive"));
2423 }
2424
2425 static void
2426 s_dn (int a ATTRIBUTE_UNUSED)
2427 {
2428 as_bad (_("invalid syntax for .dn directive"));
2429 }
2430
2431 static void
2432 s_qn (int a ATTRIBUTE_UNUSED)
2433 {
2434 as_bad (_("invalid syntax for .qn directive"));
2435 }
2436
2437 /* The .unreq directive deletes an alias which was previously defined
2438 by .req. For example:
2439
2440 my_alias .req r11
2441 .unreq my_alias */
2442
2443 static void
2444 s_unreq (int a ATTRIBUTE_UNUSED)
2445 {
2446 char * name;
2447 char saved_char;
2448
2449 name = input_line_pointer;
2450
2451 while (*input_line_pointer != 0
2452 && *input_line_pointer != ' '
2453 && *input_line_pointer != '\n')
2454 ++input_line_pointer;
2455
2456 saved_char = *input_line_pointer;
2457 *input_line_pointer = 0;
2458
2459 if (!*name)
2460 as_bad (_("invalid syntax for .unreq directive"));
2461 else
2462 {
2463 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2464 name);
2465
2466 if (!reg)
2467 as_bad (_("unknown register alias '%s'"), name);
2468 else if (reg->builtin)
2469 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2470 name);
2471 else
2472 {
2473 char * p;
2474 char * nbuf;
2475
2476 hash_delete (arm_reg_hsh, name, FALSE);
2477 free ((char *) reg->name);
2478 if (reg->neon)
2479 free (reg->neon);
2480 free (reg);
2481
2482 /* Also locate the all upper case and all lower case versions.
2483 Do not complain if we cannot find one or the other as it
2484 was probably deleted above. */
2485
2486 nbuf = strdup (name);
2487 for (p = nbuf; *p; p++)
2488 *p = TOUPPER (*p);
2489 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2490 if (reg)
2491 {
2492 hash_delete (arm_reg_hsh, nbuf, FALSE);
2493 free ((char *) reg->name);
2494 if (reg->neon)
2495 free (reg->neon);
2496 free (reg);
2497 }
2498
2499 for (p = nbuf; *p; p++)
2500 *p = TOLOWER (*p);
2501 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2502 if (reg)
2503 {
2504 hash_delete (arm_reg_hsh, nbuf, FALSE);
2505 free ((char *) reg->name);
2506 if (reg->neon)
2507 free (reg->neon);
2508 free (reg);
2509 }
2510
2511 free (nbuf);
2512 }
2513 }
2514
2515 *input_line_pointer = saved_char;
2516 demand_empty_rest_of_line ();
2517 }
2518
2519 /* Directives: Instruction set selection. */
2520
2521 #ifdef OBJ_ELF
2522 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2523 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2524 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2525 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2526
2527 /* Create a new mapping symbol for the transition to STATE. */
2528
2529 static void
2530 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2531 {
2532 symbolS * symbolP;
2533 const char * symname;
2534 int type;
2535
2536 switch (state)
2537 {
2538 case MAP_DATA:
2539 symname = "$d";
2540 type = BSF_NO_FLAGS;
2541 break;
2542 case MAP_ARM:
2543 symname = "$a";
2544 type = BSF_NO_FLAGS;
2545 break;
2546 case MAP_THUMB:
2547 symname = "$t";
2548 type = BSF_NO_FLAGS;
2549 break;
2550 default:
2551 abort ();
2552 }
2553
2554 symbolP = symbol_new (symname, now_seg, value, frag);
2555 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2556
2557 switch (state)
2558 {
2559 case MAP_ARM:
2560 THUMB_SET_FUNC (symbolP, 0);
2561 ARM_SET_THUMB (symbolP, 0);
2562 ARM_SET_INTERWORK (symbolP, support_interwork);
2563 break;
2564
2565 case MAP_THUMB:
2566 THUMB_SET_FUNC (symbolP, 1);
2567 ARM_SET_THUMB (symbolP, 1);
2568 ARM_SET_INTERWORK (symbolP, support_interwork);
2569 break;
2570
2571 case MAP_DATA:
2572 default:
2573 break;
2574 }
2575
2576 /* Save the mapping symbols for future reference. Also check that
2577 we do not place two mapping symbols at the same offset within a
2578 frag. We'll handle overlap between frags in
2579 check_mapping_symbols.
2580
2581 If .fill or other data filling directive generates zero sized data,
2582 the mapping symbol for the following code will have the same value
2583 as the one generated for the data filling directive. In this case,
2584 we replace the old symbol with the new one at the same address. */
2585 if (value == 0)
2586 {
2587 if (frag->tc_frag_data.first_map != NULL)
2588 {
2589 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2590 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2591 }
2592 frag->tc_frag_data.first_map = symbolP;
2593 }
2594 if (frag->tc_frag_data.last_map != NULL)
2595 {
2596 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2597 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2598 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2599 }
2600 frag->tc_frag_data.last_map = symbolP;
2601 }
2602
2603 /* We must sometimes convert a region marked as code to data during
2604 code alignment, if an odd number of bytes have to be padded. The
2605 code mapping symbol is pushed to an aligned address. */
2606
2607 static void
2608 insert_data_mapping_symbol (enum mstate state,
2609 valueT value, fragS *frag, offsetT bytes)
2610 {
2611 /* If there was already a mapping symbol, remove it. */
2612 if (frag->tc_frag_data.last_map != NULL
2613 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2614 {
2615 symbolS *symp = frag->tc_frag_data.last_map;
2616
2617 if (value == 0)
2618 {
2619 know (frag->tc_frag_data.first_map == symp);
2620 frag->tc_frag_data.first_map = NULL;
2621 }
2622 frag->tc_frag_data.last_map = NULL;
2623 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2624 }
2625
2626 make_mapping_symbol (MAP_DATA, value, frag);
2627 make_mapping_symbol (state, value + bytes, frag);
2628 }
2629
2630 static void mapping_state_2 (enum mstate state, int max_chars);
2631
2632 /* Set the mapping state to STATE. Only call this when about to
2633 emit some STATE bytes to the file. */
2634
2635 void
2636 mapping_state (enum mstate state)
2637 {
2638 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2639
2640 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2641
2642 if (mapstate == state)
2643 /* The mapping symbol has already been emitted.
2644 There is nothing else to do. */
2645 return;
2646
2647 if (state == MAP_ARM || state == MAP_THUMB)
2648 /* PR gas/12931
2649 All ARM instructions require 4-byte alignment.
2650 (Almost) all Thumb instructions require 2-byte alignment.
2651
2652 When emitting instructions into any section, mark the section
2653 appropriately.
2654
2655 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2656 but themselves require 2-byte alignment; this applies to some
2657 PC- relative forms. However, these cases will invovle implicit
2658 literal pool generation or an explicit .align >=2, both of
2659 which will cause the section to me marked with sufficient
2660 alignment. Thus, we don't handle those cases here. */
2661 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2662
2663 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2664 /* This case will be evaluated later in the next else. */
2665 return;
2666 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2667 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2668 {
2669 /* Only add the symbol if the offset is > 0:
2670 if we're at the first frag, check it's size > 0;
2671 if we're not at the first frag, then for sure
2672 the offset is > 0. */
2673 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2674 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2675
2676 if (add_symbol)
2677 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2678 }
2679
2680 mapping_state_2 (state, 0);
2681 #undef TRANSITION
2682 }
2683
2684 /* Same as mapping_state, but MAX_CHARS bytes have already been
2685 allocated. Put the mapping symbol that far back. */
2686
2687 static void
2688 mapping_state_2 (enum mstate state, int max_chars)
2689 {
2690 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2691
2692 if (!SEG_NORMAL (now_seg))
2693 return;
2694
2695 if (mapstate == state)
2696 /* The mapping symbol has already been emitted.
2697 There is nothing else to do. */
2698 return;
2699
2700 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2701 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2702 }
2703 #else
2704 #define mapping_state(x) ((void)0)
2705 #define mapping_state_2(x, y) ((void)0)
2706 #endif
2707
2708 /* Find the real, Thumb encoded start of a Thumb function. */
2709
2710 #ifdef OBJ_COFF
2711 static symbolS *
2712 find_real_start (symbolS * symbolP)
2713 {
2714 char * real_start;
2715 const char * name = S_GET_NAME (symbolP);
2716 symbolS * new_target;
2717
2718 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2719 #define STUB_NAME ".real_start_of"
2720
2721 if (name == NULL)
2722 abort ();
2723
2724 /* The compiler may generate BL instructions to local labels because
2725 it needs to perform a branch to a far away location. These labels
2726 do not have a corresponding ".real_start_of" label. We check
2727 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2728 the ".real_start_of" convention for nonlocal branches. */
2729 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2730 return symbolP;
2731
2732 real_start = ACONCAT ((STUB_NAME, name, NULL));
2733 new_target = symbol_find (real_start);
2734
2735 if (new_target == NULL)
2736 {
2737 as_warn (_("Failed to find real start of function: %s\n"), name);
2738 new_target = symbolP;
2739 }
2740
2741 return new_target;
2742 }
2743 #endif
2744
2745 static void
2746 opcode_select (int width)
2747 {
2748 switch (width)
2749 {
2750 case 16:
2751 if (! thumb_mode)
2752 {
2753 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2754 as_bad (_("selected processor does not support THUMB opcodes"));
2755
2756 thumb_mode = 1;
2757 /* No need to force the alignment, since we will have been
2758 coming from ARM mode, which is word-aligned. */
2759 record_alignment (now_seg, 1);
2760 }
2761 break;
2762
2763 case 32:
2764 if (thumb_mode)
2765 {
2766 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2767 as_bad (_("selected processor does not support ARM opcodes"));
2768
2769 thumb_mode = 0;
2770
2771 if (!need_pass_2)
2772 frag_align (2, 0, 0);
2773
2774 record_alignment (now_seg, 1);
2775 }
2776 break;
2777
2778 default:
2779 as_bad (_("invalid instruction size selected (%d)"), width);
2780 }
2781 }
2782
2783 static void
2784 s_arm (int ignore ATTRIBUTE_UNUSED)
2785 {
2786 opcode_select (32);
2787 demand_empty_rest_of_line ();
2788 }
2789
2790 static void
2791 s_thumb (int ignore ATTRIBUTE_UNUSED)
2792 {
2793 opcode_select (16);
2794 demand_empty_rest_of_line ();
2795 }
2796
2797 static void
2798 s_code (int unused ATTRIBUTE_UNUSED)
2799 {
2800 int temp;
2801
2802 temp = get_absolute_expression ();
2803 switch (temp)
2804 {
2805 case 16:
2806 case 32:
2807 opcode_select (temp);
2808 break;
2809
2810 default:
2811 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2812 }
2813 }
2814
2815 static void
2816 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2817 {
2818 /* If we are not already in thumb mode go into it, EVEN if
2819 the target processor does not support thumb instructions.
2820 This is used by gcc/config/arm/lib1funcs.asm for example
2821 to compile interworking support functions even if the
2822 target processor should not support interworking. */
2823 if (! thumb_mode)
2824 {
2825 thumb_mode = 2;
2826 record_alignment (now_seg, 1);
2827 }
2828
2829 demand_empty_rest_of_line ();
2830 }
2831
2832 static void
2833 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2834 {
2835 s_thumb (0);
2836
2837 /* The following label is the name/address of the start of a Thumb function.
2838 We need to know this for the interworking support. */
2839 label_is_thumb_function_name = TRUE;
2840 }
2841
2842 /* Perform a .set directive, but also mark the alias as
2843 being a thumb function. */
2844
2845 static void
2846 s_thumb_set (int equiv)
2847 {
2848 /* XXX the following is a duplicate of the code for s_set() in read.c
2849 We cannot just call that code as we need to get at the symbol that
2850 is created. */
2851 char * name;
2852 char delim;
2853 char * end_name;
2854 symbolS * symbolP;
2855
2856 /* Especial apologies for the random logic:
2857 This just grew, and could be parsed much more simply!
2858 Dean - in haste. */
2859 name = input_line_pointer;
2860 delim = get_symbol_end ();
2861 end_name = input_line_pointer;
2862 *end_name = delim;
2863
2864 if (*input_line_pointer != ',')
2865 {
2866 *end_name = 0;
2867 as_bad (_("expected comma after name \"%s\""), name);
2868 *end_name = delim;
2869 ignore_rest_of_line ();
2870 return;
2871 }
2872
2873 input_line_pointer++;
2874 *end_name = 0;
2875
2876 if (name[0] == '.' && name[1] == '\0')
2877 {
2878 /* XXX - this should not happen to .thumb_set. */
2879 abort ();
2880 }
2881
2882 if ((symbolP = symbol_find (name)) == NULL
2883 && (symbolP = md_undefined_symbol (name)) == NULL)
2884 {
2885 #ifndef NO_LISTING
2886 /* When doing symbol listings, play games with dummy fragments living
2887 outside the normal fragment chain to record the file and line info
2888 for this symbol. */
2889 if (listing & LISTING_SYMBOLS)
2890 {
2891 extern struct list_info_struct * listing_tail;
2892 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2893
2894 memset (dummy_frag, 0, sizeof (fragS));
2895 dummy_frag->fr_type = rs_fill;
2896 dummy_frag->line = listing_tail;
2897 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2898 dummy_frag->fr_symbol = symbolP;
2899 }
2900 else
2901 #endif
2902 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2903
2904 #ifdef OBJ_COFF
2905 /* "set" symbols are local unless otherwise specified. */
2906 SF_SET_LOCAL (symbolP);
2907 #endif /* OBJ_COFF */
2908 } /* Make a new symbol. */
2909
2910 symbol_table_insert (symbolP);
2911
2912 * end_name = delim;
2913
2914 if (equiv
2915 && S_IS_DEFINED (symbolP)
2916 && S_GET_SEGMENT (symbolP) != reg_section)
2917 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2918
2919 pseudo_set (symbolP);
2920
2921 demand_empty_rest_of_line ();
2922
2923 /* XXX Now we come to the Thumb specific bit of code. */
2924
2925 THUMB_SET_FUNC (symbolP, 1);
2926 ARM_SET_THUMB (symbolP, 1);
2927 #if defined OBJ_ELF || defined OBJ_COFF
2928 ARM_SET_INTERWORK (symbolP, support_interwork);
2929 #endif
2930 }
2931
2932 /* Directives: Mode selection. */
2933
2934 /* .syntax [unified|divided] - choose the new unified syntax
2935 (same for Arm and Thumb encoding, modulo slight differences in what
2936 can be represented) or the old divergent syntax for each mode. */
2937 static void
2938 s_syntax (int unused ATTRIBUTE_UNUSED)
2939 {
2940 char *name, delim;
2941
2942 name = input_line_pointer;
2943 delim = get_symbol_end ();
2944
2945 if (!strcasecmp (name, "unified"))
2946 unified_syntax = TRUE;
2947 else if (!strcasecmp (name, "divided"))
2948 unified_syntax = FALSE;
2949 else
2950 {
2951 as_bad (_("unrecognized syntax mode \"%s\""), name);
2952 return;
2953 }
2954 *input_line_pointer = delim;
2955 demand_empty_rest_of_line ();
2956 }
2957
2958 /* Directives: sectioning and alignment. */
2959
2960 /* Same as s_align_ptwo but align 0 => align 2. */
2961
2962 static void
2963 s_align (int unused ATTRIBUTE_UNUSED)
2964 {
2965 int temp;
2966 bfd_boolean fill_p;
2967 long temp_fill;
2968 long max_alignment = 15;
2969
2970 temp = get_absolute_expression ();
2971 if (temp > max_alignment)
2972 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2973 else if (temp < 0)
2974 {
2975 as_bad (_("alignment negative. 0 assumed."));
2976 temp = 0;
2977 }
2978
2979 if (*input_line_pointer == ',')
2980 {
2981 input_line_pointer++;
2982 temp_fill = get_absolute_expression ();
2983 fill_p = TRUE;
2984 }
2985 else
2986 {
2987 fill_p = FALSE;
2988 temp_fill = 0;
2989 }
2990
2991 if (!temp)
2992 temp = 2;
2993
2994 /* Only make a frag if we HAVE to. */
2995 if (temp && !need_pass_2)
2996 {
2997 if (!fill_p && subseg_text_p (now_seg))
2998 frag_align_code (temp, 0);
2999 else
3000 frag_align (temp, (int) temp_fill, 0);
3001 }
3002 demand_empty_rest_of_line ();
3003
3004 record_alignment (now_seg, temp);
3005 }
3006
3007 static void
3008 s_bss (int ignore ATTRIBUTE_UNUSED)
3009 {
3010 /* We don't support putting frags in the BSS segment, we fake it by
3011 marking in_bss, then looking at s_skip for clues. */
3012 subseg_set (bss_section, 0);
3013 demand_empty_rest_of_line ();
3014
3015 #ifdef md_elf_section_change_hook
3016 md_elf_section_change_hook ();
3017 #endif
3018 }
3019
3020 static void
3021 s_even (int ignore ATTRIBUTE_UNUSED)
3022 {
3023 /* Never make frag if expect extra pass. */
3024 if (!need_pass_2)
3025 frag_align (1, 0, 0);
3026
3027 record_alignment (now_seg, 1);
3028
3029 demand_empty_rest_of_line ();
3030 }
3031
3032 /* Directives: CodeComposer Studio. */
3033
3034 /* .ref (for CodeComposer Studio syntax only). */
3035 static void
3036 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3037 {
3038 if (codecomposer_syntax)
3039 ignore_rest_of_line ();
3040 else
3041 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3042 }
3043
3044 /* If name is not NULL, then it is used for marking the beginning of a
3045 function, wherease if it is NULL then it means the function end. */
3046 static void
3047 asmfunc_debug (const char * name)
3048 {
3049 static const char * last_name = NULL;
3050
3051 if (name != NULL)
3052 {
3053 gas_assert (last_name == NULL);
3054 last_name = name;
3055
3056 if (debug_type == DEBUG_STABS)
3057 stabs_generate_asm_func (name, name);
3058 }
3059 else
3060 {
3061 gas_assert (last_name != NULL);
3062
3063 if (debug_type == DEBUG_STABS)
3064 stabs_generate_asm_endfunc (last_name, last_name);
3065
3066 last_name = NULL;
3067 }
3068 }
3069
3070 static void
3071 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3072 {
3073 if (codecomposer_syntax)
3074 {
3075 switch (asmfunc_state)
3076 {
3077 case OUTSIDE_ASMFUNC:
3078 asmfunc_state = WAITING_ASMFUNC_NAME;
3079 break;
3080
3081 case WAITING_ASMFUNC_NAME:
3082 as_bad (_(".asmfunc repeated."));
3083 break;
3084
3085 case WAITING_ENDASMFUNC:
3086 as_bad (_(".asmfunc without function."));
3087 break;
3088 }
3089 demand_empty_rest_of_line ();
3090 }
3091 else
3092 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3093 }
3094
3095 static void
3096 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3097 {
3098 if (codecomposer_syntax)
3099 {
3100 switch (asmfunc_state)
3101 {
3102 case OUTSIDE_ASMFUNC:
3103 as_bad (_(".endasmfunc without a .asmfunc."));
3104 break;
3105
3106 case WAITING_ASMFUNC_NAME:
3107 as_bad (_(".endasmfunc without function."));
3108 break;
3109
3110 case WAITING_ENDASMFUNC:
3111 asmfunc_state = OUTSIDE_ASMFUNC;
3112 asmfunc_debug (NULL);
3113 break;
3114 }
3115 demand_empty_rest_of_line ();
3116 }
3117 else
3118 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3119 }
3120
3121 static void
3122 s_ccs_def (int name)
3123 {
3124 if (codecomposer_syntax)
3125 s_globl (name);
3126 else
3127 as_bad (_(".def pseudo-op only available with -mccs flag."));
3128 }
3129
3130 /* Directives: Literal pools. */
3131
3132 static literal_pool *
3133 find_literal_pool (void)
3134 {
3135 literal_pool * pool;
3136
3137 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3138 {
3139 if (pool->section == now_seg
3140 && pool->sub_section == now_subseg)
3141 break;
3142 }
3143
3144 return pool;
3145 }
3146
3147 static literal_pool *
3148 find_or_make_literal_pool (void)
3149 {
3150 /* Next literal pool ID number. */
3151 static unsigned int latest_pool_num = 1;
3152 literal_pool * pool;
3153
3154 pool = find_literal_pool ();
3155
3156 if (pool == NULL)
3157 {
3158 /* Create a new pool. */
3159 pool = (literal_pool *) xmalloc (sizeof (* pool));
3160 if (! pool)
3161 return NULL;
3162
3163 pool->next_free_entry = 0;
3164 pool->section = now_seg;
3165 pool->sub_section = now_subseg;
3166 pool->next = list_of_pools;
3167 pool->symbol = NULL;
3168 pool->alignment = 2;
3169
3170 /* Add it to the list. */
3171 list_of_pools = pool;
3172 }
3173
3174 /* New pools, and emptied pools, will have a NULL symbol. */
3175 if (pool->symbol == NULL)
3176 {
3177 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3178 (valueT) 0, &zero_address_frag);
3179 pool->id = latest_pool_num ++;
3180 }
3181
3182 /* Done. */
3183 return pool;
3184 }
3185
3186 /* Add the literal in the global 'inst'
3187 structure to the relevant literal pool. */
3188
3189 static int
3190 add_to_lit_pool (unsigned int nbytes)
3191 {
3192 #define PADDING_SLOT 0x1
3193 #define LIT_ENTRY_SIZE_MASK 0xFF
3194 literal_pool * pool;
3195 unsigned int entry, pool_size = 0;
3196 bfd_boolean padding_slot_p = FALSE;
3197 unsigned imm1 = 0;
3198 unsigned imm2 = 0;
3199
3200 if (nbytes == 8)
3201 {
3202 imm1 = inst.operands[1].imm;
3203 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3204 : inst.reloc.exp.X_unsigned ? 0
3205 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3206 if (target_big_endian)
3207 {
3208 imm1 = imm2;
3209 imm2 = inst.operands[1].imm;
3210 }
3211 }
3212
3213 pool = find_or_make_literal_pool ();
3214
3215 /* Check if this literal value is already in the pool. */
3216 for (entry = 0; entry < pool->next_free_entry; entry ++)
3217 {
3218 if (nbytes == 4)
3219 {
3220 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3221 && (inst.reloc.exp.X_op == O_constant)
3222 && (pool->literals[entry].X_add_number
3223 == inst.reloc.exp.X_add_number)
3224 && (pool->literals[entry].X_md == nbytes)
3225 && (pool->literals[entry].X_unsigned
3226 == inst.reloc.exp.X_unsigned))
3227 break;
3228
3229 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3230 && (inst.reloc.exp.X_op == O_symbol)
3231 && (pool->literals[entry].X_add_number
3232 == inst.reloc.exp.X_add_number)
3233 && (pool->literals[entry].X_add_symbol
3234 == inst.reloc.exp.X_add_symbol)
3235 && (pool->literals[entry].X_op_symbol
3236 == inst.reloc.exp.X_op_symbol)
3237 && (pool->literals[entry].X_md == nbytes))
3238 break;
3239 }
3240 else if ((nbytes == 8)
3241 && !(pool_size & 0x7)
3242 && ((entry + 1) != pool->next_free_entry)
3243 && (pool->literals[entry].X_op == O_constant)
3244 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3245 && (pool->literals[entry].X_unsigned
3246 == inst.reloc.exp.X_unsigned)
3247 && (pool->literals[entry + 1].X_op == O_constant)
3248 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3249 && (pool->literals[entry + 1].X_unsigned
3250 == inst.reloc.exp.X_unsigned))
3251 break;
3252
3253 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3254 if (padding_slot_p && (nbytes == 4))
3255 break;
3256
3257 pool_size += 4;
3258 }
3259
3260 /* Do we need to create a new entry? */
3261 if (entry == pool->next_free_entry)
3262 {
3263 if (entry >= MAX_LITERAL_POOL_SIZE)
3264 {
3265 inst.error = _("literal pool overflow");
3266 return FAIL;
3267 }
3268
3269 if (nbytes == 8)
3270 {
3271 /* For 8-byte entries, we align to an 8-byte boundary,
3272 and split it into two 4-byte entries, because on 32-bit
3273 host, 8-byte constants are treated as big num, thus
3274 saved in "generic_bignum" which will be overwritten
3275 by later assignments.
3276
3277 We also need to make sure there is enough space for
3278 the split.
3279
3280 We also check to make sure the literal operand is a
3281 constant number. */
3282 if (!(inst.reloc.exp.X_op == O_constant
3283 || inst.reloc.exp.X_op == O_big))
3284 {
3285 inst.error = _("invalid type for literal pool");
3286 return FAIL;
3287 }
3288 else if (pool_size & 0x7)
3289 {
3290 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3291 {
3292 inst.error = _("literal pool overflow");
3293 return FAIL;
3294 }
3295
3296 pool->literals[entry] = inst.reloc.exp;
3297 pool->literals[entry].X_add_number = 0;
3298 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3299 pool->next_free_entry += 1;
3300 pool_size += 4;
3301 }
3302 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3303 {
3304 inst.error = _("literal pool overflow");
3305 return FAIL;
3306 }
3307
3308 pool->literals[entry] = inst.reloc.exp;
3309 pool->literals[entry].X_op = O_constant;
3310 pool->literals[entry].X_add_number = imm1;
3311 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3312 pool->literals[entry++].X_md = 4;
3313 pool->literals[entry] = inst.reloc.exp;
3314 pool->literals[entry].X_op = O_constant;
3315 pool->literals[entry].X_add_number = imm2;
3316 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3317 pool->literals[entry].X_md = 4;
3318 pool->alignment = 3;
3319 pool->next_free_entry += 1;
3320 }
3321 else
3322 {
3323 pool->literals[entry] = inst.reloc.exp;
3324 pool->literals[entry].X_md = 4;
3325 }
3326
3327 #ifdef OBJ_ELF
3328 /* PR ld/12974: Record the location of the first source line to reference
3329 this entry in the literal pool. If it turns out during linking that the
3330 symbol does not exist we will be able to give an accurate line number for
3331 the (first use of the) missing reference. */
3332 if (debug_type == DEBUG_DWARF2)
3333 dwarf2_where (pool->locs + entry);
3334 #endif
3335 pool->next_free_entry += 1;
3336 }
3337 else if (padding_slot_p)
3338 {
3339 pool->literals[entry] = inst.reloc.exp;
3340 pool->literals[entry].X_md = nbytes;
3341 }
3342
3343 inst.reloc.exp.X_op = O_symbol;
3344 inst.reloc.exp.X_add_number = pool_size;
3345 inst.reloc.exp.X_add_symbol = pool->symbol;
3346
3347 return SUCCESS;
3348 }
3349
3350 bfd_boolean
3351 tc_start_label_without_colon (char unused1 ATTRIBUTE_UNUSED, const char * rest)
3352 {
3353 bfd_boolean ret = TRUE;
3354
3355 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3356 {
3357 const char *label = rest;
3358
3359 while (!is_end_of_line[(int) label[-1]])
3360 --label;
3361
3362 if (*label == '.')
3363 {
3364 as_bad (_("Invalid label '%s'"), label);
3365 ret = FALSE;
3366 }
3367
3368 asmfunc_debug (label);
3369
3370 asmfunc_state = WAITING_ENDASMFUNC;
3371 }
3372
3373 return ret;
3374 }
3375
3376 /* Can't use symbol_new here, so have to create a symbol and then at
3377 a later date assign it a value. Thats what these functions do. */
3378
3379 static void
3380 symbol_locate (symbolS * symbolP,
3381 const char * name, /* It is copied, the caller can modify. */
3382 segT segment, /* Segment identifier (SEG_<something>). */
3383 valueT valu, /* Symbol value. */
3384 fragS * frag) /* Associated fragment. */
3385 {
3386 size_t name_length;
3387 char * preserved_copy_of_name;
3388
3389 name_length = strlen (name) + 1; /* +1 for \0. */
3390 obstack_grow (&notes, name, name_length);
3391 preserved_copy_of_name = (char *) obstack_finish (&notes);
3392
3393 #ifdef tc_canonicalize_symbol_name
3394 preserved_copy_of_name =
3395 tc_canonicalize_symbol_name (preserved_copy_of_name);
3396 #endif
3397
3398 S_SET_NAME (symbolP, preserved_copy_of_name);
3399
3400 S_SET_SEGMENT (symbolP, segment);
3401 S_SET_VALUE (symbolP, valu);
3402 symbol_clear_list_pointers (symbolP);
3403
3404 symbol_set_frag (symbolP, frag);
3405
3406 /* Link to end of symbol chain. */
3407 {
3408 extern int symbol_table_frozen;
3409
3410 if (symbol_table_frozen)
3411 abort ();
3412 }
3413
3414 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3415
3416 obj_symbol_new_hook (symbolP);
3417
3418 #ifdef tc_symbol_new_hook
3419 tc_symbol_new_hook (symbolP);
3420 #endif
3421
3422 #ifdef DEBUG_SYMS
3423 verify_symbol_chain (symbol_rootP, symbol_lastP);
3424 #endif /* DEBUG_SYMS */
3425 }
3426
3427 static void
3428 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3429 {
3430 unsigned int entry;
3431 literal_pool * pool;
3432 char sym_name[20];
3433
3434 pool = find_literal_pool ();
3435 if (pool == NULL
3436 || pool->symbol == NULL
3437 || pool->next_free_entry == 0)
3438 return;
3439
3440 /* Align pool as you have word accesses.
3441 Only make a frag if we have to. */
3442 if (!need_pass_2)
3443 frag_align (pool->alignment, 0, 0);
3444
3445 record_alignment (now_seg, 2);
3446
3447 #ifdef OBJ_ELF
3448 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3449 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3450 #endif
3451 sprintf (sym_name, "$$lit_\002%x", pool->id);
3452
3453 symbol_locate (pool->symbol, sym_name, now_seg,
3454 (valueT) frag_now_fix (), frag_now);
3455 symbol_table_insert (pool->symbol);
3456
3457 ARM_SET_THUMB (pool->symbol, thumb_mode);
3458
3459 #if defined OBJ_COFF || defined OBJ_ELF
3460 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3461 #endif
3462
3463 for (entry = 0; entry < pool->next_free_entry; entry ++)
3464 {
3465 #ifdef OBJ_ELF
3466 if (debug_type == DEBUG_DWARF2)
3467 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3468 #endif
3469 /* First output the expression in the instruction to the pool. */
3470 emit_expr (&(pool->literals[entry]),
3471 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3472 }
3473
3474 /* Mark the pool as empty. */
3475 pool->next_free_entry = 0;
3476 pool->symbol = NULL;
3477 }
3478
3479 #ifdef OBJ_ELF
3480 /* Forward declarations for functions below, in the MD interface
3481 section. */
3482 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3483 static valueT create_unwind_entry (int);
3484 static void start_unwind_section (const segT, int);
3485 static void add_unwind_opcode (valueT, int);
3486 static void flush_pending_unwind (void);
3487
3488 /* Directives: Data. */
3489
3490 static void
3491 s_arm_elf_cons (int nbytes)
3492 {
3493 expressionS exp;
3494
3495 #ifdef md_flush_pending_output
3496 md_flush_pending_output ();
3497 #endif
3498
3499 if (is_it_end_of_statement ())
3500 {
3501 demand_empty_rest_of_line ();
3502 return;
3503 }
3504
3505 #ifdef md_cons_align
3506 md_cons_align (nbytes);
3507 #endif
3508
3509 mapping_state (MAP_DATA);
3510 do
3511 {
3512 int reloc;
3513 char *base = input_line_pointer;
3514
3515 expression (& exp);
3516
3517 if (exp.X_op != O_symbol)
3518 emit_expr (&exp, (unsigned int) nbytes);
3519 else
3520 {
3521 char *before_reloc = input_line_pointer;
3522 reloc = parse_reloc (&input_line_pointer);
3523 if (reloc == -1)
3524 {
3525 as_bad (_("unrecognized relocation suffix"));
3526 ignore_rest_of_line ();
3527 return;
3528 }
3529 else if (reloc == BFD_RELOC_UNUSED)
3530 emit_expr (&exp, (unsigned int) nbytes);
3531 else
3532 {
3533 reloc_howto_type *howto = (reloc_howto_type *)
3534 bfd_reloc_type_lookup (stdoutput,
3535 (bfd_reloc_code_real_type) reloc);
3536 int size = bfd_get_reloc_size (howto);
3537
3538 if (reloc == BFD_RELOC_ARM_PLT32)
3539 {
3540 as_bad (_("(plt) is only valid on branch targets"));
3541 reloc = BFD_RELOC_UNUSED;
3542 size = 0;
3543 }
3544
3545 if (size > nbytes)
3546 as_bad (_("%s relocations do not fit in %d bytes"),
3547 howto->name, nbytes);
3548 else
3549 {
3550 /* We've parsed an expression stopping at O_symbol.
3551 But there may be more expression left now that we
3552 have parsed the relocation marker. Parse it again.
3553 XXX Surely there is a cleaner way to do this. */
3554 char *p = input_line_pointer;
3555 int offset;
3556 char *save_buf = (char *) alloca (input_line_pointer - base);
3557 memcpy (save_buf, base, input_line_pointer - base);
3558 memmove (base + (input_line_pointer - before_reloc),
3559 base, before_reloc - base);
3560
3561 input_line_pointer = base + (input_line_pointer-before_reloc);
3562 expression (&exp);
3563 memcpy (base, save_buf, p - base);
3564
3565 offset = nbytes - size;
3566 p = frag_more (nbytes);
3567 memset (p, 0, nbytes);
3568 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3569 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3570 }
3571 }
3572 }
3573 }
3574 while (*input_line_pointer++ == ',');
3575
3576 /* Put terminator back into stream. */
3577 input_line_pointer --;
3578 demand_empty_rest_of_line ();
3579 }
3580
3581 /* Emit an expression containing a 32-bit thumb instruction.
3582 Implementation based on put_thumb32_insn. */
3583
3584 static void
3585 emit_thumb32_expr (expressionS * exp)
3586 {
3587 expressionS exp_high = *exp;
3588
3589 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3590 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3591 exp->X_add_number &= 0xffff;
3592 emit_expr (exp, (unsigned int) THUMB_SIZE);
3593 }
3594
3595 /* Guess the instruction size based on the opcode. */
3596
3597 static int
3598 thumb_insn_size (int opcode)
3599 {
3600 if ((unsigned int) opcode < 0xe800u)
3601 return 2;
3602 else if ((unsigned int) opcode >= 0xe8000000u)
3603 return 4;
3604 else
3605 return 0;
3606 }
3607
3608 static bfd_boolean
3609 emit_insn (expressionS *exp, int nbytes)
3610 {
3611 int size = 0;
3612
3613 if (exp->X_op == O_constant)
3614 {
3615 size = nbytes;
3616
3617 if (size == 0)
3618 size = thumb_insn_size (exp->X_add_number);
3619
3620 if (size != 0)
3621 {
3622 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3623 {
3624 as_bad (_(".inst.n operand too big. "\
3625 "Use .inst.w instead"));
3626 size = 0;
3627 }
3628 else
3629 {
3630 if (now_it.state == AUTOMATIC_IT_BLOCK)
3631 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3632 else
3633 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3634
3635 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3636 emit_thumb32_expr (exp);
3637 else
3638 emit_expr (exp, (unsigned int) size);
3639
3640 it_fsm_post_encode ();
3641 }
3642 }
3643 else
3644 as_bad (_("cannot determine Thumb instruction size. " \
3645 "Use .inst.n/.inst.w instead"));
3646 }
3647 else
3648 as_bad (_("constant expression required"));
3649
3650 return (size != 0);
3651 }
3652
3653 /* Like s_arm_elf_cons but do not use md_cons_align and
3654 set the mapping state to MAP_ARM/MAP_THUMB. */
3655
3656 static void
3657 s_arm_elf_inst (int nbytes)
3658 {
3659 if (is_it_end_of_statement ())
3660 {
3661 demand_empty_rest_of_line ();
3662 return;
3663 }
3664
3665 /* Calling mapping_state () here will not change ARM/THUMB,
3666 but will ensure not to be in DATA state. */
3667
3668 if (thumb_mode)
3669 mapping_state (MAP_THUMB);
3670 else
3671 {
3672 if (nbytes != 0)
3673 {
3674 as_bad (_("width suffixes are invalid in ARM mode"));
3675 ignore_rest_of_line ();
3676 return;
3677 }
3678
3679 nbytes = 4;
3680
3681 mapping_state (MAP_ARM);
3682 }
3683
3684 do
3685 {
3686 expressionS exp;
3687
3688 expression (& exp);
3689
3690 if (! emit_insn (& exp, nbytes))
3691 {
3692 ignore_rest_of_line ();
3693 return;
3694 }
3695 }
3696 while (*input_line_pointer++ == ',');
3697
3698 /* Put terminator back into stream. */
3699 input_line_pointer --;
3700 demand_empty_rest_of_line ();
3701 }
3702
3703 /* Parse a .rel31 directive. */
3704
3705 static void
3706 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3707 {
3708 expressionS exp;
3709 char *p;
3710 valueT highbit;
3711
3712 highbit = 0;
3713 if (*input_line_pointer == '1')
3714 highbit = 0x80000000;
3715 else if (*input_line_pointer != '0')
3716 as_bad (_("expected 0 or 1"));
3717
3718 input_line_pointer++;
3719 if (*input_line_pointer != ',')
3720 as_bad (_("missing comma"));
3721 input_line_pointer++;
3722
3723 #ifdef md_flush_pending_output
3724 md_flush_pending_output ();
3725 #endif
3726
3727 #ifdef md_cons_align
3728 md_cons_align (4);
3729 #endif
3730
3731 mapping_state (MAP_DATA);
3732
3733 expression (&exp);
3734
3735 p = frag_more (4);
3736 md_number_to_chars (p, highbit, 4);
3737 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3738 BFD_RELOC_ARM_PREL31);
3739
3740 demand_empty_rest_of_line ();
3741 }
3742
3743 /* Directives: AEABI stack-unwind tables. */
3744
3745 /* Parse an unwind_fnstart directive. Simply records the current location. */
3746
3747 static void
3748 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3749 {
3750 demand_empty_rest_of_line ();
3751 if (unwind.proc_start)
3752 {
3753 as_bad (_("duplicate .fnstart directive"));
3754 return;
3755 }
3756
3757 /* Mark the start of the function. */
3758 unwind.proc_start = expr_build_dot ();
3759
3760 /* Reset the rest of the unwind info. */
3761 unwind.opcode_count = 0;
3762 unwind.table_entry = NULL;
3763 unwind.personality_routine = NULL;
3764 unwind.personality_index = -1;
3765 unwind.frame_size = 0;
3766 unwind.fp_offset = 0;
3767 unwind.fp_reg = REG_SP;
3768 unwind.fp_used = 0;
3769 unwind.sp_restored = 0;
3770 }
3771
3772
3773 /* Parse a handlerdata directive. Creates the exception handling table entry
3774 for the function. */
3775
3776 static void
3777 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3778 {
3779 demand_empty_rest_of_line ();
3780 if (!unwind.proc_start)
3781 as_bad (MISSING_FNSTART);
3782
3783 if (unwind.table_entry)
3784 as_bad (_("duplicate .handlerdata directive"));
3785
3786 create_unwind_entry (1);
3787 }
3788
3789 /* Parse an unwind_fnend directive. Generates the index table entry. */
3790
3791 static void
3792 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3793 {
3794 long where;
3795 char *ptr;
3796 valueT val;
3797 unsigned int marked_pr_dependency;
3798
3799 demand_empty_rest_of_line ();
3800
3801 if (!unwind.proc_start)
3802 {
3803 as_bad (_(".fnend directive without .fnstart"));
3804 return;
3805 }
3806
3807 /* Add eh table entry. */
3808 if (unwind.table_entry == NULL)
3809 val = create_unwind_entry (0);
3810 else
3811 val = 0;
3812
3813 /* Add index table entry. This is two words. */
3814 start_unwind_section (unwind.saved_seg, 1);
3815 frag_align (2, 0, 0);
3816 record_alignment (now_seg, 2);
3817
3818 ptr = frag_more (8);
3819 memset (ptr, 0, 8);
3820 where = frag_now_fix () - 8;
3821
3822 /* Self relative offset of the function start. */
3823 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3824 BFD_RELOC_ARM_PREL31);
3825
3826 /* Indicate dependency on EHABI-defined personality routines to the
3827 linker, if it hasn't been done already. */
3828 marked_pr_dependency
3829 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3830 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3831 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3832 {
3833 static const char *const name[] =
3834 {
3835 "__aeabi_unwind_cpp_pr0",
3836 "__aeabi_unwind_cpp_pr1",
3837 "__aeabi_unwind_cpp_pr2"
3838 };
3839 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3840 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3841 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3842 |= 1 << unwind.personality_index;
3843 }
3844
3845 if (val)
3846 /* Inline exception table entry. */
3847 md_number_to_chars (ptr + 4, val, 4);
3848 else
3849 /* Self relative offset of the table entry. */
3850 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3851 BFD_RELOC_ARM_PREL31);
3852
3853 /* Restore the original section. */
3854 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3855
3856 unwind.proc_start = NULL;
3857 }
3858
3859
3860 /* Parse an unwind_cantunwind directive. */
3861
3862 static void
3863 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3864 {
3865 demand_empty_rest_of_line ();
3866 if (!unwind.proc_start)
3867 as_bad (MISSING_FNSTART);
3868
3869 if (unwind.personality_routine || unwind.personality_index != -1)
3870 as_bad (_("personality routine specified for cantunwind frame"));
3871
3872 unwind.personality_index = -2;
3873 }
3874
3875
3876 /* Parse a personalityindex directive. */
3877
3878 static void
3879 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3880 {
3881 expressionS exp;
3882
3883 if (!unwind.proc_start)
3884 as_bad (MISSING_FNSTART);
3885
3886 if (unwind.personality_routine || unwind.personality_index != -1)
3887 as_bad (_("duplicate .personalityindex directive"));
3888
3889 expression (&exp);
3890
3891 if (exp.X_op != O_constant
3892 || exp.X_add_number < 0 || exp.X_add_number > 15)
3893 {
3894 as_bad (_("bad personality routine number"));
3895 ignore_rest_of_line ();
3896 return;
3897 }
3898
3899 unwind.personality_index = exp.X_add_number;
3900
3901 demand_empty_rest_of_line ();
3902 }
3903
3904
3905 /* Parse a personality directive. */
3906
3907 static void
3908 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3909 {
3910 char *name, *p, c;
3911
3912 if (!unwind.proc_start)
3913 as_bad (MISSING_FNSTART);
3914
3915 if (unwind.personality_routine || unwind.personality_index != -1)
3916 as_bad (_("duplicate .personality directive"));
3917
3918 name = input_line_pointer;
3919 c = get_symbol_end ();
3920 p = input_line_pointer;
3921 unwind.personality_routine = symbol_find_or_make (name);
3922 *p = c;
3923 demand_empty_rest_of_line ();
3924 }
3925
3926
3927 /* Parse a directive saving core registers. */
3928
3929 static void
3930 s_arm_unwind_save_core (void)
3931 {
3932 valueT op;
3933 long range;
3934 int n;
3935
3936 range = parse_reg_list (&input_line_pointer);
3937 if (range == FAIL)
3938 {
3939 as_bad (_("expected register list"));
3940 ignore_rest_of_line ();
3941 return;
3942 }
3943
3944 demand_empty_rest_of_line ();
3945
3946 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3947 into .unwind_save {..., sp...}. We aren't bothered about the value of
3948 ip because it is clobbered by calls. */
3949 if (unwind.sp_restored && unwind.fp_reg == 12
3950 && (range & 0x3000) == 0x1000)
3951 {
3952 unwind.opcode_count--;
3953 unwind.sp_restored = 0;
3954 range = (range | 0x2000) & ~0x1000;
3955 unwind.pending_offset = 0;
3956 }
3957
3958 /* Pop r4-r15. */
3959 if (range & 0xfff0)
3960 {
3961 /* See if we can use the short opcodes. These pop a block of up to 8
3962 registers starting with r4, plus maybe r14. */
3963 for (n = 0; n < 8; n++)
3964 {
3965 /* Break at the first non-saved register. */
3966 if ((range & (1 << (n + 4))) == 0)
3967 break;
3968 }
3969 /* See if there are any other bits set. */
3970 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3971 {
3972 /* Use the long form. */
3973 op = 0x8000 | ((range >> 4) & 0xfff);
3974 add_unwind_opcode (op, 2);
3975 }
3976 else
3977 {
3978 /* Use the short form. */
3979 if (range & 0x4000)
3980 op = 0xa8; /* Pop r14. */
3981 else
3982 op = 0xa0; /* Do not pop r14. */
3983 op |= (n - 1);
3984 add_unwind_opcode (op, 1);
3985 }
3986 }
3987
3988 /* Pop r0-r3. */
3989 if (range & 0xf)
3990 {
3991 op = 0xb100 | (range & 0xf);
3992 add_unwind_opcode (op, 2);
3993 }
3994
3995 /* Record the number of bytes pushed. */
3996 for (n = 0; n < 16; n++)
3997 {
3998 if (range & (1 << n))
3999 unwind.frame_size += 4;
4000 }
4001 }
4002
4003
4004 /* Parse a directive saving FPA registers. */
4005
4006 static void
4007 s_arm_unwind_save_fpa (int reg)
4008 {
4009 expressionS exp;
4010 int num_regs;
4011 valueT op;
4012
4013 /* Get Number of registers to transfer. */
4014 if (skip_past_comma (&input_line_pointer) != FAIL)
4015 expression (&exp);
4016 else
4017 exp.X_op = O_illegal;
4018
4019 if (exp.X_op != O_constant)
4020 {
4021 as_bad (_("expected , <constant>"));
4022 ignore_rest_of_line ();
4023 return;
4024 }
4025
4026 num_regs = exp.X_add_number;
4027
4028 if (num_regs < 1 || num_regs > 4)
4029 {
4030 as_bad (_("number of registers must be in the range [1:4]"));
4031 ignore_rest_of_line ();
4032 return;
4033 }
4034
4035 demand_empty_rest_of_line ();
4036
4037 if (reg == 4)
4038 {
4039 /* Short form. */
4040 op = 0xb4 | (num_regs - 1);
4041 add_unwind_opcode (op, 1);
4042 }
4043 else
4044 {
4045 /* Long form. */
4046 op = 0xc800 | (reg << 4) | (num_regs - 1);
4047 add_unwind_opcode (op, 2);
4048 }
4049 unwind.frame_size += num_regs * 12;
4050 }
4051
4052
4053 /* Parse a directive saving VFP registers for ARMv6 and above. */
4054
4055 static void
4056 s_arm_unwind_save_vfp_armv6 (void)
4057 {
4058 int count;
4059 unsigned int start;
4060 valueT op;
4061 int num_vfpv3_regs = 0;
4062 int num_regs_below_16;
4063
4064 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
4065 if (count == FAIL)
4066 {
4067 as_bad (_("expected register list"));
4068 ignore_rest_of_line ();
4069 return;
4070 }
4071
4072 demand_empty_rest_of_line ();
4073
4074 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4075 than FSTMX/FLDMX-style ones). */
4076
4077 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4078 if (start >= 16)
4079 num_vfpv3_regs = count;
4080 else if (start + count > 16)
4081 num_vfpv3_regs = start + count - 16;
4082
4083 if (num_vfpv3_regs > 0)
4084 {
4085 int start_offset = start > 16 ? start - 16 : 0;
4086 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4087 add_unwind_opcode (op, 2);
4088 }
4089
4090 /* Generate opcode for registers numbered in the range 0 .. 15. */
4091 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4092 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4093 if (num_regs_below_16 > 0)
4094 {
4095 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4096 add_unwind_opcode (op, 2);
4097 }
4098
4099 unwind.frame_size += count * 8;
4100 }
4101
4102
4103 /* Parse a directive saving VFP registers for pre-ARMv6. */
4104
4105 static void
4106 s_arm_unwind_save_vfp (void)
4107 {
4108 int count;
4109 unsigned int reg;
4110 valueT op;
4111
4112 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
4113 if (count == FAIL)
4114 {
4115 as_bad (_("expected register list"));
4116 ignore_rest_of_line ();
4117 return;
4118 }
4119
4120 demand_empty_rest_of_line ();
4121
4122 if (reg == 8)
4123 {
4124 /* Short form. */
4125 op = 0xb8 | (count - 1);
4126 add_unwind_opcode (op, 1);
4127 }
4128 else
4129 {
4130 /* Long form. */
4131 op = 0xb300 | (reg << 4) | (count - 1);
4132 add_unwind_opcode (op, 2);
4133 }
4134 unwind.frame_size += count * 8 + 4;
4135 }
4136
4137
4138 /* Parse a directive saving iWMMXt data registers. */
4139
4140 static void
4141 s_arm_unwind_save_mmxwr (void)
4142 {
4143 int reg;
4144 int hi_reg;
4145 int i;
4146 unsigned mask = 0;
4147 valueT op;
4148
4149 if (*input_line_pointer == '{')
4150 input_line_pointer++;
4151
4152 do
4153 {
4154 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4155
4156 if (reg == FAIL)
4157 {
4158 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4159 goto error;
4160 }
4161
4162 if (mask >> reg)
4163 as_tsktsk (_("register list not in ascending order"));
4164 mask |= 1 << reg;
4165
4166 if (*input_line_pointer == '-')
4167 {
4168 input_line_pointer++;
4169 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4170 if (hi_reg == FAIL)
4171 {
4172 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4173 goto error;
4174 }
4175 else if (reg >= hi_reg)
4176 {
4177 as_bad (_("bad register range"));
4178 goto error;
4179 }
4180 for (; reg < hi_reg; reg++)
4181 mask |= 1 << reg;
4182 }
4183 }
4184 while (skip_past_comma (&input_line_pointer) != FAIL);
4185
4186 skip_past_char (&input_line_pointer, '}');
4187
4188 demand_empty_rest_of_line ();
4189
4190 /* Generate any deferred opcodes because we're going to be looking at
4191 the list. */
4192 flush_pending_unwind ();
4193
4194 for (i = 0; i < 16; i++)
4195 {
4196 if (mask & (1 << i))
4197 unwind.frame_size += 8;
4198 }
4199
4200 /* Attempt to combine with a previous opcode. We do this because gcc
4201 likes to output separate unwind directives for a single block of
4202 registers. */
4203 if (unwind.opcode_count > 0)
4204 {
4205 i = unwind.opcodes[unwind.opcode_count - 1];
4206 if ((i & 0xf8) == 0xc0)
4207 {
4208 i &= 7;
4209 /* Only merge if the blocks are contiguous. */
4210 if (i < 6)
4211 {
4212 if ((mask & 0xfe00) == (1 << 9))
4213 {
4214 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4215 unwind.opcode_count--;
4216 }
4217 }
4218 else if (i == 6 && unwind.opcode_count >= 2)
4219 {
4220 i = unwind.opcodes[unwind.opcode_count - 2];
4221 reg = i >> 4;
4222 i &= 0xf;
4223
4224 op = 0xffff << (reg - 1);
4225 if (reg > 0
4226 && ((mask & op) == (1u << (reg - 1))))
4227 {
4228 op = (1 << (reg + i + 1)) - 1;
4229 op &= ~((1 << reg) - 1);
4230 mask |= op;
4231 unwind.opcode_count -= 2;
4232 }
4233 }
4234 }
4235 }
4236
4237 hi_reg = 15;
4238 /* We want to generate opcodes in the order the registers have been
4239 saved, ie. descending order. */
4240 for (reg = 15; reg >= -1; reg--)
4241 {
4242 /* Save registers in blocks. */
4243 if (reg < 0
4244 || !(mask & (1 << reg)))
4245 {
4246 /* We found an unsaved reg. Generate opcodes to save the
4247 preceding block. */
4248 if (reg != hi_reg)
4249 {
4250 if (reg == 9)
4251 {
4252 /* Short form. */
4253 op = 0xc0 | (hi_reg - 10);
4254 add_unwind_opcode (op, 1);
4255 }
4256 else
4257 {
4258 /* Long form. */
4259 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4260 add_unwind_opcode (op, 2);
4261 }
4262 }
4263 hi_reg = reg - 1;
4264 }
4265 }
4266
4267 return;
4268 error:
4269 ignore_rest_of_line ();
4270 }
4271
4272 static void
4273 s_arm_unwind_save_mmxwcg (void)
4274 {
4275 int reg;
4276 int hi_reg;
4277 unsigned mask = 0;
4278 valueT op;
4279
4280 if (*input_line_pointer == '{')
4281 input_line_pointer++;
4282
4283 skip_whitespace (input_line_pointer);
4284
4285 do
4286 {
4287 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4288
4289 if (reg == FAIL)
4290 {
4291 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4292 goto error;
4293 }
4294
4295 reg -= 8;
4296 if (mask >> reg)
4297 as_tsktsk (_("register list not in ascending order"));
4298 mask |= 1 << reg;
4299
4300 if (*input_line_pointer == '-')
4301 {
4302 input_line_pointer++;
4303 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4304 if (hi_reg == FAIL)
4305 {
4306 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4307 goto error;
4308 }
4309 else if (reg >= hi_reg)
4310 {
4311 as_bad (_("bad register range"));
4312 goto error;
4313 }
4314 for (; reg < hi_reg; reg++)
4315 mask |= 1 << reg;
4316 }
4317 }
4318 while (skip_past_comma (&input_line_pointer) != FAIL);
4319
4320 skip_past_char (&input_line_pointer, '}');
4321
4322 demand_empty_rest_of_line ();
4323
4324 /* Generate any deferred opcodes because we're going to be looking at
4325 the list. */
4326 flush_pending_unwind ();
4327
4328 for (reg = 0; reg < 16; reg++)
4329 {
4330 if (mask & (1 << reg))
4331 unwind.frame_size += 4;
4332 }
4333 op = 0xc700 | mask;
4334 add_unwind_opcode (op, 2);
4335 return;
4336 error:
4337 ignore_rest_of_line ();
4338 }
4339
4340
4341 /* Parse an unwind_save directive.
4342 If the argument is non-zero, this is a .vsave directive. */
4343
4344 static void
4345 s_arm_unwind_save (int arch_v6)
4346 {
4347 char *peek;
4348 struct reg_entry *reg;
4349 bfd_boolean had_brace = FALSE;
4350
4351 if (!unwind.proc_start)
4352 as_bad (MISSING_FNSTART);
4353
4354 /* Figure out what sort of save we have. */
4355 peek = input_line_pointer;
4356
4357 if (*peek == '{')
4358 {
4359 had_brace = TRUE;
4360 peek++;
4361 }
4362
4363 reg = arm_reg_parse_multi (&peek);
4364
4365 if (!reg)
4366 {
4367 as_bad (_("register expected"));
4368 ignore_rest_of_line ();
4369 return;
4370 }
4371
4372 switch (reg->type)
4373 {
4374 case REG_TYPE_FN:
4375 if (had_brace)
4376 {
4377 as_bad (_("FPA .unwind_save does not take a register list"));
4378 ignore_rest_of_line ();
4379 return;
4380 }
4381 input_line_pointer = peek;
4382 s_arm_unwind_save_fpa (reg->number);
4383 return;
4384
4385 case REG_TYPE_RN:
4386 s_arm_unwind_save_core ();
4387 return;
4388
4389 case REG_TYPE_VFD:
4390 if (arch_v6)
4391 s_arm_unwind_save_vfp_armv6 ();
4392 else
4393 s_arm_unwind_save_vfp ();
4394 return;
4395
4396 case REG_TYPE_MMXWR:
4397 s_arm_unwind_save_mmxwr ();
4398 return;
4399
4400 case REG_TYPE_MMXWCG:
4401 s_arm_unwind_save_mmxwcg ();
4402 return;
4403
4404 default:
4405 as_bad (_(".unwind_save does not support this kind of register"));
4406 ignore_rest_of_line ();
4407 }
4408 }
4409
4410
4411 /* Parse an unwind_movsp directive. */
4412
4413 static void
4414 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4415 {
4416 int reg;
4417 valueT op;
4418 int offset;
4419
4420 if (!unwind.proc_start)
4421 as_bad (MISSING_FNSTART);
4422
4423 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4424 if (reg == FAIL)
4425 {
4426 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4427 ignore_rest_of_line ();
4428 return;
4429 }
4430
4431 /* Optional constant. */
4432 if (skip_past_comma (&input_line_pointer) != FAIL)
4433 {
4434 if (immediate_for_directive (&offset) == FAIL)
4435 return;
4436 }
4437 else
4438 offset = 0;
4439
4440 demand_empty_rest_of_line ();
4441
4442 if (reg == REG_SP || reg == REG_PC)
4443 {
4444 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4445 return;
4446 }
4447
4448 if (unwind.fp_reg != REG_SP)
4449 as_bad (_("unexpected .unwind_movsp directive"));
4450
4451 /* Generate opcode to restore the value. */
4452 op = 0x90 | reg;
4453 add_unwind_opcode (op, 1);
4454
4455 /* Record the information for later. */
4456 unwind.fp_reg = reg;
4457 unwind.fp_offset = unwind.frame_size - offset;
4458 unwind.sp_restored = 1;
4459 }
4460
4461 /* Parse an unwind_pad directive. */
4462
4463 static void
4464 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4465 {
4466 int offset;
4467
4468 if (!unwind.proc_start)
4469 as_bad (MISSING_FNSTART);
4470
4471 if (immediate_for_directive (&offset) == FAIL)
4472 return;
4473
4474 if (offset & 3)
4475 {
4476 as_bad (_("stack increment must be multiple of 4"));
4477 ignore_rest_of_line ();
4478 return;
4479 }
4480
4481 /* Don't generate any opcodes, just record the details for later. */
4482 unwind.frame_size += offset;
4483 unwind.pending_offset += offset;
4484
4485 demand_empty_rest_of_line ();
4486 }
4487
4488 /* Parse an unwind_setfp directive. */
4489
4490 static void
4491 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4492 {
4493 int sp_reg;
4494 int fp_reg;
4495 int offset;
4496
4497 if (!unwind.proc_start)
4498 as_bad (MISSING_FNSTART);
4499
4500 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4501 if (skip_past_comma (&input_line_pointer) == FAIL)
4502 sp_reg = FAIL;
4503 else
4504 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4505
4506 if (fp_reg == FAIL || sp_reg == FAIL)
4507 {
4508 as_bad (_("expected <reg>, <reg>"));
4509 ignore_rest_of_line ();
4510 return;
4511 }
4512
4513 /* Optional constant. */
4514 if (skip_past_comma (&input_line_pointer) != FAIL)
4515 {
4516 if (immediate_for_directive (&offset) == FAIL)
4517 return;
4518 }
4519 else
4520 offset = 0;
4521
4522 demand_empty_rest_of_line ();
4523
4524 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4525 {
4526 as_bad (_("register must be either sp or set by a previous"
4527 "unwind_movsp directive"));
4528 return;
4529 }
4530
4531 /* Don't generate any opcodes, just record the information for later. */
4532 unwind.fp_reg = fp_reg;
4533 unwind.fp_used = 1;
4534 if (sp_reg == REG_SP)
4535 unwind.fp_offset = unwind.frame_size - offset;
4536 else
4537 unwind.fp_offset -= offset;
4538 }
4539
4540 /* Parse an unwind_raw directive. */
4541
4542 static void
4543 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4544 {
4545 expressionS exp;
4546 /* This is an arbitrary limit. */
4547 unsigned char op[16];
4548 int count;
4549
4550 if (!unwind.proc_start)
4551 as_bad (MISSING_FNSTART);
4552
4553 expression (&exp);
4554 if (exp.X_op == O_constant
4555 && skip_past_comma (&input_line_pointer) != FAIL)
4556 {
4557 unwind.frame_size += exp.X_add_number;
4558 expression (&exp);
4559 }
4560 else
4561 exp.X_op = O_illegal;
4562
4563 if (exp.X_op != O_constant)
4564 {
4565 as_bad (_("expected <offset>, <opcode>"));
4566 ignore_rest_of_line ();
4567 return;
4568 }
4569
4570 count = 0;
4571
4572 /* Parse the opcode. */
4573 for (;;)
4574 {
4575 if (count >= 16)
4576 {
4577 as_bad (_("unwind opcode too long"));
4578 ignore_rest_of_line ();
4579 }
4580 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4581 {
4582 as_bad (_("invalid unwind opcode"));
4583 ignore_rest_of_line ();
4584 return;
4585 }
4586 op[count++] = exp.X_add_number;
4587
4588 /* Parse the next byte. */
4589 if (skip_past_comma (&input_line_pointer) == FAIL)
4590 break;
4591
4592 expression (&exp);
4593 }
4594
4595 /* Add the opcode bytes in reverse order. */
4596 while (count--)
4597 add_unwind_opcode (op[count], 1);
4598
4599 demand_empty_rest_of_line ();
4600 }
4601
4602
4603 /* Parse a .eabi_attribute directive. */
4604
4605 static void
4606 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4607 {
4608 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4609
4610 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4611 attributes_set_explicitly[tag] = 1;
4612 }
4613
4614 /* Emit a tls fix for the symbol. */
4615
4616 static void
4617 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4618 {
4619 char *p;
4620 expressionS exp;
4621 #ifdef md_flush_pending_output
4622 md_flush_pending_output ();
4623 #endif
4624
4625 #ifdef md_cons_align
4626 md_cons_align (4);
4627 #endif
4628
4629 /* Since we're just labelling the code, there's no need to define a
4630 mapping symbol. */
4631 expression (&exp);
4632 p = obstack_next_free (&frchain_now->frch_obstack);
4633 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4634 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4635 : BFD_RELOC_ARM_TLS_DESCSEQ);
4636 }
4637 #endif /* OBJ_ELF */
4638
4639 static void s_arm_arch (int);
4640 static void s_arm_object_arch (int);
4641 static void s_arm_cpu (int);
4642 static void s_arm_fpu (int);
4643 static void s_arm_arch_extension (int);
4644
4645 #ifdef TE_PE
4646
4647 static void
4648 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4649 {
4650 expressionS exp;
4651
4652 do
4653 {
4654 expression (&exp);
4655 if (exp.X_op == O_symbol)
4656 exp.X_op = O_secrel;
4657
4658 emit_expr (&exp, 4);
4659 }
4660 while (*input_line_pointer++ == ',');
4661
4662 input_line_pointer--;
4663 demand_empty_rest_of_line ();
4664 }
4665 #endif /* TE_PE */
4666
4667 /* This table describes all the machine specific pseudo-ops the assembler
4668 has to support. The fields are:
4669 pseudo-op name without dot
4670 function to call to execute this pseudo-op
4671 Integer arg to pass to the function. */
4672
4673 const pseudo_typeS md_pseudo_table[] =
4674 {
4675 /* Never called because '.req' does not start a line. */
4676 { "req", s_req, 0 },
4677 /* Following two are likewise never called. */
4678 { "dn", s_dn, 0 },
4679 { "qn", s_qn, 0 },
4680 { "unreq", s_unreq, 0 },
4681 { "bss", s_bss, 0 },
4682 { "align", s_align, 0 },
4683 { "arm", s_arm, 0 },
4684 { "thumb", s_thumb, 0 },
4685 { "code", s_code, 0 },
4686 { "force_thumb", s_force_thumb, 0 },
4687 { "thumb_func", s_thumb_func, 0 },
4688 { "thumb_set", s_thumb_set, 0 },
4689 { "even", s_even, 0 },
4690 { "ltorg", s_ltorg, 0 },
4691 { "pool", s_ltorg, 0 },
4692 { "syntax", s_syntax, 0 },
4693 { "cpu", s_arm_cpu, 0 },
4694 { "arch", s_arm_arch, 0 },
4695 { "object_arch", s_arm_object_arch, 0 },
4696 { "fpu", s_arm_fpu, 0 },
4697 { "arch_extension", s_arm_arch_extension, 0 },
4698 #ifdef OBJ_ELF
4699 { "word", s_arm_elf_cons, 4 },
4700 { "long", s_arm_elf_cons, 4 },
4701 { "inst.n", s_arm_elf_inst, 2 },
4702 { "inst.w", s_arm_elf_inst, 4 },
4703 { "inst", s_arm_elf_inst, 0 },
4704 { "rel31", s_arm_rel31, 0 },
4705 { "fnstart", s_arm_unwind_fnstart, 0 },
4706 { "fnend", s_arm_unwind_fnend, 0 },
4707 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4708 { "personality", s_arm_unwind_personality, 0 },
4709 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4710 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4711 { "save", s_arm_unwind_save, 0 },
4712 { "vsave", s_arm_unwind_save, 1 },
4713 { "movsp", s_arm_unwind_movsp, 0 },
4714 { "pad", s_arm_unwind_pad, 0 },
4715 { "setfp", s_arm_unwind_setfp, 0 },
4716 { "unwind_raw", s_arm_unwind_raw, 0 },
4717 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4718 { "tlsdescseq", s_arm_tls_descseq, 0 },
4719 #else
4720 { "word", cons, 4},
4721
4722 /* These are used for dwarf. */
4723 {"2byte", cons, 2},
4724 {"4byte", cons, 4},
4725 {"8byte", cons, 8},
4726 /* These are used for dwarf2. */
4727 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4728 { "loc", dwarf2_directive_loc, 0 },
4729 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4730 #endif
4731 { "extend", float_cons, 'x' },
4732 { "ldouble", float_cons, 'x' },
4733 { "packed", float_cons, 'p' },
4734 #ifdef TE_PE
4735 {"secrel32", pe_directive_secrel, 0},
4736 #endif
4737
4738 /* These are for compatibility with CodeComposer Studio. */
4739 {"ref", s_ccs_ref, 0},
4740 {"def", s_ccs_def, 0},
4741 {"asmfunc", s_ccs_asmfunc, 0},
4742 {"endasmfunc", s_ccs_endasmfunc, 0},
4743
4744 { 0, 0, 0 }
4745 };
4746 \f
4747 /* Parser functions used exclusively in instruction operands. */
4748
4749 /* Generic immediate-value read function for use in insn parsing.
4750 STR points to the beginning of the immediate (the leading #);
4751 VAL receives the value; if the value is outside [MIN, MAX]
4752 issue an error. PREFIX_OPT is true if the immediate prefix is
4753 optional. */
4754
4755 static int
4756 parse_immediate (char **str, int *val, int min, int max,
4757 bfd_boolean prefix_opt)
4758 {
4759 expressionS exp;
4760 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4761 if (exp.X_op != O_constant)
4762 {
4763 inst.error = _("constant expression required");
4764 return FAIL;
4765 }
4766
4767 if (exp.X_add_number < min || exp.X_add_number > max)
4768 {
4769 inst.error = _("immediate value out of range");
4770 return FAIL;
4771 }
4772
4773 *val = exp.X_add_number;
4774 return SUCCESS;
4775 }
4776
4777 /* Less-generic immediate-value read function with the possibility of loading a
4778 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4779 instructions. Puts the result directly in inst.operands[i]. */
4780
4781 static int
4782 parse_big_immediate (char **str, int i, expressionS *in_exp,
4783 bfd_boolean allow_symbol_p)
4784 {
4785 expressionS exp;
4786 expressionS *exp_p = in_exp ? in_exp : &exp;
4787 char *ptr = *str;
4788
4789 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
4790
4791 if (exp_p->X_op == O_constant)
4792 {
4793 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
4794 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4795 O_constant. We have to be careful not to break compilation for
4796 32-bit X_add_number, though. */
4797 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4798 {
4799 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
4800 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
4801 & 0xffffffff);
4802 inst.operands[i].regisimm = 1;
4803 }
4804 }
4805 else if (exp_p->X_op == O_big
4806 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
4807 {
4808 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4809
4810 /* Bignums have their least significant bits in
4811 generic_bignum[0]. Make sure we put 32 bits in imm and
4812 32 bits in reg, in a (hopefully) portable way. */
4813 gas_assert (parts != 0);
4814
4815 /* Make sure that the number is not too big.
4816 PR 11972: Bignums can now be sign-extended to the
4817 size of a .octa so check that the out of range bits
4818 are all zero or all one. */
4819 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
4820 {
4821 LITTLENUM_TYPE m = -1;
4822
4823 if (generic_bignum[parts * 2] != 0
4824 && generic_bignum[parts * 2] != m)
4825 return FAIL;
4826
4827 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
4828 if (generic_bignum[j] != generic_bignum[j-1])
4829 return FAIL;
4830 }
4831
4832 inst.operands[i].imm = 0;
4833 for (j = 0; j < parts; j++, idx++)
4834 inst.operands[i].imm |= generic_bignum[idx]
4835 << (LITTLENUM_NUMBER_OF_BITS * j);
4836 inst.operands[i].reg = 0;
4837 for (j = 0; j < parts; j++, idx++)
4838 inst.operands[i].reg |= generic_bignum[idx]
4839 << (LITTLENUM_NUMBER_OF_BITS * j);
4840 inst.operands[i].regisimm = 1;
4841 }
4842 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
4843 return FAIL;
4844
4845 *str = ptr;
4846
4847 return SUCCESS;
4848 }
4849
4850 /* Returns the pseudo-register number of an FPA immediate constant,
4851 or FAIL if there isn't a valid constant here. */
4852
4853 static int
4854 parse_fpa_immediate (char ** str)
4855 {
4856 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4857 char * save_in;
4858 expressionS exp;
4859 int i;
4860 int j;
4861
4862 /* First try and match exact strings, this is to guarantee
4863 that some formats will work even for cross assembly. */
4864
4865 for (i = 0; fp_const[i]; i++)
4866 {
4867 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4868 {
4869 char *start = *str;
4870
4871 *str += strlen (fp_const[i]);
4872 if (is_end_of_line[(unsigned char) **str])
4873 return i + 8;
4874 *str = start;
4875 }
4876 }
4877
4878 /* Just because we didn't get a match doesn't mean that the constant
4879 isn't valid, just that it is in a format that we don't
4880 automatically recognize. Try parsing it with the standard
4881 expression routines. */
4882
4883 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4884
4885 /* Look for a raw floating point number. */
4886 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4887 && is_end_of_line[(unsigned char) *save_in])
4888 {
4889 for (i = 0; i < NUM_FLOAT_VALS; i++)
4890 {
4891 for (j = 0; j < MAX_LITTLENUMS; j++)
4892 {
4893 if (words[j] != fp_values[i][j])
4894 break;
4895 }
4896
4897 if (j == MAX_LITTLENUMS)
4898 {
4899 *str = save_in;
4900 return i + 8;
4901 }
4902 }
4903 }
4904
4905 /* Try and parse a more complex expression, this will probably fail
4906 unless the code uses a floating point prefix (eg "0f"). */
4907 save_in = input_line_pointer;
4908 input_line_pointer = *str;
4909 if (expression (&exp) == absolute_section
4910 && exp.X_op == O_big
4911 && exp.X_add_number < 0)
4912 {
4913 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4914 Ditto for 15. */
4915 if (gen_to_words (words, 5, (long) 15) == 0)
4916 {
4917 for (i = 0; i < NUM_FLOAT_VALS; i++)
4918 {
4919 for (j = 0; j < MAX_LITTLENUMS; j++)
4920 {
4921 if (words[j] != fp_values[i][j])
4922 break;
4923 }
4924
4925 if (j == MAX_LITTLENUMS)
4926 {
4927 *str = input_line_pointer;
4928 input_line_pointer = save_in;
4929 return i + 8;
4930 }
4931 }
4932 }
4933 }
4934
4935 *str = input_line_pointer;
4936 input_line_pointer = save_in;
4937 inst.error = _("invalid FPA immediate expression");
4938 return FAIL;
4939 }
4940
4941 /* Returns 1 if a number has "quarter-precision" float format
4942 0baBbbbbbc defgh000 00000000 00000000. */
4943
4944 static int
4945 is_quarter_float (unsigned imm)
4946 {
4947 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4948 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4949 }
4950
4951
4952 /* Detect the presence of a floating point or integer zero constant,
4953 i.e. #0.0 or #0. */
4954
4955 static bfd_boolean
4956 parse_ifimm_zero (char **in)
4957 {
4958 int error_code;
4959
4960 if (!is_immediate_prefix (**in))
4961 return FALSE;
4962
4963 ++*in;
4964
4965 /* Accept #0x0 as a synonym for #0. */
4966 if (strncmp (*in, "0x", 2) == 0)
4967 {
4968 int val;
4969 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
4970 return FALSE;
4971 return TRUE;
4972 }
4973
4974 error_code = atof_generic (in, ".", EXP_CHARS,
4975 &generic_floating_point_number);
4976
4977 if (!error_code
4978 && generic_floating_point_number.sign == '+'
4979 && (generic_floating_point_number.low
4980 > generic_floating_point_number.leader))
4981 return TRUE;
4982
4983 return FALSE;
4984 }
4985
4986 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4987 0baBbbbbbc defgh000 00000000 00000000.
4988 The zero and minus-zero cases need special handling, since they can't be
4989 encoded in the "quarter-precision" float format, but can nonetheless be
4990 loaded as integer constants. */
4991
4992 static unsigned
4993 parse_qfloat_immediate (char **ccp, int *immed)
4994 {
4995 char *str = *ccp;
4996 char *fpnum;
4997 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4998 int found_fpchar = 0;
4999
5000 skip_past_char (&str, '#');
5001
5002 /* We must not accidentally parse an integer as a floating-point number. Make
5003 sure that the value we parse is not an integer by checking for special
5004 characters '.' or 'e'.
5005 FIXME: This is a horrible hack, but doing better is tricky because type
5006 information isn't in a very usable state at parse time. */
5007 fpnum = str;
5008 skip_whitespace (fpnum);
5009
5010 if (strncmp (fpnum, "0x", 2) == 0)
5011 return FAIL;
5012 else
5013 {
5014 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5015 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5016 {
5017 found_fpchar = 1;
5018 break;
5019 }
5020
5021 if (!found_fpchar)
5022 return FAIL;
5023 }
5024
5025 if ((str = atof_ieee (str, 's', words)) != NULL)
5026 {
5027 unsigned fpword = 0;
5028 int i;
5029
5030 /* Our FP word must be 32 bits (single-precision FP). */
5031 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5032 {
5033 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5034 fpword |= words[i];
5035 }
5036
5037 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5038 *immed = fpword;
5039 else
5040 return FAIL;
5041
5042 *ccp = str;
5043
5044 return SUCCESS;
5045 }
5046
5047 return FAIL;
5048 }
5049
5050 /* Shift operands. */
5051 enum shift_kind
5052 {
5053 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
5054 };
5055
5056 struct asm_shift_name
5057 {
5058 const char *name;
5059 enum shift_kind kind;
5060 };
5061
5062 /* Third argument to parse_shift. */
5063 enum parse_shift_mode
5064 {
5065 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5066 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5067 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5068 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5069 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5070 };
5071
5072 /* Parse a <shift> specifier on an ARM data processing instruction.
5073 This has three forms:
5074
5075 (LSL|LSR|ASL|ASR|ROR) Rs
5076 (LSL|LSR|ASL|ASR|ROR) #imm
5077 RRX
5078
5079 Note that ASL is assimilated to LSL in the instruction encoding, and
5080 RRX to ROR #0 (which cannot be written as such). */
5081
5082 static int
5083 parse_shift (char **str, int i, enum parse_shift_mode mode)
5084 {
5085 const struct asm_shift_name *shift_name;
5086 enum shift_kind shift;
5087 char *s = *str;
5088 char *p = s;
5089 int reg;
5090
5091 for (p = *str; ISALPHA (*p); p++)
5092 ;
5093
5094 if (p == *str)
5095 {
5096 inst.error = _("shift expression expected");
5097 return FAIL;
5098 }
5099
5100 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5101 p - *str);
5102
5103 if (shift_name == NULL)
5104 {
5105 inst.error = _("shift expression expected");
5106 return FAIL;
5107 }
5108
5109 shift = shift_name->kind;
5110
5111 switch (mode)
5112 {
5113 case NO_SHIFT_RESTRICT:
5114 case SHIFT_IMMEDIATE: break;
5115
5116 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5117 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5118 {
5119 inst.error = _("'LSL' or 'ASR' required");
5120 return FAIL;
5121 }
5122 break;
5123
5124 case SHIFT_LSL_IMMEDIATE:
5125 if (shift != SHIFT_LSL)
5126 {
5127 inst.error = _("'LSL' required");
5128 return FAIL;
5129 }
5130 break;
5131
5132 case SHIFT_ASR_IMMEDIATE:
5133 if (shift != SHIFT_ASR)
5134 {
5135 inst.error = _("'ASR' required");
5136 return FAIL;
5137 }
5138 break;
5139
5140 default: abort ();
5141 }
5142
5143 if (shift != SHIFT_RRX)
5144 {
5145 /* Whitespace can appear here if the next thing is a bare digit. */
5146 skip_whitespace (p);
5147
5148 if (mode == NO_SHIFT_RESTRICT
5149 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5150 {
5151 inst.operands[i].imm = reg;
5152 inst.operands[i].immisreg = 1;
5153 }
5154 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5155 return FAIL;
5156 }
5157 inst.operands[i].shift_kind = shift;
5158 inst.operands[i].shifted = 1;
5159 *str = p;
5160 return SUCCESS;
5161 }
5162
5163 /* Parse a <shifter_operand> for an ARM data processing instruction:
5164
5165 #<immediate>
5166 #<immediate>, <rotate>
5167 <Rm>
5168 <Rm>, <shift>
5169
5170 where <shift> is defined by parse_shift above, and <rotate> is a
5171 multiple of 2 between 0 and 30. Validation of immediate operands
5172 is deferred to md_apply_fix. */
5173
5174 static int
5175 parse_shifter_operand (char **str, int i)
5176 {
5177 int value;
5178 expressionS exp;
5179
5180 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5181 {
5182 inst.operands[i].reg = value;
5183 inst.operands[i].isreg = 1;
5184
5185 /* parse_shift will override this if appropriate */
5186 inst.reloc.exp.X_op = O_constant;
5187 inst.reloc.exp.X_add_number = 0;
5188
5189 if (skip_past_comma (str) == FAIL)
5190 return SUCCESS;
5191
5192 /* Shift operation on register. */
5193 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5194 }
5195
5196 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
5197 return FAIL;
5198
5199 if (skip_past_comma (str) == SUCCESS)
5200 {
5201 /* #x, y -- ie explicit rotation by Y. */
5202 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5203 return FAIL;
5204
5205 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
5206 {
5207 inst.error = _("constant expression expected");
5208 return FAIL;
5209 }
5210
5211 value = exp.X_add_number;
5212 if (value < 0 || value > 30 || value % 2 != 0)
5213 {
5214 inst.error = _("invalid rotation");
5215 return FAIL;
5216 }
5217 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
5218 {
5219 inst.error = _("invalid constant");
5220 return FAIL;
5221 }
5222
5223 /* Encode as specified. */
5224 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
5225 return SUCCESS;
5226 }
5227
5228 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
5229 inst.reloc.pc_rel = 0;
5230 return SUCCESS;
5231 }
5232
5233 /* Group relocation information. Each entry in the table contains the
5234 textual name of the relocation as may appear in assembler source
5235 and must end with a colon.
5236 Along with this textual name are the relocation codes to be used if
5237 the corresponding instruction is an ALU instruction (ADD or SUB only),
5238 an LDR, an LDRS, or an LDC. */
5239
5240 struct group_reloc_table_entry
5241 {
5242 const char *name;
5243 int alu_code;
5244 int ldr_code;
5245 int ldrs_code;
5246 int ldc_code;
5247 };
5248
5249 typedef enum
5250 {
5251 /* Varieties of non-ALU group relocation. */
5252
5253 GROUP_LDR,
5254 GROUP_LDRS,
5255 GROUP_LDC
5256 } group_reloc_type;
5257
5258 static struct group_reloc_table_entry group_reloc_table[] =
5259 { /* Program counter relative: */
5260 { "pc_g0_nc",
5261 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5262 0, /* LDR */
5263 0, /* LDRS */
5264 0 }, /* LDC */
5265 { "pc_g0",
5266 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5267 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5268 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5269 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5270 { "pc_g1_nc",
5271 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5272 0, /* LDR */
5273 0, /* LDRS */
5274 0 }, /* LDC */
5275 { "pc_g1",
5276 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5277 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5278 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5279 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5280 { "pc_g2",
5281 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5282 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5283 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5284 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5285 /* Section base relative */
5286 { "sb_g0_nc",
5287 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5288 0, /* LDR */
5289 0, /* LDRS */
5290 0 }, /* LDC */
5291 { "sb_g0",
5292 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5293 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5294 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5295 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5296 { "sb_g1_nc",
5297 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5298 0, /* LDR */
5299 0, /* LDRS */
5300 0 }, /* LDC */
5301 { "sb_g1",
5302 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5303 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5304 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5305 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5306 { "sb_g2",
5307 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5308 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5309 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5310 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
5311
5312 /* Given the address of a pointer pointing to the textual name of a group
5313 relocation as may appear in assembler source, attempt to find its details
5314 in group_reloc_table. The pointer will be updated to the character after
5315 the trailing colon. On failure, FAIL will be returned; SUCCESS
5316 otherwise. On success, *entry will be updated to point at the relevant
5317 group_reloc_table entry. */
5318
5319 static int
5320 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5321 {
5322 unsigned int i;
5323 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5324 {
5325 int length = strlen (group_reloc_table[i].name);
5326
5327 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5328 && (*str)[length] == ':')
5329 {
5330 *out = &group_reloc_table[i];
5331 *str += (length + 1);
5332 return SUCCESS;
5333 }
5334 }
5335
5336 return FAIL;
5337 }
5338
5339 /* Parse a <shifter_operand> for an ARM data processing instruction
5340 (as for parse_shifter_operand) where group relocations are allowed:
5341
5342 #<immediate>
5343 #<immediate>, <rotate>
5344 #:<group_reloc>:<expression>
5345 <Rm>
5346 <Rm>, <shift>
5347
5348 where <group_reloc> is one of the strings defined in group_reloc_table.
5349 The hashes are optional.
5350
5351 Everything else is as for parse_shifter_operand. */
5352
5353 static parse_operand_result
5354 parse_shifter_operand_group_reloc (char **str, int i)
5355 {
5356 /* Determine if we have the sequence of characters #: or just :
5357 coming next. If we do, then we check for a group relocation.
5358 If we don't, punt the whole lot to parse_shifter_operand. */
5359
5360 if (((*str)[0] == '#' && (*str)[1] == ':')
5361 || (*str)[0] == ':')
5362 {
5363 struct group_reloc_table_entry *entry;
5364
5365 if ((*str)[0] == '#')
5366 (*str) += 2;
5367 else
5368 (*str)++;
5369
5370 /* Try to parse a group relocation. Anything else is an error. */
5371 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5372 {
5373 inst.error = _("unknown group relocation");
5374 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5375 }
5376
5377 /* We now have the group relocation table entry corresponding to
5378 the name in the assembler source. Next, we parse the expression. */
5379 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5380 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5381
5382 /* Record the relocation type (always the ALU variant here). */
5383 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5384 gas_assert (inst.reloc.type != 0);
5385
5386 return PARSE_OPERAND_SUCCESS;
5387 }
5388 else
5389 return parse_shifter_operand (str, i) == SUCCESS
5390 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5391
5392 /* Never reached. */
5393 }
5394
5395 /* Parse a Neon alignment expression. Information is written to
5396 inst.operands[i]. We assume the initial ':' has been skipped.
5397
5398 align .imm = align << 8, .immisalign=1, .preind=0 */
5399 static parse_operand_result
5400 parse_neon_alignment (char **str, int i)
5401 {
5402 char *p = *str;
5403 expressionS exp;
5404
5405 my_get_expression (&exp, &p, GE_NO_PREFIX);
5406
5407 if (exp.X_op != O_constant)
5408 {
5409 inst.error = _("alignment must be constant");
5410 return PARSE_OPERAND_FAIL;
5411 }
5412
5413 inst.operands[i].imm = exp.X_add_number << 8;
5414 inst.operands[i].immisalign = 1;
5415 /* Alignments are not pre-indexes. */
5416 inst.operands[i].preind = 0;
5417
5418 *str = p;
5419 return PARSE_OPERAND_SUCCESS;
5420 }
5421
5422 /* Parse all forms of an ARM address expression. Information is written
5423 to inst.operands[i] and/or inst.reloc.
5424
5425 Preindexed addressing (.preind=1):
5426
5427 [Rn, #offset] .reg=Rn .reloc.exp=offset
5428 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5429 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5430 .shift_kind=shift .reloc.exp=shift_imm
5431
5432 These three may have a trailing ! which causes .writeback to be set also.
5433
5434 Postindexed addressing (.postind=1, .writeback=1):
5435
5436 [Rn], #offset .reg=Rn .reloc.exp=offset
5437 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5438 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5439 .shift_kind=shift .reloc.exp=shift_imm
5440
5441 Unindexed addressing (.preind=0, .postind=0):
5442
5443 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5444
5445 Other:
5446
5447 [Rn]{!} shorthand for [Rn,#0]{!}
5448 =immediate .isreg=0 .reloc.exp=immediate
5449 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5450
5451 It is the caller's responsibility to check for addressing modes not
5452 supported by the instruction, and to set inst.reloc.type. */
5453
5454 static parse_operand_result
5455 parse_address_main (char **str, int i, int group_relocations,
5456 group_reloc_type group_type)
5457 {
5458 char *p = *str;
5459 int reg;
5460
5461 if (skip_past_char (&p, '[') == FAIL)
5462 {
5463 if (skip_past_char (&p, '=') == FAIL)
5464 {
5465 /* Bare address - translate to PC-relative offset. */
5466 inst.reloc.pc_rel = 1;
5467 inst.operands[i].reg = REG_PC;
5468 inst.operands[i].isreg = 1;
5469 inst.operands[i].preind = 1;
5470
5471 if (my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX_BIG))
5472 return PARSE_OPERAND_FAIL;
5473 }
5474 else if (parse_big_immediate (&p, i, &inst.reloc.exp,
5475 /*allow_symbol_p=*/TRUE))
5476 return PARSE_OPERAND_FAIL;
5477
5478 *str = p;
5479 return PARSE_OPERAND_SUCCESS;
5480 }
5481
5482 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5483 skip_whitespace (p);
5484
5485 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5486 {
5487 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5488 return PARSE_OPERAND_FAIL;
5489 }
5490 inst.operands[i].reg = reg;
5491 inst.operands[i].isreg = 1;
5492
5493 if (skip_past_comma (&p) == SUCCESS)
5494 {
5495 inst.operands[i].preind = 1;
5496
5497 if (*p == '+') p++;
5498 else if (*p == '-') p++, inst.operands[i].negative = 1;
5499
5500 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5501 {
5502 inst.operands[i].imm = reg;
5503 inst.operands[i].immisreg = 1;
5504
5505 if (skip_past_comma (&p) == SUCCESS)
5506 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5507 return PARSE_OPERAND_FAIL;
5508 }
5509 else if (skip_past_char (&p, ':') == SUCCESS)
5510 {
5511 /* FIXME: '@' should be used here, but it's filtered out by generic
5512 code before we get to see it here. This may be subject to
5513 change. */
5514 parse_operand_result result = parse_neon_alignment (&p, i);
5515
5516 if (result != PARSE_OPERAND_SUCCESS)
5517 return result;
5518 }
5519 else
5520 {
5521 if (inst.operands[i].negative)
5522 {
5523 inst.operands[i].negative = 0;
5524 p--;
5525 }
5526
5527 if (group_relocations
5528 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5529 {
5530 struct group_reloc_table_entry *entry;
5531
5532 /* Skip over the #: or : sequence. */
5533 if (*p == '#')
5534 p += 2;
5535 else
5536 p++;
5537
5538 /* Try to parse a group relocation. Anything else is an
5539 error. */
5540 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5541 {
5542 inst.error = _("unknown group relocation");
5543 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5544 }
5545
5546 /* We now have the group relocation table entry corresponding to
5547 the name in the assembler source. Next, we parse the
5548 expression. */
5549 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5550 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5551
5552 /* Record the relocation type. */
5553 switch (group_type)
5554 {
5555 case GROUP_LDR:
5556 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5557 break;
5558
5559 case GROUP_LDRS:
5560 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5561 break;
5562
5563 case GROUP_LDC:
5564 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5565 break;
5566
5567 default:
5568 gas_assert (0);
5569 }
5570
5571 if (inst.reloc.type == 0)
5572 {
5573 inst.error = _("this group relocation is not allowed on this instruction");
5574 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5575 }
5576 }
5577 else
5578 {
5579 char *q = p;
5580 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5581 return PARSE_OPERAND_FAIL;
5582 /* If the offset is 0, find out if it's a +0 or -0. */
5583 if (inst.reloc.exp.X_op == O_constant
5584 && inst.reloc.exp.X_add_number == 0)
5585 {
5586 skip_whitespace (q);
5587 if (*q == '#')
5588 {
5589 q++;
5590 skip_whitespace (q);
5591 }
5592 if (*q == '-')
5593 inst.operands[i].negative = 1;
5594 }
5595 }
5596 }
5597 }
5598 else if (skip_past_char (&p, ':') == SUCCESS)
5599 {
5600 /* FIXME: '@' should be used here, but it's filtered out by generic code
5601 before we get to see it here. This may be subject to change. */
5602 parse_operand_result result = parse_neon_alignment (&p, i);
5603
5604 if (result != PARSE_OPERAND_SUCCESS)
5605 return result;
5606 }
5607
5608 if (skip_past_char (&p, ']') == FAIL)
5609 {
5610 inst.error = _("']' expected");
5611 return PARSE_OPERAND_FAIL;
5612 }
5613
5614 if (skip_past_char (&p, '!') == SUCCESS)
5615 inst.operands[i].writeback = 1;
5616
5617 else if (skip_past_comma (&p) == SUCCESS)
5618 {
5619 if (skip_past_char (&p, '{') == SUCCESS)
5620 {
5621 /* [Rn], {expr} - unindexed, with option */
5622 if (parse_immediate (&p, &inst.operands[i].imm,
5623 0, 255, TRUE) == FAIL)
5624 return PARSE_OPERAND_FAIL;
5625
5626 if (skip_past_char (&p, '}') == FAIL)
5627 {
5628 inst.error = _("'}' expected at end of 'option' field");
5629 return PARSE_OPERAND_FAIL;
5630 }
5631 if (inst.operands[i].preind)
5632 {
5633 inst.error = _("cannot combine index with option");
5634 return PARSE_OPERAND_FAIL;
5635 }
5636 *str = p;
5637 return PARSE_OPERAND_SUCCESS;
5638 }
5639 else
5640 {
5641 inst.operands[i].postind = 1;
5642 inst.operands[i].writeback = 1;
5643
5644 if (inst.operands[i].preind)
5645 {
5646 inst.error = _("cannot combine pre- and post-indexing");
5647 return PARSE_OPERAND_FAIL;
5648 }
5649
5650 if (*p == '+') p++;
5651 else if (*p == '-') p++, inst.operands[i].negative = 1;
5652
5653 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5654 {
5655 /* We might be using the immediate for alignment already. If we
5656 are, OR the register number into the low-order bits. */
5657 if (inst.operands[i].immisalign)
5658 inst.operands[i].imm |= reg;
5659 else
5660 inst.operands[i].imm = reg;
5661 inst.operands[i].immisreg = 1;
5662
5663 if (skip_past_comma (&p) == SUCCESS)
5664 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5665 return PARSE_OPERAND_FAIL;
5666 }
5667 else
5668 {
5669 char *q = p;
5670 if (inst.operands[i].negative)
5671 {
5672 inst.operands[i].negative = 0;
5673 p--;
5674 }
5675 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5676 return PARSE_OPERAND_FAIL;
5677 /* If the offset is 0, find out if it's a +0 or -0. */
5678 if (inst.reloc.exp.X_op == O_constant
5679 && inst.reloc.exp.X_add_number == 0)
5680 {
5681 skip_whitespace (q);
5682 if (*q == '#')
5683 {
5684 q++;
5685 skip_whitespace (q);
5686 }
5687 if (*q == '-')
5688 inst.operands[i].negative = 1;
5689 }
5690 }
5691 }
5692 }
5693
5694 /* If at this point neither .preind nor .postind is set, we have a
5695 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5696 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5697 {
5698 inst.operands[i].preind = 1;
5699 inst.reloc.exp.X_op = O_constant;
5700 inst.reloc.exp.X_add_number = 0;
5701 }
5702 *str = p;
5703 return PARSE_OPERAND_SUCCESS;
5704 }
5705
5706 static int
5707 parse_address (char **str, int i)
5708 {
5709 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5710 ? SUCCESS : FAIL;
5711 }
5712
5713 static parse_operand_result
5714 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5715 {
5716 return parse_address_main (str, i, 1, type);
5717 }
5718
5719 /* Parse an operand for a MOVW or MOVT instruction. */
5720 static int
5721 parse_half (char **str)
5722 {
5723 char * p;
5724
5725 p = *str;
5726 skip_past_char (&p, '#');
5727 if (strncasecmp (p, ":lower16:", 9) == 0)
5728 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5729 else if (strncasecmp (p, ":upper16:", 9) == 0)
5730 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5731
5732 if (inst.reloc.type != BFD_RELOC_UNUSED)
5733 {
5734 p += 9;
5735 skip_whitespace (p);
5736 }
5737
5738 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5739 return FAIL;
5740
5741 if (inst.reloc.type == BFD_RELOC_UNUSED)
5742 {
5743 if (inst.reloc.exp.X_op != O_constant)
5744 {
5745 inst.error = _("constant expression expected");
5746 return FAIL;
5747 }
5748 if (inst.reloc.exp.X_add_number < 0
5749 || inst.reloc.exp.X_add_number > 0xffff)
5750 {
5751 inst.error = _("immediate value out of range");
5752 return FAIL;
5753 }
5754 }
5755 *str = p;
5756 return SUCCESS;
5757 }
5758
5759 /* Miscellaneous. */
5760
5761 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5762 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5763 static int
5764 parse_psr (char **str, bfd_boolean lhs)
5765 {
5766 char *p;
5767 unsigned long psr_field;
5768 const struct asm_psr *psr;
5769 char *start;
5770 bfd_boolean is_apsr = FALSE;
5771 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5772
5773 /* PR gas/12698: If the user has specified -march=all then m_profile will
5774 be TRUE, but we want to ignore it in this case as we are building for any
5775 CPU type, including non-m variants. */
5776 if (selected_cpu.core == arm_arch_any.core)
5777 m_profile = FALSE;
5778
5779 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5780 feature for ease of use and backwards compatibility. */
5781 p = *str;
5782 if (strncasecmp (p, "SPSR", 4) == 0)
5783 {
5784 if (m_profile)
5785 goto unsupported_psr;
5786
5787 psr_field = SPSR_BIT;
5788 }
5789 else if (strncasecmp (p, "CPSR", 4) == 0)
5790 {
5791 if (m_profile)
5792 goto unsupported_psr;
5793
5794 psr_field = 0;
5795 }
5796 else if (strncasecmp (p, "APSR", 4) == 0)
5797 {
5798 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5799 and ARMv7-R architecture CPUs. */
5800 is_apsr = TRUE;
5801 psr_field = 0;
5802 }
5803 else if (m_profile)
5804 {
5805 start = p;
5806 do
5807 p++;
5808 while (ISALNUM (*p) || *p == '_');
5809
5810 if (strncasecmp (start, "iapsr", 5) == 0
5811 || strncasecmp (start, "eapsr", 5) == 0
5812 || strncasecmp (start, "xpsr", 4) == 0
5813 || strncasecmp (start, "psr", 3) == 0)
5814 p = start + strcspn (start, "rR") + 1;
5815
5816 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5817 p - start);
5818
5819 if (!psr)
5820 return FAIL;
5821
5822 /* If APSR is being written, a bitfield may be specified. Note that
5823 APSR itself is handled above. */
5824 if (psr->field <= 3)
5825 {
5826 psr_field = psr->field;
5827 is_apsr = TRUE;
5828 goto check_suffix;
5829 }
5830
5831 *str = p;
5832 /* M-profile MSR instructions have the mask field set to "10", except
5833 *PSR variants which modify APSR, which may use a different mask (and
5834 have been handled already). Do that by setting the PSR_f field
5835 here. */
5836 return psr->field | (lhs ? PSR_f : 0);
5837 }
5838 else
5839 goto unsupported_psr;
5840
5841 p += 4;
5842 check_suffix:
5843 if (*p == '_')
5844 {
5845 /* A suffix follows. */
5846 p++;
5847 start = p;
5848
5849 do
5850 p++;
5851 while (ISALNUM (*p) || *p == '_');
5852
5853 if (is_apsr)
5854 {
5855 /* APSR uses a notation for bits, rather than fields. */
5856 unsigned int nzcvq_bits = 0;
5857 unsigned int g_bit = 0;
5858 char *bit;
5859
5860 for (bit = start; bit != p; bit++)
5861 {
5862 switch (TOLOWER (*bit))
5863 {
5864 case 'n':
5865 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5866 break;
5867
5868 case 'z':
5869 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5870 break;
5871
5872 case 'c':
5873 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5874 break;
5875
5876 case 'v':
5877 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5878 break;
5879
5880 case 'q':
5881 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5882 break;
5883
5884 case 'g':
5885 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5886 break;
5887
5888 default:
5889 inst.error = _("unexpected bit specified after APSR");
5890 return FAIL;
5891 }
5892 }
5893
5894 if (nzcvq_bits == 0x1f)
5895 psr_field |= PSR_f;
5896
5897 if (g_bit == 0x1)
5898 {
5899 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5900 {
5901 inst.error = _("selected processor does not "
5902 "support DSP extension");
5903 return FAIL;
5904 }
5905
5906 psr_field |= PSR_s;
5907 }
5908
5909 if ((nzcvq_bits & 0x20) != 0
5910 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5911 || (g_bit & 0x2) != 0)
5912 {
5913 inst.error = _("bad bitmask specified after APSR");
5914 return FAIL;
5915 }
5916 }
5917 else
5918 {
5919 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5920 p - start);
5921 if (!psr)
5922 goto error;
5923
5924 psr_field |= psr->field;
5925 }
5926 }
5927 else
5928 {
5929 if (ISALNUM (*p))
5930 goto error; /* Garbage after "[CS]PSR". */
5931
5932 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5933 is deprecated, but allow it anyway. */
5934 if (is_apsr && lhs)
5935 {
5936 psr_field |= PSR_f;
5937 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5938 "deprecated"));
5939 }
5940 else if (!m_profile)
5941 /* These bits are never right for M-profile devices: don't set them
5942 (only code paths which read/write APSR reach here). */
5943 psr_field |= (PSR_c | PSR_f);
5944 }
5945 *str = p;
5946 return psr_field;
5947
5948 unsupported_psr:
5949 inst.error = _("selected processor does not support requested special "
5950 "purpose register");
5951 return FAIL;
5952
5953 error:
5954 inst.error = _("flag for {c}psr instruction expected");
5955 return FAIL;
5956 }
5957
5958 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5959 value suitable for splatting into the AIF field of the instruction. */
5960
5961 static int
5962 parse_cps_flags (char **str)
5963 {
5964 int val = 0;
5965 int saw_a_flag = 0;
5966 char *s = *str;
5967
5968 for (;;)
5969 switch (*s++)
5970 {
5971 case '\0': case ',':
5972 goto done;
5973
5974 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5975 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5976 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5977
5978 default:
5979 inst.error = _("unrecognized CPS flag");
5980 return FAIL;
5981 }
5982
5983 done:
5984 if (saw_a_flag == 0)
5985 {
5986 inst.error = _("missing CPS flags");
5987 return FAIL;
5988 }
5989
5990 *str = s - 1;
5991 return val;
5992 }
5993
5994 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5995 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5996
5997 static int
5998 parse_endian_specifier (char **str)
5999 {
6000 int little_endian;
6001 char *s = *str;
6002
6003 if (strncasecmp (s, "BE", 2))
6004 little_endian = 0;
6005 else if (strncasecmp (s, "LE", 2))
6006 little_endian = 1;
6007 else
6008 {
6009 inst.error = _("valid endian specifiers are be or le");
6010 return FAIL;
6011 }
6012
6013 if (ISALNUM (s[2]) || s[2] == '_')
6014 {
6015 inst.error = _("valid endian specifiers are be or le");
6016 return FAIL;
6017 }
6018
6019 *str = s + 2;
6020 return little_endian;
6021 }
6022
6023 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6024 value suitable for poking into the rotate field of an sxt or sxta
6025 instruction, or FAIL on error. */
6026
6027 static int
6028 parse_ror (char **str)
6029 {
6030 int rot;
6031 char *s = *str;
6032
6033 if (strncasecmp (s, "ROR", 3) == 0)
6034 s += 3;
6035 else
6036 {
6037 inst.error = _("missing rotation field after comma");
6038 return FAIL;
6039 }
6040
6041 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6042 return FAIL;
6043
6044 switch (rot)
6045 {
6046 case 0: *str = s; return 0x0;
6047 case 8: *str = s; return 0x1;
6048 case 16: *str = s; return 0x2;
6049 case 24: *str = s; return 0x3;
6050
6051 default:
6052 inst.error = _("rotation can only be 0, 8, 16, or 24");
6053 return FAIL;
6054 }
6055 }
6056
6057 /* Parse a conditional code (from conds[] below). The value returned is in the
6058 range 0 .. 14, or FAIL. */
6059 static int
6060 parse_cond (char **str)
6061 {
6062 char *q;
6063 const struct asm_cond *c;
6064 int n;
6065 /* Condition codes are always 2 characters, so matching up to
6066 3 characters is sufficient. */
6067 char cond[3];
6068
6069 q = *str;
6070 n = 0;
6071 while (ISALPHA (*q) && n < 3)
6072 {
6073 cond[n] = TOLOWER (*q);
6074 q++;
6075 n++;
6076 }
6077
6078 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6079 if (!c)
6080 {
6081 inst.error = _("condition required");
6082 return FAIL;
6083 }
6084
6085 *str = q;
6086 return c->value;
6087 }
6088
6089 /* If the given feature available in the selected CPU, mark it as used.
6090 Returns TRUE iff feature is available. */
6091 static bfd_boolean
6092 mark_feature_used (const arm_feature_set *feature)
6093 {
6094 /* Ensure the option is valid on the current architecture. */
6095 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
6096 return FALSE;
6097
6098 /* Add the appropriate architecture feature for the barrier option used.
6099 */
6100 if (thumb_mode)
6101 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
6102 else
6103 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
6104
6105 return TRUE;
6106 }
6107
6108 /* Parse an option for a barrier instruction. Returns the encoding for the
6109 option, or FAIL. */
6110 static int
6111 parse_barrier (char **str)
6112 {
6113 char *p, *q;
6114 const struct asm_barrier_opt *o;
6115
6116 p = q = *str;
6117 while (ISALPHA (*q))
6118 q++;
6119
6120 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6121 q - p);
6122 if (!o)
6123 return FAIL;
6124
6125 if (!mark_feature_used (&o->arch))
6126 return FAIL;
6127
6128 *str = q;
6129 return o->value;
6130 }
6131
6132 /* Parse the operands of a table branch instruction. Similar to a memory
6133 operand. */
6134 static int
6135 parse_tb (char **str)
6136 {
6137 char * p = *str;
6138 int reg;
6139
6140 if (skip_past_char (&p, '[') == FAIL)
6141 {
6142 inst.error = _("'[' expected");
6143 return FAIL;
6144 }
6145
6146 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6147 {
6148 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6149 return FAIL;
6150 }
6151 inst.operands[0].reg = reg;
6152
6153 if (skip_past_comma (&p) == FAIL)
6154 {
6155 inst.error = _("',' expected");
6156 return FAIL;
6157 }
6158
6159 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6160 {
6161 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6162 return FAIL;
6163 }
6164 inst.operands[0].imm = reg;
6165
6166 if (skip_past_comma (&p) == SUCCESS)
6167 {
6168 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6169 return FAIL;
6170 if (inst.reloc.exp.X_add_number != 1)
6171 {
6172 inst.error = _("invalid shift");
6173 return FAIL;
6174 }
6175 inst.operands[0].shifted = 1;
6176 }
6177
6178 if (skip_past_char (&p, ']') == FAIL)
6179 {
6180 inst.error = _("']' expected");
6181 return FAIL;
6182 }
6183 *str = p;
6184 return SUCCESS;
6185 }
6186
6187 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6188 information on the types the operands can take and how they are encoded.
6189 Up to four operands may be read; this function handles setting the
6190 ".present" field for each read operand itself.
6191 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6192 else returns FAIL. */
6193
6194 static int
6195 parse_neon_mov (char **str, int *which_operand)
6196 {
6197 int i = *which_operand, val;
6198 enum arm_reg_type rtype;
6199 char *ptr = *str;
6200 struct neon_type_el optype;
6201
6202 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6203 {
6204 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6205 inst.operands[i].reg = val;
6206 inst.operands[i].isscalar = 1;
6207 inst.operands[i].vectype = optype;
6208 inst.operands[i++].present = 1;
6209
6210 if (skip_past_comma (&ptr) == FAIL)
6211 goto wanted_comma;
6212
6213 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6214 goto wanted_arm;
6215
6216 inst.operands[i].reg = val;
6217 inst.operands[i].isreg = 1;
6218 inst.operands[i].present = 1;
6219 }
6220 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6221 != FAIL)
6222 {
6223 /* Cases 0, 1, 2, 3, 5 (D only). */
6224 if (skip_past_comma (&ptr) == FAIL)
6225 goto wanted_comma;
6226
6227 inst.operands[i].reg = val;
6228 inst.operands[i].isreg = 1;
6229 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6230 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6231 inst.operands[i].isvec = 1;
6232 inst.operands[i].vectype = optype;
6233 inst.operands[i++].present = 1;
6234
6235 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6236 {
6237 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6238 Case 13: VMOV <Sd>, <Rm> */
6239 inst.operands[i].reg = val;
6240 inst.operands[i].isreg = 1;
6241 inst.operands[i].present = 1;
6242
6243 if (rtype == REG_TYPE_NQ)
6244 {
6245 first_error (_("can't use Neon quad register here"));
6246 return FAIL;
6247 }
6248 else if (rtype != REG_TYPE_VFS)
6249 {
6250 i++;
6251 if (skip_past_comma (&ptr) == FAIL)
6252 goto wanted_comma;
6253 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6254 goto wanted_arm;
6255 inst.operands[i].reg = val;
6256 inst.operands[i].isreg = 1;
6257 inst.operands[i].present = 1;
6258 }
6259 }
6260 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6261 &optype)) != FAIL)
6262 {
6263 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6264 Case 1: VMOV<c><q> <Dd>, <Dm>
6265 Case 8: VMOV.F32 <Sd>, <Sm>
6266 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6267
6268 inst.operands[i].reg = val;
6269 inst.operands[i].isreg = 1;
6270 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6271 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6272 inst.operands[i].isvec = 1;
6273 inst.operands[i].vectype = optype;
6274 inst.operands[i].present = 1;
6275
6276 if (skip_past_comma (&ptr) == SUCCESS)
6277 {
6278 /* Case 15. */
6279 i++;
6280
6281 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6282 goto wanted_arm;
6283
6284 inst.operands[i].reg = val;
6285 inst.operands[i].isreg = 1;
6286 inst.operands[i++].present = 1;
6287
6288 if (skip_past_comma (&ptr) == FAIL)
6289 goto wanted_comma;
6290
6291 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6292 goto wanted_arm;
6293
6294 inst.operands[i].reg = val;
6295 inst.operands[i].isreg = 1;
6296 inst.operands[i].present = 1;
6297 }
6298 }
6299 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6300 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6301 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6302 Case 10: VMOV.F32 <Sd>, #<imm>
6303 Case 11: VMOV.F64 <Dd>, #<imm> */
6304 inst.operands[i].immisfloat = 1;
6305 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6306 == SUCCESS)
6307 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6308 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6309 ;
6310 else
6311 {
6312 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6313 return FAIL;
6314 }
6315 }
6316 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6317 {
6318 /* Cases 6, 7. */
6319 inst.operands[i].reg = val;
6320 inst.operands[i].isreg = 1;
6321 inst.operands[i++].present = 1;
6322
6323 if (skip_past_comma (&ptr) == FAIL)
6324 goto wanted_comma;
6325
6326 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6327 {
6328 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6329 inst.operands[i].reg = val;
6330 inst.operands[i].isscalar = 1;
6331 inst.operands[i].present = 1;
6332 inst.operands[i].vectype = optype;
6333 }
6334 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6335 {
6336 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6337 inst.operands[i].reg = val;
6338 inst.operands[i].isreg = 1;
6339 inst.operands[i++].present = 1;
6340
6341 if (skip_past_comma (&ptr) == FAIL)
6342 goto wanted_comma;
6343
6344 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6345 == FAIL)
6346 {
6347 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6348 return FAIL;
6349 }
6350
6351 inst.operands[i].reg = val;
6352 inst.operands[i].isreg = 1;
6353 inst.operands[i].isvec = 1;
6354 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6355 inst.operands[i].vectype = optype;
6356 inst.operands[i].present = 1;
6357
6358 if (rtype == REG_TYPE_VFS)
6359 {
6360 /* Case 14. */
6361 i++;
6362 if (skip_past_comma (&ptr) == FAIL)
6363 goto wanted_comma;
6364 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6365 &optype)) == FAIL)
6366 {
6367 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6368 return FAIL;
6369 }
6370 inst.operands[i].reg = val;
6371 inst.operands[i].isreg = 1;
6372 inst.operands[i].isvec = 1;
6373 inst.operands[i].issingle = 1;
6374 inst.operands[i].vectype = optype;
6375 inst.operands[i].present = 1;
6376 }
6377 }
6378 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6379 != FAIL)
6380 {
6381 /* Case 13. */
6382 inst.operands[i].reg = val;
6383 inst.operands[i].isreg = 1;
6384 inst.operands[i].isvec = 1;
6385 inst.operands[i].issingle = 1;
6386 inst.operands[i].vectype = optype;
6387 inst.operands[i].present = 1;
6388 }
6389 }
6390 else
6391 {
6392 first_error (_("parse error"));
6393 return FAIL;
6394 }
6395
6396 /* Successfully parsed the operands. Update args. */
6397 *which_operand = i;
6398 *str = ptr;
6399 return SUCCESS;
6400
6401 wanted_comma:
6402 first_error (_("expected comma"));
6403 return FAIL;
6404
6405 wanted_arm:
6406 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6407 return FAIL;
6408 }
6409
6410 /* Use this macro when the operand constraints are different
6411 for ARM and THUMB (e.g. ldrd). */
6412 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6413 ((arm_operand) | ((thumb_operand) << 16))
6414
6415 /* Matcher codes for parse_operands. */
6416 enum operand_parse_code
6417 {
6418 OP_stop, /* end of line */
6419
6420 OP_RR, /* ARM register */
6421 OP_RRnpc, /* ARM register, not r15 */
6422 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6423 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6424 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6425 optional trailing ! */
6426 OP_RRw, /* ARM register, not r15, optional trailing ! */
6427 OP_RCP, /* Coprocessor number */
6428 OP_RCN, /* Coprocessor register */
6429 OP_RF, /* FPA register */
6430 OP_RVS, /* VFP single precision register */
6431 OP_RVD, /* VFP double precision register (0..15) */
6432 OP_RND, /* Neon double precision register (0..31) */
6433 OP_RNQ, /* Neon quad precision register */
6434 OP_RVSD, /* VFP single or double precision register */
6435 OP_RNDQ, /* Neon double or quad precision register */
6436 OP_RNSDQ, /* Neon single, double or quad precision register */
6437 OP_RNSC, /* Neon scalar D[X] */
6438 OP_RVC, /* VFP control register */
6439 OP_RMF, /* Maverick F register */
6440 OP_RMD, /* Maverick D register */
6441 OP_RMFX, /* Maverick FX register */
6442 OP_RMDX, /* Maverick DX register */
6443 OP_RMAX, /* Maverick AX register */
6444 OP_RMDS, /* Maverick DSPSC register */
6445 OP_RIWR, /* iWMMXt wR register */
6446 OP_RIWC, /* iWMMXt wC register */
6447 OP_RIWG, /* iWMMXt wCG register */
6448 OP_RXA, /* XScale accumulator register */
6449
6450 OP_REGLST, /* ARM register list */
6451 OP_VRSLST, /* VFP single-precision register list */
6452 OP_VRDLST, /* VFP double-precision register list */
6453 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6454 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6455 OP_NSTRLST, /* Neon element/structure list */
6456
6457 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6458 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6459 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6460 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6461 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6462 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6463 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6464 OP_VMOV, /* Neon VMOV operands. */
6465 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6466 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6467 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6468
6469 OP_I0, /* immediate zero */
6470 OP_I7, /* immediate value 0 .. 7 */
6471 OP_I15, /* 0 .. 15 */
6472 OP_I16, /* 1 .. 16 */
6473 OP_I16z, /* 0 .. 16 */
6474 OP_I31, /* 0 .. 31 */
6475 OP_I31w, /* 0 .. 31, optional trailing ! */
6476 OP_I32, /* 1 .. 32 */
6477 OP_I32z, /* 0 .. 32 */
6478 OP_I63, /* 0 .. 63 */
6479 OP_I63s, /* -64 .. 63 */
6480 OP_I64, /* 1 .. 64 */
6481 OP_I64z, /* 0 .. 64 */
6482 OP_I255, /* 0 .. 255 */
6483
6484 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6485 OP_I7b, /* 0 .. 7 */
6486 OP_I15b, /* 0 .. 15 */
6487 OP_I31b, /* 0 .. 31 */
6488
6489 OP_SH, /* shifter operand */
6490 OP_SHG, /* shifter operand with possible group relocation */
6491 OP_ADDR, /* Memory address expression (any mode) */
6492 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6493 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6494 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6495 OP_EXP, /* arbitrary expression */
6496 OP_EXPi, /* same, with optional immediate prefix */
6497 OP_EXPr, /* same, with optional relocation suffix */
6498 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6499
6500 OP_CPSF, /* CPS flags */
6501 OP_ENDI, /* Endianness specifier */
6502 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6503 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6504 OP_COND, /* conditional code */
6505 OP_TB, /* Table branch. */
6506
6507 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6508
6509 OP_RRnpc_I0, /* ARM register or literal 0 */
6510 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6511 OP_RR_EXi, /* ARM register or expression with imm prefix */
6512 OP_RF_IF, /* FPA register or immediate */
6513 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6514 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6515
6516 /* Optional operands. */
6517 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6518 OP_oI31b, /* 0 .. 31 */
6519 OP_oI32b, /* 1 .. 32 */
6520 OP_oI32z, /* 0 .. 32 */
6521 OP_oIffffb, /* 0 .. 65535 */
6522 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6523
6524 OP_oRR, /* ARM register */
6525 OP_oRRnpc, /* ARM register, not the PC */
6526 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6527 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6528 OP_oRND, /* Optional Neon double precision register */
6529 OP_oRNQ, /* Optional Neon quad precision register */
6530 OP_oRNDQ, /* Optional Neon double or quad precision register */
6531 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6532 OP_oSHll, /* LSL immediate */
6533 OP_oSHar, /* ASR immediate */
6534 OP_oSHllar, /* LSL or ASR immediate */
6535 OP_oROR, /* ROR 0/8/16/24 */
6536 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6537
6538 /* Some pre-defined mixed (ARM/THUMB) operands. */
6539 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6540 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6541 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6542
6543 OP_FIRST_OPTIONAL = OP_oI7b
6544 };
6545
6546 /* Generic instruction operand parser. This does no encoding and no
6547 semantic validation; it merely squirrels values away in the inst
6548 structure. Returns SUCCESS or FAIL depending on whether the
6549 specified grammar matched. */
6550 static int
6551 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6552 {
6553 unsigned const int *upat = pattern;
6554 char *backtrack_pos = 0;
6555 const char *backtrack_error = 0;
6556 int i, val = 0, backtrack_index = 0;
6557 enum arm_reg_type rtype;
6558 parse_operand_result result;
6559 unsigned int op_parse_code;
6560
6561 #define po_char_or_fail(chr) \
6562 do \
6563 { \
6564 if (skip_past_char (&str, chr) == FAIL) \
6565 goto bad_args; \
6566 } \
6567 while (0)
6568
6569 #define po_reg_or_fail(regtype) \
6570 do \
6571 { \
6572 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6573 & inst.operands[i].vectype); \
6574 if (val == FAIL) \
6575 { \
6576 first_error (_(reg_expected_msgs[regtype])); \
6577 goto failure; \
6578 } \
6579 inst.operands[i].reg = val; \
6580 inst.operands[i].isreg = 1; \
6581 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6582 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6583 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6584 || rtype == REG_TYPE_VFD \
6585 || rtype == REG_TYPE_NQ); \
6586 } \
6587 while (0)
6588
6589 #define po_reg_or_goto(regtype, label) \
6590 do \
6591 { \
6592 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6593 & inst.operands[i].vectype); \
6594 if (val == FAIL) \
6595 goto label; \
6596 \
6597 inst.operands[i].reg = val; \
6598 inst.operands[i].isreg = 1; \
6599 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6600 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6601 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6602 || rtype == REG_TYPE_VFD \
6603 || rtype == REG_TYPE_NQ); \
6604 } \
6605 while (0)
6606
6607 #define po_imm_or_fail(min, max, popt) \
6608 do \
6609 { \
6610 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6611 goto failure; \
6612 inst.operands[i].imm = val; \
6613 } \
6614 while (0)
6615
6616 #define po_scalar_or_goto(elsz, label) \
6617 do \
6618 { \
6619 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6620 if (val == FAIL) \
6621 goto label; \
6622 inst.operands[i].reg = val; \
6623 inst.operands[i].isscalar = 1; \
6624 } \
6625 while (0)
6626
6627 #define po_misc_or_fail(expr) \
6628 do \
6629 { \
6630 if (expr) \
6631 goto failure; \
6632 } \
6633 while (0)
6634
6635 #define po_misc_or_fail_no_backtrack(expr) \
6636 do \
6637 { \
6638 result = expr; \
6639 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6640 backtrack_pos = 0; \
6641 if (result != PARSE_OPERAND_SUCCESS) \
6642 goto failure; \
6643 } \
6644 while (0)
6645
6646 #define po_barrier_or_imm(str) \
6647 do \
6648 { \
6649 val = parse_barrier (&str); \
6650 if (val == FAIL && ! ISALPHA (*str)) \
6651 goto immediate; \
6652 if (val == FAIL \
6653 /* ISB can only take SY as an option. */ \
6654 || ((inst.instruction & 0xf0) == 0x60 \
6655 && val != 0xf)) \
6656 { \
6657 inst.error = _("invalid barrier type"); \
6658 backtrack_pos = 0; \
6659 goto failure; \
6660 } \
6661 } \
6662 while (0)
6663
6664 skip_whitespace (str);
6665
6666 for (i = 0; upat[i] != OP_stop; i++)
6667 {
6668 op_parse_code = upat[i];
6669 if (op_parse_code >= 1<<16)
6670 op_parse_code = thumb ? (op_parse_code >> 16)
6671 : (op_parse_code & ((1<<16)-1));
6672
6673 if (op_parse_code >= OP_FIRST_OPTIONAL)
6674 {
6675 /* Remember where we are in case we need to backtrack. */
6676 gas_assert (!backtrack_pos);
6677 backtrack_pos = str;
6678 backtrack_error = inst.error;
6679 backtrack_index = i;
6680 }
6681
6682 if (i > 0 && (i > 1 || inst.operands[0].present))
6683 po_char_or_fail (',');
6684
6685 switch (op_parse_code)
6686 {
6687 /* Registers */
6688 case OP_oRRnpc:
6689 case OP_oRRnpcsp:
6690 case OP_RRnpc:
6691 case OP_RRnpcsp:
6692 case OP_oRR:
6693 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6694 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6695 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6696 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6697 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6698 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6699 case OP_oRND:
6700 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6701 case OP_RVC:
6702 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6703 break;
6704 /* Also accept generic coprocessor regs for unknown registers. */
6705 coproc_reg:
6706 po_reg_or_fail (REG_TYPE_CN);
6707 break;
6708 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6709 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6710 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6711 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6712 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6713 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6714 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6715 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6716 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6717 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6718 case OP_oRNQ:
6719 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6720 case OP_oRNDQ:
6721 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6722 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6723 case OP_oRNSDQ:
6724 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6725
6726 /* Neon scalar. Using an element size of 8 means that some invalid
6727 scalars are accepted here, so deal with those in later code. */
6728 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6729
6730 case OP_RNDQ_I0:
6731 {
6732 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6733 break;
6734 try_imm0:
6735 po_imm_or_fail (0, 0, TRUE);
6736 }
6737 break;
6738
6739 case OP_RVSD_I0:
6740 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6741 break;
6742
6743 case OP_RSVD_FI0:
6744 {
6745 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
6746 break;
6747 try_ifimm0:
6748 if (parse_ifimm_zero (&str))
6749 inst.operands[i].imm = 0;
6750 else
6751 {
6752 inst.error
6753 = _("only floating point zero is allowed as immediate value");
6754 goto failure;
6755 }
6756 }
6757 break;
6758
6759 case OP_RR_RNSC:
6760 {
6761 po_scalar_or_goto (8, try_rr);
6762 break;
6763 try_rr:
6764 po_reg_or_fail (REG_TYPE_RN);
6765 }
6766 break;
6767
6768 case OP_RNSDQ_RNSC:
6769 {
6770 po_scalar_or_goto (8, try_nsdq);
6771 break;
6772 try_nsdq:
6773 po_reg_or_fail (REG_TYPE_NSDQ);
6774 }
6775 break;
6776
6777 case OP_RNDQ_RNSC:
6778 {
6779 po_scalar_or_goto (8, try_ndq);
6780 break;
6781 try_ndq:
6782 po_reg_or_fail (REG_TYPE_NDQ);
6783 }
6784 break;
6785
6786 case OP_RND_RNSC:
6787 {
6788 po_scalar_or_goto (8, try_vfd);
6789 break;
6790 try_vfd:
6791 po_reg_or_fail (REG_TYPE_VFD);
6792 }
6793 break;
6794
6795 case OP_VMOV:
6796 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6797 not careful then bad things might happen. */
6798 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6799 break;
6800
6801 case OP_RNDQ_Ibig:
6802 {
6803 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6804 break;
6805 try_immbig:
6806 /* There's a possibility of getting a 64-bit immediate here, so
6807 we need special handling. */
6808 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
6809 == FAIL)
6810 {
6811 inst.error = _("immediate value is out of range");
6812 goto failure;
6813 }
6814 }
6815 break;
6816
6817 case OP_RNDQ_I63b:
6818 {
6819 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6820 break;
6821 try_shimm:
6822 po_imm_or_fail (0, 63, TRUE);
6823 }
6824 break;
6825
6826 case OP_RRnpcb:
6827 po_char_or_fail ('[');
6828 po_reg_or_fail (REG_TYPE_RN);
6829 po_char_or_fail (']');
6830 break;
6831
6832 case OP_RRnpctw:
6833 case OP_RRw:
6834 case OP_oRRw:
6835 po_reg_or_fail (REG_TYPE_RN);
6836 if (skip_past_char (&str, '!') == SUCCESS)
6837 inst.operands[i].writeback = 1;
6838 break;
6839
6840 /* Immediates */
6841 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6842 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6843 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6844 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6845 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6846 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6847 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6848 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6849 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6850 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6851 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6852 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6853
6854 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6855 case OP_oI7b:
6856 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6857 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6858 case OP_oI31b:
6859 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6860 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6861 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6862 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6863
6864 /* Immediate variants */
6865 case OP_oI255c:
6866 po_char_or_fail ('{');
6867 po_imm_or_fail (0, 255, TRUE);
6868 po_char_or_fail ('}');
6869 break;
6870
6871 case OP_I31w:
6872 /* The expression parser chokes on a trailing !, so we have
6873 to find it first and zap it. */
6874 {
6875 char *s = str;
6876 while (*s && *s != ',')
6877 s++;
6878 if (s[-1] == '!')
6879 {
6880 s[-1] = '\0';
6881 inst.operands[i].writeback = 1;
6882 }
6883 po_imm_or_fail (0, 31, TRUE);
6884 if (str == s - 1)
6885 str = s;
6886 }
6887 break;
6888
6889 /* Expressions */
6890 case OP_EXPi: EXPi:
6891 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6892 GE_OPT_PREFIX));
6893 break;
6894
6895 case OP_EXP:
6896 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6897 GE_NO_PREFIX));
6898 break;
6899
6900 case OP_EXPr: EXPr:
6901 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6902 GE_NO_PREFIX));
6903 if (inst.reloc.exp.X_op == O_symbol)
6904 {
6905 val = parse_reloc (&str);
6906 if (val == -1)
6907 {
6908 inst.error = _("unrecognized relocation suffix");
6909 goto failure;
6910 }
6911 else if (val != BFD_RELOC_UNUSED)
6912 {
6913 inst.operands[i].imm = val;
6914 inst.operands[i].hasreloc = 1;
6915 }
6916 }
6917 break;
6918
6919 /* Operand for MOVW or MOVT. */
6920 case OP_HALF:
6921 po_misc_or_fail (parse_half (&str));
6922 break;
6923
6924 /* Register or expression. */
6925 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6926 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6927
6928 /* Register or immediate. */
6929 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6930 I0: po_imm_or_fail (0, 0, FALSE); break;
6931
6932 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6933 IF:
6934 if (!is_immediate_prefix (*str))
6935 goto bad_args;
6936 str++;
6937 val = parse_fpa_immediate (&str);
6938 if (val == FAIL)
6939 goto failure;
6940 /* FPA immediates are encoded as registers 8-15.
6941 parse_fpa_immediate has already applied the offset. */
6942 inst.operands[i].reg = val;
6943 inst.operands[i].isreg = 1;
6944 break;
6945
6946 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6947 I32z: po_imm_or_fail (0, 32, FALSE); break;
6948
6949 /* Two kinds of register. */
6950 case OP_RIWR_RIWC:
6951 {
6952 struct reg_entry *rege = arm_reg_parse_multi (&str);
6953 if (!rege
6954 || (rege->type != REG_TYPE_MMXWR
6955 && rege->type != REG_TYPE_MMXWC
6956 && rege->type != REG_TYPE_MMXWCG))
6957 {
6958 inst.error = _("iWMMXt data or control register expected");
6959 goto failure;
6960 }
6961 inst.operands[i].reg = rege->number;
6962 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6963 }
6964 break;
6965
6966 case OP_RIWC_RIWG:
6967 {
6968 struct reg_entry *rege = arm_reg_parse_multi (&str);
6969 if (!rege
6970 || (rege->type != REG_TYPE_MMXWC
6971 && rege->type != REG_TYPE_MMXWCG))
6972 {
6973 inst.error = _("iWMMXt control register expected");
6974 goto failure;
6975 }
6976 inst.operands[i].reg = rege->number;
6977 inst.operands[i].isreg = 1;
6978 }
6979 break;
6980
6981 /* Misc */
6982 case OP_CPSF: val = parse_cps_flags (&str); break;
6983 case OP_ENDI: val = parse_endian_specifier (&str); break;
6984 case OP_oROR: val = parse_ror (&str); break;
6985 case OP_COND: val = parse_cond (&str); break;
6986 case OP_oBARRIER_I15:
6987 po_barrier_or_imm (str); break;
6988 immediate:
6989 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6990 goto failure;
6991 break;
6992
6993 case OP_wPSR:
6994 case OP_rPSR:
6995 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6996 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6997 {
6998 inst.error = _("Banked registers are not available with this "
6999 "architecture.");
7000 goto failure;
7001 }
7002 break;
7003 try_psr:
7004 val = parse_psr (&str, op_parse_code == OP_wPSR);
7005 break;
7006
7007 case OP_APSR_RR:
7008 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7009 break;
7010 try_apsr:
7011 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7012 instruction). */
7013 if (strncasecmp (str, "APSR_", 5) == 0)
7014 {
7015 unsigned found = 0;
7016 str += 5;
7017 while (found < 15)
7018 switch (*str++)
7019 {
7020 case 'c': found = (found & 1) ? 16 : found | 1; break;
7021 case 'n': found = (found & 2) ? 16 : found | 2; break;
7022 case 'z': found = (found & 4) ? 16 : found | 4; break;
7023 case 'v': found = (found & 8) ? 16 : found | 8; break;
7024 default: found = 16;
7025 }
7026 if (found != 15)
7027 goto failure;
7028 inst.operands[i].isvec = 1;
7029 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7030 inst.operands[i].reg = REG_PC;
7031 }
7032 else
7033 goto failure;
7034 break;
7035
7036 case OP_TB:
7037 po_misc_or_fail (parse_tb (&str));
7038 break;
7039
7040 /* Register lists. */
7041 case OP_REGLST:
7042 val = parse_reg_list (&str);
7043 if (*str == '^')
7044 {
7045 inst.operands[1].writeback = 1;
7046 str++;
7047 }
7048 break;
7049
7050 case OP_VRSLST:
7051 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
7052 break;
7053
7054 case OP_VRDLST:
7055 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
7056 break;
7057
7058 case OP_VRSDLST:
7059 /* Allow Q registers too. */
7060 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7061 REGLIST_NEON_D);
7062 if (val == FAIL)
7063 {
7064 inst.error = NULL;
7065 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7066 REGLIST_VFP_S);
7067 inst.operands[i].issingle = 1;
7068 }
7069 break;
7070
7071 case OP_NRDLST:
7072 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7073 REGLIST_NEON_D);
7074 break;
7075
7076 case OP_NSTRLST:
7077 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7078 &inst.operands[i].vectype);
7079 break;
7080
7081 /* Addressing modes */
7082 case OP_ADDR:
7083 po_misc_or_fail (parse_address (&str, i));
7084 break;
7085
7086 case OP_ADDRGLDR:
7087 po_misc_or_fail_no_backtrack (
7088 parse_address_group_reloc (&str, i, GROUP_LDR));
7089 break;
7090
7091 case OP_ADDRGLDRS:
7092 po_misc_or_fail_no_backtrack (
7093 parse_address_group_reloc (&str, i, GROUP_LDRS));
7094 break;
7095
7096 case OP_ADDRGLDC:
7097 po_misc_or_fail_no_backtrack (
7098 parse_address_group_reloc (&str, i, GROUP_LDC));
7099 break;
7100
7101 case OP_SH:
7102 po_misc_or_fail (parse_shifter_operand (&str, i));
7103 break;
7104
7105 case OP_SHG:
7106 po_misc_or_fail_no_backtrack (
7107 parse_shifter_operand_group_reloc (&str, i));
7108 break;
7109
7110 case OP_oSHll:
7111 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7112 break;
7113
7114 case OP_oSHar:
7115 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7116 break;
7117
7118 case OP_oSHllar:
7119 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7120 break;
7121
7122 default:
7123 as_fatal (_("unhandled operand code %d"), op_parse_code);
7124 }
7125
7126 /* Various value-based sanity checks and shared operations. We
7127 do not signal immediate failures for the register constraints;
7128 this allows a syntax error to take precedence. */
7129 switch (op_parse_code)
7130 {
7131 case OP_oRRnpc:
7132 case OP_RRnpc:
7133 case OP_RRnpcb:
7134 case OP_RRw:
7135 case OP_oRRw:
7136 case OP_RRnpc_I0:
7137 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7138 inst.error = BAD_PC;
7139 break;
7140
7141 case OP_oRRnpcsp:
7142 case OP_RRnpcsp:
7143 if (inst.operands[i].isreg)
7144 {
7145 if (inst.operands[i].reg == REG_PC)
7146 inst.error = BAD_PC;
7147 else if (inst.operands[i].reg == REG_SP)
7148 inst.error = BAD_SP;
7149 }
7150 break;
7151
7152 case OP_RRnpctw:
7153 if (inst.operands[i].isreg
7154 && inst.operands[i].reg == REG_PC
7155 && (inst.operands[i].writeback || thumb))
7156 inst.error = BAD_PC;
7157 break;
7158
7159 case OP_CPSF:
7160 case OP_ENDI:
7161 case OP_oROR:
7162 case OP_wPSR:
7163 case OP_rPSR:
7164 case OP_COND:
7165 case OP_oBARRIER_I15:
7166 case OP_REGLST:
7167 case OP_VRSLST:
7168 case OP_VRDLST:
7169 case OP_VRSDLST:
7170 case OP_NRDLST:
7171 case OP_NSTRLST:
7172 if (val == FAIL)
7173 goto failure;
7174 inst.operands[i].imm = val;
7175 break;
7176
7177 default:
7178 break;
7179 }
7180
7181 /* If we get here, this operand was successfully parsed. */
7182 inst.operands[i].present = 1;
7183 continue;
7184
7185 bad_args:
7186 inst.error = BAD_ARGS;
7187
7188 failure:
7189 if (!backtrack_pos)
7190 {
7191 /* The parse routine should already have set inst.error, but set a
7192 default here just in case. */
7193 if (!inst.error)
7194 inst.error = _("syntax error");
7195 return FAIL;
7196 }
7197
7198 /* Do not backtrack over a trailing optional argument that
7199 absorbed some text. We will only fail again, with the
7200 'garbage following instruction' error message, which is
7201 probably less helpful than the current one. */
7202 if (backtrack_index == i && backtrack_pos != str
7203 && upat[i+1] == OP_stop)
7204 {
7205 if (!inst.error)
7206 inst.error = _("syntax error");
7207 return FAIL;
7208 }
7209
7210 /* Try again, skipping the optional argument at backtrack_pos. */
7211 str = backtrack_pos;
7212 inst.error = backtrack_error;
7213 inst.operands[backtrack_index].present = 0;
7214 i = backtrack_index;
7215 backtrack_pos = 0;
7216 }
7217
7218 /* Check that we have parsed all the arguments. */
7219 if (*str != '\0' && !inst.error)
7220 inst.error = _("garbage following instruction");
7221
7222 return inst.error ? FAIL : SUCCESS;
7223 }
7224
7225 #undef po_char_or_fail
7226 #undef po_reg_or_fail
7227 #undef po_reg_or_goto
7228 #undef po_imm_or_fail
7229 #undef po_scalar_or_fail
7230 #undef po_barrier_or_imm
7231
7232 /* Shorthand macro for instruction encoding functions issuing errors. */
7233 #define constraint(expr, err) \
7234 do \
7235 { \
7236 if (expr) \
7237 { \
7238 inst.error = err; \
7239 return; \
7240 } \
7241 } \
7242 while (0)
7243
7244 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7245 instructions are unpredictable if these registers are used. This
7246 is the BadReg predicate in ARM's Thumb-2 documentation. */
7247 #define reject_bad_reg(reg) \
7248 do \
7249 if (reg == REG_SP || reg == REG_PC) \
7250 { \
7251 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
7252 return; \
7253 } \
7254 while (0)
7255
7256 /* If REG is R13 (the stack pointer), warn that its use is
7257 deprecated. */
7258 #define warn_deprecated_sp(reg) \
7259 do \
7260 if (warn_on_deprecated && reg == REG_SP) \
7261 as_tsktsk (_("use of r13 is deprecated")); \
7262 while (0)
7263
7264 /* Functions for operand encoding. ARM, then Thumb. */
7265
7266 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7267
7268 /* If VAL can be encoded in the immediate field of an ARM instruction,
7269 return the encoded form. Otherwise, return FAIL. */
7270
7271 static unsigned int
7272 encode_arm_immediate (unsigned int val)
7273 {
7274 unsigned int a, i;
7275
7276 for (i = 0; i < 32; i += 2)
7277 if ((a = rotate_left (val, i)) <= 0xff)
7278 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7279
7280 return FAIL;
7281 }
7282
7283 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7284 return the encoded form. Otherwise, return FAIL. */
7285 static unsigned int
7286 encode_thumb32_immediate (unsigned int val)
7287 {
7288 unsigned int a, i;
7289
7290 if (val <= 0xff)
7291 return val;
7292
7293 for (i = 1; i <= 24; i++)
7294 {
7295 a = val >> i;
7296 if ((val & ~(0xff << i)) == 0)
7297 return ((val >> i) & 0x7f) | ((32 - i) << 7);
7298 }
7299
7300 a = val & 0xff;
7301 if (val == ((a << 16) | a))
7302 return 0x100 | a;
7303 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
7304 return 0x300 | a;
7305
7306 a = val & 0xff00;
7307 if (val == ((a << 16) | a))
7308 return 0x200 | (a >> 8);
7309
7310 return FAIL;
7311 }
7312 /* Encode a VFP SP or DP register number into inst.instruction. */
7313
7314 static void
7315 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
7316 {
7317 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
7318 && reg > 15)
7319 {
7320 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
7321 {
7322 if (thumb_mode)
7323 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
7324 fpu_vfp_ext_d32);
7325 else
7326 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
7327 fpu_vfp_ext_d32);
7328 }
7329 else
7330 {
7331 first_error (_("D register out of range for selected VFP version"));
7332 return;
7333 }
7334 }
7335
7336 switch (pos)
7337 {
7338 case VFP_REG_Sd:
7339 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7340 break;
7341
7342 case VFP_REG_Sn:
7343 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7344 break;
7345
7346 case VFP_REG_Sm:
7347 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7348 break;
7349
7350 case VFP_REG_Dd:
7351 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7352 break;
7353
7354 case VFP_REG_Dn:
7355 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7356 break;
7357
7358 case VFP_REG_Dm:
7359 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7360 break;
7361
7362 default:
7363 abort ();
7364 }
7365 }
7366
7367 /* Encode a <shift> in an ARM-format instruction. The immediate,
7368 if any, is handled by md_apply_fix. */
7369 static void
7370 encode_arm_shift (int i)
7371 {
7372 if (inst.operands[i].shift_kind == SHIFT_RRX)
7373 inst.instruction |= SHIFT_ROR << 5;
7374 else
7375 {
7376 inst.instruction |= inst.operands[i].shift_kind << 5;
7377 if (inst.operands[i].immisreg)
7378 {
7379 inst.instruction |= SHIFT_BY_REG;
7380 inst.instruction |= inst.operands[i].imm << 8;
7381 }
7382 else
7383 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7384 }
7385 }
7386
7387 static void
7388 encode_arm_shifter_operand (int i)
7389 {
7390 if (inst.operands[i].isreg)
7391 {
7392 inst.instruction |= inst.operands[i].reg;
7393 encode_arm_shift (i);
7394 }
7395 else
7396 {
7397 inst.instruction |= INST_IMMEDIATE;
7398 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7399 inst.instruction |= inst.operands[i].imm;
7400 }
7401 }
7402
7403 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7404 static void
7405 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7406 {
7407 /* PR 14260:
7408 Generate an error if the operand is not a register. */
7409 constraint (!inst.operands[i].isreg,
7410 _("Instruction does not support =N addresses"));
7411
7412 inst.instruction |= inst.operands[i].reg << 16;
7413
7414 if (inst.operands[i].preind)
7415 {
7416 if (is_t)
7417 {
7418 inst.error = _("instruction does not accept preindexed addressing");
7419 return;
7420 }
7421 inst.instruction |= PRE_INDEX;
7422 if (inst.operands[i].writeback)
7423 inst.instruction |= WRITE_BACK;
7424
7425 }
7426 else if (inst.operands[i].postind)
7427 {
7428 gas_assert (inst.operands[i].writeback);
7429 if (is_t)
7430 inst.instruction |= WRITE_BACK;
7431 }
7432 else /* unindexed - only for coprocessor */
7433 {
7434 inst.error = _("instruction does not accept unindexed addressing");
7435 return;
7436 }
7437
7438 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7439 && (((inst.instruction & 0x000f0000) >> 16)
7440 == ((inst.instruction & 0x0000f000) >> 12)))
7441 as_warn ((inst.instruction & LOAD_BIT)
7442 ? _("destination register same as write-back base")
7443 : _("source register same as write-back base"));
7444 }
7445
7446 /* inst.operands[i] was set up by parse_address. Encode it into an
7447 ARM-format mode 2 load or store instruction. If is_t is true,
7448 reject forms that cannot be used with a T instruction (i.e. not
7449 post-indexed). */
7450 static void
7451 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7452 {
7453 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7454
7455 encode_arm_addr_mode_common (i, is_t);
7456
7457 if (inst.operands[i].immisreg)
7458 {
7459 constraint ((inst.operands[i].imm == REG_PC
7460 || (is_pc && inst.operands[i].writeback)),
7461 BAD_PC_ADDRESSING);
7462 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7463 inst.instruction |= inst.operands[i].imm;
7464 if (!inst.operands[i].negative)
7465 inst.instruction |= INDEX_UP;
7466 if (inst.operands[i].shifted)
7467 {
7468 if (inst.operands[i].shift_kind == SHIFT_RRX)
7469 inst.instruction |= SHIFT_ROR << 5;
7470 else
7471 {
7472 inst.instruction |= inst.operands[i].shift_kind << 5;
7473 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7474 }
7475 }
7476 }
7477 else /* immediate offset in inst.reloc */
7478 {
7479 if (is_pc && !inst.reloc.pc_rel)
7480 {
7481 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7482
7483 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7484 cannot use PC in addressing.
7485 PC cannot be used in writeback addressing, either. */
7486 constraint ((is_t || inst.operands[i].writeback),
7487 BAD_PC_ADDRESSING);
7488
7489 /* Use of PC in str is deprecated for ARMv7. */
7490 if (warn_on_deprecated
7491 && !is_load
7492 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7493 as_tsktsk (_("use of PC in this instruction is deprecated"));
7494 }
7495
7496 if (inst.reloc.type == BFD_RELOC_UNUSED)
7497 {
7498 /* Prefer + for zero encoded value. */
7499 if (!inst.operands[i].negative)
7500 inst.instruction |= INDEX_UP;
7501 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7502 }
7503 }
7504 }
7505
7506 /* inst.operands[i] was set up by parse_address. Encode it into an
7507 ARM-format mode 3 load or store instruction. Reject forms that
7508 cannot be used with such instructions. If is_t is true, reject
7509 forms that cannot be used with a T instruction (i.e. not
7510 post-indexed). */
7511 static void
7512 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7513 {
7514 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7515 {
7516 inst.error = _("instruction does not accept scaled register index");
7517 return;
7518 }
7519
7520 encode_arm_addr_mode_common (i, is_t);
7521
7522 if (inst.operands[i].immisreg)
7523 {
7524 constraint ((inst.operands[i].imm == REG_PC
7525 || (is_t && inst.operands[i].reg == REG_PC)),
7526 BAD_PC_ADDRESSING);
7527 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
7528 BAD_PC_WRITEBACK);
7529 inst.instruction |= inst.operands[i].imm;
7530 if (!inst.operands[i].negative)
7531 inst.instruction |= INDEX_UP;
7532 }
7533 else /* immediate offset in inst.reloc */
7534 {
7535 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7536 && inst.operands[i].writeback),
7537 BAD_PC_WRITEBACK);
7538 inst.instruction |= HWOFFSET_IMM;
7539 if (inst.reloc.type == BFD_RELOC_UNUSED)
7540 {
7541 /* Prefer + for zero encoded value. */
7542 if (!inst.operands[i].negative)
7543 inst.instruction |= INDEX_UP;
7544
7545 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7546 }
7547 }
7548 }
7549
7550 /* Write immediate bits [7:0] to the following locations:
7551
7552 |28/24|23 19|18 16|15 4|3 0|
7553 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
7554
7555 This function is used by VMOV/VMVN/VORR/VBIC. */
7556
7557 static void
7558 neon_write_immbits (unsigned immbits)
7559 {
7560 inst.instruction |= immbits & 0xf;
7561 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
7562 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
7563 }
7564
7565 /* Invert low-order SIZE bits of XHI:XLO. */
7566
7567 static void
7568 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
7569 {
7570 unsigned immlo = xlo ? *xlo : 0;
7571 unsigned immhi = xhi ? *xhi : 0;
7572
7573 switch (size)
7574 {
7575 case 8:
7576 immlo = (~immlo) & 0xff;
7577 break;
7578
7579 case 16:
7580 immlo = (~immlo) & 0xffff;
7581 break;
7582
7583 case 64:
7584 immhi = (~immhi) & 0xffffffff;
7585 /* fall through. */
7586
7587 case 32:
7588 immlo = (~immlo) & 0xffffffff;
7589 break;
7590
7591 default:
7592 abort ();
7593 }
7594
7595 if (xlo)
7596 *xlo = immlo;
7597
7598 if (xhi)
7599 *xhi = immhi;
7600 }
7601
7602 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
7603 A, B, C, D. */
7604
7605 static int
7606 neon_bits_same_in_bytes (unsigned imm)
7607 {
7608 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
7609 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
7610 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
7611 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
7612 }
7613
7614 /* For immediate of above form, return 0bABCD. */
7615
7616 static unsigned
7617 neon_squash_bits (unsigned imm)
7618 {
7619 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
7620 | ((imm & 0x01000000) >> 21);
7621 }
7622
7623 /* Compress quarter-float representation to 0b...000 abcdefgh. */
7624
7625 static unsigned
7626 neon_qfloat_bits (unsigned imm)
7627 {
7628 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
7629 }
7630
7631 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
7632 the instruction. *OP is passed as the initial value of the op field, and
7633 may be set to a different value depending on the constant (i.e.
7634 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
7635 MVN). If the immediate looks like a repeated pattern then also
7636 try smaller element sizes. */
7637
7638 static int
7639 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
7640 unsigned *immbits, int *op, int size,
7641 enum neon_el_type type)
7642 {
7643 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
7644 float. */
7645 if (type == NT_float && !float_p)
7646 return FAIL;
7647
7648 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
7649 {
7650 if (size != 32 || *op == 1)
7651 return FAIL;
7652 *immbits = neon_qfloat_bits (immlo);
7653 return 0xf;
7654 }
7655
7656 if (size == 64)
7657 {
7658 if (neon_bits_same_in_bytes (immhi)
7659 && neon_bits_same_in_bytes (immlo))
7660 {
7661 if (*op == 1)
7662 return FAIL;
7663 *immbits = (neon_squash_bits (immhi) << 4)
7664 | neon_squash_bits (immlo);
7665 *op = 1;
7666 return 0xe;
7667 }
7668
7669 if (immhi != immlo)
7670 return FAIL;
7671 }
7672
7673 if (size >= 32)
7674 {
7675 if (immlo == (immlo & 0x000000ff))
7676 {
7677 *immbits = immlo;
7678 return 0x0;
7679 }
7680 else if (immlo == (immlo & 0x0000ff00))
7681 {
7682 *immbits = immlo >> 8;
7683 return 0x2;
7684 }
7685 else if (immlo == (immlo & 0x00ff0000))
7686 {
7687 *immbits = immlo >> 16;
7688 return 0x4;
7689 }
7690 else if (immlo == (immlo & 0xff000000))
7691 {
7692 *immbits = immlo >> 24;
7693 return 0x6;
7694 }
7695 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
7696 {
7697 *immbits = (immlo >> 8) & 0xff;
7698 return 0xc;
7699 }
7700 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
7701 {
7702 *immbits = (immlo >> 16) & 0xff;
7703 return 0xd;
7704 }
7705
7706 if ((immlo & 0xffff) != (immlo >> 16))
7707 return FAIL;
7708 immlo &= 0xffff;
7709 }
7710
7711 if (size >= 16)
7712 {
7713 if (immlo == (immlo & 0x000000ff))
7714 {
7715 *immbits = immlo;
7716 return 0x8;
7717 }
7718 else if (immlo == (immlo & 0x0000ff00))
7719 {
7720 *immbits = immlo >> 8;
7721 return 0xa;
7722 }
7723
7724 if ((immlo & 0xff) != (immlo >> 8))
7725 return FAIL;
7726 immlo &= 0xff;
7727 }
7728
7729 if (immlo == (immlo & 0x000000ff))
7730 {
7731 /* Don't allow MVN with 8-bit immediate. */
7732 if (*op == 1)
7733 return FAIL;
7734 *immbits = immlo;
7735 return 0xe;
7736 }
7737
7738 return FAIL;
7739 }
7740
7741 enum lit_type
7742 {
7743 CONST_THUMB,
7744 CONST_ARM,
7745 CONST_VEC
7746 };
7747
7748 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7749 Determine whether it can be performed with a move instruction; if
7750 it can, convert inst.instruction to that move instruction and
7751 return TRUE; if it can't, convert inst.instruction to a literal-pool
7752 load and return FALSE. If this is not a valid thing to do in the
7753 current context, set inst.error and return TRUE.
7754
7755 inst.operands[i] describes the destination register. */
7756
7757 static bfd_boolean
7758 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
7759 {
7760 unsigned long tbit;
7761 bfd_boolean thumb_p = (t == CONST_THUMB);
7762 bfd_boolean arm_p = (t == CONST_ARM);
7763 bfd_boolean vec64_p = (t == CONST_VEC) && !inst.operands[i].issingle;
7764
7765 if (thumb_p)
7766 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7767 else
7768 tbit = LOAD_BIT;
7769
7770 if ((inst.instruction & tbit) == 0)
7771 {
7772 inst.error = _("invalid pseudo operation");
7773 return TRUE;
7774 }
7775 if (inst.reloc.exp.X_op != O_constant
7776 && inst.reloc.exp.X_op != O_symbol
7777 && inst.reloc.exp.X_op != O_big)
7778 {
7779 inst.error = _("constant expression expected");
7780 return TRUE;
7781 }
7782 if ((inst.reloc.exp.X_op == O_constant
7783 || inst.reloc.exp.X_op == O_big)
7784 && !inst.operands[i].issingle)
7785 {
7786 if (thumb_p && inst.reloc.exp.X_op == O_constant)
7787 {
7788 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7789 {
7790 /* This can be done with a mov(1) instruction. */
7791 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7792 inst.instruction |= inst.reloc.exp.X_add_number;
7793 return TRUE;
7794 }
7795 }
7796 else if (arm_p && inst.reloc.exp.X_op == O_constant)
7797 {
7798 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7799 if (value != FAIL)
7800 {
7801 /* This can be done with a mov instruction. */
7802 inst.instruction &= LITERAL_MASK;
7803 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7804 inst.instruction |= value & 0xfff;
7805 return TRUE;
7806 }
7807
7808 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7809 if (value != FAIL)
7810 {
7811 /* This can be done with a mvn instruction. */
7812 inst.instruction &= LITERAL_MASK;
7813 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7814 inst.instruction |= value & 0xfff;
7815 return TRUE;
7816 }
7817 }
7818 else if (vec64_p)
7819 {
7820 int op = 0;
7821 unsigned immbits = 0;
7822 unsigned immlo = inst.operands[1].imm;
7823 unsigned immhi = inst.operands[1].regisimm
7824 ? inst.operands[1].reg
7825 : inst.reloc.exp.X_unsigned
7826 ? 0
7827 : ((bfd_int64_t)((int) immlo)) >> 32;
7828 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
7829 &op, 64, NT_invtype);
7830
7831 if (cmode == FAIL)
7832 {
7833 neon_invert_size (&immlo, &immhi, 64);
7834 op = !op;
7835 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
7836 &op, 64, NT_invtype);
7837 }
7838 if (cmode != FAIL)
7839 {
7840 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
7841 | (1 << 23)
7842 | (cmode << 8)
7843 | (op << 5)
7844 | (1 << 4);
7845 /* Fill other bits in vmov encoding for both thumb and arm. */
7846 if (thumb_mode)
7847 inst.instruction |= (0x7 << 29) | (0xF << 24);
7848 else
7849 inst.instruction |= (0xF << 28) | (0x1 << 25);
7850 neon_write_immbits (immbits);
7851 return TRUE;
7852 }
7853 }
7854 }
7855
7856 if (add_to_lit_pool ((!inst.operands[i].isvec
7857 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
7858 return TRUE;
7859
7860 inst.operands[1].reg = REG_PC;
7861 inst.operands[1].isreg = 1;
7862 inst.operands[1].preind = 1;
7863 inst.reloc.pc_rel = 1;
7864 inst.reloc.type = (thumb_p
7865 ? BFD_RELOC_ARM_THUMB_OFFSET
7866 : (mode_3
7867 ? BFD_RELOC_ARM_HWLITERAL
7868 : BFD_RELOC_ARM_LITERAL));
7869 return FALSE;
7870 }
7871
7872 /* inst.operands[i] was set up by parse_address. Encode it into an
7873 ARM-format instruction. Reject all forms which cannot be encoded
7874 into a coprocessor load/store instruction. If wb_ok is false,
7875 reject use of writeback; if unind_ok is false, reject use of
7876 unindexed addressing. If reloc_override is not 0, use it instead
7877 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7878 (in which case it is preserved). */
7879
7880 static int
7881 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
7882 {
7883 if (!inst.operands[i].isreg)
7884 {
7885 gas_assert (inst.operands[0].isvec);
7886 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
7887 return SUCCESS;
7888 }
7889
7890 inst.instruction |= inst.operands[i].reg << 16;
7891
7892 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
7893
7894 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
7895 {
7896 gas_assert (!inst.operands[i].writeback);
7897 if (!unind_ok)
7898 {
7899 inst.error = _("instruction does not support unindexed addressing");
7900 return FAIL;
7901 }
7902 inst.instruction |= inst.operands[i].imm;
7903 inst.instruction |= INDEX_UP;
7904 return SUCCESS;
7905 }
7906
7907 if (inst.operands[i].preind)
7908 inst.instruction |= PRE_INDEX;
7909
7910 if (inst.operands[i].writeback)
7911 {
7912 if (inst.operands[i].reg == REG_PC)
7913 {
7914 inst.error = _("pc may not be used with write-back");
7915 return FAIL;
7916 }
7917 if (!wb_ok)
7918 {
7919 inst.error = _("instruction does not support writeback");
7920 return FAIL;
7921 }
7922 inst.instruction |= WRITE_BACK;
7923 }
7924
7925 if (reloc_override)
7926 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7927 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7928 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7929 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7930 {
7931 if (thumb_mode)
7932 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7933 else
7934 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7935 }
7936
7937 /* Prefer + for zero encoded value. */
7938 if (!inst.operands[i].negative)
7939 inst.instruction |= INDEX_UP;
7940
7941 return SUCCESS;
7942 }
7943
7944 /* Functions for instruction encoding, sorted by sub-architecture.
7945 First some generics; their names are taken from the conventional
7946 bit positions for register arguments in ARM format instructions. */
7947
7948 static void
7949 do_noargs (void)
7950 {
7951 }
7952
7953 static void
7954 do_rd (void)
7955 {
7956 inst.instruction |= inst.operands[0].reg << 12;
7957 }
7958
7959 static void
7960 do_rd_rm (void)
7961 {
7962 inst.instruction |= inst.operands[0].reg << 12;
7963 inst.instruction |= inst.operands[1].reg;
7964 }
7965
7966 static void
7967 do_rm_rn (void)
7968 {
7969 inst.instruction |= inst.operands[0].reg;
7970 inst.instruction |= inst.operands[1].reg << 16;
7971 }
7972
7973 static void
7974 do_rd_rn (void)
7975 {
7976 inst.instruction |= inst.operands[0].reg << 12;
7977 inst.instruction |= inst.operands[1].reg << 16;
7978 }
7979
7980 static void
7981 do_rn_rd (void)
7982 {
7983 inst.instruction |= inst.operands[0].reg << 16;
7984 inst.instruction |= inst.operands[1].reg << 12;
7985 }
7986
7987 static bfd_boolean
7988 check_obsolete (const arm_feature_set *feature, const char *msg)
7989 {
7990 if (ARM_CPU_IS_ANY (cpu_variant))
7991 {
7992 as_tsktsk ("%s", msg);
7993 return TRUE;
7994 }
7995 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
7996 {
7997 as_bad ("%s", msg);
7998 return TRUE;
7999 }
8000
8001 return FALSE;
8002 }
8003
8004 static void
8005 do_rd_rm_rn (void)
8006 {
8007 unsigned Rn = inst.operands[2].reg;
8008 /* Enforce restrictions on SWP instruction. */
8009 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8010 {
8011 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8012 _("Rn must not overlap other operands"));
8013
8014 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8015 */
8016 if (!check_obsolete (&arm_ext_v8,
8017 _("swp{b} use is obsoleted for ARMv8 and later"))
8018 && warn_on_deprecated
8019 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8020 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8021 }
8022
8023 inst.instruction |= inst.operands[0].reg << 12;
8024 inst.instruction |= inst.operands[1].reg;
8025 inst.instruction |= Rn << 16;
8026 }
8027
8028 static void
8029 do_rd_rn_rm (void)
8030 {
8031 inst.instruction |= inst.operands[0].reg << 12;
8032 inst.instruction |= inst.operands[1].reg << 16;
8033 inst.instruction |= inst.operands[2].reg;
8034 }
8035
8036 static void
8037 do_rm_rd_rn (void)
8038 {
8039 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8040 constraint (((inst.reloc.exp.X_op != O_constant
8041 && inst.reloc.exp.X_op != O_illegal)
8042 || inst.reloc.exp.X_add_number != 0),
8043 BAD_ADDR_MODE);
8044 inst.instruction |= inst.operands[0].reg;
8045 inst.instruction |= inst.operands[1].reg << 12;
8046 inst.instruction |= inst.operands[2].reg << 16;
8047 }
8048
8049 static void
8050 do_imm0 (void)
8051 {
8052 inst.instruction |= inst.operands[0].imm;
8053 }
8054
8055 static void
8056 do_rd_cpaddr (void)
8057 {
8058 inst.instruction |= inst.operands[0].reg << 12;
8059 encode_arm_cp_address (1, TRUE, TRUE, 0);
8060 }
8061
8062 /* ARM instructions, in alphabetical order by function name (except
8063 that wrapper functions appear immediately after the function they
8064 wrap). */
8065
8066 /* This is a pseudo-op of the form "adr rd, label" to be converted
8067 into a relative address of the form "add rd, pc, #label-.-8". */
8068
8069 static void
8070 do_adr (void)
8071 {
8072 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8073
8074 /* Frag hacking will turn this into a sub instruction if the offset turns
8075 out to be negative. */
8076 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8077 inst.reloc.pc_rel = 1;
8078 inst.reloc.exp.X_add_number -= 8;
8079 }
8080
8081 /* This is a pseudo-op of the form "adrl rd, label" to be converted
8082 into a relative address of the form:
8083 add rd, pc, #low(label-.-8)"
8084 add rd, rd, #high(label-.-8)" */
8085
8086 static void
8087 do_adrl (void)
8088 {
8089 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8090
8091 /* Frag hacking will turn this into a sub instruction if the offset turns
8092 out to be negative. */
8093 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
8094 inst.reloc.pc_rel = 1;
8095 inst.size = INSN_SIZE * 2;
8096 inst.reloc.exp.X_add_number -= 8;
8097 }
8098
8099 static void
8100 do_arit (void)
8101 {
8102 if (!inst.operands[1].present)
8103 inst.operands[1].reg = inst.operands[0].reg;
8104 inst.instruction |= inst.operands[0].reg << 12;
8105 inst.instruction |= inst.operands[1].reg << 16;
8106 encode_arm_shifter_operand (2);
8107 }
8108
8109 static void
8110 do_barrier (void)
8111 {
8112 if (inst.operands[0].present)
8113 inst.instruction |= inst.operands[0].imm;
8114 else
8115 inst.instruction |= 0xf;
8116 }
8117
8118 static void
8119 do_bfc (void)
8120 {
8121 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8122 constraint (msb > 32, _("bit-field extends past end of register"));
8123 /* The instruction encoding stores the LSB and MSB,
8124 not the LSB and width. */
8125 inst.instruction |= inst.operands[0].reg << 12;
8126 inst.instruction |= inst.operands[1].imm << 7;
8127 inst.instruction |= (msb - 1) << 16;
8128 }
8129
8130 static void
8131 do_bfi (void)
8132 {
8133 unsigned int msb;
8134
8135 /* #0 in second position is alternative syntax for bfc, which is
8136 the same instruction but with REG_PC in the Rm field. */
8137 if (!inst.operands[1].isreg)
8138 inst.operands[1].reg = REG_PC;
8139
8140 msb = inst.operands[2].imm + inst.operands[3].imm;
8141 constraint (msb > 32, _("bit-field extends past end of register"));
8142 /* The instruction encoding stores the LSB and MSB,
8143 not the LSB and width. */
8144 inst.instruction |= inst.operands[0].reg << 12;
8145 inst.instruction |= inst.operands[1].reg;
8146 inst.instruction |= inst.operands[2].imm << 7;
8147 inst.instruction |= (msb - 1) << 16;
8148 }
8149
8150 static void
8151 do_bfx (void)
8152 {
8153 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8154 _("bit-field extends past end of register"));
8155 inst.instruction |= inst.operands[0].reg << 12;
8156 inst.instruction |= inst.operands[1].reg;
8157 inst.instruction |= inst.operands[2].imm << 7;
8158 inst.instruction |= (inst.operands[3].imm - 1) << 16;
8159 }
8160
8161 /* ARM V5 breakpoint instruction (argument parse)
8162 BKPT <16 bit unsigned immediate>
8163 Instruction is not conditional.
8164 The bit pattern given in insns[] has the COND_ALWAYS condition,
8165 and it is an error if the caller tried to override that. */
8166
8167 static void
8168 do_bkpt (void)
8169 {
8170 /* Top 12 of 16 bits to bits 19:8. */
8171 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
8172
8173 /* Bottom 4 of 16 bits to bits 3:0. */
8174 inst.instruction |= inst.operands[0].imm & 0xf;
8175 }
8176
8177 static void
8178 encode_branch (int default_reloc)
8179 {
8180 if (inst.operands[0].hasreloc)
8181 {
8182 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
8183 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
8184 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
8185 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
8186 ? BFD_RELOC_ARM_PLT32
8187 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
8188 }
8189 else
8190 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
8191 inst.reloc.pc_rel = 1;
8192 }
8193
8194 static void
8195 do_branch (void)
8196 {
8197 #ifdef OBJ_ELF
8198 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8199 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8200 else
8201 #endif
8202 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8203 }
8204
8205 static void
8206 do_bl (void)
8207 {
8208 #ifdef OBJ_ELF
8209 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8210 {
8211 if (inst.cond == COND_ALWAYS)
8212 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
8213 else
8214 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8215 }
8216 else
8217 #endif
8218 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8219 }
8220
8221 /* ARM V5 branch-link-exchange instruction (argument parse)
8222 BLX <target_addr> ie BLX(1)
8223 BLX{<condition>} <Rm> ie BLX(2)
8224 Unfortunately, there are two different opcodes for this mnemonic.
8225 So, the insns[].value is not used, and the code here zaps values
8226 into inst.instruction.
8227 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
8228
8229 static void
8230 do_blx (void)
8231 {
8232 if (inst.operands[0].isreg)
8233 {
8234 /* Arg is a register; the opcode provided by insns[] is correct.
8235 It is not illegal to do "blx pc", just useless. */
8236 if (inst.operands[0].reg == REG_PC)
8237 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
8238
8239 inst.instruction |= inst.operands[0].reg;
8240 }
8241 else
8242 {
8243 /* Arg is an address; this instruction cannot be executed
8244 conditionally, and the opcode must be adjusted.
8245 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
8246 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
8247 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8248 inst.instruction = 0xfa000000;
8249 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
8250 }
8251 }
8252
8253 static void
8254 do_bx (void)
8255 {
8256 bfd_boolean want_reloc;
8257
8258 if (inst.operands[0].reg == REG_PC)
8259 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
8260
8261 inst.instruction |= inst.operands[0].reg;
8262 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
8263 it is for ARMv4t or earlier. */
8264 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
8265 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
8266 want_reloc = TRUE;
8267
8268 #ifdef OBJ_ELF
8269 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
8270 #endif
8271 want_reloc = FALSE;
8272
8273 if (want_reloc)
8274 inst.reloc.type = BFD_RELOC_ARM_V4BX;
8275 }
8276
8277
8278 /* ARM v5TEJ. Jump to Jazelle code. */
8279
8280 static void
8281 do_bxj (void)
8282 {
8283 if (inst.operands[0].reg == REG_PC)
8284 as_tsktsk (_("use of r15 in bxj is not really useful"));
8285
8286 inst.instruction |= inst.operands[0].reg;
8287 }
8288
8289 /* Co-processor data operation:
8290 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
8291 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
8292 static void
8293 do_cdp (void)
8294 {
8295 inst.instruction |= inst.operands[0].reg << 8;
8296 inst.instruction |= inst.operands[1].imm << 20;
8297 inst.instruction |= inst.operands[2].reg << 12;
8298 inst.instruction |= inst.operands[3].reg << 16;
8299 inst.instruction |= inst.operands[4].reg;
8300 inst.instruction |= inst.operands[5].imm << 5;
8301 }
8302
8303 static void
8304 do_cmp (void)
8305 {
8306 inst.instruction |= inst.operands[0].reg << 16;
8307 encode_arm_shifter_operand (1);
8308 }
8309
8310 /* Transfer between coprocessor and ARM registers.
8311 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
8312 MRC2
8313 MCR{cond}
8314 MCR2
8315
8316 No special properties. */
8317
8318 struct deprecated_coproc_regs_s
8319 {
8320 unsigned cp;
8321 int opc1;
8322 unsigned crn;
8323 unsigned crm;
8324 int opc2;
8325 arm_feature_set deprecated;
8326 arm_feature_set obsoleted;
8327 const char *dep_msg;
8328 const char *obs_msg;
8329 };
8330
8331 #define DEPR_ACCESS_V8 \
8332 N_("This coprocessor register access is deprecated in ARMv8")
8333
8334 /* Table of all deprecated coprocessor registers. */
8335 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
8336 {
8337 {15, 0, 7, 10, 5, /* CP15DMB. */
8338 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
8339 DEPR_ACCESS_V8, NULL},
8340 {15, 0, 7, 10, 4, /* CP15DSB. */
8341 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
8342 DEPR_ACCESS_V8, NULL},
8343 {15, 0, 7, 5, 4, /* CP15ISB. */
8344 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
8345 DEPR_ACCESS_V8, NULL},
8346 {14, 6, 1, 0, 0, /* TEEHBR. */
8347 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
8348 DEPR_ACCESS_V8, NULL},
8349 {14, 6, 0, 0, 0, /* TEECR. */
8350 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
8351 DEPR_ACCESS_V8, NULL},
8352 };
8353
8354 #undef DEPR_ACCESS_V8
8355
8356 static const size_t deprecated_coproc_reg_count =
8357 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
8358
8359 static void
8360 do_co_reg (void)
8361 {
8362 unsigned Rd;
8363 size_t i;
8364
8365 Rd = inst.operands[2].reg;
8366 if (thumb_mode)
8367 {
8368 if (inst.instruction == 0xee000010
8369 || inst.instruction == 0xfe000010)
8370 /* MCR, MCR2 */
8371 reject_bad_reg (Rd);
8372 else
8373 /* MRC, MRC2 */
8374 constraint (Rd == REG_SP, BAD_SP);
8375 }
8376 else
8377 {
8378 /* MCR */
8379 if (inst.instruction == 0xe000010)
8380 constraint (Rd == REG_PC, BAD_PC);
8381 }
8382
8383 for (i = 0; i < deprecated_coproc_reg_count; ++i)
8384 {
8385 const struct deprecated_coproc_regs_s *r =
8386 deprecated_coproc_regs + i;
8387
8388 if (inst.operands[0].reg == r->cp
8389 && inst.operands[1].imm == r->opc1
8390 && inst.operands[3].reg == r->crn
8391 && inst.operands[4].reg == r->crm
8392 && inst.operands[5].imm == r->opc2)
8393 {
8394 if (! ARM_CPU_IS_ANY (cpu_variant)
8395 && warn_on_deprecated
8396 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
8397 as_tsktsk ("%s", r->dep_msg);
8398 }
8399 }
8400
8401 inst.instruction |= inst.operands[0].reg << 8;
8402 inst.instruction |= inst.operands[1].imm << 21;
8403 inst.instruction |= Rd << 12;
8404 inst.instruction |= inst.operands[3].reg << 16;
8405 inst.instruction |= inst.operands[4].reg;
8406 inst.instruction |= inst.operands[5].imm << 5;
8407 }
8408
8409 /* Transfer between coprocessor register and pair of ARM registers.
8410 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
8411 MCRR2
8412 MRRC{cond}
8413 MRRC2
8414
8415 Two XScale instructions are special cases of these:
8416
8417 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
8418 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
8419
8420 Result unpredictable if Rd or Rn is R15. */
8421
8422 static void
8423 do_co_reg2c (void)
8424 {
8425 unsigned Rd, Rn;
8426
8427 Rd = inst.operands[2].reg;
8428 Rn = inst.operands[3].reg;
8429
8430 if (thumb_mode)
8431 {
8432 reject_bad_reg (Rd);
8433 reject_bad_reg (Rn);
8434 }
8435 else
8436 {
8437 constraint (Rd == REG_PC, BAD_PC);
8438 constraint (Rn == REG_PC, BAD_PC);
8439 }
8440
8441 inst.instruction |= inst.operands[0].reg << 8;
8442 inst.instruction |= inst.operands[1].imm << 4;
8443 inst.instruction |= Rd << 12;
8444 inst.instruction |= Rn << 16;
8445 inst.instruction |= inst.operands[4].reg;
8446 }
8447
8448 static void
8449 do_cpsi (void)
8450 {
8451 inst.instruction |= inst.operands[0].imm << 6;
8452 if (inst.operands[1].present)
8453 {
8454 inst.instruction |= CPSI_MMOD;
8455 inst.instruction |= inst.operands[1].imm;
8456 }
8457 }
8458
8459 static void
8460 do_dbg (void)
8461 {
8462 inst.instruction |= inst.operands[0].imm;
8463 }
8464
8465 static void
8466 do_div (void)
8467 {
8468 unsigned Rd, Rn, Rm;
8469
8470 Rd = inst.operands[0].reg;
8471 Rn = (inst.operands[1].present
8472 ? inst.operands[1].reg : Rd);
8473 Rm = inst.operands[2].reg;
8474
8475 constraint ((Rd == REG_PC), BAD_PC);
8476 constraint ((Rn == REG_PC), BAD_PC);
8477 constraint ((Rm == REG_PC), BAD_PC);
8478
8479 inst.instruction |= Rd << 16;
8480 inst.instruction |= Rn << 0;
8481 inst.instruction |= Rm << 8;
8482 }
8483
8484 static void
8485 do_it (void)
8486 {
8487 /* There is no IT instruction in ARM mode. We
8488 process it to do the validation as if in
8489 thumb mode, just in case the code gets
8490 assembled for thumb using the unified syntax. */
8491
8492 inst.size = 0;
8493 if (unified_syntax)
8494 {
8495 set_it_insn_type (IT_INSN);
8496 now_it.mask = (inst.instruction & 0xf) | 0x10;
8497 now_it.cc = inst.operands[0].imm;
8498 }
8499 }
8500
8501 /* If there is only one register in the register list,
8502 then return its register number. Otherwise return -1. */
8503 static int
8504 only_one_reg_in_list (int range)
8505 {
8506 int i = ffs (range) - 1;
8507 return (i > 15 || range != (1 << i)) ? -1 : i;
8508 }
8509
8510 static void
8511 encode_ldmstm(int from_push_pop_mnem)
8512 {
8513 int base_reg = inst.operands[0].reg;
8514 int range = inst.operands[1].imm;
8515 int one_reg;
8516
8517 inst.instruction |= base_reg << 16;
8518 inst.instruction |= range;
8519
8520 if (inst.operands[1].writeback)
8521 inst.instruction |= LDM_TYPE_2_OR_3;
8522
8523 if (inst.operands[0].writeback)
8524 {
8525 inst.instruction |= WRITE_BACK;
8526 /* Check for unpredictable uses of writeback. */
8527 if (inst.instruction & LOAD_BIT)
8528 {
8529 /* Not allowed in LDM type 2. */
8530 if ((inst.instruction & LDM_TYPE_2_OR_3)
8531 && ((range & (1 << REG_PC)) == 0))
8532 as_warn (_("writeback of base register is UNPREDICTABLE"));
8533 /* Only allowed if base reg not in list for other types. */
8534 else if (range & (1 << base_reg))
8535 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
8536 }
8537 else /* STM. */
8538 {
8539 /* Not allowed for type 2. */
8540 if (inst.instruction & LDM_TYPE_2_OR_3)
8541 as_warn (_("writeback of base register is UNPREDICTABLE"));
8542 /* Only allowed if base reg not in list, or first in list. */
8543 else if ((range & (1 << base_reg))
8544 && (range & ((1 << base_reg) - 1)))
8545 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
8546 }
8547 }
8548
8549 /* If PUSH/POP has only one register, then use the A2 encoding. */
8550 one_reg = only_one_reg_in_list (range);
8551 if (from_push_pop_mnem && one_reg >= 0)
8552 {
8553 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
8554
8555 inst.instruction &= A_COND_MASK;
8556 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
8557 inst.instruction |= one_reg << 12;
8558 }
8559 }
8560
8561 static void
8562 do_ldmstm (void)
8563 {
8564 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
8565 }
8566
8567 /* ARMv5TE load-consecutive (argument parse)
8568 Mode is like LDRH.
8569
8570 LDRccD R, mode
8571 STRccD R, mode. */
8572
8573 static void
8574 do_ldrd (void)
8575 {
8576 constraint (inst.operands[0].reg % 2 != 0,
8577 _("first transfer register must be even"));
8578 constraint (inst.operands[1].present
8579 && inst.operands[1].reg != inst.operands[0].reg + 1,
8580 _("can only transfer two consecutive registers"));
8581 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8582 constraint (!inst.operands[2].isreg, _("'[' expected"));
8583
8584 if (!inst.operands[1].present)
8585 inst.operands[1].reg = inst.operands[0].reg + 1;
8586
8587 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8588 register and the first register written; we have to diagnose
8589 overlap between the base and the second register written here. */
8590
8591 if (inst.operands[2].reg == inst.operands[1].reg
8592 && (inst.operands[2].writeback || inst.operands[2].postind))
8593 as_warn (_("base register written back, and overlaps "
8594 "second transfer register"));
8595
8596 if (!(inst.instruction & V4_STR_BIT))
8597 {
8598 /* For an index-register load, the index register must not overlap the
8599 destination (even if not write-back). */
8600 if (inst.operands[2].immisreg
8601 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8602 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8603 as_warn (_("index register overlaps transfer register"));
8604 }
8605 inst.instruction |= inst.operands[0].reg << 12;
8606 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
8607 }
8608
8609 static void
8610 do_ldrex (void)
8611 {
8612 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8613 || inst.operands[1].postind || inst.operands[1].writeback
8614 || inst.operands[1].immisreg || inst.operands[1].shifted
8615 || inst.operands[1].negative
8616 /* This can arise if the programmer has written
8617 strex rN, rM, foo
8618 or if they have mistakenly used a register name as the last
8619 operand, eg:
8620 strex rN, rM, rX
8621 It is very difficult to distinguish between these two cases
8622 because "rX" might actually be a label. ie the register
8623 name has been occluded by a symbol of the same name. So we
8624 just generate a general 'bad addressing mode' type error
8625 message and leave it up to the programmer to discover the
8626 true cause and fix their mistake. */
8627 || (inst.operands[1].reg == REG_PC),
8628 BAD_ADDR_MODE);
8629
8630 constraint (inst.reloc.exp.X_op != O_constant
8631 || inst.reloc.exp.X_add_number != 0,
8632 _("offset must be zero in ARM encoding"));
8633
8634 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8635
8636 inst.instruction |= inst.operands[0].reg << 12;
8637 inst.instruction |= inst.operands[1].reg << 16;
8638 inst.reloc.type = BFD_RELOC_UNUSED;
8639 }
8640
8641 static void
8642 do_ldrexd (void)
8643 {
8644 constraint (inst.operands[0].reg % 2 != 0,
8645 _("even register required"));
8646 constraint (inst.operands[1].present
8647 && inst.operands[1].reg != inst.operands[0].reg + 1,
8648 _("can only load two consecutive registers"));
8649 /* If op 1 were present and equal to PC, this function wouldn't
8650 have been called in the first place. */
8651 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8652
8653 inst.instruction |= inst.operands[0].reg << 12;
8654 inst.instruction |= inst.operands[2].reg << 16;
8655 }
8656
8657 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8658 which is not a multiple of four is UNPREDICTABLE. */
8659 static void
8660 check_ldr_r15_aligned (void)
8661 {
8662 constraint (!(inst.operands[1].immisreg)
8663 && (inst.operands[0].reg == REG_PC
8664 && inst.operands[1].reg == REG_PC
8665 && (inst.reloc.exp.X_add_number & 0x3)),
8666 _("ldr to register 15 must be 4-byte alligned"));
8667 }
8668
8669 static void
8670 do_ldst (void)
8671 {
8672 inst.instruction |= inst.operands[0].reg << 12;
8673 if (!inst.operands[1].isreg)
8674 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
8675 return;
8676 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
8677 check_ldr_r15_aligned ();
8678 }
8679
8680 static void
8681 do_ldstt (void)
8682 {
8683 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8684 reject [Rn,...]. */
8685 if (inst.operands[1].preind)
8686 {
8687 constraint (inst.reloc.exp.X_op != O_constant
8688 || inst.reloc.exp.X_add_number != 0,
8689 _("this instruction requires a post-indexed address"));
8690
8691 inst.operands[1].preind = 0;
8692 inst.operands[1].postind = 1;
8693 inst.operands[1].writeback = 1;
8694 }
8695 inst.instruction |= inst.operands[0].reg << 12;
8696 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8697 }
8698
8699 /* Halfword and signed-byte load/store operations. */
8700
8701 static void
8702 do_ldstv4 (void)
8703 {
8704 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8705 inst.instruction |= inst.operands[0].reg << 12;
8706 if (!inst.operands[1].isreg)
8707 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
8708 return;
8709 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
8710 }
8711
8712 static void
8713 do_ldsttv4 (void)
8714 {
8715 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8716 reject [Rn,...]. */
8717 if (inst.operands[1].preind)
8718 {
8719 constraint (inst.reloc.exp.X_op != O_constant
8720 || inst.reloc.exp.X_add_number != 0,
8721 _("this instruction requires a post-indexed address"));
8722
8723 inst.operands[1].preind = 0;
8724 inst.operands[1].postind = 1;
8725 inst.operands[1].writeback = 1;
8726 }
8727 inst.instruction |= inst.operands[0].reg << 12;
8728 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8729 }
8730
8731 /* Co-processor register load/store.
8732 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8733 static void
8734 do_lstc (void)
8735 {
8736 inst.instruction |= inst.operands[0].reg << 8;
8737 inst.instruction |= inst.operands[1].reg << 12;
8738 encode_arm_cp_address (2, TRUE, TRUE, 0);
8739 }
8740
8741 static void
8742 do_mlas (void)
8743 {
8744 /* This restriction does not apply to mls (nor to mla in v6 or later). */
8745 if (inst.operands[0].reg == inst.operands[1].reg
8746 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
8747 && !(inst.instruction & 0x00400000))
8748 as_tsktsk (_("Rd and Rm should be different in mla"));
8749
8750 inst.instruction |= inst.operands[0].reg << 16;
8751 inst.instruction |= inst.operands[1].reg;
8752 inst.instruction |= inst.operands[2].reg << 8;
8753 inst.instruction |= inst.operands[3].reg << 12;
8754 }
8755
8756 static void
8757 do_mov (void)
8758 {
8759 inst.instruction |= inst.operands[0].reg << 12;
8760 encode_arm_shifter_operand (1);
8761 }
8762
8763 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8764 static void
8765 do_mov16 (void)
8766 {
8767 bfd_vma imm;
8768 bfd_boolean top;
8769
8770 top = (inst.instruction & 0x00400000) != 0;
8771 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8772 _(":lower16: not allowed this instruction"));
8773 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8774 _(":upper16: not allowed instruction"));
8775 inst.instruction |= inst.operands[0].reg << 12;
8776 if (inst.reloc.type == BFD_RELOC_UNUSED)
8777 {
8778 imm = inst.reloc.exp.X_add_number;
8779 /* The value is in two pieces: 0:11, 16:19. */
8780 inst.instruction |= (imm & 0x00000fff);
8781 inst.instruction |= (imm & 0x0000f000) << 4;
8782 }
8783 }
8784
8785 static void do_vfp_nsyn_opcode (const char *);
8786
8787 static int
8788 do_vfp_nsyn_mrs (void)
8789 {
8790 if (inst.operands[0].isvec)
8791 {
8792 if (inst.operands[1].reg != 1)
8793 first_error (_("operand 1 must be FPSCR"));
8794 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8795 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8796 do_vfp_nsyn_opcode ("fmstat");
8797 }
8798 else if (inst.operands[1].isvec)
8799 do_vfp_nsyn_opcode ("fmrx");
8800 else
8801 return FAIL;
8802
8803 return SUCCESS;
8804 }
8805
8806 static int
8807 do_vfp_nsyn_msr (void)
8808 {
8809 if (inst.operands[0].isvec)
8810 do_vfp_nsyn_opcode ("fmxr");
8811 else
8812 return FAIL;
8813
8814 return SUCCESS;
8815 }
8816
8817 static void
8818 do_vmrs (void)
8819 {
8820 unsigned Rt = inst.operands[0].reg;
8821
8822 if (thumb_mode && Rt == REG_SP)
8823 {
8824 inst.error = BAD_SP;
8825 return;
8826 }
8827
8828 /* APSR_ sets isvec. All other refs to PC are illegal. */
8829 if (!inst.operands[0].isvec && Rt == REG_PC)
8830 {
8831 inst.error = BAD_PC;
8832 return;
8833 }
8834
8835 /* If we get through parsing the register name, we just insert the number
8836 generated into the instruction without further validation. */
8837 inst.instruction |= (inst.operands[1].reg << 16);
8838 inst.instruction |= (Rt << 12);
8839 }
8840
8841 static void
8842 do_vmsr (void)
8843 {
8844 unsigned Rt = inst.operands[1].reg;
8845
8846 if (thumb_mode)
8847 reject_bad_reg (Rt);
8848 else if (Rt == REG_PC)
8849 {
8850 inst.error = BAD_PC;
8851 return;
8852 }
8853
8854 /* If we get through parsing the register name, we just insert the number
8855 generated into the instruction without further validation. */
8856 inst.instruction |= (inst.operands[0].reg << 16);
8857 inst.instruction |= (Rt << 12);
8858 }
8859
8860 static void
8861 do_mrs (void)
8862 {
8863 unsigned br;
8864
8865 if (do_vfp_nsyn_mrs () == SUCCESS)
8866 return;
8867
8868 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8869 inst.instruction |= inst.operands[0].reg << 12;
8870
8871 if (inst.operands[1].isreg)
8872 {
8873 br = inst.operands[1].reg;
8874 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8875 as_bad (_("bad register for mrs"));
8876 }
8877 else
8878 {
8879 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8880 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8881 != (PSR_c|PSR_f),
8882 _("'APSR', 'CPSR' or 'SPSR' expected"));
8883 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8884 }
8885
8886 inst.instruction |= br;
8887 }
8888
8889 /* Two possible forms:
8890 "{C|S}PSR_<field>, Rm",
8891 "{C|S}PSR_f, #expression". */
8892
8893 static void
8894 do_msr (void)
8895 {
8896 if (do_vfp_nsyn_msr () == SUCCESS)
8897 return;
8898
8899 inst.instruction |= inst.operands[0].imm;
8900 if (inst.operands[1].isreg)
8901 inst.instruction |= inst.operands[1].reg;
8902 else
8903 {
8904 inst.instruction |= INST_IMMEDIATE;
8905 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8906 inst.reloc.pc_rel = 0;
8907 }
8908 }
8909
8910 static void
8911 do_mul (void)
8912 {
8913 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8914
8915 if (!inst.operands[2].present)
8916 inst.operands[2].reg = inst.operands[0].reg;
8917 inst.instruction |= inst.operands[0].reg << 16;
8918 inst.instruction |= inst.operands[1].reg;
8919 inst.instruction |= inst.operands[2].reg << 8;
8920
8921 if (inst.operands[0].reg == inst.operands[1].reg
8922 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8923 as_tsktsk (_("Rd and Rm should be different in mul"));
8924 }
8925
8926 /* Long Multiply Parser
8927 UMULL RdLo, RdHi, Rm, Rs
8928 SMULL RdLo, RdHi, Rm, Rs
8929 UMLAL RdLo, RdHi, Rm, Rs
8930 SMLAL RdLo, RdHi, Rm, Rs. */
8931
8932 static void
8933 do_mull (void)
8934 {
8935 inst.instruction |= inst.operands[0].reg << 12;
8936 inst.instruction |= inst.operands[1].reg << 16;
8937 inst.instruction |= inst.operands[2].reg;
8938 inst.instruction |= inst.operands[3].reg << 8;
8939
8940 /* rdhi and rdlo must be different. */
8941 if (inst.operands[0].reg == inst.operands[1].reg)
8942 as_tsktsk (_("rdhi and rdlo must be different"));
8943
8944 /* rdhi, rdlo and rm must all be different before armv6. */
8945 if ((inst.operands[0].reg == inst.operands[2].reg
8946 || inst.operands[1].reg == inst.operands[2].reg)
8947 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8948 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8949 }
8950
8951 static void
8952 do_nop (void)
8953 {
8954 if (inst.operands[0].present
8955 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
8956 {
8957 /* Architectural NOP hints are CPSR sets with no bits selected. */
8958 inst.instruction &= 0xf0000000;
8959 inst.instruction |= 0x0320f000;
8960 if (inst.operands[0].present)
8961 inst.instruction |= inst.operands[0].imm;
8962 }
8963 }
8964
8965 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8966 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8967 Condition defaults to COND_ALWAYS.
8968 Error if Rd, Rn or Rm are R15. */
8969
8970 static void
8971 do_pkhbt (void)
8972 {
8973 inst.instruction |= inst.operands[0].reg << 12;
8974 inst.instruction |= inst.operands[1].reg << 16;
8975 inst.instruction |= inst.operands[2].reg;
8976 if (inst.operands[3].present)
8977 encode_arm_shift (3);
8978 }
8979
8980 /* ARM V6 PKHTB (Argument Parse). */
8981
8982 static void
8983 do_pkhtb (void)
8984 {
8985 if (!inst.operands[3].present)
8986 {
8987 /* If the shift specifier is omitted, turn the instruction
8988 into pkhbt rd, rm, rn. */
8989 inst.instruction &= 0xfff00010;
8990 inst.instruction |= inst.operands[0].reg << 12;
8991 inst.instruction |= inst.operands[1].reg;
8992 inst.instruction |= inst.operands[2].reg << 16;
8993 }
8994 else
8995 {
8996 inst.instruction |= inst.operands[0].reg << 12;
8997 inst.instruction |= inst.operands[1].reg << 16;
8998 inst.instruction |= inst.operands[2].reg;
8999 encode_arm_shift (3);
9000 }
9001 }
9002
9003 /* ARMv5TE: Preload-Cache
9004 MP Extensions: Preload for write
9005
9006 PLD(W) <addr_mode>
9007
9008 Syntactically, like LDR with B=1, W=0, L=1. */
9009
9010 static void
9011 do_pld (void)
9012 {
9013 constraint (!inst.operands[0].isreg,
9014 _("'[' expected after PLD mnemonic"));
9015 constraint (inst.operands[0].postind,
9016 _("post-indexed expression used in preload instruction"));
9017 constraint (inst.operands[0].writeback,
9018 _("writeback used in preload instruction"));
9019 constraint (!inst.operands[0].preind,
9020 _("unindexed addressing used in preload instruction"));
9021 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9022 }
9023
9024 /* ARMv7: PLI <addr_mode> */
9025 static void
9026 do_pli (void)
9027 {
9028 constraint (!inst.operands[0].isreg,
9029 _("'[' expected after PLI mnemonic"));
9030 constraint (inst.operands[0].postind,
9031 _("post-indexed expression used in preload instruction"));
9032 constraint (inst.operands[0].writeback,
9033 _("writeback used in preload instruction"));
9034 constraint (!inst.operands[0].preind,
9035 _("unindexed addressing used in preload instruction"));
9036 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9037 inst.instruction &= ~PRE_INDEX;
9038 }
9039
9040 static void
9041 do_push_pop (void)
9042 {
9043 inst.operands[1] = inst.operands[0];
9044 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
9045 inst.operands[0].isreg = 1;
9046 inst.operands[0].writeback = 1;
9047 inst.operands[0].reg = REG_SP;
9048 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
9049 }
9050
9051 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
9052 word at the specified address and the following word
9053 respectively.
9054 Unconditionally executed.
9055 Error if Rn is R15. */
9056
9057 static void
9058 do_rfe (void)
9059 {
9060 inst.instruction |= inst.operands[0].reg << 16;
9061 if (inst.operands[0].writeback)
9062 inst.instruction |= WRITE_BACK;
9063 }
9064
9065 /* ARM V6 ssat (argument parse). */
9066
9067 static void
9068 do_ssat (void)
9069 {
9070 inst.instruction |= inst.operands[0].reg << 12;
9071 inst.instruction |= (inst.operands[1].imm - 1) << 16;
9072 inst.instruction |= inst.operands[2].reg;
9073
9074 if (inst.operands[3].present)
9075 encode_arm_shift (3);
9076 }
9077
9078 /* ARM V6 usat (argument parse). */
9079
9080 static void
9081 do_usat (void)
9082 {
9083 inst.instruction |= inst.operands[0].reg << 12;
9084 inst.instruction |= inst.operands[1].imm << 16;
9085 inst.instruction |= inst.operands[2].reg;
9086
9087 if (inst.operands[3].present)
9088 encode_arm_shift (3);
9089 }
9090
9091 /* ARM V6 ssat16 (argument parse). */
9092
9093 static void
9094 do_ssat16 (void)
9095 {
9096 inst.instruction |= inst.operands[0].reg << 12;
9097 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
9098 inst.instruction |= inst.operands[2].reg;
9099 }
9100
9101 static void
9102 do_usat16 (void)
9103 {
9104 inst.instruction |= inst.operands[0].reg << 12;
9105 inst.instruction |= inst.operands[1].imm << 16;
9106 inst.instruction |= inst.operands[2].reg;
9107 }
9108
9109 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
9110 preserving the other bits.
9111
9112 setend <endian_specifier>, where <endian_specifier> is either
9113 BE or LE. */
9114
9115 static void
9116 do_setend (void)
9117 {
9118 if (warn_on_deprecated
9119 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9120 as_tsktsk (_("setend use is deprecated for ARMv8"));
9121
9122 if (inst.operands[0].imm)
9123 inst.instruction |= 0x200;
9124 }
9125
9126 static void
9127 do_shift (void)
9128 {
9129 unsigned int Rm = (inst.operands[1].present
9130 ? inst.operands[1].reg
9131 : inst.operands[0].reg);
9132
9133 inst.instruction |= inst.operands[0].reg << 12;
9134 inst.instruction |= Rm;
9135 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
9136 {
9137 inst.instruction |= inst.operands[2].reg << 8;
9138 inst.instruction |= SHIFT_BY_REG;
9139 /* PR 12854: Error on extraneous shifts. */
9140 constraint (inst.operands[2].shifted,
9141 _("extraneous shift as part of operand to shift insn"));
9142 }
9143 else
9144 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
9145 }
9146
9147 static void
9148 do_smc (void)
9149 {
9150 inst.reloc.type = BFD_RELOC_ARM_SMC;
9151 inst.reloc.pc_rel = 0;
9152 }
9153
9154 static void
9155 do_hvc (void)
9156 {
9157 inst.reloc.type = BFD_RELOC_ARM_HVC;
9158 inst.reloc.pc_rel = 0;
9159 }
9160
9161 static void
9162 do_swi (void)
9163 {
9164 inst.reloc.type = BFD_RELOC_ARM_SWI;
9165 inst.reloc.pc_rel = 0;
9166 }
9167
9168 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
9169 SMLAxy{cond} Rd,Rm,Rs,Rn
9170 SMLAWy{cond} Rd,Rm,Rs,Rn
9171 Error if any register is R15. */
9172
9173 static void
9174 do_smla (void)
9175 {
9176 inst.instruction |= inst.operands[0].reg << 16;
9177 inst.instruction |= inst.operands[1].reg;
9178 inst.instruction |= inst.operands[2].reg << 8;
9179 inst.instruction |= inst.operands[3].reg << 12;
9180 }
9181
9182 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
9183 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
9184 Error if any register is R15.
9185 Warning if Rdlo == Rdhi. */
9186
9187 static void
9188 do_smlal (void)
9189 {
9190 inst.instruction |= inst.operands[0].reg << 12;
9191 inst.instruction |= inst.operands[1].reg << 16;
9192 inst.instruction |= inst.operands[2].reg;
9193 inst.instruction |= inst.operands[3].reg << 8;
9194
9195 if (inst.operands[0].reg == inst.operands[1].reg)
9196 as_tsktsk (_("rdhi and rdlo must be different"));
9197 }
9198
9199 /* ARM V5E (El Segundo) signed-multiply (argument parse)
9200 SMULxy{cond} Rd,Rm,Rs
9201 Error if any register is R15. */
9202
9203 static void
9204 do_smul (void)
9205 {
9206 inst.instruction |= inst.operands[0].reg << 16;
9207 inst.instruction |= inst.operands[1].reg;
9208 inst.instruction |= inst.operands[2].reg << 8;
9209 }
9210
9211 /* ARM V6 srs (argument parse). The variable fields in the encoding are
9212 the same for both ARM and Thumb-2. */
9213
9214 static void
9215 do_srs (void)
9216 {
9217 int reg;
9218
9219 if (inst.operands[0].present)
9220 {
9221 reg = inst.operands[0].reg;
9222 constraint (reg != REG_SP, _("SRS base register must be r13"));
9223 }
9224 else
9225 reg = REG_SP;
9226
9227 inst.instruction |= reg << 16;
9228 inst.instruction |= inst.operands[1].imm;
9229 if (inst.operands[0].writeback || inst.operands[1].writeback)
9230 inst.instruction |= WRITE_BACK;
9231 }
9232
9233 /* ARM V6 strex (argument parse). */
9234
9235 static void
9236 do_strex (void)
9237 {
9238 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9239 || inst.operands[2].postind || inst.operands[2].writeback
9240 || inst.operands[2].immisreg || inst.operands[2].shifted
9241 || inst.operands[2].negative
9242 /* See comment in do_ldrex(). */
9243 || (inst.operands[2].reg == REG_PC),
9244 BAD_ADDR_MODE);
9245
9246 constraint (inst.operands[0].reg == inst.operands[1].reg
9247 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9248
9249 constraint (inst.reloc.exp.X_op != O_constant
9250 || inst.reloc.exp.X_add_number != 0,
9251 _("offset must be zero in ARM encoding"));
9252
9253 inst.instruction |= inst.operands[0].reg << 12;
9254 inst.instruction |= inst.operands[1].reg;
9255 inst.instruction |= inst.operands[2].reg << 16;
9256 inst.reloc.type = BFD_RELOC_UNUSED;
9257 }
9258
9259 static void
9260 do_t_strexbh (void)
9261 {
9262 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9263 || inst.operands[2].postind || inst.operands[2].writeback
9264 || inst.operands[2].immisreg || inst.operands[2].shifted
9265 || inst.operands[2].negative,
9266 BAD_ADDR_MODE);
9267
9268 constraint (inst.operands[0].reg == inst.operands[1].reg
9269 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9270
9271 do_rm_rd_rn ();
9272 }
9273
9274 static void
9275 do_strexd (void)
9276 {
9277 constraint (inst.operands[1].reg % 2 != 0,
9278 _("even register required"));
9279 constraint (inst.operands[2].present
9280 && inst.operands[2].reg != inst.operands[1].reg + 1,
9281 _("can only store two consecutive registers"));
9282 /* If op 2 were present and equal to PC, this function wouldn't
9283 have been called in the first place. */
9284 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
9285
9286 constraint (inst.operands[0].reg == inst.operands[1].reg
9287 || inst.operands[0].reg == inst.operands[1].reg + 1
9288 || inst.operands[0].reg == inst.operands[3].reg,
9289 BAD_OVERLAP);
9290
9291 inst.instruction |= inst.operands[0].reg << 12;
9292 inst.instruction |= inst.operands[1].reg;
9293 inst.instruction |= inst.operands[3].reg << 16;
9294 }
9295
9296 /* ARM V8 STRL. */
9297 static void
9298 do_stlex (void)
9299 {
9300 constraint (inst.operands[0].reg == inst.operands[1].reg
9301 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9302
9303 do_rd_rm_rn ();
9304 }
9305
9306 static void
9307 do_t_stlex (void)
9308 {
9309 constraint (inst.operands[0].reg == inst.operands[1].reg
9310 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9311
9312 do_rm_rd_rn ();
9313 }
9314
9315 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
9316 extends it to 32-bits, and adds the result to a value in another
9317 register. You can specify a rotation by 0, 8, 16, or 24 bits
9318 before extracting the 16-bit value.
9319 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
9320 Condition defaults to COND_ALWAYS.
9321 Error if any register uses R15. */
9322
9323 static void
9324 do_sxtah (void)
9325 {
9326 inst.instruction |= inst.operands[0].reg << 12;
9327 inst.instruction |= inst.operands[1].reg << 16;
9328 inst.instruction |= inst.operands[2].reg;
9329 inst.instruction |= inst.operands[3].imm << 10;
9330 }
9331
9332 /* ARM V6 SXTH.
9333
9334 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
9335 Condition defaults to COND_ALWAYS.
9336 Error if any register uses R15. */
9337
9338 static void
9339 do_sxth (void)
9340 {
9341 inst.instruction |= inst.operands[0].reg << 12;
9342 inst.instruction |= inst.operands[1].reg;
9343 inst.instruction |= inst.operands[2].imm << 10;
9344 }
9345 \f
9346 /* VFP instructions. In a logical order: SP variant first, monad
9347 before dyad, arithmetic then move then load/store. */
9348
9349 static void
9350 do_vfp_sp_monadic (void)
9351 {
9352 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9353 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9354 }
9355
9356 static void
9357 do_vfp_sp_dyadic (void)
9358 {
9359 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9360 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9361 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9362 }
9363
9364 static void
9365 do_vfp_sp_compare_z (void)
9366 {
9367 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9368 }
9369
9370 static void
9371 do_vfp_dp_sp_cvt (void)
9372 {
9373 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9374 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9375 }
9376
9377 static void
9378 do_vfp_sp_dp_cvt (void)
9379 {
9380 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9381 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9382 }
9383
9384 static void
9385 do_vfp_reg_from_sp (void)
9386 {
9387 inst.instruction |= inst.operands[0].reg << 12;
9388 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9389 }
9390
9391 static void
9392 do_vfp_reg2_from_sp2 (void)
9393 {
9394 constraint (inst.operands[2].imm != 2,
9395 _("only two consecutive VFP SP registers allowed here"));
9396 inst.instruction |= inst.operands[0].reg << 12;
9397 inst.instruction |= inst.operands[1].reg << 16;
9398 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9399 }
9400
9401 static void
9402 do_vfp_sp_from_reg (void)
9403 {
9404 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
9405 inst.instruction |= inst.operands[1].reg << 12;
9406 }
9407
9408 static void
9409 do_vfp_sp2_from_reg2 (void)
9410 {
9411 constraint (inst.operands[0].imm != 2,
9412 _("only two consecutive VFP SP registers allowed here"));
9413 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
9414 inst.instruction |= inst.operands[1].reg << 12;
9415 inst.instruction |= inst.operands[2].reg << 16;
9416 }
9417
9418 static void
9419 do_vfp_sp_ldst (void)
9420 {
9421 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9422 encode_arm_cp_address (1, FALSE, TRUE, 0);
9423 }
9424
9425 static void
9426 do_vfp_dp_ldst (void)
9427 {
9428 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9429 encode_arm_cp_address (1, FALSE, TRUE, 0);
9430 }
9431
9432
9433 static void
9434 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
9435 {
9436 if (inst.operands[0].writeback)
9437 inst.instruction |= WRITE_BACK;
9438 else
9439 constraint (ldstm_type != VFP_LDSTMIA,
9440 _("this addressing mode requires base-register writeback"));
9441 inst.instruction |= inst.operands[0].reg << 16;
9442 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
9443 inst.instruction |= inst.operands[1].imm;
9444 }
9445
9446 static void
9447 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
9448 {
9449 int count;
9450
9451 if (inst.operands[0].writeback)
9452 inst.instruction |= WRITE_BACK;
9453 else
9454 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
9455 _("this addressing mode requires base-register writeback"));
9456
9457 inst.instruction |= inst.operands[0].reg << 16;
9458 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9459
9460 count = inst.operands[1].imm << 1;
9461 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
9462 count += 1;
9463
9464 inst.instruction |= count;
9465 }
9466
9467 static void
9468 do_vfp_sp_ldstmia (void)
9469 {
9470 vfp_sp_ldstm (VFP_LDSTMIA);
9471 }
9472
9473 static void
9474 do_vfp_sp_ldstmdb (void)
9475 {
9476 vfp_sp_ldstm (VFP_LDSTMDB);
9477 }
9478
9479 static void
9480 do_vfp_dp_ldstmia (void)
9481 {
9482 vfp_dp_ldstm (VFP_LDSTMIA);
9483 }
9484
9485 static void
9486 do_vfp_dp_ldstmdb (void)
9487 {
9488 vfp_dp_ldstm (VFP_LDSTMDB);
9489 }
9490
9491 static void
9492 do_vfp_xp_ldstmia (void)
9493 {
9494 vfp_dp_ldstm (VFP_LDSTMIAX);
9495 }
9496
9497 static void
9498 do_vfp_xp_ldstmdb (void)
9499 {
9500 vfp_dp_ldstm (VFP_LDSTMDBX);
9501 }
9502
9503 static void
9504 do_vfp_dp_rd_rm (void)
9505 {
9506 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9507 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9508 }
9509
9510 static void
9511 do_vfp_dp_rn_rd (void)
9512 {
9513 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
9514 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9515 }
9516
9517 static void
9518 do_vfp_dp_rd_rn (void)
9519 {
9520 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9521 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9522 }
9523
9524 static void
9525 do_vfp_dp_rd_rn_rm (void)
9526 {
9527 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9528 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9529 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
9530 }
9531
9532 static void
9533 do_vfp_dp_rd (void)
9534 {
9535 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9536 }
9537
9538 static void
9539 do_vfp_dp_rm_rd_rn (void)
9540 {
9541 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
9542 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9543 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
9544 }
9545
9546 /* VFPv3 instructions. */
9547 static void
9548 do_vfp_sp_const (void)
9549 {
9550 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9551 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9552 inst.instruction |= (inst.operands[1].imm & 0x0f);
9553 }
9554
9555 static void
9556 do_vfp_dp_const (void)
9557 {
9558 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9559 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9560 inst.instruction |= (inst.operands[1].imm & 0x0f);
9561 }
9562
9563 static void
9564 vfp_conv (int srcsize)
9565 {
9566 int immbits = srcsize - inst.operands[1].imm;
9567
9568 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9569 {
9570 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
9571 i.e. immbits must be in range 0 - 16. */
9572 inst.error = _("immediate value out of range, expected range [0, 16]");
9573 return;
9574 }
9575 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
9576 {
9577 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9578 i.e. immbits must be in range 0 - 31. */
9579 inst.error = _("immediate value out of range, expected range [1, 32]");
9580 return;
9581 }
9582
9583 inst.instruction |= (immbits & 1) << 5;
9584 inst.instruction |= (immbits >> 1);
9585 }
9586
9587 static void
9588 do_vfp_sp_conv_16 (void)
9589 {
9590 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9591 vfp_conv (16);
9592 }
9593
9594 static void
9595 do_vfp_dp_conv_16 (void)
9596 {
9597 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9598 vfp_conv (16);
9599 }
9600
9601 static void
9602 do_vfp_sp_conv_32 (void)
9603 {
9604 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9605 vfp_conv (32);
9606 }
9607
9608 static void
9609 do_vfp_dp_conv_32 (void)
9610 {
9611 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9612 vfp_conv (32);
9613 }
9614 \f
9615 /* FPA instructions. Also in a logical order. */
9616
9617 static void
9618 do_fpa_cmp (void)
9619 {
9620 inst.instruction |= inst.operands[0].reg << 16;
9621 inst.instruction |= inst.operands[1].reg;
9622 }
9623
9624 static void
9625 do_fpa_ldmstm (void)
9626 {
9627 inst.instruction |= inst.operands[0].reg << 12;
9628 switch (inst.operands[1].imm)
9629 {
9630 case 1: inst.instruction |= CP_T_X; break;
9631 case 2: inst.instruction |= CP_T_Y; break;
9632 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9633 case 4: break;
9634 default: abort ();
9635 }
9636
9637 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9638 {
9639 /* The instruction specified "ea" or "fd", so we can only accept
9640 [Rn]{!}. The instruction does not really support stacking or
9641 unstacking, so we have to emulate these by setting appropriate
9642 bits and offsets. */
9643 constraint (inst.reloc.exp.X_op != O_constant
9644 || inst.reloc.exp.X_add_number != 0,
9645 _("this instruction does not support indexing"));
9646
9647 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9648 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
9649
9650 if (!(inst.instruction & INDEX_UP))
9651 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
9652
9653 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9654 {
9655 inst.operands[2].preind = 0;
9656 inst.operands[2].postind = 1;
9657 }
9658 }
9659
9660 encode_arm_cp_address (2, TRUE, TRUE, 0);
9661 }
9662 \f
9663 /* iWMMXt instructions: strictly in alphabetical order. */
9664
9665 static void
9666 do_iwmmxt_tandorc (void)
9667 {
9668 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9669 }
9670
9671 static void
9672 do_iwmmxt_textrc (void)
9673 {
9674 inst.instruction |= inst.operands[0].reg << 12;
9675 inst.instruction |= inst.operands[1].imm;
9676 }
9677
9678 static void
9679 do_iwmmxt_textrm (void)
9680 {
9681 inst.instruction |= inst.operands[0].reg << 12;
9682 inst.instruction |= inst.operands[1].reg << 16;
9683 inst.instruction |= inst.operands[2].imm;
9684 }
9685
9686 static void
9687 do_iwmmxt_tinsr (void)
9688 {
9689 inst.instruction |= inst.operands[0].reg << 16;
9690 inst.instruction |= inst.operands[1].reg << 12;
9691 inst.instruction |= inst.operands[2].imm;
9692 }
9693
9694 static void
9695 do_iwmmxt_tmia (void)
9696 {
9697 inst.instruction |= inst.operands[0].reg << 5;
9698 inst.instruction |= inst.operands[1].reg;
9699 inst.instruction |= inst.operands[2].reg << 12;
9700 }
9701
9702 static void
9703 do_iwmmxt_waligni (void)
9704 {
9705 inst.instruction |= inst.operands[0].reg << 12;
9706 inst.instruction |= inst.operands[1].reg << 16;
9707 inst.instruction |= inst.operands[2].reg;
9708 inst.instruction |= inst.operands[3].imm << 20;
9709 }
9710
9711 static void
9712 do_iwmmxt_wmerge (void)
9713 {
9714 inst.instruction |= inst.operands[0].reg << 12;
9715 inst.instruction |= inst.operands[1].reg << 16;
9716 inst.instruction |= inst.operands[2].reg;
9717 inst.instruction |= inst.operands[3].imm << 21;
9718 }
9719
9720 static void
9721 do_iwmmxt_wmov (void)
9722 {
9723 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9724 inst.instruction |= inst.operands[0].reg << 12;
9725 inst.instruction |= inst.operands[1].reg << 16;
9726 inst.instruction |= inst.operands[1].reg;
9727 }
9728
9729 static void
9730 do_iwmmxt_wldstbh (void)
9731 {
9732 int reloc;
9733 inst.instruction |= inst.operands[0].reg << 12;
9734 if (thumb_mode)
9735 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9736 else
9737 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9738 encode_arm_cp_address (1, TRUE, FALSE, reloc);
9739 }
9740
9741 static void
9742 do_iwmmxt_wldstw (void)
9743 {
9744 /* RIWR_RIWC clears .isreg for a control register. */
9745 if (!inst.operands[0].isreg)
9746 {
9747 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9748 inst.instruction |= 0xf0000000;
9749 }
9750
9751 inst.instruction |= inst.operands[0].reg << 12;
9752 encode_arm_cp_address (1, TRUE, TRUE, 0);
9753 }
9754
9755 static void
9756 do_iwmmxt_wldstd (void)
9757 {
9758 inst.instruction |= inst.operands[0].reg << 12;
9759 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9760 && inst.operands[1].immisreg)
9761 {
9762 inst.instruction &= ~0x1a000ff;
9763 inst.instruction |= (0xf << 28);
9764 if (inst.operands[1].preind)
9765 inst.instruction |= PRE_INDEX;
9766 if (!inst.operands[1].negative)
9767 inst.instruction |= INDEX_UP;
9768 if (inst.operands[1].writeback)
9769 inst.instruction |= WRITE_BACK;
9770 inst.instruction |= inst.operands[1].reg << 16;
9771 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9772 inst.instruction |= inst.operands[1].imm;
9773 }
9774 else
9775 encode_arm_cp_address (1, TRUE, FALSE, 0);
9776 }
9777
9778 static void
9779 do_iwmmxt_wshufh (void)
9780 {
9781 inst.instruction |= inst.operands[0].reg << 12;
9782 inst.instruction |= inst.operands[1].reg << 16;
9783 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9784 inst.instruction |= (inst.operands[2].imm & 0x0f);
9785 }
9786
9787 static void
9788 do_iwmmxt_wzero (void)
9789 {
9790 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9791 inst.instruction |= inst.operands[0].reg;
9792 inst.instruction |= inst.operands[0].reg << 12;
9793 inst.instruction |= inst.operands[0].reg << 16;
9794 }
9795
9796 static void
9797 do_iwmmxt_wrwrwr_or_imm5 (void)
9798 {
9799 if (inst.operands[2].isreg)
9800 do_rd_rn_rm ();
9801 else {
9802 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9803 _("immediate operand requires iWMMXt2"));
9804 do_rd_rn ();
9805 if (inst.operands[2].imm == 0)
9806 {
9807 switch ((inst.instruction >> 20) & 0xf)
9808 {
9809 case 4:
9810 case 5:
9811 case 6:
9812 case 7:
9813 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9814 inst.operands[2].imm = 16;
9815 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9816 break;
9817 case 8:
9818 case 9:
9819 case 10:
9820 case 11:
9821 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9822 inst.operands[2].imm = 32;
9823 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9824 break;
9825 case 12:
9826 case 13:
9827 case 14:
9828 case 15:
9829 {
9830 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9831 unsigned long wrn;
9832 wrn = (inst.instruction >> 16) & 0xf;
9833 inst.instruction &= 0xff0fff0f;
9834 inst.instruction |= wrn;
9835 /* Bail out here; the instruction is now assembled. */
9836 return;
9837 }
9838 }
9839 }
9840 /* Map 32 -> 0, etc. */
9841 inst.operands[2].imm &= 0x1f;
9842 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9843 }
9844 }
9845 \f
9846 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9847 operations first, then control, shift, and load/store. */
9848
9849 /* Insns like "foo X,Y,Z". */
9850
9851 static void
9852 do_mav_triple (void)
9853 {
9854 inst.instruction |= inst.operands[0].reg << 16;
9855 inst.instruction |= inst.operands[1].reg;
9856 inst.instruction |= inst.operands[2].reg << 12;
9857 }
9858
9859 /* Insns like "foo W,X,Y,Z".
9860 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
9861
9862 static void
9863 do_mav_quad (void)
9864 {
9865 inst.instruction |= inst.operands[0].reg << 5;
9866 inst.instruction |= inst.operands[1].reg << 12;
9867 inst.instruction |= inst.operands[2].reg << 16;
9868 inst.instruction |= inst.operands[3].reg;
9869 }
9870
9871 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9872 static void
9873 do_mav_dspsc (void)
9874 {
9875 inst.instruction |= inst.operands[1].reg << 12;
9876 }
9877
9878 /* Maverick shift immediate instructions.
9879 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9880 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
9881
9882 static void
9883 do_mav_shift (void)
9884 {
9885 int imm = inst.operands[2].imm;
9886
9887 inst.instruction |= inst.operands[0].reg << 12;
9888 inst.instruction |= inst.operands[1].reg << 16;
9889
9890 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9891 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9892 Bit 4 should be 0. */
9893 imm = (imm & 0xf) | ((imm & 0x70) << 1);
9894
9895 inst.instruction |= imm;
9896 }
9897 \f
9898 /* XScale instructions. Also sorted arithmetic before move. */
9899
9900 /* Xscale multiply-accumulate (argument parse)
9901 MIAcc acc0,Rm,Rs
9902 MIAPHcc acc0,Rm,Rs
9903 MIAxycc acc0,Rm,Rs. */
9904
9905 static void
9906 do_xsc_mia (void)
9907 {
9908 inst.instruction |= inst.operands[1].reg;
9909 inst.instruction |= inst.operands[2].reg << 12;
9910 }
9911
9912 /* Xscale move-accumulator-register (argument parse)
9913
9914 MARcc acc0,RdLo,RdHi. */
9915
9916 static void
9917 do_xsc_mar (void)
9918 {
9919 inst.instruction |= inst.operands[1].reg << 12;
9920 inst.instruction |= inst.operands[2].reg << 16;
9921 }
9922
9923 /* Xscale move-register-accumulator (argument parse)
9924
9925 MRAcc RdLo,RdHi,acc0. */
9926
9927 static void
9928 do_xsc_mra (void)
9929 {
9930 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9931 inst.instruction |= inst.operands[0].reg << 12;
9932 inst.instruction |= inst.operands[1].reg << 16;
9933 }
9934 \f
9935 /* Encoding functions relevant only to Thumb. */
9936
9937 /* inst.operands[i] is a shifted-register operand; encode
9938 it into inst.instruction in the format used by Thumb32. */
9939
9940 static void
9941 encode_thumb32_shifted_operand (int i)
9942 {
9943 unsigned int value = inst.reloc.exp.X_add_number;
9944 unsigned int shift = inst.operands[i].shift_kind;
9945
9946 constraint (inst.operands[i].immisreg,
9947 _("shift by register not allowed in thumb mode"));
9948 inst.instruction |= inst.operands[i].reg;
9949 if (shift == SHIFT_RRX)
9950 inst.instruction |= SHIFT_ROR << 4;
9951 else
9952 {
9953 constraint (inst.reloc.exp.X_op != O_constant,
9954 _("expression too complex"));
9955
9956 constraint (value > 32
9957 || (value == 32 && (shift == SHIFT_LSL
9958 || shift == SHIFT_ROR)),
9959 _("shift expression is too large"));
9960
9961 if (value == 0)
9962 shift = SHIFT_LSL;
9963 else if (value == 32)
9964 value = 0;
9965
9966 inst.instruction |= shift << 4;
9967 inst.instruction |= (value & 0x1c) << 10;
9968 inst.instruction |= (value & 0x03) << 6;
9969 }
9970 }
9971
9972
9973 /* inst.operands[i] was set up by parse_address. Encode it into a
9974 Thumb32 format load or store instruction. Reject forms that cannot
9975 be used with such instructions. If is_t is true, reject forms that
9976 cannot be used with a T instruction; if is_d is true, reject forms
9977 that cannot be used with a D instruction. If it is a store insn,
9978 reject PC in Rn. */
9979
9980 static void
9981 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9982 {
9983 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
9984
9985 constraint (!inst.operands[i].isreg,
9986 _("Instruction does not support =N addresses"));
9987
9988 inst.instruction |= inst.operands[i].reg << 16;
9989 if (inst.operands[i].immisreg)
9990 {
9991 constraint (is_pc, BAD_PC_ADDRESSING);
9992 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9993 constraint (inst.operands[i].negative,
9994 _("Thumb does not support negative register indexing"));
9995 constraint (inst.operands[i].postind,
9996 _("Thumb does not support register post-indexing"));
9997 constraint (inst.operands[i].writeback,
9998 _("Thumb does not support register indexing with writeback"));
9999 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
10000 _("Thumb supports only LSL in shifted register indexing"));
10001
10002 inst.instruction |= inst.operands[i].imm;
10003 if (inst.operands[i].shifted)
10004 {
10005 constraint (inst.reloc.exp.X_op != O_constant,
10006 _("expression too complex"));
10007 constraint (inst.reloc.exp.X_add_number < 0
10008 || inst.reloc.exp.X_add_number > 3,
10009 _("shift out of range"));
10010 inst.instruction |= inst.reloc.exp.X_add_number << 4;
10011 }
10012 inst.reloc.type = BFD_RELOC_UNUSED;
10013 }
10014 else if (inst.operands[i].preind)
10015 {
10016 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
10017 constraint (is_t && inst.operands[i].writeback,
10018 _("cannot use writeback with this instruction"));
10019 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
10020 BAD_PC_ADDRESSING);
10021
10022 if (is_d)
10023 {
10024 inst.instruction |= 0x01000000;
10025 if (inst.operands[i].writeback)
10026 inst.instruction |= 0x00200000;
10027 }
10028 else
10029 {
10030 inst.instruction |= 0x00000c00;
10031 if (inst.operands[i].writeback)
10032 inst.instruction |= 0x00000100;
10033 }
10034 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10035 }
10036 else if (inst.operands[i].postind)
10037 {
10038 gas_assert (inst.operands[i].writeback);
10039 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
10040 constraint (is_t, _("cannot use post-indexing with this instruction"));
10041
10042 if (is_d)
10043 inst.instruction |= 0x00200000;
10044 else
10045 inst.instruction |= 0x00000900;
10046 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10047 }
10048 else /* unindexed - only for coprocessor */
10049 inst.error = _("instruction does not accept unindexed addressing");
10050 }
10051
10052 /* Table of Thumb instructions which exist in both 16- and 32-bit
10053 encodings (the latter only in post-V6T2 cores). The index is the
10054 value used in the insns table below. When there is more than one
10055 possible 16-bit encoding for the instruction, this table always
10056 holds variant (1).
10057 Also contains several pseudo-instructions used during relaxation. */
10058 #define T16_32_TAB \
10059 X(_adc, 4140, eb400000), \
10060 X(_adcs, 4140, eb500000), \
10061 X(_add, 1c00, eb000000), \
10062 X(_adds, 1c00, eb100000), \
10063 X(_addi, 0000, f1000000), \
10064 X(_addis, 0000, f1100000), \
10065 X(_add_pc,000f, f20f0000), \
10066 X(_add_sp,000d, f10d0000), \
10067 X(_adr, 000f, f20f0000), \
10068 X(_and, 4000, ea000000), \
10069 X(_ands, 4000, ea100000), \
10070 X(_asr, 1000, fa40f000), \
10071 X(_asrs, 1000, fa50f000), \
10072 X(_b, e000, f000b000), \
10073 X(_bcond, d000, f0008000), \
10074 X(_bic, 4380, ea200000), \
10075 X(_bics, 4380, ea300000), \
10076 X(_cmn, 42c0, eb100f00), \
10077 X(_cmp, 2800, ebb00f00), \
10078 X(_cpsie, b660, f3af8400), \
10079 X(_cpsid, b670, f3af8600), \
10080 X(_cpy, 4600, ea4f0000), \
10081 X(_dec_sp,80dd, f1ad0d00), \
10082 X(_eor, 4040, ea800000), \
10083 X(_eors, 4040, ea900000), \
10084 X(_inc_sp,00dd, f10d0d00), \
10085 X(_ldmia, c800, e8900000), \
10086 X(_ldr, 6800, f8500000), \
10087 X(_ldrb, 7800, f8100000), \
10088 X(_ldrh, 8800, f8300000), \
10089 X(_ldrsb, 5600, f9100000), \
10090 X(_ldrsh, 5e00, f9300000), \
10091 X(_ldr_pc,4800, f85f0000), \
10092 X(_ldr_pc2,4800, f85f0000), \
10093 X(_ldr_sp,9800, f85d0000), \
10094 X(_lsl, 0000, fa00f000), \
10095 X(_lsls, 0000, fa10f000), \
10096 X(_lsr, 0800, fa20f000), \
10097 X(_lsrs, 0800, fa30f000), \
10098 X(_mov, 2000, ea4f0000), \
10099 X(_movs, 2000, ea5f0000), \
10100 X(_mul, 4340, fb00f000), \
10101 X(_muls, 4340, ffffffff), /* no 32b muls */ \
10102 X(_mvn, 43c0, ea6f0000), \
10103 X(_mvns, 43c0, ea7f0000), \
10104 X(_neg, 4240, f1c00000), /* rsb #0 */ \
10105 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
10106 X(_orr, 4300, ea400000), \
10107 X(_orrs, 4300, ea500000), \
10108 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
10109 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
10110 X(_rev, ba00, fa90f080), \
10111 X(_rev16, ba40, fa90f090), \
10112 X(_revsh, bac0, fa90f0b0), \
10113 X(_ror, 41c0, fa60f000), \
10114 X(_rors, 41c0, fa70f000), \
10115 X(_sbc, 4180, eb600000), \
10116 X(_sbcs, 4180, eb700000), \
10117 X(_stmia, c000, e8800000), \
10118 X(_str, 6000, f8400000), \
10119 X(_strb, 7000, f8000000), \
10120 X(_strh, 8000, f8200000), \
10121 X(_str_sp,9000, f84d0000), \
10122 X(_sub, 1e00, eba00000), \
10123 X(_subs, 1e00, ebb00000), \
10124 X(_subi, 8000, f1a00000), \
10125 X(_subis, 8000, f1b00000), \
10126 X(_sxtb, b240, fa4ff080), \
10127 X(_sxth, b200, fa0ff080), \
10128 X(_tst, 4200, ea100f00), \
10129 X(_uxtb, b2c0, fa5ff080), \
10130 X(_uxth, b280, fa1ff080), \
10131 X(_nop, bf00, f3af8000), \
10132 X(_yield, bf10, f3af8001), \
10133 X(_wfe, bf20, f3af8002), \
10134 X(_wfi, bf30, f3af8003), \
10135 X(_sev, bf40, f3af8004), \
10136 X(_sevl, bf50, f3af8005), \
10137 X(_udf, de00, f7f0a000)
10138
10139 /* To catch errors in encoding functions, the codes are all offset by
10140 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
10141 as 16-bit instructions. */
10142 #define X(a,b,c) T_MNEM##a
10143 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
10144 #undef X
10145
10146 #define X(a,b,c) 0x##b
10147 static const unsigned short thumb_op16[] = { T16_32_TAB };
10148 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
10149 #undef X
10150
10151 #define X(a,b,c) 0x##c
10152 static const unsigned int thumb_op32[] = { T16_32_TAB };
10153 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
10154 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
10155 #undef X
10156 #undef T16_32_TAB
10157
10158 /* Thumb instruction encoders, in alphabetical order. */
10159
10160 /* ADDW or SUBW. */
10161
10162 static void
10163 do_t_add_sub_w (void)
10164 {
10165 int Rd, Rn;
10166
10167 Rd = inst.operands[0].reg;
10168 Rn = inst.operands[1].reg;
10169
10170 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
10171 is the SP-{plus,minus}-immediate form of the instruction. */
10172 if (Rn == REG_SP)
10173 constraint (Rd == REG_PC, BAD_PC);
10174 else
10175 reject_bad_reg (Rd);
10176
10177 inst.instruction |= (Rn << 16) | (Rd << 8);
10178 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10179 }
10180
10181 /* Parse an add or subtract instruction. We get here with inst.instruction
10182 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
10183
10184 static void
10185 do_t_add_sub (void)
10186 {
10187 int Rd, Rs, Rn;
10188
10189 Rd = inst.operands[0].reg;
10190 Rs = (inst.operands[1].present
10191 ? inst.operands[1].reg /* Rd, Rs, foo */
10192 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10193
10194 if (Rd == REG_PC)
10195 set_it_insn_type_last ();
10196
10197 if (unified_syntax)
10198 {
10199 bfd_boolean flags;
10200 bfd_boolean narrow;
10201 int opcode;
10202
10203 flags = (inst.instruction == T_MNEM_adds
10204 || inst.instruction == T_MNEM_subs);
10205 if (flags)
10206 narrow = !in_it_block ();
10207 else
10208 narrow = in_it_block ();
10209 if (!inst.operands[2].isreg)
10210 {
10211 int add;
10212
10213 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10214
10215 add = (inst.instruction == T_MNEM_add
10216 || inst.instruction == T_MNEM_adds);
10217 opcode = 0;
10218 if (inst.size_req != 4)
10219 {
10220 /* Attempt to use a narrow opcode, with relaxation if
10221 appropriate. */
10222 if (Rd == REG_SP && Rs == REG_SP && !flags)
10223 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
10224 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
10225 opcode = T_MNEM_add_sp;
10226 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
10227 opcode = T_MNEM_add_pc;
10228 else if (Rd <= 7 && Rs <= 7 && narrow)
10229 {
10230 if (flags)
10231 opcode = add ? T_MNEM_addis : T_MNEM_subis;
10232 else
10233 opcode = add ? T_MNEM_addi : T_MNEM_subi;
10234 }
10235 if (opcode)
10236 {
10237 inst.instruction = THUMB_OP16(opcode);
10238 inst.instruction |= (Rd << 4) | Rs;
10239 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10240 if (inst.size_req != 2)
10241 inst.relax = opcode;
10242 }
10243 else
10244 constraint (inst.size_req == 2, BAD_HIREG);
10245 }
10246 if (inst.size_req == 4
10247 || (inst.size_req != 2 && !opcode))
10248 {
10249 if (Rd == REG_PC)
10250 {
10251 constraint (add, BAD_PC);
10252 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
10253 _("only SUBS PC, LR, #const allowed"));
10254 constraint (inst.reloc.exp.X_op != O_constant,
10255 _("expression too complex"));
10256 constraint (inst.reloc.exp.X_add_number < 0
10257 || inst.reloc.exp.X_add_number > 0xff,
10258 _("immediate value out of range"));
10259 inst.instruction = T2_SUBS_PC_LR
10260 | inst.reloc.exp.X_add_number;
10261 inst.reloc.type = BFD_RELOC_UNUSED;
10262 return;
10263 }
10264 else if (Rs == REG_PC)
10265 {
10266 /* Always use addw/subw. */
10267 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
10268 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10269 }
10270 else
10271 {
10272 inst.instruction = THUMB_OP32 (inst.instruction);
10273 inst.instruction = (inst.instruction & 0xe1ffffff)
10274 | 0x10000000;
10275 if (flags)
10276 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10277 else
10278 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
10279 }
10280 inst.instruction |= Rd << 8;
10281 inst.instruction |= Rs << 16;
10282 }
10283 }
10284 else
10285 {
10286 unsigned int value = inst.reloc.exp.X_add_number;
10287 unsigned int shift = inst.operands[2].shift_kind;
10288
10289 Rn = inst.operands[2].reg;
10290 /* See if we can do this with a 16-bit instruction. */
10291 if (!inst.operands[2].shifted && inst.size_req != 4)
10292 {
10293 if (Rd > 7 || Rs > 7 || Rn > 7)
10294 narrow = FALSE;
10295
10296 if (narrow)
10297 {
10298 inst.instruction = ((inst.instruction == T_MNEM_adds
10299 || inst.instruction == T_MNEM_add)
10300 ? T_OPCODE_ADD_R3
10301 : T_OPCODE_SUB_R3);
10302 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10303 return;
10304 }
10305
10306 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
10307 {
10308 /* Thumb-1 cores (except v6-M) require at least one high
10309 register in a narrow non flag setting add. */
10310 if (Rd > 7 || Rn > 7
10311 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
10312 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
10313 {
10314 if (Rd == Rn)
10315 {
10316 Rn = Rs;
10317 Rs = Rd;
10318 }
10319 inst.instruction = T_OPCODE_ADD_HI;
10320 inst.instruction |= (Rd & 8) << 4;
10321 inst.instruction |= (Rd & 7);
10322 inst.instruction |= Rn << 3;
10323 return;
10324 }
10325 }
10326 }
10327
10328 constraint (Rd == REG_PC, BAD_PC);
10329 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10330 constraint (Rs == REG_PC, BAD_PC);
10331 reject_bad_reg (Rn);
10332
10333 /* If we get here, it can't be done in 16 bits. */
10334 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
10335 _("shift must be constant"));
10336 inst.instruction = THUMB_OP32 (inst.instruction);
10337 inst.instruction |= Rd << 8;
10338 inst.instruction |= Rs << 16;
10339 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
10340 _("shift value over 3 not allowed in thumb mode"));
10341 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
10342 _("only LSL shift allowed in thumb mode"));
10343 encode_thumb32_shifted_operand (2);
10344 }
10345 }
10346 else
10347 {
10348 constraint (inst.instruction == T_MNEM_adds
10349 || inst.instruction == T_MNEM_subs,
10350 BAD_THUMB32);
10351
10352 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
10353 {
10354 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
10355 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
10356 BAD_HIREG);
10357
10358 inst.instruction = (inst.instruction == T_MNEM_add
10359 ? 0x0000 : 0x8000);
10360 inst.instruction |= (Rd << 4) | Rs;
10361 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10362 return;
10363 }
10364
10365 Rn = inst.operands[2].reg;
10366 constraint (inst.operands[2].shifted, _("unshifted register required"));
10367
10368 /* We now have Rd, Rs, and Rn set to registers. */
10369 if (Rd > 7 || Rs > 7 || Rn > 7)
10370 {
10371 /* Can't do this for SUB. */
10372 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
10373 inst.instruction = T_OPCODE_ADD_HI;
10374 inst.instruction |= (Rd & 8) << 4;
10375 inst.instruction |= (Rd & 7);
10376 if (Rs == Rd)
10377 inst.instruction |= Rn << 3;
10378 else if (Rn == Rd)
10379 inst.instruction |= Rs << 3;
10380 else
10381 constraint (1, _("dest must overlap one source register"));
10382 }
10383 else
10384 {
10385 inst.instruction = (inst.instruction == T_MNEM_add
10386 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
10387 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10388 }
10389 }
10390 }
10391
10392 static void
10393 do_t_adr (void)
10394 {
10395 unsigned Rd;
10396
10397 Rd = inst.operands[0].reg;
10398 reject_bad_reg (Rd);
10399
10400 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
10401 {
10402 /* Defer to section relaxation. */
10403 inst.relax = inst.instruction;
10404 inst.instruction = THUMB_OP16 (inst.instruction);
10405 inst.instruction |= Rd << 4;
10406 }
10407 else if (unified_syntax && inst.size_req != 2)
10408 {
10409 /* Generate a 32-bit opcode. */
10410 inst.instruction = THUMB_OP32 (inst.instruction);
10411 inst.instruction |= Rd << 8;
10412 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
10413 inst.reloc.pc_rel = 1;
10414 }
10415 else
10416 {
10417 /* Generate a 16-bit opcode. */
10418 inst.instruction = THUMB_OP16 (inst.instruction);
10419 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10420 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
10421 inst.reloc.pc_rel = 1;
10422
10423 inst.instruction |= Rd << 4;
10424 }
10425 }
10426
10427 /* Arithmetic instructions for which there is just one 16-bit
10428 instruction encoding, and it allows only two low registers.
10429 For maximal compatibility with ARM syntax, we allow three register
10430 operands even when Thumb-32 instructions are not available, as long
10431 as the first two are identical. For instance, both "sbc r0,r1" and
10432 "sbc r0,r0,r1" are allowed. */
10433 static void
10434 do_t_arit3 (void)
10435 {
10436 int Rd, Rs, Rn;
10437
10438 Rd = inst.operands[0].reg;
10439 Rs = (inst.operands[1].present
10440 ? inst.operands[1].reg /* Rd, Rs, foo */
10441 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10442 Rn = inst.operands[2].reg;
10443
10444 reject_bad_reg (Rd);
10445 reject_bad_reg (Rs);
10446 if (inst.operands[2].isreg)
10447 reject_bad_reg (Rn);
10448
10449 if (unified_syntax)
10450 {
10451 if (!inst.operands[2].isreg)
10452 {
10453 /* For an immediate, we always generate a 32-bit opcode;
10454 section relaxation will shrink it later if possible. */
10455 inst.instruction = THUMB_OP32 (inst.instruction);
10456 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10457 inst.instruction |= Rd << 8;
10458 inst.instruction |= Rs << 16;
10459 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10460 }
10461 else
10462 {
10463 bfd_boolean narrow;
10464
10465 /* See if we can do this with a 16-bit instruction. */
10466 if (THUMB_SETS_FLAGS (inst.instruction))
10467 narrow = !in_it_block ();
10468 else
10469 narrow = in_it_block ();
10470
10471 if (Rd > 7 || Rn > 7 || Rs > 7)
10472 narrow = FALSE;
10473 if (inst.operands[2].shifted)
10474 narrow = FALSE;
10475 if (inst.size_req == 4)
10476 narrow = FALSE;
10477
10478 if (narrow
10479 && Rd == Rs)
10480 {
10481 inst.instruction = THUMB_OP16 (inst.instruction);
10482 inst.instruction |= Rd;
10483 inst.instruction |= Rn << 3;
10484 return;
10485 }
10486
10487 /* If we get here, it can't be done in 16 bits. */
10488 constraint (inst.operands[2].shifted
10489 && inst.operands[2].immisreg,
10490 _("shift must be constant"));
10491 inst.instruction = THUMB_OP32 (inst.instruction);
10492 inst.instruction |= Rd << 8;
10493 inst.instruction |= Rs << 16;
10494 encode_thumb32_shifted_operand (2);
10495 }
10496 }
10497 else
10498 {
10499 /* On its face this is a lie - the instruction does set the
10500 flags. However, the only supported mnemonic in this mode
10501 says it doesn't. */
10502 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10503
10504 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10505 _("unshifted register required"));
10506 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10507 constraint (Rd != Rs,
10508 _("dest and source1 must be the same register"));
10509
10510 inst.instruction = THUMB_OP16 (inst.instruction);
10511 inst.instruction |= Rd;
10512 inst.instruction |= Rn << 3;
10513 }
10514 }
10515
10516 /* Similarly, but for instructions where the arithmetic operation is
10517 commutative, so we can allow either of them to be different from
10518 the destination operand in a 16-bit instruction. For instance, all
10519 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
10520 accepted. */
10521 static void
10522 do_t_arit3c (void)
10523 {
10524 int Rd, Rs, Rn;
10525
10526 Rd = inst.operands[0].reg;
10527 Rs = (inst.operands[1].present
10528 ? inst.operands[1].reg /* Rd, Rs, foo */
10529 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10530 Rn = inst.operands[2].reg;
10531
10532 reject_bad_reg (Rd);
10533 reject_bad_reg (Rs);
10534 if (inst.operands[2].isreg)
10535 reject_bad_reg (Rn);
10536
10537 if (unified_syntax)
10538 {
10539 if (!inst.operands[2].isreg)
10540 {
10541 /* For an immediate, we always generate a 32-bit opcode;
10542 section relaxation will shrink it later if possible. */
10543 inst.instruction = THUMB_OP32 (inst.instruction);
10544 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10545 inst.instruction |= Rd << 8;
10546 inst.instruction |= Rs << 16;
10547 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10548 }
10549 else
10550 {
10551 bfd_boolean narrow;
10552
10553 /* See if we can do this with a 16-bit instruction. */
10554 if (THUMB_SETS_FLAGS (inst.instruction))
10555 narrow = !in_it_block ();
10556 else
10557 narrow = in_it_block ();
10558
10559 if (Rd > 7 || Rn > 7 || Rs > 7)
10560 narrow = FALSE;
10561 if (inst.operands[2].shifted)
10562 narrow = FALSE;
10563 if (inst.size_req == 4)
10564 narrow = FALSE;
10565
10566 if (narrow)
10567 {
10568 if (Rd == Rs)
10569 {
10570 inst.instruction = THUMB_OP16 (inst.instruction);
10571 inst.instruction |= Rd;
10572 inst.instruction |= Rn << 3;
10573 return;
10574 }
10575 if (Rd == Rn)
10576 {
10577 inst.instruction = THUMB_OP16 (inst.instruction);
10578 inst.instruction |= Rd;
10579 inst.instruction |= Rs << 3;
10580 return;
10581 }
10582 }
10583
10584 /* If we get here, it can't be done in 16 bits. */
10585 constraint (inst.operands[2].shifted
10586 && inst.operands[2].immisreg,
10587 _("shift must be constant"));
10588 inst.instruction = THUMB_OP32 (inst.instruction);
10589 inst.instruction |= Rd << 8;
10590 inst.instruction |= Rs << 16;
10591 encode_thumb32_shifted_operand (2);
10592 }
10593 }
10594 else
10595 {
10596 /* On its face this is a lie - the instruction does set the
10597 flags. However, the only supported mnemonic in this mode
10598 says it doesn't. */
10599 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10600
10601 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10602 _("unshifted register required"));
10603 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10604
10605 inst.instruction = THUMB_OP16 (inst.instruction);
10606 inst.instruction |= Rd;
10607
10608 if (Rd == Rs)
10609 inst.instruction |= Rn << 3;
10610 else if (Rd == Rn)
10611 inst.instruction |= Rs << 3;
10612 else
10613 constraint (1, _("dest must overlap one source register"));
10614 }
10615 }
10616
10617 static void
10618 do_t_bfc (void)
10619 {
10620 unsigned Rd;
10621 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10622 constraint (msb > 32, _("bit-field extends past end of register"));
10623 /* The instruction encoding stores the LSB and MSB,
10624 not the LSB and width. */
10625 Rd = inst.operands[0].reg;
10626 reject_bad_reg (Rd);
10627 inst.instruction |= Rd << 8;
10628 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10629 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10630 inst.instruction |= msb - 1;
10631 }
10632
10633 static void
10634 do_t_bfi (void)
10635 {
10636 int Rd, Rn;
10637 unsigned int msb;
10638
10639 Rd = inst.operands[0].reg;
10640 reject_bad_reg (Rd);
10641
10642 /* #0 in second position is alternative syntax for bfc, which is
10643 the same instruction but with REG_PC in the Rm field. */
10644 if (!inst.operands[1].isreg)
10645 Rn = REG_PC;
10646 else
10647 {
10648 Rn = inst.operands[1].reg;
10649 reject_bad_reg (Rn);
10650 }
10651
10652 msb = inst.operands[2].imm + inst.operands[3].imm;
10653 constraint (msb > 32, _("bit-field extends past end of register"));
10654 /* The instruction encoding stores the LSB and MSB,
10655 not the LSB and width. */
10656 inst.instruction |= Rd << 8;
10657 inst.instruction |= Rn << 16;
10658 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10659 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10660 inst.instruction |= msb - 1;
10661 }
10662
10663 static void
10664 do_t_bfx (void)
10665 {
10666 unsigned Rd, Rn;
10667
10668 Rd = inst.operands[0].reg;
10669 Rn = inst.operands[1].reg;
10670
10671 reject_bad_reg (Rd);
10672 reject_bad_reg (Rn);
10673
10674 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10675 _("bit-field extends past end of register"));
10676 inst.instruction |= Rd << 8;
10677 inst.instruction |= Rn << 16;
10678 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10679 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10680 inst.instruction |= inst.operands[3].imm - 1;
10681 }
10682
10683 /* ARM V5 Thumb BLX (argument parse)
10684 BLX <target_addr> which is BLX(1)
10685 BLX <Rm> which is BLX(2)
10686 Unfortunately, there are two different opcodes for this mnemonic.
10687 So, the insns[].value is not used, and the code here zaps values
10688 into inst.instruction.
10689
10690 ??? How to take advantage of the additional two bits of displacement
10691 available in Thumb32 mode? Need new relocation? */
10692
10693 static void
10694 do_t_blx (void)
10695 {
10696 set_it_insn_type_last ();
10697
10698 if (inst.operands[0].isreg)
10699 {
10700 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10701 /* We have a register, so this is BLX(2). */
10702 inst.instruction |= inst.operands[0].reg << 3;
10703 }
10704 else
10705 {
10706 /* No register. This must be BLX(1). */
10707 inst.instruction = 0xf000e800;
10708 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
10709 }
10710 }
10711
10712 static void
10713 do_t_branch (void)
10714 {
10715 int opcode;
10716 int cond;
10717 int reloc;
10718
10719 cond = inst.cond;
10720 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10721
10722 if (in_it_block ())
10723 {
10724 /* Conditional branches inside IT blocks are encoded as unconditional
10725 branches. */
10726 cond = COND_ALWAYS;
10727 }
10728 else
10729 cond = inst.cond;
10730
10731 if (cond != COND_ALWAYS)
10732 opcode = T_MNEM_bcond;
10733 else
10734 opcode = inst.instruction;
10735
10736 if (unified_syntax
10737 && (inst.size_req == 4
10738 || (inst.size_req != 2
10739 && (inst.operands[0].hasreloc
10740 || inst.reloc.exp.X_op == O_constant))))
10741 {
10742 inst.instruction = THUMB_OP32(opcode);
10743 if (cond == COND_ALWAYS)
10744 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
10745 else
10746 {
10747 gas_assert (cond != 0xF);
10748 inst.instruction |= cond << 22;
10749 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
10750 }
10751 }
10752 else
10753 {
10754 inst.instruction = THUMB_OP16(opcode);
10755 if (cond == COND_ALWAYS)
10756 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
10757 else
10758 {
10759 inst.instruction |= cond << 8;
10760 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
10761 }
10762 /* Allow section relaxation. */
10763 if (unified_syntax && inst.size_req != 2)
10764 inst.relax = opcode;
10765 }
10766 inst.reloc.type = reloc;
10767 inst.reloc.pc_rel = 1;
10768 }
10769
10770 /* Actually do the work for Thumb state bkpt and hlt. The only difference
10771 between the two is the maximum immediate allowed - which is passed in
10772 RANGE. */
10773 static void
10774 do_t_bkpt_hlt1 (int range)
10775 {
10776 constraint (inst.cond != COND_ALWAYS,
10777 _("instruction is always unconditional"));
10778 if (inst.operands[0].present)
10779 {
10780 constraint (inst.operands[0].imm > range,
10781 _("immediate value out of range"));
10782 inst.instruction |= inst.operands[0].imm;
10783 }
10784
10785 set_it_insn_type (NEUTRAL_IT_INSN);
10786 }
10787
10788 static void
10789 do_t_hlt (void)
10790 {
10791 do_t_bkpt_hlt1 (63);
10792 }
10793
10794 static void
10795 do_t_bkpt (void)
10796 {
10797 do_t_bkpt_hlt1 (255);
10798 }
10799
10800 static void
10801 do_t_branch23 (void)
10802 {
10803 set_it_insn_type_last ();
10804 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10805
10806 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10807 this file. We used to simply ignore the PLT reloc type here --
10808 the branch encoding is now needed to deal with TLSCALL relocs.
10809 So if we see a PLT reloc now, put it back to how it used to be to
10810 keep the preexisting behaviour. */
10811 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10812 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
10813
10814 #if defined(OBJ_COFF)
10815 /* If the destination of the branch is a defined symbol which does not have
10816 the THUMB_FUNC attribute, then we must be calling a function which has
10817 the (interfacearm) attribute. We look for the Thumb entry point to that
10818 function and change the branch to refer to that function instead. */
10819 if ( inst.reloc.exp.X_op == O_symbol
10820 && inst.reloc.exp.X_add_symbol != NULL
10821 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10822 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10823 inst.reloc.exp.X_add_symbol =
10824 find_real_start (inst.reloc.exp.X_add_symbol);
10825 #endif
10826 }
10827
10828 static void
10829 do_t_bx (void)
10830 {
10831 set_it_insn_type_last ();
10832 inst.instruction |= inst.operands[0].reg << 3;
10833 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10834 should cause the alignment to be checked once it is known. This is
10835 because BX PC only works if the instruction is word aligned. */
10836 }
10837
10838 static void
10839 do_t_bxj (void)
10840 {
10841 int Rm;
10842
10843 set_it_insn_type_last ();
10844 Rm = inst.operands[0].reg;
10845 reject_bad_reg (Rm);
10846 inst.instruction |= Rm << 16;
10847 }
10848
10849 static void
10850 do_t_clz (void)
10851 {
10852 unsigned Rd;
10853 unsigned Rm;
10854
10855 Rd = inst.operands[0].reg;
10856 Rm = inst.operands[1].reg;
10857
10858 reject_bad_reg (Rd);
10859 reject_bad_reg (Rm);
10860
10861 inst.instruction |= Rd << 8;
10862 inst.instruction |= Rm << 16;
10863 inst.instruction |= Rm;
10864 }
10865
10866 static void
10867 do_t_cps (void)
10868 {
10869 set_it_insn_type (OUTSIDE_IT_INSN);
10870 inst.instruction |= inst.operands[0].imm;
10871 }
10872
10873 static void
10874 do_t_cpsi (void)
10875 {
10876 set_it_insn_type (OUTSIDE_IT_INSN);
10877 if (unified_syntax
10878 && (inst.operands[1].present || inst.size_req == 4)
10879 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
10880 {
10881 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10882 inst.instruction = 0xf3af8000;
10883 inst.instruction |= imod << 9;
10884 inst.instruction |= inst.operands[0].imm << 5;
10885 if (inst.operands[1].present)
10886 inst.instruction |= 0x100 | inst.operands[1].imm;
10887 }
10888 else
10889 {
10890 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10891 && (inst.operands[0].imm & 4),
10892 _("selected processor does not support 'A' form "
10893 "of this instruction"));
10894 constraint (inst.operands[1].present || inst.size_req == 4,
10895 _("Thumb does not support the 2-argument "
10896 "form of this instruction"));
10897 inst.instruction |= inst.operands[0].imm;
10898 }
10899 }
10900
10901 /* THUMB CPY instruction (argument parse). */
10902
10903 static void
10904 do_t_cpy (void)
10905 {
10906 if (inst.size_req == 4)
10907 {
10908 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10909 inst.instruction |= inst.operands[0].reg << 8;
10910 inst.instruction |= inst.operands[1].reg;
10911 }
10912 else
10913 {
10914 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10915 inst.instruction |= (inst.operands[0].reg & 0x7);
10916 inst.instruction |= inst.operands[1].reg << 3;
10917 }
10918 }
10919
10920 static void
10921 do_t_cbz (void)
10922 {
10923 set_it_insn_type (OUTSIDE_IT_INSN);
10924 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10925 inst.instruction |= inst.operands[0].reg;
10926 inst.reloc.pc_rel = 1;
10927 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10928 }
10929
10930 static void
10931 do_t_dbg (void)
10932 {
10933 inst.instruction |= inst.operands[0].imm;
10934 }
10935
10936 static void
10937 do_t_div (void)
10938 {
10939 unsigned Rd, Rn, Rm;
10940
10941 Rd = inst.operands[0].reg;
10942 Rn = (inst.operands[1].present
10943 ? inst.operands[1].reg : Rd);
10944 Rm = inst.operands[2].reg;
10945
10946 reject_bad_reg (Rd);
10947 reject_bad_reg (Rn);
10948 reject_bad_reg (Rm);
10949
10950 inst.instruction |= Rd << 8;
10951 inst.instruction |= Rn << 16;
10952 inst.instruction |= Rm;
10953 }
10954
10955 static void
10956 do_t_hint (void)
10957 {
10958 if (unified_syntax && inst.size_req == 4)
10959 inst.instruction = THUMB_OP32 (inst.instruction);
10960 else
10961 inst.instruction = THUMB_OP16 (inst.instruction);
10962 }
10963
10964 static void
10965 do_t_it (void)
10966 {
10967 unsigned int cond = inst.operands[0].imm;
10968
10969 set_it_insn_type (IT_INSN);
10970 now_it.mask = (inst.instruction & 0xf) | 0x10;
10971 now_it.cc = cond;
10972 now_it.warn_deprecated = FALSE;
10973
10974 /* If the condition is a negative condition, invert the mask. */
10975 if ((cond & 0x1) == 0x0)
10976 {
10977 unsigned int mask = inst.instruction & 0x000f;
10978
10979 if ((mask & 0x7) == 0)
10980 {
10981 /* No conversion needed. */
10982 now_it.block_length = 1;
10983 }
10984 else if ((mask & 0x3) == 0)
10985 {
10986 mask ^= 0x8;
10987 now_it.block_length = 2;
10988 }
10989 else if ((mask & 0x1) == 0)
10990 {
10991 mask ^= 0xC;
10992 now_it.block_length = 3;
10993 }
10994 else
10995 {
10996 mask ^= 0xE;
10997 now_it.block_length = 4;
10998 }
10999
11000 inst.instruction &= 0xfff0;
11001 inst.instruction |= mask;
11002 }
11003
11004 inst.instruction |= cond << 4;
11005 }
11006
11007 /* Helper function used for both push/pop and ldm/stm. */
11008 static void
11009 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
11010 {
11011 bfd_boolean load;
11012
11013 load = (inst.instruction & (1 << 20)) != 0;
11014
11015 if (mask & (1 << 13))
11016 inst.error = _("SP not allowed in register list");
11017
11018 if ((mask & (1 << base)) != 0
11019 && writeback)
11020 inst.error = _("having the base register in the register list when "
11021 "using write back is UNPREDICTABLE");
11022
11023 if (load)
11024 {
11025 if (mask & (1 << 15))
11026 {
11027 if (mask & (1 << 14))
11028 inst.error = _("LR and PC should not both be in register list");
11029 else
11030 set_it_insn_type_last ();
11031 }
11032 }
11033 else
11034 {
11035 if (mask & (1 << 15))
11036 inst.error = _("PC not allowed in register list");
11037 }
11038
11039 if ((mask & (mask - 1)) == 0)
11040 {
11041 /* Single register transfers implemented as str/ldr. */
11042 if (writeback)
11043 {
11044 if (inst.instruction & (1 << 23))
11045 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
11046 else
11047 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
11048 }
11049 else
11050 {
11051 if (inst.instruction & (1 << 23))
11052 inst.instruction = 0x00800000; /* ia -> [base] */
11053 else
11054 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
11055 }
11056
11057 inst.instruction |= 0xf8400000;
11058 if (load)
11059 inst.instruction |= 0x00100000;
11060
11061 mask = ffs (mask) - 1;
11062 mask <<= 12;
11063 }
11064 else if (writeback)
11065 inst.instruction |= WRITE_BACK;
11066
11067 inst.instruction |= mask;
11068 inst.instruction |= base << 16;
11069 }
11070
11071 static void
11072 do_t_ldmstm (void)
11073 {
11074 /* This really doesn't seem worth it. */
11075 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11076 _("expression too complex"));
11077 constraint (inst.operands[1].writeback,
11078 _("Thumb load/store multiple does not support {reglist}^"));
11079
11080 if (unified_syntax)
11081 {
11082 bfd_boolean narrow;
11083 unsigned mask;
11084
11085 narrow = FALSE;
11086 /* See if we can use a 16-bit instruction. */
11087 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
11088 && inst.size_req != 4
11089 && !(inst.operands[1].imm & ~0xff))
11090 {
11091 mask = 1 << inst.operands[0].reg;
11092
11093 if (inst.operands[0].reg <= 7)
11094 {
11095 if (inst.instruction == T_MNEM_stmia
11096 ? inst.operands[0].writeback
11097 : (inst.operands[0].writeback
11098 == !(inst.operands[1].imm & mask)))
11099 {
11100 if (inst.instruction == T_MNEM_stmia
11101 && (inst.operands[1].imm & mask)
11102 && (inst.operands[1].imm & (mask - 1)))
11103 as_warn (_("value stored for r%d is UNKNOWN"),
11104 inst.operands[0].reg);
11105
11106 inst.instruction = THUMB_OP16 (inst.instruction);
11107 inst.instruction |= inst.operands[0].reg << 8;
11108 inst.instruction |= inst.operands[1].imm;
11109 narrow = TRUE;
11110 }
11111 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11112 {
11113 /* This means 1 register in reg list one of 3 situations:
11114 1. Instruction is stmia, but without writeback.
11115 2. lmdia without writeback, but with Rn not in
11116 reglist.
11117 3. ldmia with writeback, but with Rn in reglist.
11118 Case 3 is UNPREDICTABLE behaviour, so we handle
11119 case 1 and 2 which can be converted into a 16-bit
11120 str or ldr. The SP cases are handled below. */
11121 unsigned long opcode;
11122 /* First, record an error for Case 3. */
11123 if (inst.operands[1].imm & mask
11124 && inst.operands[0].writeback)
11125 inst.error =
11126 _("having the base register in the register list when "
11127 "using write back is UNPREDICTABLE");
11128
11129 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
11130 : T_MNEM_ldr);
11131 inst.instruction = THUMB_OP16 (opcode);
11132 inst.instruction |= inst.operands[0].reg << 3;
11133 inst.instruction |= (ffs (inst.operands[1].imm)-1);
11134 narrow = TRUE;
11135 }
11136 }
11137 else if (inst.operands[0] .reg == REG_SP)
11138 {
11139 if (inst.operands[0].writeback)
11140 {
11141 inst.instruction =
11142 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11143 ? T_MNEM_push : T_MNEM_pop);
11144 inst.instruction |= inst.operands[1].imm;
11145 narrow = TRUE;
11146 }
11147 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11148 {
11149 inst.instruction =
11150 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11151 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
11152 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
11153 narrow = TRUE;
11154 }
11155 }
11156 }
11157
11158 if (!narrow)
11159 {
11160 if (inst.instruction < 0xffff)
11161 inst.instruction = THUMB_OP32 (inst.instruction);
11162
11163 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
11164 inst.operands[0].writeback);
11165 }
11166 }
11167 else
11168 {
11169 constraint (inst.operands[0].reg > 7
11170 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
11171 constraint (inst.instruction != T_MNEM_ldmia
11172 && inst.instruction != T_MNEM_stmia,
11173 _("Thumb-2 instruction only valid in unified syntax"));
11174 if (inst.instruction == T_MNEM_stmia)
11175 {
11176 if (!inst.operands[0].writeback)
11177 as_warn (_("this instruction will write back the base register"));
11178 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
11179 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
11180 as_warn (_("value stored for r%d is UNKNOWN"),
11181 inst.operands[0].reg);
11182 }
11183 else
11184 {
11185 if (!inst.operands[0].writeback
11186 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
11187 as_warn (_("this instruction will write back the base register"));
11188 else if (inst.operands[0].writeback
11189 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
11190 as_warn (_("this instruction will not write back the base register"));
11191 }
11192
11193 inst.instruction = THUMB_OP16 (inst.instruction);
11194 inst.instruction |= inst.operands[0].reg << 8;
11195 inst.instruction |= inst.operands[1].imm;
11196 }
11197 }
11198
11199 static void
11200 do_t_ldrex (void)
11201 {
11202 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
11203 || inst.operands[1].postind || inst.operands[1].writeback
11204 || inst.operands[1].immisreg || inst.operands[1].shifted
11205 || inst.operands[1].negative,
11206 BAD_ADDR_MODE);
11207
11208 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
11209
11210 inst.instruction |= inst.operands[0].reg << 12;
11211 inst.instruction |= inst.operands[1].reg << 16;
11212 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11213 }
11214
11215 static void
11216 do_t_ldrexd (void)
11217 {
11218 if (!inst.operands[1].present)
11219 {
11220 constraint (inst.operands[0].reg == REG_LR,
11221 _("r14 not allowed as first register "
11222 "when second register is omitted"));
11223 inst.operands[1].reg = inst.operands[0].reg + 1;
11224 }
11225 constraint (inst.operands[0].reg == inst.operands[1].reg,
11226 BAD_OVERLAP);
11227
11228 inst.instruction |= inst.operands[0].reg << 12;
11229 inst.instruction |= inst.operands[1].reg << 8;
11230 inst.instruction |= inst.operands[2].reg << 16;
11231 }
11232
11233 static void
11234 do_t_ldst (void)
11235 {
11236 unsigned long opcode;
11237 int Rn;
11238
11239 if (inst.operands[0].isreg
11240 && !inst.operands[0].preind
11241 && inst.operands[0].reg == REG_PC)
11242 set_it_insn_type_last ();
11243
11244 opcode = inst.instruction;
11245 if (unified_syntax)
11246 {
11247 if (!inst.operands[1].isreg)
11248 {
11249 if (opcode <= 0xffff)
11250 inst.instruction = THUMB_OP32 (opcode);
11251 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11252 return;
11253 }
11254 if (inst.operands[1].isreg
11255 && !inst.operands[1].writeback
11256 && !inst.operands[1].shifted && !inst.operands[1].postind
11257 && !inst.operands[1].negative && inst.operands[0].reg <= 7
11258 && opcode <= 0xffff
11259 && inst.size_req != 4)
11260 {
11261 /* Insn may have a 16-bit form. */
11262 Rn = inst.operands[1].reg;
11263 if (inst.operands[1].immisreg)
11264 {
11265 inst.instruction = THUMB_OP16 (opcode);
11266 /* [Rn, Rik] */
11267 if (Rn <= 7 && inst.operands[1].imm <= 7)
11268 goto op16;
11269 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
11270 reject_bad_reg (inst.operands[1].imm);
11271 }
11272 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
11273 && opcode != T_MNEM_ldrsb)
11274 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
11275 || (Rn == REG_SP && opcode == T_MNEM_str))
11276 {
11277 /* [Rn, #const] */
11278 if (Rn > 7)
11279 {
11280 if (Rn == REG_PC)
11281 {
11282 if (inst.reloc.pc_rel)
11283 opcode = T_MNEM_ldr_pc2;
11284 else
11285 opcode = T_MNEM_ldr_pc;
11286 }
11287 else
11288 {
11289 if (opcode == T_MNEM_ldr)
11290 opcode = T_MNEM_ldr_sp;
11291 else
11292 opcode = T_MNEM_str_sp;
11293 }
11294 inst.instruction = inst.operands[0].reg << 8;
11295 }
11296 else
11297 {
11298 inst.instruction = inst.operands[0].reg;
11299 inst.instruction |= inst.operands[1].reg << 3;
11300 }
11301 inst.instruction |= THUMB_OP16 (opcode);
11302 if (inst.size_req == 2)
11303 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11304 else
11305 inst.relax = opcode;
11306 return;
11307 }
11308 }
11309 /* Definitely a 32-bit variant. */
11310
11311 /* Warning for Erratum 752419. */
11312 if (opcode == T_MNEM_ldr
11313 && inst.operands[0].reg == REG_SP
11314 && inst.operands[1].writeback == 1
11315 && !inst.operands[1].immisreg)
11316 {
11317 if (no_cpu_selected ()
11318 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
11319 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
11320 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
11321 as_warn (_("This instruction may be unpredictable "
11322 "if executed on M-profile cores "
11323 "with interrupts enabled."));
11324 }
11325
11326 /* Do some validations regarding addressing modes. */
11327 if (inst.operands[1].immisreg)
11328 reject_bad_reg (inst.operands[1].imm);
11329
11330 constraint (inst.operands[1].writeback == 1
11331 && inst.operands[0].reg == inst.operands[1].reg,
11332 BAD_OVERLAP);
11333
11334 inst.instruction = THUMB_OP32 (opcode);
11335 inst.instruction |= inst.operands[0].reg << 12;
11336 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
11337 check_ldr_r15_aligned ();
11338 return;
11339 }
11340
11341 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11342
11343 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
11344 {
11345 /* Only [Rn,Rm] is acceptable. */
11346 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
11347 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
11348 || inst.operands[1].postind || inst.operands[1].shifted
11349 || inst.operands[1].negative,
11350 _("Thumb does not support this addressing mode"));
11351 inst.instruction = THUMB_OP16 (inst.instruction);
11352 goto op16;
11353 }
11354
11355 inst.instruction = THUMB_OP16 (inst.instruction);
11356 if (!inst.operands[1].isreg)
11357 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11358 return;
11359
11360 constraint (!inst.operands[1].preind
11361 || inst.operands[1].shifted
11362 || inst.operands[1].writeback,
11363 _("Thumb does not support this addressing mode"));
11364 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
11365 {
11366 constraint (inst.instruction & 0x0600,
11367 _("byte or halfword not valid for base register"));
11368 constraint (inst.operands[1].reg == REG_PC
11369 && !(inst.instruction & THUMB_LOAD_BIT),
11370 _("r15 based store not allowed"));
11371 constraint (inst.operands[1].immisreg,
11372 _("invalid base register for register offset"));
11373
11374 if (inst.operands[1].reg == REG_PC)
11375 inst.instruction = T_OPCODE_LDR_PC;
11376 else if (inst.instruction & THUMB_LOAD_BIT)
11377 inst.instruction = T_OPCODE_LDR_SP;
11378 else
11379 inst.instruction = T_OPCODE_STR_SP;
11380
11381 inst.instruction |= inst.operands[0].reg << 8;
11382 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11383 return;
11384 }
11385
11386 constraint (inst.operands[1].reg > 7, BAD_HIREG);
11387 if (!inst.operands[1].immisreg)
11388 {
11389 /* Immediate offset. */
11390 inst.instruction |= inst.operands[0].reg;
11391 inst.instruction |= inst.operands[1].reg << 3;
11392 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11393 return;
11394 }
11395
11396 /* Register offset. */
11397 constraint (inst.operands[1].imm > 7, BAD_HIREG);
11398 constraint (inst.operands[1].negative,
11399 _("Thumb does not support this addressing mode"));
11400
11401 op16:
11402 switch (inst.instruction)
11403 {
11404 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
11405 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
11406 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
11407 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
11408 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
11409 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
11410 case 0x5600 /* ldrsb */:
11411 case 0x5e00 /* ldrsh */: break;
11412 default: abort ();
11413 }
11414
11415 inst.instruction |= inst.operands[0].reg;
11416 inst.instruction |= inst.operands[1].reg << 3;
11417 inst.instruction |= inst.operands[1].imm << 6;
11418 }
11419
11420 static void
11421 do_t_ldstd (void)
11422 {
11423 if (!inst.operands[1].present)
11424 {
11425 inst.operands[1].reg = inst.operands[0].reg + 1;
11426 constraint (inst.operands[0].reg == REG_LR,
11427 _("r14 not allowed here"));
11428 constraint (inst.operands[0].reg == REG_R12,
11429 _("r12 not allowed here"));
11430 }
11431
11432 if (inst.operands[2].writeback
11433 && (inst.operands[0].reg == inst.operands[2].reg
11434 || inst.operands[1].reg == inst.operands[2].reg))
11435 as_warn (_("base register written back, and overlaps "
11436 "one of transfer registers"));
11437
11438 inst.instruction |= inst.operands[0].reg << 12;
11439 inst.instruction |= inst.operands[1].reg << 8;
11440 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
11441 }
11442
11443 static void
11444 do_t_ldstt (void)
11445 {
11446 inst.instruction |= inst.operands[0].reg << 12;
11447 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
11448 }
11449
11450 static void
11451 do_t_mla (void)
11452 {
11453 unsigned Rd, Rn, Rm, Ra;
11454
11455 Rd = inst.operands[0].reg;
11456 Rn = inst.operands[1].reg;
11457 Rm = inst.operands[2].reg;
11458 Ra = inst.operands[3].reg;
11459
11460 reject_bad_reg (Rd);
11461 reject_bad_reg (Rn);
11462 reject_bad_reg (Rm);
11463 reject_bad_reg (Ra);
11464
11465 inst.instruction |= Rd << 8;
11466 inst.instruction |= Rn << 16;
11467 inst.instruction |= Rm;
11468 inst.instruction |= Ra << 12;
11469 }
11470
11471 static void
11472 do_t_mlal (void)
11473 {
11474 unsigned RdLo, RdHi, Rn, Rm;
11475
11476 RdLo = inst.operands[0].reg;
11477 RdHi = inst.operands[1].reg;
11478 Rn = inst.operands[2].reg;
11479 Rm = inst.operands[3].reg;
11480
11481 reject_bad_reg (RdLo);
11482 reject_bad_reg (RdHi);
11483 reject_bad_reg (Rn);
11484 reject_bad_reg (Rm);
11485
11486 inst.instruction |= RdLo << 12;
11487 inst.instruction |= RdHi << 8;
11488 inst.instruction |= Rn << 16;
11489 inst.instruction |= Rm;
11490 }
11491
11492 static void
11493 do_t_mov_cmp (void)
11494 {
11495 unsigned Rn, Rm;
11496
11497 Rn = inst.operands[0].reg;
11498 Rm = inst.operands[1].reg;
11499
11500 if (Rn == REG_PC)
11501 set_it_insn_type_last ();
11502
11503 if (unified_syntax)
11504 {
11505 int r0off = (inst.instruction == T_MNEM_mov
11506 || inst.instruction == T_MNEM_movs) ? 8 : 16;
11507 unsigned long opcode;
11508 bfd_boolean narrow;
11509 bfd_boolean low_regs;
11510
11511 low_regs = (Rn <= 7 && Rm <= 7);
11512 opcode = inst.instruction;
11513 if (in_it_block ())
11514 narrow = opcode != T_MNEM_movs;
11515 else
11516 narrow = opcode != T_MNEM_movs || low_regs;
11517 if (inst.size_req == 4
11518 || inst.operands[1].shifted)
11519 narrow = FALSE;
11520
11521 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
11522 if (opcode == T_MNEM_movs && inst.operands[1].isreg
11523 && !inst.operands[1].shifted
11524 && Rn == REG_PC
11525 && Rm == REG_LR)
11526 {
11527 inst.instruction = T2_SUBS_PC_LR;
11528 return;
11529 }
11530
11531 if (opcode == T_MNEM_cmp)
11532 {
11533 constraint (Rn == REG_PC, BAD_PC);
11534 if (narrow)
11535 {
11536 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
11537 but valid. */
11538 warn_deprecated_sp (Rm);
11539 /* R15 was documented as a valid choice for Rm in ARMv6,
11540 but as UNPREDICTABLE in ARMv7. ARM's proprietary
11541 tools reject R15, so we do too. */
11542 constraint (Rm == REG_PC, BAD_PC);
11543 }
11544 else
11545 reject_bad_reg (Rm);
11546 }
11547 else if (opcode == T_MNEM_mov
11548 || opcode == T_MNEM_movs)
11549 {
11550 if (inst.operands[1].isreg)
11551 {
11552 if (opcode == T_MNEM_movs)
11553 {
11554 reject_bad_reg (Rn);
11555 reject_bad_reg (Rm);
11556 }
11557 else if (narrow)
11558 {
11559 /* This is mov.n. */
11560 if ((Rn == REG_SP || Rn == REG_PC)
11561 && (Rm == REG_SP || Rm == REG_PC))
11562 {
11563 as_tsktsk (_("Use of r%u as a source register is "
11564 "deprecated when r%u is the destination "
11565 "register."), Rm, Rn);
11566 }
11567 }
11568 else
11569 {
11570 /* This is mov.w. */
11571 constraint (Rn == REG_PC, BAD_PC);
11572 constraint (Rm == REG_PC, BAD_PC);
11573 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11574 }
11575 }
11576 else
11577 reject_bad_reg (Rn);
11578 }
11579
11580 if (!inst.operands[1].isreg)
11581 {
11582 /* Immediate operand. */
11583 if (!in_it_block () && opcode == T_MNEM_mov)
11584 narrow = 0;
11585 if (low_regs && narrow)
11586 {
11587 inst.instruction = THUMB_OP16 (opcode);
11588 inst.instruction |= Rn << 8;
11589 if (inst.size_req == 2)
11590 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11591 else
11592 inst.relax = opcode;
11593 }
11594 else
11595 {
11596 inst.instruction = THUMB_OP32 (inst.instruction);
11597 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11598 inst.instruction |= Rn << r0off;
11599 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11600 }
11601 }
11602 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11603 && (inst.instruction == T_MNEM_mov
11604 || inst.instruction == T_MNEM_movs))
11605 {
11606 /* Register shifts are encoded as separate shift instructions. */
11607 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11608
11609 if (in_it_block ())
11610 narrow = !flags;
11611 else
11612 narrow = flags;
11613
11614 if (inst.size_req == 4)
11615 narrow = FALSE;
11616
11617 if (!low_regs || inst.operands[1].imm > 7)
11618 narrow = FALSE;
11619
11620 if (Rn != Rm)
11621 narrow = FALSE;
11622
11623 switch (inst.operands[1].shift_kind)
11624 {
11625 case SHIFT_LSL:
11626 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11627 break;
11628 case SHIFT_ASR:
11629 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11630 break;
11631 case SHIFT_LSR:
11632 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11633 break;
11634 case SHIFT_ROR:
11635 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11636 break;
11637 default:
11638 abort ();
11639 }
11640
11641 inst.instruction = opcode;
11642 if (narrow)
11643 {
11644 inst.instruction |= Rn;
11645 inst.instruction |= inst.operands[1].imm << 3;
11646 }
11647 else
11648 {
11649 if (flags)
11650 inst.instruction |= CONDS_BIT;
11651
11652 inst.instruction |= Rn << 8;
11653 inst.instruction |= Rm << 16;
11654 inst.instruction |= inst.operands[1].imm;
11655 }
11656 }
11657 else if (!narrow)
11658 {
11659 /* Some mov with immediate shift have narrow variants.
11660 Register shifts are handled above. */
11661 if (low_regs && inst.operands[1].shifted
11662 && (inst.instruction == T_MNEM_mov
11663 || inst.instruction == T_MNEM_movs))
11664 {
11665 if (in_it_block ())
11666 narrow = (inst.instruction == T_MNEM_mov);
11667 else
11668 narrow = (inst.instruction == T_MNEM_movs);
11669 }
11670
11671 if (narrow)
11672 {
11673 switch (inst.operands[1].shift_kind)
11674 {
11675 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11676 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11677 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11678 default: narrow = FALSE; break;
11679 }
11680 }
11681
11682 if (narrow)
11683 {
11684 inst.instruction |= Rn;
11685 inst.instruction |= Rm << 3;
11686 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11687 }
11688 else
11689 {
11690 inst.instruction = THUMB_OP32 (inst.instruction);
11691 inst.instruction |= Rn << r0off;
11692 encode_thumb32_shifted_operand (1);
11693 }
11694 }
11695 else
11696 switch (inst.instruction)
11697 {
11698 case T_MNEM_mov:
11699 /* In v4t or v5t a move of two lowregs produces unpredictable
11700 results. Don't allow this. */
11701 if (low_regs)
11702 {
11703 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11704 "MOV Rd, Rs with two low registers is not "
11705 "permitted on this architecture");
11706 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
11707 arm_ext_v6);
11708 }
11709
11710 inst.instruction = T_OPCODE_MOV_HR;
11711 inst.instruction |= (Rn & 0x8) << 4;
11712 inst.instruction |= (Rn & 0x7);
11713 inst.instruction |= Rm << 3;
11714 break;
11715
11716 case T_MNEM_movs:
11717 /* We know we have low registers at this point.
11718 Generate LSLS Rd, Rs, #0. */
11719 inst.instruction = T_OPCODE_LSL_I;
11720 inst.instruction |= Rn;
11721 inst.instruction |= Rm << 3;
11722 break;
11723
11724 case T_MNEM_cmp:
11725 if (low_regs)
11726 {
11727 inst.instruction = T_OPCODE_CMP_LR;
11728 inst.instruction |= Rn;
11729 inst.instruction |= Rm << 3;
11730 }
11731 else
11732 {
11733 inst.instruction = T_OPCODE_CMP_HR;
11734 inst.instruction |= (Rn & 0x8) << 4;
11735 inst.instruction |= (Rn & 0x7);
11736 inst.instruction |= Rm << 3;
11737 }
11738 break;
11739 }
11740 return;
11741 }
11742
11743 inst.instruction = THUMB_OP16 (inst.instruction);
11744
11745 /* PR 10443: Do not silently ignore shifted operands. */
11746 constraint (inst.operands[1].shifted,
11747 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11748
11749 if (inst.operands[1].isreg)
11750 {
11751 if (Rn < 8 && Rm < 8)
11752 {
11753 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11754 since a MOV instruction produces unpredictable results. */
11755 if (inst.instruction == T_OPCODE_MOV_I8)
11756 inst.instruction = T_OPCODE_ADD_I3;
11757 else
11758 inst.instruction = T_OPCODE_CMP_LR;
11759
11760 inst.instruction |= Rn;
11761 inst.instruction |= Rm << 3;
11762 }
11763 else
11764 {
11765 if (inst.instruction == T_OPCODE_MOV_I8)
11766 inst.instruction = T_OPCODE_MOV_HR;
11767 else
11768 inst.instruction = T_OPCODE_CMP_HR;
11769 do_t_cpy ();
11770 }
11771 }
11772 else
11773 {
11774 constraint (Rn > 7,
11775 _("only lo regs allowed with immediate"));
11776 inst.instruction |= Rn << 8;
11777 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11778 }
11779 }
11780
11781 static void
11782 do_t_mov16 (void)
11783 {
11784 unsigned Rd;
11785 bfd_vma imm;
11786 bfd_boolean top;
11787
11788 top = (inst.instruction & 0x00800000) != 0;
11789 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11790 {
11791 constraint (top, _(":lower16: not allowed this instruction"));
11792 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11793 }
11794 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11795 {
11796 constraint (!top, _(":upper16: not allowed this instruction"));
11797 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11798 }
11799
11800 Rd = inst.operands[0].reg;
11801 reject_bad_reg (Rd);
11802
11803 inst.instruction |= Rd << 8;
11804 if (inst.reloc.type == BFD_RELOC_UNUSED)
11805 {
11806 imm = inst.reloc.exp.X_add_number;
11807 inst.instruction |= (imm & 0xf000) << 4;
11808 inst.instruction |= (imm & 0x0800) << 15;
11809 inst.instruction |= (imm & 0x0700) << 4;
11810 inst.instruction |= (imm & 0x00ff);
11811 }
11812 }
11813
11814 static void
11815 do_t_mvn_tst (void)
11816 {
11817 unsigned Rn, Rm;
11818
11819 Rn = inst.operands[0].reg;
11820 Rm = inst.operands[1].reg;
11821
11822 if (inst.instruction == T_MNEM_cmp
11823 || inst.instruction == T_MNEM_cmn)
11824 constraint (Rn == REG_PC, BAD_PC);
11825 else
11826 reject_bad_reg (Rn);
11827 reject_bad_reg (Rm);
11828
11829 if (unified_syntax)
11830 {
11831 int r0off = (inst.instruction == T_MNEM_mvn
11832 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
11833 bfd_boolean narrow;
11834
11835 if (inst.size_req == 4
11836 || inst.instruction > 0xffff
11837 || inst.operands[1].shifted
11838 || Rn > 7 || Rm > 7)
11839 narrow = FALSE;
11840 else if (inst.instruction == T_MNEM_cmn
11841 || inst.instruction == T_MNEM_tst)
11842 narrow = TRUE;
11843 else if (THUMB_SETS_FLAGS (inst.instruction))
11844 narrow = !in_it_block ();
11845 else
11846 narrow = in_it_block ();
11847
11848 if (!inst.operands[1].isreg)
11849 {
11850 /* For an immediate, we always generate a 32-bit opcode;
11851 section relaxation will shrink it later if possible. */
11852 if (inst.instruction < 0xffff)
11853 inst.instruction = THUMB_OP32 (inst.instruction);
11854 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11855 inst.instruction |= Rn << r0off;
11856 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11857 }
11858 else
11859 {
11860 /* See if we can do this with a 16-bit instruction. */
11861 if (narrow)
11862 {
11863 inst.instruction = THUMB_OP16 (inst.instruction);
11864 inst.instruction |= Rn;
11865 inst.instruction |= Rm << 3;
11866 }
11867 else
11868 {
11869 constraint (inst.operands[1].shifted
11870 && inst.operands[1].immisreg,
11871 _("shift must be constant"));
11872 if (inst.instruction < 0xffff)
11873 inst.instruction = THUMB_OP32 (inst.instruction);
11874 inst.instruction |= Rn << r0off;
11875 encode_thumb32_shifted_operand (1);
11876 }
11877 }
11878 }
11879 else
11880 {
11881 constraint (inst.instruction > 0xffff
11882 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11883 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11884 _("unshifted register required"));
11885 constraint (Rn > 7 || Rm > 7,
11886 BAD_HIREG);
11887
11888 inst.instruction = THUMB_OP16 (inst.instruction);
11889 inst.instruction |= Rn;
11890 inst.instruction |= Rm << 3;
11891 }
11892 }
11893
11894 static void
11895 do_t_mrs (void)
11896 {
11897 unsigned Rd;
11898
11899 if (do_vfp_nsyn_mrs () == SUCCESS)
11900 return;
11901
11902 Rd = inst.operands[0].reg;
11903 reject_bad_reg (Rd);
11904 inst.instruction |= Rd << 8;
11905
11906 if (inst.operands[1].isreg)
11907 {
11908 unsigned br = inst.operands[1].reg;
11909 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11910 as_bad (_("bad register for mrs"));
11911
11912 inst.instruction |= br & (0xf << 16);
11913 inst.instruction |= (br & 0x300) >> 4;
11914 inst.instruction |= (br & SPSR_BIT) >> 2;
11915 }
11916 else
11917 {
11918 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11919
11920 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11921 {
11922 /* PR gas/12698: The constraint is only applied for m_profile.
11923 If the user has specified -march=all, we want to ignore it as
11924 we are building for any CPU type, including non-m variants. */
11925 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11926 constraint ((flags != 0) && m_profile, _("selected processor does "
11927 "not support requested special purpose register"));
11928 }
11929 else
11930 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11931 devices). */
11932 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11933 _("'APSR', 'CPSR' or 'SPSR' expected"));
11934
11935 inst.instruction |= (flags & SPSR_BIT) >> 2;
11936 inst.instruction |= inst.operands[1].imm & 0xff;
11937 inst.instruction |= 0xf0000;
11938 }
11939 }
11940
11941 static void
11942 do_t_msr (void)
11943 {
11944 int flags;
11945 unsigned Rn;
11946
11947 if (do_vfp_nsyn_msr () == SUCCESS)
11948 return;
11949
11950 constraint (!inst.operands[1].isreg,
11951 _("Thumb encoding does not support an immediate here"));
11952
11953 if (inst.operands[0].isreg)
11954 flags = (int)(inst.operands[0].reg);
11955 else
11956 flags = inst.operands[0].imm;
11957
11958 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11959 {
11960 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11961
11962 /* PR gas/12698: The constraint is only applied for m_profile.
11963 If the user has specified -march=all, we want to ignore it as
11964 we are building for any CPU type, including non-m variants. */
11965 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11966 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11967 && (bits & ~(PSR_s | PSR_f)) != 0)
11968 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11969 && bits != PSR_f)) && m_profile,
11970 _("selected processor does not support requested special "
11971 "purpose register"));
11972 }
11973 else
11974 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11975 "requested special purpose register"));
11976
11977 Rn = inst.operands[1].reg;
11978 reject_bad_reg (Rn);
11979
11980 inst.instruction |= (flags & SPSR_BIT) >> 2;
11981 inst.instruction |= (flags & 0xf0000) >> 8;
11982 inst.instruction |= (flags & 0x300) >> 4;
11983 inst.instruction |= (flags & 0xff);
11984 inst.instruction |= Rn << 16;
11985 }
11986
11987 static void
11988 do_t_mul (void)
11989 {
11990 bfd_boolean narrow;
11991 unsigned Rd, Rn, Rm;
11992
11993 if (!inst.operands[2].present)
11994 inst.operands[2].reg = inst.operands[0].reg;
11995
11996 Rd = inst.operands[0].reg;
11997 Rn = inst.operands[1].reg;
11998 Rm = inst.operands[2].reg;
11999
12000 if (unified_syntax)
12001 {
12002 if (inst.size_req == 4
12003 || (Rd != Rn
12004 && Rd != Rm)
12005 || Rn > 7
12006 || Rm > 7)
12007 narrow = FALSE;
12008 else if (inst.instruction == T_MNEM_muls)
12009 narrow = !in_it_block ();
12010 else
12011 narrow = in_it_block ();
12012 }
12013 else
12014 {
12015 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
12016 constraint (Rn > 7 || Rm > 7,
12017 BAD_HIREG);
12018 narrow = TRUE;
12019 }
12020
12021 if (narrow)
12022 {
12023 /* 16-bit MULS/Conditional MUL. */
12024 inst.instruction = THUMB_OP16 (inst.instruction);
12025 inst.instruction |= Rd;
12026
12027 if (Rd == Rn)
12028 inst.instruction |= Rm << 3;
12029 else if (Rd == Rm)
12030 inst.instruction |= Rn << 3;
12031 else
12032 constraint (1, _("dest must overlap one source register"));
12033 }
12034 else
12035 {
12036 constraint (inst.instruction != T_MNEM_mul,
12037 _("Thumb-2 MUL must not set flags"));
12038 /* 32-bit MUL. */
12039 inst.instruction = THUMB_OP32 (inst.instruction);
12040 inst.instruction |= Rd << 8;
12041 inst.instruction |= Rn << 16;
12042 inst.instruction |= Rm << 0;
12043
12044 reject_bad_reg (Rd);
12045 reject_bad_reg (Rn);
12046 reject_bad_reg (Rm);
12047 }
12048 }
12049
12050 static void
12051 do_t_mull (void)
12052 {
12053 unsigned RdLo, RdHi, Rn, Rm;
12054
12055 RdLo = inst.operands[0].reg;
12056 RdHi = inst.operands[1].reg;
12057 Rn = inst.operands[2].reg;
12058 Rm = inst.operands[3].reg;
12059
12060 reject_bad_reg (RdLo);
12061 reject_bad_reg (RdHi);
12062 reject_bad_reg (Rn);
12063 reject_bad_reg (Rm);
12064
12065 inst.instruction |= RdLo << 12;
12066 inst.instruction |= RdHi << 8;
12067 inst.instruction |= Rn << 16;
12068 inst.instruction |= Rm;
12069
12070 if (RdLo == RdHi)
12071 as_tsktsk (_("rdhi and rdlo must be different"));
12072 }
12073
12074 static void
12075 do_t_nop (void)
12076 {
12077 set_it_insn_type (NEUTRAL_IT_INSN);
12078
12079 if (unified_syntax)
12080 {
12081 if (inst.size_req == 4 || inst.operands[0].imm > 15)
12082 {
12083 inst.instruction = THUMB_OP32 (inst.instruction);
12084 inst.instruction |= inst.operands[0].imm;
12085 }
12086 else
12087 {
12088 /* PR9722: Check for Thumb2 availability before
12089 generating a thumb2 nop instruction. */
12090 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
12091 {
12092 inst.instruction = THUMB_OP16 (inst.instruction);
12093 inst.instruction |= inst.operands[0].imm << 4;
12094 }
12095 else
12096 inst.instruction = 0x46c0;
12097 }
12098 }
12099 else
12100 {
12101 constraint (inst.operands[0].present,
12102 _("Thumb does not support NOP with hints"));
12103 inst.instruction = 0x46c0;
12104 }
12105 }
12106
12107 static void
12108 do_t_neg (void)
12109 {
12110 if (unified_syntax)
12111 {
12112 bfd_boolean narrow;
12113
12114 if (THUMB_SETS_FLAGS (inst.instruction))
12115 narrow = !in_it_block ();
12116 else
12117 narrow = in_it_block ();
12118 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12119 narrow = FALSE;
12120 if (inst.size_req == 4)
12121 narrow = FALSE;
12122
12123 if (!narrow)
12124 {
12125 inst.instruction = THUMB_OP32 (inst.instruction);
12126 inst.instruction |= inst.operands[0].reg << 8;
12127 inst.instruction |= inst.operands[1].reg << 16;
12128 }
12129 else
12130 {
12131 inst.instruction = THUMB_OP16 (inst.instruction);
12132 inst.instruction |= inst.operands[0].reg;
12133 inst.instruction |= inst.operands[1].reg << 3;
12134 }
12135 }
12136 else
12137 {
12138 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
12139 BAD_HIREG);
12140 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12141
12142 inst.instruction = THUMB_OP16 (inst.instruction);
12143 inst.instruction |= inst.operands[0].reg;
12144 inst.instruction |= inst.operands[1].reg << 3;
12145 }
12146 }
12147
12148 static void
12149 do_t_orn (void)
12150 {
12151 unsigned Rd, Rn;
12152
12153 Rd = inst.operands[0].reg;
12154 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
12155
12156 reject_bad_reg (Rd);
12157 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
12158 reject_bad_reg (Rn);
12159
12160 inst.instruction |= Rd << 8;
12161 inst.instruction |= Rn << 16;
12162
12163 if (!inst.operands[2].isreg)
12164 {
12165 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12166 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12167 }
12168 else
12169 {
12170 unsigned Rm;
12171
12172 Rm = inst.operands[2].reg;
12173 reject_bad_reg (Rm);
12174
12175 constraint (inst.operands[2].shifted
12176 && inst.operands[2].immisreg,
12177 _("shift must be constant"));
12178 encode_thumb32_shifted_operand (2);
12179 }
12180 }
12181
12182 static void
12183 do_t_pkhbt (void)
12184 {
12185 unsigned Rd, Rn, Rm;
12186
12187 Rd = inst.operands[0].reg;
12188 Rn = inst.operands[1].reg;
12189 Rm = inst.operands[2].reg;
12190
12191 reject_bad_reg (Rd);
12192 reject_bad_reg (Rn);
12193 reject_bad_reg (Rm);
12194
12195 inst.instruction |= Rd << 8;
12196 inst.instruction |= Rn << 16;
12197 inst.instruction |= Rm;
12198 if (inst.operands[3].present)
12199 {
12200 unsigned int val = inst.reloc.exp.X_add_number;
12201 constraint (inst.reloc.exp.X_op != O_constant,
12202 _("expression too complex"));
12203 inst.instruction |= (val & 0x1c) << 10;
12204 inst.instruction |= (val & 0x03) << 6;
12205 }
12206 }
12207
12208 static void
12209 do_t_pkhtb (void)
12210 {
12211 if (!inst.operands[3].present)
12212 {
12213 unsigned Rtmp;
12214
12215 inst.instruction &= ~0x00000020;
12216
12217 /* PR 10168. Swap the Rm and Rn registers. */
12218 Rtmp = inst.operands[1].reg;
12219 inst.operands[1].reg = inst.operands[2].reg;
12220 inst.operands[2].reg = Rtmp;
12221 }
12222 do_t_pkhbt ();
12223 }
12224
12225 static void
12226 do_t_pld (void)
12227 {
12228 if (inst.operands[0].immisreg)
12229 reject_bad_reg (inst.operands[0].imm);
12230
12231 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
12232 }
12233
12234 static void
12235 do_t_push_pop (void)
12236 {
12237 unsigned mask;
12238
12239 constraint (inst.operands[0].writeback,
12240 _("push/pop do not support {reglist}^"));
12241 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
12242 _("expression too complex"));
12243
12244 mask = inst.operands[0].imm;
12245 if (inst.size_req != 4 && (mask & ~0xff) == 0)
12246 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
12247 else if (inst.size_req != 4
12248 && (mask & ~0xff) == (1 << (inst.instruction == T_MNEM_push
12249 ? REG_LR : REG_PC)))
12250 {
12251 inst.instruction = THUMB_OP16 (inst.instruction);
12252 inst.instruction |= THUMB_PP_PC_LR;
12253 inst.instruction |= mask & 0xff;
12254 }
12255 else if (unified_syntax)
12256 {
12257 inst.instruction = THUMB_OP32 (inst.instruction);
12258 encode_thumb2_ldmstm (13, mask, TRUE);
12259 }
12260 else
12261 {
12262 inst.error = _("invalid register list to push/pop instruction");
12263 return;
12264 }
12265 }
12266
12267 static void
12268 do_t_rbit (void)
12269 {
12270 unsigned Rd, Rm;
12271
12272 Rd = inst.operands[0].reg;
12273 Rm = inst.operands[1].reg;
12274
12275 reject_bad_reg (Rd);
12276 reject_bad_reg (Rm);
12277
12278 inst.instruction |= Rd << 8;
12279 inst.instruction |= Rm << 16;
12280 inst.instruction |= Rm;
12281 }
12282
12283 static void
12284 do_t_rev (void)
12285 {
12286 unsigned Rd, Rm;
12287
12288 Rd = inst.operands[0].reg;
12289 Rm = inst.operands[1].reg;
12290
12291 reject_bad_reg (Rd);
12292 reject_bad_reg (Rm);
12293
12294 if (Rd <= 7 && Rm <= 7
12295 && inst.size_req != 4)
12296 {
12297 inst.instruction = THUMB_OP16 (inst.instruction);
12298 inst.instruction |= Rd;
12299 inst.instruction |= Rm << 3;
12300 }
12301 else if (unified_syntax)
12302 {
12303 inst.instruction = THUMB_OP32 (inst.instruction);
12304 inst.instruction |= Rd << 8;
12305 inst.instruction |= Rm << 16;
12306 inst.instruction |= Rm;
12307 }
12308 else
12309 inst.error = BAD_HIREG;
12310 }
12311
12312 static void
12313 do_t_rrx (void)
12314 {
12315 unsigned Rd, Rm;
12316
12317 Rd = inst.operands[0].reg;
12318 Rm = inst.operands[1].reg;
12319
12320 reject_bad_reg (Rd);
12321 reject_bad_reg (Rm);
12322
12323 inst.instruction |= Rd << 8;
12324 inst.instruction |= Rm;
12325 }
12326
12327 static void
12328 do_t_rsb (void)
12329 {
12330 unsigned Rd, Rs;
12331
12332 Rd = inst.operands[0].reg;
12333 Rs = (inst.operands[1].present
12334 ? inst.operands[1].reg /* Rd, Rs, foo */
12335 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
12336
12337 reject_bad_reg (Rd);
12338 reject_bad_reg (Rs);
12339 if (inst.operands[2].isreg)
12340 reject_bad_reg (inst.operands[2].reg);
12341
12342 inst.instruction |= Rd << 8;
12343 inst.instruction |= Rs << 16;
12344 if (!inst.operands[2].isreg)
12345 {
12346 bfd_boolean narrow;
12347
12348 if ((inst.instruction & 0x00100000) != 0)
12349 narrow = !in_it_block ();
12350 else
12351 narrow = in_it_block ();
12352
12353 if (Rd > 7 || Rs > 7)
12354 narrow = FALSE;
12355
12356 if (inst.size_req == 4 || !unified_syntax)
12357 narrow = FALSE;
12358
12359 if (inst.reloc.exp.X_op != O_constant
12360 || inst.reloc.exp.X_add_number != 0)
12361 narrow = FALSE;
12362
12363 /* Turn rsb #0 into 16-bit neg. We should probably do this via
12364 relaxation, but it doesn't seem worth the hassle. */
12365 if (narrow)
12366 {
12367 inst.reloc.type = BFD_RELOC_UNUSED;
12368 inst.instruction = THUMB_OP16 (T_MNEM_negs);
12369 inst.instruction |= Rs << 3;
12370 inst.instruction |= Rd;
12371 }
12372 else
12373 {
12374 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12375 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12376 }
12377 }
12378 else
12379 encode_thumb32_shifted_operand (2);
12380 }
12381
12382 static void
12383 do_t_setend (void)
12384 {
12385 if (warn_on_deprecated
12386 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12387 as_tsktsk (_("setend use is deprecated for ARMv8"));
12388
12389 set_it_insn_type (OUTSIDE_IT_INSN);
12390 if (inst.operands[0].imm)
12391 inst.instruction |= 0x8;
12392 }
12393
12394 static void
12395 do_t_shift (void)
12396 {
12397 if (!inst.operands[1].present)
12398 inst.operands[1].reg = inst.operands[0].reg;
12399
12400 if (unified_syntax)
12401 {
12402 bfd_boolean narrow;
12403 int shift_kind;
12404
12405 switch (inst.instruction)
12406 {
12407 case T_MNEM_asr:
12408 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
12409 case T_MNEM_lsl:
12410 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
12411 case T_MNEM_lsr:
12412 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
12413 case T_MNEM_ror:
12414 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
12415 default: abort ();
12416 }
12417
12418 if (THUMB_SETS_FLAGS (inst.instruction))
12419 narrow = !in_it_block ();
12420 else
12421 narrow = in_it_block ();
12422 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12423 narrow = FALSE;
12424 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
12425 narrow = FALSE;
12426 if (inst.operands[2].isreg
12427 && (inst.operands[1].reg != inst.operands[0].reg
12428 || inst.operands[2].reg > 7))
12429 narrow = FALSE;
12430 if (inst.size_req == 4)
12431 narrow = FALSE;
12432
12433 reject_bad_reg (inst.operands[0].reg);
12434 reject_bad_reg (inst.operands[1].reg);
12435
12436 if (!narrow)
12437 {
12438 if (inst.operands[2].isreg)
12439 {
12440 reject_bad_reg (inst.operands[2].reg);
12441 inst.instruction = THUMB_OP32 (inst.instruction);
12442 inst.instruction |= inst.operands[0].reg << 8;
12443 inst.instruction |= inst.operands[1].reg << 16;
12444 inst.instruction |= inst.operands[2].reg;
12445
12446 /* PR 12854: Error on extraneous shifts. */
12447 constraint (inst.operands[2].shifted,
12448 _("extraneous shift as part of operand to shift insn"));
12449 }
12450 else
12451 {
12452 inst.operands[1].shifted = 1;
12453 inst.operands[1].shift_kind = shift_kind;
12454 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
12455 ? T_MNEM_movs : T_MNEM_mov);
12456 inst.instruction |= inst.operands[0].reg << 8;
12457 encode_thumb32_shifted_operand (1);
12458 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
12459 inst.reloc.type = BFD_RELOC_UNUSED;
12460 }
12461 }
12462 else
12463 {
12464 if (inst.operands[2].isreg)
12465 {
12466 switch (shift_kind)
12467 {
12468 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
12469 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
12470 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
12471 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
12472 default: abort ();
12473 }
12474
12475 inst.instruction |= inst.operands[0].reg;
12476 inst.instruction |= inst.operands[2].reg << 3;
12477
12478 /* PR 12854: Error on extraneous shifts. */
12479 constraint (inst.operands[2].shifted,
12480 _("extraneous shift as part of operand to shift insn"));
12481 }
12482 else
12483 {
12484 switch (shift_kind)
12485 {
12486 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12487 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12488 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12489 default: abort ();
12490 }
12491 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12492 inst.instruction |= inst.operands[0].reg;
12493 inst.instruction |= inst.operands[1].reg << 3;
12494 }
12495 }
12496 }
12497 else
12498 {
12499 constraint (inst.operands[0].reg > 7
12500 || inst.operands[1].reg > 7, BAD_HIREG);
12501 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12502
12503 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
12504 {
12505 constraint (inst.operands[2].reg > 7, BAD_HIREG);
12506 constraint (inst.operands[0].reg != inst.operands[1].reg,
12507 _("source1 and dest must be same register"));
12508
12509 switch (inst.instruction)
12510 {
12511 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
12512 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
12513 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
12514 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
12515 default: abort ();
12516 }
12517
12518 inst.instruction |= inst.operands[0].reg;
12519 inst.instruction |= inst.operands[2].reg << 3;
12520
12521 /* PR 12854: Error on extraneous shifts. */
12522 constraint (inst.operands[2].shifted,
12523 _("extraneous shift as part of operand to shift insn"));
12524 }
12525 else
12526 {
12527 switch (inst.instruction)
12528 {
12529 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
12530 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
12531 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
12532 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
12533 default: abort ();
12534 }
12535 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12536 inst.instruction |= inst.operands[0].reg;
12537 inst.instruction |= inst.operands[1].reg << 3;
12538 }
12539 }
12540 }
12541
12542 static void
12543 do_t_simd (void)
12544 {
12545 unsigned Rd, Rn, Rm;
12546
12547 Rd = inst.operands[0].reg;
12548 Rn = inst.operands[1].reg;
12549 Rm = inst.operands[2].reg;
12550
12551 reject_bad_reg (Rd);
12552 reject_bad_reg (Rn);
12553 reject_bad_reg (Rm);
12554
12555 inst.instruction |= Rd << 8;
12556 inst.instruction |= Rn << 16;
12557 inst.instruction |= Rm;
12558 }
12559
12560 static void
12561 do_t_simd2 (void)
12562 {
12563 unsigned Rd, Rn, Rm;
12564
12565 Rd = inst.operands[0].reg;
12566 Rm = inst.operands[1].reg;
12567 Rn = inst.operands[2].reg;
12568
12569 reject_bad_reg (Rd);
12570 reject_bad_reg (Rn);
12571 reject_bad_reg (Rm);
12572
12573 inst.instruction |= Rd << 8;
12574 inst.instruction |= Rn << 16;
12575 inst.instruction |= Rm;
12576 }
12577
12578 static void
12579 do_t_smc (void)
12580 {
12581 unsigned int value = inst.reloc.exp.X_add_number;
12582 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12583 _("SMC is not permitted on this architecture"));
12584 constraint (inst.reloc.exp.X_op != O_constant,
12585 _("expression too complex"));
12586 inst.reloc.type = BFD_RELOC_UNUSED;
12587 inst.instruction |= (value & 0xf000) >> 12;
12588 inst.instruction |= (value & 0x0ff0);
12589 inst.instruction |= (value & 0x000f) << 16;
12590 /* PR gas/15623: SMC instructions must be last in an IT block. */
12591 set_it_insn_type_last ();
12592 }
12593
12594 static void
12595 do_t_hvc (void)
12596 {
12597 unsigned int value = inst.reloc.exp.X_add_number;
12598
12599 inst.reloc.type = BFD_RELOC_UNUSED;
12600 inst.instruction |= (value & 0x0fff);
12601 inst.instruction |= (value & 0xf000) << 4;
12602 }
12603
12604 static void
12605 do_t_ssat_usat (int bias)
12606 {
12607 unsigned Rd, Rn;
12608
12609 Rd = inst.operands[0].reg;
12610 Rn = inst.operands[2].reg;
12611
12612 reject_bad_reg (Rd);
12613 reject_bad_reg (Rn);
12614
12615 inst.instruction |= Rd << 8;
12616 inst.instruction |= inst.operands[1].imm - bias;
12617 inst.instruction |= Rn << 16;
12618
12619 if (inst.operands[3].present)
12620 {
12621 offsetT shift_amount = inst.reloc.exp.X_add_number;
12622
12623 inst.reloc.type = BFD_RELOC_UNUSED;
12624
12625 constraint (inst.reloc.exp.X_op != O_constant,
12626 _("expression too complex"));
12627
12628 if (shift_amount != 0)
12629 {
12630 constraint (shift_amount > 31,
12631 _("shift expression is too large"));
12632
12633 if (inst.operands[3].shift_kind == SHIFT_ASR)
12634 inst.instruction |= 0x00200000; /* sh bit. */
12635
12636 inst.instruction |= (shift_amount & 0x1c) << 10;
12637 inst.instruction |= (shift_amount & 0x03) << 6;
12638 }
12639 }
12640 }
12641
12642 static void
12643 do_t_ssat (void)
12644 {
12645 do_t_ssat_usat (1);
12646 }
12647
12648 static void
12649 do_t_ssat16 (void)
12650 {
12651 unsigned Rd, Rn;
12652
12653 Rd = inst.operands[0].reg;
12654 Rn = inst.operands[2].reg;
12655
12656 reject_bad_reg (Rd);
12657 reject_bad_reg (Rn);
12658
12659 inst.instruction |= Rd << 8;
12660 inst.instruction |= inst.operands[1].imm - 1;
12661 inst.instruction |= Rn << 16;
12662 }
12663
12664 static void
12665 do_t_strex (void)
12666 {
12667 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12668 || inst.operands[2].postind || inst.operands[2].writeback
12669 || inst.operands[2].immisreg || inst.operands[2].shifted
12670 || inst.operands[2].negative,
12671 BAD_ADDR_MODE);
12672
12673 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12674
12675 inst.instruction |= inst.operands[0].reg << 8;
12676 inst.instruction |= inst.operands[1].reg << 12;
12677 inst.instruction |= inst.operands[2].reg << 16;
12678 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
12679 }
12680
12681 static void
12682 do_t_strexd (void)
12683 {
12684 if (!inst.operands[2].present)
12685 inst.operands[2].reg = inst.operands[1].reg + 1;
12686
12687 constraint (inst.operands[0].reg == inst.operands[1].reg
12688 || inst.operands[0].reg == inst.operands[2].reg
12689 || inst.operands[0].reg == inst.operands[3].reg,
12690 BAD_OVERLAP);
12691
12692 inst.instruction |= inst.operands[0].reg;
12693 inst.instruction |= inst.operands[1].reg << 12;
12694 inst.instruction |= inst.operands[2].reg << 8;
12695 inst.instruction |= inst.operands[3].reg << 16;
12696 }
12697
12698 static void
12699 do_t_sxtah (void)
12700 {
12701 unsigned Rd, Rn, Rm;
12702
12703 Rd = inst.operands[0].reg;
12704 Rn = inst.operands[1].reg;
12705 Rm = inst.operands[2].reg;
12706
12707 reject_bad_reg (Rd);
12708 reject_bad_reg (Rn);
12709 reject_bad_reg (Rm);
12710
12711 inst.instruction |= Rd << 8;
12712 inst.instruction |= Rn << 16;
12713 inst.instruction |= Rm;
12714 inst.instruction |= inst.operands[3].imm << 4;
12715 }
12716
12717 static void
12718 do_t_sxth (void)
12719 {
12720 unsigned Rd, Rm;
12721
12722 Rd = inst.operands[0].reg;
12723 Rm = inst.operands[1].reg;
12724
12725 reject_bad_reg (Rd);
12726 reject_bad_reg (Rm);
12727
12728 if (inst.instruction <= 0xffff
12729 && inst.size_req != 4
12730 && Rd <= 7 && Rm <= 7
12731 && (!inst.operands[2].present || inst.operands[2].imm == 0))
12732 {
12733 inst.instruction = THUMB_OP16 (inst.instruction);
12734 inst.instruction |= Rd;
12735 inst.instruction |= Rm << 3;
12736 }
12737 else if (unified_syntax)
12738 {
12739 if (inst.instruction <= 0xffff)
12740 inst.instruction = THUMB_OP32 (inst.instruction);
12741 inst.instruction |= Rd << 8;
12742 inst.instruction |= Rm;
12743 inst.instruction |= inst.operands[2].imm << 4;
12744 }
12745 else
12746 {
12747 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
12748 _("Thumb encoding does not support rotation"));
12749 constraint (1, BAD_HIREG);
12750 }
12751 }
12752
12753 static void
12754 do_t_swi (void)
12755 {
12756 /* We have to do the following check manually as ARM_EXT_OS only applies
12757 to ARM_EXT_V6M. */
12758 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
12759 {
12760 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
12761 /* This only applies to the v6m howver, not later architectures. */
12762 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
12763 as_bad (_("SVC is not permitted on this architecture"));
12764 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
12765 }
12766
12767 inst.reloc.type = BFD_RELOC_ARM_SWI;
12768 }
12769
12770 static void
12771 do_t_tb (void)
12772 {
12773 unsigned Rn, Rm;
12774 int half;
12775
12776 half = (inst.instruction & 0x10) != 0;
12777 set_it_insn_type_last ();
12778 constraint (inst.operands[0].immisreg,
12779 _("instruction requires register index"));
12780
12781 Rn = inst.operands[0].reg;
12782 Rm = inst.operands[0].imm;
12783
12784 constraint (Rn == REG_SP, BAD_SP);
12785 reject_bad_reg (Rm);
12786
12787 constraint (!half && inst.operands[0].shifted,
12788 _("instruction does not allow shifted index"));
12789 inst.instruction |= (Rn << 16) | Rm;
12790 }
12791
12792 static void
12793 do_t_udf (void)
12794 {
12795 if (!inst.operands[0].present)
12796 inst.operands[0].imm = 0;
12797
12798 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
12799 {
12800 constraint (inst.size_req == 2,
12801 _("immediate value out of range"));
12802 inst.instruction = THUMB_OP32 (inst.instruction);
12803 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
12804 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
12805 }
12806 else
12807 {
12808 inst.instruction = THUMB_OP16 (inst.instruction);
12809 inst.instruction |= inst.operands[0].imm;
12810 }
12811
12812 set_it_insn_type (NEUTRAL_IT_INSN);
12813 }
12814
12815
12816 static void
12817 do_t_usat (void)
12818 {
12819 do_t_ssat_usat (0);
12820 }
12821
12822 static void
12823 do_t_usat16 (void)
12824 {
12825 unsigned Rd, Rn;
12826
12827 Rd = inst.operands[0].reg;
12828 Rn = inst.operands[2].reg;
12829
12830 reject_bad_reg (Rd);
12831 reject_bad_reg (Rn);
12832
12833 inst.instruction |= Rd << 8;
12834 inst.instruction |= inst.operands[1].imm;
12835 inst.instruction |= Rn << 16;
12836 }
12837
12838 /* Neon instruction encoder helpers. */
12839
12840 /* Encodings for the different types for various Neon opcodes. */
12841
12842 /* An "invalid" code for the following tables. */
12843 #define N_INV -1u
12844
12845 struct neon_tab_entry
12846 {
12847 unsigned integer;
12848 unsigned float_or_poly;
12849 unsigned scalar_or_imm;
12850 };
12851
12852 /* Map overloaded Neon opcodes to their respective encodings. */
12853 #define NEON_ENC_TAB \
12854 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12855 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12856 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12857 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12858 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12859 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12860 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12861 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12862 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12863 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12864 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12865 /* Register variants of the following two instructions are encoded as
12866 vcge / vcgt with the operands reversed. */ \
12867 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12868 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
12869 X(vfma, N_INV, 0x0000c10, N_INV), \
12870 X(vfms, N_INV, 0x0200c10, N_INV), \
12871 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12872 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12873 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12874 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12875 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12876 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12877 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12878 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12879 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12880 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12881 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12882 X(vshl, 0x0000400, N_INV, 0x0800510), \
12883 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12884 X(vand, 0x0000110, N_INV, 0x0800030), \
12885 X(vbic, 0x0100110, N_INV, 0x0800030), \
12886 X(veor, 0x1000110, N_INV, N_INV), \
12887 X(vorn, 0x0300110, N_INV, 0x0800010), \
12888 X(vorr, 0x0200110, N_INV, 0x0800010), \
12889 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12890 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12891 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12892 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12893 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12894 X(vst1, 0x0000000, 0x0800000, N_INV), \
12895 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12896 X(vst2, 0x0000100, 0x0800100, N_INV), \
12897 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12898 X(vst3, 0x0000200, 0x0800200, N_INV), \
12899 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12900 X(vst4, 0x0000300, 0x0800300, N_INV), \
12901 X(vmovn, 0x1b20200, N_INV, N_INV), \
12902 X(vtrn, 0x1b20080, N_INV, N_INV), \
12903 X(vqmovn, 0x1b20200, N_INV, N_INV), \
12904 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12905 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
12906 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12907 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
12908 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12909 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
12910 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12911 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12912 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12913 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
12914 X(vseleq, 0xe000a00, N_INV, N_INV), \
12915 X(vselvs, 0xe100a00, N_INV, N_INV), \
12916 X(vselge, 0xe200a00, N_INV, N_INV), \
12917 X(vselgt, 0xe300a00, N_INV, N_INV), \
12918 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
12919 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
12920 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
12921 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
12922 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
12923 X(aes, 0x3b00300, N_INV, N_INV), \
12924 X(sha3op, 0x2000c00, N_INV, N_INV), \
12925 X(sha1h, 0x3b902c0, N_INV, N_INV), \
12926 X(sha2op, 0x3ba0380, N_INV, N_INV)
12927
12928 enum neon_opc
12929 {
12930 #define X(OPC,I,F,S) N_MNEM_##OPC
12931 NEON_ENC_TAB
12932 #undef X
12933 };
12934
12935 static const struct neon_tab_entry neon_enc_tab[] =
12936 {
12937 #define X(OPC,I,F,S) { (I), (F), (S) }
12938 NEON_ENC_TAB
12939 #undef X
12940 };
12941
12942 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
12943 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12944 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12945 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12946 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12947 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12948 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12949 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12950 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12951 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12952 #define NEON_ENC_SINGLE_(X) \
12953 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
12954 #define NEON_ENC_DOUBLE_(X) \
12955 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
12956 #define NEON_ENC_FPV8_(X) \
12957 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
12958
12959 #define NEON_ENCODE(type, inst) \
12960 do \
12961 { \
12962 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12963 inst.is_neon = 1; \
12964 } \
12965 while (0)
12966
12967 #define check_neon_suffixes \
12968 do \
12969 { \
12970 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12971 { \
12972 as_bad (_("invalid neon suffix for non neon instruction")); \
12973 return; \
12974 } \
12975 } \
12976 while (0)
12977
12978 /* Define shapes for instruction operands. The following mnemonic characters
12979 are used in this table:
12980
12981 F - VFP S<n> register
12982 D - Neon D<n> register
12983 Q - Neon Q<n> register
12984 I - Immediate
12985 S - Scalar
12986 R - ARM register
12987 L - D<n> register list
12988
12989 This table is used to generate various data:
12990 - enumerations of the form NS_DDR to be used as arguments to
12991 neon_select_shape.
12992 - a table classifying shapes into single, double, quad, mixed.
12993 - a table used to drive neon_select_shape. */
12994
12995 #define NEON_SHAPE_DEF \
12996 X(3, (D, D, D), DOUBLE), \
12997 X(3, (Q, Q, Q), QUAD), \
12998 X(3, (D, D, I), DOUBLE), \
12999 X(3, (Q, Q, I), QUAD), \
13000 X(3, (D, D, S), DOUBLE), \
13001 X(3, (Q, Q, S), QUAD), \
13002 X(2, (D, D), DOUBLE), \
13003 X(2, (Q, Q), QUAD), \
13004 X(2, (D, S), DOUBLE), \
13005 X(2, (Q, S), QUAD), \
13006 X(2, (D, R), DOUBLE), \
13007 X(2, (Q, R), QUAD), \
13008 X(2, (D, I), DOUBLE), \
13009 X(2, (Q, I), QUAD), \
13010 X(3, (D, L, D), DOUBLE), \
13011 X(2, (D, Q), MIXED), \
13012 X(2, (Q, D), MIXED), \
13013 X(3, (D, Q, I), MIXED), \
13014 X(3, (Q, D, I), MIXED), \
13015 X(3, (Q, D, D), MIXED), \
13016 X(3, (D, Q, Q), MIXED), \
13017 X(3, (Q, Q, D), MIXED), \
13018 X(3, (Q, D, S), MIXED), \
13019 X(3, (D, Q, S), MIXED), \
13020 X(4, (D, D, D, I), DOUBLE), \
13021 X(4, (Q, Q, Q, I), QUAD), \
13022 X(2, (F, F), SINGLE), \
13023 X(3, (F, F, F), SINGLE), \
13024 X(2, (F, I), SINGLE), \
13025 X(2, (F, D), MIXED), \
13026 X(2, (D, F), MIXED), \
13027 X(3, (F, F, I), MIXED), \
13028 X(4, (R, R, F, F), SINGLE), \
13029 X(4, (F, F, R, R), SINGLE), \
13030 X(3, (D, R, R), DOUBLE), \
13031 X(3, (R, R, D), DOUBLE), \
13032 X(2, (S, R), SINGLE), \
13033 X(2, (R, S), SINGLE), \
13034 X(2, (F, R), SINGLE), \
13035 X(2, (R, F), SINGLE)
13036
13037 #define S2(A,B) NS_##A##B
13038 #define S3(A,B,C) NS_##A##B##C
13039 #define S4(A,B,C,D) NS_##A##B##C##D
13040
13041 #define X(N, L, C) S##N L
13042
13043 enum neon_shape
13044 {
13045 NEON_SHAPE_DEF,
13046 NS_NULL
13047 };
13048
13049 #undef X
13050 #undef S2
13051 #undef S3
13052 #undef S4
13053
13054 enum neon_shape_class
13055 {
13056 SC_SINGLE,
13057 SC_DOUBLE,
13058 SC_QUAD,
13059 SC_MIXED
13060 };
13061
13062 #define X(N, L, C) SC_##C
13063
13064 static enum neon_shape_class neon_shape_class[] =
13065 {
13066 NEON_SHAPE_DEF
13067 };
13068
13069 #undef X
13070
13071 enum neon_shape_el
13072 {
13073 SE_F,
13074 SE_D,
13075 SE_Q,
13076 SE_I,
13077 SE_S,
13078 SE_R,
13079 SE_L
13080 };
13081
13082 /* Register widths of above. */
13083 static unsigned neon_shape_el_size[] =
13084 {
13085 32,
13086 64,
13087 128,
13088 0,
13089 32,
13090 32,
13091 0
13092 };
13093
13094 struct neon_shape_info
13095 {
13096 unsigned els;
13097 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
13098 };
13099
13100 #define S2(A,B) { SE_##A, SE_##B }
13101 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
13102 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
13103
13104 #define X(N, L, C) { N, S##N L }
13105
13106 static struct neon_shape_info neon_shape_tab[] =
13107 {
13108 NEON_SHAPE_DEF
13109 };
13110
13111 #undef X
13112 #undef S2
13113 #undef S3
13114 #undef S4
13115
13116 /* Bit masks used in type checking given instructions.
13117 'N_EQK' means the type must be the same as (or based on in some way) the key
13118 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
13119 set, various other bits can be set as well in order to modify the meaning of
13120 the type constraint. */
13121
13122 enum neon_type_mask
13123 {
13124 N_S8 = 0x0000001,
13125 N_S16 = 0x0000002,
13126 N_S32 = 0x0000004,
13127 N_S64 = 0x0000008,
13128 N_U8 = 0x0000010,
13129 N_U16 = 0x0000020,
13130 N_U32 = 0x0000040,
13131 N_U64 = 0x0000080,
13132 N_I8 = 0x0000100,
13133 N_I16 = 0x0000200,
13134 N_I32 = 0x0000400,
13135 N_I64 = 0x0000800,
13136 N_8 = 0x0001000,
13137 N_16 = 0x0002000,
13138 N_32 = 0x0004000,
13139 N_64 = 0x0008000,
13140 N_P8 = 0x0010000,
13141 N_P16 = 0x0020000,
13142 N_F16 = 0x0040000,
13143 N_F32 = 0x0080000,
13144 N_F64 = 0x0100000,
13145 N_P64 = 0x0200000,
13146 N_KEY = 0x1000000, /* Key element (main type specifier). */
13147 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
13148 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
13149 N_UNT = 0x8000000, /* Must be explicitly untyped. */
13150 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
13151 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
13152 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
13153 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
13154 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
13155 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
13156 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
13157 N_UTYP = 0,
13158 N_MAX_NONSPECIAL = N_P64
13159 };
13160
13161 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
13162
13163 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
13164 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
13165 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
13166 #define N_SUF_32 (N_SU_32 | N_F32)
13167 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
13168 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
13169
13170 /* Pass this as the first type argument to neon_check_type to ignore types
13171 altogether. */
13172 #define N_IGNORE_TYPE (N_KEY | N_EQK)
13173
13174 /* Select a "shape" for the current instruction (describing register types or
13175 sizes) from a list of alternatives. Return NS_NULL if the current instruction
13176 doesn't fit. For non-polymorphic shapes, checking is usually done as a
13177 function of operand parsing, so this function doesn't need to be called.
13178 Shapes should be listed in order of decreasing length. */
13179
13180 static enum neon_shape
13181 neon_select_shape (enum neon_shape shape, ...)
13182 {
13183 va_list ap;
13184 enum neon_shape first_shape = shape;
13185
13186 /* Fix missing optional operands. FIXME: we don't know at this point how
13187 many arguments we should have, so this makes the assumption that we have
13188 > 1. This is true of all current Neon opcodes, I think, but may not be
13189 true in the future. */
13190 if (!inst.operands[1].present)
13191 inst.operands[1] = inst.operands[0];
13192
13193 va_start (ap, shape);
13194
13195 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
13196 {
13197 unsigned j;
13198 int matches = 1;
13199
13200 for (j = 0; j < neon_shape_tab[shape].els; j++)
13201 {
13202 if (!inst.operands[j].present)
13203 {
13204 matches = 0;
13205 break;
13206 }
13207
13208 switch (neon_shape_tab[shape].el[j])
13209 {
13210 case SE_F:
13211 if (!(inst.operands[j].isreg
13212 && inst.operands[j].isvec
13213 && inst.operands[j].issingle
13214 && !inst.operands[j].isquad))
13215 matches = 0;
13216 break;
13217
13218 case SE_D:
13219 if (!(inst.operands[j].isreg
13220 && inst.operands[j].isvec
13221 && !inst.operands[j].isquad
13222 && !inst.operands[j].issingle))
13223 matches = 0;
13224 break;
13225
13226 case SE_R:
13227 if (!(inst.operands[j].isreg
13228 && !inst.operands[j].isvec))
13229 matches = 0;
13230 break;
13231
13232 case SE_Q:
13233 if (!(inst.operands[j].isreg
13234 && inst.operands[j].isvec
13235 && inst.operands[j].isquad
13236 && !inst.operands[j].issingle))
13237 matches = 0;
13238 break;
13239
13240 case SE_I:
13241 if (!(!inst.operands[j].isreg
13242 && !inst.operands[j].isscalar))
13243 matches = 0;
13244 break;
13245
13246 case SE_S:
13247 if (!(!inst.operands[j].isreg
13248 && inst.operands[j].isscalar))
13249 matches = 0;
13250 break;
13251
13252 case SE_L:
13253 break;
13254 }
13255 if (!matches)
13256 break;
13257 }
13258 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
13259 /* We've matched all the entries in the shape table, and we don't
13260 have any left over operands which have not been matched. */
13261 break;
13262 }
13263
13264 va_end (ap);
13265
13266 if (shape == NS_NULL && first_shape != NS_NULL)
13267 first_error (_("invalid instruction shape"));
13268
13269 return shape;
13270 }
13271
13272 /* True if SHAPE is predominantly a quadword operation (most of the time, this
13273 means the Q bit should be set). */
13274
13275 static int
13276 neon_quad (enum neon_shape shape)
13277 {
13278 return neon_shape_class[shape] == SC_QUAD;
13279 }
13280
13281 static void
13282 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
13283 unsigned *g_size)
13284 {
13285 /* Allow modification to be made to types which are constrained to be
13286 based on the key element, based on bits set alongside N_EQK. */
13287 if ((typebits & N_EQK) != 0)
13288 {
13289 if ((typebits & N_HLF) != 0)
13290 *g_size /= 2;
13291 else if ((typebits & N_DBL) != 0)
13292 *g_size *= 2;
13293 if ((typebits & N_SGN) != 0)
13294 *g_type = NT_signed;
13295 else if ((typebits & N_UNS) != 0)
13296 *g_type = NT_unsigned;
13297 else if ((typebits & N_INT) != 0)
13298 *g_type = NT_integer;
13299 else if ((typebits & N_FLT) != 0)
13300 *g_type = NT_float;
13301 else if ((typebits & N_SIZ) != 0)
13302 *g_type = NT_untyped;
13303 }
13304 }
13305
13306 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
13307 operand type, i.e. the single type specified in a Neon instruction when it
13308 is the only one given. */
13309
13310 static struct neon_type_el
13311 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
13312 {
13313 struct neon_type_el dest = *key;
13314
13315 gas_assert ((thisarg & N_EQK) != 0);
13316
13317 neon_modify_type_size (thisarg, &dest.type, &dest.size);
13318
13319 return dest;
13320 }
13321
13322 /* Convert Neon type and size into compact bitmask representation. */
13323
13324 static enum neon_type_mask
13325 type_chk_of_el_type (enum neon_el_type type, unsigned size)
13326 {
13327 switch (type)
13328 {
13329 case NT_untyped:
13330 switch (size)
13331 {
13332 case 8: return N_8;
13333 case 16: return N_16;
13334 case 32: return N_32;
13335 case 64: return N_64;
13336 default: ;
13337 }
13338 break;
13339
13340 case NT_integer:
13341 switch (size)
13342 {
13343 case 8: return N_I8;
13344 case 16: return N_I16;
13345 case 32: return N_I32;
13346 case 64: return N_I64;
13347 default: ;
13348 }
13349 break;
13350
13351 case NT_float:
13352 switch (size)
13353 {
13354 case 16: return N_F16;
13355 case 32: return N_F32;
13356 case 64: return N_F64;
13357 default: ;
13358 }
13359 break;
13360
13361 case NT_poly:
13362 switch (size)
13363 {
13364 case 8: return N_P8;
13365 case 16: return N_P16;
13366 case 64: return N_P64;
13367 default: ;
13368 }
13369 break;
13370
13371 case NT_signed:
13372 switch (size)
13373 {
13374 case 8: return N_S8;
13375 case 16: return N_S16;
13376 case 32: return N_S32;
13377 case 64: return N_S64;
13378 default: ;
13379 }
13380 break;
13381
13382 case NT_unsigned:
13383 switch (size)
13384 {
13385 case 8: return N_U8;
13386 case 16: return N_U16;
13387 case 32: return N_U32;
13388 case 64: return N_U64;
13389 default: ;
13390 }
13391 break;
13392
13393 default: ;
13394 }
13395
13396 return N_UTYP;
13397 }
13398
13399 /* Convert compact Neon bitmask type representation to a type and size. Only
13400 handles the case where a single bit is set in the mask. */
13401
13402 static int
13403 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
13404 enum neon_type_mask mask)
13405 {
13406 if ((mask & N_EQK) != 0)
13407 return FAIL;
13408
13409 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
13410 *size = 8;
13411 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
13412 *size = 16;
13413 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
13414 *size = 32;
13415 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
13416 *size = 64;
13417 else
13418 return FAIL;
13419
13420 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
13421 *type = NT_signed;
13422 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
13423 *type = NT_unsigned;
13424 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
13425 *type = NT_integer;
13426 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
13427 *type = NT_untyped;
13428 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
13429 *type = NT_poly;
13430 else if ((mask & (N_F16 | N_F32 | N_F64)) != 0)
13431 *type = NT_float;
13432 else
13433 return FAIL;
13434
13435 return SUCCESS;
13436 }
13437
13438 /* Modify a bitmask of allowed types. This is only needed for type
13439 relaxation. */
13440
13441 static unsigned
13442 modify_types_allowed (unsigned allowed, unsigned mods)
13443 {
13444 unsigned size;
13445 enum neon_el_type type;
13446 unsigned destmask;
13447 int i;
13448
13449 destmask = 0;
13450
13451 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
13452 {
13453 if (el_type_of_type_chk (&type, &size,
13454 (enum neon_type_mask) (allowed & i)) == SUCCESS)
13455 {
13456 neon_modify_type_size (mods, &type, &size);
13457 destmask |= type_chk_of_el_type (type, size);
13458 }
13459 }
13460
13461 return destmask;
13462 }
13463
13464 /* Check type and return type classification.
13465 The manual states (paraphrase): If one datatype is given, it indicates the
13466 type given in:
13467 - the second operand, if there is one
13468 - the operand, if there is no second operand
13469 - the result, if there are no operands.
13470 This isn't quite good enough though, so we use a concept of a "key" datatype
13471 which is set on a per-instruction basis, which is the one which matters when
13472 only one data type is written.
13473 Note: this function has side-effects (e.g. filling in missing operands). All
13474 Neon instructions should call it before performing bit encoding. */
13475
13476 static struct neon_type_el
13477 neon_check_type (unsigned els, enum neon_shape ns, ...)
13478 {
13479 va_list ap;
13480 unsigned i, pass, key_el = 0;
13481 unsigned types[NEON_MAX_TYPE_ELS];
13482 enum neon_el_type k_type = NT_invtype;
13483 unsigned k_size = -1u;
13484 struct neon_type_el badtype = {NT_invtype, -1};
13485 unsigned key_allowed = 0;
13486
13487 /* Optional registers in Neon instructions are always (not) in operand 1.
13488 Fill in the missing operand here, if it was omitted. */
13489 if (els > 1 && !inst.operands[1].present)
13490 inst.operands[1] = inst.operands[0];
13491
13492 /* Suck up all the varargs. */
13493 va_start (ap, ns);
13494 for (i = 0; i < els; i++)
13495 {
13496 unsigned thisarg = va_arg (ap, unsigned);
13497 if (thisarg == N_IGNORE_TYPE)
13498 {
13499 va_end (ap);
13500 return badtype;
13501 }
13502 types[i] = thisarg;
13503 if ((thisarg & N_KEY) != 0)
13504 key_el = i;
13505 }
13506 va_end (ap);
13507
13508 if (inst.vectype.elems > 0)
13509 for (i = 0; i < els; i++)
13510 if (inst.operands[i].vectype.type != NT_invtype)
13511 {
13512 first_error (_("types specified in both the mnemonic and operands"));
13513 return badtype;
13514 }
13515
13516 /* Duplicate inst.vectype elements here as necessary.
13517 FIXME: No idea if this is exactly the same as the ARM assembler,
13518 particularly when an insn takes one register and one non-register
13519 operand. */
13520 if (inst.vectype.elems == 1 && els > 1)
13521 {
13522 unsigned j;
13523 inst.vectype.elems = els;
13524 inst.vectype.el[key_el] = inst.vectype.el[0];
13525 for (j = 0; j < els; j++)
13526 if (j != key_el)
13527 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
13528 types[j]);
13529 }
13530 else if (inst.vectype.elems == 0 && els > 0)
13531 {
13532 unsigned j;
13533 /* No types were given after the mnemonic, so look for types specified
13534 after each operand. We allow some flexibility here; as long as the
13535 "key" operand has a type, we can infer the others. */
13536 for (j = 0; j < els; j++)
13537 if (inst.operands[j].vectype.type != NT_invtype)
13538 inst.vectype.el[j] = inst.operands[j].vectype;
13539
13540 if (inst.operands[key_el].vectype.type != NT_invtype)
13541 {
13542 for (j = 0; j < els; j++)
13543 if (inst.operands[j].vectype.type == NT_invtype)
13544 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
13545 types[j]);
13546 }
13547 else
13548 {
13549 first_error (_("operand types can't be inferred"));
13550 return badtype;
13551 }
13552 }
13553 else if (inst.vectype.elems != els)
13554 {
13555 first_error (_("type specifier has the wrong number of parts"));
13556 return badtype;
13557 }
13558
13559 for (pass = 0; pass < 2; pass++)
13560 {
13561 for (i = 0; i < els; i++)
13562 {
13563 unsigned thisarg = types[i];
13564 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
13565 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
13566 enum neon_el_type g_type = inst.vectype.el[i].type;
13567 unsigned g_size = inst.vectype.el[i].size;
13568
13569 /* Decay more-specific signed & unsigned types to sign-insensitive
13570 integer types if sign-specific variants are unavailable. */
13571 if ((g_type == NT_signed || g_type == NT_unsigned)
13572 && (types_allowed & N_SU_ALL) == 0)
13573 g_type = NT_integer;
13574
13575 /* If only untyped args are allowed, decay any more specific types to
13576 them. Some instructions only care about signs for some element
13577 sizes, so handle that properly. */
13578 if (((types_allowed & N_UNT) == 0)
13579 && ((g_size == 8 && (types_allowed & N_8) != 0)
13580 || (g_size == 16 && (types_allowed & N_16) != 0)
13581 || (g_size == 32 && (types_allowed & N_32) != 0)
13582 || (g_size == 64 && (types_allowed & N_64) != 0)))
13583 g_type = NT_untyped;
13584
13585 if (pass == 0)
13586 {
13587 if ((thisarg & N_KEY) != 0)
13588 {
13589 k_type = g_type;
13590 k_size = g_size;
13591 key_allowed = thisarg & ~N_KEY;
13592 }
13593 }
13594 else
13595 {
13596 if ((thisarg & N_VFP) != 0)
13597 {
13598 enum neon_shape_el regshape;
13599 unsigned regwidth, match;
13600
13601 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
13602 if (ns == NS_NULL)
13603 {
13604 first_error (_("invalid instruction shape"));
13605 return badtype;
13606 }
13607 regshape = neon_shape_tab[ns].el[i];
13608 regwidth = neon_shape_el_size[regshape];
13609
13610 /* In VFP mode, operands must match register widths. If we
13611 have a key operand, use its width, else use the width of
13612 the current operand. */
13613 if (k_size != -1u)
13614 match = k_size;
13615 else
13616 match = g_size;
13617
13618 if (regwidth != match)
13619 {
13620 first_error (_("operand size must match register width"));
13621 return badtype;
13622 }
13623 }
13624
13625 if ((thisarg & N_EQK) == 0)
13626 {
13627 unsigned given_type = type_chk_of_el_type (g_type, g_size);
13628
13629 if ((given_type & types_allowed) == 0)
13630 {
13631 first_error (_("bad type in Neon instruction"));
13632 return badtype;
13633 }
13634 }
13635 else
13636 {
13637 enum neon_el_type mod_k_type = k_type;
13638 unsigned mod_k_size = k_size;
13639 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
13640 if (g_type != mod_k_type || g_size != mod_k_size)
13641 {
13642 first_error (_("inconsistent types in Neon instruction"));
13643 return badtype;
13644 }
13645 }
13646 }
13647 }
13648 }
13649
13650 return inst.vectype.el[key_el];
13651 }
13652
13653 /* Neon-style VFP instruction forwarding. */
13654
13655 /* Thumb VFP instructions have 0xE in the condition field. */
13656
13657 static void
13658 do_vfp_cond_or_thumb (void)
13659 {
13660 inst.is_neon = 1;
13661
13662 if (thumb_mode)
13663 inst.instruction |= 0xe0000000;
13664 else
13665 inst.instruction |= inst.cond << 28;
13666 }
13667
13668 /* Look up and encode a simple mnemonic, for use as a helper function for the
13669 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13670 etc. It is assumed that operand parsing has already been done, and that the
13671 operands are in the form expected by the given opcode (this isn't necessarily
13672 the same as the form in which they were parsed, hence some massaging must
13673 take place before this function is called).
13674 Checks current arch version against that in the looked-up opcode. */
13675
13676 static void
13677 do_vfp_nsyn_opcode (const char *opname)
13678 {
13679 const struct asm_opcode *opcode;
13680
13681 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
13682
13683 if (!opcode)
13684 abort ();
13685
13686 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
13687 thumb_mode ? *opcode->tvariant : *opcode->avariant),
13688 _(BAD_FPU));
13689
13690 inst.is_neon = 1;
13691
13692 if (thumb_mode)
13693 {
13694 inst.instruction = opcode->tvalue;
13695 opcode->tencode ();
13696 }
13697 else
13698 {
13699 inst.instruction = (inst.cond << 28) | opcode->avalue;
13700 opcode->aencode ();
13701 }
13702 }
13703
13704 static void
13705 do_vfp_nsyn_add_sub (enum neon_shape rs)
13706 {
13707 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
13708
13709 if (rs == NS_FFF)
13710 {
13711 if (is_add)
13712 do_vfp_nsyn_opcode ("fadds");
13713 else
13714 do_vfp_nsyn_opcode ("fsubs");
13715 }
13716 else
13717 {
13718 if (is_add)
13719 do_vfp_nsyn_opcode ("faddd");
13720 else
13721 do_vfp_nsyn_opcode ("fsubd");
13722 }
13723 }
13724
13725 /* Check operand types to see if this is a VFP instruction, and if so call
13726 PFN (). */
13727
13728 static int
13729 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
13730 {
13731 enum neon_shape rs;
13732 struct neon_type_el et;
13733
13734 switch (args)
13735 {
13736 case 2:
13737 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13738 et = neon_check_type (2, rs,
13739 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13740 break;
13741
13742 case 3:
13743 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13744 et = neon_check_type (3, rs,
13745 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13746 break;
13747
13748 default:
13749 abort ();
13750 }
13751
13752 if (et.type != NT_invtype)
13753 {
13754 pfn (rs);
13755 return SUCCESS;
13756 }
13757
13758 inst.error = NULL;
13759 return FAIL;
13760 }
13761
13762 static void
13763 do_vfp_nsyn_mla_mls (enum neon_shape rs)
13764 {
13765 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
13766
13767 if (rs == NS_FFF)
13768 {
13769 if (is_mla)
13770 do_vfp_nsyn_opcode ("fmacs");
13771 else
13772 do_vfp_nsyn_opcode ("fnmacs");
13773 }
13774 else
13775 {
13776 if (is_mla)
13777 do_vfp_nsyn_opcode ("fmacd");
13778 else
13779 do_vfp_nsyn_opcode ("fnmacd");
13780 }
13781 }
13782
13783 static void
13784 do_vfp_nsyn_fma_fms (enum neon_shape rs)
13785 {
13786 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
13787
13788 if (rs == NS_FFF)
13789 {
13790 if (is_fma)
13791 do_vfp_nsyn_opcode ("ffmas");
13792 else
13793 do_vfp_nsyn_opcode ("ffnmas");
13794 }
13795 else
13796 {
13797 if (is_fma)
13798 do_vfp_nsyn_opcode ("ffmad");
13799 else
13800 do_vfp_nsyn_opcode ("ffnmad");
13801 }
13802 }
13803
13804 static void
13805 do_vfp_nsyn_mul (enum neon_shape rs)
13806 {
13807 if (rs == NS_FFF)
13808 do_vfp_nsyn_opcode ("fmuls");
13809 else
13810 do_vfp_nsyn_opcode ("fmuld");
13811 }
13812
13813 static void
13814 do_vfp_nsyn_abs_neg (enum neon_shape rs)
13815 {
13816 int is_neg = (inst.instruction & 0x80) != 0;
13817 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
13818
13819 if (rs == NS_FF)
13820 {
13821 if (is_neg)
13822 do_vfp_nsyn_opcode ("fnegs");
13823 else
13824 do_vfp_nsyn_opcode ("fabss");
13825 }
13826 else
13827 {
13828 if (is_neg)
13829 do_vfp_nsyn_opcode ("fnegd");
13830 else
13831 do_vfp_nsyn_opcode ("fabsd");
13832 }
13833 }
13834
13835 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
13836 insns belong to Neon, and are handled elsewhere. */
13837
13838 static void
13839 do_vfp_nsyn_ldm_stm (int is_dbmode)
13840 {
13841 int is_ldm = (inst.instruction & (1 << 20)) != 0;
13842 if (is_ldm)
13843 {
13844 if (is_dbmode)
13845 do_vfp_nsyn_opcode ("fldmdbs");
13846 else
13847 do_vfp_nsyn_opcode ("fldmias");
13848 }
13849 else
13850 {
13851 if (is_dbmode)
13852 do_vfp_nsyn_opcode ("fstmdbs");
13853 else
13854 do_vfp_nsyn_opcode ("fstmias");
13855 }
13856 }
13857
13858 static void
13859 do_vfp_nsyn_sqrt (void)
13860 {
13861 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13862 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13863
13864 if (rs == NS_FF)
13865 do_vfp_nsyn_opcode ("fsqrts");
13866 else
13867 do_vfp_nsyn_opcode ("fsqrtd");
13868 }
13869
13870 static void
13871 do_vfp_nsyn_div (void)
13872 {
13873 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13874 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13875 N_F32 | N_F64 | N_KEY | N_VFP);
13876
13877 if (rs == NS_FFF)
13878 do_vfp_nsyn_opcode ("fdivs");
13879 else
13880 do_vfp_nsyn_opcode ("fdivd");
13881 }
13882
13883 static void
13884 do_vfp_nsyn_nmul (void)
13885 {
13886 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13887 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13888 N_F32 | N_F64 | N_KEY | N_VFP);
13889
13890 if (rs == NS_FFF)
13891 {
13892 NEON_ENCODE (SINGLE, inst);
13893 do_vfp_sp_dyadic ();
13894 }
13895 else
13896 {
13897 NEON_ENCODE (DOUBLE, inst);
13898 do_vfp_dp_rd_rn_rm ();
13899 }
13900 do_vfp_cond_or_thumb ();
13901 }
13902
13903 static void
13904 do_vfp_nsyn_cmp (void)
13905 {
13906 if (inst.operands[1].isreg)
13907 {
13908 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13909 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13910
13911 if (rs == NS_FF)
13912 {
13913 NEON_ENCODE (SINGLE, inst);
13914 do_vfp_sp_monadic ();
13915 }
13916 else
13917 {
13918 NEON_ENCODE (DOUBLE, inst);
13919 do_vfp_dp_rd_rm ();
13920 }
13921 }
13922 else
13923 {
13924 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13925 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13926
13927 switch (inst.instruction & 0x0fffffff)
13928 {
13929 case N_MNEM_vcmp:
13930 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13931 break;
13932 case N_MNEM_vcmpe:
13933 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13934 break;
13935 default:
13936 abort ();
13937 }
13938
13939 if (rs == NS_FI)
13940 {
13941 NEON_ENCODE (SINGLE, inst);
13942 do_vfp_sp_compare_z ();
13943 }
13944 else
13945 {
13946 NEON_ENCODE (DOUBLE, inst);
13947 do_vfp_dp_rd ();
13948 }
13949 }
13950 do_vfp_cond_or_thumb ();
13951 }
13952
13953 static void
13954 nsyn_insert_sp (void)
13955 {
13956 inst.operands[1] = inst.operands[0];
13957 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
13958 inst.operands[0].reg = REG_SP;
13959 inst.operands[0].isreg = 1;
13960 inst.operands[0].writeback = 1;
13961 inst.operands[0].present = 1;
13962 }
13963
13964 static void
13965 do_vfp_nsyn_push (void)
13966 {
13967 nsyn_insert_sp ();
13968 if (inst.operands[1].issingle)
13969 do_vfp_nsyn_opcode ("fstmdbs");
13970 else
13971 do_vfp_nsyn_opcode ("fstmdbd");
13972 }
13973
13974 static void
13975 do_vfp_nsyn_pop (void)
13976 {
13977 nsyn_insert_sp ();
13978 if (inst.operands[1].issingle)
13979 do_vfp_nsyn_opcode ("fldmias");
13980 else
13981 do_vfp_nsyn_opcode ("fldmiad");
13982 }
13983
13984 /* Fix up Neon data-processing instructions, ORing in the correct bits for
13985 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13986
13987 static void
13988 neon_dp_fixup (struct arm_it* insn)
13989 {
13990 unsigned int i = insn->instruction;
13991 insn->is_neon = 1;
13992
13993 if (thumb_mode)
13994 {
13995 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13996 if (i & (1 << 24))
13997 i |= 1 << 28;
13998
13999 i &= ~(1 << 24);
14000
14001 i |= 0xef000000;
14002 }
14003 else
14004 i |= 0xf2000000;
14005
14006 insn->instruction = i;
14007 }
14008
14009 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
14010 (0, 1, 2, 3). */
14011
14012 static unsigned
14013 neon_logbits (unsigned x)
14014 {
14015 return ffs (x) - 4;
14016 }
14017
14018 #define LOW4(R) ((R) & 0xf)
14019 #define HI1(R) (((R) >> 4) & 1)
14020
14021 /* Encode insns with bit pattern:
14022
14023 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14024 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
14025
14026 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
14027 different meaning for some instruction. */
14028
14029 static void
14030 neon_three_same (int isquad, int ubit, int size)
14031 {
14032 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14033 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14034 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14035 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14036 inst.instruction |= LOW4 (inst.operands[2].reg);
14037 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14038 inst.instruction |= (isquad != 0) << 6;
14039 inst.instruction |= (ubit != 0) << 24;
14040 if (size != -1)
14041 inst.instruction |= neon_logbits (size) << 20;
14042
14043 neon_dp_fixup (&inst);
14044 }
14045
14046 /* Encode instructions of the form:
14047
14048 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
14049 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
14050
14051 Don't write size if SIZE == -1. */
14052
14053 static void
14054 neon_two_same (int qbit, int ubit, int size)
14055 {
14056 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14057 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14058 inst.instruction |= LOW4 (inst.operands[1].reg);
14059 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14060 inst.instruction |= (qbit != 0) << 6;
14061 inst.instruction |= (ubit != 0) << 24;
14062
14063 if (size != -1)
14064 inst.instruction |= neon_logbits (size) << 18;
14065
14066 neon_dp_fixup (&inst);
14067 }
14068
14069 /* Neon instruction encoders, in approximate order of appearance. */
14070
14071 static void
14072 do_neon_dyadic_i_su (void)
14073 {
14074 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14075 struct neon_type_el et = neon_check_type (3, rs,
14076 N_EQK, N_EQK, N_SU_32 | N_KEY);
14077 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14078 }
14079
14080 static void
14081 do_neon_dyadic_i64_su (void)
14082 {
14083 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14084 struct neon_type_el et = neon_check_type (3, rs,
14085 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14086 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14087 }
14088
14089 static void
14090 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
14091 unsigned immbits)
14092 {
14093 unsigned size = et.size >> 3;
14094 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14095 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14096 inst.instruction |= LOW4 (inst.operands[1].reg);
14097 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14098 inst.instruction |= (isquad != 0) << 6;
14099 inst.instruction |= immbits << 16;
14100 inst.instruction |= (size >> 3) << 7;
14101 inst.instruction |= (size & 0x7) << 19;
14102 if (write_ubit)
14103 inst.instruction |= (uval != 0) << 24;
14104
14105 neon_dp_fixup (&inst);
14106 }
14107
14108 static void
14109 do_neon_shl_imm (void)
14110 {
14111 if (!inst.operands[2].isreg)
14112 {
14113 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14114 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
14115 int imm = inst.operands[2].imm;
14116
14117 constraint (imm < 0 || (unsigned)imm >= et.size,
14118 _("immediate out of range for shift"));
14119 NEON_ENCODE (IMMED, inst);
14120 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14121 }
14122 else
14123 {
14124 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14125 struct neon_type_el et = neon_check_type (3, rs,
14126 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14127 unsigned int tmp;
14128
14129 /* VSHL/VQSHL 3-register variants have syntax such as:
14130 vshl.xx Dd, Dm, Dn
14131 whereas other 3-register operations encoded by neon_three_same have
14132 syntax like:
14133 vadd.xx Dd, Dn, Dm
14134 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
14135 here. */
14136 tmp = inst.operands[2].reg;
14137 inst.operands[2].reg = inst.operands[1].reg;
14138 inst.operands[1].reg = tmp;
14139 NEON_ENCODE (INTEGER, inst);
14140 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14141 }
14142 }
14143
14144 static void
14145 do_neon_qshl_imm (void)
14146 {
14147 if (!inst.operands[2].isreg)
14148 {
14149 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14150 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14151 int imm = inst.operands[2].imm;
14152
14153 constraint (imm < 0 || (unsigned)imm >= et.size,
14154 _("immediate out of range for shift"));
14155 NEON_ENCODE (IMMED, inst);
14156 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
14157 }
14158 else
14159 {
14160 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14161 struct neon_type_el et = neon_check_type (3, rs,
14162 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14163 unsigned int tmp;
14164
14165 /* See note in do_neon_shl_imm. */
14166 tmp = inst.operands[2].reg;
14167 inst.operands[2].reg = inst.operands[1].reg;
14168 inst.operands[1].reg = tmp;
14169 NEON_ENCODE (INTEGER, inst);
14170 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14171 }
14172 }
14173
14174 static void
14175 do_neon_rshl (void)
14176 {
14177 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14178 struct neon_type_el et = neon_check_type (3, rs,
14179 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14180 unsigned int tmp;
14181
14182 tmp = inst.operands[2].reg;
14183 inst.operands[2].reg = inst.operands[1].reg;
14184 inst.operands[1].reg = tmp;
14185 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14186 }
14187
14188 static int
14189 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
14190 {
14191 /* Handle .I8 pseudo-instructions. */
14192 if (size == 8)
14193 {
14194 /* Unfortunately, this will make everything apart from zero out-of-range.
14195 FIXME is this the intended semantics? There doesn't seem much point in
14196 accepting .I8 if so. */
14197 immediate |= immediate << 8;
14198 size = 16;
14199 }
14200
14201 if (size >= 32)
14202 {
14203 if (immediate == (immediate & 0x000000ff))
14204 {
14205 *immbits = immediate;
14206 return 0x1;
14207 }
14208 else if (immediate == (immediate & 0x0000ff00))
14209 {
14210 *immbits = immediate >> 8;
14211 return 0x3;
14212 }
14213 else if (immediate == (immediate & 0x00ff0000))
14214 {
14215 *immbits = immediate >> 16;
14216 return 0x5;
14217 }
14218 else if (immediate == (immediate & 0xff000000))
14219 {
14220 *immbits = immediate >> 24;
14221 return 0x7;
14222 }
14223 if ((immediate & 0xffff) != (immediate >> 16))
14224 goto bad_immediate;
14225 immediate &= 0xffff;
14226 }
14227
14228 if (immediate == (immediate & 0x000000ff))
14229 {
14230 *immbits = immediate;
14231 return 0x9;
14232 }
14233 else if (immediate == (immediate & 0x0000ff00))
14234 {
14235 *immbits = immediate >> 8;
14236 return 0xb;
14237 }
14238
14239 bad_immediate:
14240 first_error (_("immediate value out of range"));
14241 return FAIL;
14242 }
14243
14244 static void
14245 do_neon_logic (void)
14246 {
14247 if (inst.operands[2].present && inst.operands[2].isreg)
14248 {
14249 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14250 neon_check_type (3, rs, N_IGNORE_TYPE);
14251 /* U bit and size field were set as part of the bitmask. */
14252 NEON_ENCODE (INTEGER, inst);
14253 neon_three_same (neon_quad (rs), 0, -1);
14254 }
14255 else
14256 {
14257 const int three_ops_form = (inst.operands[2].present
14258 && !inst.operands[2].isreg);
14259 const int immoperand = (three_ops_form ? 2 : 1);
14260 enum neon_shape rs = (three_ops_form
14261 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
14262 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
14263 struct neon_type_el et = neon_check_type (2, rs,
14264 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14265 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
14266 unsigned immbits;
14267 int cmode;
14268
14269 if (et.type == NT_invtype)
14270 return;
14271
14272 if (three_ops_form)
14273 constraint (inst.operands[0].reg != inst.operands[1].reg,
14274 _("first and second operands shall be the same register"));
14275
14276 NEON_ENCODE (IMMED, inst);
14277
14278 immbits = inst.operands[immoperand].imm;
14279 if (et.size == 64)
14280 {
14281 /* .i64 is a pseudo-op, so the immediate must be a repeating
14282 pattern. */
14283 if (immbits != (inst.operands[immoperand].regisimm ?
14284 inst.operands[immoperand].reg : 0))
14285 {
14286 /* Set immbits to an invalid constant. */
14287 immbits = 0xdeadbeef;
14288 }
14289 }
14290
14291 switch (opcode)
14292 {
14293 case N_MNEM_vbic:
14294 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14295 break;
14296
14297 case N_MNEM_vorr:
14298 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14299 break;
14300
14301 case N_MNEM_vand:
14302 /* Pseudo-instruction for VBIC. */
14303 neon_invert_size (&immbits, 0, et.size);
14304 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14305 break;
14306
14307 case N_MNEM_vorn:
14308 /* Pseudo-instruction for VORR. */
14309 neon_invert_size (&immbits, 0, et.size);
14310 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14311 break;
14312
14313 default:
14314 abort ();
14315 }
14316
14317 if (cmode == FAIL)
14318 return;
14319
14320 inst.instruction |= neon_quad (rs) << 6;
14321 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14322 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14323 inst.instruction |= cmode << 8;
14324 neon_write_immbits (immbits);
14325
14326 neon_dp_fixup (&inst);
14327 }
14328 }
14329
14330 static void
14331 do_neon_bitfield (void)
14332 {
14333 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14334 neon_check_type (3, rs, N_IGNORE_TYPE);
14335 neon_three_same (neon_quad (rs), 0, -1);
14336 }
14337
14338 static void
14339 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
14340 unsigned destbits)
14341 {
14342 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14343 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
14344 types | N_KEY);
14345 if (et.type == NT_float)
14346 {
14347 NEON_ENCODE (FLOAT, inst);
14348 neon_three_same (neon_quad (rs), 0, -1);
14349 }
14350 else
14351 {
14352 NEON_ENCODE (INTEGER, inst);
14353 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
14354 }
14355 }
14356
14357 static void
14358 do_neon_dyadic_if_su (void)
14359 {
14360 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
14361 }
14362
14363 static void
14364 do_neon_dyadic_if_su_d (void)
14365 {
14366 /* This version only allow D registers, but that constraint is enforced during
14367 operand parsing so we don't need to do anything extra here. */
14368 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
14369 }
14370
14371 static void
14372 do_neon_dyadic_if_i_d (void)
14373 {
14374 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14375 affected if we specify unsigned args. */
14376 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14377 }
14378
14379 enum vfp_or_neon_is_neon_bits
14380 {
14381 NEON_CHECK_CC = 1,
14382 NEON_CHECK_ARCH = 2,
14383 NEON_CHECK_ARCH8 = 4
14384 };
14385
14386 /* Call this function if an instruction which may have belonged to the VFP or
14387 Neon instruction sets, but turned out to be a Neon instruction (due to the
14388 operand types involved, etc.). We have to check and/or fix-up a couple of
14389 things:
14390
14391 - Make sure the user hasn't attempted to make a Neon instruction
14392 conditional.
14393 - Alter the value in the condition code field if necessary.
14394 - Make sure that the arch supports Neon instructions.
14395
14396 Which of these operations take place depends on bits from enum
14397 vfp_or_neon_is_neon_bits.
14398
14399 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14400 current instruction's condition is COND_ALWAYS, the condition field is
14401 changed to inst.uncond_value. This is necessary because instructions shared
14402 between VFP and Neon may be conditional for the VFP variants only, and the
14403 unconditional Neon version must have, e.g., 0xF in the condition field. */
14404
14405 static int
14406 vfp_or_neon_is_neon (unsigned check)
14407 {
14408 /* Conditions are always legal in Thumb mode (IT blocks). */
14409 if (!thumb_mode && (check & NEON_CHECK_CC))
14410 {
14411 if (inst.cond != COND_ALWAYS)
14412 {
14413 first_error (_(BAD_COND));
14414 return FAIL;
14415 }
14416 if (inst.uncond_value != -1)
14417 inst.instruction |= inst.uncond_value << 28;
14418 }
14419
14420 if ((check & NEON_CHECK_ARCH)
14421 && !mark_feature_used (&fpu_neon_ext_v1))
14422 {
14423 first_error (_(BAD_FPU));
14424 return FAIL;
14425 }
14426
14427 if ((check & NEON_CHECK_ARCH8)
14428 && !mark_feature_used (&fpu_neon_ext_armv8))
14429 {
14430 first_error (_(BAD_FPU));
14431 return FAIL;
14432 }
14433
14434 return SUCCESS;
14435 }
14436
14437 static void
14438 do_neon_addsub_if_i (void)
14439 {
14440 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14441 return;
14442
14443 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14444 return;
14445
14446 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14447 affected if we specify unsigned args. */
14448 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
14449 }
14450
14451 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14452 result to be:
14453 V<op> A,B (A is operand 0, B is operand 2)
14454 to mean:
14455 V<op> A,B,A
14456 not:
14457 V<op> A,B,B
14458 so handle that case specially. */
14459
14460 static void
14461 neon_exchange_operands (void)
14462 {
14463 void *scratch = alloca (sizeof (inst.operands[0]));
14464 if (inst.operands[1].present)
14465 {
14466 /* Swap operands[1] and operands[2]. */
14467 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14468 inst.operands[1] = inst.operands[2];
14469 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14470 }
14471 else
14472 {
14473 inst.operands[1] = inst.operands[2];
14474 inst.operands[2] = inst.operands[0];
14475 }
14476 }
14477
14478 static void
14479 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14480 {
14481 if (inst.operands[2].isreg)
14482 {
14483 if (invert)
14484 neon_exchange_operands ();
14485 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
14486 }
14487 else
14488 {
14489 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14490 struct neon_type_el et = neon_check_type (2, rs,
14491 N_EQK | N_SIZ, immtypes | N_KEY);
14492
14493 NEON_ENCODE (IMMED, inst);
14494 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14495 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14496 inst.instruction |= LOW4 (inst.operands[1].reg);
14497 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14498 inst.instruction |= neon_quad (rs) << 6;
14499 inst.instruction |= (et.type == NT_float) << 10;
14500 inst.instruction |= neon_logbits (et.size) << 18;
14501
14502 neon_dp_fixup (&inst);
14503 }
14504 }
14505
14506 static void
14507 do_neon_cmp (void)
14508 {
14509 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
14510 }
14511
14512 static void
14513 do_neon_cmp_inv (void)
14514 {
14515 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
14516 }
14517
14518 static void
14519 do_neon_ceq (void)
14520 {
14521 neon_compare (N_IF_32, N_IF_32, FALSE);
14522 }
14523
14524 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
14525 scalars, which are encoded in 5 bits, M : Rm.
14526 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14527 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14528 index in M. */
14529
14530 static unsigned
14531 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14532 {
14533 unsigned regno = NEON_SCALAR_REG (scalar);
14534 unsigned elno = NEON_SCALAR_INDEX (scalar);
14535
14536 switch (elsize)
14537 {
14538 case 16:
14539 if (regno > 7 || elno > 3)
14540 goto bad_scalar;
14541 return regno | (elno << 3);
14542
14543 case 32:
14544 if (regno > 15 || elno > 1)
14545 goto bad_scalar;
14546 return regno | (elno << 4);
14547
14548 default:
14549 bad_scalar:
14550 first_error (_("scalar out of range for multiply instruction"));
14551 }
14552
14553 return 0;
14554 }
14555
14556 /* Encode multiply / multiply-accumulate scalar instructions. */
14557
14558 static void
14559 neon_mul_mac (struct neon_type_el et, int ubit)
14560 {
14561 unsigned scalar;
14562
14563 /* Give a more helpful error message if we have an invalid type. */
14564 if (et.type == NT_invtype)
14565 return;
14566
14567 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
14568 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14569 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14570 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14571 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14572 inst.instruction |= LOW4 (scalar);
14573 inst.instruction |= HI1 (scalar) << 5;
14574 inst.instruction |= (et.type == NT_float) << 8;
14575 inst.instruction |= neon_logbits (et.size) << 20;
14576 inst.instruction |= (ubit != 0) << 24;
14577
14578 neon_dp_fixup (&inst);
14579 }
14580
14581 static void
14582 do_neon_mac_maybe_scalar (void)
14583 {
14584 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14585 return;
14586
14587 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14588 return;
14589
14590 if (inst.operands[2].isscalar)
14591 {
14592 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14593 struct neon_type_el et = neon_check_type (3, rs,
14594 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
14595 NEON_ENCODE (SCALAR, inst);
14596 neon_mul_mac (et, neon_quad (rs));
14597 }
14598 else
14599 {
14600 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14601 affected if we specify unsigned args. */
14602 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14603 }
14604 }
14605
14606 static void
14607 do_neon_fmac (void)
14608 {
14609 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
14610 return;
14611
14612 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14613 return;
14614
14615 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14616 }
14617
14618 static void
14619 do_neon_tst (void)
14620 {
14621 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14622 struct neon_type_el et = neon_check_type (3, rs,
14623 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
14624 neon_three_same (neon_quad (rs), 0, et.size);
14625 }
14626
14627 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
14628 same types as the MAC equivalents. The polynomial type for this instruction
14629 is encoded the same as the integer type. */
14630
14631 static void
14632 do_neon_mul (void)
14633 {
14634 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
14635 return;
14636
14637 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14638 return;
14639
14640 if (inst.operands[2].isscalar)
14641 do_neon_mac_maybe_scalar ();
14642 else
14643 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
14644 }
14645
14646 static void
14647 do_neon_qdmulh (void)
14648 {
14649 if (inst.operands[2].isscalar)
14650 {
14651 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14652 struct neon_type_el et = neon_check_type (3, rs,
14653 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14654 NEON_ENCODE (SCALAR, inst);
14655 neon_mul_mac (et, neon_quad (rs));
14656 }
14657 else
14658 {
14659 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14660 struct neon_type_el et = neon_check_type (3, rs,
14661 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14662 NEON_ENCODE (INTEGER, inst);
14663 /* The U bit (rounding) comes from bit mask. */
14664 neon_three_same (neon_quad (rs), 0, et.size);
14665 }
14666 }
14667
14668 static void
14669 do_neon_fcmp_absolute (void)
14670 {
14671 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14672 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14673 /* Size field comes from bit mask. */
14674 neon_three_same (neon_quad (rs), 1, -1);
14675 }
14676
14677 static void
14678 do_neon_fcmp_absolute_inv (void)
14679 {
14680 neon_exchange_operands ();
14681 do_neon_fcmp_absolute ();
14682 }
14683
14684 static void
14685 do_neon_step (void)
14686 {
14687 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14688 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14689 neon_three_same (neon_quad (rs), 0, -1);
14690 }
14691
14692 static void
14693 do_neon_abs_neg (void)
14694 {
14695 enum neon_shape rs;
14696 struct neon_type_el et;
14697
14698 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14699 return;
14700
14701 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14702 return;
14703
14704 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14705 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
14706
14707 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14708 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14709 inst.instruction |= LOW4 (inst.operands[1].reg);
14710 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14711 inst.instruction |= neon_quad (rs) << 6;
14712 inst.instruction |= (et.type == NT_float) << 10;
14713 inst.instruction |= neon_logbits (et.size) << 18;
14714
14715 neon_dp_fixup (&inst);
14716 }
14717
14718 static void
14719 do_neon_sli (void)
14720 {
14721 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14722 struct neon_type_el et = neon_check_type (2, rs,
14723 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14724 int imm = inst.operands[2].imm;
14725 constraint (imm < 0 || (unsigned)imm >= et.size,
14726 _("immediate out of range for insert"));
14727 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14728 }
14729
14730 static void
14731 do_neon_sri (void)
14732 {
14733 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14734 struct neon_type_el et = neon_check_type (2, rs,
14735 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14736 int imm = inst.operands[2].imm;
14737 constraint (imm < 1 || (unsigned)imm > et.size,
14738 _("immediate out of range for insert"));
14739 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
14740 }
14741
14742 static void
14743 do_neon_qshlu_imm (void)
14744 {
14745 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14746 struct neon_type_el et = neon_check_type (2, rs,
14747 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14748 int imm = inst.operands[2].imm;
14749 constraint (imm < 0 || (unsigned)imm >= et.size,
14750 _("immediate out of range for shift"));
14751 /* Only encodes the 'U present' variant of the instruction.
14752 In this case, signed types have OP (bit 8) set to 0.
14753 Unsigned types have OP set to 1. */
14754 inst.instruction |= (et.type == NT_unsigned) << 8;
14755 /* The rest of the bits are the same as other immediate shifts. */
14756 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14757 }
14758
14759 static void
14760 do_neon_qmovn (void)
14761 {
14762 struct neon_type_el et = neon_check_type (2, NS_DQ,
14763 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14764 /* Saturating move where operands can be signed or unsigned, and the
14765 destination has the same signedness. */
14766 NEON_ENCODE (INTEGER, inst);
14767 if (et.type == NT_unsigned)
14768 inst.instruction |= 0xc0;
14769 else
14770 inst.instruction |= 0x80;
14771 neon_two_same (0, 1, et.size / 2);
14772 }
14773
14774 static void
14775 do_neon_qmovun (void)
14776 {
14777 struct neon_type_el et = neon_check_type (2, NS_DQ,
14778 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14779 /* Saturating move with unsigned results. Operands must be signed. */
14780 NEON_ENCODE (INTEGER, inst);
14781 neon_two_same (0, 1, et.size / 2);
14782 }
14783
14784 static void
14785 do_neon_rshift_sat_narrow (void)
14786 {
14787 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14788 or unsigned. If operands are unsigned, results must also be unsigned. */
14789 struct neon_type_el et = neon_check_type (2, NS_DQI,
14790 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14791 int imm = inst.operands[2].imm;
14792 /* This gets the bounds check, size encoding and immediate bits calculation
14793 right. */
14794 et.size /= 2;
14795
14796 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14797 VQMOVN.I<size> <Dd>, <Qm>. */
14798 if (imm == 0)
14799 {
14800 inst.operands[2].present = 0;
14801 inst.instruction = N_MNEM_vqmovn;
14802 do_neon_qmovn ();
14803 return;
14804 }
14805
14806 constraint (imm < 1 || (unsigned)imm > et.size,
14807 _("immediate out of range"));
14808 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14809 }
14810
14811 static void
14812 do_neon_rshift_sat_narrow_u (void)
14813 {
14814 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14815 or unsigned. If operands are unsigned, results must also be unsigned. */
14816 struct neon_type_el et = neon_check_type (2, NS_DQI,
14817 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14818 int imm = inst.operands[2].imm;
14819 /* This gets the bounds check, size encoding and immediate bits calculation
14820 right. */
14821 et.size /= 2;
14822
14823 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14824 VQMOVUN.I<size> <Dd>, <Qm>. */
14825 if (imm == 0)
14826 {
14827 inst.operands[2].present = 0;
14828 inst.instruction = N_MNEM_vqmovun;
14829 do_neon_qmovun ();
14830 return;
14831 }
14832
14833 constraint (imm < 1 || (unsigned)imm > et.size,
14834 _("immediate out of range"));
14835 /* FIXME: The manual is kind of unclear about what value U should have in
14836 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14837 must be 1. */
14838 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14839 }
14840
14841 static void
14842 do_neon_movn (void)
14843 {
14844 struct neon_type_el et = neon_check_type (2, NS_DQ,
14845 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14846 NEON_ENCODE (INTEGER, inst);
14847 neon_two_same (0, 1, et.size / 2);
14848 }
14849
14850 static void
14851 do_neon_rshift_narrow (void)
14852 {
14853 struct neon_type_el et = neon_check_type (2, NS_DQI,
14854 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14855 int imm = inst.operands[2].imm;
14856 /* This gets the bounds check, size encoding and immediate bits calculation
14857 right. */
14858 et.size /= 2;
14859
14860 /* If immediate is zero then we are a pseudo-instruction for
14861 VMOVN.I<size> <Dd>, <Qm> */
14862 if (imm == 0)
14863 {
14864 inst.operands[2].present = 0;
14865 inst.instruction = N_MNEM_vmovn;
14866 do_neon_movn ();
14867 return;
14868 }
14869
14870 constraint (imm < 1 || (unsigned)imm > et.size,
14871 _("immediate out of range for narrowing operation"));
14872 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14873 }
14874
14875 static void
14876 do_neon_shll (void)
14877 {
14878 /* FIXME: Type checking when lengthening. */
14879 struct neon_type_el et = neon_check_type (2, NS_QDI,
14880 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14881 unsigned imm = inst.operands[2].imm;
14882
14883 if (imm == et.size)
14884 {
14885 /* Maximum shift variant. */
14886 NEON_ENCODE (INTEGER, inst);
14887 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14888 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14889 inst.instruction |= LOW4 (inst.operands[1].reg);
14890 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14891 inst.instruction |= neon_logbits (et.size) << 18;
14892
14893 neon_dp_fixup (&inst);
14894 }
14895 else
14896 {
14897 /* A more-specific type check for non-max versions. */
14898 et = neon_check_type (2, NS_QDI,
14899 N_EQK | N_DBL, N_SU_32 | N_KEY);
14900 NEON_ENCODE (IMMED, inst);
14901 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14902 }
14903 }
14904
14905 /* Check the various types for the VCVT instruction, and return which version
14906 the current instruction is. */
14907
14908 #define CVT_FLAVOUR_VAR \
14909 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
14910 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
14911 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
14912 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
14913 /* Half-precision conversions. */ \
14914 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
14915 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
14916 /* VFP instructions. */ \
14917 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
14918 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
14919 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
14920 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
14921 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
14922 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
14923 /* VFP instructions with bitshift. */ \
14924 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
14925 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
14926 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
14927 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
14928 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
14929 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
14930 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
14931 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
14932
14933 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
14934 neon_cvt_flavour_##C,
14935
14936 /* The different types of conversions we can do. */
14937 enum neon_cvt_flavour
14938 {
14939 CVT_FLAVOUR_VAR
14940 neon_cvt_flavour_invalid,
14941 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
14942 };
14943
14944 #undef CVT_VAR
14945
14946 static enum neon_cvt_flavour
14947 get_neon_cvt_flavour (enum neon_shape rs)
14948 {
14949 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
14950 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
14951 if (et.type != NT_invtype) \
14952 { \
14953 inst.error = NULL; \
14954 return (neon_cvt_flavour_##C); \
14955 }
14956
14957 struct neon_type_el et;
14958 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14959 || rs == NS_FF) ? N_VFP : 0;
14960 /* The instruction versions which take an immediate take one register
14961 argument, which is extended to the width of the full register. Thus the
14962 "source" and "destination" registers must have the same width. Hack that
14963 here by making the size equal to the key (wider, in this case) operand. */
14964 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
14965
14966 CVT_FLAVOUR_VAR;
14967
14968 return neon_cvt_flavour_invalid;
14969 #undef CVT_VAR
14970 }
14971
14972 enum neon_cvt_mode
14973 {
14974 neon_cvt_mode_a,
14975 neon_cvt_mode_n,
14976 neon_cvt_mode_p,
14977 neon_cvt_mode_m,
14978 neon_cvt_mode_z,
14979 neon_cvt_mode_x,
14980 neon_cvt_mode_r
14981 };
14982
14983 /* Neon-syntax VFP conversions. */
14984
14985 static void
14986 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
14987 {
14988 const char *opname = 0;
14989
14990 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
14991 {
14992 /* Conversions with immediate bitshift. */
14993 const char *enc[] =
14994 {
14995 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
14996 CVT_FLAVOUR_VAR
14997 NULL
14998 #undef CVT_VAR
14999 };
15000
15001 if (flavour < (int) ARRAY_SIZE (enc))
15002 {
15003 opname = enc[flavour];
15004 constraint (inst.operands[0].reg != inst.operands[1].reg,
15005 _("operands 0 and 1 must be the same register"));
15006 inst.operands[1] = inst.operands[2];
15007 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
15008 }
15009 }
15010 else
15011 {
15012 /* Conversions without bitshift. */
15013 const char *enc[] =
15014 {
15015 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
15016 CVT_FLAVOUR_VAR
15017 NULL
15018 #undef CVT_VAR
15019 };
15020
15021 if (flavour < (int) ARRAY_SIZE (enc))
15022 opname = enc[flavour];
15023 }
15024
15025 if (opname)
15026 do_vfp_nsyn_opcode (opname);
15027 }
15028
15029 static void
15030 do_vfp_nsyn_cvtz (void)
15031 {
15032 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
15033 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15034 const char *enc[] =
15035 {
15036 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
15037 CVT_FLAVOUR_VAR
15038 NULL
15039 #undef CVT_VAR
15040 };
15041
15042 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
15043 do_vfp_nsyn_opcode (enc[flavour]);
15044 }
15045
15046 static void
15047 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
15048 enum neon_cvt_mode mode)
15049 {
15050 int sz, op;
15051 int rm;
15052
15053 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
15054 D register operands. */
15055 if (flavour == neon_cvt_flavour_s32_f64
15056 || flavour == neon_cvt_flavour_u32_f64)
15057 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15058 _(BAD_FPU));
15059
15060 set_it_insn_type (OUTSIDE_IT_INSN);
15061
15062 switch (flavour)
15063 {
15064 case neon_cvt_flavour_s32_f64:
15065 sz = 1;
15066 op = 1;
15067 break;
15068 case neon_cvt_flavour_s32_f32:
15069 sz = 0;
15070 op = 1;
15071 break;
15072 case neon_cvt_flavour_u32_f64:
15073 sz = 1;
15074 op = 0;
15075 break;
15076 case neon_cvt_flavour_u32_f32:
15077 sz = 0;
15078 op = 0;
15079 break;
15080 default:
15081 first_error (_("invalid instruction shape"));
15082 return;
15083 }
15084
15085 switch (mode)
15086 {
15087 case neon_cvt_mode_a: rm = 0; break;
15088 case neon_cvt_mode_n: rm = 1; break;
15089 case neon_cvt_mode_p: rm = 2; break;
15090 case neon_cvt_mode_m: rm = 3; break;
15091 default: first_error (_("invalid rounding mode")); return;
15092 }
15093
15094 NEON_ENCODE (FPV8, inst);
15095 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
15096 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
15097 inst.instruction |= sz << 8;
15098 inst.instruction |= op << 7;
15099 inst.instruction |= rm << 16;
15100 inst.instruction |= 0xf0000000;
15101 inst.is_neon = TRUE;
15102 }
15103
15104 static void
15105 do_neon_cvt_1 (enum neon_cvt_mode mode)
15106 {
15107 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
15108 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
15109 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15110
15111 /* PR11109: Handle round-to-zero for VCVT conversions. */
15112 if (mode == neon_cvt_mode_z
15113 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
15114 && (flavour == neon_cvt_flavour_s32_f32
15115 || flavour == neon_cvt_flavour_u32_f32
15116 || flavour == neon_cvt_flavour_s32_f64
15117 || flavour == neon_cvt_flavour_u32_f64)
15118 && (rs == NS_FD || rs == NS_FF))
15119 {
15120 do_vfp_nsyn_cvtz ();
15121 return;
15122 }
15123
15124 /* VFP rather than Neon conversions. */
15125 if (flavour >= neon_cvt_flavour_first_fp)
15126 {
15127 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15128 do_vfp_nsyn_cvt (rs, flavour);
15129 else
15130 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15131
15132 return;
15133 }
15134
15135 switch (rs)
15136 {
15137 case NS_DDI:
15138 case NS_QQI:
15139 {
15140 unsigned immbits;
15141 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
15142
15143 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15144 return;
15145
15146 /* Fixed-point conversion with #0 immediate is encoded as an
15147 integer conversion. */
15148 if (inst.operands[2].present && inst.operands[2].imm == 0)
15149 goto int_encode;
15150 immbits = 32 - inst.operands[2].imm;
15151 NEON_ENCODE (IMMED, inst);
15152 if (flavour != neon_cvt_flavour_invalid)
15153 inst.instruction |= enctab[flavour];
15154 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15155 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15156 inst.instruction |= LOW4 (inst.operands[1].reg);
15157 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15158 inst.instruction |= neon_quad (rs) << 6;
15159 inst.instruction |= 1 << 21;
15160 inst.instruction |= immbits << 16;
15161
15162 neon_dp_fixup (&inst);
15163 }
15164 break;
15165
15166 case NS_DD:
15167 case NS_QQ:
15168 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
15169 {
15170 NEON_ENCODE (FLOAT, inst);
15171 set_it_insn_type (OUTSIDE_IT_INSN);
15172
15173 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
15174 return;
15175
15176 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15177 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15178 inst.instruction |= LOW4 (inst.operands[1].reg);
15179 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15180 inst.instruction |= neon_quad (rs) << 6;
15181 inst.instruction |= (flavour == neon_cvt_flavour_u32_f32) << 7;
15182 inst.instruction |= mode << 8;
15183 if (thumb_mode)
15184 inst.instruction |= 0xfc000000;
15185 else
15186 inst.instruction |= 0xf0000000;
15187 }
15188 else
15189 {
15190 int_encode:
15191 {
15192 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
15193
15194 NEON_ENCODE (INTEGER, inst);
15195
15196 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15197 return;
15198
15199 if (flavour != neon_cvt_flavour_invalid)
15200 inst.instruction |= enctab[flavour];
15201
15202 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15203 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15204 inst.instruction |= LOW4 (inst.operands[1].reg);
15205 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15206 inst.instruction |= neon_quad (rs) << 6;
15207 inst.instruction |= 2 << 18;
15208
15209 neon_dp_fixup (&inst);
15210 }
15211 }
15212 break;
15213
15214 /* Half-precision conversions for Advanced SIMD -- neon. */
15215 case NS_QD:
15216 case NS_DQ:
15217
15218 if ((rs == NS_DQ)
15219 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
15220 {
15221 as_bad (_("operand size must match register width"));
15222 break;
15223 }
15224
15225 if ((rs == NS_QD)
15226 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
15227 {
15228 as_bad (_("operand size must match register width"));
15229 break;
15230 }
15231
15232 if (rs == NS_DQ)
15233 inst.instruction = 0x3b60600;
15234 else
15235 inst.instruction = 0x3b60700;
15236
15237 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15238 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15239 inst.instruction |= LOW4 (inst.operands[1].reg);
15240 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15241 neon_dp_fixup (&inst);
15242 break;
15243
15244 default:
15245 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
15246 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15247 do_vfp_nsyn_cvt (rs, flavour);
15248 else
15249 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15250 }
15251 }
15252
15253 static void
15254 do_neon_cvtr (void)
15255 {
15256 do_neon_cvt_1 (neon_cvt_mode_x);
15257 }
15258
15259 static void
15260 do_neon_cvt (void)
15261 {
15262 do_neon_cvt_1 (neon_cvt_mode_z);
15263 }
15264
15265 static void
15266 do_neon_cvta (void)
15267 {
15268 do_neon_cvt_1 (neon_cvt_mode_a);
15269 }
15270
15271 static void
15272 do_neon_cvtn (void)
15273 {
15274 do_neon_cvt_1 (neon_cvt_mode_n);
15275 }
15276
15277 static void
15278 do_neon_cvtp (void)
15279 {
15280 do_neon_cvt_1 (neon_cvt_mode_p);
15281 }
15282
15283 static void
15284 do_neon_cvtm (void)
15285 {
15286 do_neon_cvt_1 (neon_cvt_mode_m);
15287 }
15288
15289 static void
15290 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
15291 {
15292 if (is_double)
15293 mark_feature_used (&fpu_vfp_ext_armv8);
15294
15295 encode_arm_vfp_reg (inst.operands[0].reg,
15296 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
15297 encode_arm_vfp_reg (inst.operands[1].reg,
15298 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
15299 inst.instruction |= to ? 0x10000 : 0;
15300 inst.instruction |= t ? 0x80 : 0;
15301 inst.instruction |= is_double ? 0x100 : 0;
15302 do_vfp_cond_or_thumb ();
15303 }
15304
15305 static void
15306 do_neon_cvttb_1 (bfd_boolean t)
15307 {
15308 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_DF, NS_NULL);
15309
15310 if (rs == NS_NULL)
15311 return;
15312 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
15313 {
15314 inst.error = NULL;
15315 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
15316 }
15317 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
15318 {
15319 inst.error = NULL;
15320 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
15321 }
15322 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
15323 {
15324 /* The VCVTB and VCVTT instructions with D-register operands
15325 don't work for SP only targets. */
15326 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15327 _(BAD_FPU));
15328
15329 inst.error = NULL;
15330 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
15331 }
15332 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
15333 {
15334 /* The VCVTB and VCVTT instructions with D-register operands
15335 don't work for SP only targets. */
15336 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15337 _(BAD_FPU));
15338
15339 inst.error = NULL;
15340 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
15341 }
15342 else
15343 return;
15344 }
15345
15346 static void
15347 do_neon_cvtb (void)
15348 {
15349 do_neon_cvttb_1 (FALSE);
15350 }
15351
15352
15353 static void
15354 do_neon_cvtt (void)
15355 {
15356 do_neon_cvttb_1 (TRUE);
15357 }
15358
15359 static void
15360 neon_move_immediate (void)
15361 {
15362 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
15363 struct neon_type_el et = neon_check_type (2, rs,
15364 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
15365 unsigned immlo, immhi = 0, immbits;
15366 int op, cmode, float_p;
15367
15368 constraint (et.type == NT_invtype,
15369 _("operand size must be specified for immediate VMOV"));
15370
15371 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
15372 op = (inst.instruction & (1 << 5)) != 0;
15373
15374 immlo = inst.operands[1].imm;
15375 if (inst.operands[1].regisimm)
15376 immhi = inst.operands[1].reg;
15377
15378 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
15379 _("immediate has bits set outside the operand size"));
15380
15381 float_p = inst.operands[1].immisfloat;
15382
15383 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
15384 et.size, et.type)) == FAIL)
15385 {
15386 /* Invert relevant bits only. */
15387 neon_invert_size (&immlo, &immhi, et.size);
15388 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
15389 with one or the other; those cases are caught by
15390 neon_cmode_for_move_imm. */
15391 op = !op;
15392 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
15393 &op, et.size, et.type)) == FAIL)
15394 {
15395 first_error (_("immediate out of range"));
15396 return;
15397 }
15398 }
15399
15400 inst.instruction &= ~(1 << 5);
15401 inst.instruction |= op << 5;
15402
15403 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15404 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15405 inst.instruction |= neon_quad (rs) << 6;
15406 inst.instruction |= cmode << 8;
15407
15408 neon_write_immbits (immbits);
15409 }
15410
15411 static void
15412 do_neon_mvn (void)
15413 {
15414 if (inst.operands[1].isreg)
15415 {
15416 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15417
15418 NEON_ENCODE (INTEGER, inst);
15419 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15420 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15421 inst.instruction |= LOW4 (inst.operands[1].reg);
15422 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15423 inst.instruction |= neon_quad (rs) << 6;
15424 }
15425 else
15426 {
15427 NEON_ENCODE (IMMED, inst);
15428 neon_move_immediate ();
15429 }
15430
15431 neon_dp_fixup (&inst);
15432 }
15433
15434 /* Encode instructions of form:
15435
15436 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15437 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
15438
15439 static void
15440 neon_mixed_length (struct neon_type_el et, unsigned size)
15441 {
15442 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15443 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15444 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15445 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15446 inst.instruction |= LOW4 (inst.operands[2].reg);
15447 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15448 inst.instruction |= (et.type == NT_unsigned) << 24;
15449 inst.instruction |= neon_logbits (size) << 20;
15450
15451 neon_dp_fixup (&inst);
15452 }
15453
15454 static void
15455 do_neon_dyadic_long (void)
15456 {
15457 /* FIXME: Type checking for lengthening op. */
15458 struct neon_type_el et = neon_check_type (3, NS_QDD,
15459 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
15460 neon_mixed_length (et, et.size);
15461 }
15462
15463 static void
15464 do_neon_abal (void)
15465 {
15466 struct neon_type_el et = neon_check_type (3, NS_QDD,
15467 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
15468 neon_mixed_length (et, et.size);
15469 }
15470
15471 static void
15472 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
15473 {
15474 if (inst.operands[2].isscalar)
15475 {
15476 struct neon_type_el et = neon_check_type (3, NS_QDS,
15477 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
15478 NEON_ENCODE (SCALAR, inst);
15479 neon_mul_mac (et, et.type == NT_unsigned);
15480 }
15481 else
15482 {
15483 struct neon_type_el et = neon_check_type (3, NS_QDD,
15484 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
15485 NEON_ENCODE (INTEGER, inst);
15486 neon_mixed_length (et, et.size);
15487 }
15488 }
15489
15490 static void
15491 do_neon_mac_maybe_scalar_long (void)
15492 {
15493 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
15494 }
15495
15496 static void
15497 do_neon_dyadic_wide (void)
15498 {
15499 struct neon_type_el et = neon_check_type (3, NS_QQD,
15500 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
15501 neon_mixed_length (et, et.size);
15502 }
15503
15504 static void
15505 do_neon_dyadic_narrow (void)
15506 {
15507 struct neon_type_el et = neon_check_type (3, NS_QDD,
15508 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
15509 /* Operand sign is unimportant, and the U bit is part of the opcode,
15510 so force the operand type to integer. */
15511 et.type = NT_integer;
15512 neon_mixed_length (et, et.size / 2);
15513 }
15514
15515 static void
15516 do_neon_mul_sat_scalar_long (void)
15517 {
15518 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
15519 }
15520
15521 static void
15522 do_neon_vmull (void)
15523 {
15524 if (inst.operands[2].isscalar)
15525 do_neon_mac_maybe_scalar_long ();
15526 else
15527 {
15528 struct neon_type_el et = neon_check_type (3, NS_QDD,
15529 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
15530
15531 if (et.type == NT_poly)
15532 NEON_ENCODE (POLY, inst);
15533 else
15534 NEON_ENCODE (INTEGER, inst);
15535
15536 /* For polynomial encoding the U bit must be zero, and the size must
15537 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
15538 obviously, as 0b10). */
15539 if (et.size == 64)
15540 {
15541 /* Check we're on the correct architecture. */
15542 if (!mark_feature_used (&fpu_crypto_ext_armv8))
15543 inst.error =
15544 _("Instruction form not available on this architecture.");
15545
15546 et.size = 32;
15547 }
15548
15549 neon_mixed_length (et, et.size);
15550 }
15551 }
15552
15553 static void
15554 do_neon_ext (void)
15555 {
15556 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
15557 struct neon_type_el et = neon_check_type (3, rs,
15558 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15559 unsigned imm = (inst.operands[3].imm * et.size) / 8;
15560
15561 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
15562 _("shift out of range"));
15563 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15564 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15565 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15566 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15567 inst.instruction |= LOW4 (inst.operands[2].reg);
15568 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15569 inst.instruction |= neon_quad (rs) << 6;
15570 inst.instruction |= imm << 8;
15571
15572 neon_dp_fixup (&inst);
15573 }
15574
15575 static void
15576 do_neon_rev (void)
15577 {
15578 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15579 struct neon_type_el et = neon_check_type (2, rs,
15580 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15581 unsigned op = (inst.instruction >> 7) & 3;
15582 /* N (width of reversed regions) is encoded as part of the bitmask. We
15583 extract it here to check the elements to be reversed are smaller.
15584 Otherwise we'd get a reserved instruction. */
15585 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
15586 gas_assert (elsize != 0);
15587 constraint (et.size >= elsize,
15588 _("elements must be smaller than reversal region"));
15589 neon_two_same (neon_quad (rs), 1, et.size);
15590 }
15591
15592 static void
15593 do_neon_dup (void)
15594 {
15595 if (inst.operands[1].isscalar)
15596 {
15597 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
15598 struct neon_type_el et = neon_check_type (2, rs,
15599 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15600 unsigned sizebits = et.size >> 3;
15601 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
15602 int logsize = neon_logbits (et.size);
15603 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
15604
15605 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
15606 return;
15607
15608 NEON_ENCODE (SCALAR, inst);
15609 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15610 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15611 inst.instruction |= LOW4 (dm);
15612 inst.instruction |= HI1 (dm) << 5;
15613 inst.instruction |= neon_quad (rs) << 6;
15614 inst.instruction |= x << 17;
15615 inst.instruction |= sizebits << 16;
15616
15617 neon_dp_fixup (&inst);
15618 }
15619 else
15620 {
15621 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
15622 struct neon_type_el et = neon_check_type (2, rs,
15623 N_8 | N_16 | N_32 | N_KEY, N_EQK);
15624 /* Duplicate ARM register to lanes of vector. */
15625 NEON_ENCODE (ARMREG, inst);
15626 switch (et.size)
15627 {
15628 case 8: inst.instruction |= 0x400000; break;
15629 case 16: inst.instruction |= 0x000020; break;
15630 case 32: inst.instruction |= 0x000000; break;
15631 default: break;
15632 }
15633 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15634 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
15635 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
15636 inst.instruction |= neon_quad (rs) << 21;
15637 /* The encoding for this instruction is identical for the ARM and Thumb
15638 variants, except for the condition field. */
15639 do_vfp_cond_or_thumb ();
15640 }
15641 }
15642
15643 /* VMOV has particularly many variations. It can be one of:
15644 0. VMOV<c><q> <Qd>, <Qm>
15645 1. VMOV<c><q> <Dd>, <Dm>
15646 (Register operations, which are VORR with Rm = Rn.)
15647 2. VMOV<c><q>.<dt> <Qd>, #<imm>
15648 3. VMOV<c><q>.<dt> <Dd>, #<imm>
15649 (Immediate loads.)
15650 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15651 (ARM register to scalar.)
15652 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15653 (Two ARM registers to vector.)
15654 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15655 (Scalar to ARM register.)
15656 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15657 (Vector to two ARM registers.)
15658 8. VMOV.F32 <Sd>, <Sm>
15659 9. VMOV.F64 <Dd>, <Dm>
15660 (VFP register moves.)
15661 10. VMOV.F32 <Sd>, #imm
15662 11. VMOV.F64 <Dd>, #imm
15663 (VFP float immediate load.)
15664 12. VMOV <Rd>, <Sm>
15665 (VFP single to ARM reg.)
15666 13. VMOV <Sd>, <Rm>
15667 (ARM reg to VFP single.)
15668 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15669 (Two ARM regs to two VFP singles.)
15670 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15671 (Two VFP singles to two ARM regs.)
15672
15673 These cases can be disambiguated using neon_select_shape, except cases 1/9
15674 and 3/11 which depend on the operand type too.
15675
15676 All the encoded bits are hardcoded by this function.
15677
15678 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15679 Cases 5, 7 may be used with VFPv2 and above.
15680
15681 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
15682 can specify a type where it doesn't make sense to, and is ignored). */
15683
15684 static void
15685 do_neon_mov (void)
15686 {
15687 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
15688 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
15689 NS_NULL);
15690 struct neon_type_el et;
15691 const char *ldconst = 0;
15692
15693 switch (rs)
15694 {
15695 case NS_DD: /* case 1/9. */
15696 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15697 /* It is not an error here if no type is given. */
15698 inst.error = NULL;
15699 if (et.type == NT_float && et.size == 64)
15700 {
15701 do_vfp_nsyn_opcode ("fcpyd");
15702 break;
15703 }
15704 /* fall through. */
15705
15706 case NS_QQ: /* case 0/1. */
15707 {
15708 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15709 return;
15710 /* The architecture manual I have doesn't explicitly state which
15711 value the U bit should have for register->register moves, but
15712 the equivalent VORR instruction has U = 0, so do that. */
15713 inst.instruction = 0x0200110;
15714 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15715 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15716 inst.instruction |= LOW4 (inst.operands[1].reg);
15717 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15718 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15719 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15720 inst.instruction |= neon_quad (rs) << 6;
15721
15722 neon_dp_fixup (&inst);
15723 }
15724 break;
15725
15726 case NS_DI: /* case 3/11. */
15727 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15728 inst.error = NULL;
15729 if (et.type == NT_float && et.size == 64)
15730 {
15731 /* case 11 (fconstd). */
15732 ldconst = "fconstd";
15733 goto encode_fconstd;
15734 }
15735 /* fall through. */
15736
15737 case NS_QI: /* case 2/3. */
15738 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15739 return;
15740 inst.instruction = 0x0800010;
15741 neon_move_immediate ();
15742 neon_dp_fixup (&inst);
15743 break;
15744
15745 case NS_SR: /* case 4. */
15746 {
15747 unsigned bcdebits = 0;
15748 int logsize;
15749 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
15750 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
15751
15752 /* .<size> is optional here, defaulting to .32. */
15753 if (inst.vectype.elems == 0
15754 && inst.operands[0].vectype.type == NT_invtype
15755 && inst.operands[1].vectype.type == NT_invtype)
15756 {
15757 inst.vectype.el[0].type = NT_untyped;
15758 inst.vectype.el[0].size = 32;
15759 inst.vectype.elems = 1;
15760 }
15761
15762 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
15763 logsize = neon_logbits (et.size);
15764
15765 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15766 _(BAD_FPU));
15767 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15768 && et.size != 32, _(BAD_FPU));
15769 constraint (et.type == NT_invtype, _("bad type for scalar"));
15770 constraint (x >= 64 / et.size, _("scalar index out of range"));
15771
15772 switch (et.size)
15773 {
15774 case 8: bcdebits = 0x8; break;
15775 case 16: bcdebits = 0x1; break;
15776 case 32: bcdebits = 0x0; break;
15777 default: ;
15778 }
15779
15780 bcdebits |= x << logsize;
15781
15782 inst.instruction = 0xe000b10;
15783 do_vfp_cond_or_thumb ();
15784 inst.instruction |= LOW4 (dn) << 16;
15785 inst.instruction |= HI1 (dn) << 7;
15786 inst.instruction |= inst.operands[1].reg << 12;
15787 inst.instruction |= (bcdebits & 3) << 5;
15788 inst.instruction |= (bcdebits >> 2) << 21;
15789 }
15790 break;
15791
15792 case NS_DRR: /* case 5 (fmdrr). */
15793 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15794 _(BAD_FPU));
15795
15796 inst.instruction = 0xc400b10;
15797 do_vfp_cond_or_thumb ();
15798 inst.instruction |= LOW4 (inst.operands[0].reg);
15799 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
15800 inst.instruction |= inst.operands[1].reg << 12;
15801 inst.instruction |= inst.operands[2].reg << 16;
15802 break;
15803
15804 case NS_RS: /* case 6. */
15805 {
15806 unsigned logsize;
15807 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
15808 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
15809 unsigned abcdebits = 0;
15810
15811 /* .<dt> is optional here, defaulting to .32. */
15812 if (inst.vectype.elems == 0
15813 && inst.operands[0].vectype.type == NT_invtype
15814 && inst.operands[1].vectype.type == NT_invtype)
15815 {
15816 inst.vectype.el[0].type = NT_untyped;
15817 inst.vectype.el[0].size = 32;
15818 inst.vectype.elems = 1;
15819 }
15820
15821 et = neon_check_type (2, NS_NULL,
15822 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
15823 logsize = neon_logbits (et.size);
15824
15825 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15826 _(BAD_FPU));
15827 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15828 && et.size != 32, _(BAD_FPU));
15829 constraint (et.type == NT_invtype, _("bad type for scalar"));
15830 constraint (x >= 64 / et.size, _("scalar index out of range"));
15831
15832 switch (et.size)
15833 {
15834 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
15835 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
15836 case 32: abcdebits = 0x00; break;
15837 default: ;
15838 }
15839
15840 abcdebits |= x << logsize;
15841 inst.instruction = 0xe100b10;
15842 do_vfp_cond_or_thumb ();
15843 inst.instruction |= LOW4 (dn) << 16;
15844 inst.instruction |= HI1 (dn) << 7;
15845 inst.instruction |= inst.operands[0].reg << 12;
15846 inst.instruction |= (abcdebits & 3) << 5;
15847 inst.instruction |= (abcdebits >> 2) << 21;
15848 }
15849 break;
15850
15851 case NS_RRD: /* case 7 (fmrrd). */
15852 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15853 _(BAD_FPU));
15854
15855 inst.instruction = 0xc500b10;
15856 do_vfp_cond_or_thumb ();
15857 inst.instruction |= inst.operands[0].reg << 12;
15858 inst.instruction |= inst.operands[1].reg << 16;
15859 inst.instruction |= LOW4 (inst.operands[2].reg);
15860 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15861 break;
15862
15863 case NS_FF: /* case 8 (fcpys). */
15864 do_vfp_nsyn_opcode ("fcpys");
15865 break;
15866
15867 case NS_FI: /* case 10 (fconsts). */
15868 ldconst = "fconsts";
15869 encode_fconstd:
15870 if (is_quarter_float (inst.operands[1].imm))
15871 {
15872 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15873 do_vfp_nsyn_opcode (ldconst);
15874 }
15875 else
15876 first_error (_("immediate out of range"));
15877 break;
15878
15879 case NS_RF: /* case 12 (fmrs). */
15880 do_vfp_nsyn_opcode ("fmrs");
15881 break;
15882
15883 case NS_FR: /* case 13 (fmsr). */
15884 do_vfp_nsyn_opcode ("fmsr");
15885 break;
15886
15887 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15888 (one of which is a list), but we have parsed four. Do some fiddling to
15889 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15890 expect. */
15891 case NS_RRFF: /* case 14 (fmrrs). */
15892 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15893 _("VFP registers must be adjacent"));
15894 inst.operands[2].imm = 2;
15895 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15896 do_vfp_nsyn_opcode ("fmrrs");
15897 break;
15898
15899 case NS_FFRR: /* case 15 (fmsrr). */
15900 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15901 _("VFP registers must be adjacent"));
15902 inst.operands[1] = inst.operands[2];
15903 inst.operands[2] = inst.operands[3];
15904 inst.operands[0].imm = 2;
15905 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15906 do_vfp_nsyn_opcode ("fmsrr");
15907 break;
15908
15909 case NS_NULL:
15910 /* neon_select_shape has determined that the instruction
15911 shape is wrong and has already set the error message. */
15912 break;
15913
15914 default:
15915 abort ();
15916 }
15917 }
15918
15919 static void
15920 do_neon_rshift_round_imm (void)
15921 {
15922 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15923 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15924 int imm = inst.operands[2].imm;
15925
15926 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15927 if (imm == 0)
15928 {
15929 inst.operands[2].present = 0;
15930 do_neon_mov ();
15931 return;
15932 }
15933
15934 constraint (imm < 1 || (unsigned)imm > et.size,
15935 _("immediate out of range for shift"));
15936 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
15937 et.size - imm);
15938 }
15939
15940 static void
15941 do_neon_movl (void)
15942 {
15943 struct neon_type_el et = neon_check_type (2, NS_QD,
15944 N_EQK | N_DBL, N_SU_32 | N_KEY);
15945 unsigned sizebits = et.size >> 3;
15946 inst.instruction |= sizebits << 19;
15947 neon_two_same (0, et.type == NT_unsigned, -1);
15948 }
15949
15950 static void
15951 do_neon_trn (void)
15952 {
15953 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15954 struct neon_type_el et = neon_check_type (2, rs,
15955 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15956 NEON_ENCODE (INTEGER, inst);
15957 neon_two_same (neon_quad (rs), 1, et.size);
15958 }
15959
15960 static void
15961 do_neon_zip_uzp (void)
15962 {
15963 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15964 struct neon_type_el et = neon_check_type (2, rs,
15965 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15966 if (rs == NS_DD && et.size == 32)
15967 {
15968 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15969 inst.instruction = N_MNEM_vtrn;
15970 do_neon_trn ();
15971 return;
15972 }
15973 neon_two_same (neon_quad (rs), 1, et.size);
15974 }
15975
15976 static void
15977 do_neon_sat_abs_neg (void)
15978 {
15979 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15980 struct neon_type_el et = neon_check_type (2, rs,
15981 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15982 neon_two_same (neon_quad (rs), 1, et.size);
15983 }
15984
15985 static void
15986 do_neon_pair_long (void)
15987 {
15988 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15989 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15990 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15991 inst.instruction |= (et.type == NT_unsigned) << 7;
15992 neon_two_same (neon_quad (rs), 1, et.size);
15993 }
15994
15995 static void
15996 do_neon_recip_est (void)
15997 {
15998 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15999 struct neon_type_el et = neon_check_type (2, rs,
16000 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
16001 inst.instruction |= (et.type == NT_float) << 8;
16002 neon_two_same (neon_quad (rs), 1, et.size);
16003 }
16004
16005 static void
16006 do_neon_cls (void)
16007 {
16008 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16009 struct neon_type_el et = neon_check_type (2, rs,
16010 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
16011 neon_two_same (neon_quad (rs), 1, et.size);
16012 }
16013
16014 static void
16015 do_neon_clz (void)
16016 {
16017 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16018 struct neon_type_el et = neon_check_type (2, rs,
16019 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
16020 neon_two_same (neon_quad (rs), 1, et.size);
16021 }
16022
16023 static void
16024 do_neon_cnt (void)
16025 {
16026 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16027 struct neon_type_el et = neon_check_type (2, rs,
16028 N_EQK | N_INT, N_8 | N_KEY);
16029 neon_two_same (neon_quad (rs), 1, et.size);
16030 }
16031
16032 static void
16033 do_neon_swp (void)
16034 {
16035 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16036 neon_two_same (neon_quad (rs), 1, -1);
16037 }
16038
16039 static void
16040 do_neon_tbl_tbx (void)
16041 {
16042 unsigned listlenbits;
16043 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
16044
16045 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
16046 {
16047 first_error (_("bad list length for table lookup"));
16048 return;
16049 }
16050
16051 listlenbits = inst.operands[1].imm - 1;
16052 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16053 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16054 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16055 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16056 inst.instruction |= LOW4 (inst.operands[2].reg);
16057 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16058 inst.instruction |= listlenbits << 8;
16059
16060 neon_dp_fixup (&inst);
16061 }
16062
16063 static void
16064 do_neon_ldm_stm (void)
16065 {
16066 /* P, U and L bits are part of bitmask. */
16067 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
16068 unsigned offsetbits = inst.operands[1].imm * 2;
16069
16070 if (inst.operands[1].issingle)
16071 {
16072 do_vfp_nsyn_ldm_stm (is_dbmode);
16073 return;
16074 }
16075
16076 constraint (is_dbmode && !inst.operands[0].writeback,
16077 _("writeback (!) must be used for VLDMDB and VSTMDB"));
16078
16079 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16080 _("register list must contain at least 1 and at most 16 "
16081 "registers"));
16082
16083 inst.instruction |= inst.operands[0].reg << 16;
16084 inst.instruction |= inst.operands[0].writeback << 21;
16085 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16086 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
16087
16088 inst.instruction |= offsetbits;
16089
16090 do_vfp_cond_or_thumb ();
16091 }
16092
16093 static void
16094 do_neon_ldr_str (void)
16095 {
16096 int is_ldr = (inst.instruction & (1 << 20)) != 0;
16097
16098 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
16099 And is UNPREDICTABLE in thumb mode. */
16100 if (!is_ldr
16101 && inst.operands[1].reg == REG_PC
16102 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
16103 {
16104 if (thumb_mode)
16105 inst.error = _("Use of PC here is UNPREDICTABLE");
16106 else if (warn_on_deprecated)
16107 as_tsktsk (_("Use of PC here is deprecated"));
16108 }
16109
16110 if (inst.operands[0].issingle)
16111 {
16112 if (is_ldr)
16113 do_vfp_nsyn_opcode ("flds");
16114 else
16115 do_vfp_nsyn_opcode ("fsts");
16116 }
16117 else
16118 {
16119 if (is_ldr)
16120 do_vfp_nsyn_opcode ("fldd");
16121 else
16122 do_vfp_nsyn_opcode ("fstd");
16123 }
16124 }
16125
16126 /* "interleave" version also handles non-interleaving register VLD1/VST1
16127 instructions. */
16128
16129 static void
16130 do_neon_ld_st_interleave (void)
16131 {
16132 struct neon_type_el et = neon_check_type (1, NS_NULL,
16133 N_8 | N_16 | N_32 | N_64);
16134 unsigned alignbits = 0;
16135 unsigned idx;
16136 /* The bits in this table go:
16137 0: register stride of one (0) or two (1)
16138 1,2: register list length, minus one (1, 2, 3, 4).
16139 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
16140 We use -1 for invalid entries. */
16141 const int typetable[] =
16142 {
16143 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
16144 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
16145 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
16146 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
16147 };
16148 int typebits;
16149
16150 if (et.type == NT_invtype)
16151 return;
16152
16153 if (inst.operands[1].immisalign)
16154 switch (inst.operands[1].imm >> 8)
16155 {
16156 case 64: alignbits = 1; break;
16157 case 128:
16158 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
16159 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
16160 goto bad_alignment;
16161 alignbits = 2;
16162 break;
16163 case 256:
16164 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
16165 goto bad_alignment;
16166 alignbits = 3;
16167 break;
16168 default:
16169 bad_alignment:
16170 first_error (_("bad alignment"));
16171 return;
16172 }
16173
16174 inst.instruction |= alignbits << 4;
16175 inst.instruction |= neon_logbits (et.size) << 6;
16176
16177 /* Bits [4:6] of the immediate in a list specifier encode register stride
16178 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
16179 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
16180 up the right value for "type" in a table based on this value and the given
16181 list style, then stick it back. */
16182 idx = ((inst.operands[0].imm >> 4) & 7)
16183 | (((inst.instruction >> 8) & 3) << 3);
16184
16185 typebits = typetable[idx];
16186
16187 constraint (typebits == -1, _("bad list type for instruction"));
16188 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
16189 _("bad element type for instruction"));
16190
16191 inst.instruction &= ~0xf00;
16192 inst.instruction |= typebits << 8;
16193 }
16194
16195 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
16196 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
16197 otherwise. The variable arguments are a list of pairs of legal (size, align)
16198 values, terminated with -1. */
16199
16200 static int
16201 neon_alignment_bit (int size, int align, int *do_align, ...)
16202 {
16203 va_list ap;
16204 int result = FAIL, thissize, thisalign;
16205
16206 if (!inst.operands[1].immisalign)
16207 {
16208 *do_align = 0;
16209 return SUCCESS;
16210 }
16211
16212 va_start (ap, do_align);
16213
16214 do
16215 {
16216 thissize = va_arg (ap, int);
16217 if (thissize == -1)
16218 break;
16219 thisalign = va_arg (ap, int);
16220
16221 if (size == thissize && align == thisalign)
16222 result = SUCCESS;
16223 }
16224 while (result != SUCCESS);
16225
16226 va_end (ap);
16227
16228 if (result == SUCCESS)
16229 *do_align = 1;
16230 else
16231 first_error (_("unsupported alignment for instruction"));
16232
16233 return result;
16234 }
16235
16236 static void
16237 do_neon_ld_st_lane (void)
16238 {
16239 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
16240 int align_good, do_align = 0;
16241 int logsize = neon_logbits (et.size);
16242 int align = inst.operands[1].imm >> 8;
16243 int n = (inst.instruction >> 8) & 3;
16244 int max_el = 64 / et.size;
16245
16246 if (et.type == NT_invtype)
16247 return;
16248
16249 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
16250 _("bad list length"));
16251 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
16252 _("scalar index out of range"));
16253 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
16254 && et.size == 8,
16255 _("stride of 2 unavailable when element size is 8"));
16256
16257 switch (n)
16258 {
16259 case 0: /* VLD1 / VST1. */
16260 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
16261 32, 32, -1);
16262 if (align_good == FAIL)
16263 return;
16264 if (do_align)
16265 {
16266 unsigned alignbits = 0;
16267 switch (et.size)
16268 {
16269 case 16: alignbits = 0x1; break;
16270 case 32: alignbits = 0x3; break;
16271 default: ;
16272 }
16273 inst.instruction |= alignbits << 4;
16274 }
16275 break;
16276
16277 case 1: /* VLD2 / VST2. */
16278 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
16279 32, 64, -1);
16280 if (align_good == FAIL)
16281 return;
16282 if (do_align)
16283 inst.instruction |= 1 << 4;
16284 break;
16285
16286 case 2: /* VLD3 / VST3. */
16287 constraint (inst.operands[1].immisalign,
16288 _("can't use alignment with this instruction"));
16289 break;
16290
16291 case 3: /* VLD4 / VST4. */
16292 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
16293 16, 64, 32, 64, 32, 128, -1);
16294 if (align_good == FAIL)
16295 return;
16296 if (do_align)
16297 {
16298 unsigned alignbits = 0;
16299 switch (et.size)
16300 {
16301 case 8: alignbits = 0x1; break;
16302 case 16: alignbits = 0x1; break;
16303 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
16304 default: ;
16305 }
16306 inst.instruction |= alignbits << 4;
16307 }
16308 break;
16309
16310 default: ;
16311 }
16312
16313 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
16314 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16315 inst.instruction |= 1 << (4 + logsize);
16316
16317 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
16318 inst.instruction |= logsize << 10;
16319 }
16320
16321 /* Encode single n-element structure to all lanes VLD<n> instructions. */
16322
16323 static void
16324 do_neon_ld_dup (void)
16325 {
16326 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
16327 int align_good, do_align = 0;
16328
16329 if (et.type == NT_invtype)
16330 return;
16331
16332 switch ((inst.instruction >> 8) & 3)
16333 {
16334 case 0: /* VLD1. */
16335 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
16336 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
16337 &do_align, 16, 16, 32, 32, -1);
16338 if (align_good == FAIL)
16339 return;
16340 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
16341 {
16342 case 1: break;
16343 case 2: inst.instruction |= 1 << 5; break;
16344 default: first_error (_("bad list length")); return;
16345 }
16346 inst.instruction |= neon_logbits (et.size) << 6;
16347 break;
16348
16349 case 1: /* VLD2. */
16350 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
16351 &do_align, 8, 16, 16, 32, 32, 64, -1);
16352 if (align_good == FAIL)
16353 return;
16354 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
16355 _("bad list length"));
16356 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16357 inst.instruction |= 1 << 5;
16358 inst.instruction |= neon_logbits (et.size) << 6;
16359 break;
16360
16361 case 2: /* VLD3. */
16362 constraint (inst.operands[1].immisalign,
16363 _("can't use alignment with this instruction"));
16364 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
16365 _("bad list length"));
16366 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16367 inst.instruction |= 1 << 5;
16368 inst.instruction |= neon_logbits (et.size) << 6;
16369 break;
16370
16371 case 3: /* VLD4. */
16372 {
16373 int align = inst.operands[1].imm >> 8;
16374 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
16375 16, 64, 32, 64, 32, 128, -1);
16376 if (align_good == FAIL)
16377 return;
16378 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
16379 _("bad list length"));
16380 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16381 inst.instruction |= 1 << 5;
16382 if (et.size == 32 && align == 128)
16383 inst.instruction |= 0x3 << 6;
16384 else
16385 inst.instruction |= neon_logbits (et.size) << 6;
16386 }
16387 break;
16388
16389 default: ;
16390 }
16391
16392 inst.instruction |= do_align << 4;
16393 }
16394
16395 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
16396 apart from bits [11:4]. */
16397
16398 static void
16399 do_neon_ldx_stx (void)
16400 {
16401 if (inst.operands[1].isreg)
16402 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
16403
16404 switch (NEON_LANE (inst.operands[0].imm))
16405 {
16406 case NEON_INTERLEAVE_LANES:
16407 NEON_ENCODE (INTERLV, inst);
16408 do_neon_ld_st_interleave ();
16409 break;
16410
16411 case NEON_ALL_LANES:
16412 NEON_ENCODE (DUP, inst);
16413 if (inst.instruction == N_INV)
16414 {
16415 first_error ("only loads support such operands");
16416 break;
16417 }
16418 do_neon_ld_dup ();
16419 break;
16420
16421 default:
16422 NEON_ENCODE (LANE, inst);
16423 do_neon_ld_st_lane ();
16424 }
16425
16426 /* L bit comes from bit mask. */
16427 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16428 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16429 inst.instruction |= inst.operands[1].reg << 16;
16430
16431 if (inst.operands[1].postind)
16432 {
16433 int postreg = inst.operands[1].imm & 0xf;
16434 constraint (!inst.operands[1].immisreg,
16435 _("post-index must be a register"));
16436 constraint (postreg == 0xd || postreg == 0xf,
16437 _("bad register for post-index"));
16438 inst.instruction |= postreg;
16439 }
16440 else
16441 {
16442 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16443 constraint (inst.reloc.exp.X_op != O_constant
16444 || inst.reloc.exp.X_add_number != 0,
16445 BAD_ADDR_MODE);
16446
16447 if (inst.operands[1].writeback)
16448 {
16449 inst.instruction |= 0xd;
16450 }
16451 else
16452 inst.instruction |= 0xf;
16453 }
16454
16455 if (thumb_mode)
16456 inst.instruction |= 0xf9000000;
16457 else
16458 inst.instruction |= 0xf4000000;
16459 }
16460
16461 /* FP v8. */
16462 static void
16463 do_vfp_nsyn_fpv8 (enum neon_shape rs)
16464 {
16465 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
16466 D register operands. */
16467 if (neon_shape_class[rs] == SC_DOUBLE)
16468 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16469 _(BAD_FPU));
16470
16471 NEON_ENCODE (FPV8, inst);
16472
16473 if (rs == NS_FFF)
16474 do_vfp_sp_dyadic ();
16475 else
16476 do_vfp_dp_rd_rn_rm ();
16477
16478 if (rs == NS_DDD)
16479 inst.instruction |= 0x100;
16480
16481 inst.instruction |= 0xf0000000;
16482 }
16483
16484 static void
16485 do_vsel (void)
16486 {
16487 set_it_insn_type (OUTSIDE_IT_INSN);
16488
16489 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
16490 first_error (_("invalid instruction shape"));
16491 }
16492
16493 static void
16494 do_vmaxnm (void)
16495 {
16496 set_it_insn_type (OUTSIDE_IT_INSN);
16497
16498 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
16499 return;
16500
16501 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
16502 return;
16503
16504 neon_dyadic_misc (NT_untyped, N_F32, 0);
16505 }
16506
16507 static void
16508 do_vrint_1 (enum neon_cvt_mode mode)
16509 {
16510 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_QQ, NS_NULL);
16511 struct neon_type_el et;
16512
16513 if (rs == NS_NULL)
16514 return;
16515
16516 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
16517 D register operands. */
16518 if (neon_shape_class[rs] == SC_DOUBLE)
16519 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16520 _(BAD_FPU));
16521
16522 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
16523 if (et.type != NT_invtype)
16524 {
16525 /* VFP encodings. */
16526 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
16527 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
16528 set_it_insn_type (OUTSIDE_IT_INSN);
16529
16530 NEON_ENCODE (FPV8, inst);
16531 if (rs == NS_FF)
16532 do_vfp_sp_monadic ();
16533 else
16534 do_vfp_dp_rd_rm ();
16535
16536 switch (mode)
16537 {
16538 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
16539 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
16540 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
16541 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
16542 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
16543 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
16544 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
16545 default: abort ();
16546 }
16547
16548 inst.instruction |= (rs == NS_DD) << 8;
16549 do_vfp_cond_or_thumb ();
16550 }
16551 else
16552 {
16553 /* Neon encodings (or something broken...). */
16554 inst.error = NULL;
16555 et = neon_check_type (2, rs, N_EQK, N_F32 | N_KEY);
16556
16557 if (et.type == NT_invtype)
16558 return;
16559
16560 set_it_insn_type (OUTSIDE_IT_INSN);
16561 NEON_ENCODE (FLOAT, inst);
16562
16563 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
16564 return;
16565
16566 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16567 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16568 inst.instruction |= LOW4 (inst.operands[1].reg);
16569 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16570 inst.instruction |= neon_quad (rs) << 6;
16571 switch (mode)
16572 {
16573 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
16574 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
16575 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
16576 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
16577 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
16578 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
16579 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
16580 default: abort ();
16581 }
16582
16583 if (thumb_mode)
16584 inst.instruction |= 0xfc000000;
16585 else
16586 inst.instruction |= 0xf0000000;
16587 }
16588 }
16589
16590 static void
16591 do_vrintx (void)
16592 {
16593 do_vrint_1 (neon_cvt_mode_x);
16594 }
16595
16596 static void
16597 do_vrintz (void)
16598 {
16599 do_vrint_1 (neon_cvt_mode_z);
16600 }
16601
16602 static void
16603 do_vrintr (void)
16604 {
16605 do_vrint_1 (neon_cvt_mode_r);
16606 }
16607
16608 static void
16609 do_vrinta (void)
16610 {
16611 do_vrint_1 (neon_cvt_mode_a);
16612 }
16613
16614 static void
16615 do_vrintn (void)
16616 {
16617 do_vrint_1 (neon_cvt_mode_n);
16618 }
16619
16620 static void
16621 do_vrintp (void)
16622 {
16623 do_vrint_1 (neon_cvt_mode_p);
16624 }
16625
16626 static void
16627 do_vrintm (void)
16628 {
16629 do_vrint_1 (neon_cvt_mode_m);
16630 }
16631
16632 /* Crypto v1 instructions. */
16633 static void
16634 do_crypto_2op_1 (unsigned elttype, int op)
16635 {
16636 set_it_insn_type (OUTSIDE_IT_INSN);
16637
16638 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
16639 == NT_invtype)
16640 return;
16641
16642 inst.error = NULL;
16643
16644 NEON_ENCODE (INTEGER, inst);
16645 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16646 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16647 inst.instruction |= LOW4 (inst.operands[1].reg);
16648 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16649 if (op != -1)
16650 inst.instruction |= op << 6;
16651
16652 if (thumb_mode)
16653 inst.instruction |= 0xfc000000;
16654 else
16655 inst.instruction |= 0xf0000000;
16656 }
16657
16658 static void
16659 do_crypto_3op_1 (int u, int op)
16660 {
16661 set_it_insn_type (OUTSIDE_IT_INSN);
16662
16663 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
16664 N_32 | N_UNT | N_KEY).type == NT_invtype)
16665 return;
16666
16667 inst.error = NULL;
16668
16669 NEON_ENCODE (INTEGER, inst);
16670 neon_three_same (1, u, 8 << op);
16671 }
16672
16673 static void
16674 do_aese (void)
16675 {
16676 do_crypto_2op_1 (N_8, 0);
16677 }
16678
16679 static void
16680 do_aesd (void)
16681 {
16682 do_crypto_2op_1 (N_8, 1);
16683 }
16684
16685 static void
16686 do_aesmc (void)
16687 {
16688 do_crypto_2op_1 (N_8, 2);
16689 }
16690
16691 static void
16692 do_aesimc (void)
16693 {
16694 do_crypto_2op_1 (N_8, 3);
16695 }
16696
16697 static void
16698 do_sha1c (void)
16699 {
16700 do_crypto_3op_1 (0, 0);
16701 }
16702
16703 static void
16704 do_sha1p (void)
16705 {
16706 do_crypto_3op_1 (0, 1);
16707 }
16708
16709 static void
16710 do_sha1m (void)
16711 {
16712 do_crypto_3op_1 (0, 2);
16713 }
16714
16715 static void
16716 do_sha1su0 (void)
16717 {
16718 do_crypto_3op_1 (0, 3);
16719 }
16720
16721 static void
16722 do_sha256h (void)
16723 {
16724 do_crypto_3op_1 (1, 0);
16725 }
16726
16727 static void
16728 do_sha256h2 (void)
16729 {
16730 do_crypto_3op_1 (1, 1);
16731 }
16732
16733 static void
16734 do_sha256su1 (void)
16735 {
16736 do_crypto_3op_1 (1, 2);
16737 }
16738
16739 static void
16740 do_sha1h (void)
16741 {
16742 do_crypto_2op_1 (N_32, -1);
16743 }
16744
16745 static void
16746 do_sha1su1 (void)
16747 {
16748 do_crypto_2op_1 (N_32, 0);
16749 }
16750
16751 static void
16752 do_sha256su0 (void)
16753 {
16754 do_crypto_2op_1 (N_32, 1);
16755 }
16756
16757 static void
16758 do_crc32_1 (unsigned int poly, unsigned int sz)
16759 {
16760 unsigned int Rd = inst.operands[0].reg;
16761 unsigned int Rn = inst.operands[1].reg;
16762 unsigned int Rm = inst.operands[2].reg;
16763
16764 set_it_insn_type (OUTSIDE_IT_INSN);
16765 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
16766 inst.instruction |= LOW4 (Rn) << 16;
16767 inst.instruction |= LOW4 (Rm);
16768 inst.instruction |= sz << (thumb_mode ? 4 : 21);
16769 inst.instruction |= poly << (thumb_mode ? 20 : 9);
16770
16771 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
16772 as_warn (UNPRED_REG ("r15"));
16773 if (thumb_mode && (Rd == REG_SP || Rn == REG_SP || Rm == REG_SP))
16774 as_warn (UNPRED_REG ("r13"));
16775 }
16776
16777 static void
16778 do_crc32b (void)
16779 {
16780 do_crc32_1 (0, 0);
16781 }
16782
16783 static void
16784 do_crc32h (void)
16785 {
16786 do_crc32_1 (0, 1);
16787 }
16788
16789 static void
16790 do_crc32w (void)
16791 {
16792 do_crc32_1 (0, 2);
16793 }
16794
16795 static void
16796 do_crc32cb (void)
16797 {
16798 do_crc32_1 (1, 0);
16799 }
16800
16801 static void
16802 do_crc32ch (void)
16803 {
16804 do_crc32_1 (1, 1);
16805 }
16806
16807 static void
16808 do_crc32cw (void)
16809 {
16810 do_crc32_1 (1, 2);
16811 }
16812
16813 \f
16814 /* Overall per-instruction processing. */
16815
16816 /* We need to be able to fix up arbitrary expressions in some statements.
16817 This is so that we can handle symbols that are an arbitrary distance from
16818 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
16819 which returns part of an address in a form which will be valid for
16820 a data instruction. We do this by pushing the expression into a symbol
16821 in the expr_section, and creating a fix for that. */
16822
16823 static void
16824 fix_new_arm (fragS * frag,
16825 int where,
16826 short int size,
16827 expressionS * exp,
16828 int pc_rel,
16829 int reloc)
16830 {
16831 fixS * new_fix;
16832
16833 switch (exp->X_op)
16834 {
16835 case O_constant:
16836 if (pc_rel)
16837 {
16838 /* Create an absolute valued symbol, so we have something to
16839 refer to in the object file. Unfortunately for us, gas's
16840 generic expression parsing will already have folded out
16841 any use of .set foo/.type foo %function that may have
16842 been used to set type information of the target location,
16843 that's being specified symbolically. We have to presume
16844 the user knows what they are doing. */
16845 char name[16 + 8];
16846 symbolS *symbol;
16847
16848 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
16849
16850 symbol = symbol_find_or_make (name);
16851 S_SET_SEGMENT (symbol, absolute_section);
16852 symbol_set_frag (symbol, &zero_address_frag);
16853 S_SET_VALUE (symbol, exp->X_add_number);
16854 exp->X_op = O_symbol;
16855 exp->X_add_symbol = symbol;
16856 exp->X_add_number = 0;
16857 }
16858 /* FALLTHROUGH */
16859 case O_symbol:
16860 case O_add:
16861 case O_subtract:
16862 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
16863 (enum bfd_reloc_code_real) reloc);
16864 break;
16865
16866 default:
16867 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
16868 pc_rel, (enum bfd_reloc_code_real) reloc);
16869 break;
16870 }
16871
16872 /* Mark whether the fix is to a THUMB instruction, or an ARM
16873 instruction. */
16874 new_fix->tc_fix_data = thumb_mode;
16875 }
16876
16877 /* Create a frg for an instruction requiring relaxation. */
16878 static void
16879 output_relax_insn (void)
16880 {
16881 char * to;
16882 symbolS *sym;
16883 int offset;
16884
16885 /* The size of the instruction is unknown, so tie the debug info to the
16886 start of the instruction. */
16887 dwarf2_emit_insn (0);
16888
16889 switch (inst.reloc.exp.X_op)
16890 {
16891 case O_symbol:
16892 sym = inst.reloc.exp.X_add_symbol;
16893 offset = inst.reloc.exp.X_add_number;
16894 break;
16895 case O_constant:
16896 sym = NULL;
16897 offset = inst.reloc.exp.X_add_number;
16898 break;
16899 default:
16900 sym = make_expr_symbol (&inst.reloc.exp);
16901 offset = 0;
16902 break;
16903 }
16904 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
16905 inst.relax, sym, offset, NULL/*offset, opcode*/);
16906 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
16907 }
16908
16909 /* Write a 32-bit thumb instruction to buf. */
16910 static void
16911 put_thumb32_insn (char * buf, unsigned long insn)
16912 {
16913 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
16914 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
16915 }
16916
16917 static void
16918 output_inst (const char * str)
16919 {
16920 char * to = NULL;
16921
16922 if (inst.error)
16923 {
16924 as_bad ("%s -- `%s'", inst.error, str);
16925 return;
16926 }
16927 if (inst.relax)
16928 {
16929 output_relax_insn ();
16930 return;
16931 }
16932 if (inst.size == 0)
16933 return;
16934
16935 to = frag_more (inst.size);
16936 /* PR 9814: Record the thumb mode into the current frag so that we know
16937 what type of NOP padding to use, if necessary. We override any previous
16938 setting so that if the mode has changed then the NOPS that we use will
16939 match the encoding of the last instruction in the frag. */
16940 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
16941
16942 if (thumb_mode && (inst.size > THUMB_SIZE))
16943 {
16944 gas_assert (inst.size == (2 * THUMB_SIZE));
16945 put_thumb32_insn (to, inst.instruction);
16946 }
16947 else if (inst.size > INSN_SIZE)
16948 {
16949 gas_assert (inst.size == (2 * INSN_SIZE));
16950 md_number_to_chars (to, inst.instruction, INSN_SIZE);
16951 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
16952 }
16953 else
16954 md_number_to_chars (to, inst.instruction, inst.size);
16955
16956 if (inst.reloc.type != BFD_RELOC_UNUSED)
16957 fix_new_arm (frag_now, to - frag_now->fr_literal,
16958 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
16959 inst.reloc.type);
16960
16961 dwarf2_emit_insn (inst.size);
16962 }
16963
16964 static char *
16965 output_it_inst (int cond, int mask, char * to)
16966 {
16967 unsigned long instruction = 0xbf00;
16968
16969 mask &= 0xf;
16970 instruction |= mask;
16971 instruction |= cond << 4;
16972
16973 if (to == NULL)
16974 {
16975 to = frag_more (2);
16976 #ifdef OBJ_ELF
16977 dwarf2_emit_insn (2);
16978 #endif
16979 }
16980
16981 md_number_to_chars (to, instruction, 2);
16982
16983 return to;
16984 }
16985
16986 /* Tag values used in struct asm_opcode's tag field. */
16987 enum opcode_tag
16988 {
16989 OT_unconditional, /* Instruction cannot be conditionalized.
16990 The ARM condition field is still 0xE. */
16991 OT_unconditionalF, /* Instruction cannot be conditionalized
16992 and carries 0xF in its ARM condition field. */
16993 OT_csuffix, /* Instruction takes a conditional suffix. */
16994 OT_csuffixF, /* Some forms of the instruction take a conditional
16995 suffix, others place 0xF where the condition field
16996 would be. */
16997 OT_cinfix3, /* Instruction takes a conditional infix,
16998 beginning at character index 3. (In
16999 unified mode, it becomes a suffix.) */
17000 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
17001 tsts, cmps, cmns, and teqs. */
17002 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
17003 character index 3, even in unified mode. Used for
17004 legacy instructions where suffix and infix forms
17005 may be ambiguous. */
17006 OT_csuf_or_in3, /* Instruction takes either a conditional
17007 suffix or an infix at character index 3. */
17008 OT_odd_infix_unc, /* This is the unconditional variant of an
17009 instruction that takes a conditional infix
17010 at an unusual position. In unified mode,
17011 this variant will accept a suffix. */
17012 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
17013 are the conditional variants of instructions that
17014 take conditional infixes in unusual positions.
17015 The infix appears at character index
17016 (tag - OT_odd_infix_0). These are not accepted
17017 in unified mode. */
17018 };
17019
17020 /* Subroutine of md_assemble, responsible for looking up the primary
17021 opcode from the mnemonic the user wrote. STR points to the
17022 beginning of the mnemonic.
17023
17024 This is not simply a hash table lookup, because of conditional
17025 variants. Most instructions have conditional variants, which are
17026 expressed with a _conditional affix_ to the mnemonic. If we were
17027 to encode each conditional variant as a literal string in the opcode
17028 table, it would have approximately 20,000 entries.
17029
17030 Most mnemonics take this affix as a suffix, and in unified syntax,
17031 'most' is upgraded to 'all'. However, in the divided syntax, some
17032 instructions take the affix as an infix, notably the s-variants of
17033 the arithmetic instructions. Of those instructions, all but six
17034 have the infix appear after the third character of the mnemonic.
17035
17036 Accordingly, the algorithm for looking up primary opcodes given
17037 an identifier is:
17038
17039 1. Look up the identifier in the opcode table.
17040 If we find a match, go to step U.
17041
17042 2. Look up the last two characters of the identifier in the
17043 conditions table. If we find a match, look up the first N-2
17044 characters of the identifier in the opcode table. If we
17045 find a match, go to step CE.
17046
17047 3. Look up the fourth and fifth characters of the identifier in
17048 the conditions table. If we find a match, extract those
17049 characters from the identifier, and look up the remaining
17050 characters in the opcode table. If we find a match, go
17051 to step CM.
17052
17053 4. Fail.
17054
17055 U. Examine the tag field of the opcode structure, in case this is
17056 one of the six instructions with its conditional infix in an
17057 unusual place. If it is, the tag tells us where to find the
17058 infix; look it up in the conditions table and set inst.cond
17059 accordingly. Otherwise, this is an unconditional instruction.
17060 Again set inst.cond accordingly. Return the opcode structure.
17061
17062 CE. Examine the tag field to make sure this is an instruction that
17063 should receive a conditional suffix. If it is not, fail.
17064 Otherwise, set inst.cond from the suffix we already looked up,
17065 and return the opcode structure.
17066
17067 CM. Examine the tag field to make sure this is an instruction that
17068 should receive a conditional infix after the third character.
17069 If it is not, fail. Otherwise, undo the edits to the current
17070 line of input and proceed as for case CE. */
17071
17072 static const struct asm_opcode *
17073 opcode_lookup (char **str)
17074 {
17075 char *end, *base;
17076 char *affix;
17077 const struct asm_opcode *opcode;
17078 const struct asm_cond *cond;
17079 char save[2];
17080
17081 /* Scan up to the end of the mnemonic, which must end in white space,
17082 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
17083 for (base = end = *str; *end != '\0'; end++)
17084 if (*end == ' ' || *end == '.')
17085 break;
17086
17087 if (end == base)
17088 return NULL;
17089
17090 /* Handle a possible width suffix and/or Neon type suffix. */
17091 if (end[0] == '.')
17092 {
17093 int offset = 2;
17094
17095 /* The .w and .n suffixes are only valid if the unified syntax is in
17096 use. */
17097 if (unified_syntax && end[1] == 'w')
17098 inst.size_req = 4;
17099 else if (unified_syntax && end[1] == 'n')
17100 inst.size_req = 2;
17101 else
17102 offset = 0;
17103
17104 inst.vectype.elems = 0;
17105
17106 *str = end + offset;
17107
17108 if (end[offset] == '.')
17109 {
17110 /* See if we have a Neon type suffix (possible in either unified or
17111 non-unified ARM syntax mode). */
17112 if (parse_neon_type (&inst.vectype, str) == FAIL)
17113 return NULL;
17114 }
17115 else if (end[offset] != '\0' && end[offset] != ' ')
17116 return NULL;
17117 }
17118 else
17119 *str = end;
17120
17121 /* Look for unaffixed or special-case affixed mnemonic. */
17122 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
17123 end - base);
17124 if (opcode)
17125 {
17126 /* step U */
17127 if (opcode->tag < OT_odd_infix_0)
17128 {
17129 inst.cond = COND_ALWAYS;
17130 return opcode;
17131 }
17132
17133 if (warn_on_deprecated && unified_syntax)
17134 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
17135 affix = base + (opcode->tag - OT_odd_infix_0);
17136 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
17137 gas_assert (cond);
17138
17139 inst.cond = cond->value;
17140 return opcode;
17141 }
17142
17143 /* Cannot have a conditional suffix on a mnemonic of less than two
17144 characters. */
17145 if (end - base < 3)
17146 return NULL;
17147
17148 /* Look for suffixed mnemonic. */
17149 affix = end - 2;
17150 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
17151 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
17152 affix - base);
17153 if (opcode && cond)
17154 {
17155 /* step CE */
17156 switch (opcode->tag)
17157 {
17158 case OT_cinfix3_legacy:
17159 /* Ignore conditional suffixes matched on infix only mnemonics. */
17160 break;
17161
17162 case OT_cinfix3:
17163 case OT_cinfix3_deprecated:
17164 case OT_odd_infix_unc:
17165 if (!unified_syntax)
17166 return 0;
17167 /* else fall through */
17168
17169 case OT_csuffix:
17170 case OT_csuffixF:
17171 case OT_csuf_or_in3:
17172 inst.cond = cond->value;
17173 return opcode;
17174
17175 case OT_unconditional:
17176 case OT_unconditionalF:
17177 if (thumb_mode)
17178 inst.cond = cond->value;
17179 else
17180 {
17181 /* Delayed diagnostic. */
17182 inst.error = BAD_COND;
17183 inst.cond = COND_ALWAYS;
17184 }
17185 return opcode;
17186
17187 default:
17188 return NULL;
17189 }
17190 }
17191
17192 /* Cannot have a usual-position infix on a mnemonic of less than
17193 six characters (five would be a suffix). */
17194 if (end - base < 6)
17195 return NULL;
17196
17197 /* Look for infixed mnemonic in the usual position. */
17198 affix = base + 3;
17199 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
17200 if (!cond)
17201 return NULL;
17202
17203 memcpy (save, affix, 2);
17204 memmove (affix, affix + 2, (end - affix) - 2);
17205 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
17206 (end - base) - 2);
17207 memmove (affix + 2, affix, (end - affix) - 2);
17208 memcpy (affix, save, 2);
17209
17210 if (opcode
17211 && (opcode->tag == OT_cinfix3
17212 || opcode->tag == OT_cinfix3_deprecated
17213 || opcode->tag == OT_csuf_or_in3
17214 || opcode->tag == OT_cinfix3_legacy))
17215 {
17216 /* Step CM. */
17217 if (warn_on_deprecated && unified_syntax
17218 && (opcode->tag == OT_cinfix3
17219 || opcode->tag == OT_cinfix3_deprecated))
17220 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
17221
17222 inst.cond = cond->value;
17223 return opcode;
17224 }
17225
17226 return NULL;
17227 }
17228
17229 /* This function generates an initial IT instruction, leaving its block
17230 virtually open for the new instructions. Eventually,
17231 the mask will be updated by now_it_add_mask () each time
17232 a new instruction needs to be included in the IT block.
17233 Finally, the block is closed with close_automatic_it_block ().
17234 The block closure can be requested either from md_assemble (),
17235 a tencode (), or due to a label hook. */
17236
17237 static void
17238 new_automatic_it_block (int cond)
17239 {
17240 now_it.state = AUTOMATIC_IT_BLOCK;
17241 now_it.mask = 0x18;
17242 now_it.cc = cond;
17243 now_it.block_length = 1;
17244 mapping_state (MAP_THUMB);
17245 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
17246 now_it.warn_deprecated = FALSE;
17247 now_it.insn_cond = TRUE;
17248 }
17249
17250 /* Close an automatic IT block.
17251 See comments in new_automatic_it_block (). */
17252
17253 static void
17254 close_automatic_it_block (void)
17255 {
17256 now_it.mask = 0x10;
17257 now_it.block_length = 0;
17258 }
17259
17260 /* Update the mask of the current automatically-generated IT
17261 instruction. See comments in new_automatic_it_block (). */
17262
17263 static void
17264 now_it_add_mask (int cond)
17265 {
17266 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
17267 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
17268 | ((bitvalue) << (nbit)))
17269 const int resulting_bit = (cond & 1);
17270
17271 now_it.mask &= 0xf;
17272 now_it.mask = SET_BIT_VALUE (now_it.mask,
17273 resulting_bit,
17274 (5 - now_it.block_length));
17275 now_it.mask = SET_BIT_VALUE (now_it.mask,
17276 1,
17277 ((5 - now_it.block_length) - 1) );
17278 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
17279
17280 #undef CLEAR_BIT
17281 #undef SET_BIT_VALUE
17282 }
17283
17284 /* The IT blocks handling machinery is accessed through the these functions:
17285 it_fsm_pre_encode () from md_assemble ()
17286 set_it_insn_type () optional, from the tencode functions
17287 set_it_insn_type_last () ditto
17288 in_it_block () ditto
17289 it_fsm_post_encode () from md_assemble ()
17290 force_automatic_it_block_close () from label habdling functions
17291
17292 Rationale:
17293 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
17294 initializing the IT insn type with a generic initial value depending
17295 on the inst.condition.
17296 2) During the tencode function, two things may happen:
17297 a) The tencode function overrides the IT insn type by
17298 calling either set_it_insn_type (type) or set_it_insn_type_last ().
17299 b) The tencode function queries the IT block state by
17300 calling in_it_block () (i.e. to determine narrow/not narrow mode).
17301
17302 Both set_it_insn_type and in_it_block run the internal FSM state
17303 handling function (handle_it_state), because: a) setting the IT insn
17304 type may incur in an invalid state (exiting the function),
17305 and b) querying the state requires the FSM to be updated.
17306 Specifically we want to avoid creating an IT block for conditional
17307 branches, so it_fsm_pre_encode is actually a guess and we can't
17308 determine whether an IT block is required until the tencode () routine
17309 has decided what type of instruction this actually it.
17310 Because of this, if set_it_insn_type and in_it_block have to be used,
17311 set_it_insn_type has to be called first.
17312
17313 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
17314 determines the insn IT type depending on the inst.cond code.
17315 When a tencode () routine encodes an instruction that can be
17316 either outside an IT block, or, in the case of being inside, has to be
17317 the last one, set_it_insn_type_last () will determine the proper
17318 IT instruction type based on the inst.cond code. Otherwise,
17319 set_it_insn_type can be called for overriding that logic or
17320 for covering other cases.
17321
17322 Calling handle_it_state () may not transition the IT block state to
17323 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
17324 still queried. Instead, if the FSM determines that the state should
17325 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
17326 after the tencode () function: that's what it_fsm_post_encode () does.
17327
17328 Since in_it_block () calls the state handling function to get an
17329 updated state, an error may occur (due to invalid insns combination).
17330 In that case, inst.error is set.
17331 Therefore, inst.error has to be checked after the execution of
17332 the tencode () routine.
17333
17334 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
17335 any pending state change (if any) that didn't take place in
17336 handle_it_state () as explained above. */
17337
17338 static void
17339 it_fsm_pre_encode (void)
17340 {
17341 if (inst.cond != COND_ALWAYS)
17342 inst.it_insn_type = INSIDE_IT_INSN;
17343 else
17344 inst.it_insn_type = OUTSIDE_IT_INSN;
17345
17346 now_it.state_handled = 0;
17347 }
17348
17349 /* IT state FSM handling function. */
17350
17351 static int
17352 handle_it_state (void)
17353 {
17354 now_it.state_handled = 1;
17355 now_it.insn_cond = FALSE;
17356
17357 switch (now_it.state)
17358 {
17359 case OUTSIDE_IT_BLOCK:
17360 switch (inst.it_insn_type)
17361 {
17362 case OUTSIDE_IT_INSN:
17363 break;
17364
17365 case INSIDE_IT_INSN:
17366 case INSIDE_IT_LAST_INSN:
17367 if (thumb_mode == 0)
17368 {
17369 if (unified_syntax
17370 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
17371 as_tsktsk (_("Warning: conditional outside an IT block"\
17372 " for Thumb."));
17373 }
17374 else
17375 {
17376 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
17377 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
17378 {
17379 /* Automatically generate the IT instruction. */
17380 new_automatic_it_block (inst.cond);
17381 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
17382 close_automatic_it_block ();
17383 }
17384 else
17385 {
17386 inst.error = BAD_OUT_IT;
17387 return FAIL;
17388 }
17389 }
17390 break;
17391
17392 case IF_INSIDE_IT_LAST_INSN:
17393 case NEUTRAL_IT_INSN:
17394 break;
17395
17396 case IT_INSN:
17397 now_it.state = MANUAL_IT_BLOCK;
17398 now_it.block_length = 0;
17399 break;
17400 }
17401 break;
17402
17403 case AUTOMATIC_IT_BLOCK:
17404 /* Three things may happen now:
17405 a) We should increment current it block size;
17406 b) We should close current it block (closing insn or 4 insns);
17407 c) We should close current it block and start a new one (due
17408 to incompatible conditions or
17409 4 insns-length block reached). */
17410
17411 switch (inst.it_insn_type)
17412 {
17413 case OUTSIDE_IT_INSN:
17414 /* The closure of the block shall happen immediatelly,
17415 so any in_it_block () call reports the block as closed. */
17416 force_automatic_it_block_close ();
17417 break;
17418
17419 case INSIDE_IT_INSN:
17420 case INSIDE_IT_LAST_INSN:
17421 case IF_INSIDE_IT_LAST_INSN:
17422 now_it.block_length++;
17423
17424 if (now_it.block_length > 4
17425 || !now_it_compatible (inst.cond))
17426 {
17427 force_automatic_it_block_close ();
17428 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
17429 new_automatic_it_block (inst.cond);
17430 }
17431 else
17432 {
17433 now_it.insn_cond = TRUE;
17434 now_it_add_mask (inst.cond);
17435 }
17436
17437 if (now_it.state == AUTOMATIC_IT_BLOCK
17438 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
17439 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
17440 close_automatic_it_block ();
17441 break;
17442
17443 case NEUTRAL_IT_INSN:
17444 now_it.block_length++;
17445 now_it.insn_cond = TRUE;
17446
17447 if (now_it.block_length > 4)
17448 force_automatic_it_block_close ();
17449 else
17450 now_it_add_mask (now_it.cc & 1);
17451 break;
17452
17453 case IT_INSN:
17454 close_automatic_it_block ();
17455 now_it.state = MANUAL_IT_BLOCK;
17456 break;
17457 }
17458 break;
17459
17460 case MANUAL_IT_BLOCK:
17461 {
17462 /* Check conditional suffixes. */
17463 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
17464 int is_last;
17465 now_it.mask <<= 1;
17466 now_it.mask &= 0x1f;
17467 is_last = (now_it.mask == 0x10);
17468 now_it.insn_cond = TRUE;
17469
17470 switch (inst.it_insn_type)
17471 {
17472 case OUTSIDE_IT_INSN:
17473 inst.error = BAD_NOT_IT;
17474 return FAIL;
17475
17476 case INSIDE_IT_INSN:
17477 if (cond != inst.cond)
17478 {
17479 inst.error = BAD_IT_COND;
17480 return FAIL;
17481 }
17482 break;
17483
17484 case INSIDE_IT_LAST_INSN:
17485 case IF_INSIDE_IT_LAST_INSN:
17486 if (cond != inst.cond)
17487 {
17488 inst.error = BAD_IT_COND;
17489 return FAIL;
17490 }
17491 if (!is_last)
17492 {
17493 inst.error = BAD_BRANCH;
17494 return FAIL;
17495 }
17496 break;
17497
17498 case NEUTRAL_IT_INSN:
17499 /* The BKPT instruction is unconditional even in an IT block. */
17500 break;
17501
17502 case IT_INSN:
17503 inst.error = BAD_IT_IT;
17504 return FAIL;
17505 }
17506 }
17507 break;
17508 }
17509
17510 return SUCCESS;
17511 }
17512
17513 struct depr_insn_mask
17514 {
17515 unsigned long pattern;
17516 unsigned long mask;
17517 const char* description;
17518 };
17519
17520 /* List of 16-bit instruction patterns deprecated in an IT block in
17521 ARMv8. */
17522 static const struct depr_insn_mask depr_it_insns[] = {
17523 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
17524 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
17525 { 0xa000, 0xb800, N_("ADR") },
17526 { 0x4800, 0xf800, N_("Literal loads") },
17527 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
17528 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
17529 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
17530 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
17531 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
17532 { 0, 0, NULL }
17533 };
17534
17535 static void
17536 it_fsm_post_encode (void)
17537 {
17538 int is_last;
17539
17540 if (!now_it.state_handled)
17541 handle_it_state ();
17542
17543 if (now_it.insn_cond
17544 && !now_it.warn_deprecated
17545 && warn_on_deprecated
17546 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
17547 {
17548 if (inst.instruction >= 0x10000)
17549 {
17550 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
17551 "deprecated in ARMv8"));
17552 now_it.warn_deprecated = TRUE;
17553 }
17554 else
17555 {
17556 const struct depr_insn_mask *p = depr_it_insns;
17557
17558 while (p->mask != 0)
17559 {
17560 if ((inst.instruction & p->mask) == p->pattern)
17561 {
17562 as_tsktsk (_("IT blocks containing 16-bit Thumb instructions "
17563 "of the following class are deprecated in ARMv8: "
17564 "%s"), p->description);
17565 now_it.warn_deprecated = TRUE;
17566 break;
17567 }
17568
17569 ++p;
17570 }
17571 }
17572
17573 if (now_it.block_length > 1)
17574 {
17575 as_tsktsk (_("IT blocks containing more than one conditional "
17576 "instruction are deprecated in ARMv8"));
17577 now_it.warn_deprecated = TRUE;
17578 }
17579 }
17580
17581 is_last = (now_it.mask == 0x10);
17582 if (is_last)
17583 {
17584 now_it.state = OUTSIDE_IT_BLOCK;
17585 now_it.mask = 0;
17586 }
17587 }
17588
17589 static void
17590 force_automatic_it_block_close (void)
17591 {
17592 if (now_it.state == AUTOMATIC_IT_BLOCK)
17593 {
17594 close_automatic_it_block ();
17595 now_it.state = OUTSIDE_IT_BLOCK;
17596 now_it.mask = 0;
17597 }
17598 }
17599
17600 static int
17601 in_it_block (void)
17602 {
17603 if (!now_it.state_handled)
17604 handle_it_state ();
17605
17606 return now_it.state != OUTSIDE_IT_BLOCK;
17607 }
17608
17609 void
17610 md_assemble (char *str)
17611 {
17612 char *p = str;
17613 const struct asm_opcode * opcode;
17614
17615 /* Align the previous label if needed. */
17616 if (last_label_seen != NULL)
17617 {
17618 symbol_set_frag (last_label_seen, frag_now);
17619 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
17620 S_SET_SEGMENT (last_label_seen, now_seg);
17621 }
17622
17623 memset (&inst, '\0', sizeof (inst));
17624 inst.reloc.type = BFD_RELOC_UNUSED;
17625
17626 opcode = opcode_lookup (&p);
17627 if (!opcode)
17628 {
17629 /* It wasn't an instruction, but it might be a register alias of
17630 the form alias .req reg, or a Neon .dn/.qn directive. */
17631 if (! create_register_alias (str, p)
17632 && ! create_neon_reg_alias (str, p))
17633 as_bad (_("bad instruction `%s'"), str);
17634
17635 return;
17636 }
17637
17638 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
17639 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
17640
17641 /* The value which unconditional instructions should have in place of the
17642 condition field. */
17643 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
17644
17645 if (thumb_mode)
17646 {
17647 arm_feature_set variant;
17648
17649 variant = cpu_variant;
17650 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
17651 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
17652 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
17653 /* Check that this instruction is supported for this CPU. */
17654 if (!opcode->tvariant
17655 || (thumb_mode == 1
17656 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
17657 {
17658 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
17659 return;
17660 }
17661 if (inst.cond != COND_ALWAYS && !unified_syntax
17662 && opcode->tencode != do_t_branch)
17663 {
17664 as_bad (_("Thumb does not support conditional execution"));
17665 return;
17666 }
17667
17668 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
17669 {
17670 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
17671 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
17672 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
17673 {
17674 /* Two things are addressed here.
17675 1) Implicit require narrow instructions on Thumb-1.
17676 This avoids relaxation accidentally introducing Thumb-2
17677 instructions.
17678 2) Reject wide instructions in non Thumb-2 cores. */
17679 if (inst.size_req == 0)
17680 inst.size_req = 2;
17681 else if (inst.size_req == 4)
17682 {
17683 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
17684 return;
17685 }
17686 }
17687 }
17688
17689 inst.instruction = opcode->tvalue;
17690
17691 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
17692 {
17693 /* Prepare the it_insn_type for those encodings that don't set
17694 it. */
17695 it_fsm_pre_encode ();
17696
17697 opcode->tencode ();
17698
17699 it_fsm_post_encode ();
17700 }
17701
17702 if (!(inst.error || inst.relax))
17703 {
17704 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
17705 inst.size = (inst.instruction > 0xffff ? 4 : 2);
17706 if (inst.size_req && inst.size_req != inst.size)
17707 {
17708 as_bad (_("cannot honor width suffix -- `%s'"), str);
17709 return;
17710 }
17711 }
17712
17713 /* Something has gone badly wrong if we try to relax a fixed size
17714 instruction. */
17715 gas_assert (inst.size_req == 0 || !inst.relax);
17716
17717 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
17718 *opcode->tvariant);
17719 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
17720 set those bits when Thumb-2 32-bit instructions are seen. ie.
17721 anything other than bl/blx and v6-M instructions.
17722 The impact of relaxable instructions will be considered later after we
17723 finish all relaxation. */
17724 if ((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
17725 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
17726 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
17727 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
17728 arm_ext_v6t2);
17729
17730 check_neon_suffixes;
17731
17732 if (!inst.error)
17733 {
17734 mapping_state (MAP_THUMB);
17735 }
17736 }
17737 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
17738 {
17739 bfd_boolean is_bx;
17740
17741 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
17742 is_bx = (opcode->aencode == do_bx);
17743
17744 /* Check that this instruction is supported for this CPU. */
17745 if (!(is_bx && fix_v4bx)
17746 && !(opcode->avariant &&
17747 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
17748 {
17749 as_bad (_("selected processor does not support ARM mode `%s'"), str);
17750 return;
17751 }
17752 if (inst.size_req)
17753 {
17754 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
17755 return;
17756 }
17757
17758 inst.instruction = opcode->avalue;
17759 if (opcode->tag == OT_unconditionalF)
17760 inst.instruction |= 0xF << 28;
17761 else
17762 inst.instruction |= inst.cond << 28;
17763 inst.size = INSN_SIZE;
17764 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
17765 {
17766 it_fsm_pre_encode ();
17767 opcode->aencode ();
17768 it_fsm_post_encode ();
17769 }
17770 /* Arm mode bx is marked as both v4T and v5 because it's still required
17771 on a hypothetical non-thumb v5 core. */
17772 if (is_bx)
17773 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
17774 else
17775 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
17776 *opcode->avariant);
17777
17778 check_neon_suffixes;
17779
17780 if (!inst.error)
17781 {
17782 mapping_state (MAP_ARM);
17783 }
17784 }
17785 else
17786 {
17787 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
17788 "-- `%s'"), str);
17789 return;
17790 }
17791 output_inst (str);
17792 }
17793
17794 static void
17795 check_it_blocks_finished (void)
17796 {
17797 #ifdef OBJ_ELF
17798 asection *sect;
17799
17800 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
17801 if (seg_info (sect)->tc_segment_info_data.current_it.state
17802 == MANUAL_IT_BLOCK)
17803 {
17804 as_warn (_("section '%s' finished with an open IT block."),
17805 sect->name);
17806 }
17807 #else
17808 if (now_it.state == MANUAL_IT_BLOCK)
17809 as_warn (_("file finished with an open IT block."));
17810 #endif
17811 }
17812
17813 /* Various frobbings of labels and their addresses. */
17814
17815 void
17816 arm_start_line_hook (void)
17817 {
17818 last_label_seen = NULL;
17819 }
17820
17821 void
17822 arm_frob_label (symbolS * sym)
17823 {
17824 last_label_seen = sym;
17825
17826 ARM_SET_THUMB (sym, thumb_mode);
17827
17828 #if defined OBJ_COFF || defined OBJ_ELF
17829 ARM_SET_INTERWORK (sym, support_interwork);
17830 #endif
17831
17832 force_automatic_it_block_close ();
17833
17834 /* Note - do not allow local symbols (.Lxxx) to be labelled
17835 as Thumb functions. This is because these labels, whilst
17836 they exist inside Thumb code, are not the entry points for
17837 possible ARM->Thumb calls. Also, these labels can be used
17838 as part of a computed goto or switch statement. eg gcc
17839 can generate code that looks like this:
17840
17841 ldr r2, [pc, .Laaa]
17842 lsl r3, r3, #2
17843 ldr r2, [r3, r2]
17844 mov pc, r2
17845
17846 .Lbbb: .word .Lxxx
17847 .Lccc: .word .Lyyy
17848 ..etc...
17849 .Laaa: .word Lbbb
17850
17851 The first instruction loads the address of the jump table.
17852 The second instruction converts a table index into a byte offset.
17853 The third instruction gets the jump address out of the table.
17854 The fourth instruction performs the jump.
17855
17856 If the address stored at .Laaa is that of a symbol which has the
17857 Thumb_Func bit set, then the linker will arrange for this address
17858 to have the bottom bit set, which in turn would mean that the
17859 address computation performed by the third instruction would end
17860 up with the bottom bit set. Since the ARM is capable of unaligned
17861 word loads, the instruction would then load the incorrect address
17862 out of the jump table, and chaos would ensue. */
17863 if (label_is_thumb_function_name
17864 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
17865 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
17866 {
17867 /* When the address of a Thumb function is taken the bottom
17868 bit of that address should be set. This will allow
17869 interworking between Arm and Thumb functions to work
17870 correctly. */
17871
17872 THUMB_SET_FUNC (sym, 1);
17873
17874 label_is_thumb_function_name = FALSE;
17875 }
17876
17877 dwarf2_emit_label (sym);
17878 }
17879
17880 bfd_boolean
17881 arm_data_in_code (void)
17882 {
17883 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
17884 {
17885 *input_line_pointer = '/';
17886 input_line_pointer += 5;
17887 *input_line_pointer = 0;
17888 return TRUE;
17889 }
17890
17891 return FALSE;
17892 }
17893
17894 char *
17895 arm_canonicalize_symbol_name (char * name)
17896 {
17897 int len;
17898
17899 if (thumb_mode && (len = strlen (name)) > 5
17900 && streq (name + len - 5, "/data"))
17901 *(name + len - 5) = 0;
17902
17903 return name;
17904 }
17905 \f
17906 /* Table of all register names defined by default. The user can
17907 define additional names with .req. Note that all register names
17908 should appear in both upper and lowercase variants. Some registers
17909 also have mixed-case names. */
17910
17911 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
17912 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
17913 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
17914 #define REGSET(p,t) \
17915 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
17916 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
17917 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
17918 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
17919 #define REGSETH(p,t) \
17920 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
17921 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
17922 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
17923 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
17924 #define REGSET2(p,t) \
17925 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
17926 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
17927 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
17928 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
17929 #define SPLRBANK(base,bank,t) \
17930 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
17931 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
17932 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
17933 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
17934 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
17935 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
17936
17937 static const struct reg_entry reg_names[] =
17938 {
17939 /* ARM integer registers. */
17940 REGSET(r, RN), REGSET(R, RN),
17941
17942 /* ATPCS synonyms. */
17943 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
17944 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
17945 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
17946
17947 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
17948 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
17949 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
17950
17951 /* Well-known aliases. */
17952 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
17953 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
17954
17955 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
17956 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
17957
17958 /* Coprocessor numbers. */
17959 REGSET(p, CP), REGSET(P, CP),
17960
17961 /* Coprocessor register numbers. The "cr" variants are for backward
17962 compatibility. */
17963 REGSET(c, CN), REGSET(C, CN),
17964 REGSET(cr, CN), REGSET(CR, CN),
17965
17966 /* ARM banked registers. */
17967 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
17968 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
17969 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
17970 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
17971 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
17972 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
17973 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
17974
17975 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
17976 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
17977 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
17978 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
17979 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
17980 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
17981 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
17982 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
17983
17984 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
17985 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
17986 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
17987 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
17988 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
17989 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
17990 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
17991 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
17992 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
17993
17994 /* FPA registers. */
17995 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
17996 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
17997
17998 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
17999 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
18000
18001 /* VFP SP registers. */
18002 REGSET(s,VFS), REGSET(S,VFS),
18003 REGSETH(s,VFS), REGSETH(S,VFS),
18004
18005 /* VFP DP Registers. */
18006 REGSET(d,VFD), REGSET(D,VFD),
18007 /* Extra Neon DP registers. */
18008 REGSETH(d,VFD), REGSETH(D,VFD),
18009
18010 /* Neon QP registers. */
18011 REGSET2(q,NQ), REGSET2(Q,NQ),
18012
18013 /* VFP control registers. */
18014 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
18015 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
18016 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
18017 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
18018 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
18019 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
18020
18021 /* Maverick DSP coprocessor registers. */
18022 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
18023 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
18024
18025 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
18026 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
18027 REGDEF(dspsc,0,DSPSC),
18028
18029 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
18030 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
18031 REGDEF(DSPSC,0,DSPSC),
18032
18033 /* iWMMXt data registers - p0, c0-15. */
18034 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
18035
18036 /* iWMMXt control registers - p1, c0-3. */
18037 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
18038 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
18039 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
18040 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
18041
18042 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
18043 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
18044 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
18045 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
18046 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
18047
18048 /* XScale accumulator registers. */
18049 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
18050 };
18051 #undef REGDEF
18052 #undef REGNUM
18053 #undef REGSET
18054
18055 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
18056 within psr_required_here. */
18057 static const struct asm_psr psrs[] =
18058 {
18059 /* Backward compatibility notation. Note that "all" is no longer
18060 truly all possible PSR bits. */
18061 {"all", PSR_c | PSR_f},
18062 {"flg", PSR_f},
18063 {"ctl", PSR_c},
18064
18065 /* Individual flags. */
18066 {"f", PSR_f},
18067 {"c", PSR_c},
18068 {"x", PSR_x},
18069 {"s", PSR_s},
18070
18071 /* Combinations of flags. */
18072 {"fs", PSR_f | PSR_s},
18073 {"fx", PSR_f | PSR_x},
18074 {"fc", PSR_f | PSR_c},
18075 {"sf", PSR_s | PSR_f},
18076 {"sx", PSR_s | PSR_x},
18077 {"sc", PSR_s | PSR_c},
18078 {"xf", PSR_x | PSR_f},
18079 {"xs", PSR_x | PSR_s},
18080 {"xc", PSR_x | PSR_c},
18081 {"cf", PSR_c | PSR_f},
18082 {"cs", PSR_c | PSR_s},
18083 {"cx", PSR_c | PSR_x},
18084 {"fsx", PSR_f | PSR_s | PSR_x},
18085 {"fsc", PSR_f | PSR_s | PSR_c},
18086 {"fxs", PSR_f | PSR_x | PSR_s},
18087 {"fxc", PSR_f | PSR_x | PSR_c},
18088 {"fcs", PSR_f | PSR_c | PSR_s},
18089 {"fcx", PSR_f | PSR_c | PSR_x},
18090 {"sfx", PSR_s | PSR_f | PSR_x},
18091 {"sfc", PSR_s | PSR_f | PSR_c},
18092 {"sxf", PSR_s | PSR_x | PSR_f},
18093 {"sxc", PSR_s | PSR_x | PSR_c},
18094 {"scf", PSR_s | PSR_c | PSR_f},
18095 {"scx", PSR_s | PSR_c | PSR_x},
18096 {"xfs", PSR_x | PSR_f | PSR_s},
18097 {"xfc", PSR_x | PSR_f | PSR_c},
18098 {"xsf", PSR_x | PSR_s | PSR_f},
18099 {"xsc", PSR_x | PSR_s | PSR_c},
18100 {"xcf", PSR_x | PSR_c | PSR_f},
18101 {"xcs", PSR_x | PSR_c | PSR_s},
18102 {"cfs", PSR_c | PSR_f | PSR_s},
18103 {"cfx", PSR_c | PSR_f | PSR_x},
18104 {"csf", PSR_c | PSR_s | PSR_f},
18105 {"csx", PSR_c | PSR_s | PSR_x},
18106 {"cxf", PSR_c | PSR_x | PSR_f},
18107 {"cxs", PSR_c | PSR_x | PSR_s},
18108 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
18109 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
18110 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
18111 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
18112 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
18113 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
18114 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
18115 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
18116 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
18117 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
18118 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
18119 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
18120 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
18121 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
18122 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
18123 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
18124 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
18125 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
18126 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
18127 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
18128 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
18129 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
18130 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
18131 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
18132 };
18133
18134 /* Table of V7M psr names. */
18135 static const struct asm_psr v7m_psrs[] =
18136 {
18137 {"apsr", 0 }, {"APSR", 0 },
18138 {"iapsr", 1 }, {"IAPSR", 1 },
18139 {"eapsr", 2 }, {"EAPSR", 2 },
18140 {"psr", 3 }, {"PSR", 3 },
18141 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
18142 {"ipsr", 5 }, {"IPSR", 5 },
18143 {"epsr", 6 }, {"EPSR", 6 },
18144 {"iepsr", 7 }, {"IEPSR", 7 },
18145 {"msp", 8 }, {"MSP", 8 },
18146 {"psp", 9 }, {"PSP", 9 },
18147 {"primask", 16}, {"PRIMASK", 16},
18148 {"basepri", 17}, {"BASEPRI", 17},
18149 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
18150 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
18151 {"faultmask", 19}, {"FAULTMASK", 19},
18152 {"control", 20}, {"CONTROL", 20}
18153 };
18154
18155 /* Table of all shift-in-operand names. */
18156 static const struct asm_shift_name shift_names [] =
18157 {
18158 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
18159 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
18160 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
18161 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
18162 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
18163 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
18164 };
18165
18166 /* Table of all explicit relocation names. */
18167 #ifdef OBJ_ELF
18168 static struct reloc_entry reloc_names[] =
18169 {
18170 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
18171 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
18172 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
18173 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
18174 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
18175 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
18176 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
18177 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
18178 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
18179 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
18180 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
18181 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
18182 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
18183 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
18184 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
18185 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
18186 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
18187 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
18188 };
18189 #endif
18190
18191 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
18192 static const struct asm_cond conds[] =
18193 {
18194 {"eq", 0x0},
18195 {"ne", 0x1},
18196 {"cs", 0x2}, {"hs", 0x2},
18197 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
18198 {"mi", 0x4},
18199 {"pl", 0x5},
18200 {"vs", 0x6},
18201 {"vc", 0x7},
18202 {"hi", 0x8},
18203 {"ls", 0x9},
18204 {"ge", 0xa},
18205 {"lt", 0xb},
18206 {"gt", 0xc},
18207 {"le", 0xd},
18208 {"al", 0xe}
18209 };
18210
18211 #define UL_BARRIER(L,U,CODE,FEAT) \
18212 { L, CODE, ARM_FEATURE (FEAT, 0) }, \
18213 { U, CODE, ARM_FEATURE (FEAT, 0) }
18214
18215 static struct asm_barrier_opt barrier_opt_names[] =
18216 {
18217 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
18218 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
18219 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
18220 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
18221 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
18222 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
18223 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
18224 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
18225 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
18226 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
18227 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
18228 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
18229 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
18230 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
18231 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
18232 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
18233 };
18234
18235 #undef UL_BARRIER
18236
18237 /* Table of ARM-format instructions. */
18238
18239 /* Macros for gluing together operand strings. N.B. In all cases
18240 other than OPS0, the trailing OP_stop comes from default
18241 zero-initialization of the unspecified elements of the array. */
18242 #define OPS0() { OP_stop, }
18243 #define OPS1(a) { OP_##a, }
18244 #define OPS2(a,b) { OP_##a,OP_##b, }
18245 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
18246 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
18247 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
18248 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
18249
18250 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
18251 This is useful when mixing operands for ARM and THUMB, i.e. using the
18252 MIX_ARM_THUMB_OPERANDS macro.
18253 In order to use these macros, prefix the number of operands with _
18254 e.g. _3. */
18255 #define OPS_1(a) { a, }
18256 #define OPS_2(a,b) { a,b, }
18257 #define OPS_3(a,b,c) { a,b,c, }
18258 #define OPS_4(a,b,c,d) { a,b,c,d, }
18259 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
18260 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
18261
18262 /* These macros abstract out the exact format of the mnemonic table and
18263 save some repeated characters. */
18264
18265 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
18266 #define TxCE(mnem, op, top, nops, ops, ae, te) \
18267 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
18268 THUMB_VARIANT, do_##ae, do_##te }
18269
18270 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
18271 a T_MNEM_xyz enumerator. */
18272 #define TCE(mnem, aop, top, nops, ops, ae, te) \
18273 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
18274 #define tCE(mnem, aop, top, nops, ops, ae, te) \
18275 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
18276
18277 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
18278 infix after the third character. */
18279 #define TxC3(mnem, op, top, nops, ops, ae, te) \
18280 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
18281 THUMB_VARIANT, do_##ae, do_##te }
18282 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
18283 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
18284 THUMB_VARIANT, do_##ae, do_##te }
18285 #define TC3(mnem, aop, top, nops, ops, ae, te) \
18286 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
18287 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
18288 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
18289 #define tC3(mnem, aop, top, nops, ops, ae, te) \
18290 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
18291 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
18292 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
18293
18294 /* Mnemonic that cannot be conditionalized. The ARM condition-code
18295 field is still 0xE. Many of the Thumb variants can be executed
18296 conditionally, so this is checked separately. */
18297 #define TUE(mnem, op, top, nops, ops, ae, te) \
18298 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
18299 THUMB_VARIANT, do_##ae, do_##te }
18300
18301 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
18302 Used by mnemonics that have very minimal differences in the encoding for
18303 ARM and Thumb variants and can be handled in a common function. */
18304 #define TUEc(mnem, op, top, nops, ops, en) \
18305 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
18306 THUMB_VARIANT, do_##en, do_##en }
18307
18308 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
18309 condition code field. */
18310 #define TUF(mnem, op, top, nops, ops, ae, te) \
18311 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
18312 THUMB_VARIANT, do_##ae, do_##te }
18313
18314 /* ARM-only variants of all the above. */
18315 #define CE(mnem, op, nops, ops, ae) \
18316 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18317
18318 #define C3(mnem, op, nops, ops, ae) \
18319 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18320
18321 /* Legacy mnemonics that always have conditional infix after the third
18322 character. */
18323 #define CL(mnem, op, nops, ops, ae) \
18324 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
18325 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18326
18327 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
18328 #define cCE(mnem, op, nops, ops, ae) \
18329 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
18330
18331 /* Legacy coprocessor instructions where conditional infix and conditional
18332 suffix are ambiguous. For consistency this includes all FPA instructions,
18333 not just the potentially ambiguous ones. */
18334 #define cCL(mnem, op, nops, ops, ae) \
18335 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
18336 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
18337
18338 /* Coprocessor, takes either a suffix or a position-3 infix
18339 (for an FPA corner case). */
18340 #define C3E(mnem, op, nops, ops, ae) \
18341 { mnem, OPS##nops ops, OT_csuf_or_in3, \
18342 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
18343
18344 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
18345 { m1 #m2 m3, OPS##nops ops, \
18346 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
18347 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18348
18349 #define CM(m1, m2, op, nops, ops, ae) \
18350 xCM_ (m1, , m2, op, nops, ops, ae), \
18351 xCM_ (m1, eq, m2, op, nops, ops, ae), \
18352 xCM_ (m1, ne, m2, op, nops, ops, ae), \
18353 xCM_ (m1, cs, m2, op, nops, ops, ae), \
18354 xCM_ (m1, hs, m2, op, nops, ops, ae), \
18355 xCM_ (m1, cc, m2, op, nops, ops, ae), \
18356 xCM_ (m1, ul, m2, op, nops, ops, ae), \
18357 xCM_ (m1, lo, m2, op, nops, ops, ae), \
18358 xCM_ (m1, mi, m2, op, nops, ops, ae), \
18359 xCM_ (m1, pl, m2, op, nops, ops, ae), \
18360 xCM_ (m1, vs, m2, op, nops, ops, ae), \
18361 xCM_ (m1, vc, m2, op, nops, ops, ae), \
18362 xCM_ (m1, hi, m2, op, nops, ops, ae), \
18363 xCM_ (m1, ls, m2, op, nops, ops, ae), \
18364 xCM_ (m1, ge, m2, op, nops, ops, ae), \
18365 xCM_ (m1, lt, m2, op, nops, ops, ae), \
18366 xCM_ (m1, gt, m2, op, nops, ops, ae), \
18367 xCM_ (m1, le, m2, op, nops, ops, ae), \
18368 xCM_ (m1, al, m2, op, nops, ops, ae)
18369
18370 #define UE(mnem, op, nops, ops, ae) \
18371 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
18372
18373 #define UF(mnem, op, nops, ops, ae) \
18374 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
18375
18376 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
18377 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
18378 use the same encoding function for each. */
18379 #define NUF(mnem, op, nops, ops, enc) \
18380 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
18381 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
18382
18383 /* Neon data processing, version which indirects through neon_enc_tab for
18384 the various overloaded versions of opcodes. */
18385 #define nUF(mnem, op, nops, ops, enc) \
18386 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
18387 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
18388
18389 /* Neon insn with conditional suffix for the ARM version, non-overloaded
18390 version. */
18391 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
18392 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
18393 THUMB_VARIANT, do_##enc, do_##enc }
18394
18395 #define NCE(mnem, op, nops, ops, enc) \
18396 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
18397
18398 #define NCEF(mnem, op, nops, ops, enc) \
18399 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
18400
18401 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
18402 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
18403 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
18404 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
18405
18406 #define nCE(mnem, op, nops, ops, enc) \
18407 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
18408
18409 #define nCEF(mnem, op, nops, ops, enc) \
18410 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
18411
18412 #define do_0 0
18413
18414 static const struct asm_opcode insns[] =
18415 {
18416 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
18417 #define THUMB_VARIANT & arm_ext_v4t
18418 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
18419 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
18420 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
18421 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
18422 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
18423 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
18424 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
18425 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
18426 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
18427 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
18428 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
18429 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
18430 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
18431 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
18432 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
18433 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
18434
18435 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
18436 for setting PSR flag bits. They are obsolete in V6 and do not
18437 have Thumb equivalents. */
18438 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
18439 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
18440 CL("tstp", 110f000, 2, (RR, SH), cmp),
18441 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
18442 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
18443 CL("cmpp", 150f000, 2, (RR, SH), cmp),
18444 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
18445 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
18446 CL("cmnp", 170f000, 2, (RR, SH), cmp),
18447
18448 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
18449 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
18450 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
18451 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
18452
18453 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
18454 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
18455 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
18456 OP_RRnpc),
18457 OP_ADDRGLDR),ldst, t_ldst),
18458 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
18459
18460 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18461 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18462 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18463 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18464 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18465 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18466
18467 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
18468 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
18469 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
18470 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
18471
18472 /* Pseudo ops. */
18473 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
18474 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
18475 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
18476 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
18477
18478 /* Thumb-compatibility pseudo ops. */
18479 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
18480 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
18481 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
18482 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
18483 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
18484 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
18485 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
18486 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
18487 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
18488 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
18489 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
18490 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
18491
18492 /* These may simplify to neg. */
18493 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
18494 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
18495
18496 #undef THUMB_VARIANT
18497 #define THUMB_VARIANT & arm_ext_v6
18498
18499 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
18500
18501 /* V1 instructions with no Thumb analogue prior to V6T2. */
18502 #undef THUMB_VARIANT
18503 #define THUMB_VARIANT & arm_ext_v6t2
18504
18505 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
18506 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
18507 CL("teqp", 130f000, 2, (RR, SH), cmp),
18508
18509 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
18510 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
18511 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
18512 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
18513
18514 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18515 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18516
18517 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18518 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18519
18520 /* V1 instructions with no Thumb analogue at all. */
18521 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
18522 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
18523
18524 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
18525 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
18526 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
18527 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
18528 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
18529 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
18530 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
18531 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
18532
18533 #undef ARM_VARIANT
18534 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
18535 #undef THUMB_VARIANT
18536 #define THUMB_VARIANT & arm_ext_v4t
18537
18538 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
18539 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
18540
18541 #undef THUMB_VARIANT
18542 #define THUMB_VARIANT & arm_ext_v6t2
18543
18544 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
18545 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
18546
18547 /* Generic coprocessor instructions. */
18548 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
18549 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18550 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18551 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18552 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18553 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
18554 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
18555
18556 #undef ARM_VARIANT
18557 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
18558
18559 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
18560 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
18561
18562 #undef ARM_VARIANT
18563 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
18564 #undef THUMB_VARIANT
18565 #define THUMB_VARIANT & arm_ext_msr
18566
18567 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
18568 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
18569
18570 #undef ARM_VARIANT
18571 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
18572 #undef THUMB_VARIANT
18573 #define THUMB_VARIANT & arm_ext_v6t2
18574
18575 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18576 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18577 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18578 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18579 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18580 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18581 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18582 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18583
18584 #undef ARM_VARIANT
18585 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
18586 #undef THUMB_VARIANT
18587 #define THUMB_VARIANT & arm_ext_v4t
18588
18589 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18590 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18591 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18592 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18593 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18594 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18595
18596 #undef ARM_VARIANT
18597 #define ARM_VARIANT & arm_ext_v4t_5
18598
18599 /* ARM Architecture 4T. */
18600 /* Note: bx (and blx) are required on V5, even if the processor does
18601 not support Thumb. */
18602 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
18603
18604 #undef ARM_VARIANT
18605 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
18606 #undef THUMB_VARIANT
18607 #define THUMB_VARIANT & arm_ext_v5t
18608
18609 /* Note: blx has 2 variants; the .value coded here is for
18610 BLX(2). Only this variant has conditional execution. */
18611 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
18612 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
18613
18614 #undef THUMB_VARIANT
18615 #define THUMB_VARIANT & arm_ext_v6t2
18616
18617 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
18618 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18619 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18620 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18621 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18622 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
18623 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
18624 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
18625
18626 #undef ARM_VARIANT
18627 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
18628 #undef THUMB_VARIANT
18629 #define THUMB_VARIANT & arm_ext_v5exp
18630
18631 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18632 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18633 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18634 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18635
18636 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18637 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18638
18639 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18640 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18641 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18642 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18643
18644 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18645 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18646 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18647 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18648
18649 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18650 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18651
18652 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18653 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18654 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18655 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18656
18657 #undef ARM_VARIANT
18658 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
18659 #undef THUMB_VARIANT
18660 #define THUMB_VARIANT & arm_ext_v6t2
18661
18662 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
18663 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
18664 ldrd, t_ldstd),
18665 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
18666 ADDRGLDRS), ldrd, t_ldstd),
18667
18668 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18669 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18670
18671 #undef ARM_VARIANT
18672 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
18673
18674 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
18675
18676 #undef ARM_VARIANT
18677 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
18678 #undef THUMB_VARIANT
18679 #define THUMB_VARIANT & arm_ext_v6
18680
18681 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
18682 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
18683 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18684 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18685 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18686 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18687 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18688 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18689 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18690 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
18691
18692 #undef THUMB_VARIANT
18693 #define THUMB_VARIANT & arm_ext_v6t2
18694
18695 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
18696 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18697 strex, t_strex),
18698 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18699 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18700
18701 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
18702 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
18703
18704 /* ARM V6 not included in V7M. */
18705 #undef THUMB_VARIANT
18706 #define THUMB_VARIANT & arm_ext_v6_notm
18707 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18708 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18709 UF(rfeib, 9900a00, 1, (RRw), rfe),
18710 UF(rfeda, 8100a00, 1, (RRw), rfe),
18711 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
18712 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18713 UF(rfefa, 8100a00, 1, (RRw), rfe),
18714 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
18715 UF(rfeed, 9900a00, 1, (RRw), rfe),
18716 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
18717 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
18718 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
18719 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
18720 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
18721 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
18722 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
18723 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
18724 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
18725
18726 /* ARM V6 not included in V7M (eg. integer SIMD). */
18727 #undef THUMB_VARIANT
18728 #define THUMB_VARIANT & arm_ext_v6_dsp
18729 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
18730 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
18731 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
18732 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18733 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18734 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18735 /* Old name for QASX. */
18736 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18737 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18738 /* Old name for QSAX. */
18739 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18740 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18741 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18742 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18743 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18744 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18745 /* Old name for SASX. */
18746 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18747 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18748 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18749 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18750 /* Old name for SHASX. */
18751 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18752 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18753 /* Old name for SHSAX. */
18754 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18755 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18756 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18757 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18758 /* Old name for SSAX. */
18759 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18760 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18761 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18762 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18763 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18764 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18765 /* Old name for UASX. */
18766 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18767 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18768 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18769 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18770 /* Old name for UHASX. */
18771 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18772 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18773 /* Old name for UHSAX. */
18774 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18775 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18776 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18777 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18778 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18779 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18780 /* Old name for UQASX. */
18781 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18782 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18783 /* Old name for UQSAX. */
18784 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18785 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18786 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18787 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18788 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18789 /* Old name for USAX. */
18790 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18791 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18792 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18793 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18794 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18795 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18796 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18797 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18798 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18799 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18800 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18801 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18802 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18803 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18804 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18805 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18806 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18807 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18808 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18809 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18810 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18811 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18812 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18813 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18814 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18815 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18816 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18817 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18818 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18819 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
18820 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
18821 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18822 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18823 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
18824
18825 #undef ARM_VARIANT
18826 #define ARM_VARIANT & arm_ext_v6k
18827 #undef THUMB_VARIANT
18828 #define THUMB_VARIANT & arm_ext_v6k
18829
18830 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
18831 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
18832 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
18833 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
18834
18835 #undef THUMB_VARIANT
18836 #define THUMB_VARIANT & arm_ext_v6_notm
18837 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
18838 ldrexd, t_ldrexd),
18839 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
18840 RRnpcb), strexd, t_strexd),
18841
18842 #undef THUMB_VARIANT
18843 #define THUMB_VARIANT & arm_ext_v6t2
18844 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
18845 rd_rn, rd_rn),
18846 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
18847 rd_rn, rd_rn),
18848 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18849 strex, t_strexbh),
18850 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18851 strex, t_strexbh),
18852 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
18853
18854 #undef ARM_VARIANT
18855 #define ARM_VARIANT & arm_ext_sec
18856 #undef THUMB_VARIANT
18857 #define THUMB_VARIANT & arm_ext_sec
18858
18859 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
18860
18861 #undef ARM_VARIANT
18862 #define ARM_VARIANT & arm_ext_virt
18863 #undef THUMB_VARIANT
18864 #define THUMB_VARIANT & arm_ext_virt
18865
18866 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
18867 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
18868
18869 #undef ARM_VARIANT
18870 #define ARM_VARIANT & arm_ext_v6t2
18871 #undef THUMB_VARIANT
18872 #define THUMB_VARIANT & arm_ext_v6t2
18873
18874 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
18875 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
18876 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
18877 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
18878
18879 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
18880 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
18881 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
18882 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
18883
18884 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18885 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18886 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18887 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18888
18889 /* Thumb-only instructions. */
18890 #undef ARM_VARIANT
18891 #define ARM_VARIANT NULL
18892 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
18893 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
18894
18895 /* ARM does not really have an IT instruction, so always allow it.
18896 The opcode is copied from Thumb in order to allow warnings in
18897 -mimplicit-it=[never | arm] modes. */
18898 #undef ARM_VARIANT
18899 #define ARM_VARIANT & arm_ext_v1
18900
18901 TUE("it", bf08, bf08, 1, (COND), it, t_it),
18902 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
18903 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
18904 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
18905 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
18906 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
18907 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
18908 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
18909 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
18910 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
18911 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
18912 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
18913 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
18914 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
18915 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
18916 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
18917 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
18918 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
18919
18920 /* Thumb2 only instructions. */
18921 #undef ARM_VARIANT
18922 #define ARM_VARIANT NULL
18923
18924 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18925 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18926 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
18927 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
18928 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
18929 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
18930
18931 /* Hardware division instructions. */
18932 #undef ARM_VARIANT
18933 #define ARM_VARIANT & arm_ext_adiv
18934 #undef THUMB_VARIANT
18935 #define THUMB_VARIANT & arm_ext_div
18936
18937 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
18938 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
18939
18940 /* ARM V6M/V7 instructions. */
18941 #undef ARM_VARIANT
18942 #define ARM_VARIANT & arm_ext_barrier
18943 #undef THUMB_VARIANT
18944 #define THUMB_VARIANT & arm_ext_barrier
18945
18946 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
18947 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
18948 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
18949
18950 /* ARM V7 instructions. */
18951 #undef ARM_VARIANT
18952 #define ARM_VARIANT & arm_ext_v7
18953 #undef THUMB_VARIANT
18954 #define THUMB_VARIANT & arm_ext_v7
18955
18956 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
18957 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
18958
18959 #undef ARM_VARIANT
18960 #define ARM_VARIANT & arm_ext_mp
18961 #undef THUMB_VARIANT
18962 #define THUMB_VARIANT & arm_ext_mp
18963
18964 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
18965
18966 /* AArchv8 instructions. */
18967 #undef ARM_VARIANT
18968 #define ARM_VARIANT & arm_ext_v8
18969 #undef THUMB_VARIANT
18970 #define THUMB_VARIANT & arm_ext_v8
18971
18972 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
18973 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
18974 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18975 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
18976 ldrexd, t_ldrexd),
18977 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
18978 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18979 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
18980 stlex, t_stlex),
18981 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
18982 strexd, t_strexd),
18983 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
18984 stlex, t_stlex),
18985 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
18986 stlex, t_stlex),
18987 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18988 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18989 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18990 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18991 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18992 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18993
18994 /* ARMv8 T32 only. */
18995 #undef ARM_VARIANT
18996 #define ARM_VARIANT NULL
18997 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
18998 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
18999 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
19000
19001 /* FP for ARMv8. */
19002 #undef ARM_VARIANT
19003 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
19004 #undef THUMB_VARIANT
19005 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
19006
19007 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
19008 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
19009 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
19010 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
19011 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
19012 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
19013 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
19014 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
19015 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
19016 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
19017 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
19018 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
19019 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
19020 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
19021 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
19022 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
19023 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
19024
19025 /* Crypto v1 extensions. */
19026 #undef ARM_VARIANT
19027 #define ARM_VARIANT & fpu_crypto_ext_armv8
19028 #undef THUMB_VARIANT
19029 #define THUMB_VARIANT & fpu_crypto_ext_armv8
19030
19031 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
19032 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
19033 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
19034 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
19035 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
19036 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
19037 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
19038 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
19039 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
19040 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
19041 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
19042 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
19043 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
19044 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
19045
19046 #undef ARM_VARIANT
19047 #define ARM_VARIANT & crc_ext_armv8
19048 #undef THUMB_VARIANT
19049 #define THUMB_VARIANT & crc_ext_armv8
19050 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
19051 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
19052 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
19053 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
19054 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
19055 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
19056
19057 #undef ARM_VARIANT
19058 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
19059 #undef THUMB_VARIANT
19060 #define THUMB_VARIANT NULL
19061
19062 cCE("wfs", e200110, 1, (RR), rd),
19063 cCE("rfs", e300110, 1, (RR), rd),
19064 cCE("wfc", e400110, 1, (RR), rd),
19065 cCE("rfc", e500110, 1, (RR), rd),
19066
19067 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
19068 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
19069 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
19070 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
19071
19072 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
19073 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
19074 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
19075 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
19076
19077 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
19078 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
19079 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
19080 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
19081 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
19082 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
19083 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
19084 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
19085 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
19086 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
19087 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
19088 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
19089
19090 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
19091 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
19092 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
19093 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
19094 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
19095 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
19096 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
19097 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
19098 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
19099 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
19100 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
19101 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
19102
19103 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
19104 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
19105 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
19106 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
19107 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
19108 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
19109 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
19110 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
19111 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
19112 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
19113 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
19114 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
19115
19116 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
19117 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
19118 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
19119 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
19120 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
19121 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
19122 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
19123 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
19124 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
19125 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
19126 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
19127 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
19128
19129 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
19130 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
19131 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
19132 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
19133 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
19134 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
19135 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
19136 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
19137 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
19138 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
19139 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
19140 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
19141
19142 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
19143 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
19144 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
19145 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
19146 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
19147 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
19148 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
19149 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
19150 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
19151 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
19152 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
19153 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
19154
19155 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
19156 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
19157 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
19158 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
19159 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
19160 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
19161 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
19162 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
19163 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
19164 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
19165 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
19166 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
19167
19168 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
19169 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
19170 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
19171 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
19172 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
19173 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
19174 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
19175 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
19176 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
19177 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
19178 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
19179 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
19180
19181 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
19182 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
19183 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
19184 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
19185 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
19186 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
19187 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
19188 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
19189 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
19190 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
19191 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
19192 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
19193
19194 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
19195 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
19196 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
19197 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
19198 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
19199 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
19200 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
19201 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
19202 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
19203 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
19204 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
19205 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
19206
19207 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
19208 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
19209 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
19210 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
19211 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
19212 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
19213 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
19214 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
19215 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
19216 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
19217 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
19218 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
19219
19220 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
19221 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
19222 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
19223 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
19224 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
19225 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
19226 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
19227 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
19228 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
19229 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
19230 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
19231 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
19232
19233 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
19234 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
19235 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
19236 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
19237 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
19238 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
19239 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
19240 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
19241 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
19242 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
19243 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
19244 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
19245
19246 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
19247 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
19248 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
19249 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
19250 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
19251 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
19252 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
19253 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
19254 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
19255 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
19256 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
19257 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
19258
19259 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
19260 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
19261 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
19262 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
19263 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
19264 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
19265 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
19266 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
19267 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
19268 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
19269 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
19270 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
19271
19272 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
19273 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
19274 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
19275 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
19276 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
19277 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
19278 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
19279 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
19280 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
19281 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
19282 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
19283 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
19284
19285 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
19286 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
19287 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
19288 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
19289 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
19290 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19291 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19292 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19293 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
19294 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
19295 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
19296 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
19297
19298 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
19299 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
19300 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
19301 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
19302 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
19303 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19304 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19305 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19306 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
19307 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
19308 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
19309 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
19310
19311 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
19312 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
19313 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
19314 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
19315 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
19316 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19317 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19318 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19319 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
19320 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
19321 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
19322 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
19323
19324 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
19325 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
19326 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
19327 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
19328 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
19329 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19330 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19331 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19332 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
19333 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
19334 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
19335 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
19336
19337 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
19338 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
19339 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
19340 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
19341 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
19342 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19343 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19344 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19345 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
19346 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
19347 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
19348 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
19349
19350 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
19351 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
19352 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
19353 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
19354 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
19355 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19356 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19357 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19358 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
19359 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
19360 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
19361 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
19362
19363 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
19364 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
19365 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
19366 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
19367 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
19368 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19369 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19370 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19371 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
19372 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
19373 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
19374 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
19375
19376 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
19377 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
19378 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
19379 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
19380 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
19381 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19382 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19383 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19384 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
19385 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
19386 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
19387 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
19388
19389 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
19390 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
19391 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
19392 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
19393 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
19394 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19395 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19396 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19397 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
19398 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
19399 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
19400 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
19401
19402 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
19403 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
19404 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
19405 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
19406 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
19407 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19408 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19409 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19410 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
19411 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
19412 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
19413 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
19414
19415 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
19416 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
19417 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
19418 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
19419 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
19420 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19421 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19422 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19423 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
19424 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
19425 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
19426 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
19427
19428 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
19429 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
19430 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
19431 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
19432 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
19433 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19434 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19435 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19436 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
19437 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
19438 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
19439 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
19440
19441 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
19442 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
19443 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
19444 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
19445 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
19446 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19447 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19448 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19449 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
19450 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
19451 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
19452 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
19453
19454 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
19455 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
19456 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
19457 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
19458
19459 cCL("flts", e000110, 2, (RF, RR), rn_rd),
19460 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
19461 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
19462 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
19463 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
19464 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
19465 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
19466 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
19467 cCL("flte", e080110, 2, (RF, RR), rn_rd),
19468 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
19469 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
19470 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
19471
19472 /* The implementation of the FIX instruction is broken on some
19473 assemblers, in that it accepts a precision specifier as well as a
19474 rounding specifier, despite the fact that this is meaningless.
19475 To be more compatible, we accept it as well, though of course it
19476 does not set any bits. */
19477 cCE("fix", e100110, 2, (RR, RF), rd_rm),
19478 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
19479 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
19480 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
19481 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
19482 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
19483 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
19484 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
19485 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
19486 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
19487 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
19488 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
19489 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
19490
19491 /* Instructions that were new with the real FPA, call them V2. */
19492 #undef ARM_VARIANT
19493 #define ARM_VARIANT & fpu_fpa_ext_v2
19494
19495 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19496 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19497 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19498 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19499 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19500 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19501
19502 #undef ARM_VARIANT
19503 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
19504
19505 /* Moves and type conversions. */
19506 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
19507 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
19508 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
19509 cCE("fmstat", ef1fa10, 0, (), noargs),
19510 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
19511 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
19512 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
19513 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
19514 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
19515 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
19516 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
19517 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
19518 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
19519 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
19520
19521 /* Memory operations. */
19522 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
19523 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
19524 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19525 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19526 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19527 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19528 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19529 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19530 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19531 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19532 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19533 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19534 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19535 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19536 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19537 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19538 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19539 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19540
19541 /* Monadic operations. */
19542 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
19543 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
19544 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
19545
19546 /* Dyadic operations. */
19547 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19548 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19549 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19550 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19551 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19552 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19553 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19554 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19555 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19556
19557 /* Comparisons. */
19558 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
19559 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
19560 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
19561 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
19562
19563 /* Double precision load/store are still present on single precision
19564 implementations. */
19565 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
19566 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
19567 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19568 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19569 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19570 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19571 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19572 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19573 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19574 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19575
19576 #undef ARM_VARIANT
19577 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
19578
19579 /* Moves and type conversions. */
19580 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19581 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
19582 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19583 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
19584 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
19585 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
19586 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
19587 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
19588 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
19589 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
19590 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19591 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
19592 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19593
19594 /* Monadic operations. */
19595 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19596 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19597 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19598
19599 /* Dyadic operations. */
19600 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19601 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19602 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19603 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19604 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19605 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19606 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19607 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19608 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19609
19610 /* Comparisons. */
19611 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19612 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
19613 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19614 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
19615
19616 #undef ARM_VARIANT
19617 #define ARM_VARIANT & fpu_vfp_ext_v2
19618
19619 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
19620 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
19621 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
19622 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
19623
19624 /* Instructions which may belong to either the Neon or VFP instruction sets.
19625 Individual encoder functions perform additional architecture checks. */
19626 #undef ARM_VARIANT
19627 #define ARM_VARIANT & fpu_vfp_ext_v1xd
19628 #undef THUMB_VARIANT
19629 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
19630
19631 /* These mnemonics are unique to VFP. */
19632 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
19633 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
19634 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19635 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19636 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19637 nCE(vcmp, _vcmp, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
19638 nCE(vcmpe, _vcmpe, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
19639 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
19640 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
19641 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
19642
19643 /* Mnemonics shared by Neon and VFP. */
19644 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
19645 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
19646 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
19647
19648 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
19649 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
19650
19651 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
19652 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
19653
19654 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19655 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19656 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19657 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19658 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19659 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19660 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
19661 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
19662
19663 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
19664 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
19665 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
19666 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
19667
19668
19669 /* NOTE: All VMOV encoding is special-cased! */
19670 NCE(vmov, 0, 1, (VMOV), neon_mov),
19671 NCE(vmovq, 0, 1, (VMOV), neon_mov),
19672
19673 #undef THUMB_VARIANT
19674 #define THUMB_VARIANT & fpu_neon_ext_v1
19675 #undef ARM_VARIANT
19676 #define ARM_VARIANT & fpu_neon_ext_v1
19677
19678 /* Data processing with three registers of the same length. */
19679 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
19680 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
19681 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
19682 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19683 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19684 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19685 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19686 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19687 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19688 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
19689 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
19690 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
19691 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
19692 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
19693 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
19694 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
19695 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
19696 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
19697 /* If not immediate, fall back to neon_dyadic_i64_su.
19698 shl_imm should accept I8 I16 I32 I64,
19699 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
19700 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
19701 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
19702 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
19703 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
19704 /* Logic ops, types optional & ignored. */
19705 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19706 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19707 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19708 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19709 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19710 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19711 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19712 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19713 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
19714 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
19715 /* Bitfield ops, untyped. */
19716 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19717 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19718 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19719 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19720 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19721 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19722 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
19723 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19724 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19725 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19726 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19727 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19728 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19729 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
19730 back to neon_dyadic_if_su. */
19731 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
19732 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
19733 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
19734 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
19735 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
19736 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
19737 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
19738 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
19739 /* Comparison. Type I8 I16 I32 F32. */
19740 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
19741 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
19742 /* As above, D registers only. */
19743 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
19744 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
19745 /* Int and float variants, signedness unimportant. */
19746 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
19747 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
19748 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
19749 /* Add/sub take types I8 I16 I32 I64 F32. */
19750 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
19751 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
19752 /* vtst takes sizes 8, 16, 32. */
19753 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
19754 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
19755 /* VMUL takes I8 I16 I32 F32 P8. */
19756 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
19757 /* VQD{R}MULH takes S16 S32. */
19758 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19759 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19760 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19761 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19762 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
19763 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
19764 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
19765 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
19766 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
19767 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
19768 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
19769 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
19770 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
19771 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
19772 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
19773 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
19774
19775 /* Two address, int/float. Types S8 S16 S32 F32. */
19776 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
19777 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
19778
19779 /* Data processing with two registers and a shift amount. */
19780 /* Right shifts, and variants with rounding.
19781 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
19782 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
19783 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
19784 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
19785 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
19786 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
19787 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
19788 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
19789 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
19790 /* Shift and insert. Sizes accepted 8 16 32 64. */
19791 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
19792 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
19793 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
19794 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
19795 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
19796 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
19797 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
19798 /* Right shift immediate, saturating & narrowing, with rounding variants.
19799 Types accepted S16 S32 S64 U16 U32 U64. */
19800 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
19801 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
19802 /* As above, unsigned. Types accepted S16 S32 S64. */
19803 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
19804 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
19805 /* Right shift narrowing. Types accepted I16 I32 I64. */
19806 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
19807 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
19808 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
19809 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
19810 /* CVT with optional immediate for fixed-point variant. */
19811 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
19812
19813 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
19814 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
19815
19816 /* Data processing, three registers of different lengths. */
19817 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
19818 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
19819 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
19820 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
19821 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
19822 /* If not scalar, fall back to neon_dyadic_long.
19823 Vector types as above, scalar types S16 S32 U16 U32. */
19824 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
19825 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
19826 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
19827 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
19828 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
19829 /* Dyadic, narrowing insns. Types I16 I32 I64. */
19830 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19831 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19832 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19833 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19834 /* Saturating doubling multiplies. Types S16 S32. */
19835 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19836 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19837 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19838 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
19839 S16 S32 U16 U32. */
19840 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
19841
19842 /* Extract. Size 8. */
19843 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
19844 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
19845
19846 /* Two registers, miscellaneous. */
19847 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
19848 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
19849 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
19850 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
19851 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
19852 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
19853 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
19854 /* Vector replicate. Sizes 8 16 32. */
19855 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
19856 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
19857 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
19858 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
19859 /* VMOVN. Types I16 I32 I64. */
19860 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
19861 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
19862 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
19863 /* VQMOVUN. Types S16 S32 S64. */
19864 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
19865 /* VZIP / VUZP. Sizes 8 16 32. */
19866 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
19867 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
19868 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
19869 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
19870 /* VQABS / VQNEG. Types S8 S16 S32. */
19871 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
19872 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
19873 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
19874 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
19875 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
19876 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
19877 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
19878 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
19879 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
19880 /* Reciprocal estimates. Types U32 F32. */
19881 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
19882 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
19883 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
19884 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
19885 /* VCLS. Types S8 S16 S32. */
19886 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
19887 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
19888 /* VCLZ. Types I8 I16 I32. */
19889 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
19890 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
19891 /* VCNT. Size 8. */
19892 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
19893 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
19894 /* Two address, untyped. */
19895 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
19896 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
19897 /* VTRN. Sizes 8 16 32. */
19898 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
19899 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
19900
19901 /* Table lookup. Size 8. */
19902 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
19903 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
19904
19905 #undef THUMB_VARIANT
19906 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
19907 #undef ARM_VARIANT
19908 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
19909
19910 /* Neon element/structure load/store. */
19911 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
19912 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
19913 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
19914 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
19915 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
19916 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
19917 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
19918 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
19919
19920 #undef THUMB_VARIANT
19921 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
19922 #undef ARM_VARIANT
19923 #define ARM_VARIANT & fpu_vfp_ext_v3xd
19924 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
19925 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19926 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19927 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19928 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19929 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19930 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19931 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19932 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19933
19934 #undef THUMB_VARIANT
19935 #define THUMB_VARIANT & fpu_vfp_ext_v3
19936 #undef ARM_VARIANT
19937 #define ARM_VARIANT & fpu_vfp_ext_v3
19938
19939 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
19940 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19941 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19942 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19943 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19944 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19945 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19946 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19947 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19948
19949 #undef ARM_VARIANT
19950 #define ARM_VARIANT & fpu_vfp_ext_fma
19951 #undef THUMB_VARIANT
19952 #define THUMB_VARIANT & fpu_vfp_ext_fma
19953 /* Mnemonics shared by Neon and VFP. These are included in the
19954 VFP FMA variant; NEON and VFP FMA always includes the NEON
19955 FMA instructions. */
19956 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
19957 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
19958 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
19959 the v form should always be used. */
19960 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19961 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19962 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19963 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19964 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19965 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19966
19967 #undef THUMB_VARIANT
19968 #undef ARM_VARIANT
19969 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
19970
19971 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19972 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19973 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19974 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19975 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19976 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19977 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
19978 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
19979
19980 #undef ARM_VARIANT
19981 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
19982
19983 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
19984 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
19985 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
19986 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
19987 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
19988 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
19989 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
19990 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
19991 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
19992 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19993 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19994 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19995 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19996 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19997 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19998 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19999 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20000 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20001 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
20002 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
20003 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20004 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20005 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20006 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20007 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20008 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20009 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
20010 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
20011 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
20012 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
20013 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
20014 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
20015 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
20016 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
20017 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
20018 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
20019 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
20020 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20021 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20022 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20023 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20024 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20025 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20026 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20027 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20028 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20029 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
20030 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20031 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20032 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20033 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20034 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20035 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20036 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20037 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20038 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20039 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20040 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20041 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20042 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20043 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20044 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20045 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20046 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20047 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20048 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20049 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20050 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20051 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
20052 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
20053 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20054 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20055 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20056 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20057 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20058 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20059 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20060 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20061 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20062 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20063 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20064 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20065 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20066 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20067 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20068 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20069 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20070 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20071 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
20072 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20073 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20074 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20075 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20076 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20077 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20078 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20079 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20080 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20081 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20082 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20083 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20084 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20085 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20086 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20087 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20088 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20089 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20090 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20091 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20092 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20093 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
20094 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20095 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20096 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20097 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20098 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20099 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20100 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20101 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20102 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20103 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20104 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20105 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20106 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20107 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20108 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20109 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20110 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20111 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20112 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20113 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20114 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
20115 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
20116 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20117 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20118 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20119 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20120 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20121 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20122 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20123 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20124 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20125 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
20126 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
20127 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
20128 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
20129 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
20130 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
20131 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20132 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20133 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20134 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
20135 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
20136 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
20137 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
20138 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
20139 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
20140 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20141 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20142 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20143 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20144 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
20145
20146 #undef ARM_VARIANT
20147 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
20148
20149 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
20150 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
20151 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
20152 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
20153 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
20154 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
20155 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20156 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20157 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20158 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20159 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20160 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20161 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20162 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20163 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20164 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20165 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20166 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20167 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20168 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20169 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
20170 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20171 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20172 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20173 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20174 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20175 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20176 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20177 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20178 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20179 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20180 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20181 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20182 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20183 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20184 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20185 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20186 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20187 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20188 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20189 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20190 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20191 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20192 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20193 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20194 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20195 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20196 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20197 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20198 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20199 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20200 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20201 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20202 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20203 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20204 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20205 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20206
20207 #undef ARM_VARIANT
20208 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
20209
20210 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
20211 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
20212 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
20213 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
20214 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
20215 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
20216 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
20217 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
20218 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
20219 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
20220 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
20221 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
20222 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
20223 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
20224 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
20225 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
20226 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
20227 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
20228 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
20229 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
20230 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
20231 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
20232 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
20233 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
20234 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
20235 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
20236 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
20237 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
20238 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
20239 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
20240 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
20241 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
20242 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
20243 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
20244 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
20245 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
20246 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
20247 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
20248 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
20249 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
20250 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
20251 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
20252 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
20253 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
20254 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
20255 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
20256 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
20257 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
20258 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
20259 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
20260 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
20261 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
20262 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
20263 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
20264 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
20265 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
20266 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
20267 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
20268 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
20269 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
20270 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
20271 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
20272 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
20273 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
20274 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20275 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
20276 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20277 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
20278 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20279 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
20280 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20281 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20282 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
20283 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
20284 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
20285 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
20286 };
20287 #undef ARM_VARIANT
20288 #undef THUMB_VARIANT
20289 #undef TCE
20290 #undef TUE
20291 #undef TUF
20292 #undef TCC
20293 #undef cCE
20294 #undef cCL
20295 #undef C3E
20296 #undef CE
20297 #undef CM
20298 #undef UE
20299 #undef UF
20300 #undef UT
20301 #undef NUF
20302 #undef nUF
20303 #undef NCE
20304 #undef nCE
20305 #undef OPS0
20306 #undef OPS1
20307 #undef OPS2
20308 #undef OPS3
20309 #undef OPS4
20310 #undef OPS5
20311 #undef OPS6
20312 #undef do_0
20313 \f
20314 /* MD interface: bits in the object file. */
20315
20316 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
20317 for use in the a.out file, and stores them in the array pointed to by buf.
20318 This knows about the endian-ness of the target machine and does
20319 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
20320 2 (short) and 4 (long) Floating numbers are put out as a series of
20321 LITTLENUMS (shorts, here at least). */
20322
20323 void
20324 md_number_to_chars (char * buf, valueT val, int n)
20325 {
20326 if (target_big_endian)
20327 number_to_chars_bigendian (buf, val, n);
20328 else
20329 number_to_chars_littleendian (buf, val, n);
20330 }
20331
20332 static valueT
20333 md_chars_to_number (char * buf, int n)
20334 {
20335 valueT result = 0;
20336 unsigned char * where = (unsigned char *) buf;
20337
20338 if (target_big_endian)
20339 {
20340 while (n--)
20341 {
20342 result <<= 8;
20343 result |= (*where++ & 255);
20344 }
20345 }
20346 else
20347 {
20348 while (n--)
20349 {
20350 result <<= 8;
20351 result |= (where[n] & 255);
20352 }
20353 }
20354
20355 return result;
20356 }
20357
20358 /* MD interface: Sections. */
20359
20360 /* Calculate the maximum variable size (i.e., excluding fr_fix)
20361 that an rs_machine_dependent frag may reach. */
20362
20363 unsigned int
20364 arm_frag_max_var (fragS *fragp)
20365 {
20366 /* We only use rs_machine_dependent for variable-size Thumb instructions,
20367 which are either THUMB_SIZE (2) or INSN_SIZE (4).
20368
20369 Note that we generate relaxable instructions even for cases that don't
20370 really need it, like an immediate that's a trivial constant. So we're
20371 overestimating the instruction size for some of those cases. Rather
20372 than putting more intelligence here, it would probably be better to
20373 avoid generating a relaxation frag in the first place when it can be
20374 determined up front that a short instruction will suffice. */
20375
20376 gas_assert (fragp->fr_type == rs_machine_dependent);
20377 return INSN_SIZE;
20378 }
20379
20380 /* Estimate the size of a frag before relaxing. Assume everything fits in
20381 2 bytes. */
20382
20383 int
20384 md_estimate_size_before_relax (fragS * fragp,
20385 segT segtype ATTRIBUTE_UNUSED)
20386 {
20387 fragp->fr_var = 2;
20388 return 2;
20389 }
20390
20391 /* Convert a machine dependent frag. */
20392
20393 void
20394 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
20395 {
20396 unsigned long insn;
20397 unsigned long old_op;
20398 char *buf;
20399 expressionS exp;
20400 fixS *fixp;
20401 int reloc_type;
20402 int pc_rel;
20403 int opcode;
20404
20405 buf = fragp->fr_literal + fragp->fr_fix;
20406
20407 old_op = bfd_get_16(abfd, buf);
20408 if (fragp->fr_symbol)
20409 {
20410 exp.X_op = O_symbol;
20411 exp.X_add_symbol = fragp->fr_symbol;
20412 }
20413 else
20414 {
20415 exp.X_op = O_constant;
20416 }
20417 exp.X_add_number = fragp->fr_offset;
20418 opcode = fragp->fr_subtype;
20419 switch (opcode)
20420 {
20421 case T_MNEM_ldr_pc:
20422 case T_MNEM_ldr_pc2:
20423 case T_MNEM_ldr_sp:
20424 case T_MNEM_str_sp:
20425 case T_MNEM_ldr:
20426 case T_MNEM_ldrb:
20427 case T_MNEM_ldrh:
20428 case T_MNEM_str:
20429 case T_MNEM_strb:
20430 case T_MNEM_strh:
20431 if (fragp->fr_var == 4)
20432 {
20433 insn = THUMB_OP32 (opcode);
20434 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
20435 {
20436 insn |= (old_op & 0x700) << 4;
20437 }
20438 else
20439 {
20440 insn |= (old_op & 7) << 12;
20441 insn |= (old_op & 0x38) << 13;
20442 }
20443 insn |= 0x00000c00;
20444 put_thumb32_insn (buf, insn);
20445 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
20446 }
20447 else
20448 {
20449 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
20450 }
20451 pc_rel = (opcode == T_MNEM_ldr_pc2);
20452 break;
20453 case T_MNEM_adr:
20454 if (fragp->fr_var == 4)
20455 {
20456 insn = THUMB_OP32 (opcode);
20457 insn |= (old_op & 0xf0) << 4;
20458 put_thumb32_insn (buf, insn);
20459 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
20460 }
20461 else
20462 {
20463 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
20464 exp.X_add_number -= 4;
20465 }
20466 pc_rel = 1;
20467 break;
20468 case T_MNEM_mov:
20469 case T_MNEM_movs:
20470 case T_MNEM_cmp:
20471 case T_MNEM_cmn:
20472 if (fragp->fr_var == 4)
20473 {
20474 int r0off = (opcode == T_MNEM_mov
20475 || opcode == T_MNEM_movs) ? 0 : 8;
20476 insn = THUMB_OP32 (opcode);
20477 insn = (insn & 0xe1ffffff) | 0x10000000;
20478 insn |= (old_op & 0x700) << r0off;
20479 put_thumb32_insn (buf, insn);
20480 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
20481 }
20482 else
20483 {
20484 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
20485 }
20486 pc_rel = 0;
20487 break;
20488 case T_MNEM_b:
20489 if (fragp->fr_var == 4)
20490 {
20491 insn = THUMB_OP32(opcode);
20492 put_thumb32_insn (buf, insn);
20493 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
20494 }
20495 else
20496 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
20497 pc_rel = 1;
20498 break;
20499 case T_MNEM_bcond:
20500 if (fragp->fr_var == 4)
20501 {
20502 insn = THUMB_OP32(opcode);
20503 insn |= (old_op & 0xf00) << 14;
20504 put_thumb32_insn (buf, insn);
20505 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
20506 }
20507 else
20508 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
20509 pc_rel = 1;
20510 break;
20511 case T_MNEM_add_sp:
20512 case T_MNEM_add_pc:
20513 case T_MNEM_inc_sp:
20514 case T_MNEM_dec_sp:
20515 if (fragp->fr_var == 4)
20516 {
20517 /* ??? Choose between add and addw. */
20518 insn = THUMB_OP32 (opcode);
20519 insn |= (old_op & 0xf0) << 4;
20520 put_thumb32_insn (buf, insn);
20521 if (opcode == T_MNEM_add_pc)
20522 reloc_type = BFD_RELOC_ARM_T32_IMM12;
20523 else
20524 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
20525 }
20526 else
20527 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
20528 pc_rel = 0;
20529 break;
20530
20531 case T_MNEM_addi:
20532 case T_MNEM_addis:
20533 case T_MNEM_subi:
20534 case T_MNEM_subis:
20535 if (fragp->fr_var == 4)
20536 {
20537 insn = THUMB_OP32 (opcode);
20538 insn |= (old_op & 0xf0) << 4;
20539 insn |= (old_op & 0xf) << 16;
20540 put_thumb32_insn (buf, insn);
20541 if (insn & (1 << 20))
20542 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
20543 else
20544 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
20545 }
20546 else
20547 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
20548 pc_rel = 0;
20549 break;
20550 default:
20551 abort ();
20552 }
20553 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
20554 (enum bfd_reloc_code_real) reloc_type);
20555 fixp->fx_file = fragp->fr_file;
20556 fixp->fx_line = fragp->fr_line;
20557 fragp->fr_fix += fragp->fr_var;
20558
20559 /* Set whether we use thumb-2 ISA based on final relaxation results. */
20560 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
20561 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
20562 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
20563 }
20564
20565 /* Return the size of a relaxable immediate operand instruction.
20566 SHIFT and SIZE specify the form of the allowable immediate. */
20567 static int
20568 relax_immediate (fragS *fragp, int size, int shift)
20569 {
20570 offsetT offset;
20571 offsetT mask;
20572 offsetT low;
20573
20574 /* ??? Should be able to do better than this. */
20575 if (fragp->fr_symbol)
20576 return 4;
20577
20578 low = (1 << shift) - 1;
20579 mask = (1 << (shift + size)) - (1 << shift);
20580 offset = fragp->fr_offset;
20581 /* Force misaligned offsets to 32-bit variant. */
20582 if (offset & low)
20583 return 4;
20584 if (offset & ~mask)
20585 return 4;
20586 return 2;
20587 }
20588
20589 /* Get the address of a symbol during relaxation. */
20590 static addressT
20591 relaxed_symbol_addr (fragS *fragp, long stretch)
20592 {
20593 fragS *sym_frag;
20594 addressT addr;
20595 symbolS *sym;
20596
20597 sym = fragp->fr_symbol;
20598 sym_frag = symbol_get_frag (sym);
20599 know (S_GET_SEGMENT (sym) != absolute_section
20600 || sym_frag == &zero_address_frag);
20601 addr = S_GET_VALUE (sym) + fragp->fr_offset;
20602
20603 /* If frag has yet to be reached on this pass, assume it will
20604 move by STRETCH just as we did. If this is not so, it will
20605 be because some frag between grows, and that will force
20606 another pass. */
20607
20608 if (stretch != 0
20609 && sym_frag->relax_marker != fragp->relax_marker)
20610 {
20611 fragS *f;
20612
20613 /* Adjust stretch for any alignment frag. Note that if have
20614 been expanding the earlier code, the symbol may be
20615 defined in what appears to be an earlier frag. FIXME:
20616 This doesn't handle the fr_subtype field, which specifies
20617 a maximum number of bytes to skip when doing an
20618 alignment. */
20619 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
20620 {
20621 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
20622 {
20623 if (stretch < 0)
20624 stretch = - ((- stretch)
20625 & ~ ((1 << (int) f->fr_offset) - 1));
20626 else
20627 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
20628 if (stretch == 0)
20629 break;
20630 }
20631 }
20632 if (f != NULL)
20633 addr += stretch;
20634 }
20635
20636 return addr;
20637 }
20638
20639 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
20640 load. */
20641 static int
20642 relax_adr (fragS *fragp, asection *sec, long stretch)
20643 {
20644 addressT addr;
20645 offsetT val;
20646
20647 /* Assume worst case for symbols not known to be in the same section. */
20648 if (fragp->fr_symbol == NULL
20649 || !S_IS_DEFINED (fragp->fr_symbol)
20650 || sec != S_GET_SEGMENT (fragp->fr_symbol)
20651 || S_IS_WEAK (fragp->fr_symbol))
20652 return 4;
20653
20654 val = relaxed_symbol_addr (fragp, stretch);
20655 addr = fragp->fr_address + fragp->fr_fix;
20656 addr = (addr + 4) & ~3;
20657 /* Force misaligned targets to 32-bit variant. */
20658 if (val & 3)
20659 return 4;
20660 val -= addr;
20661 if (val < 0 || val > 1020)
20662 return 4;
20663 return 2;
20664 }
20665
20666 /* Return the size of a relaxable add/sub immediate instruction. */
20667 static int
20668 relax_addsub (fragS *fragp, asection *sec)
20669 {
20670 char *buf;
20671 int op;
20672
20673 buf = fragp->fr_literal + fragp->fr_fix;
20674 op = bfd_get_16(sec->owner, buf);
20675 if ((op & 0xf) == ((op >> 4) & 0xf))
20676 return relax_immediate (fragp, 8, 0);
20677 else
20678 return relax_immediate (fragp, 3, 0);
20679 }
20680
20681 /* Return TRUE iff the definition of symbol S could be pre-empted
20682 (overridden) at link or load time. */
20683 static bfd_boolean
20684 symbol_preemptible (symbolS *s)
20685 {
20686 /* Weak symbols can always be pre-empted. */
20687 if (S_IS_WEAK (s))
20688 return TRUE;
20689
20690 /* Non-global symbols cannot be pre-empted. */
20691 if (! S_IS_EXTERNAL (s))
20692 return FALSE;
20693
20694 #ifdef OBJ_ELF
20695 /* In ELF, a global symbol can be marked protected, or private. In that
20696 case it can't be pre-empted (other definitions in the same link unit
20697 would violate the ODR). */
20698 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
20699 return FALSE;
20700 #endif
20701
20702 /* Other global symbols might be pre-empted. */
20703 return TRUE;
20704 }
20705
20706 /* Return the size of a relaxable branch instruction. BITS is the
20707 size of the offset field in the narrow instruction. */
20708
20709 static int
20710 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
20711 {
20712 addressT addr;
20713 offsetT val;
20714 offsetT limit;
20715
20716 /* Assume worst case for symbols not known to be in the same section. */
20717 if (!S_IS_DEFINED (fragp->fr_symbol)
20718 || sec != S_GET_SEGMENT (fragp->fr_symbol)
20719 || S_IS_WEAK (fragp->fr_symbol))
20720 return 4;
20721
20722 #ifdef OBJ_ELF
20723 /* A branch to a function in ARM state will require interworking. */
20724 if (S_IS_DEFINED (fragp->fr_symbol)
20725 && ARM_IS_FUNC (fragp->fr_symbol))
20726 return 4;
20727 #endif
20728
20729 if (symbol_preemptible (fragp->fr_symbol))
20730 return 4;
20731
20732 val = relaxed_symbol_addr (fragp, stretch);
20733 addr = fragp->fr_address + fragp->fr_fix + 4;
20734 val -= addr;
20735
20736 /* Offset is a signed value *2 */
20737 limit = 1 << bits;
20738 if (val >= limit || val < -limit)
20739 return 4;
20740 return 2;
20741 }
20742
20743
20744 /* Relax a machine dependent frag. This returns the amount by which
20745 the current size of the frag should change. */
20746
20747 int
20748 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
20749 {
20750 int oldsize;
20751 int newsize;
20752
20753 oldsize = fragp->fr_var;
20754 switch (fragp->fr_subtype)
20755 {
20756 case T_MNEM_ldr_pc2:
20757 newsize = relax_adr (fragp, sec, stretch);
20758 break;
20759 case T_MNEM_ldr_pc:
20760 case T_MNEM_ldr_sp:
20761 case T_MNEM_str_sp:
20762 newsize = relax_immediate (fragp, 8, 2);
20763 break;
20764 case T_MNEM_ldr:
20765 case T_MNEM_str:
20766 newsize = relax_immediate (fragp, 5, 2);
20767 break;
20768 case T_MNEM_ldrh:
20769 case T_MNEM_strh:
20770 newsize = relax_immediate (fragp, 5, 1);
20771 break;
20772 case T_MNEM_ldrb:
20773 case T_MNEM_strb:
20774 newsize = relax_immediate (fragp, 5, 0);
20775 break;
20776 case T_MNEM_adr:
20777 newsize = relax_adr (fragp, sec, stretch);
20778 break;
20779 case T_MNEM_mov:
20780 case T_MNEM_movs:
20781 case T_MNEM_cmp:
20782 case T_MNEM_cmn:
20783 newsize = relax_immediate (fragp, 8, 0);
20784 break;
20785 case T_MNEM_b:
20786 newsize = relax_branch (fragp, sec, 11, stretch);
20787 break;
20788 case T_MNEM_bcond:
20789 newsize = relax_branch (fragp, sec, 8, stretch);
20790 break;
20791 case T_MNEM_add_sp:
20792 case T_MNEM_add_pc:
20793 newsize = relax_immediate (fragp, 8, 2);
20794 break;
20795 case T_MNEM_inc_sp:
20796 case T_MNEM_dec_sp:
20797 newsize = relax_immediate (fragp, 7, 2);
20798 break;
20799 case T_MNEM_addi:
20800 case T_MNEM_addis:
20801 case T_MNEM_subi:
20802 case T_MNEM_subis:
20803 newsize = relax_addsub (fragp, sec);
20804 break;
20805 default:
20806 abort ();
20807 }
20808
20809 fragp->fr_var = newsize;
20810 /* Freeze wide instructions that are at or before the same location as
20811 in the previous pass. This avoids infinite loops.
20812 Don't freeze them unconditionally because targets may be artificially
20813 misaligned by the expansion of preceding frags. */
20814 if (stretch <= 0 && newsize > 2)
20815 {
20816 md_convert_frag (sec->owner, sec, fragp);
20817 frag_wane (fragp);
20818 }
20819
20820 return newsize - oldsize;
20821 }
20822
20823 /* Round up a section size to the appropriate boundary. */
20824
20825 valueT
20826 md_section_align (segT segment ATTRIBUTE_UNUSED,
20827 valueT size)
20828 {
20829 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
20830 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
20831 {
20832 /* For a.out, force the section size to be aligned. If we don't do
20833 this, BFD will align it for us, but it will not write out the
20834 final bytes of the section. This may be a bug in BFD, but it is
20835 easier to fix it here since that is how the other a.out targets
20836 work. */
20837 int align;
20838
20839 align = bfd_get_section_alignment (stdoutput, segment);
20840 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
20841 }
20842 #endif
20843
20844 return size;
20845 }
20846
20847 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
20848 of an rs_align_code fragment. */
20849
20850 void
20851 arm_handle_align (fragS * fragP)
20852 {
20853 static char const arm_noop[2][2][4] =
20854 {
20855 { /* ARMv1 */
20856 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
20857 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
20858 },
20859 { /* ARMv6k */
20860 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
20861 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
20862 },
20863 };
20864 static char const thumb_noop[2][2][2] =
20865 {
20866 { /* Thumb-1 */
20867 {0xc0, 0x46}, /* LE */
20868 {0x46, 0xc0}, /* BE */
20869 },
20870 { /* Thumb-2 */
20871 {0x00, 0xbf}, /* LE */
20872 {0xbf, 0x00} /* BE */
20873 }
20874 };
20875 static char const wide_thumb_noop[2][4] =
20876 { /* Wide Thumb-2 */
20877 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
20878 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
20879 };
20880
20881 unsigned bytes, fix, noop_size;
20882 char * p;
20883 const char * noop;
20884 const char *narrow_noop = NULL;
20885 #ifdef OBJ_ELF
20886 enum mstate state;
20887 #endif
20888
20889 if (fragP->fr_type != rs_align_code)
20890 return;
20891
20892 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
20893 p = fragP->fr_literal + fragP->fr_fix;
20894 fix = 0;
20895
20896 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
20897 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
20898
20899 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
20900
20901 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
20902 {
20903 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
20904 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
20905 {
20906 narrow_noop = thumb_noop[1][target_big_endian];
20907 noop = wide_thumb_noop[target_big_endian];
20908 }
20909 else
20910 noop = thumb_noop[0][target_big_endian];
20911 noop_size = 2;
20912 #ifdef OBJ_ELF
20913 state = MAP_THUMB;
20914 #endif
20915 }
20916 else
20917 {
20918 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
20919 ? selected_cpu : arm_arch_none,
20920 arm_ext_v6k) != 0]
20921 [target_big_endian];
20922 noop_size = 4;
20923 #ifdef OBJ_ELF
20924 state = MAP_ARM;
20925 #endif
20926 }
20927
20928 fragP->fr_var = noop_size;
20929
20930 if (bytes & (noop_size - 1))
20931 {
20932 fix = bytes & (noop_size - 1);
20933 #ifdef OBJ_ELF
20934 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
20935 #endif
20936 memset (p, 0, fix);
20937 p += fix;
20938 bytes -= fix;
20939 }
20940
20941 if (narrow_noop)
20942 {
20943 if (bytes & noop_size)
20944 {
20945 /* Insert a narrow noop. */
20946 memcpy (p, narrow_noop, noop_size);
20947 p += noop_size;
20948 bytes -= noop_size;
20949 fix += noop_size;
20950 }
20951
20952 /* Use wide noops for the remainder */
20953 noop_size = 4;
20954 }
20955
20956 while (bytes >= noop_size)
20957 {
20958 memcpy (p, noop, noop_size);
20959 p += noop_size;
20960 bytes -= noop_size;
20961 fix += noop_size;
20962 }
20963
20964 fragP->fr_fix += fix;
20965 }
20966
20967 /* Called from md_do_align. Used to create an alignment
20968 frag in a code section. */
20969
20970 void
20971 arm_frag_align_code (int n, int max)
20972 {
20973 char * p;
20974
20975 /* We assume that there will never be a requirement
20976 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
20977 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
20978 {
20979 char err_msg[128];
20980
20981 sprintf (err_msg,
20982 _("alignments greater than %d bytes not supported in .text sections."),
20983 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20984 as_fatal ("%s", err_msg);
20985 }
20986
20987 p = frag_var (rs_align_code,
20988 MAX_MEM_FOR_RS_ALIGN_CODE,
20989 1,
20990 (relax_substateT) max,
20991 (symbolS *) NULL,
20992 (offsetT) n,
20993 (char *) NULL);
20994 *p = 0;
20995 }
20996
20997 /* Perform target specific initialisation of a frag.
20998 Note - despite the name this initialisation is not done when the frag
20999 is created, but only when its type is assigned. A frag can be created
21000 and used a long time before its type is set, so beware of assuming that
21001 this initialisationis performed first. */
21002
21003 #ifndef OBJ_ELF
21004 void
21005 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
21006 {
21007 /* Record whether this frag is in an ARM or a THUMB area. */
21008 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
21009 }
21010
21011 #else /* OBJ_ELF is defined. */
21012 void
21013 arm_init_frag (fragS * fragP, int max_chars)
21014 {
21015 /* If the current ARM vs THUMB mode has not already
21016 been recorded into this frag then do so now. */
21017 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
21018 {
21019 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
21020
21021 /* Record a mapping symbol for alignment frags. We will delete this
21022 later if the alignment ends up empty. */
21023 switch (fragP->fr_type)
21024 {
21025 case rs_align:
21026 case rs_align_test:
21027 case rs_fill:
21028 mapping_state_2 (MAP_DATA, max_chars);
21029 break;
21030 case rs_align_code:
21031 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
21032 break;
21033 default:
21034 break;
21035 }
21036 }
21037 }
21038
21039 /* When we change sections we need to issue a new mapping symbol. */
21040
21041 void
21042 arm_elf_change_section (void)
21043 {
21044 /* Link an unlinked unwind index table section to the .text section. */
21045 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
21046 && elf_linked_to_section (now_seg) == NULL)
21047 elf_linked_to_section (now_seg) = text_section;
21048 }
21049
21050 int
21051 arm_elf_section_type (const char * str, size_t len)
21052 {
21053 if (len == 5 && strncmp (str, "exidx", 5) == 0)
21054 return SHT_ARM_EXIDX;
21055
21056 return -1;
21057 }
21058 \f
21059 /* Code to deal with unwinding tables. */
21060
21061 static void add_unwind_adjustsp (offsetT);
21062
21063 /* Generate any deferred unwind frame offset. */
21064
21065 static void
21066 flush_pending_unwind (void)
21067 {
21068 offsetT offset;
21069
21070 offset = unwind.pending_offset;
21071 unwind.pending_offset = 0;
21072 if (offset != 0)
21073 add_unwind_adjustsp (offset);
21074 }
21075
21076 /* Add an opcode to this list for this function. Two-byte opcodes should
21077 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
21078 order. */
21079
21080 static void
21081 add_unwind_opcode (valueT op, int length)
21082 {
21083 /* Add any deferred stack adjustment. */
21084 if (unwind.pending_offset)
21085 flush_pending_unwind ();
21086
21087 unwind.sp_restored = 0;
21088
21089 if (unwind.opcode_count + length > unwind.opcode_alloc)
21090 {
21091 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
21092 if (unwind.opcodes)
21093 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
21094 unwind.opcode_alloc);
21095 else
21096 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
21097 }
21098 while (length > 0)
21099 {
21100 length--;
21101 unwind.opcodes[unwind.opcode_count] = op & 0xff;
21102 op >>= 8;
21103 unwind.opcode_count++;
21104 }
21105 }
21106
21107 /* Add unwind opcodes to adjust the stack pointer. */
21108
21109 static void
21110 add_unwind_adjustsp (offsetT offset)
21111 {
21112 valueT op;
21113
21114 if (offset > 0x200)
21115 {
21116 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
21117 char bytes[5];
21118 int n;
21119 valueT o;
21120
21121 /* Long form: 0xb2, uleb128. */
21122 /* This might not fit in a word so add the individual bytes,
21123 remembering the list is built in reverse order. */
21124 o = (valueT) ((offset - 0x204) >> 2);
21125 if (o == 0)
21126 add_unwind_opcode (0, 1);
21127
21128 /* Calculate the uleb128 encoding of the offset. */
21129 n = 0;
21130 while (o)
21131 {
21132 bytes[n] = o & 0x7f;
21133 o >>= 7;
21134 if (o)
21135 bytes[n] |= 0x80;
21136 n++;
21137 }
21138 /* Add the insn. */
21139 for (; n; n--)
21140 add_unwind_opcode (bytes[n - 1], 1);
21141 add_unwind_opcode (0xb2, 1);
21142 }
21143 else if (offset > 0x100)
21144 {
21145 /* Two short opcodes. */
21146 add_unwind_opcode (0x3f, 1);
21147 op = (offset - 0x104) >> 2;
21148 add_unwind_opcode (op, 1);
21149 }
21150 else if (offset > 0)
21151 {
21152 /* Short opcode. */
21153 op = (offset - 4) >> 2;
21154 add_unwind_opcode (op, 1);
21155 }
21156 else if (offset < 0)
21157 {
21158 offset = -offset;
21159 while (offset > 0x100)
21160 {
21161 add_unwind_opcode (0x7f, 1);
21162 offset -= 0x100;
21163 }
21164 op = ((offset - 4) >> 2) | 0x40;
21165 add_unwind_opcode (op, 1);
21166 }
21167 }
21168
21169 /* Finish the list of unwind opcodes for this function. */
21170 static void
21171 finish_unwind_opcodes (void)
21172 {
21173 valueT op;
21174
21175 if (unwind.fp_used)
21176 {
21177 /* Adjust sp as necessary. */
21178 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
21179 flush_pending_unwind ();
21180
21181 /* After restoring sp from the frame pointer. */
21182 op = 0x90 | unwind.fp_reg;
21183 add_unwind_opcode (op, 1);
21184 }
21185 else
21186 flush_pending_unwind ();
21187 }
21188
21189
21190 /* Start an exception table entry. If idx is nonzero this is an index table
21191 entry. */
21192
21193 static void
21194 start_unwind_section (const segT text_seg, int idx)
21195 {
21196 const char * text_name;
21197 const char * prefix;
21198 const char * prefix_once;
21199 const char * group_name;
21200 size_t prefix_len;
21201 size_t text_len;
21202 char * sec_name;
21203 size_t sec_name_len;
21204 int type;
21205 int flags;
21206 int linkonce;
21207
21208 if (idx)
21209 {
21210 prefix = ELF_STRING_ARM_unwind;
21211 prefix_once = ELF_STRING_ARM_unwind_once;
21212 type = SHT_ARM_EXIDX;
21213 }
21214 else
21215 {
21216 prefix = ELF_STRING_ARM_unwind_info;
21217 prefix_once = ELF_STRING_ARM_unwind_info_once;
21218 type = SHT_PROGBITS;
21219 }
21220
21221 text_name = segment_name (text_seg);
21222 if (streq (text_name, ".text"))
21223 text_name = "";
21224
21225 if (strncmp (text_name, ".gnu.linkonce.t.",
21226 strlen (".gnu.linkonce.t.")) == 0)
21227 {
21228 prefix = prefix_once;
21229 text_name += strlen (".gnu.linkonce.t.");
21230 }
21231
21232 prefix_len = strlen (prefix);
21233 text_len = strlen (text_name);
21234 sec_name_len = prefix_len + text_len;
21235 sec_name = (char *) xmalloc (sec_name_len + 1);
21236 memcpy (sec_name, prefix, prefix_len);
21237 memcpy (sec_name + prefix_len, text_name, text_len);
21238 sec_name[prefix_len + text_len] = '\0';
21239
21240 flags = SHF_ALLOC;
21241 linkonce = 0;
21242 group_name = 0;
21243
21244 /* Handle COMDAT group. */
21245 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
21246 {
21247 group_name = elf_group_name (text_seg);
21248 if (group_name == NULL)
21249 {
21250 as_bad (_("Group section `%s' has no group signature"),
21251 segment_name (text_seg));
21252 ignore_rest_of_line ();
21253 return;
21254 }
21255 flags |= SHF_GROUP;
21256 linkonce = 1;
21257 }
21258
21259 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
21260
21261 /* Set the section link for index tables. */
21262 if (idx)
21263 elf_linked_to_section (now_seg) = text_seg;
21264 }
21265
21266
21267 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
21268 personality routine data. Returns zero, or the index table value for
21269 an inline entry. */
21270
21271 static valueT
21272 create_unwind_entry (int have_data)
21273 {
21274 int size;
21275 addressT where;
21276 char *ptr;
21277 /* The current word of data. */
21278 valueT data;
21279 /* The number of bytes left in this word. */
21280 int n;
21281
21282 finish_unwind_opcodes ();
21283
21284 /* Remember the current text section. */
21285 unwind.saved_seg = now_seg;
21286 unwind.saved_subseg = now_subseg;
21287
21288 start_unwind_section (now_seg, 0);
21289
21290 if (unwind.personality_routine == NULL)
21291 {
21292 if (unwind.personality_index == -2)
21293 {
21294 if (have_data)
21295 as_bad (_("handlerdata in cantunwind frame"));
21296 return 1; /* EXIDX_CANTUNWIND. */
21297 }
21298
21299 /* Use a default personality routine if none is specified. */
21300 if (unwind.personality_index == -1)
21301 {
21302 if (unwind.opcode_count > 3)
21303 unwind.personality_index = 1;
21304 else
21305 unwind.personality_index = 0;
21306 }
21307
21308 /* Space for the personality routine entry. */
21309 if (unwind.personality_index == 0)
21310 {
21311 if (unwind.opcode_count > 3)
21312 as_bad (_("too many unwind opcodes for personality routine 0"));
21313
21314 if (!have_data)
21315 {
21316 /* All the data is inline in the index table. */
21317 data = 0x80;
21318 n = 3;
21319 while (unwind.opcode_count > 0)
21320 {
21321 unwind.opcode_count--;
21322 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
21323 n--;
21324 }
21325
21326 /* Pad with "finish" opcodes. */
21327 while (n--)
21328 data = (data << 8) | 0xb0;
21329
21330 return data;
21331 }
21332 size = 0;
21333 }
21334 else
21335 /* We get two opcodes "free" in the first word. */
21336 size = unwind.opcode_count - 2;
21337 }
21338 else
21339 {
21340 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
21341 if (unwind.personality_index != -1)
21342 {
21343 as_bad (_("attempt to recreate an unwind entry"));
21344 return 1;
21345 }
21346
21347 /* An extra byte is required for the opcode count. */
21348 size = unwind.opcode_count + 1;
21349 }
21350
21351 size = (size + 3) >> 2;
21352 if (size > 0xff)
21353 as_bad (_("too many unwind opcodes"));
21354
21355 frag_align (2, 0, 0);
21356 record_alignment (now_seg, 2);
21357 unwind.table_entry = expr_build_dot ();
21358
21359 /* Allocate the table entry. */
21360 ptr = frag_more ((size << 2) + 4);
21361 /* PR 13449: Zero the table entries in case some of them are not used. */
21362 memset (ptr, 0, (size << 2) + 4);
21363 where = frag_now_fix () - ((size << 2) + 4);
21364
21365 switch (unwind.personality_index)
21366 {
21367 case -1:
21368 /* ??? Should this be a PLT generating relocation? */
21369 /* Custom personality routine. */
21370 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
21371 BFD_RELOC_ARM_PREL31);
21372
21373 where += 4;
21374 ptr += 4;
21375
21376 /* Set the first byte to the number of additional words. */
21377 data = size > 0 ? size - 1 : 0;
21378 n = 3;
21379 break;
21380
21381 /* ABI defined personality routines. */
21382 case 0:
21383 /* Three opcodes bytes are packed into the first word. */
21384 data = 0x80;
21385 n = 3;
21386 break;
21387
21388 case 1:
21389 case 2:
21390 /* The size and first two opcode bytes go in the first word. */
21391 data = ((0x80 + unwind.personality_index) << 8) | size;
21392 n = 2;
21393 break;
21394
21395 default:
21396 /* Should never happen. */
21397 abort ();
21398 }
21399
21400 /* Pack the opcodes into words (MSB first), reversing the list at the same
21401 time. */
21402 while (unwind.opcode_count > 0)
21403 {
21404 if (n == 0)
21405 {
21406 md_number_to_chars (ptr, data, 4);
21407 ptr += 4;
21408 n = 4;
21409 data = 0;
21410 }
21411 unwind.opcode_count--;
21412 n--;
21413 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
21414 }
21415
21416 /* Finish off the last word. */
21417 if (n < 4)
21418 {
21419 /* Pad with "finish" opcodes. */
21420 while (n--)
21421 data = (data << 8) | 0xb0;
21422
21423 md_number_to_chars (ptr, data, 4);
21424 }
21425
21426 if (!have_data)
21427 {
21428 /* Add an empty descriptor if there is no user-specified data. */
21429 ptr = frag_more (4);
21430 md_number_to_chars (ptr, 0, 4);
21431 }
21432
21433 return 0;
21434 }
21435
21436
21437 /* Initialize the DWARF-2 unwind information for this procedure. */
21438
21439 void
21440 tc_arm_frame_initial_instructions (void)
21441 {
21442 cfi_add_CFA_def_cfa (REG_SP, 0);
21443 }
21444 #endif /* OBJ_ELF */
21445
21446 /* Convert REGNAME to a DWARF-2 register number. */
21447
21448 int
21449 tc_arm_regname_to_dw2regnum (char *regname)
21450 {
21451 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
21452 if (reg != FAIL)
21453 return reg;
21454
21455 /* PR 16694: Allow VFP registers as well. */
21456 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
21457 if (reg != FAIL)
21458 return 64 + reg;
21459
21460 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
21461 if (reg != FAIL)
21462 return reg + 256;
21463
21464 return -1;
21465 }
21466
21467 #ifdef TE_PE
21468 void
21469 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
21470 {
21471 expressionS exp;
21472
21473 exp.X_op = O_secrel;
21474 exp.X_add_symbol = symbol;
21475 exp.X_add_number = 0;
21476 emit_expr (&exp, size);
21477 }
21478 #endif
21479
21480 /* MD interface: Symbol and relocation handling. */
21481
21482 /* Return the address within the segment that a PC-relative fixup is
21483 relative to. For ARM, PC-relative fixups applied to instructions
21484 are generally relative to the location of the fixup plus 8 bytes.
21485 Thumb branches are offset by 4, and Thumb loads relative to PC
21486 require special handling. */
21487
21488 long
21489 md_pcrel_from_section (fixS * fixP, segT seg)
21490 {
21491 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
21492
21493 /* If this is pc-relative and we are going to emit a relocation
21494 then we just want to put out any pipeline compensation that the linker
21495 will need. Otherwise we want to use the calculated base.
21496 For WinCE we skip the bias for externals as well, since this
21497 is how the MS ARM-CE assembler behaves and we want to be compatible. */
21498 if (fixP->fx_pcrel
21499 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
21500 || (arm_force_relocation (fixP)
21501 #ifdef TE_WINCE
21502 && !S_IS_EXTERNAL (fixP->fx_addsy)
21503 #endif
21504 )))
21505 base = 0;
21506
21507
21508 switch (fixP->fx_r_type)
21509 {
21510 /* PC relative addressing on the Thumb is slightly odd as the
21511 bottom two bits of the PC are forced to zero for the
21512 calculation. This happens *after* application of the
21513 pipeline offset. However, Thumb adrl already adjusts for
21514 this, so we need not do it again. */
21515 case BFD_RELOC_ARM_THUMB_ADD:
21516 return base & ~3;
21517
21518 case BFD_RELOC_ARM_THUMB_OFFSET:
21519 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21520 case BFD_RELOC_ARM_T32_ADD_PC12:
21521 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21522 return (base + 4) & ~3;
21523
21524 /* Thumb branches are simply offset by +4. */
21525 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21526 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21527 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21528 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21529 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21530 return base + 4;
21531
21532 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21533 if (fixP->fx_addsy
21534 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21535 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21536 && ARM_IS_FUNC (fixP->fx_addsy)
21537 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21538 base = fixP->fx_where + fixP->fx_frag->fr_address;
21539 return base + 4;
21540
21541 /* BLX is like branches above, but forces the low two bits of PC to
21542 zero. */
21543 case BFD_RELOC_THUMB_PCREL_BLX:
21544 if (fixP->fx_addsy
21545 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21546 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21547 && THUMB_IS_FUNC (fixP->fx_addsy)
21548 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21549 base = fixP->fx_where + fixP->fx_frag->fr_address;
21550 return (base + 4) & ~3;
21551
21552 /* ARM mode branches are offset by +8. However, the Windows CE
21553 loader expects the relocation not to take this into account. */
21554 case BFD_RELOC_ARM_PCREL_BLX:
21555 if (fixP->fx_addsy
21556 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21557 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21558 && ARM_IS_FUNC (fixP->fx_addsy)
21559 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21560 base = fixP->fx_where + fixP->fx_frag->fr_address;
21561 return base + 8;
21562
21563 case BFD_RELOC_ARM_PCREL_CALL:
21564 if (fixP->fx_addsy
21565 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21566 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21567 && THUMB_IS_FUNC (fixP->fx_addsy)
21568 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21569 base = fixP->fx_where + fixP->fx_frag->fr_address;
21570 return base + 8;
21571
21572 case BFD_RELOC_ARM_PCREL_BRANCH:
21573 case BFD_RELOC_ARM_PCREL_JUMP:
21574 case BFD_RELOC_ARM_PLT32:
21575 #ifdef TE_WINCE
21576 /* When handling fixups immediately, because we have already
21577 discovered the value of a symbol, or the address of the frag involved
21578 we must account for the offset by +8, as the OS loader will never see the reloc.
21579 see fixup_segment() in write.c
21580 The S_IS_EXTERNAL test handles the case of global symbols.
21581 Those need the calculated base, not just the pipe compensation the linker will need. */
21582 if (fixP->fx_pcrel
21583 && fixP->fx_addsy != NULL
21584 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21585 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
21586 return base + 8;
21587 return base;
21588 #else
21589 return base + 8;
21590 #endif
21591
21592
21593 /* ARM mode loads relative to PC are also offset by +8. Unlike
21594 branches, the Windows CE loader *does* expect the relocation
21595 to take this into account. */
21596 case BFD_RELOC_ARM_OFFSET_IMM:
21597 case BFD_RELOC_ARM_OFFSET_IMM8:
21598 case BFD_RELOC_ARM_HWLITERAL:
21599 case BFD_RELOC_ARM_LITERAL:
21600 case BFD_RELOC_ARM_CP_OFF_IMM:
21601 return base + 8;
21602
21603
21604 /* Other PC-relative relocations are un-offset. */
21605 default:
21606 return base;
21607 }
21608 }
21609
21610 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
21611 Otherwise we have no need to default values of symbols. */
21612
21613 symbolS *
21614 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
21615 {
21616 #ifdef OBJ_ELF
21617 if (name[0] == '_' && name[1] == 'G'
21618 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
21619 {
21620 if (!GOT_symbol)
21621 {
21622 if (symbol_find (name))
21623 as_bad (_("GOT already in the symbol table"));
21624
21625 GOT_symbol = symbol_new (name, undefined_section,
21626 (valueT) 0, & zero_address_frag);
21627 }
21628
21629 return GOT_symbol;
21630 }
21631 #endif
21632
21633 return NULL;
21634 }
21635
21636 /* Subroutine of md_apply_fix. Check to see if an immediate can be
21637 computed as two separate immediate values, added together. We
21638 already know that this value cannot be computed by just one ARM
21639 instruction. */
21640
21641 static unsigned int
21642 validate_immediate_twopart (unsigned int val,
21643 unsigned int * highpart)
21644 {
21645 unsigned int a;
21646 unsigned int i;
21647
21648 for (i = 0; i < 32; i += 2)
21649 if (((a = rotate_left (val, i)) & 0xff) != 0)
21650 {
21651 if (a & 0xff00)
21652 {
21653 if (a & ~ 0xffff)
21654 continue;
21655 * highpart = (a >> 8) | ((i + 24) << 7);
21656 }
21657 else if (a & 0xff0000)
21658 {
21659 if (a & 0xff000000)
21660 continue;
21661 * highpart = (a >> 16) | ((i + 16) << 7);
21662 }
21663 else
21664 {
21665 gas_assert (a & 0xff000000);
21666 * highpart = (a >> 24) | ((i + 8) << 7);
21667 }
21668
21669 return (a & 0xff) | (i << 7);
21670 }
21671
21672 return FAIL;
21673 }
21674
21675 static int
21676 validate_offset_imm (unsigned int val, int hwse)
21677 {
21678 if ((hwse && val > 255) || val > 4095)
21679 return FAIL;
21680 return val;
21681 }
21682
21683 /* Subroutine of md_apply_fix. Do those data_ops which can take a
21684 negative immediate constant by altering the instruction. A bit of
21685 a hack really.
21686 MOV <-> MVN
21687 AND <-> BIC
21688 ADC <-> SBC
21689 by inverting the second operand, and
21690 ADD <-> SUB
21691 CMP <-> CMN
21692 by negating the second operand. */
21693
21694 static int
21695 negate_data_op (unsigned long * instruction,
21696 unsigned long value)
21697 {
21698 int op, new_inst;
21699 unsigned long negated, inverted;
21700
21701 negated = encode_arm_immediate (-value);
21702 inverted = encode_arm_immediate (~value);
21703
21704 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
21705 switch (op)
21706 {
21707 /* First negates. */
21708 case OPCODE_SUB: /* ADD <-> SUB */
21709 new_inst = OPCODE_ADD;
21710 value = negated;
21711 break;
21712
21713 case OPCODE_ADD:
21714 new_inst = OPCODE_SUB;
21715 value = negated;
21716 break;
21717
21718 case OPCODE_CMP: /* CMP <-> CMN */
21719 new_inst = OPCODE_CMN;
21720 value = negated;
21721 break;
21722
21723 case OPCODE_CMN:
21724 new_inst = OPCODE_CMP;
21725 value = negated;
21726 break;
21727
21728 /* Now Inverted ops. */
21729 case OPCODE_MOV: /* MOV <-> MVN */
21730 new_inst = OPCODE_MVN;
21731 value = inverted;
21732 break;
21733
21734 case OPCODE_MVN:
21735 new_inst = OPCODE_MOV;
21736 value = inverted;
21737 break;
21738
21739 case OPCODE_AND: /* AND <-> BIC */
21740 new_inst = OPCODE_BIC;
21741 value = inverted;
21742 break;
21743
21744 case OPCODE_BIC:
21745 new_inst = OPCODE_AND;
21746 value = inverted;
21747 break;
21748
21749 case OPCODE_ADC: /* ADC <-> SBC */
21750 new_inst = OPCODE_SBC;
21751 value = inverted;
21752 break;
21753
21754 case OPCODE_SBC:
21755 new_inst = OPCODE_ADC;
21756 value = inverted;
21757 break;
21758
21759 /* We cannot do anything. */
21760 default:
21761 return FAIL;
21762 }
21763
21764 if (value == (unsigned) FAIL)
21765 return FAIL;
21766
21767 *instruction &= OPCODE_MASK;
21768 *instruction |= new_inst << DATA_OP_SHIFT;
21769 return value;
21770 }
21771
21772 /* Like negate_data_op, but for Thumb-2. */
21773
21774 static unsigned int
21775 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
21776 {
21777 int op, new_inst;
21778 int rd;
21779 unsigned int negated, inverted;
21780
21781 negated = encode_thumb32_immediate (-value);
21782 inverted = encode_thumb32_immediate (~value);
21783
21784 rd = (*instruction >> 8) & 0xf;
21785 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
21786 switch (op)
21787 {
21788 /* ADD <-> SUB. Includes CMP <-> CMN. */
21789 case T2_OPCODE_SUB:
21790 new_inst = T2_OPCODE_ADD;
21791 value = negated;
21792 break;
21793
21794 case T2_OPCODE_ADD:
21795 new_inst = T2_OPCODE_SUB;
21796 value = negated;
21797 break;
21798
21799 /* ORR <-> ORN. Includes MOV <-> MVN. */
21800 case T2_OPCODE_ORR:
21801 new_inst = T2_OPCODE_ORN;
21802 value = inverted;
21803 break;
21804
21805 case T2_OPCODE_ORN:
21806 new_inst = T2_OPCODE_ORR;
21807 value = inverted;
21808 break;
21809
21810 /* AND <-> BIC. TST has no inverted equivalent. */
21811 case T2_OPCODE_AND:
21812 new_inst = T2_OPCODE_BIC;
21813 if (rd == 15)
21814 value = FAIL;
21815 else
21816 value = inverted;
21817 break;
21818
21819 case T2_OPCODE_BIC:
21820 new_inst = T2_OPCODE_AND;
21821 value = inverted;
21822 break;
21823
21824 /* ADC <-> SBC */
21825 case T2_OPCODE_ADC:
21826 new_inst = T2_OPCODE_SBC;
21827 value = inverted;
21828 break;
21829
21830 case T2_OPCODE_SBC:
21831 new_inst = T2_OPCODE_ADC;
21832 value = inverted;
21833 break;
21834
21835 /* We cannot do anything. */
21836 default:
21837 return FAIL;
21838 }
21839
21840 if (value == (unsigned int)FAIL)
21841 return FAIL;
21842
21843 *instruction &= T2_OPCODE_MASK;
21844 *instruction |= new_inst << T2_DATA_OP_SHIFT;
21845 return value;
21846 }
21847
21848 /* Read a 32-bit thumb instruction from buf. */
21849 static unsigned long
21850 get_thumb32_insn (char * buf)
21851 {
21852 unsigned long insn;
21853 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
21854 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21855
21856 return insn;
21857 }
21858
21859
21860 /* We usually want to set the low bit on the address of thumb function
21861 symbols. In particular .word foo - . should have the low bit set.
21862 Generic code tries to fold the difference of two symbols to
21863 a constant. Prevent this and force a relocation when the first symbols
21864 is a thumb function. */
21865
21866 bfd_boolean
21867 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
21868 {
21869 if (op == O_subtract
21870 && l->X_op == O_symbol
21871 && r->X_op == O_symbol
21872 && THUMB_IS_FUNC (l->X_add_symbol))
21873 {
21874 l->X_op = O_subtract;
21875 l->X_op_symbol = r->X_add_symbol;
21876 l->X_add_number -= r->X_add_number;
21877 return TRUE;
21878 }
21879
21880 /* Process as normal. */
21881 return FALSE;
21882 }
21883
21884 /* Encode Thumb2 unconditional branches and calls. The encoding
21885 for the 2 are identical for the immediate values. */
21886
21887 static void
21888 encode_thumb2_b_bl_offset (char * buf, offsetT value)
21889 {
21890 #define T2I1I2MASK ((1 << 13) | (1 << 11))
21891 offsetT newval;
21892 offsetT newval2;
21893 addressT S, I1, I2, lo, hi;
21894
21895 S = (value >> 24) & 0x01;
21896 I1 = (value >> 23) & 0x01;
21897 I2 = (value >> 22) & 0x01;
21898 hi = (value >> 12) & 0x3ff;
21899 lo = (value >> 1) & 0x7ff;
21900 newval = md_chars_to_number (buf, THUMB_SIZE);
21901 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21902 newval |= (S << 10) | hi;
21903 newval2 &= ~T2I1I2MASK;
21904 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
21905 md_number_to_chars (buf, newval, THUMB_SIZE);
21906 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21907 }
21908
21909 void
21910 md_apply_fix (fixS * fixP,
21911 valueT * valP,
21912 segT seg)
21913 {
21914 offsetT value = * valP;
21915 offsetT newval;
21916 unsigned int newimm;
21917 unsigned long temp;
21918 int sign;
21919 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
21920
21921 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
21922
21923 /* Note whether this will delete the relocation. */
21924
21925 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
21926 fixP->fx_done = 1;
21927
21928 /* On a 64-bit host, silently truncate 'value' to 32 bits for
21929 consistency with the behaviour on 32-bit hosts. Remember value
21930 for emit_reloc. */
21931 value &= 0xffffffff;
21932 value ^= 0x80000000;
21933 value -= 0x80000000;
21934
21935 *valP = value;
21936 fixP->fx_addnumber = value;
21937
21938 /* Same treatment for fixP->fx_offset. */
21939 fixP->fx_offset &= 0xffffffff;
21940 fixP->fx_offset ^= 0x80000000;
21941 fixP->fx_offset -= 0x80000000;
21942
21943 switch (fixP->fx_r_type)
21944 {
21945 case BFD_RELOC_NONE:
21946 /* This will need to go in the object file. */
21947 fixP->fx_done = 0;
21948 break;
21949
21950 case BFD_RELOC_ARM_IMMEDIATE:
21951 /* We claim that this fixup has been processed here,
21952 even if in fact we generate an error because we do
21953 not have a reloc for it, so tc_gen_reloc will reject it. */
21954 fixP->fx_done = 1;
21955
21956 if (fixP->fx_addsy)
21957 {
21958 const char *msg = 0;
21959
21960 if (! S_IS_DEFINED (fixP->fx_addsy))
21961 msg = _("undefined symbol %s used as an immediate value");
21962 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
21963 msg = _("symbol %s is in a different section");
21964 else if (S_IS_WEAK (fixP->fx_addsy))
21965 msg = _("symbol %s is weak and may be overridden later");
21966
21967 if (msg)
21968 {
21969 as_bad_where (fixP->fx_file, fixP->fx_line,
21970 msg, S_GET_NAME (fixP->fx_addsy));
21971 break;
21972 }
21973 }
21974
21975 temp = md_chars_to_number (buf, INSN_SIZE);
21976
21977 /* If the offset is negative, we should use encoding A2 for ADR. */
21978 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
21979 newimm = negate_data_op (&temp, value);
21980 else
21981 {
21982 newimm = encode_arm_immediate (value);
21983
21984 /* If the instruction will fail, see if we can fix things up by
21985 changing the opcode. */
21986 if (newimm == (unsigned int) FAIL)
21987 newimm = negate_data_op (&temp, value);
21988 }
21989
21990 if (newimm == (unsigned int) FAIL)
21991 {
21992 as_bad_where (fixP->fx_file, fixP->fx_line,
21993 _("invalid constant (%lx) after fixup"),
21994 (unsigned long) value);
21995 break;
21996 }
21997
21998 newimm |= (temp & 0xfffff000);
21999 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
22000 break;
22001
22002 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22003 {
22004 unsigned int highpart = 0;
22005 unsigned int newinsn = 0xe1a00000; /* nop. */
22006
22007 if (fixP->fx_addsy)
22008 {
22009 const char *msg = 0;
22010
22011 if (! S_IS_DEFINED (fixP->fx_addsy))
22012 msg = _("undefined symbol %s used as an immediate value");
22013 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
22014 msg = _("symbol %s is in a different section");
22015 else if (S_IS_WEAK (fixP->fx_addsy))
22016 msg = _("symbol %s is weak and may be overridden later");
22017
22018 if (msg)
22019 {
22020 as_bad_where (fixP->fx_file, fixP->fx_line,
22021 msg, S_GET_NAME (fixP->fx_addsy));
22022 break;
22023 }
22024 }
22025
22026 newimm = encode_arm_immediate (value);
22027 temp = md_chars_to_number (buf, INSN_SIZE);
22028
22029 /* If the instruction will fail, see if we can fix things up by
22030 changing the opcode. */
22031 if (newimm == (unsigned int) FAIL
22032 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
22033 {
22034 /* No ? OK - try using two ADD instructions to generate
22035 the value. */
22036 newimm = validate_immediate_twopart (value, & highpart);
22037
22038 /* Yes - then make sure that the second instruction is
22039 also an add. */
22040 if (newimm != (unsigned int) FAIL)
22041 newinsn = temp;
22042 /* Still No ? Try using a negated value. */
22043 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
22044 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
22045 /* Otherwise - give up. */
22046 else
22047 {
22048 as_bad_where (fixP->fx_file, fixP->fx_line,
22049 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
22050 (long) value);
22051 break;
22052 }
22053
22054 /* Replace the first operand in the 2nd instruction (which
22055 is the PC) with the destination register. We have
22056 already added in the PC in the first instruction and we
22057 do not want to do it again. */
22058 newinsn &= ~ 0xf0000;
22059 newinsn |= ((newinsn & 0x0f000) << 4);
22060 }
22061
22062 newimm |= (temp & 0xfffff000);
22063 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
22064
22065 highpart |= (newinsn & 0xfffff000);
22066 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
22067 }
22068 break;
22069
22070 case BFD_RELOC_ARM_OFFSET_IMM:
22071 if (!fixP->fx_done && seg->use_rela_p)
22072 value = 0;
22073
22074 case BFD_RELOC_ARM_LITERAL:
22075 sign = value > 0;
22076
22077 if (value < 0)
22078 value = - value;
22079
22080 if (validate_offset_imm (value, 0) == FAIL)
22081 {
22082 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
22083 as_bad_where (fixP->fx_file, fixP->fx_line,
22084 _("invalid literal constant: pool needs to be closer"));
22085 else
22086 as_bad_where (fixP->fx_file, fixP->fx_line,
22087 _("bad immediate value for offset (%ld)"),
22088 (long) value);
22089 break;
22090 }
22091
22092 newval = md_chars_to_number (buf, INSN_SIZE);
22093 if (value == 0)
22094 newval &= 0xfffff000;
22095 else
22096 {
22097 newval &= 0xff7ff000;
22098 newval |= value | (sign ? INDEX_UP : 0);
22099 }
22100 md_number_to_chars (buf, newval, INSN_SIZE);
22101 break;
22102
22103 case BFD_RELOC_ARM_OFFSET_IMM8:
22104 case BFD_RELOC_ARM_HWLITERAL:
22105 sign = value > 0;
22106
22107 if (value < 0)
22108 value = - value;
22109
22110 if (validate_offset_imm (value, 1) == FAIL)
22111 {
22112 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
22113 as_bad_where (fixP->fx_file, fixP->fx_line,
22114 _("invalid literal constant: pool needs to be closer"));
22115 else
22116 as_bad_where (fixP->fx_file, fixP->fx_line,
22117 _("bad immediate value for 8-bit offset (%ld)"),
22118 (long) value);
22119 break;
22120 }
22121
22122 newval = md_chars_to_number (buf, INSN_SIZE);
22123 if (value == 0)
22124 newval &= 0xfffff0f0;
22125 else
22126 {
22127 newval &= 0xff7ff0f0;
22128 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
22129 }
22130 md_number_to_chars (buf, newval, INSN_SIZE);
22131 break;
22132
22133 case BFD_RELOC_ARM_T32_OFFSET_U8:
22134 if (value < 0 || value > 1020 || value % 4 != 0)
22135 as_bad_where (fixP->fx_file, fixP->fx_line,
22136 _("bad immediate value for offset (%ld)"), (long) value);
22137 value /= 4;
22138
22139 newval = md_chars_to_number (buf+2, THUMB_SIZE);
22140 newval |= value;
22141 md_number_to_chars (buf+2, newval, THUMB_SIZE);
22142 break;
22143
22144 case BFD_RELOC_ARM_T32_OFFSET_IMM:
22145 /* This is a complicated relocation used for all varieties of Thumb32
22146 load/store instruction with immediate offset:
22147
22148 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
22149 *4, optional writeback(W)
22150 (doubleword load/store)
22151
22152 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
22153 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
22154 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
22155 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
22156 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
22157
22158 Uppercase letters indicate bits that are already encoded at
22159 this point. Lowercase letters are our problem. For the
22160 second block of instructions, the secondary opcode nybble
22161 (bits 8..11) is present, and bit 23 is zero, even if this is
22162 a PC-relative operation. */
22163 newval = md_chars_to_number (buf, THUMB_SIZE);
22164 newval <<= 16;
22165 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
22166
22167 if ((newval & 0xf0000000) == 0xe0000000)
22168 {
22169 /* Doubleword load/store: 8-bit offset, scaled by 4. */
22170 if (value >= 0)
22171 newval |= (1 << 23);
22172 else
22173 value = -value;
22174 if (value % 4 != 0)
22175 {
22176 as_bad_where (fixP->fx_file, fixP->fx_line,
22177 _("offset not a multiple of 4"));
22178 break;
22179 }
22180 value /= 4;
22181 if (value > 0xff)
22182 {
22183 as_bad_where (fixP->fx_file, fixP->fx_line,
22184 _("offset out of range"));
22185 break;
22186 }
22187 newval &= ~0xff;
22188 }
22189 else if ((newval & 0x000f0000) == 0x000f0000)
22190 {
22191 /* PC-relative, 12-bit offset. */
22192 if (value >= 0)
22193 newval |= (1 << 23);
22194 else
22195 value = -value;
22196 if (value > 0xfff)
22197 {
22198 as_bad_where (fixP->fx_file, fixP->fx_line,
22199 _("offset out of range"));
22200 break;
22201 }
22202 newval &= ~0xfff;
22203 }
22204 else if ((newval & 0x00000100) == 0x00000100)
22205 {
22206 /* Writeback: 8-bit, +/- offset. */
22207 if (value >= 0)
22208 newval |= (1 << 9);
22209 else
22210 value = -value;
22211 if (value > 0xff)
22212 {
22213 as_bad_where (fixP->fx_file, fixP->fx_line,
22214 _("offset out of range"));
22215 break;
22216 }
22217 newval &= ~0xff;
22218 }
22219 else if ((newval & 0x00000f00) == 0x00000e00)
22220 {
22221 /* T-instruction: positive 8-bit offset. */
22222 if (value < 0 || value > 0xff)
22223 {
22224 as_bad_where (fixP->fx_file, fixP->fx_line,
22225 _("offset out of range"));
22226 break;
22227 }
22228 newval &= ~0xff;
22229 newval |= value;
22230 }
22231 else
22232 {
22233 /* Positive 12-bit or negative 8-bit offset. */
22234 int limit;
22235 if (value >= 0)
22236 {
22237 newval |= (1 << 23);
22238 limit = 0xfff;
22239 }
22240 else
22241 {
22242 value = -value;
22243 limit = 0xff;
22244 }
22245 if (value > limit)
22246 {
22247 as_bad_where (fixP->fx_file, fixP->fx_line,
22248 _("offset out of range"));
22249 break;
22250 }
22251 newval &= ~limit;
22252 }
22253
22254 newval |= value;
22255 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
22256 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
22257 break;
22258
22259 case BFD_RELOC_ARM_SHIFT_IMM:
22260 newval = md_chars_to_number (buf, INSN_SIZE);
22261 if (((unsigned long) value) > 32
22262 || (value == 32
22263 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
22264 {
22265 as_bad_where (fixP->fx_file, fixP->fx_line,
22266 _("shift expression is too large"));
22267 break;
22268 }
22269
22270 if (value == 0)
22271 /* Shifts of zero must be done as lsl. */
22272 newval &= ~0x60;
22273 else if (value == 32)
22274 value = 0;
22275 newval &= 0xfffff07f;
22276 newval |= (value & 0x1f) << 7;
22277 md_number_to_chars (buf, newval, INSN_SIZE);
22278 break;
22279
22280 case BFD_RELOC_ARM_T32_IMMEDIATE:
22281 case BFD_RELOC_ARM_T32_ADD_IMM:
22282 case BFD_RELOC_ARM_T32_IMM12:
22283 case BFD_RELOC_ARM_T32_ADD_PC12:
22284 /* We claim that this fixup has been processed here,
22285 even if in fact we generate an error because we do
22286 not have a reloc for it, so tc_gen_reloc will reject it. */
22287 fixP->fx_done = 1;
22288
22289 if (fixP->fx_addsy
22290 && ! S_IS_DEFINED (fixP->fx_addsy))
22291 {
22292 as_bad_where (fixP->fx_file, fixP->fx_line,
22293 _("undefined symbol %s used as an immediate value"),
22294 S_GET_NAME (fixP->fx_addsy));
22295 break;
22296 }
22297
22298 newval = md_chars_to_number (buf, THUMB_SIZE);
22299 newval <<= 16;
22300 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
22301
22302 newimm = FAIL;
22303 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22304 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
22305 {
22306 newimm = encode_thumb32_immediate (value);
22307 if (newimm == (unsigned int) FAIL)
22308 newimm = thumb32_negate_data_op (&newval, value);
22309 }
22310 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
22311 && newimm == (unsigned int) FAIL)
22312 {
22313 /* Turn add/sum into addw/subw. */
22314 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
22315 newval = (newval & 0xfeffffff) | 0x02000000;
22316 /* No flat 12-bit imm encoding for addsw/subsw. */
22317 if ((newval & 0x00100000) == 0)
22318 {
22319 /* 12 bit immediate for addw/subw. */
22320 if (value < 0)
22321 {
22322 value = -value;
22323 newval ^= 0x00a00000;
22324 }
22325 if (value > 0xfff)
22326 newimm = (unsigned int) FAIL;
22327 else
22328 newimm = value;
22329 }
22330 }
22331
22332 if (newimm == (unsigned int)FAIL)
22333 {
22334 as_bad_where (fixP->fx_file, fixP->fx_line,
22335 _("invalid constant (%lx) after fixup"),
22336 (unsigned long) value);
22337 break;
22338 }
22339
22340 newval |= (newimm & 0x800) << 15;
22341 newval |= (newimm & 0x700) << 4;
22342 newval |= (newimm & 0x0ff);
22343
22344 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
22345 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
22346 break;
22347
22348 case BFD_RELOC_ARM_SMC:
22349 if (((unsigned long) value) > 0xffff)
22350 as_bad_where (fixP->fx_file, fixP->fx_line,
22351 _("invalid smc expression"));
22352 newval = md_chars_to_number (buf, INSN_SIZE);
22353 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
22354 md_number_to_chars (buf, newval, INSN_SIZE);
22355 break;
22356
22357 case BFD_RELOC_ARM_HVC:
22358 if (((unsigned long) value) > 0xffff)
22359 as_bad_where (fixP->fx_file, fixP->fx_line,
22360 _("invalid hvc expression"));
22361 newval = md_chars_to_number (buf, INSN_SIZE);
22362 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
22363 md_number_to_chars (buf, newval, INSN_SIZE);
22364 break;
22365
22366 case BFD_RELOC_ARM_SWI:
22367 if (fixP->tc_fix_data != 0)
22368 {
22369 if (((unsigned long) value) > 0xff)
22370 as_bad_where (fixP->fx_file, fixP->fx_line,
22371 _("invalid swi expression"));
22372 newval = md_chars_to_number (buf, THUMB_SIZE);
22373 newval |= value;
22374 md_number_to_chars (buf, newval, THUMB_SIZE);
22375 }
22376 else
22377 {
22378 if (((unsigned long) value) > 0x00ffffff)
22379 as_bad_where (fixP->fx_file, fixP->fx_line,
22380 _("invalid swi expression"));
22381 newval = md_chars_to_number (buf, INSN_SIZE);
22382 newval |= value;
22383 md_number_to_chars (buf, newval, INSN_SIZE);
22384 }
22385 break;
22386
22387 case BFD_RELOC_ARM_MULTI:
22388 if (((unsigned long) value) > 0xffff)
22389 as_bad_where (fixP->fx_file, fixP->fx_line,
22390 _("invalid expression in load/store multiple"));
22391 newval = value | md_chars_to_number (buf, INSN_SIZE);
22392 md_number_to_chars (buf, newval, INSN_SIZE);
22393 break;
22394
22395 #ifdef OBJ_ELF
22396 case BFD_RELOC_ARM_PCREL_CALL:
22397
22398 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
22399 && fixP->fx_addsy
22400 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22401 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22402 && THUMB_IS_FUNC (fixP->fx_addsy))
22403 /* Flip the bl to blx. This is a simple flip
22404 bit here because we generate PCREL_CALL for
22405 unconditional bls. */
22406 {
22407 newval = md_chars_to_number (buf, INSN_SIZE);
22408 newval = newval | 0x10000000;
22409 md_number_to_chars (buf, newval, INSN_SIZE);
22410 temp = 1;
22411 fixP->fx_done = 1;
22412 }
22413 else
22414 temp = 3;
22415 goto arm_branch_common;
22416
22417 case BFD_RELOC_ARM_PCREL_JUMP:
22418 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
22419 && fixP->fx_addsy
22420 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22421 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22422 && THUMB_IS_FUNC (fixP->fx_addsy))
22423 {
22424 /* This would map to a bl<cond>, b<cond>,
22425 b<always> to a Thumb function. We
22426 need to force a relocation for this particular
22427 case. */
22428 newval = md_chars_to_number (buf, INSN_SIZE);
22429 fixP->fx_done = 0;
22430 }
22431
22432 case BFD_RELOC_ARM_PLT32:
22433 #endif
22434 case BFD_RELOC_ARM_PCREL_BRANCH:
22435 temp = 3;
22436 goto arm_branch_common;
22437
22438 case BFD_RELOC_ARM_PCREL_BLX:
22439
22440 temp = 1;
22441 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
22442 && fixP->fx_addsy
22443 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22444 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22445 && ARM_IS_FUNC (fixP->fx_addsy))
22446 {
22447 /* Flip the blx to a bl and warn. */
22448 const char *name = S_GET_NAME (fixP->fx_addsy);
22449 newval = 0xeb000000;
22450 as_warn_where (fixP->fx_file, fixP->fx_line,
22451 _("blx to '%s' an ARM ISA state function changed to bl"),
22452 name);
22453 md_number_to_chars (buf, newval, INSN_SIZE);
22454 temp = 3;
22455 fixP->fx_done = 1;
22456 }
22457
22458 #ifdef OBJ_ELF
22459 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22460 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
22461 #endif
22462
22463 arm_branch_common:
22464 /* We are going to store value (shifted right by two) in the
22465 instruction, in a 24 bit, signed field. Bits 26 through 32 either
22466 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
22467 also be be clear. */
22468 if (value & temp)
22469 as_bad_where (fixP->fx_file, fixP->fx_line,
22470 _("misaligned branch destination"));
22471 if ((value & (offsetT)0xfe000000) != (offsetT)0
22472 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
22473 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22474
22475 if (fixP->fx_done || !seg->use_rela_p)
22476 {
22477 newval = md_chars_to_number (buf, INSN_SIZE);
22478 newval |= (value >> 2) & 0x00ffffff;
22479 /* Set the H bit on BLX instructions. */
22480 if (temp == 1)
22481 {
22482 if (value & 2)
22483 newval |= 0x01000000;
22484 else
22485 newval &= ~0x01000000;
22486 }
22487 md_number_to_chars (buf, newval, INSN_SIZE);
22488 }
22489 break;
22490
22491 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
22492 /* CBZ can only branch forward. */
22493
22494 /* Attempts to use CBZ to branch to the next instruction
22495 (which, strictly speaking, are prohibited) will be turned into
22496 no-ops.
22497
22498 FIXME: It may be better to remove the instruction completely and
22499 perform relaxation. */
22500 if (value == -2)
22501 {
22502 newval = md_chars_to_number (buf, THUMB_SIZE);
22503 newval = 0xbf00; /* NOP encoding T1 */
22504 md_number_to_chars (buf, newval, THUMB_SIZE);
22505 }
22506 else
22507 {
22508 if (value & ~0x7e)
22509 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22510
22511 if (fixP->fx_done || !seg->use_rela_p)
22512 {
22513 newval = md_chars_to_number (buf, THUMB_SIZE);
22514 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
22515 md_number_to_chars (buf, newval, THUMB_SIZE);
22516 }
22517 }
22518 break;
22519
22520 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
22521 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
22522 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22523
22524 if (fixP->fx_done || !seg->use_rela_p)
22525 {
22526 newval = md_chars_to_number (buf, THUMB_SIZE);
22527 newval |= (value & 0x1ff) >> 1;
22528 md_number_to_chars (buf, newval, THUMB_SIZE);
22529 }
22530 break;
22531
22532 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
22533 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
22534 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22535
22536 if (fixP->fx_done || !seg->use_rela_p)
22537 {
22538 newval = md_chars_to_number (buf, THUMB_SIZE);
22539 newval |= (value & 0xfff) >> 1;
22540 md_number_to_chars (buf, newval, THUMB_SIZE);
22541 }
22542 break;
22543
22544 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22545 if (fixP->fx_addsy
22546 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22547 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22548 && ARM_IS_FUNC (fixP->fx_addsy)
22549 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22550 {
22551 /* Force a relocation for a branch 20 bits wide. */
22552 fixP->fx_done = 0;
22553 }
22554 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
22555 as_bad_where (fixP->fx_file, fixP->fx_line,
22556 _("conditional branch out of range"));
22557
22558 if (fixP->fx_done || !seg->use_rela_p)
22559 {
22560 offsetT newval2;
22561 addressT S, J1, J2, lo, hi;
22562
22563 S = (value & 0x00100000) >> 20;
22564 J2 = (value & 0x00080000) >> 19;
22565 J1 = (value & 0x00040000) >> 18;
22566 hi = (value & 0x0003f000) >> 12;
22567 lo = (value & 0x00000ffe) >> 1;
22568
22569 newval = md_chars_to_number (buf, THUMB_SIZE);
22570 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22571 newval |= (S << 10) | hi;
22572 newval2 |= (J1 << 13) | (J2 << 11) | lo;
22573 md_number_to_chars (buf, newval, THUMB_SIZE);
22574 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
22575 }
22576 break;
22577
22578 case BFD_RELOC_THUMB_PCREL_BLX:
22579 /* If there is a blx from a thumb state function to
22580 another thumb function flip this to a bl and warn
22581 about it. */
22582
22583 if (fixP->fx_addsy
22584 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22585 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22586 && THUMB_IS_FUNC (fixP->fx_addsy))
22587 {
22588 const char *name = S_GET_NAME (fixP->fx_addsy);
22589 as_warn_where (fixP->fx_file, fixP->fx_line,
22590 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
22591 name);
22592 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22593 newval = newval | 0x1000;
22594 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
22595 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
22596 fixP->fx_done = 1;
22597 }
22598
22599
22600 goto thumb_bl_common;
22601
22602 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22603 /* A bl from Thumb state ISA to an internal ARM state function
22604 is converted to a blx. */
22605 if (fixP->fx_addsy
22606 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22607 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22608 && ARM_IS_FUNC (fixP->fx_addsy)
22609 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22610 {
22611 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22612 newval = newval & ~0x1000;
22613 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
22614 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
22615 fixP->fx_done = 1;
22616 }
22617
22618 thumb_bl_common:
22619
22620 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
22621 /* For a BLX instruction, make sure that the relocation is rounded up
22622 to a word boundary. This follows the semantics of the instruction
22623 which specifies that bit 1 of the target address will come from bit
22624 1 of the base address. */
22625 value = (value + 3) & ~ 3;
22626
22627 #ifdef OBJ_ELF
22628 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
22629 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
22630 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
22631 #endif
22632
22633 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
22634 {
22635 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
22636 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22637 else if ((value & ~0x1ffffff)
22638 && ((value & ~0x1ffffff) != ~0x1ffffff))
22639 as_bad_where (fixP->fx_file, fixP->fx_line,
22640 _("Thumb2 branch out of range"));
22641 }
22642
22643 if (fixP->fx_done || !seg->use_rela_p)
22644 encode_thumb2_b_bl_offset (buf, value);
22645
22646 break;
22647
22648 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22649 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
22650 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22651
22652 if (fixP->fx_done || !seg->use_rela_p)
22653 encode_thumb2_b_bl_offset (buf, value);
22654
22655 break;
22656
22657 case BFD_RELOC_8:
22658 if (fixP->fx_done || !seg->use_rela_p)
22659 *buf = value;
22660 break;
22661
22662 case BFD_RELOC_16:
22663 if (fixP->fx_done || !seg->use_rela_p)
22664 md_number_to_chars (buf, value, 2);
22665 break;
22666
22667 #ifdef OBJ_ELF
22668 case BFD_RELOC_ARM_TLS_CALL:
22669 case BFD_RELOC_ARM_THM_TLS_CALL:
22670 case BFD_RELOC_ARM_TLS_DESCSEQ:
22671 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
22672 case BFD_RELOC_ARM_TLS_GOTDESC:
22673 case BFD_RELOC_ARM_TLS_GD32:
22674 case BFD_RELOC_ARM_TLS_LE32:
22675 case BFD_RELOC_ARM_TLS_IE32:
22676 case BFD_RELOC_ARM_TLS_LDM32:
22677 case BFD_RELOC_ARM_TLS_LDO32:
22678 S_SET_THREAD_LOCAL (fixP->fx_addsy);
22679 break;
22680
22681 case BFD_RELOC_ARM_GOT32:
22682 case BFD_RELOC_ARM_GOTOFF:
22683 break;
22684
22685 case BFD_RELOC_ARM_GOT_PREL:
22686 if (fixP->fx_done || !seg->use_rela_p)
22687 md_number_to_chars (buf, value, 4);
22688 break;
22689
22690 case BFD_RELOC_ARM_TARGET2:
22691 /* TARGET2 is not partial-inplace, so we need to write the
22692 addend here for REL targets, because it won't be written out
22693 during reloc processing later. */
22694 if (fixP->fx_done || !seg->use_rela_p)
22695 md_number_to_chars (buf, fixP->fx_offset, 4);
22696 break;
22697 #endif
22698
22699 case BFD_RELOC_RVA:
22700 case BFD_RELOC_32:
22701 case BFD_RELOC_ARM_TARGET1:
22702 case BFD_RELOC_ARM_ROSEGREL32:
22703 case BFD_RELOC_ARM_SBREL32:
22704 case BFD_RELOC_32_PCREL:
22705 #ifdef TE_PE
22706 case BFD_RELOC_32_SECREL:
22707 #endif
22708 if (fixP->fx_done || !seg->use_rela_p)
22709 #ifdef TE_WINCE
22710 /* For WinCE we only do this for pcrel fixups. */
22711 if (fixP->fx_done || fixP->fx_pcrel)
22712 #endif
22713 md_number_to_chars (buf, value, 4);
22714 break;
22715
22716 #ifdef OBJ_ELF
22717 case BFD_RELOC_ARM_PREL31:
22718 if (fixP->fx_done || !seg->use_rela_p)
22719 {
22720 newval = md_chars_to_number (buf, 4) & 0x80000000;
22721 if ((value ^ (value >> 1)) & 0x40000000)
22722 {
22723 as_bad_where (fixP->fx_file, fixP->fx_line,
22724 _("rel31 relocation overflow"));
22725 }
22726 newval |= value & 0x7fffffff;
22727 md_number_to_chars (buf, newval, 4);
22728 }
22729 break;
22730 #endif
22731
22732 case BFD_RELOC_ARM_CP_OFF_IMM:
22733 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
22734 if (value < -1023 || value > 1023 || (value & 3))
22735 as_bad_where (fixP->fx_file, fixP->fx_line,
22736 _("co-processor offset out of range"));
22737 cp_off_common:
22738 sign = value > 0;
22739 if (value < 0)
22740 value = -value;
22741 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22742 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
22743 newval = md_chars_to_number (buf, INSN_SIZE);
22744 else
22745 newval = get_thumb32_insn (buf);
22746 if (value == 0)
22747 newval &= 0xffffff00;
22748 else
22749 {
22750 newval &= 0xff7fff00;
22751 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
22752 }
22753 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22754 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
22755 md_number_to_chars (buf, newval, INSN_SIZE);
22756 else
22757 put_thumb32_insn (buf, newval);
22758 break;
22759
22760 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
22761 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
22762 if (value < -255 || value > 255)
22763 as_bad_where (fixP->fx_file, fixP->fx_line,
22764 _("co-processor offset out of range"));
22765 value *= 4;
22766 goto cp_off_common;
22767
22768 case BFD_RELOC_ARM_THUMB_OFFSET:
22769 newval = md_chars_to_number (buf, THUMB_SIZE);
22770 /* Exactly what ranges, and where the offset is inserted depends
22771 on the type of instruction, we can establish this from the
22772 top 4 bits. */
22773 switch (newval >> 12)
22774 {
22775 case 4: /* PC load. */
22776 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
22777 forced to zero for these loads; md_pcrel_from has already
22778 compensated for this. */
22779 if (value & 3)
22780 as_bad_where (fixP->fx_file, fixP->fx_line,
22781 _("invalid offset, target not word aligned (0x%08lX)"),
22782 (((unsigned long) fixP->fx_frag->fr_address
22783 + (unsigned long) fixP->fx_where) & ~3)
22784 + (unsigned long) value);
22785
22786 if (value & ~0x3fc)
22787 as_bad_where (fixP->fx_file, fixP->fx_line,
22788 _("invalid offset, value too big (0x%08lX)"),
22789 (long) value);
22790
22791 newval |= value >> 2;
22792 break;
22793
22794 case 9: /* SP load/store. */
22795 if (value & ~0x3fc)
22796 as_bad_where (fixP->fx_file, fixP->fx_line,
22797 _("invalid offset, value too big (0x%08lX)"),
22798 (long) value);
22799 newval |= value >> 2;
22800 break;
22801
22802 case 6: /* Word load/store. */
22803 if (value & ~0x7c)
22804 as_bad_where (fixP->fx_file, fixP->fx_line,
22805 _("invalid offset, value too big (0x%08lX)"),
22806 (long) value);
22807 newval |= value << 4; /* 6 - 2. */
22808 break;
22809
22810 case 7: /* Byte load/store. */
22811 if (value & ~0x1f)
22812 as_bad_where (fixP->fx_file, fixP->fx_line,
22813 _("invalid offset, value too big (0x%08lX)"),
22814 (long) value);
22815 newval |= value << 6;
22816 break;
22817
22818 case 8: /* Halfword load/store. */
22819 if (value & ~0x3e)
22820 as_bad_where (fixP->fx_file, fixP->fx_line,
22821 _("invalid offset, value too big (0x%08lX)"),
22822 (long) value);
22823 newval |= value << 5; /* 6 - 1. */
22824 break;
22825
22826 default:
22827 as_bad_where (fixP->fx_file, fixP->fx_line,
22828 "Unable to process relocation for thumb opcode: %lx",
22829 (unsigned long) newval);
22830 break;
22831 }
22832 md_number_to_chars (buf, newval, THUMB_SIZE);
22833 break;
22834
22835 case BFD_RELOC_ARM_THUMB_ADD:
22836 /* This is a complicated relocation, since we use it for all of
22837 the following immediate relocations:
22838
22839 3bit ADD/SUB
22840 8bit ADD/SUB
22841 9bit ADD/SUB SP word-aligned
22842 10bit ADD PC/SP word-aligned
22843
22844 The type of instruction being processed is encoded in the
22845 instruction field:
22846
22847 0x8000 SUB
22848 0x00F0 Rd
22849 0x000F Rs
22850 */
22851 newval = md_chars_to_number (buf, THUMB_SIZE);
22852 {
22853 int rd = (newval >> 4) & 0xf;
22854 int rs = newval & 0xf;
22855 int subtract = !!(newval & 0x8000);
22856
22857 /* Check for HI regs, only very restricted cases allowed:
22858 Adjusting SP, and using PC or SP to get an address. */
22859 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
22860 || (rs > 7 && rs != REG_SP && rs != REG_PC))
22861 as_bad_where (fixP->fx_file, fixP->fx_line,
22862 _("invalid Hi register with immediate"));
22863
22864 /* If value is negative, choose the opposite instruction. */
22865 if (value < 0)
22866 {
22867 value = -value;
22868 subtract = !subtract;
22869 if (value < 0)
22870 as_bad_where (fixP->fx_file, fixP->fx_line,
22871 _("immediate value out of range"));
22872 }
22873
22874 if (rd == REG_SP)
22875 {
22876 if (value & ~0x1fc)
22877 as_bad_where (fixP->fx_file, fixP->fx_line,
22878 _("invalid immediate for stack address calculation"));
22879 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
22880 newval |= value >> 2;
22881 }
22882 else if (rs == REG_PC || rs == REG_SP)
22883 {
22884 if (subtract || value & ~0x3fc)
22885 as_bad_where (fixP->fx_file, fixP->fx_line,
22886 _("invalid immediate for address calculation (value = 0x%08lX)"),
22887 (unsigned long) value);
22888 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
22889 newval |= rd << 8;
22890 newval |= value >> 2;
22891 }
22892 else if (rs == rd)
22893 {
22894 if (value & ~0xff)
22895 as_bad_where (fixP->fx_file, fixP->fx_line,
22896 _("immediate value out of range"));
22897 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
22898 newval |= (rd << 8) | value;
22899 }
22900 else
22901 {
22902 if (value & ~0x7)
22903 as_bad_where (fixP->fx_file, fixP->fx_line,
22904 _("immediate value out of range"));
22905 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
22906 newval |= rd | (rs << 3) | (value << 6);
22907 }
22908 }
22909 md_number_to_chars (buf, newval, THUMB_SIZE);
22910 break;
22911
22912 case BFD_RELOC_ARM_THUMB_IMM:
22913 newval = md_chars_to_number (buf, THUMB_SIZE);
22914 if (value < 0 || value > 255)
22915 as_bad_where (fixP->fx_file, fixP->fx_line,
22916 _("invalid immediate: %ld is out of range"),
22917 (long) value);
22918 newval |= value;
22919 md_number_to_chars (buf, newval, THUMB_SIZE);
22920 break;
22921
22922 case BFD_RELOC_ARM_THUMB_SHIFT:
22923 /* 5bit shift value (0..32). LSL cannot take 32. */
22924 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
22925 temp = newval & 0xf800;
22926 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
22927 as_bad_where (fixP->fx_file, fixP->fx_line,
22928 _("invalid shift value: %ld"), (long) value);
22929 /* Shifts of zero must be encoded as LSL. */
22930 if (value == 0)
22931 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
22932 /* Shifts of 32 are encoded as zero. */
22933 else if (value == 32)
22934 value = 0;
22935 newval |= value << 6;
22936 md_number_to_chars (buf, newval, THUMB_SIZE);
22937 break;
22938
22939 case BFD_RELOC_VTABLE_INHERIT:
22940 case BFD_RELOC_VTABLE_ENTRY:
22941 fixP->fx_done = 0;
22942 return;
22943
22944 case BFD_RELOC_ARM_MOVW:
22945 case BFD_RELOC_ARM_MOVT:
22946 case BFD_RELOC_ARM_THUMB_MOVW:
22947 case BFD_RELOC_ARM_THUMB_MOVT:
22948 if (fixP->fx_done || !seg->use_rela_p)
22949 {
22950 /* REL format relocations are limited to a 16-bit addend. */
22951 if (!fixP->fx_done)
22952 {
22953 if (value < -0x8000 || value > 0x7fff)
22954 as_bad_where (fixP->fx_file, fixP->fx_line,
22955 _("offset out of range"));
22956 }
22957 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22958 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
22959 {
22960 value >>= 16;
22961 }
22962
22963 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22964 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
22965 {
22966 newval = get_thumb32_insn (buf);
22967 newval &= 0xfbf08f00;
22968 newval |= (value & 0xf000) << 4;
22969 newval |= (value & 0x0800) << 15;
22970 newval |= (value & 0x0700) << 4;
22971 newval |= (value & 0x00ff);
22972 put_thumb32_insn (buf, newval);
22973 }
22974 else
22975 {
22976 newval = md_chars_to_number (buf, 4);
22977 newval &= 0xfff0f000;
22978 newval |= value & 0x0fff;
22979 newval |= (value & 0xf000) << 4;
22980 md_number_to_chars (buf, newval, 4);
22981 }
22982 }
22983 return;
22984
22985 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22986 case BFD_RELOC_ARM_ALU_PC_G0:
22987 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22988 case BFD_RELOC_ARM_ALU_PC_G1:
22989 case BFD_RELOC_ARM_ALU_PC_G2:
22990 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22991 case BFD_RELOC_ARM_ALU_SB_G0:
22992 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22993 case BFD_RELOC_ARM_ALU_SB_G1:
22994 case BFD_RELOC_ARM_ALU_SB_G2:
22995 gas_assert (!fixP->fx_done);
22996 if (!seg->use_rela_p)
22997 {
22998 bfd_vma insn;
22999 bfd_vma encoded_addend;
23000 bfd_vma addend_abs = abs (value);
23001
23002 /* Check that the absolute value of the addend can be
23003 expressed as an 8-bit constant plus a rotation. */
23004 encoded_addend = encode_arm_immediate (addend_abs);
23005 if (encoded_addend == (unsigned int) FAIL)
23006 as_bad_where (fixP->fx_file, fixP->fx_line,
23007 _("the offset 0x%08lX is not representable"),
23008 (unsigned long) addend_abs);
23009
23010 /* Extract the instruction. */
23011 insn = md_chars_to_number (buf, INSN_SIZE);
23012
23013 /* If the addend is positive, use an ADD instruction.
23014 Otherwise use a SUB. Take care not to destroy the S bit. */
23015 insn &= 0xff1fffff;
23016 if (value < 0)
23017 insn |= 1 << 22;
23018 else
23019 insn |= 1 << 23;
23020
23021 /* Place the encoded addend into the first 12 bits of the
23022 instruction. */
23023 insn &= 0xfffff000;
23024 insn |= encoded_addend;
23025
23026 /* Update the instruction. */
23027 md_number_to_chars (buf, insn, INSN_SIZE);
23028 }
23029 break;
23030
23031 case BFD_RELOC_ARM_LDR_PC_G0:
23032 case BFD_RELOC_ARM_LDR_PC_G1:
23033 case BFD_RELOC_ARM_LDR_PC_G2:
23034 case BFD_RELOC_ARM_LDR_SB_G0:
23035 case BFD_RELOC_ARM_LDR_SB_G1:
23036 case BFD_RELOC_ARM_LDR_SB_G2:
23037 gas_assert (!fixP->fx_done);
23038 if (!seg->use_rela_p)
23039 {
23040 bfd_vma insn;
23041 bfd_vma addend_abs = abs (value);
23042
23043 /* Check that the absolute value of the addend can be
23044 encoded in 12 bits. */
23045 if (addend_abs >= 0x1000)
23046 as_bad_where (fixP->fx_file, fixP->fx_line,
23047 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
23048 (unsigned long) addend_abs);
23049
23050 /* Extract the instruction. */
23051 insn = md_chars_to_number (buf, INSN_SIZE);
23052
23053 /* If the addend is negative, clear bit 23 of the instruction.
23054 Otherwise set it. */
23055 if (value < 0)
23056 insn &= ~(1 << 23);
23057 else
23058 insn |= 1 << 23;
23059
23060 /* Place the absolute value of the addend into the first 12 bits
23061 of the instruction. */
23062 insn &= 0xfffff000;
23063 insn |= addend_abs;
23064
23065 /* Update the instruction. */
23066 md_number_to_chars (buf, insn, INSN_SIZE);
23067 }
23068 break;
23069
23070 case BFD_RELOC_ARM_LDRS_PC_G0:
23071 case BFD_RELOC_ARM_LDRS_PC_G1:
23072 case BFD_RELOC_ARM_LDRS_PC_G2:
23073 case BFD_RELOC_ARM_LDRS_SB_G0:
23074 case BFD_RELOC_ARM_LDRS_SB_G1:
23075 case BFD_RELOC_ARM_LDRS_SB_G2:
23076 gas_assert (!fixP->fx_done);
23077 if (!seg->use_rela_p)
23078 {
23079 bfd_vma insn;
23080 bfd_vma addend_abs = abs (value);
23081
23082 /* Check that the absolute value of the addend can be
23083 encoded in 8 bits. */
23084 if (addend_abs >= 0x100)
23085 as_bad_where (fixP->fx_file, fixP->fx_line,
23086 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
23087 (unsigned long) addend_abs);
23088
23089 /* Extract the instruction. */
23090 insn = md_chars_to_number (buf, INSN_SIZE);
23091
23092 /* If the addend is negative, clear bit 23 of the instruction.
23093 Otherwise set it. */
23094 if (value < 0)
23095 insn &= ~(1 << 23);
23096 else
23097 insn |= 1 << 23;
23098
23099 /* Place the first four bits of the absolute value of the addend
23100 into the first 4 bits of the instruction, and the remaining
23101 four into bits 8 .. 11. */
23102 insn &= 0xfffff0f0;
23103 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
23104
23105 /* Update the instruction. */
23106 md_number_to_chars (buf, insn, INSN_SIZE);
23107 }
23108 break;
23109
23110 case BFD_RELOC_ARM_LDC_PC_G0:
23111 case BFD_RELOC_ARM_LDC_PC_G1:
23112 case BFD_RELOC_ARM_LDC_PC_G2:
23113 case BFD_RELOC_ARM_LDC_SB_G0:
23114 case BFD_RELOC_ARM_LDC_SB_G1:
23115 case BFD_RELOC_ARM_LDC_SB_G2:
23116 gas_assert (!fixP->fx_done);
23117 if (!seg->use_rela_p)
23118 {
23119 bfd_vma insn;
23120 bfd_vma addend_abs = abs (value);
23121
23122 /* Check that the absolute value of the addend is a multiple of
23123 four and, when divided by four, fits in 8 bits. */
23124 if (addend_abs & 0x3)
23125 as_bad_where (fixP->fx_file, fixP->fx_line,
23126 _("bad offset 0x%08lX (must be word-aligned)"),
23127 (unsigned long) addend_abs);
23128
23129 if ((addend_abs >> 2) > 0xff)
23130 as_bad_where (fixP->fx_file, fixP->fx_line,
23131 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
23132 (unsigned long) addend_abs);
23133
23134 /* Extract the instruction. */
23135 insn = md_chars_to_number (buf, INSN_SIZE);
23136
23137 /* If the addend is negative, clear bit 23 of the instruction.
23138 Otherwise set it. */
23139 if (value < 0)
23140 insn &= ~(1 << 23);
23141 else
23142 insn |= 1 << 23;
23143
23144 /* Place the addend (divided by four) into the first eight
23145 bits of the instruction. */
23146 insn &= 0xfffffff0;
23147 insn |= addend_abs >> 2;
23148
23149 /* Update the instruction. */
23150 md_number_to_chars (buf, insn, INSN_SIZE);
23151 }
23152 break;
23153
23154 case BFD_RELOC_ARM_V4BX:
23155 /* This will need to go in the object file. */
23156 fixP->fx_done = 0;
23157 break;
23158
23159 case BFD_RELOC_UNUSED:
23160 default:
23161 as_bad_where (fixP->fx_file, fixP->fx_line,
23162 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
23163 }
23164 }
23165
23166 /* Translate internal representation of relocation info to BFD target
23167 format. */
23168
23169 arelent *
23170 tc_gen_reloc (asection *section, fixS *fixp)
23171 {
23172 arelent * reloc;
23173 bfd_reloc_code_real_type code;
23174
23175 reloc = (arelent *) xmalloc (sizeof (arelent));
23176
23177 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
23178 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
23179 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
23180
23181 if (fixp->fx_pcrel)
23182 {
23183 if (section->use_rela_p)
23184 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
23185 else
23186 fixp->fx_offset = reloc->address;
23187 }
23188 reloc->addend = fixp->fx_offset;
23189
23190 switch (fixp->fx_r_type)
23191 {
23192 case BFD_RELOC_8:
23193 if (fixp->fx_pcrel)
23194 {
23195 code = BFD_RELOC_8_PCREL;
23196 break;
23197 }
23198
23199 case BFD_RELOC_16:
23200 if (fixp->fx_pcrel)
23201 {
23202 code = BFD_RELOC_16_PCREL;
23203 break;
23204 }
23205
23206 case BFD_RELOC_32:
23207 if (fixp->fx_pcrel)
23208 {
23209 code = BFD_RELOC_32_PCREL;
23210 break;
23211 }
23212
23213 case BFD_RELOC_ARM_MOVW:
23214 if (fixp->fx_pcrel)
23215 {
23216 code = BFD_RELOC_ARM_MOVW_PCREL;
23217 break;
23218 }
23219
23220 case BFD_RELOC_ARM_MOVT:
23221 if (fixp->fx_pcrel)
23222 {
23223 code = BFD_RELOC_ARM_MOVT_PCREL;
23224 break;
23225 }
23226
23227 case BFD_RELOC_ARM_THUMB_MOVW:
23228 if (fixp->fx_pcrel)
23229 {
23230 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
23231 break;
23232 }
23233
23234 case BFD_RELOC_ARM_THUMB_MOVT:
23235 if (fixp->fx_pcrel)
23236 {
23237 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
23238 break;
23239 }
23240
23241 case BFD_RELOC_NONE:
23242 case BFD_RELOC_ARM_PCREL_BRANCH:
23243 case BFD_RELOC_ARM_PCREL_BLX:
23244 case BFD_RELOC_RVA:
23245 case BFD_RELOC_THUMB_PCREL_BRANCH7:
23246 case BFD_RELOC_THUMB_PCREL_BRANCH9:
23247 case BFD_RELOC_THUMB_PCREL_BRANCH12:
23248 case BFD_RELOC_THUMB_PCREL_BRANCH20:
23249 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23250 case BFD_RELOC_THUMB_PCREL_BRANCH25:
23251 case BFD_RELOC_VTABLE_ENTRY:
23252 case BFD_RELOC_VTABLE_INHERIT:
23253 #ifdef TE_PE
23254 case BFD_RELOC_32_SECREL:
23255 #endif
23256 code = fixp->fx_r_type;
23257 break;
23258
23259 case BFD_RELOC_THUMB_PCREL_BLX:
23260 #ifdef OBJ_ELF
23261 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
23262 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
23263 else
23264 #endif
23265 code = BFD_RELOC_THUMB_PCREL_BLX;
23266 break;
23267
23268 case BFD_RELOC_ARM_LITERAL:
23269 case BFD_RELOC_ARM_HWLITERAL:
23270 /* If this is called then the a literal has
23271 been referenced across a section boundary. */
23272 as_bad_where (fixp->fx_file, fixp->fx_line,
23273 _("literal referenced across section boundary"));
23274 return NULL;
23275
23276 #ifdef OBJ_ELF
23277 case BFD_RELOC_ARM_TLS_CALL:
23278 case BFD_RELOC_ARM_THM_TLS_CALL:
23279 case BFD_RELOC_ARM_TLS_DESCSEQ:
23280 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
23281 case BFD_RELOC_ARM_GOT32:
23282 case BFD_RELOC_ARM_GOTOFF:
23283 case BFD_RELOC_ARM_GOT_PREL:
23284 case BFD_RELOC_ARM_PLT32:
23285 case BFD_RELOC_ARM_TARGET1:
23286 case BFD_RELOC_ARM_ROSEGREL32:
23287 case BFD_RELOC_ARM_SBREL32:
23288 case BFD_RELOC_ARM_PREL31:
23289 case BFD_RELOC_ARM_TARGET2:
23290 case BFD_RELOC_ARM_TLS_LE32:
23291 case BFD_RELOC_ARM_TLS_LDO32:
23292 case BFD_RELOC_ARM_PCREL_CALL:
23293 case BFD_RELOC_ARM_PCREL_JUMP:
23294 case BFD_RELOC_ARM_ALU_PC_G0_NC:
23295 case BFD_RELOC_ARM_ALU_PC_G0:
23296 case BFD_RELOC_ARM_ALU_PC_G1_NC:
23297 case BFD_RELOC_ARM_ALU_PC_G1:
23298 case BFD_RELOC_ARM_ALU_PC_G2:
23299 case BFD_RELOC_ARM_LDR_PC_G0:
23300 case BFD_RELOC_ARM_LDR_PC_G1:
23301 case BFD_RELOC_ARM_LDR_PC_G2:
23302 case BFD_RELOC_ARM_LDRS_PC_G0:
23303 case BFD_RELOC_ARM_LDRS_PC_G1:
23304 case BFD_RELOC_ARM_LDRS_PC_G2:
23305 case BFD_RELOC_ARM_LDC_PC_G0:
23306 case BFD_RELOC_ARM_LDC_PC_G1:
23307 case BFD_RELOC_ARM_LDC_PC_G2:
23308 case BFD_RELOC_ARM_ALU_SB_G0_NC:
23309 case BFD_RELOC_ARM_ALU_SB_G0:
23310 case BFD_RELOC_ARM_ALU_SB_G1_NC:
23311 case BFD_RELOC_ARM_ALU_SB_G1:
23312 case BFD_RELOC_ARM_ALU_SB_G2:
23313 case BFD_RELOC_ARM_LDR_SB_G0:
23314 case BFD_RELOC_ARM_LDR_SB_G1:
23315 case BFD_RELOC_ARM_LDR_SB_G2:
23316 case BFD_RELOC_ARM_LDRS_SB_G0:
23317 case BFD_RELOC_ARM_LDRS_SB_G1:
23318 case BFD_RELOC_ARM_LDRS_SB_G2:
23319 case BFD_RELOC_ARM_LDC_SB_G0:
23320 case BFD_RELOC_ARM_LDC_SB_G1:
23321 case BFD_RELOC_ARM_LDC_SB_G2:
23322 case BFD_RELOC_ARM_V4BX:
23323 code = fixp->fx_r_type;
23324 break;
23325
23326 case BFD_RELOC_ARM_TLS_GOTDESC:
23327 case BFD_RELOC_ARM_TLS_GD32:
23328 case BFD_RELOC_ARM_TLS_IE32:
23329 case BFD_RELOC_ARM_TLS_LDM32:
23330 /* BFD will include the symbol's address in the addend.
23331 But we don't want that, so subtract it out again here. */
23332 if (!S_IS_COMMON (fixp->fx_addsy))
23333 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
23334 code = fixp->fx_r_type;
23335 break;
23336 #endif
23337
23338 case BFD_RELOC_ARM_IMMEDIATE:
23339 as_bad_where (fixp->fx_file, fixp->fx_line,
23340 _("internal relocation (type: IMMEDIATE) not fixed up"));
23341 return NULL;
23342
23343 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
23344 as_bad_where (fixp->fx_file, fixp->fx_line,
23345 _("ADRL used for a symbol not defined in the same file"));
23346 return NULL;
23347
23348 case BFD_RELOC_ARM_OFFSET_IMM:
23349 if (section->use_rela_p)
23350 {
23351 code = fixp->fx_r_type;
23352 break;
23353 }
23354
23355 if (fixp->fx_addsy != NULL
23356 && !S_IS_DEFINED (fixp->fx_addsy)
23357 && S_IS_LOCAL (fixp->fx_addsy))
23358 {
23359 as_bad_where (fixp->fx_file, fixp->fx_line,
23360 _("undefined local label `%s'"),
23361 S_GET_NAME (fixp->fx_addsy));
23362 return NULL;
23363 }
23364
23365 as_bad_where (fixp->fx_file, fixp->fx_line,
23366 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
23367 return NULL;
23368
23369 default:
23370 {
23371 char * type;
23372
23373 switch (fixp->fx_r_type)
23374 {
23375 case BFD_RELOC_NONE: type = "NONE"; break;
23376 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
23377 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
23378 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
23379 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
23380 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
23381 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
23382 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
23383 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
23384 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
23385 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
23386 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
23387 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
23388 default: type = _("<unknown>"); break;
23389 }
23390 as_bad_where (fixp->fx_file, fixp->fx_line,
23391 _("cannot represent %s relocation in this object file format"),
23392 type);
23393 return NULL;
23394 }
23395 }
23396
23397 #ifdef OBJ_ELF
23398 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
23399 && GOT_symbol
23400 && fixp->fx_addsy == GOT_symbol)
23401 {
23402 code = BFD_RELOC_ARM_GOTPC;
23403 reloc->addend = fixp->fx_offset = reloc->address;
23404 }
23405 #endif
23406
23407 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
23408
23409 if (reloc->howto == NULL)
23410 {
23411 as_bad_where (fixp->fx_file, fixp->fx_line,
23412 _("cannot represent %s relocation in this object file format"),
23413 bfd_get_reloc_code_name (code));
23414 return NULL;
23415 }
23416
23417 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
23418 vtable entry to be used in the relocation's section offset. */
23419 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
23420 reloc->address = fixp->fx_offset;
23421
23422 return reloc;
23423 }
23424
23425 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
23426
23427 void
23428 cons_fix_new_arm (fragS * frag,
23429 int where,
23430 int size,
23431 expressionS * exp,
23432 bfd_reloc_code_real_type reloc)
23433 {
23434 int pcrel = 0;
23435
23436 /* Pick a reloc.
23437 FIXME: @@ Should look at CPU word size. */
23438 switch (size)
23439 {
23440 case 1:
23441 reloc = BFD_RELOC_8;
23442 break;
23443 case 2:
23444 reloc = BFD_RELOC_16;
23445 break;
23446 case 4:
23447 default:
23448 reloc = BFD_RELOC_32;
23449 break;
23450 case 8:
23451 reloc = BFD_RELOC_64;
23452 break;
23453 }
23454
23455 #ifdef TE_PE
23456 if (exp->X_op == O_secrel)
23457 {
23458 exp->X_op = O_symbol;
23459 reloc = BFD_RELOC_32_SECREL;
23460 }
23461 #endif
23462
23463 fix_new_exp (frag, where, size, exp, pcrel, reloc);
23464 }
23465
23466 #if defined (OBJ_COFF)
23467 void
23468 arm_validate_fix (fixS * fixP)
23469 {
23470 /* If the destination of the branch is a defined symbol which does not have
23471 the THUMB_FUNC attribute, then we must be calling a function which has
23472 the (interfacearm) attribute. We look for the Thumb entry point to that
23473 function and change the branch to refer to that function instead. */
23474 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
23475 && fixP->fx_addsy != NULL
23476 && S_IS_DEFINED (fixP->fx_addsy)
23477 && ! THUMB_IS_FUNC (fixP->fx_addsy))
23478 {
23479 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
23480 }
23481 }
23482 #endif
23483
23484
23485 int
23486 arm_force_relocation (struct fix * fixp)
23487 {
23488 #if defined (OBJ_COFF) && defined (TE_PE)
23489 if (fixp->fx_r_type == BFD_RELOC_RVA)
23490 return 1;
23491 #endif
23492
23493 /* In case we have a call or a branch to a function in ARM ISA mode from
23494 a thumb function or vice-versa force the relocation. These relocations
23495 are cleared off for some cores that might have blx and simple transformations
23496 are possible. */
23497
23498 #ifdef OBJ_ELF
23499 switch (fixp->fx_r_type)
23500 {
23501 case BFD_RELOC_ARM_PCREL_JUMP:
23502 case BFD_RELOC_ARM_PCREL_CALL:
23503 case BFD_RELOC_THUMB_PCREL_BLX:
23504 if (THUMB_IS_FUNC (fixp->fx_addsy))
23505 return 1;
23506 break;
23507
23508 case BFD_RELOC_ARM_PCREL_BLX:
23509 case BFD_RELOC_THUMB_PCREL_BRANCH25:
23510 case BFD_RELOC_THUMB_PCREL_BRANCH20:
23511 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23512 if (ARM_IS_FUNC (fixp->fx_addsy))
23513 return 1;
23514 break;
23515
23516 default:
23517 break;
23518 }
23519 #endif
23520
23521 /* Resolve these relocations even if the symbol is extern or weak.
23522 Technically this is probably wrong due to symbol preemption.
23523 In practice these relocations do not have enough range to be useful
23524 at dynamic link time, and some code (e.g. in the Linux kernel)
23525 expects these references to be resolved. */
23526 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
23527 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
23528 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
23529 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
23530 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
23531 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
23532 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
23533 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
23534 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
23535 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
23536 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
23537 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
23538 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
23539 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
23540 return 0;
23541
23542 /* Always leave these relocations for the linker. */
23543 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
23544 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
23545 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
23546 return 1;
23547
23548 /* Always generate relocations against function symbols. */
23549 if (fixp->fx_r_type == BFD_RELOC_32
23550 && fixp->fx_addsy
23551 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
23552 return 1;
23553
23554 return generic_force_reloc (fixp);
23555 }
23556
23557 #if defined (OBJ_ELF) || defined (OBJ_COFF)
23558 /* Relocations against function names must be left unadjusted,
23559 so that the linker can use this information to generate interworking
23560 stubs. The MIPS version of this function
23561 also prevents relocations that are mips-16 specific, but I do not
23562 know why it does this.
23563
23564 FIXME:
23565 There is one other problem that ought to be addressed here, but
23566 which currently is not: Taking the address of a label (rather
23567 than a function) and then later jumping to that address. Such
23568 addresses also ought to have their bottom bit set (assuming that
23569 they reside in Thumb code), but at the moment they will not. */
23570
23571 bfd_boolean
23572 arm_fix_adjustable (fixS * fixP)
23573 {
23574 if (fixP->fx_addsy == NULL)
23575 return 1;
23576
23577 /* Preserve relocations against symbols with function type. */
23578 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
23579 return FALSE;
23580
23581 if (THUMB_IS_FUNC (fixP->fx_addsy)
23582 && fixP->fx_subsy == NULL)
23583 return FALSE;
23584
23585 /* We need the symbol name for the VTABLE entries. */
23586 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
23587 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
23588 return FALSE;
23589
23590 /* Don't allow symbols to be discarded on GOT related relocs. */
23591 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
23592 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
23593 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
23594 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
23595 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
23596 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
23597 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
23598 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
23599 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
23600 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
23601 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
23602 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
23603 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
23604 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
23605 return FALSE;
23606
23607 /* Similarly for group relocations. */
23608 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
23609 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
23610 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
23611 return FALSE;
23612
23613 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
23614 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
23615 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
23616 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
23617 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
23618 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
23619 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
23620 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
23621 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
23622 return FALSE;
23623
23624 return TRUE;
23625 }
23626 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
23627
23628 #ifdef OBJ_ELF
23629
23630 const char *
23631 elf32_arm_target_format (void)
23632 {
23633 #ifdef TE_SYMBIAN
23634 return (target_big_endian
23635 ? "elf32-bigarm-symbian"
23636 : "elf32-littlearm-symbian");
23637 #elif defined (TE_VXWORKS)
23638 return (target_big_endian
23639 ? "elf32-bigarm-vxworks"
23640 : "elf32-littlearm-vxworks");
23641 #elif defined (TE_NACL)
23642 return (target_big_endian
23643 ? "elf32-bigarm-nacl"
23644 : "elf32-littlearm-nacl");
23645 #else
23646 if (target_big_endian)
23647 return "elf32-bigarm";
23648 else
23649 return "elf32-littlearm";
23650 #endif
23651 }
23652
23653 void
23654 armelf_frob_symbol (symbolS * symp,
23655 int * puntp)
23656 {
23657 elf_frob_symbol (symp, puntp);
23658 }
23659 #endif
23660
23661 /* MD interface: Finalization. */
23662
23663 void
23664 arm_cleanup (void)
23665 {
23666 literal_pool * pool;
23667
23668 /* Ensure that all the IT blocks are properly closed. */
23669 check_it_blocks_finished ();
23670
23671 for (pool = list_of_pools; pool; pool = pool->next)
23672 {
23673 /* Put it at the end of the relevant section. */
23674 subseg_set (pool->section, pool->sub_section);
23675 #ifdef OBJ_ELF
23676 arm_elf_change_section ();
23677 #endif
23678 s_ltorg (0);
23679 }
23680 }
23681
23682 #ifdef OBJ_ELF
23683 /* Remove any excess mapping symbols generated for alignment frags in
23684 SEC. We may have created a mapping symbol before a zero byte
23685 alignment; remove it if there's a mapping symbol after the
23686 alignment. */
23687 static void
23688 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
23689 void *dummy ATTRIBUTE_UNUSED)
23690 {
23691 segment_info_type *seginfo = seg_info (sec);
23692 fragS *fragp;
23693
23694 if (seginfo == NULL || seginfo->frchainP == NULL)
23695 return;
23696
23697 for (fragp = seginfo->frchainP->frch_root;
23698 fragp != NULL;
23699 fragp = fragp->fr_next)
23700 {
23701 symbolS *sym = fragp->tc_frag_data.last_map;
23702 fragS *next = fragp->fr_next;
23703
23704 /* Variable-sized frags have been converted to fixed size by
23705 this point. But if this was variable-sized to start with,
23706 there will be a fixed-size frag after it. So don't handle
23707 next == NULL. */
23708 if (sym == NULL || next == NULL)
23709 continue;
23710
23711 if (S_GET_VALUE (sym) < next->fr_address)
23712 /* Not at the end of this frag. */
23713 continue;
23714 know (S_GET_VALUE (sym) == next->fr_address);
23715
23716 do
23717 {
23718 if (next->tc_frag_data.first_map != NULL)
23719 {
23720 /* Next frag starts with a mapping symbol. Discard this
23721 one. */
23722 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
23723 break;
23724 }
23725
23726 if (next->fr_next == NULL)
23727 {
23728 /* This mapping symbol is at the end of the section. Discard
23729 it. */
23730 know (next->fr_fix == 0 && next->fr_var == 0);
23731 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
23732 break;
23733 }
23734
23735 /* As long as we have empty frags without any mapping symbols,
23736 keep looking. */
23737 /* If the next frag is non-empty and does not start with a
23738 mapping symbol, then this mapping symbol is required. */
23739 if (next->fr_address != next->fr_next->fr_address)
23740 break;
23741
23742 next = next->fr_next;
23743 }
23744 while (next != NULL);
23745 }
23746 }
23747 #endif
23748
23749 /* Adjust the symbol table. This marks Thumb symbols as distinct from
23750 ARM ones. */
23751
23752 void
23753 arm_adjust_symtab (void)
23754 {
23755 #ifdef OBJ_COFF
23756 symbolS * sym;
23757
23758 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
23759 {
23760 if (ARM_IS_THUMB (sym))
23761 {
23762 if (THUMB_IS_FUNC (sym))
23763 {
23764 /* Mark the symbol as a Thumb function. */
23765 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
23766 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
23767 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
23768
23769 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
23770 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
23771 else
23772 as_bad (_("%s: unexpected function type: %d"),
23773 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
23774 }
23775 else switch (S_GET_STORAGE_CLASS (sym))
23776 {
23777 case C_EXT:
23778 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
23779 break;
23780 case C_STAT:
23781 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
23782 break;
23783 case C_LABEL:
23784 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
23785 break;
23786 default:
23787 /* Do nothing. */
23788 break;
23789 }
23790 }
23791
23792 if (ARM_IS_INTERWORK (sym))
23793 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
23794 }
23795 #endif
23796 #ifdef OBJ_ELF
23797 symbolS * sym;
23798 char bind;
23799
23800 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
23801 {
23802 if (ARM_IS_THUMB (sym))
23803 {
23804 elf_symbol_type * elf_sym;
23805
23806 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
23807 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
23808
23809 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
23810 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
23811 {
23812 /* If it's a .thumb_func, declare it as so,
23813 otherwise tag label as .code 16. */
23814 if (THUMB_IS_FUNC (sym))
23815 elf_sym->internal_elf_sym.st_target_internal
23816 = ST_BRANCH_TO_THUMB;
23817 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23818 elf_sym->internal_elf_sym.st_info =
23819 ELF_ST_INFO (bind, STT_ARM_16BIT);
23820 }
23821 }
23822 }
23823
23824 /* Remove any overlapping mapping symbols generated by alignment frags. */
23825 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
23826 /* Now do generic ELF adjustments. */
23827 elf_adjust_symtab ();
23828 #endif
23829 }
23830
23831 /* MD interface: Initialization. */
23832
23833 static void
23834 set_constant_flonums (void)
23835 {
23836 int i;
23837
23838 for (i = 0; i < NUM_FLOAT_VALS; i++)
23839 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
23840 abort ();
23841 }
23842
23843 /* Auto-select Thumb mode if it's the only available instruction set for the
23844 given architecture. */
23845
23846 static void
23847 autoselect_thumb_from_cpu_variant (void)
23848 {
23849 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
23850 opcode_select (16);
23851 }
23852
23853 void
23854 md_begin (void)
23855 {
23856 unsigned mach;
23857 unsigned int i;
23858
23859 if ( (arm_ops_hsh = hash_new ()) == NULL
23860 || (arm_cond_hsh = hash_new ()) == NULL
23861 || (arm_shift_hsh = hash_new ()) == NULL
23862 || (arm_psr_hsh = hash_new ()) == NULL
23863 || (arm_v7m_psr_hsh = hash_new ()) == NULL
23864 || (arm_reg_hsh = hash_new ()) == NULL
23865 || (arm_reloc_hsh = hash_new ()) == NULL
23866 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
23867 as_fatal (_("virtual memory exhausted"));
23868
23869 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
23870 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
23871 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
23872 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
23873 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
23874 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
23875 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
23876 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
23877 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
23878 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
23879 (void *) (v7m_psrs + i));
23880 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
23881 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
23882 for (i = 0;
23883 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
23884 i++)
23885 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
23886 (void *) (barrier_opt_names + i));
23887 #ifdef OBJ_ELF
23888 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
23889 {
23890 struct reloc_entry * entry = reloc_names + i;
23891
23892 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
23893 /* This makes encode_branch() use the EABI versions of this relocation. */
23894 entry->reloc = BFD_RELOC_UNUSED;
23895
23896 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
23897 }
23898 #endif
23899
23900 set_constant_flonums ();
23901
23902 /* Set the cpu variant based on the command-line options. We prefer
23903 -mcpu= over -march= if both are set (as for GCC); and we prefer
23904 -mfpu= over any other way of setting the floating point unit.
23905 Use of legacy options with new options are faulted. */
23906 if (legacy_cpu)
23907 {
23908 if (mcpu_cpu_opt || march_cpu_opt)
23909 as_bad (_("use of old and new-style options to set CPU type"));
23910
23911 mcpu_cpu_opt = legacy_cpu;
23912 }
23913 else if (!mcpu_cpu_opt)
23914 mcpu_cpu_opt = march_cpu_opt;
23915
23916 if (legacy_fpu)
23917 {
23918 if (mfpu_opt)
23919 as_bad (_("use of old and new-style options to set FPU type"));
23920
23921 mfpu_opt = legacy_fpu;
23922 }
23923 else if (!mfpu_opt)
23924 {
23925 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
23926 || defined (TE_NetBSD) || defined (TE_VXWORKS))
23927 /* Some environments specify a default FPU. If they don't, infer it
23928 from the processor. */
23929 if (mcpu_fpu_opt)
23930 mfpu_opt = mcpu_fpu_opt;
23931 else
23932 mfpu_opt = march_fpu_opt;
23933 #else
23934 mfpu_opt = &fpu_default;
23935 #endif
23936 }
23937
23938 if (!mfpu_opt)
23939 {
23940 if (mcpu_cpu_opt != NULL)
23941 mfpu_opt = &fpu_default;
23942 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
23943 mfpu_opt = &fpu_arch_vfp_v2;
23944 else
23945 mfpu_opt = &fpu_arch_fpa;
23946 }
23947
23948 #ifdef CPU_DEFAULT
23949 if (!mcpu_cpu_opt)
23950 {
23951 mcpu_cpu_opt = &cpu_default;
23952 selected_cpu = cpu_default;
23953 }
23954 #else
23955 if (mcpu_cpu_opt)
23956 selected_cpu = *mcpu_cpu_opt;
23957 else
23958 mcpu_cpu_opt = &arm_arch_any;
23959 #endif
23960
23961 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23962
23963 autoselect_thumb_from_cpu_variant ();
23964
23965 arm_arch_used = thumb_arch_used = arm_arch_none;
23966
23967 #if defined OBJ_COFF || defined OBJ_ELF
23968 {
23969 unsigned int flags = 0;
23970
23971 #if defined OBJ_ELF
23972 flags = meabi_flags;
23973
23974 switch (meabi_flags)
23975 {
23976 case EF_ARM_EABI_UNKNOWN:
23977 #endif
23978 /* Set the flags in the private structure. */
23979 if (uses_apcs_26) flags |= F_APCS26;
23980 if (support_interwork) flags |= F_INTERWORK;
23981 if (uses_apcs_float) flags |= F_APCS_FLOAT;
23982 if (pic_code) flags |= F_PIC;
23983 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
23984 flags |= F_SOFT_FLOAT;
23985
23986 switch (mfloat_abi_opt)
23987 {
23988 case ARM_FLOAT_ABI_SOFT:
23989 case ARM_FLOAT_ABI_SOFTFP:
23990 flags |= F_SOFT_FLOAT;
23991 break;
23992
23993 case ARM_FLOAT_ABI_HARD:
23994 if (flags & F_SOFT_FLOAT)
23995 as_bad (_("hard-float conflicts with specified fpu"));
23996 break;
23997 }
23998
23999 /* Using pure-endian doubles (even if soft-float). */
24000 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
24001 flags |= F_VFP_FLOAT;
24002
24003 #if defined OBJ_ELF
24004 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
24005 flags |= EF_ARM_MAVERICK_FLOAT;
24006 break;
24007
24008 case EF_ARM_EABI_VER4:
24009 case EF_ARM_EABI_VER5:
24010 /* No additional flags to set. */
24011 break;
24012
24013 default:
24014 abort ();
24015 }
24016 #endif
24017 bfd_set_private_flags (stdoutput, flags);
24018
24019 /* We have run out flags in the COFF header to encode the
24020 status of ATPCS support, so instead we create a dummy,
24021 empty, debug section called .arm.atpcs. */
24022 if (atpcs)
24023 {
24024 asection * sec;
24025
24026 sec = bfd_make_section (stdoutput, ".arm.atpcs");
24027
24028 if (sec != NULL)
24029 {
24030 bfd_set_section_flags
24031 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
24032 bfd_set_section_size (stdoutput, sec, 0);
24033 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
24034 }
24035 }
24036 }
24037 #endif
24038
24039 /* Record the CPU type as well. */
24040 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
24041 mach = bfd_mach_arm_iWMMXt2;
24042 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
24043 mach = bfd_mach_arm_iWMMXt;
24044 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
24045 mach = bfd_mach_arm_XScale;
24046 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
24047 mach = bfd_mach_arm_ep9312;
24048 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
24049 mach = bfd_mach_arm_5TE;
24050 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
24051 {
24052 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
24053 mach = bfd_mach_arm_5T;
24054 else
24055 mach = bfd_mach_arm_5;
24056 }
24057 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
24058 {
24059 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
24060 mach = bfd_mach_arm_4T;
24061 else
24062 mach = bfd_mach_arm_4;
24063 }
24064 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
24065 mach = bfd_mach_arm_3M;
24066 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
24067 mach = bfd_mach_arm_3;
24068 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
24069 mach = bfd_mach_arm_2a;
24070 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
24071 mach = bfd_mach_arm_2;
24072 else
24073 mach = bfd_mach_arm_unknown;
24074
24075 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
24076 }
24077
24078 /* Command line processing. */
24079
24080 /* md_parse_option
24081 Invocation line includes a switch not recognized by the base assembler.
24082 See if it's a processor-specific option.
24083
24084 This routine is somewhat complicated by the need for backwards
24085 compatibility (since older releases of gcc can't be changed).
24086 The new options try to make the interface as compatible as
24087 possible with GCC.
24088
24089 New options (supported) are:
24090
24091 -mcpu=<cpu name> Assemble for selected processor
24092 -march=<architecture name> Assemble for selected architecture
24093 -mfpu=<fpu architecture> Assemble for selected FPU.
24094 -EB/-mbig-endian Big-endian
24095 -EL/-mlittle-endian Little-endian
24096 -k Generate PIC code
24097 -mthumb Start in Thumb mode
24098 -mthumb-interwork Code supports ARM/Thumb interworking
24099
24100 -m[no-]warn-deprecated Warn about deprecated features
24101
24102 For now we will also provide support for:
24103
24104 -mapcs-32 32-bit Program counter
24105 -mapcs-26 26-bit Program counter
24106 -macps-float Floats passed in FP registers
24107 -mapcs-reentrant Reentrant code
24108 -matpcs
24109 (sometime these will probably be replaced with -mapcs=<list of options>
24110 and -matpcs=<list of options>)
24111
24112 The remaining options are only supported for back-wards compatibility.
24113 Cpu variants, the arm part is optional:
24114 -m[arm]1 Currently not supported.
24115 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
24116 -m[arm]3 Arm 3 processor
24117 -m[arm]6[xx], Arm 6 processors
24118 -m[arm]7[xx][t][[d]m] Arm 7 processors
24119 -m[arm]8[10] Arm 8 processors
24120 -m[arm]9[20][tdmi] Arm 9 processors
24121 -mstrongarm[110[0]] StrongARM processors
24122 -mxscale XScale processors
24123 -m[arm]v[2345[t[e]]] Arm architectures
24124 -mall All (except the ARM1)
24125 FP variants:
24126 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
24127 -mfpe-old (No float load/store multiples)
24128 -mvfpxd VFP Single precision
24129 -mvfp All VFP
24130 -mno-fpu Disable all floating point instructions
24131
24132 The following CPU names are recognized:
24133 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
24134 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
24135 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
24136 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
24137 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
24138 arm10t arm10e, arm1020t, arm1020e, arm10200e,
24139 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
24140
24141 */
24142
24143 const char * md_shortopts = "m:k";
24144
24145 #ifdef ARM_BI_ENDIAN
24146 #define OPTION_EB (OPTION_MD_BASE + 0)
24147 #define OPTION_EL (OPTION_MD_BASE + 1)
24148 #else
24149 #if TARGET_BYTES_BIG_ENDIAN
24150 #define OPTION_EB (OPTION_MD_BASE + 0)
24151 #else
24152 #define OPTION_EL (OPTION_MD_BASE + 1)
24153 #endif
24154 #endif
24155 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
24156
24157 struct option md_longopts[] =
24158 {
24159 #ifdef OPTION_EB
24160 {"EB", no_argument, NULL, OPTION_EB},
24161 #endif
24162 #ifdef OPTION_EL
24163 {"EL", no_argument, NULL, OPTION_EL},
24164 #endif
24165 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
24166 {NULL, no_argument, NULL, 0}
24167 };
24168
24169 size_t md_longopts_size = sizeof (md_longopts);
24170
24171 struct arm_option_table
24172 {
24173 char *option; /* Option name to match. */
24174 char *help; /* Help information. */
24175 int *var; /* Variable to change. */
24176 int value; /* What to change it to. */
24177 char *deprecated; /* If non-null, print this message. */
24178 };
24179
24180 struct arm_option_table arm_opts[] =
24181 {
24182 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
24183 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
24184 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
24185 &support_interwork, 1, NULL},
24186 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
24187 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
24188 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
24189 1, NULL},
24190 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
24191 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
24192 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
24193 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
24194 NULL},
24195
24196 /* These are recognized by the assembler, but have no affect on code. */
24197 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
24198 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
24199
24200 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
24201 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
24202 &warn_on_deprecated, 0, NULL},
24203 {NULL, NULL, NULL, 0, NULL}
24204 };
24205
24206 struct arm_legacy_option_table
24207 {
24208 char *option; /* Option name to match. */
24209 const arm_feature_set **var; /* Variable to change. */
24210 const arm_feature_set value; /* What to change it to. */
24211 char *deprecated; /* If non-null, print this message. */
24212 };
24213
24214 const struct arm_legacy_option_table arm_legacy_opts[] =
24215 {
24216 /* DON'T add any new processors to this list -- we want the whole list
24217 to go away... Add them to the processors table instead. */
24218 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
24219 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
24220 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
24221 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
24222 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
24223 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
24224 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
24225 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
24226 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
24227 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
24228 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
24229 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
24230 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
24231 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
24232 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
24233 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
24234 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
24235 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
24236 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
24237 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
24238 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
24239 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
24240 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
24241 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
24242 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
24243 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
24244 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
24245 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
24246 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
24247 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
24248 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
24249 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
24250 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
24251 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
24252 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
24253 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
24254 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
24255 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
24256 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
24257 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
24258 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
24259 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
24260 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
24261 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
24262 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
24263 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
24264 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
24265 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
24266 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
24267 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
24268 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
24269 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
24270 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
24271 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
24272 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
24273 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
24274 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
24275 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
24276 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
24277 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
24278 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
24279 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
24280 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
24281 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
24282 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
24283 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
24284 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
24285 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
24286 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
24287 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
24288 N_("use -mcpu=strongarm110")},
24289 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
24290 N_("use -mcpu=strongarm1100")},
24291 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
24292 N_("use -mcpu=strongarm1110")},
24293 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
24294 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
24295 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
24296
24297 /* Architecture variants -- don't add any more to this list either. */
24298 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
24299 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
24300 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
24301 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
24302 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
24303 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
24304 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
24305 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
24306 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
24307 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
24308 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
24309 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
24310 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
24311 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
24312 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
24313 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
24314 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
24315 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
24316
24317 /* Floating point variants -- don't add any more to this list either. */
24318 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
24319 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
24320 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
24321 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
24322 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
24323
24324 {NULL, NULL, ARM_ARCH_NONE, NULL}
24325 };
24326
24327 struct arm_cpu_option_table
24328 {
24329 char *name;
24330 size_t name_len;
24331 const arm_feature_set value;
24332 /* For some CPUs we assume an FPU unless the user explicitly sets
24333 -mfpu=... */
24334 const arm_feature_set default_fpu;
24335 /* The canonical name of the CPU, or NULL to use NAME converted to upper
24336 case. */
24337 const char *canonical_name;
24338 };
24339
24340 /* This list should, at a minimum, contain all the cpu names
24341 recognized by GCC. */
24342 #define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
24343 static const struct arm_cpu_option_table arm_cpus[] =
24344 {
24345 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
24346 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
24347 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
24348 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
24349 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
24350 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24351 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24352 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24353 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24354 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24355 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24356 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
24357 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24358 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
24359 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24360 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
24361 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24362 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24363 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24364 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24365 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24366 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24367 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24368 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24369 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24370 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24371 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24372 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24373 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24374 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24375 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24376 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24377 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24378 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24379 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24380 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24381 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24382 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24383 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24384 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
24385 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24386 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24387 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24388 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24389 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24390 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24391 /* For V5 or later processors we default to using VFP; but the user
24392 should really set the FPU type explicitly. */
24393 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
24394 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24395 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
24396 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
24397 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
24398 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
24399 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
24400 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24401 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
24402 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
24403 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24404 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24405 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
24406 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
24407 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24408 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
24409 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
24410 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24411 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24412 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
24413 "ARM1026EJ-S"),
24414 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
24415 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24416 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24417 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24418 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24419 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24420 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
24421 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
24422 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
24423 "ARM1136JF-S"),
24424 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
24425 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
24426 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
24427 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
24428 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
24429 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
24430 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
24431 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
24432 FPU_NONE, "Cortex-A5"),
24433 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7VE, FPU_ARCH_NEON_VFP_V4,
24434 "Cortex-A7"),
24435 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
24436 ARM_FEATURE (0, FPU_VFP_V3
24437 | FPU_NEON_EXT_V1),
24438 "Cortex-A8"),
24439 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
24440 ARM_FEATURE (0, FPU_VFP_V3
24441 | FPU_NEON_EXT_V1),
24442 "Cortex-A9"),
24443 ARM_CPU_OPT ("cortex-a12", ARM_ARCH_V7VE, FPU_ARCH_NEON_VFP_V4,
24444 "Cortex-A12"),
24445 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7VE, FPU_ARCH_NEON_VFP_V4,
24446 "Cortex-A15"),
24447 ARM_CPU_OPT ("cortex-a17", ARM_ARCH_V7VE, FPU_ARCH_NEON_VFP_V4,
24448 "Cortex-A17"),
24449 ARM_CPU_OPT ("cortex-a53", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24450 "Cortex-A53"),
24451 ARM_CPU_OPT ("cortex-a57", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24452 "Cortex-A57"),
24453 ARM_CPU_OPT ("cortex-a72", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24454 "Cortex-A72"),
24455 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
24456 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
24457 "Cortex-R4F"),
24458 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
24459 FPU_NONE, "Cortex-R5"),
24460 ARM_CPU_OPT ("cortex-r7", ARM_ARCH_V7R_IDIV,
24461 FPU_ARCH_VFP_V3D16,
24462 "Cortex-R7"),
24463 ARM_CPU_OPT ("cortex-m7", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M7"),
24464 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
24465 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
24466 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
24467 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
24468 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
24469 /* ??? XSCALE is really an architecture. */
24470 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
24471 /* ??? iwmmxt is not a processor. */
24472 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
24473 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
24474 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
24475 /* Maverick */
24476 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
24477 FPU_ARCH_MAVERICK, "ARM920T"),
24478 /* Marvell processors. */
24479 ARM_CPU_OPT ("marvell-pj4", ARM_FEATURE (ARM_AEXT_V7A | ARM_EXT_MP | ARM_EXT_SEC, 0),
24480 FPU_ARCH_VFP_V3D16, NULL),
24481 ARM_CPU_OPT ("marvell-whitney", ARM_FEATURE (ARM_AEXT_V7A | ARM_EXT_MP
24482 | ARM_EXT_SEC, 0),
24483 FPU_ARCH_NEON_VFP_V4, NULL),
24484 /* APM X-Gene family. */
24485 ARM_CPU_OPT ("xgene1", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24486 "APM X-Gene 1"),
24487 ARM_CPU_OPT ("xgene2", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24488 "APM X-Gene 2"),
24489
24490 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
24491 };
24492 #undef ARM_CPU_OPT
24493
24494 struct arm_arch_option_table
24495 {
24496 char *name;
24497 size_t name_len;
24498 const arm_feature_set value;
24499 const arm_feature_set default_fpu;
24500 };
24501
24502 /* This list should, at a minimum, contain all the architecture names
24503 recognized by GCC. */
24504 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
24505 static const struct arm_arch_option_table arm_archs[] =
24506 {
24507 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
24508 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
24509 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
24510 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
24511 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
24512 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
24513 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
24514 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
24515 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
24516 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
24517 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
24518 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
24519 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
24520 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
24521 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
24522 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
24523 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
24524 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
24525 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
24526 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
24527 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
24528 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
24529 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
24530 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
24531 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
24532 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
24533 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
24534 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
24535 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
24536 /* The official spelling of the ARMv7 profile variants is the dashed form.
24537 Accept the non-dashed form for compatibility with old toolchains. */
24538 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
24539 ARM_ARCH_OPT ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP),
24540 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
24541 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
24542 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
24543 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
24544 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
24545 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
24546 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
24547 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
24548 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
24549 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
24550 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
24551 };
24552 #undef ARM_ARCH_OPT
24553
24554 /* ISA extensions in the co-processor and main instruction set space. */
24555 struct arm_option_extension_value_table
24556 {
24557 char *name;
24558 size_t name_len;
24559 const arm_feature_set merge_value;
24560 const arm_feature_set clear_value;
24561 const arm_feature_set allowed_archs;
24562 };
24563
24564 /* The following table must be in alphabetical order with a NULL last entry.
24565 */
24566 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, AA }
24567 static const struct arm_option_extension_value_table arm_extensions[] =
24568 {
24569 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE (0, CRC_EXT_ARMV8),
24570 ARM_FEATURE (ARM_EXT_V8, 0)),
24571 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24572 ARM_FEATURE (0, FPU_CRYPTO_ARMV8),
24573 ARM_FEATURE (ARM_EXT_V8, 0)),
24574 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE (0, FPU_VFP_ARMV8),
24575 ARM_FEATURE (ARM_EXT_V8, 0)),
24576 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
24577 ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
24578 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
24579 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT),
24580 ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
24581 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2),
24582 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
24583 ARM_EXT_OPT ("maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK),
24584 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
24585 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
24586 ARM_FEATURE (ARM_EXT_MP, 0),
24587 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
24588 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
24589 ARM_FEATURE(0, FPU_NEON_ARMV8),
24590 ARM_FEATURE (ARM_EXT_V8, 0)),
24591 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
24592 ARM_FEATURE (ARM_EXT_OS, 0),
24593 ARM_FEATURE (ARM_EXT_V6M, 0)),
24594 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
24595 ARM_FEATURE (ARM_EXT_SEC, 0),
24596 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
24597 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
24598 | ARM_EXT_DIV, 0),
24599 ARM_FEATURE (ARM_EXT_VIRT, 0),
24600 ARM_FEATURE (ARM_EXT_V7A, 0)),
24601 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE),
24602 ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
24603 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE }
24604 };
24605 #undef ARM_EXT_OPT
24606
24607 /* ISA floating-point and Advanced SIMD extensions. */
24608 struct arm_option_fpu_value_table
24609 {
24610 char *name;
24611 const arm_feature_set value;
24612 };
24613
24614 /* This list should, at a minimum, contain all the fpu names
24615 recognized by GCC. */
24616 static const struct arm_option_fpu_value_table arm_fpus[] =
24617 {
24618 {"softfpa", FPU_NONE},
24619 {"fpe", FPU_ARCH_FPE},
24620 {"fpe2", FPU_ARCH_FPE},
24621 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
24622 {"fpa", FPU_ARCH_FPA},
24623 {"fpa10", FPU_ARCH_FPA},
24624 {"fpa11", FPU_ARCH_FPA},
24625 {"arm7500fe", FPU_ARCH_FPA},
24626 {"softvfp", FPU_ARCH_VFP},
24627 {"softvfp+vfp", FPU_ARCH_VFP_V2},
24628 {"vfp", FPU_ARCH_VFP_V2},
24629 {"vfp9", FPU_ARCH_VFP_V2},
24630 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
24631 {"vfp10", FPU_ARCH_VFP_V2},
24632 {"vfp10-r0", FPU_ARCH_VFP_V1},
24633 {"vfpxd", FPU_ARCH_VFP_V1xD},
24634 {"vfpv2", FPU_ARCH_VFP_V2},
24635 {"vfpv3", FPU_ARCH_VFP_V3},
24636 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
24637 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
24638 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
24639 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
24640 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
24641 {"arm1020t", FPU_ARCH_VFP_V1},
24642 {"arm1020e", FPU_ARCH_VFP_V2},
24643 {"arm1136jfs", FPU_ARCH_VFP_V2},
24644 {"arm1136jf-s", FPU_ARCH_VFP_V2},
24645 {"maverick", FPU_ARCH_MAVERICK},
24646 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
24647 {"neon-fp16", FPU_ARCH_NEON_FP16},
24648 {"vfpv4", FPU_ARCH_VFP_V4},
24649 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
24650 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
24651 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
24652 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
24653 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
24654 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
24655 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
24656 {"crypto-neon-fp-armv8",
24657 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
24658 {NULL, ARM_ARCH_NONE}
24659 };
24660
24661 struct arm_option_value_table
24662 {
24663 char *name;
24664 long value;
24665 };
24666
24667 static const struct arm_option_value_table arm_float_abis[] =
24668 {
24669 {"hard", ARM_FLOAT_ABI_HARD},
24670 {"softfp", ARM_FLOAT_ABI_SOFTFP},
24671 {"soft", ARM_FLOAT_ABI_SOFT},
24672 {NULL, 0}
24673 };
24674
24675 #ifdef OBJ_ELF
24676 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
24677 static const struct arm_option_value_table arm_eabis[] =
24678 {
24679 {"gnu", EF_ARM_EABI_UNKNOWN},
24680 {"4", EF_ARM_EABI_VER4},
24681 {"5", EF_ARM_EABI_VER5},
24682 {NULL, 0}
24683 };
24684 #endif
24685
24686 struct arm_long_option_table
24687 {
24688 char * option; /* Substring to match. */
24689 char * help; /* Help information. */
24690 int (* func) (char * subopt); /* Function to decode sub-option. */
24691 char * deprecated; /* If non-null, print this message. */
24692 };
24693
24694 static bfd_boolean
24695 arm_parse_extension (char *str, const arm_feature_set **opt_p)
24696 {
24697 arm_feature_set *ext_set = (arm_feature_set *)
24698 xmalloc (sizeof (arm_feature_set));
24699
24700 /* We insist on extensions being specified in alphabetical order, and with
24701 extensions being added before being removed. We achieve this by having
24702 the global ARM_EXTENSIONS table in alphabetical order, and using the
24703 ADDING_VALUE variable to indicate whether we are adding an extension (1)
24704 or removing it (0) and only allowing it to change in the order
24705 -1 -> 1 -> 0. */
24706 const struct arm_option_extension_value_table * opt = NULL;
24707 int adding_value = -1;
24708
24709 /* Copy the feature set, so that we can modify it. */
24710 *ext_set = **opt_p;
24711 *opt_p = ext_set;
24712
24713 while (str != NULL && *str != 0)
24714 {
24715 char *ext;
24716 size_t len;
24717
24718 if (*str != '+')
24719 {
24720 as_bad (_("invalid architectural extension"));
24721 return FALSE;
24722 }
24723
24724 str++;
24725 ext = strchr (str, '+');
24726
24727 if (ext != NULL)
24728 len = ext - str;
24729 else
24730 len = strlen (str);
24731
24732 if (len >= 2 && strncmp (str, "no", 2) == 0)
24733 {
24734 if (adding_value != 0)
24735 {
24736 adding_value = 0;
24737 opt = arm_extensions;
24738 }
24739
24740 len -= 2;
24741 str += 2;
24742 }
24743 else if (len > 0)
24744 {
24745 if (adding_value == -1)
24746 {
24747 adding_value = 1;
24748 opt = arm_extensions;
24749 }
24750 else if (adding_value != 1)
24751 {
24752 as_bad (_("must specify extensions to add before specifying "
24753 "those to remove"));
24754 return FALSE;
24755 }
24756 }
24757
24758 if (len == 0)
24759 {
24760 as_bad (_("missing architectural extension"));
24761 return FALSE;
24762 }
24763
24764 gas_assert (adding_value != -1);
24765 gas_assert (opt != NULL);
24766
24767 /* Scan over the options table trying to find an exact match. */
24768 for (; opt->name != NULL; opt++)
24769 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
24770 {
24771 /* Check we can apply the extension to this architecture. */
24772 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
24773 {
24774 as_bad (_("extension does not apply to the base architecture"));
24775 return FALSE;
24776 }
24777
24778 /* Add or remove the extension. */
24779 if (adding_value)
24780 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
24781 else
24782 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
24783
24784 break;
24785 }
24786
24787 if (opt->name == NULL)
24788 {
24789 /* Did we fail to find an extension because it wasn't specified in
24790 alphabetical order, or because it does not exist? */
24791
24792 for (opt = arm_extensions; opt->name != NULL; opt++)
24793 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
24794 break;
24795
24796 if (opt->name == NULL)
24797 as_bad (_("unknown architectural extension `%s'"), str);
24798 else
24799 as_bad (_("architectural extensions must be specified in "
24800 "alphabetical order"));
24801
24802 return FALSE;
24803 }
24804 else
24805 {
24806 /* We should skip the extension we've just matched the next time
24807 round. */
24808 opt++;
24809 }
24810
24811 str = ext;
24812 };
24813
24814 return TRUE;
24815 }
24816
24817 static bfd_boolean
24818 arm_parse_cpu (char *str)
24819 {
24820 const struct arm_cpu_option_table *opt;
24821 char *ext = strchr (str, '+');
24822 size_t len;
24823
24824 if (ext != NULL)
24825 len = ext - str;
24826 else
24827 len = strlen (str);
24828
24829 if (len == 0)
24830 {
24831 as_bad (_("missing cpu name `%s'"), str);
24832 return FALSE;
24833 }
24834
24835 for (opt = arm_cpus; opt->name != NULL; opt++)
24836 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
24837 {
24838 mcpu_cpu_opt = &opt->value;
24839 mcpu_fpu_opt = &opt->default_fpu;
24840 if (opt->canonical_name)
24841 strcpy (selected_cpu_name, opt->canonical_name);
24842 else
24843 {
24844 size_t i;
24845
24846 for (i = 0; i < len; i++)
24847 selected_cpu_name[i] = TOUPPER (opt->name[i]);
24848 selected_cpu_name[i] = 0;
24849 }
24850
24851 if (ext != NULL)
24852 return arm_parse_extension (ext, &mcpu_cpu_opt);
24853
24854 return TRUE;
24855 }
24856
24857 as_bad (_("unknown cpu `%s'"), str);
24858 return FALSE;
24859 }
24860
24861 static bfd_boolean
24862 arm_parse_arch (char *str)
24863 {
24864 const struct arm_arch_option_table *opt;
24865 char *ext = strchr (str, '+');
24866 size_t len;
24867
24868 if (ext != NULL)
24869 len = ext - str;
24870 else
24871 len = strlen (str);
24872
24873 if (len == 0)
24874 {
24875 as_bad (_("missing architecture name `%s'"), str);
24876 return FALSE;
24877 }
24878
24879 for (opt = arm_archs; opt->name != NULL; opt++)
24880 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
24881 {
24882 march_cpu_opt = &opt->value;
24883 march_fpu_opt = &opt->default_fpu;
24884 strcpy (selected_cpu_name, opt->name);
24885
24886 if (ext != NULL)
24887 return arm_parse_extension (ext, &march_cpu_opt);
24888
24889 return TRUE;
24890 }
24891
24892 as_bad (_("unknown architecture `%s'\n"), str);
24893 return FALSE;
24894 }
24895
24896 static bfd_boolean
24897 arm_parse_fpu (char * str)
24898 {
24899 const struct arm_option_fpu_value_table * opt;
24900
24901 for (opt = arm_fpus; opt->name != NULL; opt++)
24902 if (streq (opt->name, str))
24903 {
24904 mfpu_opt = &opt->value;
24905 return TRUE;
24906 }
24907
24908 as_bad (_("unknown floating point format `%s'\n"), str);
24909 return FALSE;
24910 }
24911
24912 static bfd_boolean
24913 arm_parse_float_abi (char * str)
24914 {
24915 const struct arm_option_value_table * opt;
24916
24917 for (opt = arm_float_abis; opt->name != NULL; opt++)
24918 if (streq (opt->name, str))
24919 {
24920 mfloat_abi_opt = opt->value;
24921 return TRUE;
24922 }
24923
24924 as_bad (_("unknown floating point abi `%s'\n"), str);
24925 return FALSE;
24926 }
24927
24928 #ifdef OBJ_ELF
24929 static bfd_boolean
24930 arm_parse_eabi (char * str)
24931 {
24932 const struct arm_option_value_table *opt;
24933
24934 for (opt = arm_eabis; opt->name != NULL; opt++)
24935 if (streq (opt->name, str))
24936 {
24937 meabi_flags = opt->value;
24938 return TRUE;
24939 }
24940 as_bad (_("unknown EABI `%s'\n"), str);
24941 return FALSE;
24942 }
24943 #endif
24944
24945 static bfd_boolean
24946 arm_parse_it_mode (char * str)
24947 {
24948 bfd_boolean ret = TRUE;
24949
24950 if (streq ("arm", str))
24951 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
24952 else if (streq ("thumb", str))
24953 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
24954 else if (streq ("always", str))
24955 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
24956 else if (streq ("never", str))
24957 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
24958 else
24959 {
24960 as_bad (_("unknown implicit IT mode `%s', should be "\
24961 "arm, thumb, always, or never."), str);
24962 ret = FALSE;
24963 }
24964
24965 return ret;
24966 }
24967
24968 static bfd_boolean
24969 arm_ccs_mode (char * unused ATTRIBUTE_UNUSED)
24970 {
24971 codecomposer_syntax = TRUE;
24972 arm_comment_chars[0] = ';';
24973 arm_line_separator_chars[0] = 0;
24974 return TRUE;
24975 }
24976
24977 struct arm_long_option_table arm_long_opts[] =
24978 {
24979 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
24980 arm_parse_cpu, NULL},
24981 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
24982 arm_parse_arch, NULL},
24983 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
24984 arm_parse_fpu, NULL},
24985 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
24986 arm_parse_float_abi, NULL},
24987 #ifdef OBJ_ELF
24988 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
24989 arm_parse_eabi, NULL},
24990 #endif
24991 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
24992 arm_parse_it_mode, NULL},
24993 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
24994 arm_ccs_mode, NULL},
24995 {NULL, NULL, 0, NULL}
24996 };
24997
24998 int
24999 md_parse_option (int c, char * arg)
25000 {
25001 struct arm_option_table *opt;
25002 const struct arm_legacy_option_table *fopt;
25003 struct arm_long_option_table *lopt;
25004
25005 switch (c)
25006 {
25007 #ifdef OPTION_EB
25008 case OPTION_EB:
25009 target_big_endian = 1;
25010 break;
25011 #endif
25012
25013 #ifdef OPTION_EL
25014 case OPTION_EL:
25015 target_big_endian = 0;
25016 break;
25017 #endif
25018
25019 case OPTION_FIX_V4BX:
25020 fix_v4bx = TRUE;
25021 break;
25022
25023 case 'a':
25024 /* Listing option. Just ignore these, we don't support additional
25025 ones. */
25026 return 0;
25027
25028 default:
25029 for (opt = arm_opts; opt->option != NULL; opt++)
25030 {
25031 if (c == opt->option[0]
25032 && ((arg == NULL && opt->option[1] == 0)
25033 || streq (arg, opt->option + 1)))
25034 {
25035 /* If the option is deprecated, tell the user. */
25036 if (warn_on_deprecated && opt->deprecated != NULL)
25037 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
25038 arg ? arg : "", _(opt->deprecated));
25039
25040 if (opt->var != NULL)
25041 *opt->var = opt->value;
25042
25043 return 1;
25044 }
25045 }
25046
25047 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
25048 {
25049 if (c == fopt->option[0]
25050 && ((arg == NULL && fopt->option[1] == 0)
25051 || streq (arg, fopt->option + 1)))
25052 {
25053 /* If the option is deprecated, tell the user. */
25054 if (warn_on_deprecated && fopt->deprecated != NULL)
25055 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
25056 arg ? arg : "", _(fopt->deprecated));
25057
25058 if (fopt->var != NULL)
25059 *fopt->var = &fopt->value;
25060
25061 return 1;
25062 }
25063 }
25064
25065 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
25066 {
25067 /* These options are expected to have an argument. */
25068 if (c == lopt->option[0]
25069 && arg != NULL
25070 && strncmp (arg, lopt->option + 1,
25071 strlen (lopt->option + 1)) == 0)
25072 {
25073 /* If the option is deprecated, tell the user. */
25074 if (warn_on_deprecated && lopt->deprecated != NULL)
25075 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
25076 _(lopt->deprecated));
25077
25078 /* Call the sup-option parser. */
25079 return lopt->func (arg + strlen (lopt->option) - 1);
25080 }
25081 }
25082
25083 return 0;
25084 }
25085
25086 return 1;
25087 }
25088
25089 void
25090 md_show_usage (FILE * fp)
25091 {
25092 struct arm_option_table *opt;
25093 struct arm_long_option_table *lopt;
25094
25095 fprintf (fp, _(" ARM-specific assembler options:\n"));
25096
25097 for (opt = arm_opts; opt->option != NULL; opt++)
25098 if (opt->help != NULL)
25099 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
25100
25101 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
25102 if (lopt->help != NULL)
25103 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
25104
25105 #ifdef OPTION_EB
25106 fprintf (fp, _("\
25107 -EB assemble code for a big-endian cpu\n"));
25108 #endif
25109
25110 #ifdef OPTION_EL
25111 fprintf (fp, _("\
25112 -EL assemble code for a little-endian cpu\n"));
25113 #endif
25114
25115 fprintf (fp, _("\
25116 --fix-v4bx Allow BX in ARMv4 code\n"));
25117 }
25118
25119
25120 #ifdef OBJ_ELF
25121 typedef struct
25122 {
25123 int val;
25124 arm_feature_set flags;
25125 } cpu_arch_ver_table;
25126
25127 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
25128 least features first. */
25129 static const cpu_arch_ver_table cpu_arch_ver[] =
25130 {
25131 {1, ARM_ARCH_V4},
25132 {2, ARM_ARCH_V4T},
25133 {3, ARM_ARCH_V5},
25134 {3, ARM_ARCH_V5T},
25135 {4, ARM_ARCH_V5TE},
25136 {5, ARM_ARCH_V5TEJ},
25137 {6, ARM_ARCH_V6},
25138 {9, ARM_ARCH_V6K},
25139 {7, ARM_ARCH_V6Z},
25140 {11, ARM_ARCH_V6M},
25141 {12, ARM_ARCH_V6SM},
25142 {8, ARM_ARCH_V6T2},
25143 {10, ARM_ARCH_V7VE},
25144 {10, ARM_ARCH_V7R},
25145 {10, ARM_ARCH_V7M},
25146 {14, ARM_ARCH_V8A},
25147 {0, ARM_ARCH_NONE}
25148 };
25149
25150 /* Set an attribute if it has not already been set by the user. */
25151 static void
25152 aeabi_set_attribute_int (int tag, int value)
25153 {
25154 if (tag < 1
25155 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
25156 || !attributes_set_explicitly[tag])
25157 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
25158 }
25159
25160 static void
25161 aeabi_set_attribute_string (int tag, const char *value)
25162 {
25163 if (tag < 1
25164 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
25165 || !attributes_set_explicitly[tag])
25166 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
25167 }
25168
25169 /* Set the public EABI object attributes. */
25170 void
25171 aeabi_set_public_attributes (void)
25172 {
25173 int arch;
25174 char profile;
25175 int virt_sec = 0;
25176 int fp16_optional = 0;
25177 arm_feature_set flags;
25178 arm_feature_set tmp;
25179 const cpu_arch_ver_table *p;
25180
25181 /* Choose the architecture based on the capabilities of the requested cpu
25182 (if any) and/or the instructions actually used. */
25183 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
25184 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
25185 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
25186
25187 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
25188 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
25189
25190 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
25191 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
25192
25193 selected_cpu = flags;
25194
25195 /* Allow the user to override the reported architecture. */
25196 if (object_arch)
25197 {
25198 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
25199 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
25200 }
25201
25202 /* We need to make sure that the attributes do not identify us as v6S-M
25203 when the only v6S-M feature in use is the Operating System Extensions. */
25204 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
25205 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
25206 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
25207
25208 tmp = flags;
25209 arch = 0;
25210 for (p = cpu_arch_ver; p->val; p++)
25211 {
25212 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
25213 {
25214 arch = p->val;
25215 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
25216 }
25217 }
25218
25219 /* The table lookup above finds the last architecture to contribute
25220 a new feature. Unfortunately, Tag13 is a subset of the union of
25221 v6T2 and v7-M, so it is never seen as contributing a new feature.
25222 We can not search for the last entry which is entirely used,
25223 because if no CPU is specified we build up only those flags
25224 actually used. Perhaps we should separate out the specified
25225 and implicit cases. Avoid taking this path for -march=all by
25226 checking for contradictory v7-A / v7-M features. */
25227 if (arch == 10
25228 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
25229 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
25230 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
25231 arch = 13;
25232
25233 /* Tag_CPU_name. */
25234 if (selected_cpu_name[0])
25235 {
25236 char *q;
25237
25238 q = selected_cpu_name;
25239 if (strncmp (q, "armv", 4) == 0)
25240 {
25241 int i;
25242
25243 q += 4;
25244 for (i = 0; q[i]; i++)
25245 q[i] = TOUPPER (q[i]);
25246 }
25247 aeabi_set_attribute_string (Tag_CPU_name, q);
25248 }
25249
25250 /* Tag_CPU_arch. */
25251 aeabi_set_attribute_int (Tag_CPU_arch, arch);
25252
25253 /* Tag_CPU_arch_profile. */
25254 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
25255 profile = 'A';
25256 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
25257 profile = 'R';
25258 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
25259 profile = 'M';
25260 else
25261 profile = '\0';
25262
25263 if (profile != '\0')
25264 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
25265
25266 /* Tag_ARM_ISA_use. */
25267 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
25268 || arch == 0)
25269 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
25270
25271 /* Tag_THUMB_ISA_use. */
25272 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
25273 || arch == 0)
25274 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
25275 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
25276
25277 /* Tag_VFP_arch. */
25278 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
25279 aeabi_set_attribute_int (Tag_VFP_arch,
25280 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
25281 ? 7 : 8);
25282 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
25283 aeabi_set_attribute_int (Tag_VFP_arch,
25284 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
25285 ? 5 : 6);
25286 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
25287 {
25288 fp16_optional = 1;
25289 aeabi_set_attribute_int (Tag_VFP_arch, 3);
25290 }
25291 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
25292 {
25293 aeabi_set_attribute_int (Tag_VFP_arch, 4);
25294 fp16_optional = 1;
25295 }
25296 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
25297 aeabi_set_attribute_int (Tag_VFP_arch, 2);
25298 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
25299 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
25300 aeabi_set_attribute_int (Tag_VFP_arch, 1);
25301
25302 /* Tag_ABI_HardFP_use. */
25303 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
25304 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
25305 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
25306
25307 /* Tag_WMMX_arch. */
25308 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
25309 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
25310 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
25311 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
25312
25313 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
25314 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
25315 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
25316 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
25317 {
25318 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
25319 {
25320 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
25321 }
25322 else
25323 {
25324 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
25325 fp16_optional = 1;
25326 }
25327 }
25328
25329 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
25330 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
25331 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
25332
25333 /* Tag_DIV_use.
25334
25335 We set Tag_DIV_use to two when integer divide instructions have been used
25336 in ARM state, or when Thumb integer divide instructions have been used,
25337 but we have no architecture profile set, nor have we any ARM instructions.
25338
25339 For ARMv8 we set the tag to 0 as integer divide is implied by the base
25340 architecture.
25341
25342 For new architectures we will have to check these tests. */
25343 gas_assert (arch <= TAG_CPU_ARCH_V8);
25344 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
25345 aeabi_set_attribute_int (Tag_DIV_use, 0);
25346 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
25347 || (profile == '\0'
25348 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
25349 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
25350 aeabi_set_attribute_int (Tag_DIV_use, 2);
25351
25352 /* Tag_MP_extension_use. */
25353 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
25354 aeabi_set_attribute_int (Tag_MPextension_use, 1);
25355
25356 /* Tag Virtualization_use. */
25357 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
25358 virt_sec |= 1;
25359 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
25360 virt_sec |= 2;
25361 if (virt_sec != 0)
25362 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
25363 }
25364
25365 /* Add the default contents for the .ARM.attributes section. */
25366 void
25367 arm_md_end (void)
25368 {
25369 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
25370 return;
25371
25372 aeabi_set_public_attributes ();
25373 }
25374 #endif /* OBJ_ELF */
25375
25376
25377 /* Parse a .cpu directive. */
25378
25379 static void
25380 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
25381 {
25382 const struct arm_cpu_option_table *opt;
25383 char *name;
25384 char saved_char;
25385
25386 name = input_line_pointer;
25387 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25388 input_line_pointer++;
25389 saved_char = *input_line_pointer;
25390 *input_line_pointer = 0;
25391
25392 /* Skip the first "all" entry. */
25393 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
25394 if (streq (opt->name, name))
25395 {
25396 mcpu_cpu_opt = &opt->value;
25397 selected_cpu = opt->value;
25398 if (opt->canonical_name)
25399 strcpy (selected_cpu_name, opt->canonical_name);
25400 else
25401 {
25402 int i;
25403 for (i = 0; opt->name[i]; i++)
25404 selected_cpu_name[i] = TOUPPER (opt->name[i]);
25405
25406 selected_cpu_name[i] = 0;
25407 }
25408 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25409 *input_line_pointer = saved_char;
25410 demand_empty_rest_of_line ();
25411 return;
25412 }
25413 as_bad (_("unknown cpu `%s'"), name);
25414 *input_line_pointer = saved_char;
25415 ignore_rest_of_line ();
25416 }
25417
25418
25419 /* Parse a .arch directive. */
25420
25421 static void
25422 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
25423 {
25424 const struct arm_arch_option_table *opt;
25425 char saved_char;
25426 char *name;
25427
25428 name = input_line_pointer;
25429 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25430 input_line_pointer++;
25431 saved_char = *input_line_pointer;
25432 *input_line_pointer = 0;
25433
25434 /* Skip the first "all" entry. */
25435 for (opt = arm_archs + 1; opt->name != NULL; opt++)
25436 if (streq (opt->name, name))
25437 {
25438 mcpu_cpu_opt = &opt->value;
25439 selected_cpu = opt->value;
25440 strcpy (selected_cpu_name, opt->name);
25441 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25442 *input_line_pointer = saved_char;
25443 demand_empty_rest_of_line ();
25444 return;
25445 }
25446
25447 as_bad (_("unknown architecture `%s'\n"), name);
25448 *input_line_pointer = saved_char;
25449 ignore_rest_of_line ();
25450 }
25451
25452
25453 /* Parse a .object_arch directive. */
25454
25455 static void
25456 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
25457 {
25458 const struct arm_arch_option_table *opt;
25459 char saved_char;
25460 char *name;
25461
25462 name = input_line_pointer;
25463 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25464 input_line_pointer++;
25465 saved_char = *input_line_pointer;
25466 *input_line_pointer = 0;
25467
25468 /* Skip the first "all" entry. */
25469 for (opt = arm_archs + 1; opt->name != NULL; opt++)
25470 if (streq (opt->name, name))
25471 {
25472 object_arch = &opt->value;
25473 *input_line_pointer = saved_char;
25474 demand_empty_rest_of_line ();
25475 return;
25476 }
25477
25478 as_bad (_("unknown architecture `%s'\n"), name);
25479 *input_line_pointer = saved_char;
25480 ignore_rest_of_line ();
25481 }
25482
25483 /* Parse a .arch_extension directive. */
25484
25485 static void
25486 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
25487 {
25488 const struct arm_option_extension_value_table *opt;
25489 char saved_char;
25490 char *name;
25491 int adding_value = 1;
25492
25493 name = input_line_pointer;
25494 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25495 input_line_pointer++;
25496 saved_char = *input_line_pointer;
25497 *input_line_pointer = 0;
25498
25499 if (strlen (name) >= 2
25500 && strncmp (name, "no", 2) == 0)
25501 {
25502 adding_value = 0;
25503 name += 2;
25504 }
25505
25506 for (opt = arm_extensions; opt->name != NULL; opt++)
25507 if (streq (opt->name, name))
25508 {
25509 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
25510 {
25511 as_bad (_("architectural extension `%s' is not allowed for the "
25512 "current base architecture"), name);
25513 break;
25514 }
25515
25516 if (adding_value)
25517 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu,
25518 opt->merge_value);
25519 else
25520 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->clear_value);
25521
25522 mcpu_cpu_opt = &selected_cpu;
25523 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25524 *input_line_pointer = saved_char;
25525 demand_empty_rest_of_line ();
25526 return;
25527 }
25528
25529 if (opt->name == NULL)
25530 as_bad (_("unknown architecture extension `%s'\n"), name);
25531
25532 *input_line_pointer = saved_char;
25533 ignore_rest_of_line ();
25534 }
25535
25536 /* Parse a .fpu directive. */
25537
25538 static void
25539 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
25540 {
25541 const struct arm_option_fpu_value_table *opt;
25542 char saved_char;
25543 char *name;
25544
25545 name = input_line_pointer;
25546 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25547 input_line_pointer++;
25548 saved_char = *input_line_pointer;
25549 *input_line_pointer = 0;
25550
25551 for (opt = arm_fpus; opt->name != NULL; opt++)
25552 if (streq (opt->name, name))
25553 {
25554 mfpu_opt = &opt->value;
25555 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25556 *input_line_pointer = saved_char;
25557 demand_empty_rest_of_line ();
25558 return;
25559 }
25560
25561 as_bad (_("unknown floating point format `%s'\n"), name);
25562 *input_line_pointer = saved_char;
25563 ignore_rest_of_line ();
25564 }
25565
25566 /* Copy symbol information. */
25567
25568 void
25569 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
25570 {
25571 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
25572 }
25573
25574 #ifdef OBJ_ELF
25575 /* Given a symbolic attribute NAME, return the proper integer value.
25576 Returns -1 if the attribute is not known. */
25577
25578 int
25579 arm_convert_symbolic_attribute (const char *name)
25580 {
25581 static const struct
25582 {
25583 const char * name;
25584 const int tag;
25585 }
25586 attribute_table[] =
25587 {
25588 /* When you modify this table you should
25589 also modify the list in doc/c-arm.texi. */
25590 #define T(tag) {#tag, tag}
25591 T (Tag_CPU_raw_name),
25592 T (Tag_CPU_name),
25593 T (Tag_CPU_arch),
25594 T (Tag_CPU_arch_profile),
25595 T (Tag_ARM_ISA_use),
25596 T (Tag_THUMB_ISA_use),
25597 T (Tag_FP_arch),
25598 T (Tag_VFP_arch),
25599 T (Tag_WMMX_arch),
25600 T (Tag_Advanced_SIMD_arch),
25601 T (Tag_PCS_config),
25602 T (Tag_ABI_PCS_R9_use),
25603 T (Tag_ABI_PCS_RW_data),
25604 T (Tag_ABI_PCS_RO_data),
25605 T (Tag_ABI_PCS_GOT_use),
25606 T (Tag_ABI_PCS_wchar_t),
25607 T (Tag_ABI_FP_rounding),
25608 T (Tag_ABI_FP_denormal),
25609 T (Tag_ABI_FP_exceptions),
25610 T (Tag_ABI_FP_user_exceptions),
25611 T (Tag_ABI_FP_number_model),
25612 T (Tag_ABI_align_needed),
25613 T (Tag_ABI_align8_needed),
25614 T (Tag_ABI_align_preserved),
25615 T (Tag_ABI_align8_preserved),
25616 T (Tag_ABI_enum_size),
25617 T (Tag_ABI_HardFP_use),
25618 T (Tag_ABI_VFP_args),
25619 T (Tag_ABI_WMMX_args),
25620 T (Tag_ABI_optimization_goals),
25621 T (Tag_ABI_FP_optimization_goals),
25622 T (Tag_compatibility),
25623 T (Tag_CPU_unaligned_access),
25624 T (Tag_FP_HP_extension),
25625 T (Tag_VFP_HP_extension),
25626 T (Tag_ABI_FP_16bit_format),
25627 T (Tag_MPextension_use),
25628 T (Tag_DIV_use),
25629 T (Tag_nodefaults),
25630 T (Tag_also_compatible_with),
25631 T (Tag_conformance),
25632 T (Tag_T2EE_use),
25633 T (Tag_Virtualization_use),
25634 /* We deliberately do not include Tag_MPextension_use_legacy. */
25635 #undef T
25636 };
25637 unsigned int i;
25638
25639 if (name == NULL)
25640 return -1;
25641
25642 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
25643 if (streq (name, attribute_table[i].name))
25644 return attribute_table[i].tag;
25645
25646 return -1;
25647 }
25648
25649
25650 /* Apply sym value for relocations only in the case that
25651 they are for local symbols and you have the respective
25652 architectural feature for blx and simple switches. */
25653 int
25654 arm_apply_sym_value (struct fix * fixP)
25655 {
25656 if (fixP->fx_addsy
25657 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
25658 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
25659 {
25660 switch (fixP->fx_r_type)
25661 {
25662 case BFD_RELOC_ARM_PCREL_BLX:
25663 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25664 if (ARM_IS_FUNC (fixP->fx_addsy))
25665 return 1;
25666 break;
25667
25668 case BFD_RELOC_ARM_PCREL_CALL:
25669 case BFD_RELOC_THUMB_PCREL_BLX:
25670 if (THUMB_IS_FUNC (fixP->fx_addsy))
25671 return 1;
25672 break;
25673
25674 default:
25675 break;
25676 }
25677
25678 }
25679 return 0;
25680 }
25681 #endif /* OBJ_ELF */
This page took 0.721298 seconds and 4 git commands to generate.